
České učení technické v Praze
Fakulta strojní

Ústav přístrojové a řídící techniky

Simulátor výrobního zařízení založený na RPi+UniPi

Bakalářská práce

Kirill Rassudikhin

Bakalářský program: Teoretický základ strojního inženýrství
Bakalářský obor: Bez oborový

Vedoucí práce: Mgr. Ing. Jakub Jura, Ph.D.

Praha, srpen 2020

iii

Vedoucí práce:
Mgr. Ing. Jakub Jura, Ph.D.
Ústav přístrojové a řídící techniky
Fakulta strojní
České vysoké učení technické v Praze
Technická 2
160 00 Praha 6
Česká republika

Copyright © srpen 2020 Kirill Rassudikhin

Prohlášení

Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně, s tím, že její výsledky
mohou být dále použity podle uvážení vedoucího diplomové práce jako jejího spoluautora.
Souhlasím také s případnou publikací výsledků diplomové práce nebo její podstatné části,
pokud bude uveden jako její spoluautor.

V Praze 2020

..
Kirill Rassudikhin

iv

Abstract

Abstract
The main goal of this bachelor thesis is to develop a hardware simulator of specific

automation components (with method of digital twin). The simulator should make de-
veloping control programs for PLC easier. The simulator in the current version simulates
a system of the linear pneumatic actuator with a monostable and bistable direct control
valve. The simulator was built on the basis of Raspberry Pi B+ v 1.2 and UniPi v1.1.
During development, several versions of the simulator were tested. The first version was
strictly simulator without visualization or plotting. The second version included visual-
ization, the third version included visualization and plotting. The theoretical part of this
bachelor thesis describes real systems with monostable and bistable valves as an object for
simulation. Those systems were translated into product system simulation models. Also
theoretical part of the bachelor thesis describes hardware for simulation such as Raspberry
Pi and UniPi, hardware for testing the simulator (PLC), and methods of communication
between that hardware equipment. The practical part of the bachelor thesis describes
the physical connection (electrical circuit) between hardware, programs for PLC, created
for testing. But the major part of the practical part is the process of developing the
simulator. It describes developing the simulator on three different platforms (Python,
Node-Red, Mervis), used modules and methods, final programs, source codes, and also
describes each platform.

Keywords: Raspberry Pi, UniPi, Product system simulator, Python, Node Red,
Mervis, PLC, digital twin

Abstrakt
Cílem této bakalářské práce je vývoj hardwarového simulátoru automatizačních kom-

ponent (na způsob digitálního dvojčete výrobního zařízení) za účelem usnadnění vývoje
řídicího programu v PLC. Simulátor v současné verzi modeluje chování lineárního pneu-
matického pohonu s bistabilmním a monostabilním rozvaděčem. Simulátor je hardwarově
postaven na Raspberry Pi B+ v1.2 a UniPi v 1.1. Softwarově bylo otestováno několik
verzí. První verze obsahovala jenom program simulátoru. Druhá verze také obsahovala
vizualizaci. Třetí verze obsahovala vizualizaci a graf průběhu simulace. Teoretická část
této bakalářské práce popisuje reálné systémy jako objekt simulace. Tyto systémy zatím
budou převedené do modelu simulátoru výrobního zařízení. Takže teoretická část popisuje
hadware použitý pro simulaci: Raspberry Pi B+ v1.2 a UniPi v.1.1, popisuje hardware
pro testování (PLC) a metody komunikace mezi těmito zařízení. Praktická část bakalářky
popisuje fyzické zapojení mezi jednotlivými hardware zařízení (elektronická schémata),
programy pro PLC, vytvořený pro testování. Ale větší část je věnována procesu vyvíjení
simulátoru, popisuje vyvíjení na třech různých platformách (Python, Node Red, Mervis),
použité moduly a metody, výsledné programy, zdrojové kódy a jednotlivé platformy.

Klíčová slova: Raspberry Pi, UniPi, Simulátor výrobního zařízení, Python, Node

v

vi

Red, Mervis, PLC, digitální dvojče

Poděkování

Děkuji mému vedoucímu Mgr. Ing. Ph.D. Jakubu Jurovi za rady a pomoc. Taky děkuji
Ing. Matouši Cejnkovi za pomoc s pythonem a Ing. Ph.D. Marii Martináskově za rady
ohledně pneumatiky.

vii

List of Tables

4.1 UniPi technology, MCP23008 pin map, [online], [Cit. 20.03.2020],[9] 13
4.2 UniPi technology, Raspberry Pi header map, [online], [Cit. 20.03.2020], [9] 14

9.1 Values for each relay in UniPi v1.1, [9] . 40
9.2 Node GPIO module pin configuration . 65

viii

List of Figures

1.1 Pyramid of automation, [2019], In syspro.com, [Cit. 20.04.2020], [2] 2

2.1 Block scheme for system with monostable valve 5
2.2 Scheme of the technological process for system with monostable valve . . . 5
2.3 Scheme of the monostable task . 6
2.4 Block scheme for system with bistable valve 7
2.5 Scheme of the technological process for system with bistable valve 7
2.6 Scheme of the bistable task . 8

3.1 Raspberry Pi b+ v1.2 . 10
3.2 Raspberry Pi Foundation, GPIO port map, [online], [Cit. 13.04.2020] [7] . 11

4.1 UniPi technology, UniPi v1.1, [online], [Cit. 14.04.2020],[8] 12
4.2 Configuration of JP2-JP5 connectors. 14
4.3 UniPi v1.1, peripheral map, Bc. Petr Simecek, Controlling system of smart

house, (2017), [Cit. 17.06.2020] [10] . 15
4.4 Scheme of GPIO pin . 17
4.5 Scheme of output connection . 18
4.6 Scheme of input connection . 19
4.7 FLORYAN, Marcin. Data Transfer Sequence, [2017], In Wikipedia, [on-

line], [Cit.20.03.2020], [14] . 20

5.1 Simple program in LD . 22
5.2 Basic elements LD . 22
5.3 ERICKSON, Kelvin. Architecture of typical PLC, 1996, In IEEE poten-

cials, [Cit.15.04.2020], ISSN 0278-6648, [17] 23

7.1 Scheme of UniPi . 26
7.2 Actual connection of UniPi . 27
7.3 The whole picture of the connection between UniPi and PLC 28
7.4 Circuit scheme for simulating system with monostable valve 29
7.5 Actual connection of UniPi, bistable valve 30
7.6 The whole picture of the connection between UniPi and PLC, bistable valve 31
7.7 Circuit scheme for simulating system with bistable valve 32

8.1 PLC program for mono-stable task, written in TIA Portal v.15 [18] 34
8.2 PLC program for bi-stable task, written in PLCopen [19] 35

9.1 Sequence Functional Chart of Actions, Raspberry Pi need to do, to exactly
simulate system. 41

ix

LIST OF FIGURES x

9.2 Sequence of states of simulated system (monostable valve) 44
9.3 Starting position of simulator represented by visualization function 46
9.4 Example of configuration file . 48
9.5 Visualisation of the simulation through the plot 50
9.6 Scheme for calculation . 53
9.7 Sequence Functional Chart of Actions, Raspberry Pi need to, do to exactly

simulate system. 56
9.8 Sequence of states of simulated system (bistable valve) 57
9.9 Scheme of connection between node red and RPi 60
9.10 Simplest flow in Node Red . 60
9.11 Simulator in Node Red . 63
9.12 Visualization in Node Red . 64
9.13 rpi-gpio in node . 65
9.14 Switch node . 65
9.15 Change node . 65
9.16 Function node . 66
9.17 Delay node . 66
9.18 i2c node . 66
9.19 UI switch node . 66
9.20 Connection of Mervis and RPi+UniPi . 67
9.21 Simulator in Mervis IDE . 69
9.22 Visualization of simulator in Mervis IDE 70

Acronyms

DCV Direct Control Valve. 4–8, 30, 33–35, 40, 41, 43, 44, 56, 57

FBD Function Block Diagram. 21, 33, 37, 67

FPS Frames Per Second. 46, 48

GPIO General Purpouse Input/Output. 9, 10, 12, 14, 16–19, 24, 31, 38, 39, 41, 45, 68,
71

HMI Human Machine Interface. 70

I2C Inter Integrated Circuit. 12, 18–20, 24, 37–39, 66, 71

IDE Integrated Development Environment. x, xiii, 33, 37, 67–71

JSON Java Script Object Notation. 59

LD Ladder Diagram. 21, 22, 33

LED Light Emitting Diode. 12, 13

OS Operation System. 9, 67

PC Personal Computer. xiii, 36, 44, 45, 52

PLC Programmable Logic Controller. 1–3, 5, 7, 12, 13, 21–24, 26–28, 30, 31, 33, 34, 61,
71, 72

RPi Raspberry Pi. 5, 7, 9, 12, 16, 24, 38, 39, 46, 52, 59, 64, 66, 71, 73

SFC Sequential Function Chart. 21, 41, 56

SPI Serial Peripheral Interface. 18, 19

SSH Secure Shell. 9

ST Structured Text. 21, 33, 37, 67

xi

Contents

Zadání ii

Prohlášení iv

Abstract v

Poděkování vii

List of Tables viii

List of Figures ix

Acronyms xi

1 Introduction 1
1.1 Simulation of the field instrumentation . 3

2 Specification of the system for simulation 4
2.0.1 Actuator with monostable valve . 5
2.0.2 Actuator with bistable valve . 7

3 Raspberry Pi 9

4 UniPi 12
4.1 Communication between Raspberry Pi and UniPi 16

4.1.1 GPIO . 16
4.1.2 I2C . 19

5 Programmable Logic Controller 21

6 Conclusion of Theoretical part 24

7 Physical connection of UniPi and PLC 26
7.1 Connection for simulating the system with

monostable valve . 26
7.2 Connection for simulating the system with bistable valve 30

8 PLC program 33
8.1 PLC program for monostable system . 33
8.2 PLC program for bistable system . 34

xii

CONTENTS xiii

9 Development of the program on UniPi+RPi 36
9.1 Development in Python . 37

9.1.1 Import of modules . 37
9.1.2 Simulation function . 38
9.1.3 Simulation function for testing on PC 44
9.1.4 Visualization function . 45
9.1.5 Collecting data . 48
9.1.6 Plot function . 49
9.1.7 Main code . 52
9.1.8 Difference between simulating the system with monostable valve

and bistable valve . 56
9.2 Developing in NodeRed . 59

9.2.1 Created simulator in Node-Red. 60
9.2.2 Used Nodes and Modules . 64

9.3 Developing in Mervis . 67
9.3.1 Preparing Mervis . 67
9.3.2 Created simulator in Mervis IDE 68

10 Conclusion 71

Bibliografie 75

Chapter 1

Introduction

Programming of control systems and it’s connection to real field level technological equip-
ment creates technological, economical and safety risks. The opportunity to test a control
system with a certain program before connecting it to the real system is a significant
lowering of those risks. Also, the opportunity to do this without expensive technology is
a significant lowering of the price of the development and testing of a certain system for
a certain technological process. So, developing a simulator with open source or low-cost
technology for testing controlling programs is the main theme of this bachelor thesis.

Keeping in mind low-cost technology made me choose open source platforms for de-
veloping a simulator. Those platforms are Python, Node-Red, and Mervis. The last one
is not an open-source platform, but it comes in a box with hardware, which was chosen
for developing the simulator. Raspberry Pi as hardware perfectly meets the requirements
with low cost, wildly available technology. Anyone in almost any country could buy
Raspberry Pi and use a simulator, developed for it. Problem is that Raspberry Pi doesn’t
work with high industrial voltages, that’s why it needed enhancement for this task. The
enhancement is extension board UniPi v1.1 with ports, configured for industrial 24 V,
and with a set of relays.

In Introduction I should explain that automation systems are divided on five differ-
ent levels of automation: field-level automation, control-level automation, and enterprise
or information-level automation also there are Planning Level and highest level - The
Management Decision Making Layer.This is called pyramid of automation, the scheme
of pyramid can be seen on figure 1.1. Field-level automation is the lowest level of the
automation hierarchy and consists of field devices such as sensors and actuators. Sensors,
the eyes and ears of automation, collect data on temperature, pressure, speeds, feeds,
and so on, convert it to electrical signals, and relay it up to the next level - control level
automation. This level consists of various automation controllers such as PLC controllers
that gather process parameters from various sensors. The automatic controllers then drive

1

CHAPTER 1. INTRODUCTION 2

the actuators based on the processed sensor signals and the program or control technique
[1]. Important part is that this bachelor thesis deals with the simulation of field-level
equipment, so the whole simulation consists of simulations of sensors and reactions of
sensors on different input parameters.

Testing of the simulator will be executed with PLC on control level. So, the simulator
will be connected to PLC and will behave exactly as a field-level system should.

Figure 1.1: Pyramid of automation, [2019], In syspro.com, [Cit. 20.04.2020], [2]

CHAPTER 1. INTRODUCTION 3

1.1 Simulation of the field instrumentation

For a better understanding of the theme of the bachelor thesis, I need to define specif-
ically what product system simulator is. It is a device, which uses the same amount of
inputs/outputs as equipment, and it is programmed to behave the same way as simulated
equipment i.e. it simulates the work of sensors and reactions of sensors on different input
signals. The main demand for this kind of device is flexibility. Flexibility ensures that
the device can be used to simulate different types of field-level equipment. Also due to
the specific of the work of the simulator, that device will be doing, there are no industrial
reliability requirements. So that’s why it‘s preferable to choose Raspberry Pi instead of
choosing the PLC.

The simulator is not only hardware but also a program, which is written in software.
For this task three different platforms will be used: Python programming language with
suitable libraries, Node-Red, which is a visual programming tool, and a developing envi-
ronment, called “Mervis”.

The simulator can be also explained as a digital twin of a specific object for simulation.
A digital twin is a digital replica of a physical entity. The digital representation provides
both the elements and the dynamics of the simulating object [3]. All of this above applies
to a definition of the simulator. So the simulator is a digital twin of a specific system,
consisting of field level elements i.e. its digital copy.

So, to summarize the definition of the product simulator, it‘s a single-board computer
Raspberry Pi with extension board UniPi attached and program developed in all the
above-mentioned platforms i.e. it is a digital copy of the system reproduced with specific
hardware (Raspberry Pi and UniPi).

Chapter 2

Specification of the system for

simulation

This bachelor thesis deals with simulating the behavior of loaded linear pneumatic drive
with monostable directing valve and bistable directing valve. But in the real world, there
is a crazy variety of systems with different equipment. That equipment can be hydraulic,
pneumatic, electrical equipment. And potentially users can add models of necessary
equipment and use developed simulator as a template with basic systems included, such
as linear pneumatic drive with monostable and bistable DCV, descriptions of which will
be presented in the next chapter. So this bachelor thesis is the example of a digital twin
of the specific system and can be used as the basis for making digital twin of system, with
different equipment or working principle.

The task is to simulate two similar loaded field level systems. The difference between
those systems is in the control valve. The first system is a pneumatic cylinder controlled
by a mono-stable solenoid control valve. The second controls by the bi-stable solenoid
control valve. In many applications it is required remotely control [4]. A mono-stable valve
is held by spring into its home position. As soon as the valve actuates by a solenoid, the
valve switches to its energized state. When the electrical power is released, the valve will
return to its home position. These valves are also referred to as ’single-acting’ solenoid
valves. A bi-stable valve can be switched by a momentary operation and will remain
in position. So, when the operation is stopped, the valve will not return to the initial
situation before the operation. A bi-stable solenoid valve usually has a solenoid on both
ends of the valve. Each solenoid is responsible for switching to a single state. These valves
are called ’double-acting’ solenoid valves [5]. Also, each system contents actuator. It will
be the same actuator for both systems: double acting pneumatic actuator. “Double-
acting” means that piston is used to extend and retract by pressure [4], not by spring for
example.

4

CHAPTER 2. SPECIFICATION OF THE SYSTEM FOR SIMULATION 5

It‘s required by the task of this bachelor thesis to design and test the way of simulation
of selected one’s technological elements. To do this task I need to closely define the specific
system.

2.0.1 Actuator with monostable valve

Figure 2.1: Block scheme for system with monostable valve

Figure 2.2: Scheme of the technological process for system with monostable valve

The part of the task is to make the simulation of this field-level equipment production
unit, which is connected to the control level device - PLC. Direct Control Valve‘s solenoid
requires external voltage powering 24 V and piston of the pneumatic cylinder is tracked
by two end switchers therefore I have two inputs and one output connected, so I must
simulate one input and two outputs on UniPi +RPi. Input on RPi+UniPi will be a
simulation of the solenoid Y1 in Direct Control Valve. DCV is actuated by the solenoid
and returned by spring. Outputs on RPi+UniPi will be the simulation of end switchers.
On control level this production unit will be controlled by PLC

The system is functioning like this (the scheme is on 2.3): while PLC makes the
output (Y1) True by directing the voltage on output, DCV (direct control valve), which
is connected to the output, directs the air into the area beside the piston, it PLC makes
the output False, DCV directs the air into the area in front of the piston. While the

CHAPTER 2. SPECIFICATION OF THE SYSTEM FOR SIMULATION 6

piston is in his starting position – the first end switcher (1M1) is triggered and DCV
starts directing the air in the first area. When the piston is moving from starting position
to end position – none of the switches are triggered, but DCV is still directing the air
in the same area. When it reaches the end position – the second end switcher (1M2) is
triggered and DCV starts direct air in the second area and that causes moving of the
piston backward. After 1M2 switcher is no longer triggered, DCV should continue to
move piston until it reaches 1M1, and start condition is created again. To explain the
cycle better, there are block scheme (figure 2.1) and scheme of the technological process
(figure 2.2) for cycle of the system with monostable valve.

Figure 2.3: Scheme of the monostable task

CHAPTER 2. SPECIFICATION OF THE SYSTEM FOR SIMULATION 7

2.0.2 Actuator with bistable valve

Figure 2.4: Block scheme for system with bistable valve

Figure 2.5: Scheme of the technological process for system with bistable valve

The other part of the task is to make the simulation of another field level system. This
is the same production unit with a bi-stable control valve. As can be seen, the difference
between systems is that the Direct control valve is actuated and returned only by solenoids
therefore it has two stable positions. In that case, the valve is called bi-stable and requires
two external voltage powering 24 V and, as in the previous system there will be two end
switchers tracking the position of the piston, therefore there are two outputs from PLC
and two inputs to PLC. It means that UniPi+RPi will require two inputs and two outputs
for simulation. Two inputs on RPi+UniPi will be the simulation of the solenoids Y1 and
Y2 in DCV. Two outputs on RPi+UniPi will be the simulation of end switchers.

The system is functioning like this (the scheme is on figure 2.6): Start state is when
first end switcher (1M1) is triggered and Direct controlled Valve (DCV) is in his first
position, directing the air in the area in front of the piston. After this PLC makes first
output (Y1) True, DCV switches to the second position and starts directing air in the
area beside piston, PLC makes first output False, none of the end switchers is triggered.
When piston riches his end state, second end switcher (1M2) is triggered and PLC makes
second output (Y2) True, this makes DCV to switch in his first position and to start
directing the air in the area in front of the piston, which makes the piston to move back
to his starting position, PLC makes second output (Y2) False.

CHAPTER 2. SPECIFICATION OF THE SYSTEM FOR SIMULATION 8

The difference between the production unit with the mono-stable control valve and
production unit with a bi-stable control valve is the number of stable positions. So, there
is no need to put current through solenoids all the time, it would be enough to put current
through on a limited amount of time, so DCV would switch, after this DCV would be in a
stable position even after the current is removed from solenoid. It concerns both solenoids
(Y1, Y2). To explain the cycle better, there are block scheme (figure 2.4) and scheme of
the technological process (figure 2.5) for cycle of the system with bistable valve.

Figure 2.6: Scheme of the bistable task

Chapter 3

Raspberry Pi

Choice of Raspberry Pi as main peace of hardware was made, because of many reasons.
Raspberry Pi is a relatively cheap and very widely used hardware. It has sizes of the credit
card and still can be used as a personal computer, which means it is relatively powerful.
RPi is provided with a UNIX based operating system, which means, that it has a lot of
available platforms for developing and many ways to communicate (Graphical Interface,
Command line, Connection through SSH). And most importantly, it was made to work
with circuits as a controlling device.

Raspberry Pi is a series of small single boarded computers, developed in the United
Kingdom. The model, which was used in this task is Raspberry Pi B+ v1.2. It‘s the 3rd
Revision of Raspberry Pi. Its purpose was to promote and teach computer science and
revive the microcomputer revolution of the 1980s. It was originally made for programming
in Python language. The Raspberry Pi Foundation provides Raspbian, a Debian-based
(32-bit) Linux distribution for download, as well as third-party Ubuntu, Windows 10 IoT
Core, RISC OS, and specialized media center distributions. It promotes Python and
Scratch as the main programming languages, with support for many other languages.
The default firmware is closed source, while an unofficial open-source is available. Many
other operating systems can also run on the Raspberry Pi. However, Raspbian is the
recommended operating system for normal use on a Raspberry Pi. Raspbian is a free
operating system based on Debian, optimized for the Raspberry Pi hardware. Raspbian
is a Unix-like operational system. Most commands, which are applicable for Linux are
applicable for Raspbian.

A powerful feature of the Raspberry Pi is the row of GPIO (general-purpose in-
put/output) pins along the top edge of the board. A 40-pin GPIO header is found on all
current Raspberry Pi boards including B+ v1.2. Any of the GPIO pins can be designated
(in software) as an input or output pin and used for a wide range of purposes [6].

Pins have two options: 3.3 V and 5 V. Out of 40 pins two 5V pins and two 3V3 pins

9

CHAPTER 3. RASPBERRY PI 10

are present on the board, as well as several ground pins (0V), which can’t be changed.
The remaining pins are all general-purpose, which have voltage 3.3 V [6]

Version, used for purposes of this bachelor thesis - Raspberry Pi B+ v1.2

series has powerful hardware for a credit card sized computer. Here are its specifications:

Figure 3.1: Raspberry Pi b+ v1.2

Official specifications:

CPU: quad-core ARM Cortex-A7, 1.2 GHz 64-bit.
Caches: 32kB Level 1 and 512kB Level 2 cache memory
System of chips: Broadcom BCM28367
Peripherals: GPIO 40 pins, HDMI, 3.5mm audio jack, 4X USB 2.0, Ethernet,
Camera Serial Interface, Display Serial Interface.

The Raspberry Pi 3, with a quad-core ARM Cortex-A53 processor, is described as
having ten times the performance of a Raspberry Pi 1. Benchmarks showed the Raspberry
Pi 3 to be approximately 80 faster than the Raspberry Pi 2 in parallel tasks. On the
Model B and B+, the Ethernet port is provided by a built-in USB Ethernet adapter.
Although often pre-configured to operate as a headless computer, the Raspberry Pi may
also optionally be operated with any generic USB computer keyboard and mouse. It
may also be used with USB storage, USB to MIDI converters, and virtually any other
device/component with USB capabilities, depending on the installed device drivers. None
of the Raspberry Pi models have a built-in real-time clock. When booting, the time is
set either manually or configured from a previously saved state at shutdown to provide
relative consistency for the file system. The Network Time Protocol is used to update the
system time when connected to a network [6].

CHAPTER 3. RASPBERRY PI 11

Figure 3.2: Raspberry Pi Foundation, GPIO port map, [online], [Cit. 13.04.2020] [7]

Chapter 4

UniPi

Unipi 1.1 is an extension board for Raspberry Pi computer which allows it to function as a
programmable logic controller for monitoring, control, and regulation of automation sys-
tems. The board features a universal I/O architecture with digital inputs, a set of relays,
analog I/Os, and broad connectivity thanks to 1-Wire bus, I2C, and UART ports[8].

UniPi v1.1 is the first model of extension boards from unipi technology. Despite this
– the extension board allows Raspberry Pi to become fully functional PLC, only more
flexible thanks to the bigger amount of available software and platforms to work with.
The disadvantage of using RPi+UniPi as PLC is the absence of industrial qualities. But
that‘s a perfect combination for product simulator.

Figure 4.1: UniPi technology, UniPi v1.1, [online], [Cit. 14.04.2020],[8]

UniPi v1.1 has several building blocks. For this specific task, I will be using Relays
and Digital inputs. Relays have some restrictions: maximum relay switching power is
limited to 250V AC/5A or 24V DC/5A. I will be using 24 V external voltage, so it
meets the requirements. Relays are controller by the MCP23008 (address 0x20), see map
of MCP’s GPIO to relays in table 4.1. MCP23008 is an expander, which allows RPi to
control Relays building blocks on UniPi. Each relay has a LED indicating its state. There

12

CHAPTER 4. UNIPI 13

are three contacts for each relay named CO (change-over or C=connected), NO (normally
opened), NC (normally closed). By default, contacts CO and NC are connected (NO is not
connected), by switching the relay on, CO gets connected to NO (NC is disconnected)[9].

Table 4.1: UniPi technology, MCP23008 pin map, [online], [Cit. 20.03.2020],[9]

The other building block I will be using is Digital Inputs. These inputs can be triggered
by 5-24V DC voltage with a minimum pulse length of 5ms. For easy visual reading of
their states, all inputs are equipped with LED [9]. I used 24 V DC voltage from PLC, so
this also meets the requirements. The problem appears to be that all inputs are primarily
set to be driven by internal 12 V and in case of external power source the configuration
of settings must be changed. The settings of external or internal voltage on digital inputs
are regulated by jumper connectors JP2, JP3, JP4, JP5. In the following text, I will
describe steps to configure jumpers for my exact task:

• JP2 is controlling the P02 port. When JP2 is switched on the side of the label –
P02 acts like input for ground from an external power source. Otherwise, P02 is
connected to internal 12 V. So, for my task I need JP2 to be switched to the side
of the label.

• JP3 is controlling I01 and I02. When switched to the side of the JP3 label, inputs I01
and I02 act as inputs for signals from the connected peripheral device via the external
power source. The ground of power supply for these inputs must be connected to
the P02. So, for my task, I need JP3 also to be switched on the side of the label.

• JP4 is controlling I03 and I04 ports. When switched to the side of the JP4 label,
inputs I03 and I04 act as inputs for signals from the connected peripherals via
the external power source. The ground of power supply for these inputs must be
connected to P01. For my specific task, I don’t need to use I03 and I04 ports, so it
doesn‘t matter if JP4 is switched to the side of the label or not.

CHAPTER 4. UNIPI 14

• JP5 is controlling ports I05 – I14. When switched to the side of the JP5 label, inputs
I05 - I14 act as inputs for signals from the connected peripherals via the external
power source. The ground of power supply for these inputs must be connected to
P01. For my specific task, I don’t need to use I05 - I14 ports, so it doesn‘t matter
if JP5 is switched to the side of the label or not.

Figure 4.2: Configuration of JP2-JP5 connectors.

Digital inputs are connecting to Raspberry Pi via GPIO protocol. Before using this
protocol, all connectors JP2-JP5 must be adapted to the purpose of the connection. After
that, you can set up pins by addressing them with help of Raspberry Pi header map, see
map in table 4.2.

UniPi RPi BCM Function Description
AO GPIO18 PWM Analog Output 0-10 V
I01 GPIO04 Digital Input Digital Input
I02 GPIO17 Digital Input Digital Input
I03 GPIO27 Digital Input Digital Input
I04 GPIO23 Digital Input Digital Input
I05 GPIO22 Digital Input Digital Input
I06 GPIO24 Digital Input Digital Input
I07 GPIO11 Digital Input Digital Input
I08 GPIO07 Digital Input Digital Input
I09 GPIO08 Digital Input Digital Input
I10 GPIO09 Digital Input Digital Input

Table 4.2: UniPi technology, Raspberry Pi header map, [online], [Cit. 20.03.2020], [9]

CHAPTER 4. UNIPI 15

Figure 4.3: UniPi v1.1, peripheral map, Bc. Petr Simecek, Controlling system of smart
house, (2017), [Cit. 17.06.2020] [10]

CHAPTER 4. UNIPI 16

4.1 Communication between Raspberry Pi and UniPi

Because Raspberry Pi and UniPi are two separate boards, they must be connected to use
UniPi as an extension board and to use its building blocks. UniPi has the slot for the
flat connector from Raspberry Pi and Raspberry Pi is connected to UniPi v1.1 via GPIO
connector. It connects GPIO inputs of UniPi v1.1 to RPi GPIO inputs.

Before connecting UniPi to RPi with GPIO connector, the option of powering of
RPi+UniPi needs to be chosen. There are two options of powering: Single power source
and Dual power source, and it depends on the JP1 connector. JP1 is a configurable
connector, which is situated near input for a 5V power connector. If JP1 is switched to
its label – Single power source mode is activated, which means – UniPi + RPi is powered
through 5V DC 2A UniPi power connector. And if JP1 is switched against its label –
Dual power mode is activated, which means that RPi is powered from micro USB port
according to the RPi requirements and UniPi is powered from 5V DC 1.5A connector.
After both boards are powered, the next step is to screw the spacers to the mounting
holes of the UniPi, screw The Raspberry Pi to UniPi and connect provided flat cable.

As mentioned before, that flat cable connects Raspberry PI GPIO pins and UniPi
GPIO pins, which are Digital inputs on the side of UniPi (grey inputs). So Raspberry
Pi communicates to Digital Input building block though GPIO protocol. And Relays are
connected to Raspberry Pi through MCP23008 expander. That‘s why RPi communicates
with Relays via SMBus protocol. In the following text, I will explain how GPIO and
SMBus protocol work.

4.1.1 GPIO

(general-purpose input/output) pins are uncommitted pins on a circuit board, whose
behavior – including whether it acts as input or output is controllable by the user all the
time. The main advantage of GPIO pins is that they have no predefined purpose. For
using GPIO pins – the first thing to do is to define them as input or as output. Two
5V pins and two 3V3 pins are present on the board, as well as several ground pins (0V),
which are unconfigurable. The remaining pins are all general-purpose 3V3 pins, meaning
outputs are set to 3V3 and inputs are 3V3-tolerant. A GPIO pin designated as an output
pin can be set to HIGH (3V3), logically "1", or LOW (0V), logically "0". A GPIO pin
designated as an input pin can be read as HIGH (3V3) or LOW (0V). This is made easier
with the use of internal pull-up or pull-down resistors. Pins GPIO2 and GPIO3 have fixed
pull-up resistors, but for other pins, this can be configured in software [11].

GPIO is mainly purposed to communicate with other devices and extension boars
such as UniPi. The GPIO peripheral has three dedicated interrupt lines. These lines are

CHAPTER 4. UNIPI 17

triggered by the setting of bits [12]. Those lines are: output connection, input connection,
and enable line. Enable line controls if the pin is set to output mode or to input mode.

Figure 4.4: Scheme of GPIO pin

Blue numbers represent the state of logical “0” of enable line and red numbers represent
the state of logical “1” of enable line. As can be seen in figure 4.4 – when the enable line is
enabled, the output line gets activated, when enable line is disabled, the input connection
gets activated. Triangles represent logical connections operators, however, enable line is
connected to Output connection through logical NOT gate.

The Raspberry Pi GPIO interface is manufactured from CMOS components. CMOS
is short for Complementary MOS, where MOS is a type of transistor. That means that
NMOS and PMOS are complements of each other. NMOS transistors have their source
connected to ground, whereas PMOS transistors connect their source to the positive
supply [13]. Those CMOS components are implemented in output connection and input
connection of GPIO pin.

Now I will describe separately output connection and input connection. Output con-
nection of GPIO pin and Input connection of GPIO pin. More in figure 4.5 and figure
4.6.

In output connection (figure 4.5) red numbers represent states of elements if output
connection is activated and HIGH or logically there is “1” written on GPIO pin, blue
numbers represents the state of elements if the output is activated and LOW. If “1” is
written on the input, then due to inverter logic MOSFET transistors are applied with
LOW voltage. And when LOW voltage is applied to NMOS, it will not conduct. Vice
versa, when LOW voltage is applied to PMOS, it will conduct. Due to the conduction of
PMOS – Output connection will be pulled up to source and GPIO pin will be HIGH in
output mode. Conversely, when Output connection is LOW – NMOS will conduct and

CHAPTER 4. UNIPI 18

PMOS will not conduct. Due to the state of NMOS – The output connection will be
pulled to the ground and GPIO pin will be LOW in output mode.

Figure 4.5: Scheme of output connection

Now follows a closer description of Input connection. More in figure 4.6. Red numbers
represent the state, when GPIO pin is in input mode and HIGH, logically has “1”. Blue
numbers represent the state, when GPIO pin is in input mode and LOW, logically got “0”.
If GPIO pin is HIGH, due to inverter logic MOSFET transistors are applied with LOW
voltage. And when LOW voltage is applied to NMOS, it will not conduct. And when
LOW voltage is applied to PMOS, it will conduct. Due to the conduction of PMOS Input
connection will be pulled to source and will have +VCC voltage, so logically “1” will be
written on GPIO pin. Vice versa, when GPIO pin is in input mode and LOW, logically
has “0”, due to inverter logic, the voltage on MOSFET transistors will be HIGH. When
HIGH voltage is applied to the PMOS transistor, it will not conduct, bur when HIGH
voltage is applied to the NMOS transistor, it will conduct. Due to the conduction of the
NMOS transistor – Input connection will be pulled to the ground. This state means, that
there would be written logical value “0” on GPIO pin.

Those were principles of functioning of GPIO pins. As well as simple input and
output devices, the GPIO pins can be used with a variety of alternative functions, some
are available on all pins, others on specific pins [11]. It can be used for pulse-width
modulation and serial communication protocols, such as I2C and SPI. SPI interface is
defined for usage through specific pins: GPIO19, GPIO21, GPIO18, GPIO17, GPIO16
pins. And I2C is defined for usage through specific pins: GPIO02, GPIO03, GPIO0,

CHAPTER 4. UNIPI 19

GPIO01 [11].

Figure 4.6: Scheme of input connection

In my task, I used directly GPIO pins to control Digital Inputs on the UniPi v1.1
extension board thought flat connector. Also, I used relays, which are controlled through
I2C. Relays are controlled by MCP23008 expander, the expander is connected through
the flat connector to Raspberry Pi‘s GPIO ports, which are specially defined for control-
ling and reading data with I2C interface (GPIO02, GPIO03, GPIO0, GPIO01). In the
following text, I will closely describe the principles of I2C interface.

4.1.2 I2C

I2C (inter-integrated circuit) - synchronous serial, multi-master, multi-slave communica-
tion protocol. I2C is appropriate for peripherals where simplicity and low manufacturing
cost are more important than speed, such as relays for expansion board. Unlike SPI, I2C
uses only two wires for the entire process. These two wires are SDA (Serial Data) and
SCL (Serial Clock). Typical voltages used are +5 V or +3.3 V, although systems with
other voltages are permitted. I2C protocol can support multiple slave devices but unlike
SPI, which only supports one master device, I2C can support multiple master devices as
well. Every device sends/receives data using only one wire which is SDA. SCL maintains
sync between devices through a common clock which is provided by the active master.
Common I2C bus speeds are the 100 kbit/s standard mode and the 400 kbit/s Fast mode.
There is also a 10 kbit/s low-speed mode [14].

I2C communicates with transactions. An I2C transaction consists of one or more
messages. Each message begins with a start symbol, and the transaction ends with a stop

CHAPTER 4. UNIPI 20

symbol. Start symbols after the first, which begin a message but not a transaction, are
referred to as repeated start symbols. Each message is a read or a write. A transaction
consisting of a single message is called either a read or a write transaction. A transaction
consisting of multiple messages is called a combined transaction. The most common
form of communication is a written message providing intra-device address information,
followed by a read message. Many I2C devices do not distinguish between a combined
transaction and the same messages sent as separate transactions, but not all. The device
ID protocol requires a single transaction; slaves are forbidden from responding if they
observe a stop symbol. Configuration, calibration, or self-test modes that cause the slave
to respond unusually are also often automatically terminated at the end of a transaction.
More in figure 4.7.

Figure 4.7: FLORYAN, Marcin. Data Transfer Sequence, [2017], In Wikipedia, [online],
[Cit.20.03.2020], [14]

Sequence of actions during data transaction:

• J Data transfer is initiated with a start condition (S) signaled by SDA being pulled
low while SCL stays HIGH.

• SCL is pulled low, and SDA sets the first data bit level while keeping SCL low
(during blue bar time).

• The data are sampled (received) when SCL rises for the first bit (B1). For a bit to
be valid, SDA must not change between a rising edge of SCL and the subsequent
falling edge (the entire green bar time).

• The final bit is followed by a clock pulse, during which SDA is pulled low in prepa-
ration for the stop bit.

• A stop condition (P) is signaled when SCL rises, followed by SDA rising.

Chapter 5

Programmable Logic Controller

As mentioned earlier, the simulation will be tested with PLC (Programmable Logic Con-
troller). PLC testing is necessary to make sure, that simulator will work correctly and
mainly because the real system would be also connected and controlled by PLC. PLC
program for testing the simulation must be identical to the program for controlling the
real field level system.

IEC 61131 international standard defines requirements for modern controlling systems
and PLCs. It has 5 basic parts: General information, Equipment requirements, and tests,
Programming languages, User guidelines, Communication [15]. It doesn’t depend on a
certain firm or organization and has wild international support. For this chapter, IEC
61131-3 is more important, than other parts, because it defines programming languages.
Programming languages on PLC can be divided into two groups: textual languages and
graphical languages. Structured text (ST) and instruction list (IL) are textual languages
and ladder diagram (LD), function block diagram (FBD) are graphical languages [16].
SFC is not official graphical language, but it comes from official languages and some PLC
manufacturers are including it as an option for writing the program. The choice of the
programming language for the project depends on the experience and preferences of the
programmer. As a beginner in PLC programming I used Ladder diagram (LD) as it is
the simplest language from all. This language comes from relay ladder logic and it serves
for working with Boolean signals. A typical program, written in LD consists of typical
elements: Power rail (vertical line on the left), Neural rail (vertical line on the right),
and elements between them, which re-exposed to a current going through them (more on
figure 5.1). In reality, the ladder logic diagram is only a symbolic representation of the
computer program. So, power does not really flow through any actual contacts.

21

CHAPTER 5. PROGRAMMABLE LOGIC CONTROLLER 22

Figure 5.1: Simple program in LD

Elements in LD are limited to few options. Normally open contact (figure 5.2(a)),
normally closed contact (figure 5.2(b)), coil (figure 5.2(c)), negated coil (figure 5.2(d)),
set coil (figure 5.2(e)) and reset coil (figure 5.2(f)). Basically all common tasks for PLC
can be implemented with those elements. But harder tasks require more sophisticated
and complex programs, therefore require other programming languages.

Figure 5.2: Basic elements LD

Now I will closely describe, what is PLC. Programmable Logic Controllers are at the
forefront of manufacturing automation. Many factories use Programmable Logic Con-
trollers to cut production costs and/or increase quality. PLCs developed out of the need
to replace the hard-wired relay panels. In the 1960s, a typical automated assembly or
other manufacturing line had a cabinet of relays wired to control the operation. As one
might expect, debugging relay failures could be time-consuming, and changing function-
ality by modifying the sequence of operations was time-consuming and costly because of
the required rewiring [17].

The architecture of a general PLC is shown in figure 5.3. The main parts of a PLC
are its processor, power supply, and input/output (I/O) modules. In a micro PLC, all
three main parts are enclosed in a single unit. For larger PLCs, these three parts are
separately purchased [17]. The architecture of the PLC is the same as a general-purpose
computer. In fact, some of the early PLCs were computers with special I/O. However,
some important characteristics distinguish PLCs from general-purpose computers. They
can be placed in an industrial environment that has extreme temperatures (typically up
to 70 C), high humidity (up to 95 percent), electrical noise, electromagnetic interference,

CHAPTER 5. PROGRAMMABLE LOGIC CONTROLLER 23

and mechanical vibration. They are easy to use by plant technicians. Hardware interfaces
are easily connected. Modular and self-diagnosing interface circuits pinpoint malfunctions
and are easily replaced [17].

Figure 5.3: ERICKSON, Kelvin. Architecture of typical PLC, 1996, In IEEE potencials,
[Cit.15.04.2020], ISSN 0278-6648, [17]

Now in the following text, there will be an explanation: how PLC executes the program
with ladder logic. PLC works in cycles, so it repeatedly doing the programmed cycle.
During the cycle, the PLC repeatedly executes a scan, during which the input channels
from all of the input modules are copied into the internal memory; the ladder logic is
scanned, updating the outputs being held in internal memory, and then the internal
outputs are copied to the actual output modules. After the actual outputs have been
updated, the scan is repeated. The time to execute a scan, depending on the number
of I/O channels and the length of the ladder logic program, is on the order of 1 - 10
milliseconds. Normally, the processor uses only the internal copy of I/O when executing
the ladder logic. It does not read input channels or write output channels. However, some
manufacturers do allow that option, which is useful in critical or emergencies [17].

In conclusion, it can be said, that Programmable Logic Controllers are the main equip-
ment for factory automatization. It uses unique ladder logic for programming. Ladder
logic is implemented with three elements: normally opened contact, normally closed con-
tact, and output. The working principle of PLC is cycle working. The cycle consists of
checking inputs, executing programs, and updating the outputs, after that cycle repeats.

Chapter 6

Conclusion of Theoretical part

The theoretical part of this bachelor thesis serves a purpose to be explanation and prepara-
tion for the practical part. So in this part of the bachelor thesis, I’ve explained important
working principles of some mechanisms that are important in making a simulator with
Raspberry Pi computer and added expansion board.

In chapter 1 was presented the pyramid of automation and defined, which levels of
the pyramid are involved in this bachelor thesis. Also, the definition of a product system
simulator was given.

In chapter 2 were defined two systems for simulations: mono-stable and bi-stable, were
shown their differences, which include different Control Valves and a different program for
Control Level equipment because of this difference. Introduced the pneumatic schemes of
those systems and presented the block scheme and scheme of the technological process for
each system. Defined equipment, which is used to create this type of systems in real life,
described it, it‘s behavior, and a sequence of actions in the working cycle of the systems.
Also, it was said, that those systems are working with a load.

In chapter 3 hardware for simulator stated to define. I had started with Raspberry Pi.
Its official specification was cited, and defined specific equipment of RPi, I will be using
it in the practical part. This specific equipment is GPIO pins.

In chapter 4 defining the hardware with a description of expansion board for RPi -
UniPi v1.1 was continued. It‘s equipment, used for the practical part, was described and
some pin maps, was cited. Also, the methods of communication between RPi and UniPi
was showed and described in detail: GPIO pins of UniPi are connected directly to GPIO
pins of RPi and relays are controlled through MCP23008 port expander with I2C serial
protocol.

And chapter 5 finishes with a description of control level equipment, used for testing
of my simulator and most importantly used to control this type of the system in an actual
production line and actual manufacture - PLC. The brief description of IEC 1131 standard

24

CHAPTER 6. CONCLUSION OF THEORETICAL PART 25

and IEC 1131-3 part was given, specifically one with ladder logic and it’s symbols.

Chapter 7

Physical connection of UniPi and PLC

At the beginning of the practical part, I want to start with an explanation of the physical
connection between UniPi and PLC. I described it in 1.2.1 and 1.2.2 chapters, but here I
will describe how PLC is connected in detail to the hardware.

7.1 Connection for simulating the system with

monostable valve

I will describe connections from both sides. From the side of UniPi and the side of PLC.
I’ll start with UniPi. The input from PLC is connected to I01 and port P02 serving as a
common ground. Relay outputs RELAY1 and RELAY2 must be powered by an external
24V supply.

Figure 7.1: Scheme of UniPi

26

CHAPTER 7. PHYSICAL CONNECTION OF UNIPI AND PLC 27

Figure 7.2: Actual connection of UniPi

Yellow and brown output wires, which are connected to RELAY1 and RELAY2 are
external 24 V powering for relays to simulate end switchers. Those wires are connected
to normally open contact. Armatures of the relays (blue and green output wires) are
connected to the inputs of PLC. So, when relays are switched, 24 V voltage is directed
to inputs of PLC. Blue input wire, which is connected to P02 input (green port) is also
connected to the GND because with the current position of configurable connectors JP2-
JP5 – P02 acts as GND for I01 and I02 ports (more in chapter 3). Red input wire which
is connected to I01 (grey port) is also connected to PLC, but to output.

Now with the connection from the side of the PLC. There are two inputs to PLC and
one output. Two inputs are connected to RELAYS and the output from PLC is connected
to the I01 (grey port at figure 7.2). The PLC is situated in the stand and has all inputs
and outputs connected to the front desc of the stand. It‘s necessary to:

CHAPTER 7. PHYSICAL CONNECTION OF UNIPI AND PLC 28

Sequence of actions of connecting PLC to UniPi

• Connect middle contact (armature) of Relay 1 to digital input 0 of the PLC
(RELAY1 to DI0)

• Connect middle contact (armature) of Relay 2 to digital input 1 of the PLC
(RELAY2 to DI1)

• Connect normally open contacts of Relays to 24 V external powering

• Connect digital input 1 of the board to digital output 0 of the PLC
(I01 to DQ0)

• Connect protective output 2 to ground
(PO2 to GND)

The whole picture of the connection between UniPi and PLC can be seen in the figure
7.3.

Figure 7.3: The whole picture of the connection between UniPi and PLC

Circuit scheme of connection between PLC and UniPi v1.1 for simulating the system
with a monostable valve can be seen in figure 7.4.

CHAPTER 7. PHYSICAL CONNECTION OF UNIPI AND PLC 29

Figure 7.4: Circuit scheme for simulating system with monostable valve

CHAPTER 7. PHYSICAL CONNECTION OF UNIPI AND PLC 30

7.2 Connection for simulating the system with bistable

valve

The system with a bistable valve has one additional input to the UniPi because bistable
DCV has two solenoids, therefore I need to simulate two solenoids, therefore I need two
inputs. So I will start describing connections from the side of UniPi, I02 and I01 are serving
as input ports from PLC, P02 acts as the ground for them due to the configuration of JP
connectors (more in chapter 3). Relays are connected to the 24 V external power source
through the normally open contact and armature of Relay 1 and Relay 2 is connected to
the PLC. You can see the connection on the figure 7.5.

Figure 7.5: Actual connection of UniPi, bistable valve

Now connection from the side of the PLC. I01 and I02 are connected DQ0 and DQ1
outputs, normally open contacts of Relays are connected to DI0 and DI1 inputs. Actual
picture is on the figure 7.6.

Sequence of actions of connecting PLC to UniPi

• Connect middle contact (armature) of Relay 1 to digital input 0 of the PLC
(RELAY1 to DI0)

• Connect middle contact (armature) of Relay 2 to digital input 1 of the PLC
(RELAY2 to DI1)

• Connect normally open contacts of Relays to 24 V external powering

• Connect digital input 1 of the board to digital output 0 of the PLC
(I01 to DQ0)

CHAPTER 7. PHYSICAL CONNECTION OF UNIPI AND PLC 31

• Connect digital input 2 of the board to digital output 1 of the PLC
(I02 to DQ1)

• Connect protective output 2 to ground
(PO2 to GND)

Figure 7.6: The whole picture of the connection between UniPi and PLC, bistable valve

Circuit scheme of connection between PLC and UniPi v1.1 for simulating the system
with a bistable valve can be seen in figure 7.7. It doesn’t differ much from connection
for simulating the system with a monostable valve, the only difference is the connection
between DQ1 and GPIO I02.

CHAPTER 7. PHYSICAL CONNECTION OF UNIPI AND PLC 32

Figure 7.7: Circuit scheme for simulating system with bistable valve

Chapter 8

PLC program

I think I should begin practical part of this bachelor thesis with a description of created
PLC programs, because PLC program is common for real field level system and simulator.
So in this chapter I will describe in detail the created program for PLC and how it works
with the real system. It should also give basic principles for a simulator. The first part
will be about the work of PLC program for the system with mono-stable DCV, second
part will be about the work of PLC program for the system with bi-stable DCV. All
programs are written in ladder logic, which is the first one of the program languages for
PLC and remain dominating for its simplicity in understanding. First program is written
in commercial software TIA PORTAL v15 [18] (Totally Integrated Automation Portal),
which is intelligent development environment (IDE) designed by Siemens. The software
is compatible with siemens designed PLC‘s and supports ST, FBD and LD languages.
Second program is written in PLCopen editor[19], due to COVID 19 quarantine. Because
of lack of the access to physical PLC I needed to use PLCopen project. OpenPLC is an
open-source Programmable Logic Controller that is based on an easy to use the software.
The OpenPLC project was created under the IEC 61131-3 standard, which defines the
basic software architecture and programming languages for PLCs [20]. The later program
was tested on the TIA PORTAL with real PLC and worked properly.

8.1 PLC program for monostable system

• DI0 - Digital Input 0 (on figure 8.1), first end switcher 1M1 (on figure 2.3)

• DI1 - Digital Input 1 (on figure 8.1), second end switcher 1M2 (on figure 2.3)

• DI0 - Digital Output 0 (on figure 8.1), coil of relay Y1 (on figure 2.3)

As it is possible to see in figure 8.1, the program I’ve created is extremely simple. It
does the function of a light switcher with two buttons. While input DI0 is True AND

33

CHAPTER 8. PLC PROGRAM 34

input DI1 is False - output DQ0 becomes True and starts to support condition of himself
being HIGH but as long as DI1 stays False. When DI1 becomes True condition breaks
and DQ0 becomes False.

Digital Inputs 0 and 1 simulate end switchers of the system (1M1, 1M2 on figure 2.3),
because they are connected to RELAYS 1 and 2 on UniPi board and relays are powered
24 V from an external source. So when relays are switched PLC gets similar 24 V signal
on inputs as it would get from end switchers. Strictly speaking, relays are switchers itself.
DQ0 simulates the solenoid in DCV (Y1 on figure 2.3), so when this OUTPUT is True -
DCV is actuated and directs air in the area beside piston to move it. If the output is False
- DCV is spring-returned to its initial condition and directs air in front of the piston.

Figure 8.1: PLC program for mono-stable task, written in TIA Portal v.15 [18]

So in the first state of the real mono-stable system when 1M1 switcher is on and 1M2
switcher is off (more in figure 2.3) - Y1 solenoid should be True because DCV needs to
be actuated to direct air beside the piston. That corresponds to the program, while DI0
is True and DI1 is False - DQ0 is True. In the second state - transition state, Y1 still
needs to be actuated to move the piston to the third "end" state, although none of the
end switchers are pressed. The program does the same, while DQ0 is True, it will remain
True from the previous state, AND DI1 (1M2 switcher) is False - DQ0 remains True. And
in the third state 1M2 switcher is pressed (DI1 becomes True), so condition for DQ0 to
stay True is broken, therefore Y1 (DQ0 on figure 8.1) is False and DCV is spring returned,
therefore air is directed in front of the piston until it will press 1M1, DI0 becomes True
again and it will create the condition for the first state.

8.2 PLC program for bistable system

• M1 - Digital Input 0 (on figure 8.2), first end switcher 1M1 (on figure 2.6)

CHAPTER 8. PLC PROGRAM 35

• M2 - Digital Input 1 (on figure 8.2), second end switcher 1M2 (on figure 2.6)

• Y1 - Digital Output 0 (on figure 8.2), coil of the first relay Y1 (on figure 2.6)

• Y2 - Digital Output 1 (on figure 8.2), coil of the first relay Y2 (on figure 2.6)

The program for the bi-stable system is even simpler than the mono-stable program.
The differences between them are the method of controlling the DCV and the number of
outputs. Bi-stable DCV is actuated and returned by solenoids, so two outputs are needed
to be controlled. Also for actuating or returning DCV, the current must go only through
one solenoid for a short amount of time. Through first solenoid (Y1 on figure 2.6 and on
figure 8.2) - for DCV to actuate, through second solenoid (Y2 on figure 2.6 and on figure
8.2) for DCV to return. In stable positions, both solenoids are off. M1 and M2 represent
end switchers 1M1 and 1M2 on figure 2.6.

Figure 8.2: PLC program for bi-stable task, written in PLCopen [19]

In the first state of real bi-stable field level system first end switcher (M1 on figure
8.2) is pressed and DCV needs to be actuated to move the piston to its end position,
so Y1 needs to be True. That responds to the program as long as M1 is pressed Y1 is
True. In the second state, the transition is happening, so no switchers are pressed and
no current goes through solenoids because DCV is in a stable position and continues to
move the piston. It happens until the second end switcher is pressed and DCV needs to
be returned in his original stable position to move piston backward. The program does
the same. When second switcher (M2 on figure 8.2) is pressed, so M2 is True, Y2, which
represents second solenoid (more on figure 2.6) becomes True too.

The only problem, that could arise, is that M1, M2 are not being held True long
enough, so Y1 and Y2 would not be True long enough too. Therefore solenoid would not
be able to push DCV in his other stable position. But in real life end switchers have a
width so M1 and M2 are being held for some amount of time. So I reflected it in simulator
too by adding some delay for RELAYS as the reaction time of sensors.

Chapter 9

Development of the program on

UniPi+RPi

The simulator was made on three different platforms. In this chapter development of the
simulator will be described in detail on each platform. Platforms are Python, Node-RED,
and Mervis. Python is a widely used program language with modules, that can be suitable
for many situations and usages. That makes python a very flexible choice for development
visualization and monitoring graphs for the simulator, but sometimes over-complicated
for some purposes, like communicating with relays and pins. That can be realized with
much simpler instruments. Node-Red is simpler in that way because it‘s a mostly visual
programming and it can be also widely implemented. It can be started on PC, Raspberry
pi, and controlled with another PC or Raspberry Pi through a local network. Mervis is
also relatively easy for using, because of the opportunity of visual programming, but it
can be used only with UniPi technology products, so it‘s not as widely used as Node-Red
and Python.

As mentioned before, Python is a widely implemented program language with a big
amount of modules for a wide range of purposes. Python is a standard built-in language
for Raspberry Pi, so it‘s logical to use Python as one of the platforms. Python v.3.7.3
had been used for making this simulator. It‘s one of the latest versions, the latest one at
the moment is Python v. 3.8.2.

Node-RED [21] is flow-based visual development tool. Node-RED provides a web
browser-based flow editor, which can be used to create JavaScript functions. Elements of
applications can be saved or shared for re-use. The runtime is built on Node.js., which is
the environment for running java code outside the browser. Developed originally by IBM
for wiring together hardware devices [22]. I used Node-RED v.1.0.3 for the simulator, the
latest version at the moment is v.1.0.6. Node-RED v.1.0.3 has problems in compatibility
with Raspberry Pi v.1.2, sometimes RELAY wasn‘t reacting to commands as it should, so

36

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 37

I assume the problem would be in I2C protocol, maybe they are using a different version
of it. Other than that Node-RED is a very interesting platform with simple programming
with lots of predefined functions.

Mervis [23] is an intelligent developing environment (IDE) designed by UniPi tech-
nology especially for UniPi controllers and extension boards, that‘s why it was chosen
as the third platform. A development environment for creating, debugging, and remote
management of control programs for Unipi controllers. The Mervis IDE supports two
IEC 61131-3 compliant programming methods for creating controller behaviour: FBD,
ST [24]. For its usage necessary to install on RaspberryPi another version of Raspbian
especially changed for better communication with Mervis IDE.

9.1 Development in Python

I had written two simulation programs in Python. One for the mono-stable system, one for
the bi-stable system. But differences between them are minimal. So at first, I will consider
the program for a mono-stable system and then describe differences of the program for
the bi-stable system over the mono-stable system. The Code of the simulator consists of
the 3 main parts: import of the modules, written functions, and main code.

9.1.1 Import of modules

The first part is the import of modules, which I need for the program:

import time

import threading

import sys

import copy

import pygame

import math

from matplotlib import pyplot as plt

try:

import smbus

import RPi.GPIO as GPIO

DEBUG = False

except:

DEBUG = True

"Time" module is used in measuring how long one cycle has to repeat and to delaying
the cycle at endpoints, because of the reaction of the sensors. "Threading" module used for
running two functions in parallel, because in the simulator I need to run the visualization

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 38

part and simulation part simultaneously. "Sys" is imported only to use one function from
it:

sys.exit()

It is a function, that helps a developer to exit the python. It is used in the visualization
part for when the user is clicking on the "X" sign of the window - visualization will
stop working. The "Copy" module helps to copy variables. "Pygame" is the core of
the visualization part of this program. It‘s a set of modules, that allows to draw different
forms and show them on a separate window. "Math" is a module, that allows to run some
mathematical operations. "SMBus" is a module, that helps to communicate with building
blocks of the UniPi. It communicates with I2C serial protocol. It‘s named after system
management bus protocol, which is the same as I2C protocol but uses 3.3 voltage instead
of 5V. "GPIO" is module for communicating with GPIO ports of RPi. And "pyplot"
submodule from "matplotlib" is the perfect tool for drawing the plot, it was used to draw
the plots in real-time. The import of the last two modules is conducted only on UNIX
systems, because of their incompatibility with windows. That "try, except" construction
in the end, is importing those modules, only if code is running without errors.

9.1.2 Simulation function

The second part of the code is programming the functions, which I will be using in the
main code part. The first function is simulation part. It‘s the function with two
arguments which returns no calculations, no variables on the end of it, but runs repeatedly
and executes the commands, such as: "switch the first relay and after the defined time of
the cycle switch the second relay".

RPi implementation:

def simulation_part(lock, payload):

t = tc

setup GPIO

GPIO.setmode(GPIO.BCM)

channel = 4

GPIO.setup(channel, GPIO.IN, pull_up_down=GPIO.PUD_UP)

setup I2C relays

bus = smbus.SMBus(1)

bus.write_byte_data(0x20, 0x00, 0x00)

bus.write_byte_data(0x20, 0x09, 128)

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 39

setup real time counter

stime = time.time()

ref = time.time()

a = time.time()

b = time.time()

while (b - a) < r:

print('start position has been set')

b = time.time()

with lock:

payload["switch1"] = True

payload["switch2"] = False

payload["direction"] = 1

This is the setup part of the simulation function. As can be seen, the function depends
on two arguments: lock and payload variables. The meaning of those variables will be
explained later. The first line of the code is the assignment of the time of the cycle for
simulation. Global variable "tc" holds a value of the time of the cycle in the main part
of the code and "t" is the local variable just for the simulation part. Next goes the setup
of used GPIO pins. For the mono-stable system simulation, I used one GPIO pin as an
input. So in this part I setting all GPIO pins in mode, which is suitable for communication
with BCM2835 broadcom chip by command:

GPIO.setmode(GPIO.BCM)

After that, I need to set up the I01 pin as an input, because of the configuration of JP
connectors and with that configuration only I01 and I02 can be used as inputs (more in
chapter 4). Due to table 4.2 I01 channel of UniPi is connected to GPIO04 pin of RPi.
That‘s why channel 4 is set as input in pulled up mode with the command:

GPIO.setup(channel, GPIO.IN, pull_up_down=GPIO.PUD_UP)

The next thing is setting up the Relays. Before this setting of the SMBus needs to be
done with the command:

bus = smbus.SMBus(1)

"1" in the arguments of this command means it will setup for newer versions of RPi.
Before explaining next two commands I should explain how runs communication with

slave-devices via I2C protocol. I2C is multimaster and multislave device, communication
requires several arguments. Typical transaction on writing data with smbus protocol
would look like [25]:

write_byte_data(addr,cmd,val)

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 40

Where "addr" is address of the slave device, "0x20" is adress of Relays. A "cmd" is
register offset, which means adress of memory zone for writing. Internal memory of the
device is divided on several zones, each of them answers for different information. For
example register 0x00 ("0" in hex system) is answering for configuration of the Relays [26],
and register of the memory 0x09 is answering whether Relays are switched or not. And
"val" is value, which will be written in the register. Value is the most important argument
in my transaction, because it defines which relays will be switched, when transaction is
done. It works that way: there are 8 relays, and range of the value arguments is 28. So
below is simple table with "val" values for each relay:

- Rel 1 Rel 2 Rel 3 Rel 4 Rel 5 Rel 6 Rel 7 Rel 8
Value 128 64 32 16 8 4 2 1

Table 9.1: Values for each relay in UniPi v1.1, [9]

Now returning to the code. I need to specifically configure RELAYS building block
(GPA ports) for inputting commands to them by writing them in special register called
IODIR [26]. I did it with command:

bus.write_byte_data(0x20, 0x00, 0x00)

And then I set up starting initialising position for simulation. According to 9.2
initializing position is when 1st switcher is on, the 2nd switcher is off, DCV solenoid is
on. So simulation on hardware would be: the first relay is switched. I did it by writing
"128" as "val" in "0x09" register:

bus.write_byte_data(0x20, 0x09, 128)

After that, I set up a real-time counter to measure the time of the cycle and delay of the
end switchers. Variable "ref" is a reference to the beginning of the cycle and "stime" will
be serving as a timer. "b" and "a" variables serving the same purpose but with measuring
the delay of the sensors. Delay of end switchers depend on the width of end switchers
and velocity of the piston. "a" is a reference variable for the delay, "b" is a real delay
timer. So further "while" condition holds the start position. While doing this code writes
simulation metadata of starting position in "payload" dictionary variable:

payload["switch1"] = True

payload["switch2"] = False

payload["direction"] = 1

In this case, the simulator simulates, that the first switcher is pressed, second is off and
the piston is directing towards his end position. "1" means "to the end position", "-1"
means "to the starting position". On real hardware that means, that 1st relay is on, 2nd
relay is off and I01 port has True value.

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 41

The next part of the simulation function is the main loop, it does repeat the simulation
over and over again and writing metadata about simulated coordinates of the piston for
visualization function, so it could draw and visualize it with graph properly.

Description of simulation function with SFC diagram:

Before representing the code of "simulation function", more graphical way of repre-
senting this function should be presented. So here on the SFC diagram (fig. 9.1) is shown
the sequence of actions, which need to be done to simulate the sequence of actions of the
real system on hardware, shown on fig 9.2. In other words, this diagram represents all
four states, written in the simulator‘s code in the form of SFC diagram, to show better
which conditions lead to which states.

Figure 9.1: Sequence Functional Chart of Actions, Raspberry Pi need to do, to exactly
simulate system.

• RElAY1 simulates 1st end switcher (1M1 on figure 2.3)

• RELAY2 simulates 2nd end switcher (1M2 on figure 2.3)

• GPIO I01 simulates 1st solenoid of the bistable DCV (Y1 on figure 2.3)

Condition of transition between 1st state (Step0) and 2nd state (Step1): "TON/GPIO
I01/T0.5s" is an expiration of 0.5 seconds from the moment, when GPIO I01 has the
logical value True (24 V). Condition of transition between 3rd state (Step2) and (Step3):
"TOF/GPIO I01/T0.5s" is also expiration of 0.5 seconds from the moment, when GPIO

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 42

I01 has logical value False (0 V). It won‘t always be 0.5 s, because 0.5 s represent the time
of reaction of sensors here. So the value can be different. It depends on input parameters
(pressure, stroke...).

Description of simulation function with Python code:

Here is the code of it:

main loop

while alive:

if not GPIO.input(channel) and (stime - ref < (t-r/2)): # First condition

bus.write_byte_data(0x20, 0x09, 0)

stime = time.time()

with lock:

payload["switch1"] = False

payload["switch2"] = False

payload["direction"] = 1

elif not GPIO.input(channel) and (stime - ref >= t): # Second condition

bus.write_byte_data(0x20, 0x09, 64)

a = time.time()

b = time.time()

while (b - a) < r:

print('end position has been set')

b = time.time()

with lock:

payload["switch1"] = False

payload["switch2"] = True

payload["direction"] = -1

stime = time.time()

if GPIO.input(channel) and (stime - ref < 2*t-r): # Third condition

bus.write_byte_data(0x20, 0x09, 0)

stime = time.time()

with lock:

payload["switch1"] = False

payload["switch2"] = False

payload["direction"] = -1

elif GPIO.input(channel) and (stime - ref >= 2*t): # Forth condition

bus.write_byte_data(0x20, 0x09, 128)

a = time.time()

b = time.time()

while (b - a) < r:

print('start! position has been set')

b = time.time()

with lock:

payload["switch1"] = True

payload["switch2"] = False

payload["direction"] = -1

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 43

stime = time.time()

ref = time.time()

The simulated system has 4 states (more in fig 9.2), so the code of the simulator is
written to simulate all 4 states. For simulator to transit from one state to another there
are conditions for each simulated state:
First condition: According to the figure 9.2 program simulates next state after starting
state, which was set before main loop of the function. It simulates transition from start
to an end: both switches are off, current going through solenoid of DCV. So hardware
simulation of this state is: relays are off, I01 has True value. This state would last time
of the cycle. So the condition for this simulation state is:

if not GPIO.input(channel) and (stime - ref < t-r/2)

"GPIO.input(channel)" command returns True or False value depending on is channel
HIGH or LOW. Also, I set this channel in a pulled up note, so the values would be
backward. That’s checking if the channel is HIGH with "not GPIO.input(channel)" con-
dition. And the second condition says that this state lasts "t - r/2", which means cycle
time without end switchers reaction time because they are already included in the loop.
Next, the loop turns off relays with the command, which means both switchers are off:

bus.write_byte_data(0x20, 0x09, 0)

Then renews real-time counter with command

stime = time.time()

And after that writes current metadata about simulation in the payload variable.
Second condition: Program simulates second state: end position, 2nd end switcher

is on, 1st is off, solenoid should be off, this position lasts until the time of the one cycle.
Simulation on hardware: 1st relay is off, 2nd relay is on, I01 has False value. So condition
is written exactly like that:

elif not GPIO.input(channel) and (stime - ref >= t)

After this code turn on 2nd relay, which simulates, that second switcher is on:

bus.write_byte_data(0x20, 0x09, 64)

Setup real delay timer, and wait in that position and simultaneously write metadata in
payload variable.

Third condition: Program simulates the third state: a transition state between end
position and start position. The difference in condition is that it should last twice as
much as the first transition state because real-time cycle counter zeroing out only after

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 44

it comes back to the first state. The other difference is that there is no current going
through the solenoid. Simulation on hardware: relays are off, I01 has False value. So the
condition for this state would be:

if GPIO.input(channel) and (stime - ref < 2*t-r)

All commands after this are the same as in the first condition, except that direction must
be "-1" in the metadata variable "payload".

Forth condition: Program simulates starting state, only this time it‘s in the loop.
Simulation on hardware: the first relay is on, the second relay is off, I01 has False value.
So it requires conditions which look like this:

elif GPIO.input(channel) and (stime - ref >= 2*t)

DCV solenoid should be off and the time of the cycle should be 2*t. After that code turns
on the 1st relay and sets up counter for the delay.

When code checks for all conditions and makes all prescribed actions - it zeroes the
real-time counter for the time of the cycle.

Figure 9.2: Sequence of states of simulated system (monostable valve)

9.1.3 Simulation function for testing on PC

Another function in the script is the "dummy simulation part", which allows testing the
simulator on PC. Because of the incompatibility of some libraries with the Windows OS,
it’s impossible to run the "simulation part" function and import "SMBus", "RPi.GPIO"

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 45

libraries on PC with Windows. The main difference with "simulation part" is that it
doesn’t work with the GPIO ports and Relays, instead, it has declared variables, which
simulate the behavior of GPIO ports during simulation:

def dummy_simulation_part(lock, payload):

GPIO = False

It has all the same four conditions defined as the "simulation part" function and it
writes the same values into the "payload" variable after each condition, but it doesn’t
depend on GPIO ports presence or values.

Transition "start-end" state:

while alive:

if not GPIO and (stime - ref < (t-r)):

End state:

elif not GPIO and (stime - ref >= (t-r)):

.

.

GPIO = True

At the end of this state "GPIO" variable becomes True, because solenoid should turn
off, and originally I have GPIO pins in pulled up state, so the value should be reversed.

Transition "end-start" state:

if GPIO and (stime - ref < 2 * (t-r)):

Start state:

elif GPIO and (stime - ref >= 2 * (t-r)):

9.1.4 Visualization function

Third function in the code is Visualization function. It does exactly, what says
its name. The core of this function is pygame module. It uses metadata from simulation
function to draw objects in the form of a cylinder, piston, and two squares representing
end switchers when it‘s called. It also returns nothing. Now I will go through the code.
As it can be seen this function‘s arguments are also lock and payload:

def vizualization_part(lock, payload)

The payload is dictionary global variable with metadata. Global means it was defined
outside of the function, so it uses this global variable inside the function as an argument.
The lock variable will be explained further. After that I define the variable, which contents
how much frames per second for this visualization I want and initialize pygame:

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 46

FPS = 24

pygame.init()

After that I set caption of the window and it‘s resolution, which will be containing my
visualization:

win = pygame.display.set_mode((600, 400)) # define the window with visualisation

pygame.display.set_caption("Visualisation of the pneumatic cylinder")

After that I set up method "clock" from pygame to limit FPS to not load RPi too much:

clock = pygame.time.Clock()

If I won‘t do it, RPi will be trying to draw as much FPS as possible and this is pointless
loading for hardware.

The next thing in the code is the definition of coordinates. When the simulator is just
started, visualization looks like in figure 9.3.

Figure 9.3: Starting position of simulator represented by visualization function

So, because pygame can draw a limited amount of objects: rectangle, square, circle,
and line, it must display 10 elements. Those elements are green arrow, left and right walls
of the cylinder, floor and ceiling of the cylinder, knob, head and neck of the piston, and
two rectangles representing end switchers. Only cylinder and sensors are static in this
visualization, which means it doesn‘t move during visualization. For each of the elements,
I need to define their disposition on the screen and their sizes. The Center of coordinates
of rectangle figures is in their left upper corner. Center of coordinates of circle figures is
in their center and for a triangle, it‘s in the center of its bottom. So after defining the
FPS and initializing pygame I defined the center of coordinates and sizes of all figures
and their relations to each other.

Next goes main loop of drawing. Firstly copy "payload" content with copy function
from copy module to "data" variable with this command:

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 47

while alive:

with lock:

data = copy.copy(payload)

After this code checks if there is "quit" event in the chain of events of the window with
simulation and if so, closes the window:

for event in pygame.event.get():

if event.type == pygame.QUIT:

pygame.quit()

sys.exit()

Next are drawing static objects in "while" loop, what means that those objects are
being drawn 24 times per second:

drawing of the static objects:

pygame.draw.rect(win, (0, 0, 255), (xc1, yc1, wc1, hc1)) # cylinder

pygame.draw.rect(win, (0, 0, 255), (xc2, yc2, wc2, hc2)) # cylinder

pygame.draw.rect(win, (0, 0, 255), (xc3, yc3, wc3, hc3)) # cylinder

pygame.draw.rect(win, (0, 0, 255), (xc4, yc4, wc4, hc4)) # cylinder

pygame.draw.rect(win, (255, 0, 0), (xs1, ys1, ws1, hs1)) # sensors

pygame.draw.rect(win, (255, 0, 0), (xs2, ys2, ws2, hs2)) # sensors

That leaving code to draw non-static objects. Those are piston, the knob of the piston,
and sensors. Each of those objects has two states, but together those non-static objects
can be in 6 different states. Transition state with 2 directions: to end position ("1" is
written in "payload" variable), to start position ("-1" is written in "payload" variable).
Start state, when 1 end switcher is pressed is also with 2 directions and end state when the
second switcher is pressed with two different directions. That gives us 6 states together.
And those are conditions for them:

• start state with direction "to end position":

if data["switch1"] and (data["direction"] == 1):

• start state with the direction "to start position":

if data["switch1"] and (data["direction"] == -1):

• transition state with the direction "to start position":

if not data["switch1"] and not data["switch2"]:

if data["direction"] == 1:

• transition state with the direction "to end position":

if not data["switch1"] and not data["switch2"]:

else:

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 48

• end state with direction "to end position":

if data["switch2"] and (data["direction"] == 1):

• end state with direction "to start position":

if data["switch2"] and (data["direction"] == -1):

Depending on the condition pygame draws different positions for those objects. Green
arrow changes its direction depending on the position: down - for direction "to end
position", up - for direction "to start position" (more at figure 9.2). The lower red
rectangle represents the first end switcher and the upper represents second end switcher.
Then they are "pressed" in the simulation, rectangles change their colors to green. And
At the end of the visualization part, there are methods from the pygame module. That
update and fill the window with black, because every time pygame changes the picture
and that is how animation is made, it fills new pixels with different colors according to
the program, but it doesn‘t erase previous pixels. That‘s why the window updated and
then filled with black color. Also in the end there is a method, which is limiting the FPS
for visualization. Code looks like this

pygame.display.update()

win.fill((0, 0, 0))

clock.tick(FPS)

9.1.5 Collecting data

There is two more written function in code, one of them is "extract2calculate" function.
It helps to extract parameters of the cycle from the configuration .txt file. Simulator
extracts data about simulation, which includes working pressure of cylinder, a stroke of
the cylinder, diameter of the cylinder, a mass of the piston, and width of the sensors.
Then code calculates the time of the cycle from that data and creates the simulation
of the cycle with this exact length, calculation of the time happens in the main code.
Configuration file looks like this 9.4.

Figure 9.4: Example of configuration file

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 49

The function is called "extract2calculate" and has two arguments, name of the con-
figuration file and, number of the line, from which it will extract the number. Firstly
code opens configuration file in reading mode, that‘s why it has "r" as an argument and
creates empty list for extracted data:

def extract2calculate(name, n_str):

konfig = open(name, "r")

s = []

After this I extract every symbol from configuration file in two-dimensional list variable
"s":

for line in konfig:

q = []

for element in line:

q += element

s += [q]

Then I nulify "q" for reusing. And checking every symbol in "s" if it‘s number or dot.
Then I put numbers and dots in "q" two-dimensional list:

for i in range(len(s)):

for j in range(len(s[i])):

q += ['']

if s[i][j].isdigit() or (s[i][j] == "."):

q[i] += s[i][j]

And in the end function returns number from certain line in "float" format:

return float(q[n_str])

9.1.6 Plot function

This function is visualising coordinate of the piston and logical value on both switches.
The core of the function is submodule "pyplot" from "matplotlib" module. The graph
is synchronised with visualisation function through "payload" variable. Function returns
nothing, but drawing the graph.

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 50

Figure 9.5: Visualisation of the simulation through the plot

So, at the beginning of the function there is declaring of the function itself and defining
lists for writing the values for the graph in it.

def plot_viz(lock, payload, vel, reference):

y = [0]

x = [0]

ys1 = [0]

ys2 = [0]

Function is depending on "lock" and "payload" variables as "simulation" and "visu-
alisation" functions. After this goes the main loop of the function.

while alive:

a = time.time()

with lock:

if payload['direction'] == 1:

if y[-1] >= stroke - vel:

y += [stroke]

else:

y += [y[-1] + vel]

elif payload['direction'] == -1:

if y[-1] > 0 + vel:

y += [y[-1] - vel]

else:

y += [0]

if payload['switch1']:

ys1 += [1]

else:

ys1 += [0]

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 51

if payload['switch2']:

ys2 += [1]

else:

ys2 += [0]

At the beginning of the main loop I define the time of the beginning of every cycle
in variable "a". After that I write the coordinates of the piston by adding or subtracting
the velocity from previous coordinate. If direction is "1", then I add, because direction is
positive and otherwise I subtract. Also depending on the state of the switches I write "0"
or "0" in the list of their logical values. Condition are working with data from "payload"
variable, which is changing in "simulation" function. Now continuing with the main loop
of the function:

x += [a - reference]

plt.subplot(311)

plt.plot(x, y, '-ok')

plt.ylabel('x, piston [m]')

plt.subplot(312)

plt.plot(x, ys1, '-ok')

plt.ylabel('1. switch [-]')

plt.subplot(313)

plt.plot(x, ys2, '-ok')

plt.xlabel('time [s]')

plt.ylabel('2. switch [-]')

if (a-reference) > 20:

del y[0]

del x[0]

del ys1[0]

del ys2[0]

plt.plot()

plt.pause(0.25)

plt.clf()

After all the conditions I write the time in variable "x" by subtracting the "reference",
which was made in the beginning of the main code, from "a" , which was made on the
beginning of the loop. Then script draws plot with three subplots: first - coordinate of
piston from time, second - logical value of first switch from time, third - logical value
of second switch from time. Next goes if condition: if 20 seconds have past from the
beginning of the loop, then script deletes old values from "y, x, ys1, ys2" lists. Command
"plt.plot()" shows the graph and command "plt.pause(0.25)" renews it every 0.25 sec-
onds. And "plt.clf()" redraws the figure, so the graph shows only last 20 seconds of the
simulation.

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 52

Important remark: While I was testing the simulator with visualization function
and plot function included on PC, simulation went just fine. But at testing on RPi plot
function started working improperly. Because of the limitation of the processor of RPi and
because of function is getting metadata from the same variable "paload" as "visualization
part" function renewed plot every 50-60 seconds and graf didn’t make sense. "visualization
part" function worked great, just as it would work without "plot viz" function included.
Because of "payload" variable is being opened by those function with lock, which means,
that while one function using variable, other can’t use it, "plot viz" function is getting
access to the "payload" relatively rarely, that may be the cause of improper work. The
solution here is more powerful hardware (later versions of RPi) or optimalization of the
function on level, which I’m right now incapable of.

9.1.7 Main code

This is the part of the code, where all the above-mentioned functions are run and all
global variables, which are used in those functions, are being declared. Main code starts
with declaring the variable "alive", that serves as main switcher of the whole simulator
and also declaring the beginning of the cycle in the variable "reference" for "plot viz"
function:

alive = True

reference = time.time()

Then I declare the "payload" variable, which is serving as metadata, written in simu-
lation function and used in visualization function:

payload = {

"switch1": False,

"switch2": False,

"direction": 0

}

After that goes assignment of the name of the configuration file to the variable "config
file" and then extraction of the parameters of the cycle with help of "extract2calculate"
function and assignment of its values to the corresponding variables:

config_file = "konfiguration.txt"

d = extract2calculate(config_file, 0)/1000

p = extract2calculate(config_file, 1)*10**5

mu = extract2calculate(config_file, 2)

alpha = extract2calculate(config_file, 3)

m_m = extract2calculate(config_file, 4)

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 53

F_th = extract2calculate(config_file, 5)

s_s = extract2calculate(config_file, 6)

stroke = extract2calculate(config_file, 7)/1000

"d" is the diameter of the cylinder translated from mm to meters, "p" is working pres-
sure translated from bars to Pascals. "mu" is friction coefficient for steel-steel. "alpha" is
the mounting angle of the cylinder. "m m" is mass, that cylinder moves. "F th" is a theo-
retical force, that cylinder can apply. "s s" is the width of the sensors. "stroke" is a stroke
of the cylinder translated from mm to meters. All those data can be found in the standard
specification of the pneumatic cylinder. In my case, I used the "DSNU-20-100-PPV-A"
cylinder as an object for simulation.

Next goes the calculations of the time of the cycle from the parameters of the cycle.
The calculation is trivial. The scheme is displayed on figure 9.6.

Figure 9.6: Scheme for calculation

I took principals of calculations from Festo Fluidsim 5 software official tutorials [27]
(calculations are for cylinder working with specific load) and wrote calculation based on
it.:

a =
p · A
mm

(9.1)

A =
π · d2

4
(9.2)

, where "A" - area of the head of the piston, "p" - working pressure, "m m" is mass,
that piston moves "moving mass" or a load of cylinder, "d" is the diameter of the cylinder.

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 54

Calculation of the velocity of the piston and time of actuation:

stroke =
1

2
· t2 · a (9.3)

t =

√
2 · stroke

a
(9.4)

v = t · a (9.5)

Condition for the piston to start moving:

To start moving, the piston should overcome the static force of friction. Basically
theoretical force of piston "F theor" should be greater than "F b". "F theor" can be
found in the documentation of a certain cylinder.

FB = µ ·mm · g · Cos(α) (9.6)

Ftheor > FB (9.7)

Where "mu" is friction coefficient, "m m" is moving mass (load) and "alpha" is the
mounting angle of the cylinder.

And from that it‘s possible to calculate the time of reaction of the sensors:

treaction =
2 · ss
v

(9.8)

,where s is the width of the sensors.
So next lines are calculating the acceleration, time of the cycle, velocity of the piston,

static friction force, and time of reactions according to 9.4, 9.5, 9.6, and 9.8 expressions.

A = (math.pi*d**2)/4

acc = (p*A)/m_m

tc = math.sqrt((2*stroke)/acc)

vel = tc * acc

r = (2*s_s)/vel

F_b = mu*m_m*9.81*math.cos(alpha)

After that comes implementation of condition of overcoming the static friction force
and printing the results of calculation:

if F_th < F_b: # condition: if moving mass is too big

vel = 0

tc = 100000000

r = 10000000

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 55

print(f'Calculated time of the cycle: {tc} [s]')

print(f'Calculated velocity of the piston: {vel} [m/s]')

print(f'Calculated reaction time of the sensors: {r} [s]')

The next thing is the condition: when code has errors, it most likely is because it‘s
run on windows and code couldn’t import "SMBus" and "GPIO" library. In that case,
code needs to be at least tested on windows, that‘s why code replace "simulation part"
function with "dummy simulation part" function, which is made especially for testing on
windows:

if DEBUG:

simulation_part = dummy_simulation_part

After this code defines an object "lock", which is useful when using threading paral-
lelism. It‘s locking global variables, so two threads couldn’t access the same variable at
the same time, that would cause an error:

lock = threading.Lock()

So that‘s why this object "lock" is in arguments of simulation, visualization and "plot
viz" functions. Next is defining the threads and starting them, from now on they will be
running in parallel:

thread_simulation = threading.Thread(target=simulation_part, args=[lock, payload])

thread_vizualization = threading.Thread(target=vizualization_part, args=[lock, payload])

thread_plot = threading.Thread(target=plot_viz, args=[lock, payload, vel, reference])

thread_simulation.start()

thread_vizualization.start()

And in the end is "main switcher" loop. The simulator will be running, except
"Ctrl+C" combination is pressed on the keyboard:

print('starting the process')

while True:

try:

time.sleep(0.01)

except KeyboardInterrupt:

print('Total Stop')

alive = False

sys.exit()

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 56

9.1.8 Difference between simulating the system with monostable

valve and bistable valve

First difference is that in "simulation part" function I need to define two channels for two
inputs, because bi stable system have two solenoids, which code needs to simulate:

print('starting the process')

GPIO.setup(channel_1, GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.setup(channel_2, GPIO.IN, pull_up_down=GPIO.PUD_UP)

Description of simulation function with SFC diagram:

The main difference between simulator for the system with bistable and monostable
valve is the main loop in the "simulation part" function, so before source code will be
presented, more graphic representation should be shown. That would be SFC diagram
from the side of Raspberry Pi.

Here on the SFC diagram (fig. 9.7) is shown sequence of actions, which are simulating
the sequence of actions of the real system, shown on fig 9.8. In other words, this diagram
represents all four states, written in the simulator‘s code in the form of SFC diagram, to
show better which conditions lead to which states.

Figure 9.7: Sequence Functional Chart of Actions, Raspberry Pi need to, do to exactly
simulate system.

• RElAY1 simulates 1st end switcher (1M1 on figure 2.6)

• RELAY2 simulates 2nd end switcher (1M2 on figure 2.6)

• GPIO I01 simulates 1st solenoid of the bistable DCV (Y1 on figure 2.6)

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 57

• GPIO I02 simulates 2nd solenoid of the bistable DCV (Y2 on figure 2.6)

Description of simulation function for the bistable system with code in

Python:

Respectively in the "simulation part" function, there will be other conditions for chang-
ing the metadata in "payload" for the visualization part. I added the extra condition to
separate the cycle on the "start-to-end" part and "end-to-start" part by adding the "add
cond" variable and making it "True" at the beginning of the function and changing it
through the main loop of the function. It was done because both transition "end-start"
and "start-end" states have the same combination of inputs (more on fig. 9.8) and output
should be different. In other words: it’s a sequential system and it requires additional
input. The first "monostable" system simulator is separated the same way by the logical
value on the DCV solenoid, but in "bistable" system simulator there isn’t such value
because of the solenoids are being turned on the small amount of time, therefore I used
"add cond" variable:

add_cond = True

The sequence of conditions execution inside the main loop of simulation function for
a system with a bistable valve is presented below for better understanding in figure 9.8.

Figure 9.8: Sequence of states of simulated system (bistable valve)

First condition: Program simulates transition state from start to an end, both
switchers are not pressed during the state, both solenoids are off. So simulation on

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 58

hardware is: both relays are off, I01 and I02 have False value, but at the beginning, I01 is
on. There is a current going through the first solenoid out of two (Y1 on figure 2.6), but
only at the beginning of the cycle, when the first switcher is pressed. After this everything
is off:

if stime - ref < (t-r/2):

if not GPIO.input(channel_1):

bus.write_byte_data(0x20, 0x09, 0) # turn off relays

So there is the condition for the full transition state and sub condition for the begin-
ning.

Results of this condition would be the same as in mono stable simulator:

with lock: # metadata about the sim for vis

payload["switch1"] = False

payload["switch2"] = False

payload["direction"] = 1

Second condition: Program simulates end state, 2nd solenoid is on, second switcher
should be turned on. Simulation on hardware: 2nd relay is on, I02 has logical True. So
condition is:

elif add_cond and (stime - ref >= t):

bus.write_byte_data(0x20, 0x09, 64)

add_cond = False

Here ends the "start-to-end" part of the simulation and the "end-to-start" part begins.
So "add cond" becomes false.

And results:

with lock: # metadata about the simulation for visualization

payload["switch1"] = False

payload["switch2"] = True

payload["direction"] = -1

Third condition: Program simulates transition state from end to start, both switch-
ers are not pressed during the state, but the second switcher is pressed at the beginning.
There is a current going through the second solenoid out of two (Y2 on figure 2.6), but
only at the beginning of the cycle, when the second switcher is pressed. After this ev-
erything is off. So simulation on hardware is: both relays are off, I01 and I02 have False
value, but at the beginning, I02 is on:

if (stime - ref < 2 * t-r) and not add_cond:

if not GPIO.input(channel_2):

bus.write_byte_data(0x20, 0x09, 0) # turn off relays

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 59

That’s why I needed "add cond" variable because "stime-ref" at the beginning of the
cycle falls under two conditions simultaneously, it’s less than (t-r) and less than 2*(t-r),
to separate it I added "add cond"

Results:

with lock: # metadata about the sim for viz

payload["switch1"] = False

payload["switch2"] = False

payload["direction"] = -1

Forth condition: Program simulates starting condition. Second solenoid is off, First
switcher should become on, second is off. Real time counter nullifies as the result. Simu-
lation on hardware: 1st relay is on, I01 has logical True. Condition expires after time of
the cycle is over:

elif stime - ref >= 2 * t:

bus.write_byte_data(0x20, 0x09, 128)

Results:

with lock: # writing the metadata about the simulation for visualisation

payload["switch1"] = True

payload["switch2"] = False

payload["direction"] = -1

ref = time.time() #nullify the counter

Important remark: The code of simulator for the system with a bistable valve, that
wasn‘t mentioned in this subchapter remains the same as in simulator for the system with
monostable valve.

9.2 Developing in NodeRed

Node-RED [21] provides a web browser-based flow editor, which can be used to create
JavaScript functions. Elements of applications can be saved or shared for re-use. The
runtime is built on Node.js. The flows created in Node-RED are stored using JSON. So,
in my case node-red is running on RPi, and I creating flows via an internet browser on
an external computer. The computer communicates with RPi via TLS protocol. RPi
creates a localhost server. Basically, to use node-red on RPi + UniPi – it‘s necessary to
run node-red on RPi, which is connected to the internet and go access RPi via browser
in the local network.

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 60

Figure 9.9: Scheme of connection between node red and RPi

Node-RED is a flow-based development tool for visual programming. Nodes could be
understood like specific purpose functions. The simplest flow it is possible to create with
nodes would look like this:

Figure 9.10: Simplest flow in Node Red

The first blue node on the left is inject node, which by default deploys timestamp to the
msg object with payload property when the button on the left of it is pushed. However,
it is possible to change the information, that the inject node deploys to msg.payload. It
could be a string like “Hello world!”, number, or a Boolean. The next orange node is
function node, default function just returns msg.payload without any changes, but you
can change it by writing JavaScript function inside of this node. The important thing is
that you can make changes to msg.payload, but it should always return msg as a whole
object or with some property at the end of the function. And the last one is the green
debug node. By default it prints msg.payload on the screen, you can make it print the
whole msg objects or some other properties of msg.

9.2.1 Created simulator in Node-Red.

Flow in simulator program is displayed on figure 9.11. It works that way: There are two
branches in this flow. The lower one functions as a switch of the main upper branch. The
“set gate” yellow node is playing the role of a global object. Violet "Enable" node is writing
the True to property msg.payload. Violet "Disable" node writes false to msg.payload. The

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 61

yellow changing node "set gate" is writing a value from msg.payload object to flow.gate
object. And if "True" value is written to "set gate" node - yellow node "gate" in upper
"main" branch works as bypass, if "False" value is written to "set gate" node - yellow
node "gate" in the upper main branch doesn’t work as bypass, so upper main branch
doesn’t work.

And the upper one is the "Main" branch. Now you can push the "start" violet node
in the upper main branch, it will inject “start” into function node. The algorithm of the
yellow function node "logical controller" is:

• if you inject “1”, it will inject “1” in the first (upper) output

• if you inject “0”, it will inject “1” in the second (middle) output

• if you inject “start”, it will inject “1” in the third (lower) output

That’s because there are written Java Script function in it:

if (msg.payload == 1){

msg.payload = 1;

return[msg, null, null]

}

if (msg.payload == 0){

msg.payload = 1

return[null, msg, null]

}

if (msg.payload = "start"){

msg.payload = "start"

return[null, null, msg]

}

When “start button” is pressed and "start" is bypassed by "gate" node and injected
into "logical controller" function, yellow function node will inject “start” in third output,
it will pass “1” to red "i2c" node and green debug node, which will indicate, that cycle is
started, by printing "start" in debug window. Red "i2c" node will switch the first relay.
When the first relay is switched, PLC program will make input (PIN 11) True and from
now on node "PIN 11" is input to the logical controller. So, it will pass “0” to the yellow
function node (because it is in “pull-down” mode). The function node will pass “1” to the
second output and after a delay time, the second relay will be switched. After that PLC
program will make input False, so the blue “rpi gpio in” node will pass “1” (because it is
in “pull-down” mode) to the yellow function node. The function node will pass “1” to the
first output and after delay time the first relay will be switched.

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 62

There are two "i2c" nodes and delay nodes on two first outputs from the "logical
controller" node. It‘s because I want the relay to switch on after a certain time (time
of the cycle) and switch off after a certain time (reaction time of sensors). That‘s why I
made it that way. When function node passes “1” to the first or second output, it passes
it to the “time of cycle” branch and on the “reaction time of sensors” branch, so actually
“reaction time of sensors” delay = “time of cycle” delay + “actual reaction time, that I
want in this simulation”. So, both delays start at the same time, only the “reaction time
of sensors” delay is longer because we want our relay to switch off after reaction time.

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 63

Figure 9.11: Simulator in Node Red

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 64

Visualization of this simulator is implemented way simpler than in the Python-based
simulator. With the help of a special module called "Node-Red-Dashboard" - it’s possible
to create a visualization of data from sensors on the webpage, which is run locally on
RPi. There weren’t suitable instruments for visualizing states of the simulated solenoid
and two simulated end switchers, like a bulb or something like this. But there was a
possibility of making the switch with inverted function i.e. switcher is displayed switched,
when for example current is going through the simulated solenoid, or any of simulated
end switchers is switched.

Figure 9.12: Visualization in Node Red

The example of the visualization can be seen in figure 9.12. In the state shown on the
figure 9.12 - current is going through the simulated solenoid and both end switchers are
off. So this is the transition state of going from the start position to the end position.

The switches are switching because of light blue nodes, called "switch" are connected
to input "PIN: 11" and to outputs from the "logical controller" node.

9.2.2 Used Nodes and Modules

RPi gpio in node: This is additional node from “node-red-node-pi-gpio” module. It‘s nec-
essary to download this module before using it. This node checks the input on RPi and
depending on “pull-up” or “pull-down” mode deploys 1 - “pull-up”, 0 - “pull-down”, when
input is HIGH and backward when input is LOW. In my case node checks on pin №11,
which is GPIO 17 on RPi according to the table 9.2. And GPIO 17 is I02 on UniPi
v1.1 according to table 4.2. I chose I02 port instead of I01 port, because of bugs with
Node-Red on RPi v1.2.

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 65

Figure 9.13: rpi-gpio in node

Table 9.2: Node GPIO module pin configuration

Switch node: allows messages to be routed to different branches of flow by evaluating
a set of rules against each message [28]. Used in flow as a bypass from input "PIN 11"
node to function node.

Figure 9.14: Switch node

Change node: Set, change, delete or move properties of msg, flow such as msg.payload
or flow.gate. I used it for moving or “redirecting” True or False value from “enable” or
“disable” buttons from lower brunch to switch node “gate” from upper main brunch. I
wrote it in msg.payload and then moved it from msg.payload to flow.gate

Figure 9.15: Change node

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 66

Function node: I’ve described this node in upper example with the simplest flow

Figure 9.16: Function node

Delay node: This node delays the passing of the message. You can change the time of
the delay by changing the argument of the node.

Figure 9.17: Delay node

I2C node: This is additional node from “node-red-contrib-i2c” module. It‘s necessary
to download this module before using it. This node allows to control building blocks
connected with I2C protocol on RPi + UniPi. In our case, I used it to control relays.
Node has 3 arguments: slave device address: 0x20 for the relays, sending bytes: 1 for
relay to switch, and 0 to do nothing. And payload: -128 for the first relay to switch, 64
for the second, 32 – 3rd, 16 – 4th, And so on till 1 is for the 8th relay.

Figure 9.18: i2c node

Switch node: can set the icon of the switch in the dashboard layout, depending on
state [29].

Figure 9.19: UI switch node

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 67

9.3 Developing in Mervis

Mervis [23] is a software platform for control of UniPi programmable controllers. Mervis
is a set of tools and applications for advanced regulation and automation. You can write
program in FBD or ST methods. I used Function Blok Diagram (FBD). To use Mervis
with UniPi v1.1, it’s firstly necessary to burn the image of Mervis‘s version of Raspbian
(Mervis OS) on the SD card and install Mervis IDE on your computer.

Mervis OS is a specially configured version of Raspbian without a graphical interface.
Controlling the system is possible through the command line, but the most convenient
way to do this is through Mervis IDE.

9.3.1 Preparing Mervis

To make Mervis work it‘s necessary to connect UniPi and computer with Mervis IDE to
the same local network.

Figure 9.20: Connection of Mervis and RPi+UniPi

After It ‘s connected to the same local network, it‘s required to attach Mervis IDE
to the controller. The next step is configuration inputs into outputs. To connect to the
UniPi, it’s needed to add Channel. The Channel is a communication point with hardware
that happens in a defined protocol. Next thing - to change is the protocol to Modbus.
The Channel is configured, now the next step is to add the device. Device should be
UniPi v1.1 [30]. After all channels and devices are configured, developing of the program
can be started.

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 68

9.3.2 Created simulator in Mervis IDE

After the device is configured, a list of all inputs and outputs will appear in Mevis IDE.
Those inputs and outputs occur as variables, which contain the current state of selected
output or input. But you can add to the list your variables, which will represent different
things. For example, my program in Mervis IDE contains the time of the cycle as a
variable.

Now the following list is the list of variables and functions, used in program:

List of variables:

• UniPi1-AO-DI-CNT DI01 – current value of Digital Input 1, Boolean

• time ton – delaying time for TON function, Real

• time tof – delaying time for TOF function, Real

• UniPi1 Relays Relay1 – the value of Relay 1, Boolean, 0 – Relay is in starting
position, 1 – end position

• UniPi1 Relays Relay2 – the value of Relay 2, Boolean, 0 – Relay is in starting
position, 1 – end position

List of functions:

• NOT – The function negates the input

• TON – The delaying timer of the rising edge of the input signal

• TOF – The delaying timer of the falling edge of the input signal

Variables are represented as cells in grey columns with the name of the selected variable
on the left and on the right of the figure 9.21. Variables on the left are input in the
program, the output from the program writes in the column with variables on the right.
On the left, in both branches, there is DI1 GPIO port as input. As output, there are
RELAY 1 in the upper branch and RELAY 2 in the lower branch.

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 69

Figure 9.21: Simulator in Mervis IDE

CHAPTER 9. DEVELOPMENT OF THE PROGRAM ON UNIPI+RPI 70

Now principle of the simulator. When Digital Input 1 gets HIGH, logical “1”
passes from "UniPi1-AO-DI-CNT DI01" through both branches (upper and lower), passes
through a delay of the rising edge and through a delay of the falling edge. Only in the
upper branch, it passes also through NOT function, which negates the value. So, at the
end logical “1” is on the "UniPi1 Relays Relay2" variable. And logical “0” is on the "UniPi1
Relays Relay1" variable. While Digital Input is LOW – values of Relay 1 and Relay 2
would be another way around. I had used two functions of delays TON and TOF to get
delay for “turning on” and “turning off” the relays. Because each one of them delaying
only edges of the signal and not the whole width of the signal. That‘s why variables "time
ton" and "time tof" should be equal, to delay the whole signal on the same amount of
time. Also the value of "time ton" and "time tof" should include not only the time of the
cycle but also the reaction time of the sensor. So if you want to make a simulation with
the time of the cycle = 5 [s] and with the reaction time of the sensor = 0.5 [s], the value
of "time ton" and "time tof" should be 5.5 [s].

Mervis IDE allows it’s users to make HMI with special HMI editor. This editor
lools like the layout of elements, which can be interactive like switchers or can display
information. These elements allow you to visualize the status of your system and control
all of its functions. For this purpose, the editor features a large collection of switches,
indicators, text fields, time schedulers, and other elements [24]. I used this HMI editor to
make visualization of the process of the simulation.

The visualization of the simulator in Mervis IDE very much looks like visualization in
Node-Red (More on figure 9.22). It has three indicators with the title. Each represents
one of the switchers or solenoid of the valve. Each shows if it’s True or False.

Figure 9.22: Visualization of simulator in Mervis IDE

Chapter 10

Conclusion

The task of this bachelor thesis was:

• To get acquainted with RPi programming

• Connect UniPi I/O module to RPi

• Design and test the way of simulation of selected ones technological elements using
several platforms (Python, Mervis ...)

• Test the functionality of the simulator by connecting it to the control PLC

So in the theoretical part of this bachelor thesis, I described how I had become ac-
quainted with hardware and methods of communication between different pieces of the
hardware, which is necessary for becoming acquainted with the programming of the RPi.
In the practical part, I’ve described the development of the simulator based on three dif-
ferent platforms on RPi+UniPi hardware. Therefore, while I was developing those sim-
ulators, I got acquainted with the programming of RPi with Python, which is the main
programming language for it, with Node-Red visualization software and with Mervis IDE.

For testing of the developed simulator, I’ve connected UniPi with RPi and described in
detail how are they communicating in chapter 4. To sum this: all pins of RPi is straightly
connected to GPIO pins of UniPi through the flat connector. Other building blocks such
as relays are connected through MCP23008 expanding chip and communicated via I2C
protocol. I2C protocol is operating through 3th and 5th pin of RPi.

I’ve designed the simulator for bistable and monostable loaded systems based on
Python. Also, I’ve designed simulators for the monostable system based on Node-Red
and Mervis. The simulators are working stable and have options to change the parame-
ters of simulations and visualize the process of simulation. For Python-based simulators,
it’s possible to adjust many parameters such as stroke, diameter, the working pressure
of the cylinder, the width of the sensors, load of the cylinder, the mounting angle of the

71

CHAPTER 10. CONCLUSION 72

loaded cylinder. Depending on the parameters, which can easily be found from documen-
tation of the specific cylinder, Python-based simulator will calculate the time, run the
simulation, visualize it and draw a graph in real-time with the position of the piston and
logical values on the first and second switcher. For Node-Red and Mervis based simula-
tors it’s necessary to set the time of simulation directly, it will run the simulation and
visualize it. Visualization in Node-Red and Mevis based simulators is less sophisticated
than in Python-based simulators, but it does its job and shows the state of the simulation.
Basically, I’ve developed a digital twin of a specific system in Python and simpler digital
twins in Node-Red and Mervis.

During the work on this bachelor thesis I’ve looked closely at a lot of interesting tech-
nologies like PLC programming, programming of the microcontrollers, pneumatic systems,
and automation. Although I’ve worked only with the simulation of field level elements,
I’ve come to realize, that PLC and pneumatic systems are a very powerful instrument for
industrial automation. Because of specific program language and construction of it, PLC
is a very efficient automatizing tool.

As regards the programming of microcontrollers: it would be a great instrument for
automation because of its size and capabilities, but it hasn’t got industrial reliability, so
it can’t be used fully in industrial automation. For example only in creating a simulation
of technological elements or creating "digital twin" of the equipment for testing. Also,
it’s efficiency depends on software, used with it.

In this bachelor thesis, I used three different software to fulfill the same task: to
develop the simulator. And based on the experience of developing the simulator on three
different platforms, I must say that Python is the best of three for that. Python is a
flexible language with lots of modules and an easy-readable code. Because of that, it’s
possible to develop a more sophisticated simulator with different modules and capabilities
such as visualization, calculation of time inside the script, and plotting. But it would take
a much longer time to do that, because of the whole context of OOP and understanding
it. For me, it took longer to learn how to make programs in Python, than it took me to
learn how to make programs in Mervis, Node-Red.

And as for Node-Red and Mervis. Those are tools mainly applicable for home au-
tomation. It has a lot of different predefined functions and modules for many purposes,
such as working with sensors, getting the data from it, visualizing the data, and so on.
The only problem, that it’s har to make something, which is not predefined by creators
of those tools. And in my opinion, those are great tools for smart lights or monitoring
the temperature in a house or boiler. It would be great to do with it, especially with
Node-Red. Mervis is pushing its product in the industrial automation area. But UniPi
v1.1 has a lack of industrial reliability, maybe they fixed it in further models because

CHAPTER 10. CONCLUSION 73

UniPi v1.1 is a relatively early model.
Python is the most suitable instrument for developing a sophisticated simulation or

digital twin, but Mervis and Node-Red are way simpler for home automation or automa-
tion in general.

Also developed simulator can be enhanced with some adjustments. Developed feature
with plotting is working stably on powerful hardware, but it doesn’t work properly on RPi
B+ v1.2. The solution here is the optimization of the code or using more powerful hard-
ware. Also for industrial using this kind of simulation, a more sophisticated calculation
of the time of the cycle of the pneumatic cylinder would be required.

Bibliography

[1] (2019). Differences between field, control, supervisory, and enterprise levels of au-
tomation, [Online]. Available: https://www.syspro.com/blog/erp-for-manufacturing/
the-5-layers-of-the-automation-pyramid-and-manufacturing-operations-
management/ (visited on 04/20/2020).

[2] (2017). The 5 layers of the automation pyramid and manufacturing operations man-
agement, [Online]. Available: https://www.machinedesign.com/automation-
iiot/article/21835731/differences-between-field-control-supervisory-
and-enterprise-levels-of-automation (visited on 04/20/2020).

[3] (2017). Digital twin, [Online]. Available: https : / / en . wikipedia . org / wiki /
Digital_twin (visited on 07/13/2020).

[4] A. Parr, Hydraulics and pneumatics: a technician’s and engineer’s guide. 2011, isbn:
978-0-08-096674-8.

[5] (2019). Pneumatic solenoid valves for pneumatic systems., [Online]. Available: https:
//tameson.com/solenoid-valves-for-pneumatic-systems.html (visited on
04/13/2020).

[6] (2014). Raspberry pi documentation, [Online]. Available: https://www.raspberrypi.
org/documentation/usage/gpio/RsEADME.md (visited on 04/13/2020).

[7] (2014). Gpio port map, [Online]. Available: https://www.raspberrypi.org/
documentation/usage/gpio/images/GPIO-Pinout-Diagram-2.png (visited on
04/13/2020).

[8] (2014). Unipi v1.1 page in e-shop, [Online]. Available: https : / / www . unipi .
technology/unipi-1-1-p36 (visited on 04/13/2020).

[9] (2014). Unipi v1.1 technical documentation, [Online]. Available: https://www.
unipi.technology/shop/product/download?fileId=986 (visited on 04/13/2020).

[10] B. P. Šimeček, “Řídicí systém inteligentního bytu,” p. 20,

[11] (2014). Gpio usage documentation, [Online]. Available: https://www.raspberrypi.
org/documentation/usage/gpio/ (visited on 04/13/2020).

[12] (2014). Bcm2835 peripheral specification, [Online]. Available: https://www.raspberrypi.
org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.
pdf (visited on 04/13/2020).

[13] W. Gay, “Physics of the gpio interface,” in Exploring the Raspberry Pi 2 with C++,
Springer, 2015, pp. 83–94, isbn: 978-1-4842-1739-9.

[14] (2018). I2c communication protocol, [Online]. Available: https://en.wikipedia.
org/wiki/I%C2%B2C#Message_protocols (visited on 04/13/2020).

74

https://www.syspro.com/blog/erp-for-manufacturing/the-5-layers-of-the-automation-pyramid-and-manufacturing-operations-management/
https://www.syspro.com/blog/erp-for-manufacturing/the-5-layers-of-the-automation-pyramid-and-manufacturing-operations-management/
https://www.syspro.com/blog/erp-for-manufacturing/the-5-layers-of-the-automation-pyramid-and-manufacturing-operations-management/
https://www.machinedesign.com/automation-iiot/article/21835731/differences-between-field-control-supervisory-and-enterprise-levels-of-automation
https://www.machinedesign.com/automation-iiot/article/21835731/differences-between-field-control-supervisory-and-enterprise-levels-of-automation
https://www.machinedesign.com/automation-iiot/article/21835731/differences-between-field-control-supervisory-and-enterprise-levels-of-automation
https://en.wikipedia.org/wiki/Digital_twin
https://en.wikipedia.org/wiki/Digital_twin
https://tameson.com/solenoid-valves-for-pneumatic-systems.html
https://tameson.com/solenoid-valves-for-pneumatic-systems.html
https://www.raspberrypi.org/documentation/usage/gpio/RsEADME.md
https://www.raspberrypi.org/documentation/usage/gpio/RsEADME.md
https://www.raspberrypi.org/documentation/usage/gpio/images/GPIO-Pinout-Diagram-2.png
https://www.raspberrypi.org/documentation/usage/gpio/images/GPIO-Pinout-Diagram-2.png
https://www.unipi.technology/unipi-1-1-p36
https://www.unipi.technology/unipi-1-1-p36
https://www.unipi.technology/shop/product/download?fileId=986
https://www.unipi.technology/shop/product/download?fileId=986
https://www.raspberrypi.org/documentation/usage/gpio/
https://www.raspberrypi.org/documentation/usage/gpio/
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://en.wikipedia.org/wiki/I%C2%B2C#Message_protocols
https://en.wikipedia.org/wiki/I%C2%B2C#Message_protocols

BIBLIOGRAPHY 75

[15] (2010). Description of iec 61131, [Online]. Available: https://en.wikipedia.org/
wiki/IEC_61131 (visited on 06/03/2020).

[16] (2010). Description of iec 61131-3, [Online]. Available: https://en.wikipedia.
org/wiki/IEC_61131-3 (visited on 06/03/2020).

[17] K. T. Erickson, “Programmable logic controllers,” IEEE potentials, vol. 15, no. 1,
pp. 14–17,

[18] Siemens, Tia portal v15.1, version 15. [Online]. Available: https : / / support .
industry.siemens.com/cs/document/109752566/simatic-step-7-and-wincc-
v15-trial-download-?dti=0&lc=en-WW.

[19] T. Alves, Openplc editor, version 1.0. [Online]. Available: https://www.openplcproject.
com/plcopen-editor/.

[20] (2016). Definition of openplc, [Online]. Available: https://www.openplcproject.
com/ (visited on 04/28/2020).

[21] I. E. T. Services, Node red, version 1.0.5. [Online]. Available: https://nodered.
org/docs/getting-started/local.

[22] (2017). Definition of nodered, [Online]. Available: https://en.wikipedia.org/
wiki/Node-RED (visited on 04/30/2020).

[23] U. technology, Mervis, version 2.1.3.

[24] (2014). Definition of mervis, [Online]. Available: https://www.unipi.technology/
products/mervis-43 (visited on 04/30/2020).

[25] (2006). Documentation of smbus module, [Online]. Available: http://wiki.erazor-
zone.de/wiki:linux:python:smbus:doc (visited on 05/06/2020).

[26] Y. Magda, Raspberry Pi. Setup and Application Guide. Litres, 2017, isbn: 978-5-
94074-964-6.

[27] Festo, Fluidsim® 5. [Online]. Available: https://www.festo-didactic.com/int-
en/learning- systems/software- e- learning/fluidsim/fluidsim- 5.htm?
fbid=aW50LmVuLjU1Ny4xNy4xOC41OTEuNzk3NQ.

[28] (2016). The core nodes, [Online]. Available: https://nodered.org/docs/user-
guide/nodes (visited on 05/18/2020).

[29] (2016). Node red dashboard documentation, [Online]. Available: https://flows.
nodered.org/node/node-red-dashboard (visited on 05/18/2020).

[30] (2014). Mervis ide technical documentation, [Online]. Available: https : / / kb .
unipi.technology/en:sw:01-mervis:06-tutorials (visited on 05/18/2020).

https://en.wikipedia.org/wiki/IEC_61131
https://en.wikipedia.org/wiki/IEC_61131
https://en.wikipedia.org/wiki/IEC_61131-3
https://en.wikipedia.org/wiki/IEC_61131-3
https://support.industry.siemens.com/cs/document/109752566/simatic-step-7-and-wincc-v15-trial-download-?dti=0&lc=en-WW
https://support.industry.siemens.com/cs/document/109752566/simatic-step-7-and-wincc-v15-trial-download-?dti=0&lc=en-WW
https://support.industry.siemens.com/cs/document/109752566/simatic-step-7-and-wincc-v15-trial-download-?dti=0&lc=en-WW
https://www.openplcproject.com/plcopen-editor/
https://www.openplcproject.com/plcopen-editor/
https://www.openplcproject.com/
https://www.openplcproject.com/
https://nodered.org/docs/getting-started/local
https://nodered.org/docs/getting-started/local
https://en.wikipedia.org/wiki/Node-RED
https://en.wikipedia.org/wiki/Node-RED
https://www.unipi.technology/products/mervis-43
https://www.unipi.technology/products/mervis-43
http://wiki.erazor-zone.de/wiki:linux:python:smbus:doc
http://wiki.erazor-zone.de/wiki:linux:python:smbus:doc
https://www.festo-didactic.com/int-en/learning-systems/software-e-learning/fluidsim/fluidsim-5.htm?fbid=aW50LmVuLjU1Ny4xNy4xOC41OTEuNzk3NQ
https://www.festo-didactic.com/int-en/learning-systems/software-e-learning/fluidsim/fluidsim-5.htm?fbid=aW50LmVuLjU1Ny4xNy4xOC41OTEuNzk3NQ
https://www.festo-didactic.com/int-en/learning-systems/software-e-learning/fluidsim/fluidsim-5.htm?fbid=aW50LmVuLjU1Ny4xNy4xOC41OTEuNzk3NQ
https://nodered.org/docs/user-guide/nodes
https://nodered.org/docs/user-guide/nodes
https://flows.nodered.org/node/node-red-dashboard
https://flows.nodered.org/node/node-red-dashboard
https://kb.unipi.technology/en:sw:01-mervis:06-tutorials
https://kb.unipi.technology/en:sw:01-mervis:06-tutorials

	Zadání
	Prohlášení
	Abstract
	Podekování
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Simulation of the field instrumentation

	Specification of the system for simulation
	Actuator with monostable valve
	Actuator with bistable valve

	Raspberry Pi
	UniPi
	Communication between Raspberry Pi and UniPi
	GPIO
	I2C

	Programmable Logic Controller
	Conclusion of Theoretical part
	Physical connection of UniPi and PLC
	Connection for simulating the system with monostable valve
	Connection for simulating the system with bistable valve

	PLC program
	PLC program for monostable system
	PLC program for bistable system

	Development of the program on UniPi+RPi
	Development in Python
	Import of modules
	Simulation function
	Simulation function for testing on PC
	Visualization function
	Collecting data
	Plot function
	Main code
	Difference between simulating the system with monostable valve and bistable valve

	Developing in NodeRed
	Created simulator in Node-Red.
	Used Nodes and Modules

	Developing in Mervis
	Preparing Mervis
	Created simulator in Mervis IDE

	Conclusion
	Bibliografie

