Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Control Engineering

Object Detection for UAV from Color and
Depth Image

Mikhail lvanov

Supervisor: RNDr. Petr Stépan, Ph.D.
Field of study: Cybernetics and Robotics
Subfield: Cybernetics and Robotics
August 2020

ii

L MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details
4 N\
Student's name: Ilvanov Mikhail Personal ID number: 481275

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Control Engineering

Study program: Cybernetics and Robotics

Branch of study: Cybernetics and Robotics

Il. Master’s thesis details

e ™
Master’s thesis title in English:

Object detection for UAV from color and depth image

Master’s thesis title in Czech:

Detekce objektu z fuze informace z barevné kamery a hloubkovych dat pro UAV

Guidelines:

The goal of this thesis is to detect cuboids object with specified colors and sizes for autonomous UAV. The object will be
detected from RGB color images fused with depth information. The following tasks will be solved:

1) Study methods for color image segmentation, depth image segmentation and color segmentation guided by depth
information.

2) Design and implement algorithm for cuboid detection from color images together with depth information from sensor
Intel RealSense D435.

3) Test and analyze developed algorithm in real experiment for data from UAV (and/or for data taken by human) in terms
of correctness and computational speed. Compare the developed algorithm with other approach(es).

Bibliography / sources:

[1] Holz D., Holzer S., Rusu R.B., Behnke S. (2012) Real-Time Plane Segmentation Using RGB-D Cameras. In: Rofer T.,
Mayer N.M., Savage J., Saranl U. (eds) RoboCup 2011: Robot Soccer World Cup XV. RoboCup 2011. Lecture Notes in
Computer Science, vol 7416. Springer, Berlin, Heidelberg

[2] Dou M., Guan L., Frahm JM., Fuchs H. (2013) Exploring High-Level Plane Primitives for Indoor 3D Reconstruction with
a Hand-held RGB-D Camera. In: Park JI., Kim J. (eds) Computer Vision - ACCV 2012 Workshops. ACCV 2012. Lecture
Notes in Computer Science, vol 7729. Springer, Berlin, Heidelberg

[3] Ma, L., Kerl, C., Stickler, J., & Cremers, D. (2016, May). CPA-SLAM: Consistent plane-model alignment for direct
RGB-D SLAM. In 2016 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1285-1291). IEEE.

Name and workplace of master’s thesis supervisor:

RNDr. Petr Stépan, Ph.D., Multi-robot Systems, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 28.01.2020 Deadline for master's thesis submission: 14.08.2020

Assignment valid until:
by the end of winter semester 2021/2022

RNDr. Petr Stépan, Ph.D. prof. Ing. Michael Sebek, DrSc. prof. Mgr. Petr Pata, Ph.D.

Supervisor’s signature Head of department’s signature Dean’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I’d like to thank the Multi Robot System
group of Czech Technical University in
Prague for unlimited number of challeng-
ing tasks and endless fount of knowledge.
It was valuable experience for me to inter-
act with the team and participate in the
challenge preparation.

I highly appreciate friendly support and
guidance provided by RNDr. Petr Stépan,
Ph.D.throughout the work under the the-
sis.

I thank Nadia Denisova and the Shet-
land Sheepdog Lucky for ultimate support
during the whole study.

Declaration

I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, August , 2020

Prohlasuji, ze jsem predlozenou praci
vypracoval samostatné, a ze jsem uvedl
veskerou pouzitou literaturu.

V Praze, . srpna 2020

Abstract

The work contains a review of different
methods for object detection related to
the MBZIRC 2020 competition. The ob-
jects are polystyrene blocks of a given
size and color. The work demonstrates
the design of algorithms for detection of
cuboid objects from a color image using
Color Segmentation, GrabCut methods,
Closed Loop search and Neural Networks.
Furthermore, it reviews methods of de-
tection for depth image and geometrical
verification of detected objects. Finally,
both methods were used together for data
fusion and its performance was reviewed.
The data is obtained by Intel RealSense
D435 camera.

Keywords: RGB, HSV, color
segmentation, GrabCut, graph cut,
closed loop, YOLO, neural network,
PyTorch, OpenCV, ROS, depth image,
PCL, point cloud, RANSAC, geometrical
verification, sensor fusion, Intel
RealSense D435

Supervisor: RNDr. Petr Stépan, Ph.D.
Czech Technical University in Prague
Faculty of Electrical Engineering

Karlovo nameésti 13
12135 Praha 2

vi

Abstrakt

V préci jsou prezentoviny pristupy pro
detekci objektt v soutézi MBZIRC 2020.
Objekty jsou polystyrénové cihly dané ve-
likosti a barvy. Prace obsahuje navrh algo-
ritmu pro detekci objektii z barevného ob-
razu pomoci barevné segmentace, metody
Grab and Cut, uzavirani cykli a neurono-
vych siti. Déle byly otestovany moznosti
detekce hranolii v datech ze senzoru In-
tel RealSense D435. Na zavér byly obé
metody pouzity spolecné pomoci datové
faze.

Kli¢ova slova: RGB, HSV, barevna
segmentace, GrabCut, rez grafu,
uzaviend smycka, YOLO, neurova sit,
PyTorch, OpenCV, ROS, hloubkovy
obraz, PCL, point cloud, RANSAC,
geometricka verifikace, senzoricka flze,
Intel RealSense D435

P¥eklad nazvu: Detekce objektu z flze
informace z barevné kamery a
hloubkovych dat pro UAV

Contents

1 Introduction 1
2 Methods of Detection for Color
Image 5
2.1 Color Segmentation
2.1.1 Color Models 6l
2.1.2 HSV Color Range
2.1.3 Algorithm based on HSV Color
Range.........
2.2 Algorithm based on Graph Cut
(GrabCut)
2.3 Algorithm based on a Search of
Closed Loop ...t
2.4 Deep Learning and Convolutional
Neural Networks................ 18|
2.4.1 Holistically-Nested Edge
Detection.....................

2.4.2 You Only Look Once (YOLO)
2.5 Comparison of Color Image based

Methods 23
3 Methods of Detection for Depth
Image 27
3.1 Depth Cameras and Depth

Imaging
3.2 Conversion of Depth Image into a

Point Cloud 30/

3.3 Algorithm based on Point Cloud
3.3.1 Plane Segmentation using

RANSAC. ... ool
3.3.2 Point Clustering

3.3.3 Plane Equation Calculation .
3.3.4 Distance to Plane Calculation [35
3.3.5 Polygon Area Calculation . . .
3.3.6 Polygon Center Calculation .

34 Summary ...
4 Color and Depth Methods

Fusion 39
4.1 Sensor Fusion Algorithm.
4.2 Algorithm performance
4.3 Possible Improvements
5 Conclusions 45
Bibliography 47

vii

Figures
1.1 An example of scene taken from
UAV with cuboid objects of different

colors and shape
1.2 Intel RealSense D435 camera.

Source 1] ...ovvviiiii
1.3 An example of depth image

representation 3
1.4 An example of a point cloud built

from a depth image
2.1 Example of color segmentation for

redcolor................ .. [5]
2.2 Bayer pattern and RGB color

model 6l
2.3 Example of different colors in RGB

color range. ...

2.4 HSV color model. Source [4]
2.5 HSV tool usage example
2.6 Histogram of Hue distribution for

cuboids 9
2.7 Histogram of Saturation

distribution for cuboids..........
2.8 Histogram of Value distribution for

cuboidso 10/
2.9 Region Voting Filter
2.10 Simplified illustration of GrabCut

algorithm. Source [6]
2.11 GrabCut usage example

2.12 Updated image after background
clarification for GrabCut algorithm

2.13 Example of sobel filtering
2.14 Example of threshold filter and
skeleton image..................
2.15 First found closed loop (Q = 0).
Legend: red - original mask from
color segmentation step, blue -
checked contour, green - closed loop
found

2.16 Closed loop with Q = 1.0. Legend:
red - original mask from color
segmentation step, blue - checked

contour, green - closed loop found.
2.17 Example of closed loop search.

Legend: red - original mask from

color segmentation step, blue -

checked contour, green - closed loop

found 18l

viii

2.18 Neural Network Structure.
2.19 Example of Holistically-Nested
Edge Detection performance. Source

1]

2.20 Example of Holistically-Nested
Edge Detection performance on the

task image
2.21 Receiver operating characteristic
for trained YOLO network 22|

2.22 Example of trained YOLO
prediction (area inside white curves)

3.1 Velodyne Alpha Prime LIDAR.
Source [15]
3.2 Stereo triangulation. Source [16]
3.3 IR projection. Source [16]
3.4 Active Infrared (IR) Stereo Vision
Technology. Source [I]
3.5 Depth Measurement (Z) versus
Range (R). Source [I]
3.6 Example of depth image to point
cloud conversion
3.7 Example of RANSAC algorithm for
linear model in 2D. Source [1§] ...
3.8 Plane segmentation example
(planes have individual color)
3.9 Example of point clustering
(clusters have individual color). . ..

3.10 Plane made of three points. . ..
3.11 Point-plane distance d........
3.12 Polygon area A

3.13 Polygon center Cy, .

4.1 Example of cuboid object detection

with fused algorithm
4.2 Example of the final solution
detection results 43|

4.3 Example of YOLO neural network,
that ignores object of correct color,
but wrong shape (object with printed
"5" on top)

Tables

2.1 YOLO neural network
architecture

2.2 Approximate computation time for
the color image based methods in
orders of second

2.3 Detectors performance
4.1 Final Detector Performance [42|

ix

Chapter 1

Introduction

Object detection is one of the fundamental tasks in the computer vision
domain and has crucial importance for autonomous robotics. This work is
aimed on development of robust real-time algorithm to detect cuboid objects
in different scenes. The objects could vary in terms of size and color, however
objects of specific color are expected to have known sizes. Cuboids could
be blue (the largest), green and red (the smallest). Objects could lay on
arbitrary ground (e.g. grass, sand, wooden or cement floor) and scene could
also have a terrains. The scene example is shown on Figll.1]

Figure 1.1: An example of scene taken from UAV with cuboid objects of different
colors and shape

The task is originated from The Mohamed Bin Zayed International Robotics
Challenge 2020 (MBZIRC 2020). Cuboid blocks are made of lightweight foam
material. After detection, the objects are supposed to be taken by Unmanned
Aerial Vehicle (UAV) using magnet holder and to be placed on a wall in
specific pattern based on color and shape. For transportation purpose, the
cuboid objects have also a metal plate painted with the same color on top of

1

1. Introduction

it. In real data-set the color of metal plate has slightly different color that
introduces problems in object detection.

UAV is equipped with Intel RealSense D435 camera (Fig.1.2). The device
integrates color image camera with set output 640x360 pixels (width x height)
and depth image camera with set output 848x480 pixels. Such equipment
allows different algorithms for object detection using color and depth images
only as well as fused solution for both. The fusion of the algorithms is
supposed to increase the quality and robustness of the detection.

Right Imager IR Projector Left Imager RGB Module

Figure 1.2: Intel RealSense D435 camera. Source [I]

Depth image is represented as depth map. Unlike to a color image, where
pixel value represents color and its intensity, in a depth image pixel value
itself represents the distance. Taking this into account, we can treat the
depth image as a grid of distances. Conversion from pixel value to a distance
value depends on camera setting. The depth is computed from stereo pair of
infrared cameras with 50 mm distance between cameras. It’s possible to reduce
sensitivity and accuracy in a sake of maximum distance estimation. However,
it should be noticed, that distance measurement is limited by 10 meters and
suffer from noise on large distances, maximum value on image means that
distance is out of measurement range. There is no a standard way to visualize
a depth image, however an example of one of possible representations is shown
on Figll.3) where brighter color means larger distance.

A depth image could be also converted to a point cloud. A point cloud is
a form of representation of a scene in a 3D. As it led from the tittle, point
cloud is a set of points distributed in the space, each of them has at least {x,
y, z} coordinates, but it could have more properties (e.g. color). The example
of a point cloud is shown on Fig/1.4.

To work with a point clouds, libraries, such as PCL (Point Cloud Library),
could offer various built-in features to speed up the development process.
The PCL is an open source library, distributed under BSD license and being
developed by Willow Garage from March 2010. The library is designed for 3D
geometry processing and three-dimensional computer vision algorithms. The
library is supported by ROS and could be used for processing of point-based
data taken from an depth camera, LIDAR etc.

1. Introduction

Figure 1.3: An example of depth image representation

Figure 1.4: An example of a point cloud built from a depth image

1. Introduction

ROS, which stands for Robot Operating System, is robotic middleware
that’s widely used in mobile robotics domain. In fact ROS is not an Operating
System from a traditional point of view and it needs to be installed in Linux,
MacOS (experimental) or Windows (experimental). Nevertheless, it gives
capabilities which are common for any operating system. Such capabilities
are hardware abstraction, typical low-level device control, threading (in
form of nodes), message passing interface for nodes communication, package
management. ROS started in Stanford University as a work of PhD students
Eric Berger and Keenan Wyrobek. In 2007 they were invited to join Willow
Garage and proceed the work under ROS.

Color image processing in this work has been mainly done using OpenCV
library. OpenCV (Open Source Computer Vision Library), distributed under
BSD license, is originally developed by Intel Research and contributed by
Intel Russia and Intel’s Performance Library Team. It was later supported by
Willow Garage and integrated into ROS environment. The library is written
in C/C++ programming languages and designed for Real Time Computer
Vision tasks. Started in 1999, it was first released to public in 2000 during
the IEEE Conference on Computer Vision and Pattern Recognition, and still
actively evolves. OpenCV offers various algorithms for color image processing
as well as machine learning tools, what makes it valuable among mobile
robotics research groups. It also supports CUDA and OpenCL, what is
important for usage in embedded domain.

The libraries provide detailed tutorials, which were actively used during
the experiments.

Chapter 2

Methods of Detection for Color Image

B 2.1 cColor Segmentation

An algorithm based on color segmentation is the most intuitive and, as it
resulted, the fastest in terms of computational speed approach for color object
detection. Since all the objects for the search in the scene are of three different
colors, we, as humans, could easily differentiate them in terms of color. The
color segmentation algorithm is based on assessing of every image pixel color
value and its comparison with some limits (or ranges). Ranges are taken as
lower and upper limits in a color space. The limit values depend on color
model chosen to represent an image, it’s guided by color representation in a
space, but exact values are found empirically. If the pixel is inside a range,
it’s marked as taken (i.e. set to logical True), or not taken otherwise (logical
False). One of the output image representation could be a binary image,
that uses only two colors - black for False and white for True. Taking into
account this representation method, we can segment image on colors and get
the output as shown on Fig/2.1|

(b) : binary image for color segmented

(a) : original scene scene (red)

Figure 2.1: Example of color segmentation for red color

The color segmentation defines only potential regions, where such objects
could be found, but it doesn’t guarantee to detect only the objects of interest.
Terrains and ground that are in range of color segmentation filters could be
a cause of false positive detection. Typical examples of such issue could be
grass that is usually close to green color or metal constructions which could
be marked by blue color filter. Such false positive detected regions should be

2. Methods of Detection for Color Image

filtered out.

Another topic to consider is illumination. We need the color segmentation
algorithm to include the range of all possible colors and tones that partic-
ular object could have in a scene with a different light source’s intensities
applied. Moreover, the metal plate, which is placed on top of every cuboid for
transportation purpose, has different reflective properties. Hence, it makes
the color range to be much wider that’s needed for one scene. A broad
range would yield higher number of interest regions that should be somehow
processed and filtered after.

Intersection of color ranges could be also an issue. In case of a broad color
range for proper object detection in a scene with different illuminations, we
could observe that ranges for neighboring colors could have an intersection
and therefore color segmentation output could have ovelapped regions. As an
example, it’s possible to face this problem for green and blue colors in HSV
color space. Any such intersection could result a false positive detection.

B 2.1.1 Color Models

From physical point of view, pixel value is an amplified charge that caused
by reflected light and collected in photosensitive element of an image sensor
during exposure time. Photosensitive elements are stored in two dimensional
image sensor array. In the digital domain black and white images, particularly
grayscale images, could be stored as a digital 2D array, what reflects camera
structure, where every pixel value defines intensity of light in a particular
point. Maximal value corresponds to highest intensity, i.e. white color, zero
intensity means "no light" or black color. Tones, visualised as shades of gray,
are represented as values between minimum and maximum.

(a) : Bayer pattern. Image source[2]

(b) : RGB color model. Image source[3]

Figure 2.2: Bayer pattern and RGB color model

To create a color image, slightly more sophisticated method is used - to
initial image sensor manufacturer applies a color filter, which is able to
pass only the light inside specific range of wavelengths - wavelengths that
correspond either to red, green or blue colors. Such filters are applied on an
image sensor array in the Bayer pattern - Figl2.2al Using this approach every
pixel can store information only about one color, however it’s possible to

6

2.1. Color Segmentation

interpolate its neighbours for two other colors and get an averaged value to
complete color information. In this case pixel color is defined by combination
of intensities of red, green and blue colors. The color model is named RGB
and it’s currently the most used model today.

In the RGB model white color corresponds to the maximum for all three
channels - red, green and blue. Black color - minimum for all the three.
Examples for the illustration different shades of red color are shown on

Figl2.3|

(a) : R:100, G:50, B:50 (b) : R:250, G:50, B:50 (c) : R:250, G:200, B:200

Figure 2.3: Example of different colors in RGB color range

The RGB model is not the best for color segmentation, because it doesn’t
separate brightness, luma, from color information, chroma and it could be a
difficult to define a linear range in such color space for segmentation purpose.
Taking this into account, we can use HSV model, which stands for Hue,
Saturation, Value. The model is shown on Fig/2.4. The color information,
Hue, is placed in a circular form, so it’s possible to select a color for a range
by the Hue parameter. Saturation defines color saturation - from white to
clear color, value - amount of brightness from black to white. Color range in
HSV could be visualised as a radial slice.

anje/

Figure 2.4: HSV color model. Source [4

To convert {R, G, B} color information into {H, S, V} following sequence

7

2. Methods of Detection for Color Image

should be applied. First, RGB values should be unscaled by division on
maximum value in the scale (e.g. scale = 255 for 8-bit color depth per channel
image). Then maximal color value ¢q,, minimal ¢,,;, and their difference
cqgiff should be found. Once it has been obtained, Hue H, Saturation S and
Value V could be calculated. The final result should be scaled, typical value
for scalep is 60 or 30 (that represent hue from 0-360, or 0-180 respectively),
scaleg = 255, scaley = 255.
o B L_ G B

))
scale scale scale

Cmaz = maz(R',G', B)
Cmin = min(R',G’', B')

Cdiff = cmax — cmin

0, if cgipr =0
- scales - (Ci/di;g mod 6), if ¢per = R’
) scaley - (EZ;;I;/ +2), if cmaz = G
scaley - (}z;:fcj/ +4), if oz = B’
g 0, if e =0
scaleg - —Zfrzz :: , otherwise

V = scaley - ¢max

B 2.1.2 HSV Color Range

For correct HSV color range estimation, an additional HSV tool in form of
Python script was developed (and attached as supportive file). The idea of
the tool is to let an user to select area on a picture as an input, transform the
image into HSV color space and build an histogram for Hue, Saturation and
Value parameters in the selected crop area. An example of the tool output is
shown in Fig{2.5

The tool is used to define ranges for correct object detection in given
dataset. The dataset is made in form of ROS bag and was recorded by MRS
team during the challenge preparation. At the first step, user should manually
define ranges based on selected areas. When initial ranges are defined, they
can be checked using the same tool and confirmed in semi-automated mode.
The tool can use given range and visualise found region in series. User should
accept or reject given contour, in case the object is taken, the tool memorises
its HSV distribution to create the final HSV ranges. It was found useful,
to set the initial ranges wider than it should be, so it guarantees complete
object recall. False positives could be rejected during user’s visual check, so
the resulting distribution would still have complete and correct HSV ranges.
The result of such tool are shown on Fig[2.6] [2.7 and [2.8]

8

2.1. Color Segmentation

Hue Distribution Histogram

2500 4
" 2000 1
? 1500 4
£
2 1000
500 4
° [25 50 75 100 125 150 175
(a) : Initial image with user input e
(b) : Histogram of Hue distribution
Saturation Distribution Histogram Value Distribution Histogram
300
2501
2504
2004
§ 2004 72
5 5 150
3 1501 3
£ 5
z Z 100
100 4
50 4 50
[T T T f T 0 T T T
0 50 100 150 200 250 0 50 100 150 200 250
Saturation value
(c) : Histogram of Saturation distribu- (d) : Histogram of Value distribution
tion into selected area into selected area
Figure 2.5: HSV tool usage example
Hue Distribution Histogram
0.25 1
0.20 -
2 0.15 4
E
1]
a
£
0.10 +
0.05 4
0.00 - T T T
0 25 50 75 100 125 150 175
Hue

Figure 2.6: Histogram of Hue distribution for cuboids

2. Methods of Detection for Color Image

Probability

Probability

Saturation Distribution Histogram

0.25

0.20 4

0.15 A

0.10 4

0.05 A

0.00 T T
0 50 100 150 200 250

Saturation

Figure 2.7: Histogram of Saturation distribution for cuboids

Value Distribution Histogram

0.05 A

0.04

0.03

0.02 +

0.01 4

0.00 -
0 50 100 150 200 250

Value

Figure 2.8: Histogram of Value distribution for cuboids

2.1. Color Segmentation

Based on obtained color ranges, it’s obvious that ranges of neighbouring
colors have an intersection. It makes the final algorithm to filter false positives
in case full ranges are taken or to select unique ranges with no intersections,
but it would require additional actions to find pixels of missed color range
and get the full object area.

B 2.1.3 Algorithm based on HSV Color Range

Algorithm takes as input image and pre-defined color ranges. To perform
color segmentation, input image should be converted into HSV color space.
Then image is processed separately for every color. Algorithm takes color
range for specific color and creates binary image, where pixels inside the range
are marked as True and False otherwise. It may be possible, that several
objects of the same color are present on image as well as false positive objects.
To filter false positive objects, algorithm checks found area and compare
it with some threshold. Too small areas are rejected. Another property is
number of lines needed to create an approximate contour of the area. It was
found, that area, which contour consists of high number of lines, more likely
to represent a false positive (as grass for green color).

Algorithm 1 Color segmentation in HSV color range

1: tmage <— input image

2: color__rangelr, g,b] < HSV color ranges

3: procedure COLOR__SEGM(image, color_rangelr, g, b])

4: result < @

5 hsv_image < cv2.cutColor(image, cv2.COLOR_RGB2HSV)
6 for each color in color_range do

7: candidates < cv2.inRange(hsv__image, color__range[color])
8 for each candidate in candidates do

9 if getArea(candidate) < area_threshold : continue

10: polyline < get Polyline(candidate)
11: if len(polyline) > lines_threshold : continue
12: result < candidate

The filtering helps to reject most of false positives, but it doesn’t guarantee
error free detection. Hence more sophisticated filtering techniques should be
used and reviewed. Another topic to consider is neighbor color region overlap.
One of such technique to reject overlapped areas could be region voting. Once
algorithm collected all candidates, it can sort them in descending order in
terms of region area. Then algorithm add candidates to final result, if and
only if more than 90% of candidate region is not occupied by any of previous
regions. It was found, that in case of range intersection, wrong contours are
always inside larger contours, so such filtering could help to reject overlapped
regions.

It’s supposed to be also improved by time memory and optical flow. Every
selected region could have probability of some color based on all previous
detection. Region memory should be shifted by optical flow information. It

11

2. Methods of Detection for Color Image

Algorithm 2 Region voting for color segmentation

1: result < @

2: dummy_image < empty_image(size = input image)

3: color__rangelr, g,b] <~ HSV color ranges

4: candidates <+ color__segm(image, color_rangelr, g, b])

5: candidates <+ sort(candidates)

6: for each candidate in candidates do

7 if f candidate U dummy__image > area_threshold : continue
8 dummy__image[candidate] + 1

9 result <— candidate

(a) : Initial region candidates (b) : Candidates after region voting

Figure 2.9: Region Voting Filter

gives region voting algorithm an advantage in form of filtering of regions with
low probability in order to reject region overlap.

B 2.2 Aigorithm based on Graph Cut (GrabCut)

The segmentation based on color range is simple and quick, but it suffer from
range intersections, region overlap and excessive regions detected. One of
possible improvement could be segmentation based on traversing through
image as a graph. One of such approaches - interactive foreground extraction
- is using GrabCut algorithm.

The algorithm was introduced by Carsten Rother, Vladimir Kolmogorov
and Andrew Blake from Microsoft Research Cambridge in their work [5]. It
was presented as improvement for automatic segmentation algorithms such
as Magic Wand from Adobe Photoshop 7 [7], Intelligent Scissors (a.k.a. Live
Wire or Magnetic Lasso) [§] and Graph Cut [Boykov and Jolly 2001; Greig et
al. 1989] [9].

The algorithm takes the image and rectangle-shaped user input, inside
which the object is located. Anything outside the user input box will be
treated as sure background. Then algorithm represents the image as graph
and creates energy function. Every pixel is represented as graph node, and
specific weight assigned to each edge, that connects nodes. The weight is
computed based on edge information or pixel similarity. If difference between
two neighboring pixels (nodes) is large, the edge weight will be small. Then

12

2.2. Algorithm based on Graph Cut (GrabCut)

all the nodes should be assigned either to Background terminal T or Object
terminal S in such way, that graph cut, which separates terminals, will
have minimal total energy. Such cut will result the best segmentation. The
principle is illustrated on Figl2.10.

7~

(a) Image with sceds. (d) Segmentation results.
y)
Background Background
{ ii} teriningl (:} terminal
e
<@ P | <@ - -
@ @, .
Object Object
terminal terminal
(b) Graph. (¢) Cut.

Figure 2.10: Simplified illustration of GrabCut algorithm. Source [6]

To use the algorithm, color segmentation with strictly unique ranges (i.e.
no range intersection is allowed) is taken in order to obtain strong color
regions, which will be then enlarged to compensate lost parts because of
insufficient color range and passed to GrabCut algorithm. The result for one
region of blue cuboid color range is shown on Fig/2.11]as an example.

(a) : Initial image with user input (b) : GrabCut algorithm output

Figure 2.11: GrabCut usage example
As you can see at Fig algorithm can detect background accurately,

13

2. Methods of Detection for Color Image

however cuboid of another color is also selected as foreground. In such case,
algorithm is deemed to accept clarifications in terms of additional user input,
which could be foreground and background. For such purpose, we can use
output image and do color segmentation for other colors. Any detected cuboid
of other color will be processed to GrabCut algorithm as sure background
and algorithm will be called again. The final output is shown on Fig/2.12/

Figure 2.12: Updated image after background clarification for GrabCut algorithm

Algorithm 3 Cuboid object detection with GrabCut algorithm

1: result + @

2: tmage < input image

3: color__rangelr, g,b] < HSV color ranges

4: regions < color__segm(image, color__rangelr, g, b])
5. for each region in regions do

6: color = region color

7 mask = empty mask

8: bbox = enlarged region bbox(region,enl__coef f)
9: mask = cv2.GrabCut(image, bbox, mask)
10: mask_new = color__segm(image[mask! = 0], color_range[-color])
11: mask = mask & mask_new
12: mask = cv2.GrabCut(image, bbox, mask)
13: result < image[mask! = 0]

Complete algorithm is described in the Algorithm [3] section. As the result,
proposed solution could accurately segment cuboid objects in the most of
cases. Main disadvantage of such approach is computational speed. The
algorithm is far from real time and it takes more than 4 seconds for single
region processing on Intel Core i7-2630QM processor @ 2.00 GHz.

14

2.3. Algorithm based on a Search of Closed Loop

B 23 Algorithm based on a Search of Closed Loop

Another graph method for object segmentation is a closed loop search based
on edge information. The method is an attempt to improve computation
speed of GrabCut algorithm.

Algorithm 4 Cuboid object detection with closed loop search algorithm

result < @
1mage < input image
Ix, Iy < gradient(image)
sobel < /1% + I
bin__image < binary__threshold(sobel,threshold)
diluted <+ dilution(bin__image)
skel + skeleton(diluted)
color__range[r, g,b| < HSV color ranges
regions < color__segm(image, color_rangelr, g, b])
for each region in regions do
corner_pizel < find__corner__pixel(region)
for each pixel around corner_pizel do
if (pizel # edge_pizel) : continue
for each edge_ pixel do
closed_loop <+ search__for__closed_loop(skel)
for each closed_loop do
Q = calc__quality(closed__loop)
if Q>Q _THRESHOLD, result < closed_loop

I e T e T e e

As it stated in the algorithm section, the method is based on Sobel filter [13],
which computes image gradients I, I, (in x and y directions respectively) and

produces resulting gradient as \/1)2{ + 132,. The illustration of sobel filtering

is shown on Fig

(b) : Sobel operator applied to original
image

Figure 2.13: Example of sobel filtering

The next step is threshold filter which will result a binary image. The
threshold should be set small enough so even weak gradients will be surely
taken. The binary image is then processed in order to obtain a skeleton image.

15

2. Methods of Detection for Color Image

The result of those operations are shown on Figf2.14l

e Yy SOE o
o _.ag-I
4 i £

(a) : Binary image as output of thresh-
old filter

(b) : Skeleton image

Figure 2.14: Example of threshold filter and skeleton image

As the result skeleton image could be used for traversing through edges,
i.e. white pixels, in order to find closed loops. Breadth-first search algorithm
was used for the traversing and search in the proposed method. Regions,
detected with color segmentation algorithm with unique ranges, could be
used as initial region mask. Algorithm starts from a mask frontier pixel, i.e.
front pixel that splits "1" and "0" zones of initial mask, and finds closest edge,
i.e. white pixel, around segmented region and switches to search for a closed
loops. When such loop is found, algorithm assess it in terms of closed loop
quality as intersection of color segmented region and found closed loop area
over color segmented region. The closed loop quality QQ shows ratio of color
region pixels inside the closed loop to total number of color region pixels.
Therefore, value that close to 1 or above some threshold is a break condition
for the search process.

color region N closed loop

Q=

color region

Figures|2.15] 2.16/ and |2.17 are examples of object detection based on closed
loop search. Detection is performed against red color. Color segmentation
mask with a strict color range is shown on Fig)2.17a. For illustration purpose
the start pixels from the initial segmented mask are colored red. Algorithm
explores pixel around the segmented mask and searches for the closest edge.
When edge is found, algorithm traverse through all its neighbour until closed
loop (cycle) is detected. Processed edges are highlighted by blue color, found
loop - green. When the loop is found algorithm computes its quality and
if it’s above some threshold, it returns found contour or proceed the search
otherwise. The first found loop is shown on Fig/2.15l The quality of such
loop is low, as it seen on the figure, the loop is outside the block, so there will
be no initial mask pixels inside the found loop corner. Algorithm proceed
the search until loop on Fig2.16|is found. Based on initial and closed loop
masks (Fig{2.17), quality of the loop is equal to 1.0, thus it generates break
condition and algorithm stores the loop into the result.

16

Figure 2.15: First found closed loop (Q = 0). Legend: red - original mask from
color segmentation step, blue - checked contour, green - closed loop found

Figure 2.16: Closed loop with Q = 1.0. Legend: red - original mask from color
segmentation step, blue - checked contour, green - closed loop found

17

2. Methods of Detection for Color Image

(a) : Segmented color mask (b) : Closed loop mask

Figure 2.17: Example of closed loop search. Legend: red - original mask from
color segmentation step, blue - checked contour, green - closed loop found

The algorithm has several points to consider, one of them is that the
algorithm is very sensitive to threshold values chosen for edge filtering, because
it can yield to poor skeleton image. It may result, that proposed coefficients
would be not correct for detection with another image sensor device or in
different scene, and some edges would be missed. On the other hand, the low
coefficients can lead to weak edges detection with multiple false closed loop
detection. In the first case it yields to huge gaps between the edges such that
algorithm will not be able to accurately detect the loop or in second case, it
could waste time on looping on textures around.

Another weak point of this algorithm is computational speed. Python
implementation of this method was found to be slow for the graph task.
Overall computational speed was a maximum among all the used approaches
- the loop on Fig/2.16| was found for more than 10 seconds on Intel Core
i7-2630QM @ 2.00 GHz. It’s supposed (but not implemented), that C or C++
implementation of the algorithm could have much better speed performance.
Moreover, there is room for algorithmic improvements, one of them could be
usage of heuristics in closed loop search in a way that edges that are closer to
initial mask could be processed sooner, e.g. based on Manhattan or Euclidean
distance from edge pixel being traversed to the color region. Such approach is
inspired from A* algorithm [14] where it’s used as an heuristic optimisation.

. 2.4 Deep Learning and Convolutional Neural
Networks

Many tasks of Computer Vision today are being solved by Artificial Neural
Networks. Solutions based on Neural Networks are state-of-the-art in many
areas such as object detection and image recognition, semantic and instance
segmentation, image colorization, style transfer and others.

The Neural Networks are computing systems inspired by biological neural
networks, where its nodes, neurons, are connected with other nodes in some
system and can pass signal to these connected nodes. Nodes and connections
typically have a weight, which is initialised to a random number and adjusted
during training process. These weights are applied to signal passed by neurons

18

2.4. Deep Learning and Convolutional Neural Networks

and resulted signal is propagated to connected neurons. The Neural Network
output usually comes from a non-linear activation function, e.g. sigmoid,
hyperbolic tangent, Rectified Linear Unit and others. Meaning of the output
could vary on architecture of the neural network and its task. In case of
object detection it can be 1D array, where each value stands for confidence of
object to be of particular class, or in case of image generation as style transfer
it could be an image itself in form of array of three 2D outputs (for three
color channels - RGB), where each value stands for output image pixel value.
Convolutional Neural Networks are used to work with images. Convolution
operation is applied to input image with a layer weights.

Xl
A [¥—]| Y,
XZ
A |—] Y,
XJ
Input Signal Hidden Layer 1 Hidden Layer 3 Output Signal

Input Layer Hidden Layer 2 Output Layer

Figure 2.18: Neural Network Structure

Two different methods based on Neural Networks are studied in this work
- Holistically-Nested Edge Detection published by Saining Xie et al., 2015
[11] as way to improve closed loop search and object detection with instance
segmentation YOLO v2 tiny published by Joseph Redmon et al., 2016 [12].

B 2.4.1 Holistically-Nested Edge Detection

Holistically-Nested Edge Detection based on Convolutional Neural Network is
an algorithm to predict image edges. The work was published by Saining Xie
and Zhuowen Tu in 2015 [11] and was aimed to solve fundamental problems
of Computer Vision in terms of object boundaries and edge detection. Neural
Network was designed in order to provide multi-scale and multi-level feature
learning. It was trained on BSD500 and NYU Depth datasets and demostrated
fast computation speed (0.4 seconds per image was committed by the authors).
Pretrained network models are publicly available by authors, hence it can be
used in OpenCV environment for the test.

The algorithm was studied as an attempt to improve closed loop search
reviewed in section 2.3. The problem of skeleton image resulted from Sobel

19

2. Methods of Detection for Color Image

.0, 7}
a5

IS
At AN

U

~

g9

~ - SO

(g) Canny: 0 = 2

(h) Canny: 0 = 4

(i) Canny: 0 =8

Figure 2.19: Example of Holistically-Nested Edge Detection performance. Source

1]

Figure 2.20: Example of Holistically-Nested Edge Detection performance on the
task image

20

2.4. Deep Learning and Convolutional Neural Networks

filter is excessive number of loops generated by texture in order to store all
the edges. As it deemed from the paper, the trained network generates edges
that are part of detected objects only, hence algorithm output can be used
directly for binary images to be traversed.

Example of the algorithm output is shown on Fig2.20. Average processing
time for single image is 2.7 seconds on Intel Core i7-2630QM @ 2.00 GHz.
The output image preserves strong edges and contains lower number of edges
which are part of texture comparing to Sobel filter.

B 2.4.2 You Only Look Once (YOLO)

Neural network You Only Look Once, YOLO, is the-state-of-the-art neural
network for real-time object detection. Since the first publish in 2015 in
paper "You Only Look Once: Unified, Real-Time Object Detection" by Joseph
Redmon et al., the proposed algorithm reached version number 4 in paper
"YOLOv4: Optimal Speed and Accuracy of Object Detection" by Alexey
Bochkovskiy et al. in 2020.

In this work pretrained on COCO dataset YOLO v2 tiny was taken for
cuboid detection. All the cuboids were merged in a single class, hence, further
color clarification may be needed. Dataset was made from more than 2000
images with augmentation in form of 4 different image size scales in range
{1, %, %, %} and random image flipping with probability of 50% is applied.
Dataset was made in semi-automated way, proposed regions were guided by
color range segmentation. Mean value per each channel for the whole dataset

%, %, %} is subtracted from individual images and divided by standard
deviation for each channel {%, %, %} Dataset of 9024 images in total is
split on train and validation data in ratio 90:10 respectively. PyTorch was
used to work with the network, the code is inherited from solution given
in Autonomous Robotics class of Czech Technical University in Prague and
modified in order to solve the task.

The neural network architecture is present in Table 2.1l Batch normaliza-
tion and Leaky ReLLU with negative slope equal to 0.1, which follow every
convolutional layer, excluding the final, were not shown for brevity.

Training has been done in batches of 2 images with learning rate 10~% in
100 epochs. Stochastic Gradient Descent optimizer was taken, momentum
was set to 0.9, weight decay 1073. Receiver operating characteristic for the
trained network is shown on Fig/2.21l The network output for input image
of size 3x360x640 pixels (Number of channels x Height x Width) is image of
size 1x45x80, where every pixel value represent confidence of block detection
in particular image region. In order to obtain cuboids area, output image is
converted to binary in a way that all pixels with value less that confidence
threshold are set to zero or to one otherwise. Then image is reshaped into
original size and regions extracted.

The trained network was assessed on dataset it has never seen before,
example of typical output is shown on Fig2.22. In the most cases algorithm
can detect blue and green object, some areas of red objects are detected in
the most of cases (Fig.2.22al), however in some cases dark areas of any cuboid

21

2. Methods of Detection for Color Image

H Layer Channels (in x out) Kernel Size Stride Padding H
Convolutional 3x16 3x3 1 1
MaxPool 2x2 2 2
Convolutional 16x32 3x3 1 1
MaxPool 2x2 2 2
Convolutional 32x64 3x3 1 1
MaxPool 2x2 2 2
Convolutional 64x128 3x3 1 1
MaxPool 3x3 1 1
Convolutional 128%x256 3x3 1 1
MaxPool 3x3 1 1
Convolutional 256x512 3x3 1 1
MaxPool 3x3 1 1
Convolutional 512x1024 3x3 1 1
Convolutional 1024x1 1x1 1 1
Table 2.1: YOLO neural network architecture
Receiver operating characteristic example
1.0
0.8
z
& 0.6
s
05' 0.4
=
0.2
ROC curve
0.0 T T T T T
10-6 1075 10~ 10-3 102 10-1 10%

False Positive Rate

Figure 2.21: Receiver operating characteristic for trained YOLO network

22

2.5. Comparison of Color Image based Methods

could be missed (Fig. Objects such as computers or buildings, which
has never used in training dataset, could yield a false positive (Fig
and @, however, in most of cases it can correctly distinguish background
(Fig @. It’s supposed, that fine tuning of training parameters and dataset
with higher number of images could help to achieve better training results.

Average computation speed is 0.745 second on Intel Core i7-2630QM @
2.00 GHz. It’s known, that running the network on Graphic Processing
Unit (GPU) or neural network accelerators such as Intel NCS2 and Coral
USB accelerator could significantly improve the network computational speed
results.

Lo

"\

(a) : Example of object detection (b) : Example of object detection

(c) : Example of object detection

B g

; 3

(e) : Example of object detection (f) : Example of object detection

Figure 2.22: Example of trained YOLO prediction (area inside white curves)

B 25 Comparison of Color Image based Methods

Four methods of color cuboid object detection were reviewed in this chapter.
Since the algorithm shall be real-time, only those approaches, that have
computational speed better than 1 Frame Per Second (FPS) could be used
for the final solution. Computation time (in orders of second) for methods
based on Color Segmentation (CS), GrabCut (GC), Search for a Closed Loop

23

2. Methods of Detection for Color Image

(CL), Holistically-Nested Edge detection (HNED) and YOLO v2 tiny neural
network are shown in Table 2.2

[CS

GC CL HNED YOLO H
109 10! 100 1071

Comp. time, s

Table 2.2: Approximate computation time for the color image based methods
in orders of second

Only two methods - detection based on color segmentation and YOLO
neural network, have computational speed better than 1 FPS. Moreover, it’s
known that computation time of neural network could be improved by usage
of GPU or Neural Network Accelerators. Hence, the two potential methods
were taken for detection quality assessment. The results are present in Table
2.3

H Color segmentation YOLO v2 tiny H

False Positive 4 19
False Negative 7 13
True Positive 347 331
Precision 0.989 0.946
Recall 0.980 0.962
Avg. comp. time 0.00496 0.80635

Table 2.3: Detectors performance

The assessment has been performed on dataset it has never been tested
on before. The dataset recorded with unique illumination and weather. 100
random frames was taken for each method, total number of false positives
and false negatives were calculated manually. True Positive was assigned if
detected area is greater than % of the cuboid object total area, otherwise the
object results False Negative. False Positive is assigned in case area with
a size above detection threshold is found and the area doesn’t contain the
cuboid object. Taking into account the fact, that the neural network is not
capable to distinguish objects by color and in order to make the comparison
fair, color information was out of scope of the assessment and region voting
feature was off. Precision and Recall has been calculated in accordance with
equations below.

True Positives

Precision = — e
True Positives + False Positives

True Positives

Recall =
coa True Positives + False Negatives

24

2.5. Comparison of Color Image based Methods

In accordance with the algorithm comparison, the method based on Color
Segmentation requires two orders less of computation time and demonstrates
slightly better detection performance. Neural Network is a powerful tool,
however, in case of a plain color object detection it was outperformed by the
color segmentation algorithm. The color segmentation algorithm is set in
order to achieve maximum recall, so no correct region of interest is missed,
however, occasional missing is still occur. The algorithm will be taken as
basis method for the fused approach and overall precision to be improved
further.

25

26

Chapter 3
Methods of Detection for Depth Image

B 31 Depth Cameras and Depth Imaging

Accurate depth imaging is relatively new technology and usually requires
special hardware and algorithms to generate and process the data. Despite
to color image, where every pixel has {u, v, color}, depth image consists of
pixels, which have {u, v, depth}. Depth information could be obtained by
different techniques, the most popular are based on time of flight and stereo
triangulation.

Time of flight principle, as it comes from the name, is based on waves
propagation and calculation of time till reflected waves return to the sensor.
Taking into account the wave propagation speed (e.g. speed of light) and
time travelled, we can compute distance to object D as half of product of
wave propagation speed ¢ and time of flight .

cXt
2

The principle is mainly used in LIDAR and sonar based imaging. LIDAR,
which name is portmanteau of light and radar, is a device that generally
consists of motor and rotating platform, which has light source and light sensor.
Light source is typically laser light with maximum power and wavelength in
safe for human eye range. Typical LIDAR rotates platform, which has light
source and sensor. Light source propagates narrow band of light waves and
calculate distance based on time what takes for reflected light to be detected
by light sensor. Since platform is rotating, the measurement is performed in
circular way with some angle step.

D=

However, it’s worth to mention, that some versions of LIDAR today could
have no moving parts and are used in a specific applications. Such LIDAR
could be solid-state LIDAR, which is made in a form of phased array. Some
versions of LIDAR have not just rotating platform for full angle view, but
could rotate platofrom itself. Such improvement is beneficial in autonomous
driving or mobile robotics, where objects around could be on various heights
or agent’s height is subject to change.

Another possible technique is stereo triangulation. The principle is based
on stereo cameras with known mutual distance. Example of such camera is

27

3. Methods of Detection for Depth Image

Velodyne

Figure 3.1: Velodyne Alpha Prime LIDAR. Source [15]

Intel RealSense D435 and it’s shown on Figll.2. Solving the correspondence
problem, it’s possible to get depth information for keypoints on epipolar
line. However correspondence problem require vast amount of computational
resources and some scenes could suffer from lack of correspondences, i.e.
feature keypoints. Example of such scene could be a single color wall, ceiling
or texture. With specific illumination, it’s possible to obtain almost similar
images on both cameras, hence correspondence problem couldn’t be solved in
such case without any additional scene information.

\camera_2

\camera_1 N\
Figure 3.2: Stereo triangulation. Source [16]

An additional information could be projected IR points with a specific

28

3.1. Depth Cameras and Depth Imaging

pattern on scene. This could help to match keypoints in order to solve the
correspondence problem. This technique is commonly used in RGB-D cameras
such as Intel RealSense D435, Microsoft Kinect and others. The example of
an image in IR range is shown on Fig/3.3|

Figure 3.3: IR projection. Source [16]

Intel RealSense D435 camera was used as data source in this work. The
camera creates a depth image as result of stereo triangulation. The scene
is also projected by IR pattern to improve the stereo triangulation in low
texture scene. Computation is performed by camera and output in form of
images and camera calibration info is transmitted via USB.

1) Capture 2) Search

<) !
(<) /

Image .
Sensors IR Projector

Figure 3.4: Active Infrared (IR) Stereo Vision Technology. Source [I]

The camera calculates depth for every pixel as distance from the center
of left and right image sensors to the object. Depth pixel values are used to
compose the depth frame.

29

3. Methods of Detection for Depth Image

Depth (Z)

-

-‘Range (R)

-

IR Camera 2

Figure 3.5: Depth Measurement (Z) versus Range (R). Source [I]

B 3.2 Conversion of Depth Image into a Point Cloud

In order to use the Point Cloud Library, the depth image should be converted
into a point cloud. The conversion requires Projection matrix P to be known.

fxr 0 cx Tz
P=10 fy cy Ty|,
0 0 1 o0

where fx, fy are focal lengths, cx, cy are principal point and Tx, Ty are
position of the optical center of the second camera in the first camera’s frame
[17].

Every pixel with coordinates {u, v} of depth image with distance d as its
pixel value could be converted to a point with coordinates {x, y, z} using
pinhole camera model with following equation

(d-(u—cx)—Tz)- fo?

= |(d-(u—cy)—Ty)- fy!
d

IS

The conversion is performed in ROS environment. Developed by Willow
Garage package depth_image proc provides a nodelet for depth image to
point cloud conversion. The depth image to point cloud conversion example
is shown of Fig[3.6

(a) : Depth image (b) : Converted point cloud

Figure 3.6: Example of depth image to point cloud conversion

30

3.3. Algorithm based on Point Cloud

B 33 Algorithm based on Point Cloud

Once point cloud is obtained, it could be segmented on planes using RANSAC
algorithm. The plane with highest number of points is considered as a ground
plane. Every other plane is checked as a cuboid candidate. To process the
candidate, every segmented plane cloud should be clustered to separate cuboid
objects and possible noise or errors. Every cluster should be also checked in
terms of area size and plane height related to ground. The complete algorithm
is provided in algorithm |5 section.

Algorithm 5 Algorithm based on Point Cloud

. ground < @
. result +— @
: points < all_points
: planes < RANSAC (points, dist_thresh, min_points)
. planes < sort_by__size(planes)
. for every plane in planes do
if(ground = @) : ground <+ plane
if(plane ! = ground) : clusters < get__clusters(plane)
for every cluster in clusters do
dist < get__dist(cluster, ground)
if (dist < min_dist) or (dist > max_dist) : continue
area <— get__area(cluster)
if(area < min_area) or (area > max_area) : continue
results < cluster, get__center(cluster)

© 0 N DT E W =

I S S S S Y
Ll vl

Average processing time for a single point cloud is 0.20 second on Intel
Core i7-2630QM @ 2.00 GHz.

Bl 3.3.1 Plane Segmentation using RANSAC

Since the scene is supposed to be composed of flat ground and man-made
objects, which are also deemed to be flat shape (cuboids, wall), it’s possible to
segment the scene on planes and perform further processing on found planes.
However, the scene could contain terrains and algorithm shall correctly
distinguish them.

Plane segmentation method used in this work is based on RANSAC, Ran-
dom Sample Consensus, approach. Algorithm is non-determenistic approach
to obtain parametric model based on random points selected. It was pub-
lished by Fischler and Bolles in 1981. The algorithm picks random points and
computes plane equation by solving system of linear equations. The plane
equation in form of Ax + By + Cz + D = 0 is applied to the rest points and
number of inliers is computed. Inlinier is a point which lays on computed
plane or within given threshold from the plane. The process repeats given
number of iteration times and plane equation with maximum number of
inliers is stored. Algorithm could be halted before the maximum number of

31

3. Methods of Detection for Depth Image

iterations has been reached in case it’s already equal or greater than

iter > 21 —=P)

In(1—wn")

where p stands for confidence in range [0,1] (typically 0.95), w - ratio of
inliers to total number of points, n - random sample size.

RANSAC algorithm could be illustrated on 2D example for simplification
purpose. As it shown on Fig/3.7, the set of points should be processed in
order to obtain 2D line. The data not only consists of points, which truly
make the line, but also noise, errors or irrelevant data points. The algorithm
randomly picks points and compute line equation. The line equation could be
obtained, for example, by the Least Squares method. Then algorithm applies
the equation and given threshold, margins, and computes number of points
which lay inside the margins. Those points are named inliers. Algorithm
repeats until parametric model with the highest number of inliers is found.

. . | /
S . .t - g
- " L4 [
[
.l: e,
. . - >
5 (':'
. . .
. L4 & . i s
(3
cSay = LAY . . . > . - -
=~y r. oo . ., . é
e (T, a * . * . . L L .
T , ¢
- by i ® L
. . B . dg@
o?* W £ . o
. *: . . .
.
. . 3/c; o
. . @
e ! " a
o . . 5
/// .
L] .
[]
. . . .

(a) : Model with low number of inliers (b) : Model with high number of inlliers

Figure 3.7: Example of RANSAC algorithm for linear model in 2D. Source [I8]

Algorithm 6 RANSAC algorithm

1: points < all__points

2: best_model +— @

3: max_inl < 0

4: for iter in max_num_of_iter do

5: rand__points < random__points(points, num__of__points)
6 model < compute__model(rand__points)

7 inl < compute__inl(model, points)

8 if inl > max__inl : best_model < model, mazx__inl < inl
9

. In (1—p) .
if dter 2 In (1—(inl /points)(num_of_points)) break

The algorithm is used to segment planes on given point cloud is provided in
PCL library. Example of plane segmentation result is shown on Figl3.8] For

32

3.3. Algorithm based on Point Cloud

further processing it’s supposed, that plane with the highest number of point
is the ground plane. Parametric model in form of Ax + By + Cz+ D =0 is
stored for further computations.

Figure 3.8: Plane segmentation example (planes have individual color)

Bl 3.3.2 Point Clustering

Since scene could have several objects, which compose a single plane, e.g. tops
of several cuboid objects or cuboid object with random textures on the same
height aside, algorithm shall correctly distinguish those object and segment
obtained plane on clusters to process them individually. The algorithm used
is based on Euclidean distances and forms clusters of points which lays on
some short distance dy, to each other.

Algorithm 7 Euclidean clustering. Source [19]

1: P+ k—d representation of point cloud
2: C + @, Q + @
3: for every point p; € P do

4: Q < pi

5 for every point p; € @ do

6 Pf + neighbors of p; in a sphere with radius r < dg,
€6 for every point p¥ € P¥ do

8 ifpf 1s not checked : Q <+ pf

9 C+Q, Q9D

10: if no new points : break

The algorithm used is the part of PCL and it was proposed by Radu
Bogdan Rus in 2009 in his dissertation "Semantic 3D Object Maps for Every-
day Manipulation in Human Living Environments", Technical University of
Munich. Main features of the algorithm that it takes K-d representation of
the point cloud dataset P and split split unorganized point cloud model into
smaller parts to improve overall computation speed.

33

3. Methods of Detection for Depth Image

Figure 3.9: Example of point clustering (clusters have individual color)

B 3.3.3 Plane Equation Calculation

Plane equation in form of Az + By + Cz 4+ D = 0 could be obtained from
at least three points. Those points shall not lay on a line. System of linear
equations is obtained from such points, approximated solution of the system
will be the plane equation.

° Qxyz

° P L nyz

Xyz

AX+By+Cz+ D=0

Figure 3.10: Plane made of three points

A-x1+B-y1+C-x1+D=0
A-xg94+B-y2+C-20+D =0
A-x3+B-y3+C-2z3+D =0

What can be also solved in the matrix form

34

3.3. Algorithm based on Point Cloud

1 yr 2 1
T2 Yo 22 1
r3 y3 23 1

QT
I
o oo

Plane equation is used in RANSAC algorithm for plane segmentation.
Proposed approach is one of the possible solutions for the given problem.
Exact method depends on implementation.

B 3.3.4 Distance to Plane Calculation

Once individual point cluster is obtained, it’s possible to check it’s properties
to define if the cluster is cuboid object. From geometric point of view, the
cuboid object is composed from several flat planes, top plane has specific area
and specific height, i.e. distance to ground.

Xyz

AxX+By+Cz+ D=0

Figure 3.11: Point-plane distance d

Distance d of point p with parameters {p,,py,p.} to plane defined as
Ax + By + Cz+ D = 0 could be calculated as

_ | A-pp+B-p,+C-p.+ D |
VA? + B? 4+ (C?

Since plane is obtained using RANSAC algorithm with some threshold dyp,
plane points could have legit height in following range

d

[hcuboid — dip, £ Snoise, Peuboid = Snoise]a

where heypoiqg is cuboid height, sy0se is depth camera sensor noise.

It’s necessary to assess a set of points of size n of examined cluster to define
if it could be cuboid top plane. For such purpose it’s necessary to calculate
minimum, maximum and median values. Minimal value couldn’t be less than

35

3. Methods of Detection for Depth Image

(heuboid — din £ Snoise) and maximum value greater than (heuboid = Snoise)-
Meanwhile median value should be greater than arithmetical average of
minimum and maximum values. If the plane’s height is out of range, then
plane is rejected. Such approach helps to reject planes, which doesn’t belong
to the cuboid object - planes that are not parallel to ground or have non-flat
surfaces.

B 3.3.5 Polygon Area Calculation

In order to obtain detected plane area, point cloud, that represents the plane,
should be converted to a polygon. Polygon is a plane figure which represents
outer contour of the point cloud. Polygon consists of n points, where each
point p; has {z;, v;, z;} coordinates. Plane area A could be obtained as
following

P, Py P,
P, (A >P5
Pg P, Ps

Figure 3.12: Polygon area A

T)) x3 T Z1
1
A=g-(o| - oz + || o]+t Y| - |vi])
21 29 22 z3 Zn 21

Polygon area is important property, which helps to define whether the
given point cloud represents the block or not. Objects of different colors are
assumed to have different surface area. The area also serves to define whether
the area could represent the object partially and, hence, become a potential
region.

Bl 3.3.6 Polygon Center Calculation

Detected object center could be an algorithm output as an target point for
magnet holder. Calculation of detected plane center requires a polygon of the
plane point cloud. The center point {x., y., 2.} is calculated as arithmetical
mean of the polygon points coordinates.

_1 n
Ze notey T
_ —1 n .
Ye| = [7 225=1Yi
-1 n
Ze n - Zi:l Zi

36

3.4. Summary

Figure 3.13: Polygon center Cyy.

B 34 Summary

Proposed algorithm could robustly detect cuboid objects on a given scene.
With the assumed cuboid objects geometrical properties, the algorithm gives
no false positive results, however, due to sensor noise and stereo triangulation
imperfection, objects on a high distance, more than 3 meters, do suffer from
geometrical distortions and hence, are rejected by the algorithm. To avoid
high number of false negatives, a wider geometrical limits were introduced.
It’s known, that geometric properties are always getting less than they are,
hence appropriate compensation could be introduced further. Moreover,
algorithm can distinguish multiple objects on scene and return detection
result as found cuboid object top plane centers.

37

38

Chapter 4
Color and Depth Methods Fusion

B 2.1 Sensor Fusion Algorithm

As it was mentioned in previous chapters, color segmentation approach with
wide color ranges could yield good recall and precision with low computation
time. However, wide color ranges could also result false positives, which
should be filtered out. Geometrical verification in form of algorithm that
is based on point cloud could be used to reject false positives. Such sensor
fusion is deemed to improve overall algorithm precision.

The algorithm starts with color segmentation. Detected regions are checked
on overlapping and region voting is performed. Boundary box for every
cuboid object candidate is calculated and enlarged in order to include object
background information. Boundary box coordinates are converted from
RGB camera coordinates to depth camera coordinates using Intrinsic camera
matrices K for both RGB and depth cameras.

fr 0 cx
K=10 fy cy|,
0 0 1

where fx, fy are focal lengths and cx, cy are principal point. The Intrinsic
matrix is unique for every image sensor and calculated during camera cali-
bration. Projection of a 3D point on image plane equation could be used for
RGB and Depth cameras mapping.

u Pa
Aol =K - |py
1 Dz
u Pa
K1 \|v| = Dy
1 Pz
up uc
AMup| =Kp- Kzt \|ve
1 1

39

4. Color and Depth Methods Fusion

up uc
Up ZKD~K51 - oo
1 1

Every cuboid object candidate region is cropped from depth image and

converted to a point cloud. Algorithm based on point cloud is used to confirm
or reject the region and obtain object top plane centres.

Algorithm 8 Color and Depth Methods Fusion

[R
L 29

W o W W W NN NN NN NN NN = e e e

1mage__c < input color image
image__d < input depth image
color_rangelr, g,b] < HSV color ranges
color__regions <+ @
result < @
hsv_image < cv2.cutColor(image_c,cv2.COLOR_RGB2HSV)
for each color in color_range do
candidates < cv2.inRange(hsv__image, color__range[color))
for each candidate in candidates do
if getArea(candidate) < area_threshold : continue
polyline < getPolyline(candidate)
if len(polyline) > lines_threshold : continue
color__regions < candidate

candidates < sort(color_regions)

: for each candidate in candidates do

if f candidate U dummy__image > area_threshold : continue
dummy__image[candidate] + 1
x1,Y1, T2, Y2 < enlarged_bbox(candidate)
depth__crop < image_d[x1 — x2 : y1 — y2]
avg__depth = average(depth__crop)
if (avg_depth < min_depth) : continue
points < get__point__cloud(depth__crop)
ground + @
planes < RANSAC (points, dist_thresh, min_points)
planes < sort_by_ size(planes)
for every plane in planes do
if(ground = @) : ground < plane
if(plane ! = ground) : clusters < get__clusters(plane)
for every cluster in clusters do
dist < get__dist(cluster, ground)
if (dist < min_dist) or (dist > max_ dist) : continue
area < get__area(cluster)
if(area < min_area) or (area > max_area) : continue
result < get__center(cluster)

The fused algorithm is composed from Color Segmentation, Region Voting

and Point Cloud Algorithms [1], [2| and [5| respectively. Detailed description of

40

4.2. Algorithm performance

algorithm steps are present in Sections and [3.3|

The solution is designed to work in ROS environment and based on syn-
chronised color and depth frames. Algorithm segment images on color and
perform region voting to reject overlapped candidates. Then it assess distance
to object. In case object is too close and hence, observed only partly, the
candidate is rejected in order to process only objects, which are complete
in the field of view. Algorithm output are centers of detected candidates,
therefore, it gives relative location for object handling algorithm by pass-
ing coordinates of cuboid object metal plate for holding. Example of fused
algorithm detection is shown on Figl4.1|

Figure 4.1: Example of cuboid object detection with fused algorithm

Detected object centers, which could be the target point for cuboid object
handling algorithm, are shown as circles with appropriate color. The detected
centers are main output of the algorithm, because it can direct the UAV.
Colored boundary box are potential regions, i.e. regions, which resulted by
Color Segmentation algorithm, but during geometrical verification a plane
within distance threshold was found, however, its area is below minimal
surface area threshold. It’s likely, that such region is a partly observable
object. The regions could be valuable in case no object center were detected
and it can direct the UAV to explore the region.

B a2 Algorithm performance

Algorithm performance was assess on obtained dataset of total size more than
2900 frame pairs of color and depth images. During the assessment following
parameters were assessed:

® Number of correctly projected centers, which are truly on metal plate
for handling

41

4. Color and Depth Methods Fusion

® Number of drifted projected centers, which are located on the object,
but not on metal plate for handling

® Number of incorrect projected centers, which are located not on the
object

® Number of projected centers, which have incorrect color
® Total number of objects, which are completely observed in frame

® Number of potential regions, which are passed by color segmentation filter,
but found object area is less that minimal threshold (partly observed
objects)

B Average processing time for all frames

® Average processing time for frames, which require geometrical verification
and yield center projection

Number of detection, | Number of detection,
absolute relative to total
Correctly projected center 234 36.0%
Drifted projected center 35 5.4%
Incorrect projected center 0 0.0%
Projected center of 0 0.0%
incorrect color
Total number of objects 650 100.0%
Potential regions 1241 190.9%

Avg. comp. time 0.0343
for all frames, s
Avg. comp. time for 0.1130

geom. verified frames, s

Table 4.1: Final Detector Performance

Algorithm can give a correct location for block handling in 36% of detections.
Drifted location is given in 5.4%, however it can be improved by averaging
of the location, which is resulted from several frames. In given dataset
the algorithm didn’t return any incorrect locations. Moreover, all the color
predictions was correct. Algorithm provides high number of potential regions
- the number exceeds 100% because total number of objects is based only
on blocks, which are completely in the image frame, however potential
region could be correctly detected with partially observed object. Average
computation time for the whole dataset is 0.0343 second on Intel Core i7-
2630QM @ 2.00 GHz. Algorithm doesn’t perform the geometrical verification
in most of frames, because object are either too close, so they aren’t in
the frame completely, or too far from the UAV and, hence, suffer from
geometrical distortion on depth image. Average computation time for frames,

42

4.2. Algorithm performance

which resulted correct center projection is 0.1130 second, what gives 8.85
FPS on the mentioned machine. Taking only correct center projections as
true positive and total number of objects on scene as summation of true
positive and false negative, yields algorithm recall equal to 36%. Considering
the output has no incorrect projected centers, the algorithm achieves 100%
algorithm’s precision.

: Example of object detection

/

(c) : Example of object detection (d) : Example of object detection

(g) : Example of object detection (h) : Example of object detection

Figure 4.2: Example of the final solution detection results

The results present of Fig/d.2 represents typical correct detection results.
In majority of cases cases geometrical verification results false negative even if
the object is close enough and it’s complete in the field of view - Figld.2al,

43

4. Color and Depth Methods Fusion

and The main reasons are imperfection of depth imaging process and
algorithm optimization in order to maintain real-time computational speed.
The algorithm parameters were set with consideration of high precision and
it still gives acceptable recall.

Algorithm is able to distinguish several objects in the single color region -
Figl4.2al and Algorithm can also detect correct object even in case of
partly incorrect color due to objects superposition, initially wrong surface
color or light reflection - Fig/4.21

B 4.3 Possible Improvements

The main disadvantages of the proposed solution are not high enough recall
and computational speed. The recall could be improved by more sophisticated
depth imaging. One of such approaches could be multi planar LIDAR - the
LIDAR, which is able to perform sensing in different planes, so it can generate
a point cloud with better accuracy. Another possible solution could multiple
depth cameras usage and their sensor fusion.

Computational speed could be increased by improving of regions of interest
given by color segmentation. As one of possible solutions, trained Neural
Network with appropriate mobile GPU could help speed up the method to
achieve more than 100 FPS and also in situations, where object has correct
color, but it’s geometry is incorrect. Neural Networks are able to process
features, which also rely on geometry - Figld.3| Since the major contributor
into computation time is geometry verification, false positive region filtration
will improve overall computational speed.

Figure 4.3: Example of YOLO neural network, that ignores object of correct
color, but wrong shape (object with printed "5" on top)

44

Chapter 5

Conclusions

Cuboid object detection, based on color segmentation only, gives good recall,
however false positives and false negative regions can still occur. Fusion with
the algorithm based on point clouds performs geometrical verification of found
regions, what significantly increases the final algorithm precision. Moreover,
algorithm based on point cloud, guided by color segmentation, is processing
only regions of interest, what makes overall computation time lower, as it
could be in case of processing of the whole frame.

Despite the recall of the final algorithm is 36%, it was possible to achieve
the 100% precision on given dataset by tuning algorithm parameters, what is
more important for purpose of the MBZIRC challenge - number of cuboid
objects on scene is excessive and main limit is the time limit. Such algorithm
correctly detects the objects, hence, UAV doesn’t lose the time on travelling
to false positive objects. Nevertheless, false negative on some of them is not
crucial, because number of objects is higher, than it’s possible to process in
given time.

Neural Network algorithm demonstrated good results and could be improved
in many ways. The newer YOLO architecture could result better detection
performance. Larger and more precise dataset could also improve the detection
quality. And it could be switched to real-time by using of special hardware -
embedded GPU such as NVIDIA Jetson, Neural Network Accelerators etc.

Algorithms based on GrabCut and Closed Loop Search on Holistically-
Nested edge image could produce accurate results, however such approaches
are far from real time. The algorithms could be used for creation of better
dataset for Neural Network.

45

46

[1]

Bibliography

Intel RealSense official web-site Intel RealSense D435.
https://www.intelrealsense.com/depth-camera-d435/

Wikipedia article Bayer filter. https://en.wikipedia.org/wiki/Bayer_ filter

Wikipedia article RGB color model.
https://en.wikipedia.org/wiki/RGB__color model

Wikipedia article HSL and HSYV.
https://en.wikipedia.org/wiki/HSL_and_HSV

Carsten Rother, Vladimir Kolmogorov, Andrew Blake, Microsoft Research
Cambridge, UK
GrabCut — Interactive Foreground Extraction using Iterated Graph Cut

GrabCut algorithm description Rhodes University.
https://www.cs.ru.ac.za/research /g02m1682/

ADOBE SYSTEMS INCORP. 2002.
Adobe Photoshop User Guide

BLAKE, A., ROTHER, C., BROWN, M., PEREZ, P., AND TORR, P.
2004.

Interactive Image Segmentation using an adaptive GMMREF model. In
Proc. European Conf. Computer Vision.

BOYKOV, Y., AND JOLLY, M.-P. 2001.
Interactive graph cuts for optimal boundary and region segmentation of

objects in N-D images. In Proc. IEEE Int. Conf. on Computer Vision,
CD-ROM.

[10] Adam Paszke, Faculty of Mathematics, Informatics and Mechanics,

University of Warsaw, Poland. Abhishek Chaurasia, Sangpil Kim, Eugenio
Culurciello, Electrical and Computer Engineering, Purdue University,
USA. 2016.

ENet: A Deep Neural Network Architecture for Real-Time Semantic
Segmentation

47

5. Conclusions

[11] Saining Xie, Zhuowen Tu, University of California, San Diego. 2015.
Holistically-Nested Edge Detection

[12] Joseph Redmon, University of Washington. Ali Farhadi, Allen Institute
for Al 2016. http://pjreddie.com/yolo9000/
YOLO9000: Better, Faster, Stronger

[13] Irwin Sobel, 2014,
An Isotropic 8x83 Image Gradient Operator. History and Definition of the
Sobel Operator

[14] Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968).
"A Formal Basis for the Heuristic Determination of Minimum Cost Paths".
IEEFE Transactions on Systems Science and Cybernetics. 4 (2): 100-107

[15] Velodyne company official web-site Velodyne Alpha Prime.
https://velodynelidar.com/products/alpha-prime/

[16] Karel Zimmermann. Lecture notes for Autonomous Robotics course
in Czech Technical University in Prague. Robot, lidar, RGB+D camera.
https://cw.fel.cvut.cz/b182/courses/aro/start

[17] Camera Info Message
http://docs.ros.org/melodic/api/sensor__msgs/html/msg/Cameralnfo.html

[18] Jifi Matas, Ondfej Chum, Jiti Matas, Ondfej Drbohlav. Lecture notes
for Methods of Computer Vision course in Czech Technical University in
Prague. RANSAC. Robust Model Estimation. From Data Contaminated
By Outliers. https://cw.fel.cvut.cz/b192/courses/mpv/start

[19] Point Cloud Library Documentation Fu-
clidean Cluster Eaxtraction. https://pcl-
tutorials.readthedocs.io/en/master/cluster__extraction.html#cluster-
extraction

48

	Introduction
	Methods of Detection for Color Image
	Color Segmentation
	Color Models
	HSV Color Range
	Algorithm based on HSV Color Range

	Algorithm based on Graph Cut (GrabCut)
	Algorithm based on a Search of Closed Loop
	Deep Learning and Convolutional Neural Networks
	Holistically-Nested Edge Detection
	You Only Look Once (YOLO)

	Comparison of Color Image based Methods

	Methods of Detection for Depth Image
	Depth Cameras and Depth Imaging
	Conversion of Depth Image into a Point Cloud
	Algorithm based on Point Cloud
	Plane Segmentation using RANSAC
	Point Clustering
	Plane Equation Calculation
	Distance to Plane Calculation
	Polygon Area Calculation
	Polygon Center Calculation

	Summary

	Color and Depth Methods Fusion
	Sensor Fusion Algorithm
	Algorithm performance
	Possible Improvements

	Conclusions
	Bibliography

