

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF MECHANICAL ENGINEERING

DIPLOMA THESIS

RELAY FEEDBACK IDENTIFICATION USING GUIDING
EVOLUTIONARY ALGORITHM

2020

ADRIAN SALDANHA

Abstract

The Guiding Evolutionary Algorithm (GEA) was proposed by Cao, Xu and Goodman in 2016.

The original algorithm was designed to apply the advantages of the previously published Particle

Swarm Optimization (PSO), Genetic Algorithm (GA) and the Bat Algorithm (BA). As part of

this thesis, we explore the working of this algorithm on standard functions and then compare the

results with those achieved by PSO and BA to verify whether GEA is really superior.

Once we verify the effectiveness of GEA, we shall then proceed to apply the same for System

Identification of pre-defined systems in MATLAB for parametric identification of process

models of several processes. The identification results are checked for consistency, after which

we apply PID Control methods for controlling the same.

Finally, the complete solution which includes optimization, identification and control is tested on

a real process namely the two tanks system from the Automatic Control Laboratory and thereby,

we can verify whether our proposed method is effective in real process identification. If we can

arrive at a positive conclusion, we can take this concept to the next level by applying the same

technique to Model Predictive Control wherein, an accurate and efficient algorithm can help to

correctly predict future outcomes many steps ahead and can be extremely beneficial in terms of

time and cost.

Statement

I, hereby declare that the work presented here is solely my own except where stated otherwise by

reference or by acknowledgement and that I have not previously submitted this in part or in

whole for any previous task. I agree that the results of this thesis can be of further use at the

discretion of the supervisor and its co-author and I also agree with the potential publication of

the results of this thesis or of its substantial part provided that I will be named as one of the co-

authors.

In Prague

Date:

Acknowledgement

This work was supported by the Grant Agency of the Czech Technical University in Prague.

I would like to express my sincere gratitude to my thesis supervisor Ing. Milan Hofreiter, CSc.

for his constant guidance and teaching throughout the course of this thesis. This thesis was made

possible all thanks to him for which I am truly grateful.

I would like to also thank in a special way, my ex-colleagues and especially my managers from

the company ABO Valve s.r.o. for being supportive towards me during these two years of my

studies.

Last, but not the least, I would like to thank my family, who have always been my pillar of

support.

8

CONTENTS

1 Introduction ... 14

2 ALGORITHMS ... 16

2.1. Optimization ... 16

2.2. Optimization Algorithms ... 17

2.2.1 Deterministic Algorithms .. 18

2.2.2 Stochastic Algorithms ... 19

2.3. Particle Swarm Optimization ... 22

2.4. Bat Algorithm .. 24

2.5. Guiding Evolutionary Algorithm (GEA) ... 28

3 Simulation Results for Pre-defined functions .. 33

3.1. Test Functions: ... 33

3.2. Parameterization ... 36

3.3. Results .. 37

3.3.1 F1 - De-Jong’s Sphere function: ... 37

3.3.2 F2 - Schwefel 2.2 function: ... 38

3.3.3 F3 - Griewangk's function: .. 39

3.3.4 F4 – Rosenbrock’s function: ... 43

3.3.5 F5 – Rastrigin’s function: .. 44

3.3.6 F6 – Michalewicz function: ... 45

3.4. Summary: ... 47

3.5. Conclusion: .. 47

4 Relay-Feedback Identification ... 49

4.1. System Identification ... 49

4.1.1 Theory: .. 49

4.1.2 Definitions ... 50

4.1.3 Methods in Practice: .. 51

9

4.2. Why Identification? .. 52

4.3. Model ... 53

4.4. Relay-Feedback Identification ... 56

4.5. Problem Statement ... 58

4.6. Simulink Scheme ... 59

4.7. PID Control .. 61

4.7.1 Direct Synthesis Method (DS): ... 63

4.7.2 PMC Method ... 66

4.7.3 SIMC Method .. 67

4.7.4 Simulink Scheme – PID Control ... 67

4.8. Identification and Control Results for pre-defined systems 69

4.8.1 P1 – Non-Oscillatory, Lag-Dominated Process 69

4.8.2 P2 – Balanced Process ... 71

4.8.3 P3 – Delay-dominated Process .. 73

4.8.4 P4 – Oscillatory Process .. 74

4.8.5 P5 – Non-oscillatory Process with Time-Delay 76

4.8.6 P6 – Fifth-Order Process with Time-Delay ... 78

4.9. Conclusion ... 79

4.9.1 Identification ... 79

4.9.2 Control ... 80

5 Physical System ... 82

5.1. Experimental Setup .. 82

5.2. Static Characteristics .. 84

5.3. Problem Statement ... 85

5.4. Experiment ... 86

5.5. Results .. 87

5.6. PID Control .. 92

6 Conclusion ... 94

10

7 Bibliography .. 96

11

List Of Figures

Figure 1 - Steps for optimization problem formulation .. 16

Figure 2 - Hill-Climbing Algorithm [https://www.geeksforgeeks.org/introduction-hill-climbing-

artificial-intelligence] .. Error! Bookmark not defined.

Figure 3 - Pseudo-code - Particle Swarm Optimization (Kennedy & Eberhart, 1995) 24

Figure 4 - Pseudo Code - Bat Algorithm (BA) (Yang, A New Metaheuristic Bat-Inspired

Algorithm, 2010) ... 26

Figure 5 - Pseudocode - GEA Algorithm (Cao, Xu, & Goodman, 2016) 32

Figure 6 - Functions F1-F6 .. 35

Figure 7 - Error Results - De Jong's Function ... 38

Figure 8 - Error Curve for Schwefel 2.2 function ... 39

Figure 9 - Error Curve - Griewangk's Function .. 40

Figure 10 - Contour Plot - GEA, PSO, BA ... 40

Figure 11 - Error Curve - Griewangk's Function (2) ... 41

Figure 12 - Contour Plot - Griewangk's function (2) .. 41

Figure 13 - Error Curve - Griewangk's Function (3) ... 42

Figure 14 - Contour Plot - Griewangk's Function (3) ... 42

Figure 15 - Error Curve - Rosenbrock's Function ... 43

Figure 16 - Contour Plot - Rosenbrock's function ... 44

Figure 17 - Error Curve - Rastrigin's function .. 44

Figure 18 - Contour Plot - Rastrigin's function ... 45

Figure 19 - Error Curve – Michalewicz Function ... 46

Figure 20 - Contour Plot - Michalewicz Function .. 46

Figure 21 - System Identification Loop (Llung, 1975) ... 52

Figure 22 - Tuning Procedure (Berner, Hägglund, & Åström, 2016) ... 53

Figure 23 - System Representation ... 54

Figure 24 - Block Diagram of a Process under Relay Feedback .. 57

Figure 25 - Asymmetric Relay (Hofreiter, 2018) .. 57

Figure 26 - Experimental Block Diagram ... 58

Figure 27 - Relay Identification Schematic ... 60

Figure 28 – Flowchart of Identification Process ... 61

Figure 29 - PID Controller Block Diagram (PID Controller, 2020) ... 62

Figure 30 - Block Diagram - Closed Loop System ... 64

file://///Users/adrian/OneDrive%20-%20České%20vysoké%20učení%20technické%20v%20Praze/Thesis/Relay%20Model/thesis_draft_4.docx%23_Toc48650730
file://///Users/adrian/OneDrive%20-%20České%20vysoké%20učení%20technické%20v%20Praze/Thesis/Relay%20Model/thesis_draft_4.docx%23_Toc48650731
file://///Users/adrian/OneDrive%20-%20České%20vysoké%20učení%20technické%20v%20Praze/Thesis/Relay%20Model/thesis_draft_4.docx%23_Toc48650731
file://///Users/adrian/OneDrive%20-%20České%20vysoké%20učení%20technické%20v%20Praze/Thesis/Relay%20Model/thesis_draft_4.docx%23_Toc48650732
file://///Users/adrian/OneDrive%20-%20České%20vysoké%20učení%20technické%20v%20Praze/Thesis/Relay%20Model/thesis_draft_4.docx%23_Toc48650750

12

Figure 31 - Simulink Scheme - PID Control ... 68

Figure 32 - Step Response vs Nyquist Plot - Process P1 .. 70

Figure 33 - PID Control - Process P1 .. 71

Figure 34 - Step Response vs Nyquist Plot - Process P2 .. 72

Figure 35 - PID Control - Process P2 .. 72

Figure 37 - Step Response vs Nyquist Plot – Process P3 .. 73

Figure 38 - PID Control - Process P3 .. 74

Figure 39 - Step Response vs Nyquist Plot – Process P4 .. 75

Figure 40 - PID Control - Process P4 .. 76

Figure 41 - Step Response vs Nyquist Plot – Process P5 .. 76

Figure 42 - PID Control - Process P5 .. 77

Figure 43 - Step Response vs Nyquist Plot – Process P6 .. 78

Figure 44 - PID Control - Process P6 .. 79

Figure 45 – Schematic Diagram - Two-tanks system ... 83

Figure 46 – Functional Diagram - Two Tanks System ... 84

Figure 47 - Static Characteristics - Two tank system .. 85

Figure 48 – Simulink scheme of Physical System .. 87

Figure 49 - Simulink Scheme – Identification .. 87

Figure 50 - Step Response ... 89

Figure 51 - Frequency Response Characteristics - Time Plot ... 90

Figure 52 - Frequency Response - Time plot from Laboratory .. 91

Figure 53 - Nyquist Plot – Two Tanks System ... 92

Figure 54 - PID Control - Two Tanks System, SP = 5 and SP = 2 ... 93

file://///Users/adrian/OneDrive%20-%20České%20vysoké%20učení%20technické%20v%20Praze/Thesis/Relay%20Model/thesis_draft_4.docx%23_Toc48650771

13

List of Tables

Table 1 - Predefined functions for simulation ... 34

Table 2 - Simulation results for pre-defined functions ... 47

Table 3 - Step Input Parameters .. 68

Table 5 - Identification Results for Pre-defined Functions ... 69

Table 6 - PID Tuning Parameters - Process P1 ... 70

Table 7 – PID Tuning Parameters - Process P2 .. 72

Table 8 - PID Tuning Parameters - Process P3 ... 74

Table 9 - PID Tuning Parameters - Process P4 ... 75

Table 10 – PID Tuning Parameters - Process P5 .. 77

Table 11 – PID Tuning Parameters - Process P6 .. 78

Table 12 - Identification Results ... 88

Table 13 - Tuning Parameters - Two Tank System... 93

14

1 Introduction

In this thesis, we shall delve into the details of different optimization algorithms, mainly

probability-based algorithms involving swarm intelligence. These algorithms come under the

general category of meta-heuristic algorithms wherein, we randomly search within a target

sample space looking for a global minimum. The central idea of meta-heuristic algorithms is

that, in general these algorithms do not guarantee that we will find the global optimum solution,

but rather, that we find a reasonable solution in the given search time (simulation time) with an

acceptable error and which satisfies the constraints of the given search function. By appropriate

methods as will be described in the later chapters, we may efficiently search a sample space

using different meta-heuristic algorithms and compare the results with each other, thereby,

finding the most appropriate for our given problem.

The subject of meta-heuristics is quite a wide topic and though, there are countless algorithms

in use, we shall look into the sub-branch of algorithms using swarm intelligence and genetic-

based approaches, both of which are nature-based. Our guiding material for this research will

be the work of Professor Xin-She Yang, titled ‘Nature-Inspired Optimization Algorithms

(Yang, Nature-Inspired Optimization Algorithms, 2014). In this book, Yang explores a wide

range of nature-inspired algorithms which are modelled upon elements in Nature such as Bats

(Bat Algorithm) or Eagles (Eagle Strategy). The idea behind using these is to mirror the

evolutionary advantages of different species over the course of being and to apply the concepts

to solving real-world problems in optimization. As these algorithms have been laid out already,

we shall not explain the in-depth working of the same, but rather apply it to our problem at

hand.

The main algorithm of focus as part of this research will be the Guiding Evolutionary Algorithm

(Cao, Xu, & Goodman, 2016) which is rather a novel approach and has, until now, not yet been

applied in practice. The results of the paper A Guiding Evolutionary Algorithm with Greedy

Strategy for Global Optimization Problems (Cao, Xu, & Goodman, 2016) claims that the results

of the novel approach for solving multi-modal problems is quite significant and for functions

with higher dimensions, can converge to a global optimum far sooner as compared to some of

the former approaches such as Bat algorithm which, in turn has a far better convergence rate

when compared to a few other strategies such as Particle Swarm Optimization (Kennedy &

Eberhart, 1995) and the Genetic Algorithm (Holland, 1975).

15

Lastly, in order to assert the superiority of an algorithm over another, we need to apply it to a

practical problem, which, in this case shall be “Relay-based Identification of a non-linear

system”. By means of the ‘No-Free Lunch Theorem’ (Wolpert & Macready, 1997), we know

that there is no universal algorithm for all problems, but rather, for a given problem, we can say

that a certain algorithm might be most efficient as compared to another, judged by various

criteria. Therefore, as part of this work, we shall apply our algorithms to the specific problem

of system identification and judge which of these are effective for our purpose.

In general, optimization problems occur in each and every sector of industry from waste

disposal to VLSI design and thus are relevant in several tasks. Every small bit of improvement

can have great impacts in terms of cost, energy and time and therefore this topic can be applied

universally.

The structure of the thesis is organized as follows: Chapter 1 gives and introduction to the thesis

as a holistic approach. Chapters 2 describes the various algorithms that will be covered in this

topic of thesis and Chapter 3 gives a summary involving comparison of each of these algorithms

in terms of time (convergence rate) and efficiency (finding global optimum) for a number of

available functions. In Chapter 4, we shall move to the concept of relay-based feedback

identification and PID control, which is the central application for which we shall apply our

approach. In this chapter, we shall also explore the identification and control results of the

algorithm on pre-defined systems. Chapter 5 is similar to Chapter 4, except that in this chapter,

we apply the methods on a real system rather than on some theoretical processes. We shall

summarize the approaches and results of all topics in Chapter 6 which will be our conclusion.

16

2 ALGORITHMS

2.1. Optimization

To begin with, we shall first define the a few important simple terms which are going to be

important for us to understand some concepts in the later chapters. Since we are dealing with

an optimization task, we will first define the term ‘optimization’, which can be defined as the

process of finding the best design in the given design space in terms of certain criteria which

we shall refer to as objective functions taking into consideration the list of constraints. The first

step in each and every optimization problem is to create or define the model of the system to be

optimized, also known as quantitative model (Parkinson, Balling, & Hedengren, 2018). The

model is designed based on physical properties and rules which govern the process or system.

This is by far the most important step in the process as the optimization would be rather useless

if the physical model itself is incorrect. The next step is to determine the design variables or in

terms of optimization these are called decision variables or degrees of freedom of the

computational model, which are basically the parameters to be optimized. The decision

variables can be physical or virtual parameters whose value must be within a certain space also

known as design space. The number of decision variables determine the number of dimensions

of the design space. Next, once we have our decision variables, we need to determine and state

the criteria of the optimization. The criteria consist of the Objectives of the optimization

(Objective Function) and the constraints. The objective function or cost function is the

physical parameter dependent on the decision variables, which is to be optimized for the given

model, while the constraints are the rules governing the system which are based on physical or

user-defined limits.

Figure 1 - Steps for optimization problem formulation

The above flow-chart represents the steps necessary for the formulation of the optimization

problem. Only once the problem has been formulated correctly can we then proceed to apply

any sort of algorithm. To express the above steps in mathematical form, we can formulate our

function as follows:

1. Quantitative Model / Function: 𝑓𝑖(𝑥) where 𝑥 ∈ ℜ, (𝑖 = 1, 2 … 𝑀)

2. Decision variables: 𝒙 = (𝑥1, 𝑥2, … 𝑥𝑑)𝑇

Quantitative
model

Select Decision
variables

Objective
function and
constraints

17

where 𝑑 = number of dimensions / decision var.

3. Objective function: 𝑓𝑖(𝑥) (𝑖 = 1, 2 … 𝑀)

4. Constraints: ℎ𝑗(𝑥), 𝑔𝑘(𝑥)

where ℎ𝑗(𝑥), 𝑔𝑘(𝑥) represent physical constraints

The functions 𝑓𝑖(𝑥) where 𝑖 = 1, 2, … 𝑀 are the objective functions. In case M = 1, this

represents a single objective (Yang, Nature-Inspired Optimization Algorithms, 2014). The

vector x represents the decision variables and the space spanned by decision variables is the

search space or design space i.e. ℜ𝑑. For d = 1, it represents a 1-dimensional problem which

can be plotted on a number line. However, complex problems which involve multiple

optimization parameters can be much greater and thus the computational power required to

solve such problems increases based on the algorithm in use. If the functions 𝑓𝑖 , ℎ𝑖 and 𝑔𝑖 are

all linear, then the problem becomes a linear programming problem which is a different topic

altogether and one which we shall not visit since our functions are all linear.

In the chapters 3, 4 and 5, we shall see the step-by-step formulation of specific optimization

problems wherein the above steps will be made clearer.

2.2. Optimization Algorithms

An algorithm can be defined as a procedure to be followed for obtaining a valid result or

outcome. For our case, we shall focus on algorithms especially useful for the purpose of

optimization. Generally, we use prior experience and feedback from iteratively repeated

processes in order to make decisions over time so as to optimize designs to save cost, time and

space. However, by using the computational capabilities of modern computers, we can use

similar processes to iteratively calculate the outcomes of a much wider range of values (or

‘guesses’) and thereby select the values with the lowest cost functions. The manner of

performing guesses or predicting the lowest values is governed by how efficient our algorithm

is and the complexity increases exponentially as the number of decision variables increases. As

an example, brute force technique is the one common way of finding all available values within

a given design space but the computational time and complexity for larger dimensions is a task

difficult for even modern computers to solve (except quantum computers). For the purpose of

this thesis, we shall look at two prominent types of optimization algorithms namely Gradient

Based and Metaheuristic Algorithms.

18

2.2.1 Deterministic Algorithms

Deterministic algorithms are those which tend to follow a definite procedure for arriving at a

solution. It means that the algorithm typically follows the same path each time it is executed.

In general, simplex methods used for solving linear programming problems and gradient-based

algorithms come under this category of deterministic algorithms. As mentioned before, linear

programming problems are not in our field of interest as we are only dealing with non-linear

problems and systems and hence we shall only look at gradient-based algorithms as these set

the basis of our methodology of applying metaheuristic-based optimization algorithms.

Typically, Gradient-based algorithms can be used to solve uni-modal or multi-modal problems

in iterative fashion by means of Newton’s gradient-based approach. The details of this

approach are described in greater detail in the book “Nature-inspired metaheuristic algorithms”

(Yang, Nature-Inspired Optimization Algorithms, 2014) and hence we shall not delve into this

topic. The important aspect of gradient-based (or descent-based) algorithms is that Newton’s

Method provides a technique to find the minima or the maxima of a function within a very finite

search space by finding the gradient or slope of the curve and then finding the point at which

the derivative is zero which provides the maxima or the minima depending on the points near

the peak or valley. The speed of convergence can be set based on the step size within the

iteration process. The main problem with this approach is that it can be used to find only the

local peak or valley within a certain search space which limits the application of this method.

The gradient-based algorithm can also be called as Hill-climbing algorithm (see figure 2). In

general, we can see that the Hill-climbing algorithm follows a definite approach to finding the

peaks which is why it belongs to a category of deterministic algorithms.

19

Figure 2 - Hill-Climbing Algorithm [https://www.geeksforgeeks.org/introduction-hill-climbing-artificial-

intelligence]

In practice however, the gradient based approached can be improved by instilling some degree

of randomness to the above procedure. A good example is the Hill-Climbing Algorithm with

Random restart wherein we randomize the positions around which we are to find the peak and

then proceed to find the absolute values of the peaks within that region. The maximum value

of all the peaks would then suggest a global maximum which is far better than the hill-climbing

algorithm by itself. In spite of the positives, this method can get way too complicated for multi-

modal problems since the number of random restarts would then have to be greater than the

total numbers of peaks within the search space which limits the application of this algorithm.

The Hill-Climbing with Random restart comes under a third category of hybrid algorithms

which is a mixture of deterministic and stochastic algorithms.

In general, we tend not to use deterministic algorithms for such cases of optimization problems

as it tends to follow a path similar to brute force approach which is computationally demanding

for even modern computers (except quantum computers). The convergence time with

deterministic algorithms increases drastically as the number of dimensions and the design

spaces gets larger. Instead, we try to use randomization techniques which are part of stochastic

algorithms for this purpose since our goal is not always to find the absolute minimum (which

can take infinite time to determine), but rather, our main aim is to find the best outcome which

satisfies our given criteria within a reasonable amount of time.

2.2.2 Stochastic Algorithms

The basic principle of stochastic algorithms relies on the principle of probability wherein, we

use randomization techniques in a well-defined and progressive manner so as to search for

20

optima in various different sections of the design space. The result that we obtain, may not be

the global optima as mentioned before. That is, while we look for a viable solution, we cannot

guarantee that we shall arrive at the precise solution, but rather that we will look for the best

solution which meets our pre-stated criteria. This is called Heuristics, that is we use stochastics

as a method of arriving at a solution but there is no guarantee that we will find a solution. A

sub-branch of Heuristics can be termed as Meta-heuristics which will be the topic which we

will be looking at as part of this thesis. The difference is basically that Heuristics are mostly

problem-dependent whereas Metaheuristics are inherently problem independent (meta =

beyond ordinary!).

Historically, the heuristic approach to problem solving has existed from the 1940s when the

Mathematician Alan Turing used the term ‘heuristic search’ for the method he used to decode

the Enigma machines. Later research into heuristics led to the development of a wide range of

algorithms namely Genetic Algorithm (Holland, 1975), Simulated Annealing (Kirkpatrick et

all, 1983), Tabu Search (Glover, 1986), Ant Colony Optimization (Dorigo, 1992), Particle

Swarm Optimization (Kennedy & Eberhart, 1995), Bat Algorithm (Yang, A New

Metaheuristic Bat-Inspired Algorithm, 2010). A common denominator of most of the afore-

mentioned optimization algorithms, excluding Tabu Search is the fact that these come under

the category of Nature-Inspired Metaheuristics and have first been modelled around nature.

We shall be exploring some of these methods as part of this thesis.

To summarize the general topic of nature-inspired metaheuristics, we shall first describe the

three main operators for most of these algorithms:

1. Crossover Operator: The role of this operator is to provide a good mixing within the

solution space.

2. Mutation Operator: This method helps us to search within the design space looking

for solutions different from what we have already obtained previously. This helps avoid

us getting stuck in a local optimum. The mutation operator provides the necessary

exploratory framework for diversifying our solution.

3. Selection: Selection is the mechanism by which we choose the best individual from a

list of individuals so that this individual can progress to the next generation from which

we can develop even more suitable solutions. The selection mechanism provides the

essential exploitation necessary for intensifying our search.

21

Almost all of the algorithms in our discussion will include the above operators using different

techniques. The efficacy of each method depends not only on the manner in which it is

conducted, but also on the problem at hand.

Furthermore, to assist with understanding of the next chapters, it is crucial to first define a few

important terms which will be relevant to our algorithms:

Our approach can differ depending on the algorithm we choose, and we will see later that some

algorithms are better than some others depending on the type of problem. As concluded in the

“No Free-Lunch Theorem”, we see that there is no universal algorithm which works best for

each and every problem or, in other words, or, as put forth by Wolpert and Macready, “For both

static and time-dependent optimization problems, the average performance of any pair of

algorithms across all possible problems is identical” (Wolpert & Macready, 1997). Hence, we

will inspect a few available algorithms and evaluate the performance for our specific functions.

a. Dimensions (d): The dimensions it the number of variables which influence the objective

functions. This is same as the number of parameters to be optimized.

b. Random variables (xi): This is common to all stochastic processes. It is a variable whole

value is randomly determined by different set of random distribution rules such as

Gaussian distributions, Uniform Distributions, Levy distributions. For our purpose, we

shall mainly follow gaussian distributed and uniformly distributed random variables.

c. Random Walk: A random walk is step taken randomly from a fixed point. The final value

depends on a number of randomly taken steps from the initial position.

Mathematically, a random walk can be described as 𝑆𝑁 where 𝑆𝑁 is a series of consecutive

random steps 𝑋𝑖 (Yang, 2010).

𝑆𝑁 = ∑ 𝑋𝑖

𝑁

𝑖=1

= 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁

(1)

𝑆𝑁 = ∑ 𝑋𝑖 + 𝑋𝑁 = 𝑆𝑁−1 + 𝑋𝑁

𝑁−1

𝑖=1

(2)

Where 𝑋𝑖 = random step drawn from a random distribution.

22

d. Solutions (x): For each and every algorithm, we use solutions which is basically a vector

containing a number of search points in the design space.

Mathematically, we can represent this as:

𝒙𝑵 = ∑ 𝒙𝒊

𝑵

𝒊=𝟏

= (𝑥1, 𝑥2, … 𝑥𝑁)𝑇

(3)

Where

𝑥1 = (𝑥11
, 𝑥12

… 𝑥1𝑑
),

𝑥2 = (𝑥21
, 𝑥22

… 𝑥2𝑑
),

𝑥𝑖 = (𝑥𝑖1
, 𝑥𝑖2

… 𝑥𝑖𝑑
)

We shall be using all of the above methods in our understanding of the algorithms which follow.

With these definitions and descriptions, we can finally take a deep dive into the algorithms

which we shall be using.

2.3. Particle Swarm Optimization

Particle Swarm Optimization is a meta-heuristic based optimization procedure which was

developed by modelling swarm behaviour observed in nature such as bird flocking, fish

schooling and swarming theory (Kennedy & Eberhart, 1995). The advantage of this procedure

is its relative simplicity in implementing and it’s also being computationally less demanding in

terms of memory and speed. Additionally, unlike other genetic algorithms, there is no encoding

/ decoding necessary for Particle Swarm Optimization. Although the PSO is not the major

algorithm for this thesis work, it is an important pre-requisite for obtaining a deeper conceptual

understand of the next algorithms.

In general, the optimization technique is based on the simple concept that each individual in

subsequent iterations (generations) can benefit from the observations by the other individuals

from the previous generations, consequently, improving the subsequent results. The individuals

are considered as particles, while the entire group of particles are considered as a swarm, thus

the name Particle Swarm. The trajectories of the individual particles are adjusted in a quasi-

stochastic manner which includes:

a) Stochastic component and a

b) Deterministic component

23

The underlying concept behind the algorithm is deep and ingenious and can be found in the

cited paper. For the purpose of this thesis however, we shall describe how the algorithm works

from the point of view of the mechanics rather than the principle behind it.

Let us consider a number of particles (individuals) N in a sample space. The position and

velocity of each particle in the sample space is influenced by the particle’s previous position as

well as the best position of all particles until that point. The vectors x and v describe the position

and velocities of the particles at any given time (generation). As mentioned earlier, each

individual particle is attracted toward the position of the current global best g* and its own best

location xi
t in history. The vectors xi and vi are updated as follows:

𝒗𝑖
𝑡+1 = 𝜃𝒗𝑖

𝑡 + 𝛼𝝐𝟏[𝒈∗ − 𝒙𝑖
𝑡] + 𝛽𝝐2[𝑥𝑖

∗ − 𝒙𝒊
𝒕] (4)

𝒙𝑖
𝑡+1 = 𝒙𝑖

𝑡 + 𝒗𝑖
𝑡+1 (5)

Where:

𝒗𝑖
𝑡 and 𝒗𝑖

𝑡+1: Velocities of the ‘i’th particle at generations t and t+1 respectively

𝒙𝑖
𝑡 and 𝒙𝑖

𝑡+1: Positions at generations (time) t and t+1.

𝝐𝟏 and 𝝐2: Random vectors with values ∈[0, 1]

𝛼, 𝛽: Learning parameters of value ≈ 2.

𝒈∗: Global best position of all particles

𝒙𝑖
∗: Individual Best position of particle i.

𝜃: Inertia Value of the particle (optional term but necessary for better

convergence

From equation 4, we see that the updated velocity is a linear sum of the deviations of the current

position from the current global best 𝒈∗ as well as the deviation of the position from the

individual best 𝒙𝑖
∗. The global best position directly the other particles towards the best one,

while the historical best position of each particle accounts for an element of mutation wherein,

while the particle is drawn to the global best, it is also influenced by its own historical best

which provides an element of mutation. The weights of each can be easily controlled by

tweaking the values of 𝛼 and 𝛽. With this, with every consecutive iteration, the individual

particles move nearer towards the global best. Additionally, the global best 𝒈∗ is not fixed and

it must be updated with every generation using the cost function as follows:

24

𝒈∗ = min{𝑓(𝒙𝒊)} 𝑓𝑜𝑟 (𝑖 = 1, 2 … 𝑛) (6)

This is done at the end of every iteration and understandably, the value of the global best is

changed only if the new minimum value of the cost 𝑓(𝒙𝒊) is less than the previous global best.

Thus, as the program updates, the positions are regularly updated with each generation until, at

some point, the error from the minima / maxima of the cost function arrives at an acceptable

limit.

The pseudo-code for the algorithm is shown in the below figure [Yang, 2010].

2.4. Bat Algorithm

The Bat Algorithm (BA) was developed by Xin-She Yang in 2010 and it is based on the feature

of echolocation of Bats, which bats use to find their prey. While the inherent principle of BA is

quite similar to PSO, the core of this search method is that it is based on frequency tuning unlike

PSO. By experience, this method is found to be extremely efficient in practice and therefore,

has been put to use in a wide variety of applications since (Yang, Nature-Inspired Optimization

Algorithms, 2014).

Biologically, microbats use the principle of echolocation to detect their prey and avoid obstacles

in the dark. The method by which this takes place is similar to the principle of sonar, wherein

Particle Swarm Optimization

1. Objective function 𝑓(𝒙), 𝒙 = (𝑥1, … , 𝑥𝑑)𝑇

2. Initialize locations 𝑥𝑖 and velocity 𝑣𝑖 of n particles

3. Find 𝒈∗ from min{𝑓(𝒙1), 𝑓(𝑥2) … 𝑓(𝑥𝑛)} (at t = 0)

4. While (criterion)

For (loop over n-particles and d-dimensions

Generate new velocity 𝒗𝑖
𝑡+1

Calculate new locations 𝒙𝑖
𝑡+1 = 𝒙𝒊

𝒕 + 𝒗𝑖
𝑡+1

Evaluate objective function at locations 𝑥𝑖
𝑡+1

Find the current best for each particle 𝒙𝑖
∗

End for

Find the current global best 𝒈∗

Update 𝑡 = 𝑡 + 1 (iteration counter)

5. End while

6. Output final results 𝒙𝒊
∗ and 𝒈∗.

Figure 3 - Pseudo-code - Particle Swarm Optimization (Kennedy & Eberhart, 1995)

25

the bats emit a very loud sound pulse (bursts) and listen for the echo that bounces back from

the objects (Yang, 2010). Once the wave is reflected back from the object to the bat, the bat is

able to detect the echo, the time difference between the two ears and the loudness variations of

the echoes to build up a three-dimensional scenario of the surrounding, by which, they can

detect the distance, orientation and the moving speed of the target object. Typically, the

microbats emit pulses of about 8-10 ms at a constant frequency in the range of 25 kHz to 150

kHz with around 10 to 20 bursts every second. The loudness of the emitted pulse varies as it is

usually the loudest when searching for its prey and turns quieter when heading toward it.

With these basic biological principles in mind, we can proceed to formulate a mathematical

model of the same operation. Let us state the three idealized rules in the echolocation of bats

(Yang, A New Metaheuristic Bat-Inspired Algorithm, 2010):

1. All Bats use echolocation to sense distance to its prey (food/prey and physical barrier

can be thought of to mean the same.

2. Bats fly randomly with velocity 𝑣𝑖 and position 𝑥𝑖. They automatically adjust the

frequency or wavelength of their emitted pulses and adjust the rate of pulse emission

𝑟 ∈ [0,1] depending on the proximity of the target.

3. We assume that the loudness can vary from a large (positive) 𝐴0 to a minimum value

𝐴𝑚𝑖𝑛.

Additionally, we shall also consider the following assumptions that the frequency f is in the

range [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥] corresponding to the wavelength [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥]. Since 𝑓. 𝜆 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, we

can vary the value of only f, instead of changing 𝜆 as well and for simplicity, we use 𝑓 ∈

[0, 𝑓𝑚𝑎𝑥]. The rate of pulse emission can range from [0, 1].

Using the above rules, we can construct our pseudo code as shown in the below figure.

26

Similar to the PSO, let us construct a set of Bats (solutions), similar to particles in PSO.

We shall consider the solutions as xi
t and velocities as 𝒗𝑖

𝑡 in a d-dimensional space. The new

positions (solutions), velocities and frequencies at time t can be given by:

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽 (7)

𝑣𝑖
𝑡+1 = 𝑣𝑖

𝑡 + 𝑓𝑖 . (𝑥𝑖
𝑡 − 𝑥∗) (8)

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 (9)

The above part of the algorithm serves to randomly search for new solutions in the sample space

and to move to the new solutions. This working somewhat like the crossover and mutation

operator using random walks wherein, new solutions are found using the previous solution as

well as the frequency update provides a fair deal of randomness. Similarly, the search for the

Bat Algorithm

1. Objective function 𝐽(𝒙), 𝒙 = (𝑥1, … , 𝑥𝑑)𝑇

2. Initialize locations 𝑥𝑖 and velocity 𝑣𝑖 of n particles, (𝑖 = 1,2 … 𝑛)

3. Initialize frequencies 𝑓𝑖, pulse rates 𝑟𝑖 and loudness 𝐴𝑖

4. Find 𝒈∗ from min{𝐽(𝒙1), 𝐽(𝒙2) … 𝐽(𝒙𝑛)} (at t = 0)

5. While (t<max number of iterations)

Generate new solutions by adjusting frequency,

Update velocities and locations as per Bat Algorithm

If (rand > ri)

 Select a solution among the best

 Generate a local solution around the best

End if

Generate new solution by flying randomly

If (rand < Ai & f(xi) < f(x*))

 Accept new solutions

 Increase ri and reduce Ai

End if

Rank the bats and find current best x*

6. End while

Figure 4 - Pseudo Code - Bat Algorithm (BA) (Yang, A New Metaheuristic Bat-Inspired

Algorithm, 2010)

27

new global best x* is like the selection operator and it updated at the end of each iteration by

finding the minimum cost function for all bats as follows:

𝑥∗ = min(𝐽(𝑥1), 𝐽(𝑥2), … 𝐽(𝑥𝑛)) (10)

In addition to the above, we need to provide a way for the solution to slowly converge to the

best solution and hence we add a local search operator which directs all the bats towards the

ultimate prey. The local search provides the necessary mechanism for exploitation whereas, the

global search from the first part provides th mechanism for exploration. The local search can

be achieved as follows:

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝜎𝜖𝑡𝐴𝑡 (11)

 Note that the above search does not need to take place at every iteration but must function

increasingly as the program advances. This can be regulating by increasing the pulse emission

rates as the number of generations increase. Additionally, as the bat moves closer to the prey,

the loudness decreases, and this can be represented using simple probability related functions

as follow:

𝐴𝑖
𝑡+1 = 𝛼𝐴𝑖

𝑡

(12)

𝑟𝑖
𝑡+1 = 𝑟𝑖

0[1 − 𝑒−𝛾𝑡] (13)

Where:

𝑓𝑖: frequency of the i’th bat (solution)

𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥 : min, max frequency

x* : global best position

xi: [𝑥1, 𝑥2, … 𝑥𝑑], position vector (d-dimensions) of i’th bat (solution)

vi : [𝑣1, 𝑣2, … 𝑣𝑑], velocity vector (d-dimensions) of i’th bat (solution)

Ai: Loudness of pulse

ri: Pulse emission rate

𝛽: Uniformly distributed random vector

𝜖𝑡: Normally distributed random vector [0,1]

𝜎: Scaling factor (depends on search area)

28

𝛼: Cooling factor [0 <𝛼<1]

𝛾: Exponential Factor [>0]

Typically, the above parameters are tuned based on experimentation and also on the sample

space. In the initial step, each bat will have different values of loudness and pulse emission rate.

The initial loudness of each bat is taken closer to 1, while the pulse emission rate is closer to 0.

With every generation, the pulse emission rate increases reaching 1 towards the end, while the

loudness conversely decreases as the number of generations increase. To improve the

performance and to increase the diversity of search, we choose the parameters 𝛼 and 𝛾 in such

a way that that exploitation stage is not too quick or else the solution may lead to stagnation

while the exploration is not too slow either or else, the time for attaining the optimum solution

will thereby increase. Thus, we can see the advantages of the algorithm in that, the dynamics

can be adjusted based on our objective (convergence rate or optimum solution) as well as the

type of optimization problem which makes the program extremely versatile. Furthermore, due

to the nature of the pulse emission rate ri, it automatically facilitates automatic zooming into the

region where promising results are found thereby switching from exploration to exploitation

which, thereby enables quick convergence rate in comparison to other available algorithms.

2.5. Guiding Evolutionary Algorithm (GEA)

The Guiding Evolutionary Algorithm with Greedy Strategy was proposed by Cao et all in the

year 2016 for solving problems on global optimization (Cao, Xu, & Goodman, 2016). The

underlying principle behind this approach was primarily inspired by previously developed

similar swarm-based intelligence methods PSO, BA and Genetic Algorithm so as to obtain the

advantages of each, while also improving the convergence to global optima instead of getting

stuck at local optima. Since this method is a relatively novel approach compared to the other

methods, we shall first describe this method, while explaining the dynamics and later try to

evaluate the functioning for different functions – unimodal as well as multi-modal problems1.

This algorithm shall be the main work of this thesis and therefore we will look at this one in

much greater depth.

1 Uni-modal = function having one global optimum only, Multi-modal = function having one or more global

optimum values and a few local optimum values

29

Firstly, to understand the mechanics of GEA, it is necessary to understand the working of BA

as described in section 2.4. The author of the GEA claims that while the BA is highly efficient

and can converge quickly, it often tends to converge to the local minima instead of trying to

arrive at the global minima in a multi-modal problem. While being inherently similar to PSO,

it rejects historical experience of its own position, but tries to accept a better individual solution

with some probability. The GEA algorithm was proposed to improvise this method and

therefore aim to achieve better results at arriving at the global best.

Similar to most other optimization algorithms, the GEA consists of three basic operators,

namely – Crossover, Mutation and Local search. Let us describe the function of these three

operators as originally described in the paper (Cao, Xu, & Goodman, 2016).

1. Crossover:

As described in section 2.2 (b), the crossover operator is used to ensure good mixing within the

solutions. In case of the GEA, the crossover is achieved in the following manner, which is

similar to PSO:

𝑥𝑖
𝑡 = 𝑥𝑖

𝑡−1 + (𝑥∗
𝑡−1 − 𝑥𝑖

𝑡−1) ∗ 𝛽 (14)

Where:

𝑥𝑖
𝑡: new position of solution 𝑥𝑖

𝑥𝑖
𝑡−1: position of solution 𝑥𝑖 at previous iteration

𝑥∗
𝑡−1: current global best individual

𝛽: step length of position increment, uniformly distributed random variable [0, 2]

We see in the above expression that the new position of the individual is driven by the best

individual with a step length of 𝛽, or in other words, the current best individual combines with

the current individual to generate a new offspring. According to the paper, the effectiveness of

this algorithm is in the fact that with each iteration, the individuals move closer to the best

individual, while together moving toward the global best individual. Later, in section 3, we shall

verify to what extent this statement is true.

30

2. Mutation:

Once again, as described in section 2.2 (b), mutation is applied in order to increase the diversity

of the solution by searching through the unexplored solution space of the problem (exploration).

This helps in avoiding being trapped in local optima. By means of the GEA, we shall achieve

mutation using the formula:

𝑥𝑖
𝑡 = 𝑥𝑖

𝑡 + 𝜖𝑀 (15)

Where:

𝜖: Uniform Random Vector [-1, 1]

𝑀: Mutation Vector,

𝑀𝑗 = max (𝑥𝑖𝑗
𝑡 −a, 𝑏 − 𝑥𝑖𝑗

𝑡) and [a,b] = range of 𝑗𝑡ℎ dimension

In order to make the search more efficient, the mutation operation is carried out with a

probability 𝑝 such that the probability of mutation increases as the number of generations

progress. That is, the probability is generally low in the beginning stages and exponentially

increases with the number of iterations.

According to GEA, the probability function p is defined as:

𝑝 = 𝑐 ∗ ln (
𝑇𝑚𝑎𝑥

𝑇𝑚𝑎𝑥−𝑡
)

(16)

Where:

𝑝: probability of mutation

𝑇𝑚𝑎𝑥 : maximum number of generations

𝑡: current generation

𝑐: 0.2 (constant)

Thus, the equation (15) is executed only if the probability of mutation exceeds the value given

in equation (16). From equation (15), we see that the mutation operation is a simple, linear

function of the current position 𝑥𝑖
𝑡 and the Mutation vector M. Later, in section 3, we shall

evaluate this function and we shall see why this mechanism does not really function precisely

31

as it is supposed to and hence, we shall modify this same function in a way so as to obtain

maximum diversification while still remaining within the acceptable range.

3. Local Search:

The local search function is used to achieve maximum exploitation around the best solution of

the search problem. With this facility, we shall proceed to locate the global best quickly once

the best neighbourhood has been found. Once again, it is not advantageous to do a local search

during the beginning stages of the algorithm or else, the solution might stay at the local optima.

Hence we try to achieve the local search in a similar way as we achieved the mutation by

following the probability function 𝑝. The formula for local search using GEA can be expressed

as follows:

𝑥𝑖
𝑡 = 𝑥∗

𝑡−1 + 𝜖𝐿 (17)

Where:

𝜖: Uniform random number

𝐿: Local search vector, 𝐿𝑗 = 0.1 ∗ (𝑏 − 𝑎), where j denotes the dimension.

Once again, we see from equation (17) that the exploitation takes place around the best position,

which enables quicker convergence, but could lead to the solution getting stuck at a local

minimum in case of multi-modal problems. For example, if, instead, we use the vector 𝑥𝑖
𝑡−1

instead of 𝑥∗
𝑡−1, then the search would effectively include the surroundings of the previous

position but, as a downside, the convergence time would thereby increase consequently.

32

The advantages of GEA can be seen in that, it is relatively simple to execute, and it has fairly

good results in evaluating multiple functions, superior in some cases to BA as well as PSO.

Additionally, since the mutation as well as the local search are both based on probability, the

efficiency of the algorithm is greatly increased in terms of optimization time. We shall examine

the advantages / disadvantages once again in section 3 using real functions.

GEA Algorithm

1. Objective function 𝐽(𝒙), 𝒙 = (𝑥1, … , 𝑥𝑑)𝑇

2. Initialize locations 𝑥𝑖, define parameters c, M, L

3. Evaluate the initialized positions

4. Select the best individual 𝑥∗
𝑡−1

5. While (t<max number of iterations)

For each individual:

Make crossover to generate a new individual 𝑥𝑖
𝑡

If (rand <p)

Make mutation for 𝑥𝑖
𝑡

End if

Generate new solution by flying randomly

If (rand < Ai & f(xi) < f(x*))

Accept new solutions

Increase ri and reduce Ai

End if

Rank the bats and find current best x*

6. End while

Figure 5 - Pseudocode - GEA Algorithm (Cao, Xu, & Goodman, 2016)

33

3 Simulation Results for Pre-defined functions

We have defined the working of each of the algorithms in use. To test the effectiveness of the

above described algorithms, we shall use a number of pre-determined functions and evaluate

the efficiency of each algorithm in terms of convergence rate as well as optimum result. The

test functions shall be unimodal as well as multi-modal functions. With uni-modal functions,

our goal is to compare the convergence rate of each algorithm as, most often, all algorithms are

able to accurately predict the optimum value correctly whereas, in case of multi-modal

problems, we shall test for the convergence rate as well as the optimum value attained at the

end of the iterations.

3.1. Test Functions:

The test-functions are as per the Table 1. Each function defines a 3-dimensional surface and

consists of a single or a number of valleys (local minima):

Functions Function Name Expression Domain

F1 De-Jong’s Sphere

function
𝑓(𝑥) = ∑ 𝑥𝑖

2

𝐷

𝑖=1

[-100,

100]

F2 Schwefel 2.2

function
𝑓(𝑥) = ∑|𝑥𝑖|

𝐷

𝑖=1

+ ∏ |𝑥𝑖|

𝐷

𝑖=1

[-15, 15]

F3 Griewangk’s

function
𝑓(𝑥) = − ∏ cos (

𝑥𝑖

√𝑖
)

𝐷

𝑖=1

+ ∑
𝑥𝑖

2

4000

𝐷

𝑖=1

+ 1

[-15, 15]

F4 Rosenbrock’s

function
𝑓(𝑥) = ∑ 100 ∗ (𝑥𝑖+1 − 𝑥𝑖

2)2

𝐷−1

𝑖=1

+ (𝑥𝑖 − 1)2

[-15, 15]

F5 Rastrigin’s

function

𝑓(𝑥) = 𝐷 ∗ 10 + ∑ (𝑥𝑖
2 − 10 ∗𝐷

𝑖=1

cos(2𝜋𝑥𝑖))

[-5, 5]

34

F6 Michalewicz

function
𝑓(𝑥) = −{sin(𝑥) [sin (

𝑥2

𝜋
)]

2𝑚

+

sin(𝑦) [sin (
2𝑦2

𝜋
)]

2𝑚

}

[0, 4]

Table 1 - Predefined functions for simulation

For all of the above functions, the goal is to evaluate the point or points at which the value of the

function is minimum. In case of unimodal functions, there exists only a single minimum,

whereas for multi-modal functions, there can be a single or multiple global minimum and several

local minima. Since we would like to visualize these functions shall evaluate all of the above

algorithms for D = 3 only. In case needed, the number of dimensions can be increased as

necessary. The above functions can be displayed graphically as below:

35

Figure 6 - Functions F1-F6

By looking at the above functions we can clearly see the nature of each function in terms of

unimodal vs multi-modal. For example, the De-Jong’s function, Schwefel 2.22 function and the

Rosenbrock’s function are clearly unimodal, whereas the Griewangk’s function, Rastrigin’s

36

function and Ackley’s function are multi-modal functions with a single global minimum and

many local minima.

In evaluating the above functions, we will make use of different number of solutions (N) for

example 20, 40, 50 and 100 solutions and then we shall compare the convergence time as well

as the final value attained. The results of the evaluation can be summarized in the below charts.

3.2. Parameterization

In order to obtain the best results for each algorithm, we need to set the parameters using some

empirical methods or by experimentation. The following parameters were used for each of the

three algorithms:

1. PSO: The parameters of PSO are set based on Cao’s paper (Cao, Xu, & Goodman,

2016).

Parameter Value

𝛽 1.5

𝛾 0.9

𝜃 0.7

𝛼0 1.5

𝛼 𝛼0 ∗ 𝛾𝑡

2. BAT: The parameters of the BAT algorithm were taken from a previous research paper

(Yang, A New Metaheuristic Bat-Inspired Algorithm, 2010) and, after repeated testing

on the above functions, were found to give good results.

Parameter Value

𝑄𝑚𝑖𝑛 0

𝑄𝑚𝑎𝑥 2

𝛼 0.97

𝛾 0.9

𝜃 0.7

37

𝜎 0.1 ∗ (𝑢𝑏

− 𝑙𝑏)

𝐴 0.95

𝜌 0.6

3. GEA: The parameters for the GEA algorithm are taken directly as per the GEA

algorithm itself. (Cao, Xu, & Goodman, 2016).

Parameter Value

𝑐 0.97

𝛽 [0, 2]

Besides the above, as a thumb rule, we shall set the number of individuals 𝒏 as 10 x (no of

dimensions).

3.3. Results

The results of the above functions are obtained by simulating these functions using MATLAB

/ Simulink. We can summarize these as follows:

3.3.1 F1 - De-Jong’s Sphere function:

Figure 7 shows the results of evaluation of the De Jong’s Sphere Function, from which, we can

see that the three algorithms are equally able to arrive at the minimum value is around 20

iterations, each with 30 individuals only, whereas, the BAT Algorithm also arrives close to the

absolute minimum in about the same time. To improve the results, it would be okay to increase

the number of individuals (bats or particles) thereby, reducing the convergence time.

38

Figure 7 - Error Results - De Jong's Function

3.3.2 F2 - Schwefel 2.2 function:

Once again, similar to the curve for F1, we see that all algorithms have arrived at a solution in

similar amount of time and the same when replicated again yields similar results.

The reason for the quick convergence is the fact that both these functions F1 and F2, are

unimodal and hence the solutions are all influenced by the correct minimum values. For the next

few functions, however, we would be able to see a considerably difference in the time it takes to

arrive at a minimum value.

39

Figure 8 - Error Curve for Schwefel 2.2 function

3.3.3 F3 - Griewangk's function:

Griewangk’s function is by far the most complicated of all the functions from the figure 6. This

is because it firstly consists of multiple global minima and additionally, several local minima, all

of which differ by a minuscule amount. Therefore, should the heuristic algorithm be unable to

locate a precise position around the global minima, there is a high likelihood of the solution

getting stuck at one of the local minima.

To illustrate this, let us look at one of the results of simulation:

40

Figure 9 - Error Curve - Griewangk's Function

From the above error-curve, it appears as if all algorithms successfully find the minima.

However, when we plot the points on the contour plot, we obtain the following:

Figure 10 - Contour Plot - GEA, PSO, BA

If we look at the actual points and best solutions (denoted by the red Asterix), we find that none

of the algorithms are successful in locating the real optima which is located at the point (0,0).

This is because, due to the heuristic nature of the algorithms, all points converge toward the best

solution within the given search-space, which, in some cases may not be the real optimum value.

Therefore, to circumvent this problem and to obtain a better estimate, we need to either increase

41

the number of iterations or increase the numbers of individuals which would help to widen the

search space.

To mitigate this, one method is to increase the number of individuals to 50 instead of 30 and

wherein, we can see that there’s a higher probability of finding the minimum value.

Figure 11 - Error Curve - Griewangk's Function (2)

Figure 12 - Contour Plot - Griewangk's function (2)

42

Figure 13 - Error Curve - Griewangk's Function (3)

Figure 14 - Contour Plot - Griewangk's Function (3)

If we look at the actual points and best solutions (denoted by the red Asterix), we find that none

of the algorithms are successful in locating the real optima which is located at the point (0,0).

Figures (14) and (15) show the simulation results with N = 200 and n = 50. We can conclude

from the above figures that, the algorithms GEA and PSO are able to find the true optima in

majority of the tries, BA and sometimes PSO tends to settle at the local optima. This does not

necessarily mean that GEA is superior to PSO and BA, but that BA will have to be tuned to a

greater precision in order to obtain more accurate results. This is one of the drawbacks of BA

since, due to the presence of multiple parameters, the tuning is relatively difficult, which makes

GEA a viable alternative. Secondly, after repeated experimentation with the original GEA

algorithm, it was found that the mutation function using the original method would not work

43

efficiently for this problem in which there are multiple minima. The reason for this is because the

original GEA mutation operator (equation (15)) works only if the condition (rand<p) is satisfied.

Practically, this does not work efficiently since the mutation either operates on all dimensions or

does not operate at all. To fix this, we introduce the same mutation operation, but applied to each

dimension individually. This can be done by modifying equation (15) as follows:

𝑥𝑖
𝑡 = 𝑥𝑖

𝑡 + 𝜖𝑀𝑗 .∗ (𝑟𝑎𝑛𝑑(𝑗) < 𝑝) (18)

This means that the once some parameters are fixed, the others can mutate easily, thus giving

better results especially when some of the dimensions have been able to find a good solution.

 For all future purposes, we shall consider the equations (18) as our new replacement to equation

(15) from the GEA algorithm.

3.3.4 F4 – Rosenbrock’s function:

The results of the algorithm with Rosenbrock’s function (banana function) can be summarized as

follows:

Figure 15 - Error Curve - Rosenbrock's Function

44

Figure 16 - Contour Plot - Rosenbrock's function

As we can see from the above figures, the results for Rosenbrock’s function are very similar for

all of the above algorithms. This is because there is only one minimum here and also since there

is a gradient which directs the individuals to the global minimum.

3.3.5 F5 – Rastrigin’s function:

Figure 17 - Error Curve - Rastrigin's function

45

Figure 18 - Contour Plot - Rastrigin's function

Once again, similar to the function F3, we see that the Rastrigin’s function also consists of

multiple global optima and several other local optima. This makes it a lot cumbersome to solve

and this is precisely where our heuristic algorithms come in handy. As we see in figure 20, both

PSO and GEA are able to locate the precise optima, whereas the performance of BA is lacking

by a big margin. Again, the tuning can vastly improve the performance of BA, especially in this

case, but the tuning, by itself becomes a hyper-optimization problem, which, we shall not get

into greater detail.

3.3.6 F6 – Michalewicz function:

The Michalewicz function by itself is a tricky function because it consists of two minima, one

global and the other local. There is a high chance that if the solution is found at the local minima,

it might just stay there and so also the other way, if the solution has been found at the global

minima, there is a good chance of the other individuals converging to this point very quickly.

We can see the results from the below figure (22).

46

Figure 19 - Error Curve – Michalewicz Function

Figure 20 - Contour Plot - Michalewicz Function

In this simulation, we see that all three algorithms have converged correctly to the desired point.

47

3.4. Summary:

We can summarize all of the above results in the below table as follows:

Function No. of

Iterations

(N)

No. of

individuals

(n)

Best - GEA Best - PSO Best – BA

F1 100 30 (0,0,0) (0,0,0) (0.0764,

0.0109,

0.0059)

F2 100 30 (0,0,0) (0,0,0) (-0.0057, -

0.0071,

0.0128)

F3 100 30 (-0.0072, -

0.0801,

0.0016)

(-3,14,

4.438,

0.0074)

(3.14, -

4.4530,

0.0074)

F4 200 30 (1,1, 0) (1, 1, 0) (1.0055,

1.0112, 0)

F5 100 30 (0, 0, 0) (0, 0, 0) (-0.99, 0.99,

2)

F6 100 30 (2.2029,

1.5708, -

1.8013)

(2.2029,

1.5708, -

1.8013)

(2.2031,

1.5710, -

1.8013)

Table 2 - Simulation results for pre-defined functions

3.5. Conclusion:

From the above results, we can say that the GEA algorithm is on par with PSO and BA for

accurately predicting global minima. While the convergence for unimodal functions are more

or less the same, the dynamics are seen to be less consistent where multi-modal functions are

concerned. One of the advantages of GEA compared with the other two is that it is much simpler

to implement in comparison with PSO and especially BAT due to the fact that there are much

fewer parameters for tuning in GEA. With PSO, the above tuning is relatively good as the

algorithm functions satisfactorily, whereas, in case of BA, it requires precise tuning of multiple

parameters.

48

With the above results, we shall move to a practical implementation of the above algorithms in

identification of multiple order linear systems.

49

4 Relay-Feedback Identification

In this section, we shall move ahead with the previously explained optimization algorithms and

try to understand the concept of system identification and then estimate the approximate model

for different pre-defined processes. In section 4.1, we shall describe the theory behind System

Identification and describe a few different ways to achieve the same. Next, in section 4.2 we

shall look at some theoretical models defined by varied types of processes and how to estimate

equivalent models using a lower order process. Finally, in section 4.3, we shall apply the above

algorithms to these processes and analyse the results of the same.

4.1. System Identification

4.1.1 Theory:

We can define the term System Identification as the method or process used to estimate the

model of a process which could efficiently and accurately predict the dynamics of the given

process. By identifying a model of the system, we are then able to predict the outputs of the

process for a wide range of inputs within the given domain. Furthermore, the advantage of a

well-defined mathematical model is that we can experiment with the system and tweak the

system itself so as to optimize it or to test it in advance to analyse the possibility of extreme

conditions or failures without having to deal with the physical system or process directly. This

gives us a lot more flexibility in design of the process and can help to provide a deeper insight

into its functioning.

To begin with, we shall describe the three methods of obtaining a model of a process / system,

namely:

1. White Box identification

2. Grey box identification

3. Black box identification

White box identification is used when the system dynamics are fully known and can be derived

from first principles (Stoev & Schoukens, 2016) and the models derived via White Box

identification can be considered as Theoretical Models. In case of grey box modelling, we need

to have some knowledge of the dynamics and combine it with some experimental measurements

50

of the same to obtain our model, the models derived from this method can be called Semi-

empirical Models. Black box identification necessitates no knowledge about the dynamics and is

obtained solely by experimentation by fitting experimental data, the models are known as

empirical models of the system. In practice, we seldom use white box models as practical

systems are far more complicated to be sufficiently well described from first principles.

Nevertheless, we do need to have a general idea of the system dynamics which can be useful in

helping us decide what kind of model we should use.

For the purpose of this study, we shall look into some of the methods used for Black box

identification only since our algorithm must work accurately on any system regardless of the

internal dynamics. Future uses of the term ‘system identification’ will apply to black box

identification. To begin with, we shall first define a few important technical terms related to this

topic which we will be using repeatedly in the following sections. A lot of the below ideas and

methods have been derived from the work of Lennart Ljung’s book “System Identification:

Theory for the User”.

4.1.2 Definitions

1. System: This can be described as an object in which variables of different kinds

interact and produce observable signals (Ljung, 1987). For example, a simple water-

tank with and inlet and an outlet can be a good example of a system.

2. Process Output: Observable signals of interest to the user for the purpose of

identification. In case of a water tank, the flow output at the exit can be considered as

the process output.

3. Control Input: The signal which is fed into the system from the controller is called the

control input. For example, if the water tank is controlled by a PID controller, then the

output from the controller can be considered as the control input to the process. In

absence of a controller, the control input is the same as the input to the system.

4. Disturbance: Any unwanted input signal which affects the output of the process is

called a disturbance.

51

5. Process Model: A process model is a mathematical representation of the system in

terms of variables which can describe the system to a sufficiently acceptable level. A

process model for a dynamic system can be in terms of differential equations or it can

be a Laplace model of the system.

6. Linear System: A system is said to be linear if it obeys the superposition principle i.e

the linear combination of inputs is the same linear combination of the output responses

of the individual inputs. Almost all systems are inherently non-linear, but for the

purpose of analysis, we most often reduce the system to a linear one so that we can

perform various operations on the system which is relatively difficult for non-linear

systems.

7. Time-invariant: A system is time invariant is its response to a certain input signal does

not depend on absolute time.

4.1.3 Methods in Practice:

According to (Ljung, 1987), the construction of a model from data involves three basic entities

namely:

1. Data: Input/ Output data

2. Set of Candidate Models: This is obtained by specifying what kind of model we are

searching for. Prior knowledge from physics and engineering principles as well as general

engineering and insight are important in selecting the appropriate model.

3. Rule: A Rule is used to assess the candidate models using the data, i.e. this is the

identification method used to select the best model.

The process of identification involves the following basic steps as described in by Ljung (Ljung,

1987):

- Collect the data

- Choose a model set

- Pick the best model in this set based on the above Rule

- Validate the selected model to assess how the model relates to the observed data, to

 prior knowledge and to its intended use

52

The process of identification can be described by the below flowchart (figure 21).

Figure 21 - System Identification Loop (Llung, 1975)

4.2. Why Identification?

The most basic requirement for industrial processes is ‘controlling’ the process so as to obtain

the desired output for the supplied input signal. In order for us to be able to control the process

correctly, we need to select an appropriate controller, which, in turn entails having a fairly good

idea of the process which we are controlling first. Thus, the identification of dynamic transfer

function models is essential for model-based controller design (Ramakrishnan & Chidambaram,

2003). Due to the complex nature of most chemical processes, it is often difficult to derive the

specific model of the entire system, in which cases, system identification provides a tool to

identify lower-order models based on input-output data, which is, in most cases, sufficient for

us to understand the concrete dynamics of our system. Thus, the idea of identification is to

reduce a complex, higher order process to a simple lower order system which can approximately

53

describe the dynamics of the system. In the below sections, we shall try to fit a higher-order

system to a second-order model and examine the performance of the same.

As described in the paper “Asymmetic relay autotuning” (Berner, Hägglund, & Åström, 2016),

the identification process consists of four sub-tasks, namely, the Experiment, the Model, the

Controller and Evaluation of the results.

Figure 22 - Tuning Procedure (Berner, Hägglund, & Åström, 2016)

1. Experiment: What type of experiment needs to be done and how the experiment is to

be designed. Sections 4.3 and 4.4 describe how the experiment is to be conducted.

2. Model: What model structure is to be used? What are the parameters for design? This

shall be looked into in section 4.2.

3. Controller: The type of controller is selected based on the model found from the above

step. In our case, we shall use a Proportional – Integral – Derivative (PID) controller.

More details about PID tuning in this concrete case is given in section 4.7.

4. Evaluation: Finally, the results of control must be evaluated to check if the

performance of the controller is satisfactory or if something needs to be changed in the

previous step. This is to be handled by the user. In this experiment, we shall review

the results in section 4.6 and check if our identified model fits our criteria.

According to our concrete experiment, we shall use a Second-Order Plus Time-Delay Model to

estimate our lower order model. The reason for using a Second-Order model will be laid out in

section 4.4.

4.3. Model

As described earlier, a process model is the mathematical representation of a physical system.

One way to represent a system is in terms of differential equations. However, in this section

54

and also in the next ones, we shall be representing our processes only in terms of a Laplace

model (or Transfer Function Model) i.e. in terms of ‘s’ where s is a complex variable of the

form: 𝑠 = 𝜎 + 𝑗𝜔. More details about Laplace Transforms can be found in (Seborg, Edgar,

Mellichamp, & III, 2017). Note that this representation follows if and only if the system is

linear, which, for the following purposes, we will use models of linear time-invariant systems

only. Laplace models are particularly useful in linear systems since it reduces a differential

equation into a simple sequence from which, we can easily apply algebraic and mathematical

operations

Let us consider a simple linear, time invariant system of the form (see fig. 22):

𝑌(𝑠) = 𝐺(𝑠)𝑈(𝑠)

Where:

Y(s) = system output, 𝑌(𝑠) = 𝐿{𝑦(𝑡)}

U(s) = system input, 𝑈(𝑠) = 𝐿{𝑢(𝑡)}

Then we can describe the system in terms of its transfer function as G(s) in its basic form as:

𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)

(19)

In general, the degree of a linear system can be defined by the highest degree of the ‘s’ term in

the denominator of the transfer function. The most basic representation of a higher order

dynamic system can be represented as follows:

a) Differential equation:

G(s

)

Figure 23 - System Representation

U(s

)

Y(s

)

55

𝑎𝑛

𝑑𝑛𝑦

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑦

𝑑𝑡𝑛−1
+ ⋯ + 𝑎1

𝑑𝑦

𝑑𝑡
+ 𝑎0𝑦

= 𝑏𝑚

𝑑𝑚𝑢

𝑑𝑡𝑚
+ 𝑏𝑚−1

𝑑𝑚−1𝑢

𝑑𝑡𝑚−1
+ ⋯ + 𝑏1

𝑑𝑢

𝑑𝑡

+ 𝑏0𝑢

(20)

b) Transfer function Model: The above differential equation model can be represented in

terms of a laplace transform model as follows

𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=

∑ 𝑏𝑖𝑠
𝑖𝑚

𝑖=0

∑ 𝑎𝑖𝑠𝑖𝑛
𝑖= 0

=
𝑏𝑚𝑠𝑚 + 𝑏𝑚−1𝑠𝑚−1 + ⋯ + 𝑏0

𝑎𝑛𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋯ + 𝑎0

(21)

In cases where the process consists of a Time Delay (Td), there can be an extra term in the

numerator which accounts for the delay time. This can be represented as:

𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=

𝑒−(𝑠𝑇𝑑) ∑ 𝑏𝑖𝑠
𝑖𝑚

𝑖=0

∑ 𝑎𝑖𝑠𝑖𝑛
𝑖= 0

=
(𝑏𝑚𝑠𝑚 + 𝑏𝑚−1𝑠𝑚−1 + ⋯ + 𝑏0). 𝑒−𝑠𝑇𝑑

𝑎𝑛𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋯ + 𝑎0

(22)

For the purpose of identification, we shall concentrate on the following six types of models:

1. Non-oscillatory Process (Lag-dominated):

 𝑃1(𝑠) =
1

(𝑠+1)(0.1𝑠+1)(0.01𝑠+1)(0.001𝑠+1)
 (23)

A non-oscillatory lag-dominated process is one in which, the poles (or eigenvalues) of the

system do not lie on the imaginary axes as well as these models are with relatively small time-

delays (
𝜃

𝜏
≪ 1).

2. Balanced Process:

𝑃2(𝑠) = 1/(𝑠 + 4)4 (24)

3. Delay-dominated Process:

𝑃3(𝑠) =
1

(0.05𝑠+1)2 𝑒−𝑠 (25)

4. Oscillatory Process:

56

𝑃4(𝑠) =
1

(0.5𝑠2+𝑠+1)2 (26)

5. Non-oscillatory Process with Time Delay:

𝑃5(𝑠) =
1

(𝑠+1)(0.3𝑠+1)2 𝑒−𝑠𝑇𝑑 (27)

6. Fifth Order Process with Time Delay:

𝑃6(𝑠) =
𝑒−𝑠

(5𝑠+1)5
 (28)

4.4. Relay-Feedback Identification

The use of an on-off relay to generate a sustained oscillation in the control loop was proposed

by Astrom and Hagglund (1984). This is a closed-loop method of identification of transfer

function models which is based on the observation that when an open loop output lags the input

by 𝜋 radians, then the closed loop system may oscillate with a period 𝑃𝑢 ((Chidambaram &

Sathe, 2014). The ultimate gain 𝐾𝑢 and ultimate frequency 𝜔𝑢 can be calculated from the

response as (Astrom & Hagglund, 1984):

𝐾𝑢 =
4ℎ

𝜋𝑎

(29)

𝜔𝑢 =
2𝜋

𝑃𝑢

(30)

Where ℎ = magnitude of the relay, a = process output, 𝑃𝑢 = ultimate period, 𝜔𝑢 = ultimate

frequency

For the purpose of identification, we shall use the concepts based on the Article “Alternative

Identification Method using Biased Relay Feedback” (Hofreiter, Alternative Identification

Method using Biased Relay Feedback, 2018). The paper proposes a method of System

Identification of Dynamical Systems using a relay. By means of this method, the asymmetric

relay is used in a closed loop circuit forcing the system into self-sustained oscillations. This can

be illustrated by means of a closed-loop system as illustrated in figure 22.

57

Figure 24 - Block Diagram of a Process under Relay Feedback

As seen in the figure (23), the set-point ‘w’ supplies the input to the closed-loop system, the

error ‘e’ from the set-point is fed to the relay from which we get the manipulated variable ‘u’

which is supplied into the process to produce the controlled variable ‘y’. Relay controllers or

on-off controllers are simple feedback controllers which are commonly used in simple systems

such as heating systems. Typical on-off controllers consist of two possible output values and a

dead-zone:

1. 𝑢(𝑡) = 𝑢𝐴 if 𝑒 ≥ 𝜖𝐴

2. 𝑢(𝑡) = 𝑢𝐵 if 𝑒 < 𝜖𝐵

3. Dead-band if 𝜖𝐴 < 𝑒 ≤ 𝜖𝐵

The above can be demonstrated in the below figure (24)

Figure 25 - Asymmetric Relay (Hofreiter, Alternative Identification Method using Biased Relay Feedback, 2018)

The advantage of the use of an asymmetric relay instead of a symmetric one has been described

by the paper “Asymmetric Relay Autotuning” (Berner, Hägglund, & Åström, 2016). As shown

by Berner et al., asymmetric relay provides a better excitation of the process at lower

frequencies than its symmetric counterpart without complicating the experiment in general. We

shall further confirm this during identification of real processes in section 5.

Now, that we have described the working of the relay, we shall further examine our experiment.

The block diagram of our setup is according to the below figure (25).

58

Figure 26 - Experimental Block Diagram

As seen in the above block diagram (figure (25)), the output of the relay controller is fed into

the process G(s) as well as to our model M(s) from which we obtain the outputs y and yM

respectively. From the values of y and yM, we try to evaluate the error which gives us the

difference which we square to obtain the ‘squared error’. If we integrate the error over time, we

attain the ITAE criterion for our cost function. This can be seen from figure (26).

4.5. Problem Statement

In section 4.2, we have defined the six different types of system and also described the

procedure used for identification. For the purpose of approximation, we shall use a simple

dynamic SOPDT model which can replicate the dynamics of these systems to a sufficiently

accurate degree as explained in section 4.3. The advantage of this is that the SOPDT model can

describe almost any linear system. As explained by Ramakrishnan and Chidambaram, the

SOPTD model can incorporate various processes such as under-damped and higher order

processes in which case, an FOPTD model is not sufficient (Ramakrishnan & Chidambaram,

2003). Furthermore, SOPTD models can also be used for unstable processes in which case, an

FOPTD model is not sufficient. Additionally, the optimization techniques from section 3, for

estimating the parameters of our model can work on non-linear systems as well.

A simple SOPDT model can be described as below:

𝐺(𝑠) =
𝐾

𝑎1𝑠2 + 𝑎2𝑠 + 1
𝑒−𝑠𝑇𝑑

(31)

Where, ‘K’ = Process gain, ‘𝜃’ = Time Delay, ‘𝑎1’ and ‘𝑎2’ are dynamic constants of the

transfer function. These parameters {𝐾, 𝑎1, 𝑎2, 𝑇𝑑} are unknown parameters which we are to

59

estimate using the GEA algorithm described in section [2]. We can describe the unknown

parameters using the below representation:

𝑥𝑗 = {𝑎1, 𝑎2, 𝐾, 𝑇𝑑} (32)

Where:

𝑗 = Dimension index (1:d)

𝑑 = Number of dimensions (= 4 in this case)

The cost function for optimization of the above parameters can be summarized as:

𝐽 = ∫ (𝑦𝑚(𝑡) − 𝑦(𝑡))
2

𝑑𝑡
𝑇𝑘

0

(33)

𝑦𝑚 = model output

𝑦𝑡 = system output

𝑇𝑘 = simulation time

Therefore, we can construct our problem statement as follows:

Find the parameters 𝒙𝒊 (i = 1,2 … d) to minimize the cost function J,

Subject to constraints:

{𝒂𝟏, 𝒂𝟐, 𝑲, 𝑻𝒅} > 𝟎

For the purpose of identifying the below systems, we shall consider Td in the range (0,5).

4.6. Simulink Scheme

Now that we have our identification model, we can try to set up our system to construct our

optimization criteria. In the below Simulink model (figure 23), the transfer function G

represents the real system (in this case it is given by equations 23-28). The signal input to the

system is provided by means of a relay controller, also known as an ‘On-off controller’. Finally,

the cost function J is found out by using the ITAE criteria (Integral Time Absolute Error).

60

Figure 27 - Relay Identification Schematic

For simulating the functions described in section 4.2 (equations 23-28), we have used the

following parameters for our closed-loop system:

1. 𝑢𝐴 = 2

2. 𝑢𝐵 = −1

3. 𝜖𝐴 = 0.1

4. 𝜖𝐵 = −0.1

5. 𝑤 = 0

6. Simulation Time, Tsim = 200s

The results of the simulation are logged into the MATLAB Workspace as err_integral, which,

in turn is our cost function J (or fitness) for optimization. For each solution, we obtain one value

of err_integral and with every iteration the parameters 𝒙𝒊 are routinely updated to minimize the

cost function.

The flow-chart of the above process can be shown as below:

61

Figure 28 – Flowchart of Identification Process

4.7. PID Control

We explained in section 4.2, that the most important purpose of system identification is to

understand the process so that we can then control the system. We have already described the

identification procedure in section 4.6, hence we can now move to controlling the above

processes. Most of the systems described in section 4.2 are inherently stable by default. Hence

our main goal for control would be to minimize the control error as well as to improve the

response time of the system, while keeping the overshoot to the minimum.

The most commonly used controller in industrial applications is the Proportional-Integral-

Derivative Controller (PID controller). A PID controller uses closed-loop control in an

Industrial Control System or Chemical Process by calculating the error value 𝑒(𝑡) as the

difference between the setpoint (SP) and a measured process output, applying corrective action

based on Proportional, Integral and Derivative terms (P, I and D) respectively.

GET Process Function: F1 - F6

INITIALIZE solutions: x(i, j) {i = 1:40; j = 1:4}

FIND fitness for each solution

RUN GEA algorithm

SELECT Best Solution x*

PLOT Step Response and Nyquist Plot

EVALUATE Results

62

Figure 29 - PID Controller Block Diagram (PID Controller, 2020)

The general equation of the PID controller in Laplace-Domain can be given as:

𝑅(𝑠) = 𝑟𝑃 +
𝑟𝐼

𝑠
+ 𝑟𝐷𝑠 (34)

Here,

𝑟𝑃 = Proportional Gain – P-term (𝐾𝑝)

𝑟𝐼 = Integral Gain – I-term (𝐾𝑖)

𝑟𝐷 = Derivative Gain – D-term (𝐾𝑑)

The P-term is proportional to the error 𝑒(𝑡), whereby, the controller produces a response

proportional to the error value. The I-term provides control action by integrating the error over

time and produces the response depending on the magnitude of the error. The larger the

response, the larger the integral part and once the error is eliminated, the integral term ceases

to grow. The D-term estimates the future trend of the error based on the current rate of change

of error, thus, providing ‘anticipatory control’ action or dampening effect. Using the control

error 𝑒(𝑡) as input, the controller attempts to adjust the control variable 𝑢(𝑡), thus, minimizing

the error over time.

The major challenge of using a PID Controller lies in tuning the parameters 𝑟𝑝, 𝑟𝑖 and 𝑟𝑑 for

appropriate control action. The parameters can be tuned depending on the control action we

desire and depending on our control criteria such as: disturbance rejection, setpoint tracking,

peak overshoot, etc. There exist several methods for tuning PID controllers of which, the most

popular ones are Ziegler-Nichols, Cohen-Coon, Astrom-Hagglund methods of PID Controller

tuning. With most of these methods, we obtain the tuning parameters by experimentation and

evaluating the process for its instantaneous response. However, instead of using experimental

63

methods, we are going to focus on PID tuning methods based on system identification

techniques which, in this case is based on Relay-based Identification approach.

As part of this thesis work, we shall look into the below four methods for tuning our PID

Controller namely:

a) Direct Synthesis Method (DS) or Lambda Tuning Method

b) Phase Margin Criterion (PMC) based PID Controller Tuning (Hofreiter, Zaklady

Automatickeho Rizeni, 2016)

c) Simple Control (SIMC Tuning Method)

Before proceeding with the tuning rules, we shall reduce our model 𝐺𝑀(𝑠) = 𝐾.
𝑒−𝑇𝑑𝑠

𝑎2𝑠2+𝑎1𝑠+1
 to

one of the below forms:

A) Oscillatory Processes:

𝐺(𝑠) =
(𝐾𝜔0

2)𝑒−𝑠𝑇𝑑

𝑠2 + 2𝜁𝜔0𝑠 + 𝜔0
2

(35)

Where 𝜔0 = oscillation frequency of system and 𝜁 = damping ratio

B) Non-Oscillatory Processes:

𝐺(𝑠) =
𝐾𝑒−𝑠𝑇𝑑

(𝑇1𝑠 + 1)(𝑇2𝑠 + 1)

(36)

Where 𝑇1, 𝑇2 = Time constants of modelled system

4.7.1 Direct Synthesis Method (DS):

The Direct Synthesis (DS) Method was proposed by Seborg and Chen for set-point tracking as

well as for disturbance rejection in Closed-Loop Circuits. According to this method, the

controller design is based on a process model and a desired closed-loop transfer function (Chen

& Seborg, 2002).

Consider the block diagram of a closed loop system as shown in the figure (30).

64

Figure 30 - Block Diagram - Closed Loop System

From the above figure, we can obtain the closed-loop transfer function of the system as follows:

𝑌

𝑌𝑠𝑝
=

𝐺𝐶𝐺

1 + 𝐺𝑐𝐺

(37)

Thus we obtain the expression for 𝐺𝑐 as:

𝐺𝐶 =
1

𝐺
.

𝑌
𝑌𝑠𝑝

1 −
𝑌

𝑌𝑠𝑝

(38)

Since we do not know the value of 𝑌/𝑌𝑠𝑝 a priori, we therefore cannot directly use the above

equation. However, we can perform a few substitutions in the above equations to achieve the

same.

𝐺𝑐 =
1

𝐺̅
.

(
𝑌

𝑌𝑠𝑝
)

𝑑

1 − (
𝑌

𝑌𝑠𝑝
)

𝑑

Where,

𝐺̅ = Model of actual process

(
𝑌

𝑌𝑠𝑝
)

𝑑

= desired closed-loop transfer function

(39)

To obtain the closed-loop transfer function, we would need to approximate the closed-loop

response to a First order system with or without delay from which, we can tune our controller to

achieve the desired objective.

Since our Process model already incorporates a time delay, we thus approximate our closed-loop

transfer function in terms of a First Order Plus Time Delay model (FOPDT):

(
𝑌

𝑌𝑠𝑝
)

𝑑

=
𝑒−(𝑠𝑇𝑑)

𝜏𝐶𝑠 + 1

(40)

65

Where, 𝜏𝐶 = closed loop time constant

From equations (40) and (41), we thus obtain the following:

𝐺𝑐 =
1

𝐺̅
.

𝑒−(𝑠𝑇𝑑)

𝜏𝑐𝑠 + 1 − 𝑒−(𝑠𝑇𝑑)

Where, 𝜏𝑐 = desired closed loop time constant

(41)

Using Taylor’s Series approximation for 𝑒−(𝑠𝑇𝑑) = 1 − 𝑇𝑑𝑠, we obtain:

𝐺𝑐 =
1

𝐺̅
.

𝑒−(𝑠𝑇𝑑)

(𝜏𝑐 + 𝑇𝑑)𝑠

(42)

The above controller action that we see above contains also the integral control action.

It must be noted that choosing the value of the time constant 𝜏𝑐 is key in achieving the desired

functionality of the closed-loop system. We can choose the value arbitrarily or based on

experience. A low value of 𝜏𝑐 makes the controller tuning more aggressive, whereas a high value

reduces the effectiveness of the controller. A general approach to selecting the value of 𝜏𝑐 is by

using the below equation (44):

𝜏𝑑𝑜𝑚 > 𝜏𝑐 > 𝑇𝑑

Where,

𝜏𝑑𝑜𝑚 = dominant time constant of the process

(43)

As a thumb rule, for the three tuning methods, we shall choose the value of 𝜏𝑐 using the relation:

𝜏𝑐 =
𝜏𝑑𝑜𝑚

3
 (44)

With the above background, the tuning relations for our PID Controller using the Direct

Synthesis Method for a SOPTD system can be given by:

For non-oscillatory systems,

𝑟𝑝 =
1

𝐾
.
𝑇1 + 𝑇2

𝜏𝐶 + 𝑇𝑑
;

𝜏𝐼 = 𝑇1 + 𝑇2; 𝑟𝑖 = 𝑟𝑝/𝜏𝑖

𝜏𝑑 =
𝑇1𝑇2

𝑇1 + 𝑇2
; 𝑟𝑑 = 𝑟𝑝. 𝜏𝑑

(45)

For oscillatory systems,

𝑟𝑝 =
2𝜁𝑇0

𝜏𝑐+𝑇𝑑
;

𝜏𝑖 = 2𝜁𝑇0; 𝑟𝑖 =
𝑟𝑝

𝜏𝑖

𝜏𝑑 =
𝑇0

2𝜁
; 𝑟𝑑 = 𝑟𝑝. 𝜏𝑑

(46)

66

Note that this method can be applied to oscillatory as well as non-oscillatory systems.

4.7.2 PMC Method

The PMC Method of tuning sets the PID parameters by requiring that the controlled closed loop

phase margin is
𝜋

4
, hence the name ‘Phase Margin Tuning’ (Hofreiter, Zaklady Automatickeho

Rizeni, 2016).

According to this method, the tuning rules for a process model 𝐺(𝑠) =
𝐾𝑒−(𝑠𝑇𝑑)

𝑎2𝑠2+𝑎1𝑠+1
 can be given

by the following equations:

a) For 𝑇𝑑 > 0,

For non-oscillatory processes,

𝑟𝑖 =
𝜋

𝐾. 4. 𝑇𝑑

𝑟𝑝 = 𝑎1. 𝑟𝑖

𝑟𝑑 = 𝑎2. 𝑟𝑖

For oscillatory processes,

𝑚𝑎 =
𝜋

2𝑇𝑑𝑚𝑎𝐾
, where 𝑚𝑎 = gain margin <2:5>

𝑟𝑝 = 𝑎1𝑟𝑖

𝑟𝑑 = 𝑎2𝑟𝑖

(47)

b) For 𝑇𝑑 > 0,

For non-oscillatory processes,

𝑟𝑖 =
1

𝐾𝜏𝑐

𝑟𝑝 = 𝑎1𝑟𝑖

𝑟𝑑 = 𝑎2𝑟𝑖

(48)

Once again, similar to the DS tuning method, we need to choose a suitable closed-

loop time constant 𝜏𝑐 for our closed loop circuit 𝐺𝑤𝑦(𝑠) =
1

𝜏𝑐𝑠+1
. We can use the same

equation (44) for choosing a suitable 𝜏𝑐.

67

4.7.3 SIMC Method

The SIMC Tuning Method (Skogestad’s IMC Tuning Method) is based on a non-oscillatory

model of the controlled process. The tuning relations according to this method can be given by

the following equations (Skogestad, 2004):

a) For 𝑇1 ≤ 8𝑇𝑑 and 𝑇1 > 𝑇2,

𝑟𝑝 =
0.5

𝐾
.
𝑇1 + 𝑇2

𝑇𝑑

𝜏𝑖 = 𝑇1 + 𝑇2 = 𝑎1; 𝑟𝑖 =
𝑟𝑝

𝜏𝑖

𝜏𝑑 =
𝑇2

1+
𝑇2
𝑇1

; 𝑟𝑑 = 𝑟𝑃 . 𝜏𝑑

(49)

b) For 𝑇1 = 8𝑇𝑑 and 𝑇1 > 𝑇2,

𝑟𝑝 =
0.5

𝐾
.

𝑇1

𝑇𝑑
(1 +

𝑇2

8𝑇𝑑
)

𝜏𝑖 = 8𝑇𝑑 + 𝑇2, 𝑟𝑖 =
𝑟𝑝

𝜏𝑖

𝜏𝑑 =
𝑇2

1+
𝑇2

8𝑇𝑑

, 𝑟𝑑 = 𝑟𝑃. 𝜏𝑑

(50)

c) For 𝑇𝑑 = 0, approximate the Second Order model as a first order process with delay,

i.e. 𝐺(𝑠) =
𝐾𝑒−(𝜃𝑠)

𝜏1𝑠+1
 using the following relations:

𝜏1 = 𝑇1 +
𝑇2

2
; where 𝑇1 > 𝑇2

𝜃 =
𝑇2

2
 ;

(51)

Using the above, we can use the tuning relations as follows:

𝑟𝑝 =
1

𝐾
.

𝜏1

𝜏𝑐+𝜃
=

1

𝑘′ .
1

𝜏𝑐+𝜃

𝜏𝑖 = min {τ1, 4(τc + 𝜃)}, 𝑟𝑖 = 𝑟𝑝/𝜏𝑖

𝜏𝑑 = 𝑇2, 𝑟𝑑 = 𝑟𝑝. 𝜏𝑑

(52)

4.7.4 Simulink Scheme – PID Control

68

With the help of the tuning relations specified in section 4.7.1, 4.7.2 and 4.7.3, we can now

proceed to tune our controller.

For PID control of the above processes, we use the following Simulink scheme as described in

figure (31). As can be seen in the below figure, we have a switch sw1 which is used to switch

between the relay and the PID controller. In the first part of the program for identification, the

manual switch is connected to the relay to create stable oscillation in the circuit. Once the

identification parameters are found, the switch sw1 is then connected to the PID controller,

which in turn controls the process Gp(s). To see the controller in action, we will look at the

performance for Set-point tracking by means of step input S1 as well as for disturbance rejection

D1.

Figure 31 - Simulink Scheme - PID Control

The parameters of the step input and disturbance are set as follows:

Input Step

time

Initial

Value

Final

Value

S1 10 0 1

Table 3 - Step Input Parameters

With reference to the above table, we shall observe the system output y(t) only for setpoint

tracking (servo problem) with respect to input w(t), since we would need to use different

relations for disturbance rejection (regulator problem). For setpoint tracking (servo problem),

the output of the system will have to change to the setpoint value, whereas, for disturbance

rejection (regulator problem), the output of the system will have to revert back to its value prior

the occurrence of the disturbance.

69

4.8. Identification and Control Results for pre-defined systems

Based on the above system settings, the functions F1-F6 were simulated using the Simulink

Scheme described in figure (31). Each function was evaluated ten times from which we

obtained the following results.

No. Function K a2 a1 Td fmi

n

Elapse

d Time

(s)

1 𝐹1 =

1

(𝑠+1)(0.1𝑠+1)(0.01𝑠+1)(0.001𝑠+1)

0.998

± 0.096

0.0674

± 0.049

1.172

± 0.235

0.033

± 0.039

0.0207

± 0.023

92.37

± 33.76

2 𝐹2 =
1

(𝑠+1)4 0.966

± 0.083

3.32

± 0.369

3.034

± 0.26

0.891

± 0.099

0.122

± 0.049

93,9

± 45,56

3
𝐹3 =

𝑒−𝑠

(0.05𝑠 + 1)2

1.002

± 0.009

0.00038

± 0.001

0.0823

± 0.008

1.029

± 0.029

0.324

± 0.139

135.1

± 50.1

4
𝐹4 =

1

0.5𝑠2 + 𝑠 + 1

0.943

± 0.065

1.017

± 0.122

1.147

± 0.107

0.364

± 0.105

0.364

± 0.105

107.4

± 39.65

5
𝐹5 =

𝑒−𝑠

(𝑠 + 1)(0.3𝑠 + 1)2

0.99

± 0.10

0.515

± 0.153

1.437

± 0.114

1.122

± 0.105

0.155

± 0.107

107,83

± 57,30

6
𝐹6 =

𝑒−𝑠

(5𝑠 + 1)5

1.022

± 0.217

109.9

± 13.17

17.17

± 1.33

8.20

± 0.66

0.222

± 0.058

83.65

± 69.09

Table 4 - Identification Results for Pre-defined Functions

The correctness of the identified functions can be evaluated by plotting the Nyquist and Step

response plots of the real system and the identified system. While the step-response plot helps

us evaluate the transient characteristics of the system, the Nyquist plot helps evaluate the

frequency characteristics of the same.

4.8.1 P1 – Non-Oscillatory, Lag-Dominated Process

Figure (29) shows the step response and nyquist plots of the process P1 and of the SOPDT model

of the same. We see that the output of the model is consistent as it matches the output of the

system with a standard deviation of ± 10%.

70

Figure 32 - Step Response vs Nyquist Plot - Process P1

Using the Relay Identification Procedure on the Process 𝑃1(𝑠) =
1

(𝑠+1)(0.1𝑠+1)(0.01𝑠+1)(0.001𝑠+1)
,

we identify the SOPTD model as (using result no. 10):

𝐺𝑃1(𝑠) =
0.9843

0.1095𝑠2 + 1.038𝑠 + 1

Where,

𝐾 = 0.9843, 𝑎2 = 0.1095, 𝑎1 = 1.038, 𝑇𝑑 = 0

(53)

From the above equation (53), we obtain the following:

𝑇1 = 0.9188s, 𝑇2 = 0.1192s, 𝑇0 = 0.3309, 𝜁0 = 1.5684 (54)

We can see that the described process is a non-oscillatory system and hence we can use the

relations from equations (45) for the DS Method, (48) from the PMC method and (51), (52) from

the SIMC Methods to obtain the following:

 Tuning Method

No. Parameter DS PMC SIMC

1

Proportional Gain,

rp
3.44 10.82 2.72

2 Integral Gain, ri 3.32 10.42 2.96

3 Derivative Gain, rd 0.36 1.14 0.32

Table 5 - PID Tuning Parameters - Process P1

Using the above tuning parameters, we obtain the PID Control response as per figure (33).

71

Figure 33 - PID Control - Process P1

From the above curves, we see that the DS Method and the PMC Methods both have good

tuning characteristics, while the SIMC Tuning method has a slight overshoot with a longer

settling time. The results obtained by DS and PMC are acceptable whereas, for SIMC tuning,

the overshoot can be a problem.

4.8.2 P2 – Balanced Process

Figure (34) shows the step response and the Nyquist plot of the identified process P2, which, as

we can see, closely resembles the real process output.

Again, we use our optimization algorithm to identify the process 𝑃2(𝑠) = 1/(𝑠 + 1)4, from

which, we obtain the following SOPTD model (from result no. 7):

𝐺𝑃2(𝑠) =
0.9446𝑒−0.8837𝑠

3.3514𝑠2 + 2.9958𝑠 + 1

Where, 𝐾 = 0.9446, 𝑎2 = 3.3514, 𝑎1 = 2.9958, 𝑇𝑑 = 0.8837s

(55)

Using this model, we can obtain the parameters 𝑇0 and 𝜁0 as:

𝑇0 = 1.8307,𝜁0 = 0.8182 (56)

72

Figure 34 - Step Response vs Nyquist Plot - Process P2

Since the above process is oscillatory with time delay, we use the relations from equations (46)

and (47) to obtain the PID tuning parameters as can be seen in table (6).

 Tuning Method

No. Parameter DS PMC SIMC

1

Proportional Gain,

rp
2.01 1.88 -

2 Integral Gain, ri 0.67 0.63 -

3 Derivative Gain, rd 2.24 2.10 -

Table 6 – PID Tuning Parameters - Process P2

The results of the PID tuning can be shown as below:

Figure 35 - PID Control - Process P2

73

From the above figure, we see oscillations in the process output in spite of the control action.

Therefore, both the above tuning methods are ineffective in this case. One of the reasons for

the incorrect tuning is in our selection of the time constant 𝜏𝑐.

4.8.3 P3 – Delay-dominated Process

Figure (36) shows the step plot and the Nyquist plot of the process P3 respectively. As can be

seen from the Nyquist plot, the plot of the process output is consistent with the modelled output

at low frequencies but tends to deviate from the process output as the frequency increases. This

is due to the fact that the system is a non-minimum phase system due to the time-delay.

Figure 36 - Step Response vs Nyquist Plot – Process P3

The SOPTD model identified for the above process 𝑃3(𝑠) =
1

(0.05𝑠+1)2
𝑒−𝑠 can be given by:

𝐺𝑃3(𝑠) = 1.0175.
𝑒−1.0285𝑠

0.0786𝑠 + 1

Where,

𝐾 = 1.0175, 𝑇𝑑 = 1.0285, 𝑎2 = 0, 𝑎1 = 0.0786

(57)

Using the above model, we obtain the dynamic parameters as follows:

𝑇1 = 0.0786 (58)

With this, we obtain the tuning results as per table (7),

74

 Tuning Method

No. Parameter DS PMC SIMC

1

Proportional Gain,

rp
0.38 0.06 0.04

2 Integral Gain, ri 0.64 0.75 0.48

3 Derivative Gain, rd 0.03 0.00 0.00

Table 7 - PID Tuning Parameters - Process P3

The results with the tuning can be seen in the figure (37).

Figure 37 - PID Control - Process P3

We see from the above that the DS and the SIMC tuning results provide satisfactory results for

controlling the process P3, but the PMC tuning produces oscillations and also a peak overshoot

when tuned for this process.

4.8.4 P4 – Oscillatory Process

We see from the below figure the step response and the Nyquist plots of the Process P4. The

results are nearly similar for the real and the modelled systems.

75

Figure 38 - Step Response vs Nyquist Plot – Process P4

The SOPTD model identified for the above process 𝑃4(𝑠) =
1

(0.5𝑠2+𝑠+1)2 can be given by:

𝐺𝑃3(𝑠) = 0.9469.
𝑒−0.8172𝑠

0.8799𝑠2 + 1.1987𝑠 + 1

Where,

𝐾 = 0.9469, 𝑇𝑑 = 0.8172, 𝑎2 = 0.8799, 𝑎1 = 1.1987

(59)

Using the above model, we obtain the dynamic parameters as follows:

𝑇0 = 0.9380, 𝜁0 = 0.6389 (60)

With this, we obtain the tuning results as per table (8),

 Tuning Method

No. Parameter DS PMC SIMC

1

Proportional Gain,

rp
0.98 0.81 -

2 Integral Gain, ri 0.82 0.68 -

3 Derivative Gain, rd 0.72 0.60 -

Table 8 - PID Tuning Parameters - Process P4

The results with the tuning can be seen in figure (39).

76

Figure 39 - PID Control - Process P4

From the Output results, we see that both tuning methods are unsatisfactory and are not reliable

for control. Better tuning methods must be investigated for tuning this process.

4.8.5 P5 – Non-oscillatory Process with Time-Delay

Figures (40) show the step response and the Nyquist plots of the system P5, which, as we can see

are almost identical.

Figure 40 - Step Response vs Nyquist Plot – Process P5

On running the program, we identify the SOPTD model of the process 𝑃5(𝑠) =
1

(𝑠+1)(0.3𝑠+1)2 𝑒−𝑠

as:

77

𝐺𝑃5(𝑠) =
0.9767. 𝑒−1.1509𝑠

0.4658𝑠2 + 1.4062𝑠 + 1

Where,

K = 0.4658, 𝑎2 = 0.4658, 𝑎1 = 1.4062, 𝑇𝑑 = 1.1509

(61)

Using the above model, we obtain the dynamic parameters as follows:

𝑇0 = 0.7954, 𝜁0 = 0.9167 (62)

With this, we obtain the tuning results as per table (9),

 Tuning Method

No. Parameter DS PMC SIMC

1 Proportional Gain, rp 0.63 0.98 0.63

2 Integral Gain, ri 0.44 0.70 0.44

3 Derivative Gain, rd 0.21 0.33 0.21

Table 9 – PID Tuning Parameters - Process P5

We can see from the above table that the tuning parameters are the same for DS and SIMC

tuning methods. The output of the PID controller can be seen in the figure (41).

Figure 41 - PID Control - Process P5

From the above figure, we see that the DS Method and the SIMC Method provide fairly output

characteristics, whereas the PMC tuning method lags behind these two due to its large

overshoot.

78

4.8.6 P6 – Fifth-Order Process with Time-Delay

In comparison with the previous systems, the process P6 is by far the hardest one for

identification and hence we can see a large standard deviation of ±20%.

Figure 42 - Step Response vs Nyquist Plot – Process P6

Upon identification, we obtain the following SOPTD model of the process 𝑃6(𝑠) =
𝑒−𝑠

(5𝑠+1)5:

𝐺𝑃6(𝑠) =
0.9773. 𝑒−8.61𝑠

107.21𝑠2 + 18.07𝑠 + 1

Where,

𝐾 = 0.9773, 𝑎2 = 107.21, 𝑎1 = 18.07, 𝑇𝑑 = 8.61

(63)

We obtain the dynamic parameters as:

𝑇0 = 10.3542, 𝜁0 = 0.8726 (64)

On tuning the controller using the DS and PMC method, we obtain the following parameters:

 Tuning Method

No. Parameter DS PMC SIMC

1

Proportional Gain,

rp
1.07 1.12 -

2 Integral Gain, ri 0.06 0.06 -

3 Derivative Gain, rd 6.33 6.62 -

Table 10 – PID Tuning Parameters - Process P6

Plugging the above parameters to our PID controller, we obtain the following output:

79

Figure 43 - PID Control - Process P6

As we see in the above figure, the PID tuning results in no overshoot, but with quite a long

settling time. The Tuning results are, however, acceptable.

4.9. Conclusion

4.9.1 Identification

In conclusion, all the systems described previously were identified to a sufficiently acceptable

degree using the GEA method of optimization. An interesting point regarding the identification

program is that, when the original GEA algorithm was initially applied using the method

described in section 2.5, the results obtained were highly inaccurate, which was mostly due to

the nature of the local search and the crossover operator in the original code. To improve this, the

algorithm was slightly modified to apply some of the benefits of BA by using frequency-based

search as well as by improving the local search by way of mutating individual parameters rather

than all parameters at once.

As per the original GEA Algorithm, the local search is achieved by the following equation:

If rand > p, Make Local Searc𝑥𝑖
𝑡 = 𝑥∗

𝑡−1 + 𝜖𝐿 (65)

The problem with the above equation is that the local search is made if and only if the condition

(rand>p) is fulfilled. This means that as the number of iterations increase, the probability of local

80

search is higher. We reach a certain point when the solution reaches a point around the valley,

but due to the lower limit condition that the values cannot be less than zero, we face the situation

wherein, there is a higher chance of the solution crossing below zero instead of arriving at the

optimum value which is around zero and thus ends up getting reset than arriving at the precise

minima.

To circumvent this problem, we randomize the dimensions individually such that there is a

chance of the individual parameters converging to the optimum instead of all parameters

requiring to converge. This can be demonstrated using the below equation.

𝑥𝑖𝑗
𝑡 = (𝑥∗𝑗

𝑡−1 + 𝜖𝐿).∗ (𝑟𝑎𝑛𝑑(1, 𝑑)),

Where j = 1:d

(66)

Using the above equation, we see that although all parameters do not need to converge together,

the individual parameters can, thus leading to a better solution especially when the optimum

values are near to zero. This has also be verified experimentally by simulating the above using

the equation (34) and alternately using the equation (35).

With the help of this small modification, the time for identification was roughly around 105

seconds on average with some functions converging more quickly than others, which is in fact

extremely quick due to the use of the GEA algorithm. Additionally, to improve the convergence

rate, we can always decrease the accuracy of the solution. For the purpose of control and

especially considering the fact that the above method will be mainly in use for non-linear

systems, it is not absolutely required for us to have identified an accurate model. Instead, a

reasonable model like the ones identified above will be sufficient for all practical control

purposes since we will have to be using a controller anyway. In the next section, we shall explore

the control of the above processes.

4.9.2 Control

We can conclude from the above results that all the three identification methods work well for

controlling non-oscillatory processes with short time delays, like in processes P1, P3 and even

P6. However, when it comes to oscillatory processes such as in processes P2 and P4, we still

see an overshoot in the process output, which is undesirable in most case and thus, we would

need a more appropriate method for this purpose. Process P5 is a bit more complicated when

compared to the others, which is because of the delay to time constant ratio, which, thus makes

81

the control using the above methods not very effective. We would need to look into alternate

methods of tuning such as AMIGO tuning method to verify its consistency.

It must be noted carefully that the identification and control of the above processes makes use

of the process model only and does not relate directly to the exact system. This is the advantage

of relay-based identification is that we can control the entire system using a simple process

model only instead of knowing the precise dynamics of the system. Furthermore, as we can see,

we can use the same methods on a non-linear system as well, which makes our process

extremely versatile.

82

5 Physical System

To verify the theory and the algorithms presented in the previous sections, we need to

implement the above and experiment with a real system. For the purpose of this thesis, we have

looked at the identification behaviour of two systems from the automatic control laboratory.

The first system was the water-levitation system where we supply an input signal from the PC

to a hydraulic pump which helps to pump water through a nozzle jet on top of which, rests a

light-weight ball. The position of the ball is dependent on the flow-rate of water at the nozzle

exit, which, in turn, is dependent on the input to the pump. On obtaining the results from the

lab, it was found that the identification works correctly to a certain extent, but it is difficult to

verify the results in practice since the static conditions of the experiment changes at different

points of the experiment, which makes the observations unreliable. Being a non-linear system,

this would have been the perfect model for identification, but due to the unreliable nature of

this experiment, all results of this first system were discarded and instead, we made use of the

second system – Two tanks system.

Section 5.1 describes the physical setup of our system, including the components used in the

process while section 5.2 shows the static characteristics of the same system for finding the

operating point of our setup. Sections 5.3 and 5.4 describe the problem statement and the

Simulink scheme and finally, sections 5.5 and 5.6 explores the results of the identification and

PID control.

5.1. Experimental Setup

The given system is a combination of two chambers arranged vertically in a tube with a system

of interconnecting valves. Figure (44) shows the overall schematic of our two-tanks system.

The pump C1 supplies water to the upper chamber. Since the system is hermetically sealed, it

develops not only a water head, but an additional pressure head, which causes the accumulated

water in the upper chamber to trickle into the lower chamber and eventually back into the tank.

A pressure differential sensor is used to map the height of the water in the lower column. Since

the upper and lower tanks are connected to each other in series, it is understandable that the

system is of second order.

The setup consists of the following basic components:

• Hydraulic Pump (𝑞𝑚𝑎𝑥 = 10 𝑙𝑝𝑚)

• Power Supply (24 VDC, 𝑖𝑚𝑎𝑥 = 1 𝐴)

83

• Pressure Sensor S1

• PC Connected to the pump via MATLAB/Simulink and appropriate hardware

• Qmax (10 l/min)

• Water Chambers – A1 and B1

• Water Tank

We can see a more detailed view of the process from figure (45). We perform the experiment

by supplying an input signal to the process via the MATLAB/SIMULINK software from the

PC which is transmitted to the pump, which in turn pumps up water to the upper chamber A1.

From the bottom hole of the upper chamber, the water trickles down to the lower tank B1,

thereby creating a second-order system.

Our goal is to find out the relationship between the height of water column in B1 and the input

to the pump. As can be seen from the figure (45), the pump is fed with input 0-10 V from the

PC and it thus pumps up water to the chamber A1 depending on the magnitude of the supply

voltage. From the chamber A1, the water flows down directly into the chamber B1 whose height

we are to measure. We can see that the height of the water column in B1 is dependent on the

flow rate of water from the chamber A1, which in turn depends on the height of water in the

chamber A1. The final height in B1 is measured by means of the pressure sensor S1. One of the

benefits of using a pressure sensor for measurement instead of a level sensor is that, due to

Figure 44 – Schematic Diagram - Two-tanks system

84

prolonged usage, the tanks end up with a lot of air bubbles within, which may result in

measurement errors if we do use a level sensor.

Figure 45 – Functional Diagram - Two Tanks System

For experimentation, we assume that the pressure sensor behaves in a linear manner, meaning

that the sensor output behaves linearly with respect to the sensed pressure.

5.2. Static Characteristics

Our goal with identification is to verify the output for different values of the input signal and

derive a dynamic model of the same. Firstly, to start with, we need to plot the static

characteristics of the system to ensure that our inputs and outputs are within the linear range of

the system. To obtain the static characteristics, we would need to plot the output height (y) for

different constant values of input (u). We thus obtain the figure 46.

85

Figure 46 - Static Characteristics - Two tank system

We see from the above Static Characteristics that the system is inherently linear in the range 2

– 8 V. Therefore, we shall set our operating point at the point (4, 5.22).

5.3. Problem Statement

Similar to section 4.4, our problem here is to identify or estimate a dynamic model of the ‘Two-

tanks System’ from figure (44), (45). As before, we shall use the SOPTD dynamic model from

equation (23) and estimate the parameters {𝐾, 𝑎2, 𝑎1, 𝑇𝑑} using the GEA optimization

algorithm.

𝑥𝑗 = {𝑎1, 𝑎2, 𝐾, 𝑇𝑑} (67)

Where:

𝑗 = Dimension index (1:d)

𝑑 = Number of dimensions (= 4 in this case)

The cost function for optimization of the above parameters can be summarized as:

𝐽 = ∫ (𝑦𝑚(𝑡) − 𝑦(𝑡))
2

𝑑𝑡
𝑇𝑘

0

(68)

𝑦𝑚 = model output

𝑦𝑡 = system output

𝑇𝑘 = simulation time

0

2

4

6

8

10

12

0 2 4 6 8 10 12

H
ei

gh
t

(m
m

)

Input (0-10 V)

STATIC CHARACTERISTICS

86

Therefore, we can construct our problem statement as follows:

1. Find the parameters 𝒙𝒊 (i = 1,2 … d) to minimize the cost function J,

Subject to constraints:

{𝒂𝟏, 𝒂𝟐, 𝑲, 𝑻𝒅} > 𝟎

2. Compare the results of the SOPTD model with those of the real system in terms of

the step response and Nyquist plots.

5.4. Experiment

The experimental setup consists of the following components in the Simulink system:

1. Relay: A relay controller is used to create oscillations in the system by supplying non-

linear input to the process.

2. Constant Input: The input source is constant and is set at the working point, which we

have considered as at input = 4 V.

3. HPS Block: This block contains the Internal COM logic to convert the internal input

signal (uL) from the relay to the physical system, then obtain the readings from the

pressure sensor (yL) and then feed it back into the input sum block.

The parameters of the real System are set as follows:

• 𝑢𝐴 = 7

• 𝑢𝐵 = 2

• 𝜖𝐴 = 𝑒𝑝𝑠

• 𝜖𝐵 = −𝑒𝑝𝑠

• 𝑤 = 5.22 (at operating point 4)

• Simulation Time, Tsim = inf

Note that, unlike the previous Simulink scheme, the simulation for the physical system will

consists of two parts:

87

A) Physical Experiment: The program is started as per the figure (47) with the input (𝑢𝐿)

and relay parameters as above. The input to the system and the output is logged to the

workspace for further processing.

Figure 47 – Simulink scheme of Physical System

B) Identification Scheme: Once we obtain the results from the real system, we then feed

the input 𝑢𝐿 to our SOPTD model and measure the model output 𝑦𝑚. The error

between the model output and the real system output is squared and integrated over

time from which we obtain the ITAE of the system which we are to minimize as part

of our cost function. Figure (48) demonstrates the schematic of our identification

problem.

Figure 48 - Simulink Scheme – Identification

5.5. Results

Using the above methods, the above experiment was conducted on the two tanks system. The

input was fed into the system using the parameters described in section 5.4, from which, we

88

obtained the input / output matrices as u1 and y1 respectively. This gives us the experimental

results from the setup.

To verify our identification method, we need to use the input u1 and feed this to our SOPTD

model to obtain the process output of our model (𝑦𝑚) as seen in figure (49). Similar to what we

did in the section 4.4, we consider our cost function 𝐽 as the difference between the model

output 𝑦𝑚 and our process output 𝑦1. The optimization algorithm is then run using the

MATLAB script and with each iteration, the Simulink model is run within the script to calculate

the cost function 𝐽 or in other words, the fitness of each solution. The MATLAB algorithm tries

to minimize this cost function by finding optimum values of {𝐾, 𝑎2, 𝑎1, 𝑇𝑑} to finally arrive at

the best solution.

The results from multiple simulations can be summarized in the below table 5.

No
Op.

Pt

Input,

w

No of

Individuals
Sim_time

No or

Iterations
K a2 a1 Td Error

Elapsed

time

1 3 3.83 40 300 20 1.14 273.31 31.23 0 18.70 135.91

2 3 3.83 40 300 20 1.13 277.67 40.03 0 18.50 141.60

3 3 3.83 40 300 20 1.13 287.31 40.03 0 18.59 135.46

4 3 3.83 40 300 20 1.13 265.57 40.11 0 18.66 129.24

5 3 3.83 40 300 20 1.13 276.36 40.10 0 18.51 133.18

6 3 3.83 40 300 20 1.13 301.36 38.77 0 18.87 141.61

7 4 5.22 40 300 20 1.10 376.28 49.61 0 19.21 76.58

8 4 5.22 40 300 20 1.12 281.51 41.07 0 19.80 103.41

9 4 5.22 40 300 20 1.06 439.81 42.48 0 17.48 69.32

10 4 5.22 40 300 20 1.10 376.03 47.53 0 17.16 95.81

11 4 5.22 40 300 20 1.09 387.61 49.66 0.0803 19.74 98.62

12 4 5.22 40 300 20 1.09 290.22 46.74 0 17.65 203.20

Mean: 1.11 322.34 42.28 0 18.57 122.00

Standard Deviation: 0.02 60.60 5.32 0 0.82 36.09

Table 11 - Identification Results

As can be seen from results in the above table, the the experiment was carried out at two

different operating points of the system, i.e. at (3, 3.83) and at (4, 5.22). We can easily see that

the results obtained using the second operating point converge more quickly as compared to the

first and from the obtained step responses, we also see that the results of the step response are

89

more accurate in the first case as compared to the second. The reason for this is because the

asymmetricity of the relay in the first case is much larger than in the second which generates

unbalanced oscillations resulting in less accurate results.

To verify the correctness of the above identification, we shall compare the step responses of the

real system with the modelled system and examine the results visually. The ITAE error from

the above table is already a good indicator of the correctness, but nevertheless, it is important

to use a secondary method so as to validate our results. We shall thus use the step response and

the Nyquist diagram to verify our results.

1. Step Response:

Using the simulation results for {𝐾, 𝑎2, 𝑎1, 𝑇𝑑} as = {1.10, 376.28, 49.62, 0} and using the step

input of 3.5, we obtain the following figure (50).

Figure 49 - Step Response

We see from the above figure (49) that the output from our real process (in red) closely matches

the output from our SOPTD model. We can therefore say that our identification procedure is

fairly accurate.

90

2. Nyquist Plot:

While the step response gives us a fair idea about the accuracy of our estimation, it does not tell

us anything about the response of the system based on the frequency. For this, we need to use

a bode diagram or a Nyquist plot to verify the same. In our case, we will use the Nyquist plot

to see whether or not our system holds true for frequencies other than zero. In essence, the

Nyquist plot is the magnitude-phase plot of the system for different frequencies of the input.

First, we shall apply a sine input to our experimental setup using frequencies 0.05 rad/s, 0.1

rad/s and 0.2 rad/s with which, we shall obtain three different points on the magnitude-phase

plot. The relations for plotting the points on the curve can be found from the following:

Amplitude Relation:

|𝐺(𝑗𝜔)| =
𝑦𝐴

𝑢𝐴
 (69)

Where 𝑦𝐴 and 𝑢𝐴 can be found from the scope output y and u as from the figure (20).

Figure 50 - Frequency Response Characteristics - Time Plot

 Phase-Shift Relation:

 Δ𝑇 = 𝑇𝑦 − 𝑇𝑢

ϕ = −
ΔT

T
360°

(70)

91

Figure 51 - Frequency Response - Time plot from Laboratory

Figure (51) shows the time-plot of the output 𝑦𝑎 vs the input 𝑢𝑎 which we obtained directly

from the experiment. Using the above relations – equations (40) and (41), we can plot the

calculated points on the Nyquist plot with x and y co-ordinates as:

𝑥𝑐𝑜𝑜𝑑 = |𝐺(𝑗𝜔)|. cos 𝜙 and 𝑦𝑐𝑜𝑜𝑑 = |𝐺(𝑗𝜔)| sin 𝜙 (71)

Thus, we get the three points (-0.0518, -0.2035), (-0.0590, -0.0106) and (-0.0078, -0.0098).

With the above, relations, we have our three points for the three readings on the Nyquist plot.

We need to verify if these three points lie on the Nyquist plot of the modelled transfer function

G(s). We thus obtain the following figure (52) as follows:

92

Figure 52 - Nyquist Plot – Two Tanks System

As can be seen from the figure, the points almost complete coincide with the Nyquist curve

from the SOPTD model estimated from the above algorithm. Hence we can conclude that the

identified system is an acceptable model of the real process.

5.6. PID Control

Now that we have identified our model correctly, we can proceed to get into the ‘real’ deal,

which is controlling the above process. For this we need to tune our PID method using the

methods described in the above sections (4.7.1), (4.7.2) and (4.7.3) evaluate the results for the

same.

First, let us consider one of the results obtained from the Identification process as:

𝐺𝑃(𝑠) =
1.09

290.22𝑠2 + 46.74𝑠 + 1

Where,

𝐾 = 1.09, 𝑎2 = 290.22, 𝑎1 = 46.74

(72)

93

Using the relations for DS Method and PMC Method of tuning, we obtain the following:

 Tuning Method

No. Parameter DS PMC SIMC

1 Proportional Gain, rp 3.36 3.36 -

2 Integral Gain, ri 0.07 0.07 -

3 Derivative Gain, rd 25.48 25.48 -

Table 12 - Tuning Parameters - Two Tank System

We can summarize the results of the above tuning in the below figure (53).

Figure 53 - PID Control - Two Tanks System, SP = 5 and SP = 2

We see from the above two results that the response of the real system is quite different from

the results we obtained on the real model. The reason for this can be attributed to the fact that

when we tune our controller in Simulink, we consider values of the Proportional, Integral and

Derivative Gain which may or may not be achievable in real. However, the physical system

limits these values causing saturation of the pump and due to non-linearities within the system.

While the process output is far lower than the real output, the error keeps building up, thus

increasing the reset wind-up of the integral part. Thus, as the setpoint increases, the overshoot

of the Process output increases consequently. To reduce the overshoot, we would need to add

additional compensation or use a different tuning method for minimum overshoot of the

controller.

94

6 Conclusion

With the above experiment, we have fulfilled the three main parts of this thesis work namely:

1. Optimization

2. Identification

3. Control

In the Optimization part, we have seen how effective and efficient metaheuristic algorithms can

be in peak finding. While all the three methods, PSO, BA and GEA are extremely efficient, the

GEA tuning procedure is relatively simple to execute for a wide range of applications as the

tuning procedure is not as hard as compared to PSO and BA. Furthermore, one of the advantages

of GEA is that it also includes the mutation operator which, as we have seen is a key factor in

arriving at the optimum value. Other optimization techniques which can be looked into are the

SOMA optimization and TABU search (Glover, 1986). Both these techniques cannot accurately

be called as ‘Metaheuristic Algorithms’ per se, nevertheless, given the alternate approach at peak

finding, it would be interesting to research into these as well, especially the TABU search

approach which is not probabilistic based but rather, it uses the concept of a TABU list thus,

making sure that incorrect predictions are not repeated unlike the heuristic approach.

In the second part, we have developed a deeper insight into alternate identification procedures

using Relay-Based Identification. Due to the nature of the optimization algorithms which we are

using the convergence rate is extremely quick with almost all of the solutions converging in less

than five minutes which is highly efficient for large systems. Furthermore, from the simulation

of pre-defined functions, we saw that the algorithm was able to predict most models fairly

accurately using which we were able to achieve control our processes. While this procedure is

relatively simple compared to some of the other available system identification approaches, it is

nonetheless, extremely efficient. The other major advantage is that the same technique for

identification can also be used for modelling non-linear systems and this makes the method

promising for further research. One of the drawbacks of this algorithm method is the fact that it

uses a lot of memory and computing power for searching. With the help of MATLAB and

Simulink software, we are able to achieve this in relatively less time. However, the above

programs cannot be directly on plant sites using PLCs without the appropriate SCADA systems

for data acquisition, processing and manipulation.

95

With optimization and identification, we moved to PID control of the identified processes. For

all of the PID control algorithms used in this thesis, we made use of the identified SOPTD

process model only to derive the PID tuning parameters. This means that, once the system has

been identified correctly, we can then tune the controller purely by means of the process model

which we have identified. This is extremely advantageous and efficient for control in practical

plants or processes. The PID tuning methods which we have looked at in the previous sections

are not wholly efficient for the processes which we have selected in this thesis. Nevertheless,

they do a good job with non-oscillatory processes without time-delay. The PID tuning can be

improved to achieve better control for which, we can look into more efficient methods such as

Pole Placement Method or PMC Tuning method for oscillatory systems which makes use of the

gain margin approach.

All in all, we have explored a novel approach to System Identification and Control and although

the final control was not as successful as we hoped it to be, the identification approach is

acceptable and functional. The concept can be further expanded in the field of Model Predictive

Control wherein, the control characteristics can be greatly improved by using more efficient

algorithms for control such as the ones we looked into here. We can also expand the concept of

identification to include much larger and more complicated processes since the underlying

concept of optimization still holds true regardless.

96

7 Bibliography

Cao, L., Xu, L., & Goodman, E. (2016). A Guiding Evolutionary Algorithm with Greedy Strategy for Global

Optimization Problems. Computational Intelligence and Neuroscience, 1-10.

Yang, X.-S. (2014). Nature-Inspired Optimization Algorithms. Elsevier.

Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of ICNN'95 - International Conference

on Neural Networks (pp. 1942-1948). Perth: IEEE.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, Michigan, USA: University of Michigan

Press.

Wolpert, D., & Macready, W. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary

Computation, vol. 1, no. 1, 67-82.

Parkinson, A., Balling, R., & Hedengren, J. (2018). Optimization Methods for Engineering Design, Second Edition.

Provo, Utah: Brigham Young University.

Yang, X.-S. (2010). A New Metaheuristic Bat-Inspired Algorithm. In J. G. Eds, Nature Inspired Cooperative

Strategies for Optimization (pp. 65-74). Berlin: Springer.

Stoev, J., & Schoukens, J. (2016). Nonlinear system identification - Application for industrial hydro-static drive-line.

Control Engineering Practice, Volume 54, 1-2.

Ljung, L. (1987). System Identfication: Theory for the User. Linkoping: Prentice Hall.

Seborg, D. E., Edgar, T. F., Mellichamp, D. A., & III, F. J. (2017). Process Dynamics and Control. Dellaware: Wiley.

Hofreiter, M. (2018). Alternative Identification Method using Biased Relay Feedback. IFAC Papers Online (pp. 891-

896). Prague: Elsevier.

Berner, J., Hägglund, T., & Åström, K. (2016). Asymmetric Relay Autotuning - Practical features for industrial use.

Control Engineering Practice, Volume 54, 231-245.

Ramakrishnan, V., & Chidambaram, M. (2003). Estimation of a SOPTD transfer function model using a single

asymmetrical relay feedback test. Computers & Chemical Engineering, Volume 27, Issue 12, 1779-1784.

Chidambaram, M., & Sathe, V. (2014). Relay Autotuning for Identification andControl. Cambridge: Cambridge

University Press.

Astrom, K., & Hagglund, T. (1984). Automatic Tuning f Simple Regulators with Specifications on Phase and

Amplitude Margins. Automatica, Volume 20, Issue 5, 645 - 651.

PID Controller. (2020, 08 09). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/PID_controller

Hofreiter, M. (2016). Zaklady Automatickeho Rizeni. Prague: CVUT.

Chen, D., & Seborg, D. (2002). PI/PID Controller Design Based on Direct Synthesis and Disturbance Rejection.

Industrial & Engineering Chemistry Research, 4807-4822.

Skogestad, S. (2004). Modelling, Identification and Control.

Glover, F. (1986). Future Paths for Integer Programming and Links to Artificial Intelligence. Computers and

Operations Research, 533-549.

97

Appendices

The accompanying materials are made available in a CD under the below folders:

/MATLAB: This folder contains the MATLAB/SIMULINK files and the related sub-folders for

execution

/Identification: This folder consists of the accompanying results of identification

/Control: This folder contains the results of the PID Control

/Two Tanks: This folder contains the results of the physical system

Adrian_master_thesis.pdf: Electronic copy of this Diploma Thesis

