Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

Log Anomaly Detection

Marek Soucek

Supervisor: Ing. Jan Drchal, Ph.D.
Field of study: Open Informatics
Subfield: Cybersecurity

August 2020

ii

cTu MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Personal and study details

4)
Student's name: Soucek Marek Personal ID number: 457106
Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Computer Science
Study program: Open Informatics
Specialisation: Cyber Security

J

Il. Master’s thesis details

4 ™
Master’s thesis title in English:

Log Anomaly Detection
Master’s thesis title in Czech:
Detekce anomalii z logt
Guidelines:
The task is to develop, implement, and evaluate methods of anomaly detection in log
file data.
1) Familiarize yourself with methods of anomaly detection with a focus on processing
log files.
2) Start with DeepLog [1] algorithm as a baseline.
3) Explore possibilities of the end-to-end differentiable models and design such a
model.
4) The model will most likely involve text embedding, such as FastText [2].
5) Evaluate the model on public log datasets such as HDFS or OpenStack.
Bibliography / sources:
[1] Du, Min, et al. "Deeplog: Anomaly detection and diagnosis from system logs
through deep learning." Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017.
[2] Bojanowski, Piotr, et al. "Enriching word vectors with subword information."
Transactions of the Association for Computational Linguistics 5 (2017): 135-146.
Name and workplace of master’s thesis supervisor:
Ing. Jan Drchal, Ph.D., Artificial Intelligence Center, FEE
Name and workplace of second master’s thesis supervisor or consultant:
Date of master’s thesis assignment: 05.02.2020 Deadline for master's thesis submission: 22.05.2020
Assignment valid until: 30.09.2021
Ing. Jan Drchal, Ph.D. Head of department's signature prof. Mgr. Petr Pata, Ph.D.
L Supervisor’s signature Dean’s signature)

lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

iv

Acknowledgements

I wish to express my sincere appreciation
to my supervisor Ing. Jan Drchal, Ph.D.
for his patience and helpful guidance. I
appreciate technical support of Research
Center for Informatics at CTU, which pro-
vided computation cluster, where my ex-
periments were hosted. Special thanks
then belong to Jakub Hejret, for editorial
corrections of this thesis. I also wish to
thank my family and friends for support
through all my studies.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, 14. August 2020

Abstract

This thesis explores possibilities of apply-
ing recent advancements in NLP domain
to log anomaly detection. More specif-
ically it tests whether fastText, as ad-
vanced NLP embedding approach, can
be used to model logs, which do not con-
tain typical natural language, but they are
unstructured or semi-structured human
readable text. Proposed log representa-
tion was used as input for supervised and
unsupervised LSTM based anomaly detec-
tion models. These models were evaluated
in multiple experiments and compared
witch anomaly detection method on two
publicly available datasets. Supervised
approach showed some really good results
and placed among the best methods in
benchmark.

Keywords: anomaly detection, logs,
NLP, LSTM
Supervisor: Ing. Jan Drchal, Ph.D.

vi

Abstrakt

Tato diplomova préace se zabyva moznosti
aplikovat nedavné pokroky v oblasti zpra-
covani prirozeného jazyka (NLP) na pro-
blém detekce anomalii z logi. Konkrétné
zkousli, zda lze pouzit fastText, jakoz to
pokrocilou metodu NLP embeddingu, k
reprezentaci logt, jejichz text neobsahuje
prirozeny jazyk, ale je to stale nestruktu-
rovand nebo jen c¢astecné strukturovana
informace ve formé citelného textu. Na-
vrhnutd reprezentace logu je pouzita jako
vstup pro detekci anomalii se supervizo-
vanymi i nesupervizovanymi modely zalo-
zenymi na LSTM neuronovych sitich. Vy-
slendé modely byly vyhodnoceny a porov-
nany s dalsimi metodami detekce anomalii
na dvou verejné dostupnych datasetech.
Supervizované modely dosahly velmi dob-
rych vysledkl a v pozovnani se umistili
mezi nejepsimi metodami.

Klicova slova:
NLP, LSTM

detekce anomilii, logy,

Pteklad nadzvu: Detekce anomalii z logta

Contents

1 Introduction 1
2 Related work 3
2.1 Log collection
2.2 Logparsing
2.3 Feature extraction 6l

2.3.1 Aggregating representations .. [0]

2.3.2 Per line representations

2.3.3 Word2vec and fastText 8
2.4 Anomaly detection 9
3 Problem analysis 11
4 Proposed architecture 13
4.1 Embedding
4.2 Unsupervised model
4.3 Supervised model
5 Implementation 19
5.1 Preprocessing and benchmarks .
52 Models 211
5.3 Embedding and data management
6 Experiments and evaluation 27
6.1 Datasets 27

6.1.1DHFS 28

6.1.2BGL
6.2 Embedding analysis
6.3 Anomaly detection............

6.3.1 Supervised anomaly detection

6.3.2 Unsupervised anomaly

detection 39
6.4 Experiments summary

vii

7 Conclusion
A Bibliography
B Command line interface

C Content of enclosed CD

2 &8 & 8

Figures

2.1 Log anomaly detection framework

2.2 Example of log parsing

4.1 Data flow in proposed architecture

4.2 Data flow in embedding

4.3 Structure of prediction model ..

4.4 Structure of classification model

5.1 Process of data preprocessing . .

5.2 Input and output data for models

5.3 Data loading and padding

6.1 Window length distribution HDFS
6.2 Window length distribution BGL

6.3 Embedding visualization across
datasets (t-SNE reduction).......

6.4 Embedding visualization HDFS .
6.5 Embedding visualization BGL . .
6.6 Supervised training

6.7 Supervised output distribution
(HDFS data)

6.8 Supervised thresholds

6.9 Prediction errors..............

6.10 Prediction errors distribution
(HDFS data)

6.11 Unsupervised thresholds

17

viii

Tables

6.1 Summary of datasets
6.2 Benchmark results on HDFS ...
6.3 Benchmark results on BGL
6.4 Results of supervised models . ..

6.5 Results of unsupervised models
with different embeddings........

g 8 BB

Chapter 1

Introduction

Software systems produce logs to record events and system current state.
Logging has been commonly adopted in practice, because of its simplicity
and effectiveness. Logs are essential and valuable information source for
developers and operators which can examine recorded logs to understand the
system state when troubleshooting, by detecting system anomalies and locate
the root causes. And in era of cloud computation even every day tasks as
billing can be based on logs which recorded use of service by customer.

Modern systems are scaling up and moving to distributed computation
in cloud. These large scale systems are supporting online services as search
engines, social networks or e-commerce and computation heavy application
such as whether forecasts. Many of these systems are designed to operate 24/7
serving millions of users globally. Any quality degradation or even outage of
such services are very costly, so timely discovery of any changes and ability
to quickly find out root cause of problem is important. But these systems
generate large amount of logs with rate of tens of gigabytes per hour. Such
volume is difficult if not impossible to manually analyze, even with search
and filtering tools.

In reaction to growing amount of logs, automated log analysis and anomaly
detection have become important research topic, in last years. Automation
promises online monitoring and timely anomaly alerting, which allow develop-
ers and operators to focus their effort just on solving the problems. But that
is still in the future. With the amount of logs from these systems, even small
ratio of false positive alerts can still overwhelm operators. And log based
anomaly detection have proven to be challenging tasks. Most of the important
information is hidden in log messages, which are usually unstructured or
semi-structured text strings, and as such hard to process by algorithms. Also
log based anomaly detection have to often deal with constantly changing
environment, caused by frequent system updates.

This thesis propose use of recent advances in NLP (Natural Language
Processing) in combination with machine learning to make log based anomaly
detection more independent on type of logs it process. That should make

1. Introduction

it more robust to gradual changes caused by system updates, and easier to
deploy on different systems.

Chapter 2

Related work

Logs are valuable information source in many scenarios from debugging in
development to monitoring in production. Logs record events and current
system state. And these data were examined manually at first. But specialized
tools for log processing an analysis were developed over time. When amount
of logs increased as applications scaled up and become more complex. First
tools included basic text processing utilities as keyword search and regular
expressions. Then more complex filters and rule based alerting came to
reduce amount of logs for manual examination. Then applications moved
to cloud and distributive processing, and amount of false positive alerts
from rule based alerting become too large for manual processing. Now more
sophisticated tools, which often utilize machine learning, are starting to be
used, to deal with the flood of data. There are two general areas on which
new features are now focusing. Machine learning is used to improve alerting
by further reducing false positive rate. Then more advanced visualization
and organization tools are developed, with functionalities as grouping similar
logs or logs caused by the same event, to make manual processing of alerts
more efficient.

=

Log Collection

2. Log Parsing

3. Feature Extraction

4. Anomaly Detection

M

~

w

=

2008-11-09 20:55:54 PacketResponder O for block
blk_321 terminating

2008-11-09 20:55:54 Received block blk_321 of
size 67108864 from /10.251.195.70

2008-11-09 20:55:54 PacketResponder 2 for block
blk_321 terminating

2008-11-09 20:55:54 Received block blk_321 of
size 67108864 from /10.251.126.5

Event Templates:
Event 1: PacketResponder * for block *
terminating

to*
Event 4: Verification succeeded for *

Event 2: Received block * of size * from *
Event 3: *:Got exception while serving *

Event Count Matrix

-j_.‘_“] M Ay

1020101101
1010101101
1010100101 :§>
1010102101 "

T

4. ¥ RN
7777777777777777777777 AT | U RARRIA|

-

2008-11-09 21:56:50 10.251.126.5:50010:Got
exception while serving blk_321t0 /10.251.127.243:
2008-11-10 03:58:04 Verification succeeded for
blk_321

2008-11-10 10:36:37 Deleting block blk_321 file /mnt/
hadoop/dfs/data/current/subdir1/blk_321
2008-11-10 10:36:50 Deleting block blk_321 file /mnt/
hadoop/dfs/data/current/subdir51/blk_321

Event 5: Deleting block * file *
Log Events:

e

Log2—> Event 2|
Log4—> Event 2|
Log 6—> Event 4!
Log7—>Event5 Log8—> Event5s

Log 1—> Event 1
Log3—> Event 1
Log 5> Event 3

N

i
] Session windows

©

Figure 2.1: General log anomaly detection framework. Picture taken from:
Ezperience Report: System Log Analysis for Anomaly Detection[I]

Figure illustrates that log based anomaly detection can be split into
several general steps, namely log collection, log parsing, feature extraction and
anomaly detection. This general framework was used and described, among
other, in report [I] where several anomaly detection methods were compared.
Most publications recognize these steps as more or less separate tasks and

3

2. Related work

often focus only on some of them. Brief goal description and review of related
work for each step will follow in next sections.

B 21 Log collection

Nowadays large-scale systems generate large amount of logs distributed over
many machines potentially even across multiple data centers on different
continents. Logs record system states and run-time information which should
be saved for future use. Logs are not used only for anomaly detection when
monitoring system performance or security but also billing, auditing etc. On
the other hand all these use-cases expect to be able to access all relevant
logs, but that might not be so simple task with distributed nature of current
systems.

Collecting, storing logs and providing when needed is important step that
need to be kept in mind when building system. There is several options.
Smaller non-distributed application can use simple log files. Larger system
might use protocols like syslog'| for centralized monitoring and storage. And
each big cloud provider offer some solution within their cloud as Amazon
CloudWatch? or Google Cloud Logging®.

But log collection is out of scope for this thesis, which is focused more on
their processing. Publicly available log datasets from other publication on
log processing and anomaly detection are used for experiments in this thesis.

| W) Log parsing

Raw logs are unstructured and contain free form text. Generally it is hard to
process unstructured data in automated fashion. So goal of log parsing is to
get some structured representation of information contained in raw data, so
it can be more easily processed algorithms.

But firstly some definitions of basic terms about logs and their parts. There
is no universally accepted terminology, common terms as log template, log
event or log key are often interchangeable but not always. In this thesis
following terms will be used: log statement, log header, log message, log
template, log key and parameters.

Illustrative example in Figure |2.2 shows how logs are created, stored in
raw text and parsed to structured data. One log statement, usually one
line of raw text, records information abut current system state or event that
happened. Log statement consists of two parts log header and log message.

"https://tools.ietf.org/html/rfc5424
https://docs.aws.amazon.com/cloudwatch /index.html
3https://cloud.google.com/logging

2.2. Log parsing

/* A logging code snippet extracted from: hadoop/hdfs/server/datanode/BlockReceiver.java */
LOG.info("Received block " + block + " of size " + block.getNumBytes() + " from " + inAddr);

Raw log

2015-10-18 18:05:29,570 INFO dfs.DataNode$PacketResponder:
Received block blk_-562725280853087685 of size 67108864 from /10.251.91.84

* Structured log
TIMESTAMP 2015-10-18 18:05:29,570

HEADER LEVEL INFO

COMPONENT dfs.DataNode$PacketResponder

TEMPLATE Received block <*> of size <*> from /<*>

MESSAGE

PARAMETERS ["blk_-562725280853087685”, “67108864”, “10.251.91.84"]

Figure 2.2: Example of log parsing

Log headers are created by logging frameworks and contain basic common
contextual information related to each log statement. Header usually include
timestamp, severity level (e.a. INFO, ERROR...) and source component, but
can also include additional information as process identifiers etc. Headers are
relatively easy to parse, since they are generated by logging framework and
the same formatting is used for all logs, at least within one application. On
the other hand log messages are free form text supplied by developer. They
contain more specific and rich information about system state, but are also
much harder to parse. Log message is composition of string constants and
variable values. The constant parts define log template which remains the
same for all occurrences of given event. This is why in some publication log
template is sometimes called log event. Log key is also very similar term and
in some cases interchangeable with the other two, but in this thesis log key
represents enumerative id of given log template. And finally log parameters
are the variable part of log message.

Comparison and benchmark of different parsing tools is presented in [2].
There are three general approaches to log parsing. Traditional log parsing
relies on handcrafted regular expressions to extract template and parameters.
This is straight forward but time-consuming and error-prone for systems with
larger number of templates (e.g. over 70k templates in Android framework
according to [2]). Modern software systems also change templates frequently
as they are updated (even hundreds of templates per month [3]). Static source
code analysis was proposed in several publications including [3]. But this
approach is also limited because it is common practice to use third-party
software without access to source code. And finally many datadriven ap-
proaches have been proposed, including frequent pattern mining (LogCluster
[4]), iterative partitioning (IPLoM [5]), hierarchical clustering (LKE [6]),
longest common sub-sequence computation (Spell [7]), parsing tree (Drain

5

2. Related work

[8])-

Benchmark results from [2] show that parsing tolls are improving but
parsing is hard task and no tool is perfect. Architecture proposed in this
thesis in chapter |4/ does not require parsed templates on its input and much
simpler tools for header parsing would be sufficient. But other methods used in
experiments for comparison require it so Drain is used for logs parsing in this
thesis, because it came as currently the best tool in benchmark comparison
provided by [2].

. 2.3 Feature extraction

Structured logs, obtained from parsing, allow easier manipulation and auto-
mated analysis. But this thesis focuses on machine learning approaches which
require numerical values as input and output. Goal of feature extraction is
to encode information from structured, but still textual, data to numeric
vectors, on which machine learning models can be applied.

Feature extraction is key step in any machine learning task. Because
even the most sophisticated models cannot decide meaningfully, if relevant
information is missing in chosen numeric representation. Feature extraction
need to find measurable features that will keep as many information, as
possible to inform decisions. Choosing right value encoding is also important.
For some models, as random forests, numeric id of type might be ok, but
one-hot encoding of the same value will be required for efficient use of neural
networks.

Depending on chosen features, extraction is often closely connected to
parsing. Or in same cases it can even partially replace the parsing. This is
especially true for some natural language processing methods (NLP) which
have lately stated to be used for processing of free form text in log message.

Logs are chronological series of separate log statements. Modern anomaly
detection have to consider context and at least some history to overcome
rule based alerting systems, that considers only one log statement. There
are two types of machine learning models. Models capable of processing
series and more common traditional ones, which process one input at a time
independently. Both types are described more in Section [2.4. Features and
resulting feature vectors have to provide information about last log statement
and its context in representations suitable for chosen model. So features can
be also divided into two categories.

B 2.3.1 Aggregating representations

All contextual information, including history, has to be encoded into one
feature vector, when model consider each input independently. For that reason

6

2.3. Feature extraction

many aggregating features were presented and used in different systems.

First step, before aggregating features can be used, is to select subset of
log statements which will be aggregated. Common approaches are fixed and
sliding windows over time or number of log statements. But other also exists,
especially if solution is build for specific application. Concept of sessions can
be used in some applications. In HDFS dataset, which is also used in this
thesis, logs are grouped and labeled by session. It is important to realize
that anomalies are detected on window or session level and not log statement
level, with aggregating representations.

Aggregating representations often refer to NLP methods, even though they
usually do not process text in logs directly. But NLP is about extracting
semantic information from series of data (words) and log history is series of
data. So general ideas or methods about information retrieval as bag-of-words
or TF-IDF are used on some aspects of logs.

The most straightforward method of constructing the feature vector is the
bag-of-words algorithm used in NLP. Bag-of-words is simple count vector of
occurrences and can be calculated over log keys in window [I]. Some statistical
features as event ratio, mean inter-arrival time, mean inter-arrival distance,
severity spread and time-interval spread are proposed in [9]. Prefix, from
[10], focuses on the patterns in template sequences and propose to extract
four features named sequence, frequency, surge and seasonality. Another
approach presented in [IT], 12] used word2vec and considered whole log line
as one word when learning embedding vectors. Embeddings of whole log file
or time window are then aggregated.

B 2.3.2 Per line representations

The feature vector represents one log statement, when anomaly detection
models capable of processing series are used. It is expected that information
hidden in history is extracted by model directly and does not have to be
explicitly encoded in feature vector. Instead there is focus on rich representa-
tion of one log statement. Resulting feature vector should provide as much
information as possible including semantic of message, appropriately encoded
parameters or contextual information, that is not included or hard to obtain
from series of previously seen logs.

Most of the important information exploited by human during log analysis
is in free form text in log message. That is why many NLP methods were
explored lately to help capture information hidden in log massage. Recurrent
neural network (RNN) language models for both word and character level
tokenizations were build in [I3] to represent log lines.

Then there have been breakthrough in NLP embedding field caused by
word2vec followed by fastText. These methods and ideas behind them are
briefly described in Section [2.3.3] because fastText is used in this thesis. These

7

2. Related work

NLP embedding methods and their ideas were already used few times in
context of log processing.

Template2vec presented in [I7] is based on word2vec. 1t takes log key and
tries to enrich it with semantic information extracted from log template using
word2vec embedding. Thanks to modification it can handle unknown log
keys online, but recommends to periodically retrain, to incorporate new log
keys properly. Very similar approach is taken by [I8], where off-the-shelf
FastTexrt model pre-trained on large general text corpus dataset is used on
log templates to create template feature vector.

Basic string similarity coupled with clustering methods is presented in [19].
And Deeplog presented in [20] is one of really few experiments which try to
take into account log parameters when detecting anomalies, and it do so by
training several separated models. One for analysis of log keys sequence and
another one for each log key which estimates likelihood of given parameters.
These do not create one feature vectors, but they are mentioned here as
original approaches to utilize information hidden in single log statement.

B 2.3.3 Word2vec and fastText

Word2vec from [14] caused breakthrough for word embedding in both quality
and computation complexity. It is a two-layer neural net that processes text
by turning words into embedding vectors. Its input is a text corpus and its
output is a set of vectors that represent words in that corpus. While word2vec
is not a deep neural network, it turns text into a numerical form that deep
neural networks can understand. Popularity of word2vec comes from its power
to extract semantic information and encode it into embedding vector in a
way that can be exploited by simple arithmetic operations. Famous examples
used in original article are word relation questions like: What is the word
that is similar to grandson in the same sense as brother is similar to sister?
Surprisingly correct answer granddaughter can be found as closes word vector
to result of simple expression brother — sister + grandson.

One of the very few imperfections of word2vec is limitation to only represent
words included in training corpus. As result of following research fastText
was presented [I5) [16]. FastText embedding is trained not only on words but
also on character n-grams, which allow it to handle previously unseen words
and also better incorporate some syntactic structure of word into embedding.

An n-gram is a contiguous sequence of n items from a given sequence.
N-grams are commonly used in many NLP methods as well as other domains
processing sequences as DNA or protein sequencing.

FastText works with idea that there is some semantic information hidden
in syntax of word. Embedding, for word not contained in training corpus, can
then be created from n-grams or shorter words. For example imagine there is
no embedding for word going but word "go" is known and also 3-gram ing

8

2.4. Anomaly detection

was learned from other words. Then aggregation of embeddings for go and
ing should be good approximation of going, if original embeddings contained
correct semantic information.

Another common task in NLP is to create embedding for larger sentence
or other longer parts of text. Depending on used language model it could
be tricky task to appropriately aggregate embeddings of multiple words.
But it is relatively simple for fastText since it inherits word2vec arithmetic
friendly encoding of information into vectors. Library provided by fastText
also provide some additional methods for common tasks like this. Method
get_ sentence_ vector simply divide each word vector by its L2 norm and then
use average for aggregation.

B 24 Anomaly detection

After feature extraction, several machine learning models can be used for
anomaly detection. There are two main parameters that can split models
to categories. Capability, to directly process and learn from sequential
data, have already been mentioned above. And since logs are inherently
sequential these models can efficiently used as alternative to more traditional
anomaly detection methods. But much more important and generally used
categorization of machine learning method is separation to supervised and
unsupervised methods.

Supervised methods require labeled data for training. It can be time con-
suming and expensive to obtain training dataset of sufficient size and quality.
But in return supervised method are more robust since they learn required
concept directly thanks to feedback obtained from labels. Anomaly detection
with labels is essentially problem of binary classification. Logistic Regression,
Decision Tree and Support Vector Machine (SVM) where compared with
other unsupervised methods in [I].

Unsupervised methods cannot relay on labels and it is challenging to find
how to learn required concept. In anomaly detection common approach is to
learn normal state from provided data and detect anomalies as deviations
or outliers. In [I] Clustering, PCA and Invariant Mining were compared.
Recurrent Neural Networks (RNN) have been used in [I3] [I8] 20]. And several
other types of neural networks might be used. Time convolution networks
are examined in [2I] as promising alternative RNN for sequence processing.

10

Chapter 3

Problem analysis

Existing anomaly detection algorithms used on logs have many limitations.
Most of them relay on preprocessing logs to log keys. This approach brings
simple and quite successful way how to transform text information in logs
to numerical values which are required by all sorts of anomaly detection
algorithms. But it also implies several limitations.

Each log key actually creates class of logs and as result algorithms are
trained on predefined set of classes. But this set is changing as systems
are updated over time and most algorithms are not capable to work with
unknown classes. Some solutions for this situation were proposed in [I7] but
it is still recommended to retrain model periodically to properly incorporate
new log keys.

Another problem can rise from errors introduces in preprocessing stage.
While idea of log key is simple, their extraction form raw text is not. Al-
gorithms which can parse them are complex and have their limitations in
precision of detecting log keys. Comparison of parsing tools in [2] shows that
available algorithms are improving, but no of them is perfect.

Log key parsers usually return rich information about given log statement.
Log template and extracted parameters are provided in addition to enumera-
tive id of log key. But most of existing anomaly detection algorithms do not
use this information. Many even aggregate data from several logs in time or
session windows and losing sequential information which is part of original
logs. It is surprising how good results can be achieved with aggregated infor-
mation. And it rises a question how much better results could be achieved
if more information is used. Parameters in logs often provide key insight to
system state when examined by human. Complex processing of parameters
is presented in [20], where separate model is trained for each parameter of
each log key. And additional semantic information are extracted from log
template in [I7]. In both cases additional information improved performance.

Also several other features and characteristics have to be considered when
comparing anomaly detection algorithms. These characteristics do not affect
precision or reliability but they are important aspects when deployed to

11

3. Problem analysis

production.

Some use cases can benefit from online algorithms. This is especially true
in some security domains where such behavior might be even required to stop
ongoing attacks in time. Online algorithm is able to provide results on per
log statement basis and have to be fast enough to process incoming log. Note
that required bandwidth can vary extensively depending on application.

Modern detection systems usually include some form of supervised machine
learning and need some training data which is another common obstacle for
deployment. Obtaining good labeled dataset for training require lot of time
and domain specific knowledge. Unsupervised methods removes this need for
labeled training data. This can significantly reduce time and effort needed
for deployment, even thought some small labeled data might still be required
for validation.

This thesis explore new possibilities of applying recent advancements in
NLP domain to log anomaly detection. More specifically it tests whether
advanced NLP embedding approaches can be used to model logs which do
not contain typical natural language but it is human readable text. And if
such representation is suitable for building unsupervised online log anomaly
detection system which use rich information provided in logs.

12

Chapter 4

Proposed architecture

First task is to create log representation suitable for further processing by
machine learning. This representation uses NLP embedding to keep informa-
tion contained in log message and parameters. Structure of representation
and reasons why NLP embedding is used are described in

Then unsupervised anomaly detection model based on LSTM is presented
in Model is trained to predict next log embedding on loges generated
by normal system operation. Distance between predictions and real logs is
then measured and compared with threshold to detect anomalies. Overview
of whole system is shown in Fig

raw logs . -
Current + history Embedding Prediction model Anomaly detector

Figure 4.1: Data flow in proposed architecture

current log embedding

embedding normal

Supervised anomaly detection model was also build to check if information
needed to distinguish anomalies are included in created representation. Labels
allow to train model directly on anomaly detection and model can learn which
features are important for it. This make supervised model easier and more
reliable to train. Supervised model is described in detail in [4.3|

B 21 Embedding

Embedding encodes information contained in text to numerical values usually
vectors. Different embedding types are used in different domains and applica-
tions. Pre-trained word embeddings as word2vec from [I4] are common in
NLP domains. Log keys are often used in log analysis and anomaly detection.

In this thesis combination of NLP sentence embedding of log line and
additional handpicked features is used to create final embedding. Enriching
embedding with additional custom features is needed, because some contextual

13

4. Proposed architecture

information might not be included in single log line. One such feature is time
delta from previous log, which provide significant information when detecting
performance anomalies, as shown in [20].

Log keys and some other NLP embeddings consider only fixed and relatively
small vocabulary. This is fine for many applications in natural language if we
add embedding value for "unknown" word. It is expected that words outside
of vocabulary are rare so their occasional appearance will have small effect
on application. But this is not entirely true for logs. Software updates cause
changes in set of log keys, which discussed more in [3] and then there is
another problem with parameters.

Some parameters are numeric and can be simply added as feature to
embedding vector. But rest of them is part of text usually with given syntax
and semantic analogical to words in natural language. Common parameter
types are ip address, file path, time or date. Such parameters are usually not
included in vocabulary, because it is simply not possible to have pre-computed
embedding for each file path or ip address.

Interesting idea for solving the "unknown" words is presented in fast Text [15]
and already described in Section [2.3.3. Idea behind fastText allow not only
solving the "unknown" words, but also tries to exploit semantic information
hidden in syntax and word structure. Such approach might work well also on
already mentioned log parameters as ip addresses or paths, which have clear
syntactic structure and semantic.

Even when some numerical representation of parameters is obtained adding
them as new features to embedding is also problematic. Most machine
learning algorithms expects inputs with fixed dimension. But each log key
can have different number of parameters of different types. Baseline approach
for parameter representation, presented in [20], showed that it is possible
to include all features from each log key and leave unused features empty.
Such approach, similar to one-hot vector, results in large sparse inputs and
consider fixed set of log keys.

Need of fixed size representation for variable length text is not new in
NLP. Common approach uses pre-computed word embedding and aggregation
function. Depending on characteristic of selected embedding, aggregation
can be as simple as average or in NLP domain it’s often TF-IDF, which
is variant of weighted average. FastText API include build-in method for
sentence embedding, which firstly divides each word vector by its norm and
then use simple average as aggregation.

Custom
feature
embedding

Extracted data

Figure 4.2: Data flow in embedding

Feature value

Raw log line Embedding vector

fasttext
embedding

log line (sentence embedding)

14

4.2. Unsupervised model

Final embedding is concatenation of fastText sentence embedding and
custom handpicked features as shown in Fig 4.2l Raw logs firstly go through
preprocessing phase where data for fastText and custom features are extracted.
It is obvious that custom features do not need whole log as input data. But
fastText input is also modified. Some parts of raw log, especially in header,
are stripped to reduce noise because they are irrelevant or hard for NLP
methods to interpret. Irrelevant can be pid or other identifiers since this
thesis focus only on processing of event sequences from one source. Example
of value difficult to interpret is already mentioned time-stamp which have
many different formats across different applications. But it is same within
one dataset (application) and it is present for each log. So it can be easily
parsed and added to embedding in much more meaningful representation as
custom feature.

preprocessed data continue to fastText and custom feature to be transformed
to numerical vectors in the next step. FastText part is straight forward. Build-
in sentence embedding method is used with custom trained fastText model
to compute embedding of preprocessed log line. Implementation custom
features can vary based on characteristic of given feature. Common steps will
probably include parsing extracted text data to appropriate format, obtain
contextual information saved from previously seen logs (time delta) or from
external knowledge about system and then use current value and contextual
information to compute some meaningful numeric representation.

Last step is concatenation of fastTexrt embedding and outputs of all custom
features to one vector. Final embedding have fixed dimension for all logs
because all custom features should be general and able to provide values for
each log, not only for some subset e.g. one log key.

B a2 Unsupervised model

The goal is to create unsupervised anomaly detection. Embedding works
on per log basis thumbs model needs to accept sequential data on input.
Common approach in sequence analysis is to train model on normal data to
predict next item of sequence. Prediction is then compared with real values
to determine if current value is anomalous. This high level approach was
used in [20] 17, 22].

Let S = (s, s2,-..,5t) be sequence of embeddings corresponding to log
lines indexed by time, where s; represent embedding value of last received log.
Then input for prediction model is sequence Hy, ¢ = (St—p, ..., St—1), which
represents history of length n logs preceding s;. And output of model §; is
prediction of s;.

15

4. Proposed architecture

A
e

[Dense (ReLu, embedding dim) J
[Dense (RelLu, hidden dim)]
T |
[LSTM (embedding dim) }--------- >{ LSTM (embedding dim) }—>{ LSTM (embedding dim) |
St-n St-2 St-1

Figure 4.3: Structure of LSTM based prediction model

Model, shown in Fig/4.3], is composed of LSTM layer for sequence processing,
and additional dense layers on top of it. LSTM is widely used recurrent
neural network (RNN) architecture that has been proven to robustly process
sequential data. Idea is that LSTM layer will extract relevant features from
sequence. While following dense layers with ReLLU activation function provide
additional non-linearity and regression when computing prediction. Forward
networks, as dense layers, are easier to train then RNN (LSTM), which
include some non-linearity itself but they are expensive to train. So similar
approaches with smaller RNN for sequence processing and following forward
layers are common in practice.

Experiments with different number of layers and sizes of hidden dimension
are described in Section [5.2. But dimension of input and hidden state for
LSTM as well as output dimension of last layer are equal to embedding size.

Resulting model is trained on log sequences from normal system behavior to
minimize distance between prediction §; and real value s;. But it is important
to note that §; and s; are vectors of relatively large dimension. So selecting
suitable distance metric might be problematic. MSE is commonly used in
machine learning for smaller dimension. And angular based metrics as cosine
distance are considered to be more stable in higher dimensions. And L1 norm
or so called fractional distance metrics are proposed in [23] where problem of
distance metrics in high dimensional space is explored more in detail. However
MSE have proven to work best, after few experiments with above mentioned
metrics. Even in our case with relatively high dimensions ranging from 100
to 300.

To detect anomalies prediction model is supplied with H,, ; and distance
between its output §; and s; is measured using same metric as in training
phase. Current log is label as anomalous if distance is greater then threshold.
Optimal setting of correct threshold is a hard problem and it is beyond scope
of this thesis. Some sophisticated solutions, like dynamic shareholding from
[22] exists, but no out of box implementation is available. So simple threshold,
computed as confidence interval from errors on training data, is used in this
thesis.

16

4.3. Supervised model

B a3 Supervised model

There is one significant difference between this thesis and other papers which
uses unsupervised learning with the prediction model. In most cases prediction
of class is considered, which means prediction is limited to finite and relatively
small number of options. But in this thesis prediction is point in space with
high dimension, which makes prediction significantly harder. This is reason
why supervised anomaly detection model was also designed. Supervised model
uses labels to directly learn problem of anomaly detection and so it is used to
prove, that information needed to distinguish normal and anomalous logs is
included in embedding. Anomaly detection with labels is problem of sequence
classification with two classes.

Let L = (lo,l1,...,l;) be sequence of labels corresponding to S. Where
l; is 1 for anomaly and 0 for normal. Then input for classification model is
sequence Sp¢ = (St—p,-..,St), which represents s; and history of length n
logs preceding it. And output Iy is probability of s; being anomaly.

i

[Dense (sigmoid, 1)]

[Dense (Relu, hidden dim)]
T |

| LSTM (embedding dim) }--------- > LSTM (embedding dim) }—>{ LSTM (embedding dim) |

Tst-n TSM T St

Figure 4.4: Structure of LSTM based classification model

Classification model shown in Fig |4.4]is very similar to prediction model
described in Section 4.2, Only difference is that output dimension of last
dense layer is 1 while in prediction model it is matching embedding dimension.
And sigmoid activation function for this last layer is used.

Binary cross entropy loss is used to train this model because it is standard
and proven to be robust when training binary classification models.

17

18

Chapter 5

Implementation

Architecture proposed in Chapter 4/ was implemented in Python'|3.7 language.
There are several reasons why Python has been chosen. It is popular language
for machine learning and data analysis, so many libraries exist for common
tasks and method in this domain. PyTorch?|is used for building LSTM based
anomaly detection models. PyTorch is an machine learning library used for
applications such as computer vision and natural language processing. It is
free and open-source software released under the Modified BSD license. Also
fastText”, as open-source library for efficient learning of word representations
and sentence classification, provides Python binding, so it can be comfortably
called from Python. Finally there are log base anomaly detection methods
already implemented and open sourced, which allow for easy benchmarks.

Comparison of six anomaly detection methods is presented in [I] and
implementation of these methods, as well as benchmark scripts, are publicly
available in Loglizer”| project on GitHub under MIT License. Loglizer is used
to compare experimental results with other anomaly detection methods.

Implementation include some deviations from originally described archi-
tecture. Changes have been made to make implementation more efficient
in experiment setting, or simpler to compare with other methods. All such
changes will be explicitly stated in following sections, which describe separate
parts of implementation and challenges they posed.

"https://www.python.org/

https:/ /pytorch.org/

Shttps:/ /fasttext.cc/
“https://github.com/logpai/loglizer

19

5. Implementation
B 51 Preprocessing and benchmarks

First change of architecture is in the very first step of preprocessing. Loglizer
and its benchmark script implements, not only anomaly detection methods
and their evaluation, but also whole pipeline of data loading, preprocessing
and splitting to training and testing datasets. Log preprocessing for proposed
models is implemented as modification of data loader in Loglizer, to simplify
implementation and also ensure that exactly the same datasets will be used
in experiments. This implementation extract and save required preprocessed
data during benchmark run for later use in our experiments. This saved
data also allow to run multiple experiments with different parameter settings,
without the need to always recompute the preprocessing.

Structured logs Modified Loglizer Benchmark results ‘
benchmark script

Raw | Drain : rr;fs‘lea' Ze'ds] Preprocessed data
awlogs parsing e templ ? e create windows Windows for training, validation, testing
. emplate e load labels Each window contains:
.
Labels

parameters e separate train, e timestamps

validation, test e log message + selected headers
e run benchmark e labels

Figure 5.1: Process of data preprocessing and benchmark

Loglizers benchmark script expect structured log data on input. Open-
source implementation of Drain parsing tool, provided in Logparser| project
on GitHub, is used to parse raw logs to structured data. Drain has been
chosen, among parsing tools provided by Logparser, because it is currently
the best parsing tool, according to benchmarks and comparison in [2].

To obtain preprocessed data dataloader.py file in root of Loglizer project is
modified. All methods in benchmark are using windows, so logs are firstly
loaded and split to appropriate windows. For HDFS dataset session windows,
based on block ID, are used and sliding time windows are used for BGL dataset.
In this part original implementation stores only log keys from structured logs.
Additional data structure is added to store also timestamps (for time delta
custom feature) and strings for fastText embedding composed from log level,
component and log message. After windows are prepared, labels are loaded
for each window by original script. And modification is made so labels are
also copied to the new data structure. Then windows are split to training and
testing datasets. After that training dataset is further split to training and
validation by our modification. All resulting datasets (training, validation
and test) are saved to file, in a way that label, timestamps and strings for
fastText embedding are included.

Two files are actually saved. This is caused by different requirements of
supervised and unsupervised models. Copy for unsupervised model have
filtered out anomalous samples form training and validation datasets. Data

Shttps://github.com/logpai/logparser

20

5.2. Models

in both files are stored as dictionary with three entries, one for each dataset
(training, validation,test). Python pickle module is used for data serialization.

Splitting data to windows is not required by models proposed in this thesis,
since they are based on LSTM, which can operate in stream fashion. But
sessions in HDF'S dataset are actually parallel processes and their logs are
intertwined. This thesis does not consider task separation of intertwined
processes, but some articles like [24] focus on this problem. However HDFS
data can be easily unwinded using block IDs, which is the same ID used when
creating windows. It is good to keep already unwinded windows, since it
can cause problem for LSTM based sequential models to process intertwined
streams. FEasier comparison using the same evaluation as benchmarks is
another benefit of keeping data separated into windows.

B 5.2 Models

Implementation details of models will be described here before embedding.
Because implementation of models defines additional requirements for type
and shape of input data, which are not obvious from high level view of
architecture described in Chapter 4l That is why some data transformations
made during embedding and data formatting would be confusing without
knowledge of the exact input and output definitions.

Architecture considers, that logs are streamed one statement after another
and describes data flow on example of processing one log statement with
some available history. Such approach is valid but not efficient in training
phase when all logs are already available. PyTorch implementation of LSTM
layer works by default as sequence-to-sequence. In this mode LSTM accepts
sequence on input and returns another sequence of the same length, where
i-th item of the resulting sequence corresponds to LSTM output after i items
where processed. Using this mode, models output for each log statement
within one window can be computed more efficient in one step.

Sequence-to-sequence mode is also used when trained model is used for
anomaly detection. In real live data monitoring scenario, this change would
require some sort of batch processing, resulting in lost of online detection
ability. But it is acceptable in experiment setting, where all data are available
before test. Simpler implementation, which reuse some code, is possible, when
using the sequence-to-sequence mode in both training and evaluation phases.
It also brings improved performance for training and evaluation cycle.

Both models supervised and unsupervised have many parameters set their
exact size, learning rate, normalization etc. Parameters are passed as com-
mand line arguments, when creating new model. List of all available parame-
ters is included in Appendix Bl

Two normalization methods were implemented. Gradient clipping is method
used to limit maximal weight change in one step. This can make learning

21

5. Implementation

more stable and prevent so called exploding gradients, which is common
phenomenon with recurrent neural networks, such as LSTM. Second normal-
ization is option to include additional layer normalization®, as defined in [25],
in between layers.

Adam optimization is used for training. Initial learning rate is set to
PyTorch default, but can be changed via parameter. During each epoch,
gradients are computed from training data and back propagated to update
weights, then loss over validation data is computed. Validation loss can be
used to watch for over fitting. Number of epochs to compute is given as
parameter and no smart termination condition depending on validation loss
is implemented.

But model is saved after each epoch, as well as information about training
and validation loss. Training can be resumed from last saved model, if training
was interrupted or initial number of epochs was insufficient. Reference to the
epoch with best validation loss is kept, but model from any epoch can be
used for evaluation and anomaly detection.

Threshold is used in evaluation to determine if sample is normal or anoma-
lous. Supervised model have sigmoid function on its output and resulting
value represent probability of sample being anomalous. Default threshold is
set to 0.5, which is reasonable assumption given the sigmoid function, but it
can be fine tuned by parameter.

Situation is a little bit more complicated with unsupervised models. Deci-
sion about anomalous samples is made base on error between prediction and
real value. Setting threshold on error by hand is a bad idea since error values
ranges are different for each model and input data. As already mentioned in
Section 4.2 there are more sophisticated methods like dynamic thresholding
from [22]. But decision was made to use simpler anomaly detection and
focus more on embedding part of the problem. Threshold based on standard
deviation is computed during training in each epoch based on errors computed
from training data using following formula.

t = E(errors) + 2std(errors)

That means about 5% of logs will be labeled as anomaly, with assumption
that prediction errors follow normal distribution.

In addition to sequence-to-sequence mode PyTorch also works with batches.
Batch is a common concept in neural network learning and it is used in most
frameworks and libraries. Batches improve stability and often also efficiency
during training phase.

A

Let e;; be embedding vector of jth log statement in ith window and (e;;)
donates prediction of such embedding. Let /;; be estimated probability, for
jth log statement in ¢th window, to be anomaly. Then Figure |5.2| illustrates

Shttps://pytorch.org/docs/stable/generated /torch.nn.LayerNorm.html#torch.nn.LayerNorm

22

5.2. Models

Input Output

€1 € €3 &y |A |A |’\ |A

e e e e supervised A A A A
21 22 23 34 model | | | | |

31 32 33 34 | | | |

A A A A

e11 e12 e13 e14 e12 e13 e14 e15
unsupervised | A A A A

€ €y €y Cy——>€»n €3 €y €
A A A A

e31 e32 e33 e34 e32 e33 e34 e35

Figure 5.2: Input and output data for models

input and output batch format for supervised and unsupervised models. It
shows example of batch containing 3 windows with 4 logs each.

All log statements in window are processed in one step thanks to sequence-
to-sequence mode and multiple windows are put in one batch. Input is tensor
with 3 dimensions (window, log, embedding feature) and have the same shape
for supervised and unsupervised model.

Output of supervised model are estimated probabilities of log statements, to
be anomaly. There is l;j for each log in window, because sequence-to-sequence
is used. So the information is 2 dimensional (window, log), but it is shaped
as 3 dimensional tensor (window, log, 1), to have same output dimensions as
unsupervised model. Making it compatible with same evaluation method.

Output for unsupervised model is prediction of next embedding in sequence.
Thanks to batches and sequence-to-sequence output is a tensor with 3 dimen-
sions (window, log, embedding feature). It is a tensor with the same shape
as input data. But prediction causes logs in windows to be shifted by one
step to the future, as shown in Figure |5.2.

Labels are provided, in addition to each input, output pair, as 2 dimensional
array (window, log). This information is redundant for supervised model, but
it is passed anyway to unify code for evaluation.

23

5. Implementation

. 5.3 Embedding and data management

PyTorch library provides classes for common data loading and management
tasks in torch.utils.data package. Two such classes are used, Dataset class is
extended to load preprocessed data, in format described in Section [5.1], and
compute embedding using provided transformation function. And DataLoader
class is used for creating batches and shaping data to format required by
models.

Purpose of Dataset class is to load and provide samples on demand for
DataLoader. Preprocessed datasets are stored in file with same format for
supervised and unsupervised experiments, but exact input and output format
differ. To make implementation of Dataset reusable it requires transformation
as parameter in constructor. Transformation is callable object which takes
preprocessed sequence (window), computes embedding and uses it to create
sample (inputs, expected outputs and labels), required by specific model, for
one window.

Preprocessed Embedding Batch
windows windows
Preprocessed log 1 e, |y,
Preprocessed log 2 e, | Y, 0 0 e e
1 2
e3 e4 e5 e6
0 e e e
Preprocessed log 3 Dataset e || ¥s DatalLoader 7 8 9
Preprocessed log 4 transform e, ||l v,
Preprocessed log 5 e y 0 0
Preprocessed log 6 e5 y5 Y. Y,
6 6 Ys Y4 Y5 Y
0 v, Yg Y
Preprocessed log 7 e |y,
Preprocessed log 8 e y
8 8
Preprocessed log 9 e y
9 9

Figure 5.3: Process of data loading and padding in batches. e; represents
embedding of log ¢ and y; is expected output for given log.

Figure |5.3| illustrates how samples are loaded from by Dataset and then
grouped by Dataloader to batches. Batch is triplet input, output and labels.
Windows in one batch must be padded to have the same length, since both
inputs and outputs are tensors. PyTorch provides some basic methods for
sequence padding but it still needed some work to properly pad whole triplet.

Values y;, in Figure 5.2, represents expected output corresponding to log i.
But output differs, for supervised model it is label [;, but for unsupervised
model it is next embedding e;41.

24

5.3. Embedding and data management

Implementation of fastText embedding is straight forward. It uses python
binding provided by fastText to access its binary library. Method get sentence_vector
is called on each preprocessed log line. Inner working of fastText are summa-
rized in Section 2.3.3.

Then time delta custom feature embedding is computed and added to
fastText embedding. Firstly time differences are computed form preprocessed
timestamps. This raw difference is numeric value, but it has wide ranges
causing numerical instability. Logarithm was used to reduce large values,
when system is inactive for some time. After logarithmization values were
then normalized. Embedding value for one raw time difference ¢ can be
computed by following formula.

log(t) — ;
timeDeltaEmbedding(t) = log(t) — ptrain
Otrain
Were fitrqin and Otrqin are mean and standard deviation computed on training

data.

25

26

Chapter 0

Experiments and evaluation

Multiple experiments were prepared and executed to verify hypotheses and
evaluate proposed solution. Computation heavy tasks were executed on
computation cluster provided by Research Center for Informaticﬂ

This chapter firstly describes used datasets in Section [6.1L Then evaluates
suitability of fastText models for embedding whole log statements including
parameters is tested in Section 6.2l Both supervised and unsupervised variants
of proposed architecture are evaluated and compared to other methods in
benchmark in Section And finally summary of findings is presented in
Section 16.4.

. 6.1 Datasets

Two publicly available datasets, used in this thesis,were downloaded through
LogHubEL which is project on GitHub provided by authors of [2]. HDFS and
BGL datasets were chosen from available ones, because both were already
studied in multiple articles and benchmark script from Loglizer implements
loading of HDFS data with labels and provide partial implementation for
loading BGL. Basic summary of datasets is shown in Table [6.1.

Thttp://rci.cvut.cz
https://github.com/logpai/loghub

27

6. Experiments and evaluation

BGL HDFS HDFS_ 2
Data size 1.55 G 708 M 16.06 G
Labels by log line by block (session) no
HT.og lines 4.747,963 11,175,629 | 71,118,073
#Templates 619 30 -

#Windows | 3132 (by time) | 575061 (by block ID) -

. 20.78% blocks
Anomalies (7,34% lines) 2.93% blocks -

Table 6.1: Summary of datasets
B 6.1.1 DHFS

HDFS stands for Hadoop Distributed File System®. LogHub provides two
parts, or in fact two separate datasets, for HDFS. Smaller part is labeled
dataset which was originally presented in [26]. Description of this part from
Loghub projecti*

This log set is generated in a private cloud environment using
benchmark workloads, and manually labeled through handcrafted
rules to identify the anomalies. The logs are sliced into traces
according to block ids. Then each trace associated with a specific
block id is assigned a groundtruth label: normal/anomaly (available
in anomaly_ label.csv).

Second larger part are unlabeled HDFS logs collected by LogHub authors
in labs of The Chinese University of Hong Kong. This huge dataset (over
16GB) consist of logs from one name node and 32 data nodes.

Example of one HDFS log statement is shown below. HDFS logs have stan-
dard header composed from date, time, pid number, log level and component.
Log message is then simple English sentence with some parameters in human
readable form.

081109 203645 175 INFO dfs.DataNode$PacketResponder:
Received block blk_8482590428431422891 of size 67108864 from /10.250.19.16

Large unlabeled dataset is used for training fastText language model. And
smaller labeled dataset is used for anomaly detection training and evaluation.
Unfortunately labels are provided only on block level, as already mentioned
in description above. This suggest creation of windows containing logs from
one block. Such windows are essentially session windows, and differences are
only in HDFS terminology. There is 575061 windows in total, when split by
block ID. With 16838 labeled as anomaly, which makes about 2.93% windows
in dataset. Figure [6.1] shows histogram of window lengths, which varies from
2 to maximum of 298 log statements, with mean 19.43 and median 19.

3http://hadoop.apache.org/hdfs
“https://github.com/logpai/loghub/tree/master/HDFS

28

6.1. Datasets

#windows
n
o
%

H
]

"
o

"
o
&)

200 250

Figure 6.1: Window length distribution HDFS

100 150
window length

300

B 6.1.2 BGL

BGL dataset was originally presented in [27]. Description from Loghub
project: E|

BGL is an open dataset of logs collected from a BlueGene/L su-
percomputer system at Lawrence Livermore National Labs (LLNL)
in Livermore, California, with 131,072 processors and 32,768GB
memory. The log contains alert and non-alert messages identified
by alert category tags. In the first column of the log, "-" indicates
non-alert messages while others are alert messages. The label infor-
mation is amenable to alert detection and prediction research. It
has been used in several studies on log parsing, anomaly detection,

and failure prediction.

BGL logs have richer header with some redundant fields. Header fields
are UNIX timestamp, human readable date, job id, human readable time to
us, another job id, user, group and log level. Log messages themselves are a
bit more cryptic when compared to HDFS. Some messages are still mostly
English sentences as first log in example below. Other messages, as second
line in example, are more dense and often use hexadecimal parameters values
and other not human friendly formats.

— 1117840356 2005.06.03 R16—M1—N2—C:J17—U01 2005—06—03—16.12.36.079052
R16—M1—N2—C:J17—U01 RAS KERNEL INFO total of 31 ddr error(s) detected and corrected

— 1117840759 2005.06.03 R25—M1—-N7—C:J17—U01 2005—06—03—16.19.19.369025
R25—M1—N7—C:J17—U01 RAS KERNEL INFO CE sym 7, at 0x10d85460, mask 0x80

BGL is labeled by log statement with 348k anomalous logs out of 11M
logs in dataset. Dataset was split in time window, because other methods in
benchmark require windows. Labels by line are preserved within windows
but additional label for whole window is created. Window is considered
anomalous if it contains one or more anomalous statement. Length of time
window used is 60 hours, which is proposed default values in BLG loading

Shttps://github.com/logpai/loghub/tree/master/BGL

29

6. Experiments and evaluation

method in Loglizer benchmark script. It resulted to 3132 windows, with 2481
normal and 651 labeled as anomalous. Number of logs in window varied
extensively from some empty windows which were discarded to maximum
of 184265 log statements. But most windows contain reasonable number of
logs since mean is 1504.73 and median is 78. Figure show histogram of
window lengths for BGL dataset.

103 4

#windows
»-‘

(=}

g

"
o
2

10° 4

m |
25000 50000 75000 100000 125000 150000 175000
window length

Figure 6.2: Window length distribution BGL

B 6.2 Embedding analysis

Custom fastText models were trained for log embedding on each dataset.
Large unlabeled part of HDFS dataset was used for HDF'S model and whole
BGL dataset for BGL model. Additionally several parameter combinations
were tried for each dataset. FastText has three parameters which directly
affect resulting embedding. Embedding dimension with default value 100,
and bounds for n-grams lengths with default range 3-6. Two embedding
dimensions (50, 300) and n-gram range 1-1, were used in addition to default
fastTest values. So total of 6 models with different parameter combination
were trained for each dataset.

Embedding values were computed for selected sample of log statements
containing 11 and 12 log templates for HDFS and BGL respectively. Hypoth-
esis is that log statements belonging to the same template will create clusters.
In theory, separated clusters allow LSTM based models extract information
about template, while variance within cluster represents different parameter
values.

All embedding models use high dimensions which cannot be examined
directly, so methods of dimension reduction are used for visualization. PCA
and t-SNE were tried as they are common and popular methods for dimension
reduction. Presented figures use t-SNE reduction to 2 dimension, because it
showed results with cleaner separation of clusters.

Figures 6.4/ and [6.5] are visualization of fastText HDFS and BGL embedding
models respectively. All 12 fastText models successfully clustered log state-
ments by template. Also more spread clusters mostly belong to templates

30

6.2. Embedding analysis

with more parameters, or parameters with larger value space. In Figure 6.4}
the most spread cluster in HDFS belong to template with 3 parameters:

<*>Got exception while serving <x> to <x>

The same apply also to BGL models in Figure 6.5, where the most spread
cluster also belong template with three parameters. It even created several
separated clusters close to each other. Multiple clusters are probably caused by
combination of relatively short and general template and multiple parameters.

CE sym <x>, at <*> mask <x>

It also seems that some semantic information is passed in embedding, in
addition to expected template separation by clusters. Semantic information
can be derived from relative positions of clusters to each other. Especially in
Figure 6.5| several clusters are close to each other, and relatively separated
from other clusters. All these clusters belong to templates reporting some
errors:

<*> ddr errors(s) detected and corrected on rank <*>, symbol <*>, bit <*x>
<*> L3 EDRAM error(s) (der 0x0157) detected and corrected

total of <x> ddr error(s) detected and corrected

ddr: activating redundant bit steering: rank=<*> symbol=<*>

ddr: excessive soft failures, consider replacing the card

One anomaly detection experiments on BLG was executed with HDFS
fastText model by accident. Surprisingly it did not show radically worse
results. This brought up idea of one general language model for multiple
systems, which would be pre-trained on large dataset compiled from multiple
log types. It is just suggestion for future work, but embeddings computed by
'wrong’ model are shown in Figure 6.3, to prove the concept. Log embeddings
are still mostly clustered by template, but clusters are closer to each other
and less separated.

BGL logs embedded by HDFS model HDFS logs embedded by BGL model
10 1 - -

10

tsne-two
tsne-two

—104

tsne-one tsne-one

Figure 6.3: Embedding visualization across datasets (t-SNE reduction)

31

6. Experiments and evaluation

(T-T=weibu ‘gQE=WIp) |9pOW 1%31ISe4

(T-T=weibu ‘pQT=wWIp) |2poW I%31Ise4

(T-T=WeJbu ‘g5=UIp) [2pouI 1xaL1se4

<> 10} P3P33VINS UoIjEDYLUBA @
“ajyy Aue 0] BUD|aq 10U S30P 11 ING <> IZIS <x> UD <4> 10} PAAIZDAI 153nbaJ %20|gPaI0ISPPE D0|gpaI0iSppe WalsAsawen D019 @ <> 2ZIS <x> 0] PIPPE SI <> :pIepdn dep20[q H20|gpaJoISppe WalsAsawen 42018 @
*depaWN|OA Ul PUNO 10U OJUIYI0]E "<+> 30| 313|2p 01 Bulkn) Jousa pajadxaun @ <> WOJJ <x> JZIS JO <¢> YI0|q PIAIISY @
<s>(Juauind/elep/sjp/doopey/juwy 3|y <> ¥d0iq bunsjeg Buneuiwal <> 330(q J0j <> Japuodsaylayded ©
<i> JO J2SPI[BAUI O} PIPPE SI <x> :213[9p WRISAS3WeEN D079 @ <x> "<x-Uedf<e>T <i> W <x> <> dse] fAlesodwia) /puelfjoot/iasn/ Hpojgaledo||e waisAsawen Dol @
<> 0] <4>{I0|q PAAISS <x> @ <> 115BP <4> IS <>)20|q BulAiEdY @
<> 0] <x> BUIIDS 3)1ym UORdIIXD 10D <> @ saje|dwsal fo ..m
[}
—
Quo-ausy Quo-ausy auo-ausy [
SL 0s L4 00 [06— G'/— 00T- S7ZI- 9 4 Z 0 = = 9 ot < 0 G- oT— E.H..l
| . L I . h n L 1 . L . . \ L L L " " L h
_ b =
o [L oot-
<
b=
P o= o Fz- Z
.
=
F&i— . Q
[os- to =
. Qo
Foo
) - boz— & N 7 g
] o @
& & re & hvi
bse 5 X E i B
] . oo %
g
. ° o +
I os 7]
. [e <
ST (it
S
Fos o
2 —~
L oot . =i
Fes re o0 =
(9-€=wWeubu ‘00g=1uIp) |2powW 1x3L1se] (9-€=wWeibu ‘00T=UWIp) |2pow 1x3l3sed (9-g=welbu ‘gg=WWIp) [2poul 1x3l1se] =)
auo-aus) auo-aus) suo-aus) M n
00T GL 0's ez 00 §'Z- 06— &/L- 00T- S 0 - 01— ST— 9 t Z 0 [l = 9 8- [} F
N s . . . h s . . . 20
- re- m H
o .
LoT— - =
Loe ot 5 o
L o— o
. * +
. 2 9
. . ® we 2 =
] - o re= =z ..m
o re- =R
g q g 2m
re- o ro @ [g
& & &
£ ® - g o N
° . ° © [9p]
O
L L ro
P) 0 z Nad)
DI
. S S
© . e re o 2
Lg <]
=
=
o to = <
B0 =
w o

6.2. Embedding analysis

Afio1pauip Jo 3|4 yons on ‘abewr weaboud Buissiw Jo pieaul oldel/<x>/d01dvy/e(|215/2q6/d/ Bulpeo| Jou3 :poid

2U0-2Us)

suoidaoxa Juawubije Jawwny-3|gnop <s> ®
pded ay3 Buioe|dal J2PISUOD ‘S2AN|IRY YOS IAISSIIXS Upp @
<3>=]0qWAS <x>=>3juel ‘BuLI22]5 119 JuepunpaJ BulleAlde upp @
<> 1q 3-8TN-E1-TIW-LZd uo Buueds 11g Buluwiepad Ja(jonuedydumsaue|dpiin @
<x>'3100 bunessusb @
3U0-3us)
ot S 0 o= 01—

00T S'L 0s &¢ 00
L

S'¢— 06— S'{— 00T—
L ! n L

@
o

L oT—

T
o
OM3-2US}

Fot

) g

Lor—

rot

(9-£=weibu ‘0oT=1Ip) [3powl Ixal3sed

3uo-ausy
0T g 0 &—

01—
L

ST-
L

{9-£=weibu ‘00 T=WIp) [2pow IxaL3sed

3uo-3us}
<] &—

01— ST-
| L L L |

FSeZl—

Foot—

Lgyi—

Log—

Lgez—

o0

F oS

FGL

oml-2Us)y

L oT—

r 0T

(T-T=welbu ‘gog=1Ip) [3poul xal3sed

(T-T=welbu ‘00T=WIp) [2pow Ixal3sed

OM]-2US)

om3-2us)

P3122.U03 puUe P21a31ap (5)404I2 PP <> JO [210)
<> YSBW <x> I8 ‘<i> WAS 3D
P3122.100 pue pal2313p (LSTOX0 J2P) (SHOLR WWHaT €7 <«>

<> 1q "<x> [OQUAS ‘<4> YURJ UO P1D31I0D PUB PR1D3IBP (S)SI0LS IPP <>

pajoauod Jous Ajed sysed uelannasul
s21e|dwa] Bo

2u0-ausy
S'L oS S'e o0

S'¢— 0'S— G'f— 00— S<ZTI—
n ! n L L

L gT—

b 01—

] ™
L
L]
o F 0T
L7 ¢
(9-g=welbu ‘0g=wWip) |2pow Ixa13se4
3U0-3Us)
G'ZT 00T &1 oS Sz 00 §Z- 06— G-
|) L h L
| 01—
b o—
w
s e o
FS
-
L]
° Lot
»
L o

(T-T=weibu '0G=wIp) |9pow Ixa135ed

OMI-2US]

oml-2Us)y

ing fastText models with different

ing us

f embedd

Comparison o

Figure 6.5

BGL data)

parameters (t-SNE reduction,

33

6. Experiments and evaluation

B 63 Anomaly detection

Benchmark script from Loglizer have provided evaluation of multiple anomaly
detection methods for both datasets. And multiple experiments with different
parameters for supervised and unsupervised model were performed. Only
best obtained results are compared with other methods in Tables 6.2/ and |6.3.
Only general evaluation method and results of other method in benchmark
are discussed here. And more detailed examination of experiments and their
results is provided in Sections|[6.3.1) and |6.3.2| for supervised and unsupervised
models respectively.

Other methods in benchmark decide only on window level and HDFS
dataset provide only labels on window (block) level. So same approach as in
[20] is used to produce comparable results. That is decision about anomality
is produced for each log statement in window and then window is labeled as
anomaly if one or more statements were labeled as anomaly. For BGL dataset,
where labels are available per log statement, evaluation is also provided on
per log statement bases to show real results.

Same metrics are used for comparison, whether evaluation is computed on
window or log statement level. Precision, recall and F1-measure are used
for comparison, as they are the most commonly used metrics, to evaluate
the accuracy of anomaly detection methods. Firstly true-positives (TP),
true-negatives (TN), false-positives (FP) and false-negatives (FN) need to be
counted, and then metrics can be computed using following formulas:

TP
preczszon = TP + FP
y_ TP
Tt = TP T EN

Pl 2 x precission + recall

precission + recall

Tables 6.2 and 6.3/ shows that most methods in benchmark works better on
HDFS. Obtained benchmark results are similar to results presented Loglizer
project page. DeepLog showed significantly worse results on HDFS, then
the ones presented in original paper [20]. But it should be noted, that used
open-sourced implementation of DeepLog is not complete and include only log
key models. And no freely available implementation of its parameter models
have been found.

Experiments with both supervised and unsupervised models did not beet
the state of the art method from benchmarks, but are comparable to some of
the methods. Exception is really good result on BGL with log level evaluation,
but it uses different evaluation so it cannot be compared directly.

34

6.3. Anomaly detection

Model Precision | Recall | F1

PCA 0.9938 | 0.2656 | 0.4192
DeepLog (1og key mode1) 0.1312 | 0.2393 | 0.1695
InvariantsMiner 0.0756 | 1.0000 | 0.1406
LogClustering 1.0000 | 0.7778 | 0.8750
IsolationForest 0.0542 | 0.7001 | 0.1005
LR 0.8369 | 0.9994 | 0.9109
SVM 0.8368 | 0.9992 | 0.9108
DecisionTree 1.0000 | 0.9907 | 0.9953
Supervised 0.0448 | 0.8756 | 0.0852
Supervised* 0.9467 | 0.9711 | 0.9588
Unsupervised 0.1535 | 0.4182 | 0.2246

Table 6.2: Benchmark results on HDF'S.
Suppervised* is modified version with uses sequence classification.

Model Precision | Recall | F1

PCA 0.2766 | 0.0992 | 0.1461
DeepLog (1og key model) 0.2402 | 0.9847 | 0.3862
InvariantsMiner 0.2311 | 0.9542 | 0.3720
LogClustering 0.2222 | 0.7481 | 0.3426
IsolationForest 1.0000 | 0.1298 | 0.2297
LR 1.0000 | 0.2977 | 0.4588
SVM 0.9872 | 0.5878 | 0.7368
DecisionTree 1.0000 | 0.6030 | 0.7524
Supervised 0.4030 | 0.9818 | 0.5714
Supervised (by log) 0.9414 | 0.9974 | 0.9686
Supervised* 0.3359 | 0.9924 | 0.5019
Unsupervised 0.2157 | 0.9847 | 0.3539
Unsupervised (by log) 0.0014 | 0.0055 | 0.0022

Table 6.3: Benchmark results on BGL.
Suppervised* is modified version with uses sequence classification.

B 6.3.1 Supervised anomaly detection

Firstly several supervised models with different number of layers and size
of hidden layers were evaluated to figure out reasonable parameters of the
model. Number of LSTM layers does not seem to affect accuracy, so it is set
to 1. Number and width of following dense layers affected models accuracy.
Low values did not provide sufficient number of parameters and model did
not learn or underfit the data. On the other hand too large models took
significantly longer to train, while not providing any additional improvements.
Parameter values that worked well with all sizes of embedding are 3 dense
layers with hidden width of 300. These values were used in all following
experiments.

35

6. Experiments and evaluation

Supervised anomaly detection is binary classifier with labeled data on input.
Classification, in general, does not work well on unbalanced datasets where
some classes are represented less often. But anomalies are by definition rare,
so in case of anomaly detection there is a large unbalance within dataset.
There are several methods to deal with unbalanced data, since it is well known
problem. General approach is to collect more data if possible, or resample
data to get more balanced dataset. Then there are options like generation of
synthetic samples or use model which can apply different weights to samples
in training phase. Weights are used in this thesis. PyTorch implementation of
BCEWithLogitsLoss allows to set per class weights which should be applied
during training. Used weights for both datasets are 1:30, since there is 30
times more normal logs then anomalous in both datasets.

Then supervised models with different embedding models were trained and
evaluated on both datasets. On BGL data models were evaluated twice. Once
on log statement level and then on window level. Only results of the best
models are shown in Table 6.4l

Model Precision | Recall | F1

HDFS (dim=100, ngram=1-1) 0.0448 | 0.8756 | 0.0852
HDFS* (dim=100, ngram=1-1) 0.9467 | 0.9711 | 0.9588
BGL* (dim=100, ngram=3-6) 0.3359 | 0.9924 | 0.5019
BGL (dim=100, ngram=3-6) 0.4030 | 0.9818 | 0.5714
BGL by log (dim=100, ngram=3-6) 0.9414 | 0.9947 | 0.9686

Table 6.4: Results of supervised models.
* means modified model with sequence classification

Results in Table [6.4] shows outstanding accuracy on BGL data when
evaluated by log statement. Unfortunately precision drops significantly when
evaluated on window level. Drop is probably caused by FP log statements
generated by model which fall to normal windows. Because even good
precision in per log evaluation still generate about 2k of FP in testing part of
BGL dataset, while this part is split to only 628 windows.

Models on HDF'S dataset, on the other hand, perform poorly. It seems
strange at first, since most methods performed better on HDFS then BGL.
But there is one big difference to BGL dataset, labels are provided only
on window level. It does not matter to the methods in benchmark which
are designed to work with windows. But proposed supervised LSTM based
model require per log labels for training. This result in labeling all logs in
anomalous block window as anomalous, while most of them probably are not.
More detailed examination of model behavior is in the following paragraph,
to verify this assumption and eliminate other possible reasons as overfitting
or other problem with training.

Firstly training and validation loss are check in Figure [6.6l On first look
training loss is normal and validation is too flat. Both losses still slowly
decreasing, which might suggest insufficient number of epoch. Even with

36

6.3. Anomaly detection

increased number of epochs losses did not started behave differently. Flat
validation suggests hitting some block in training, which is confirmed by
findings in following paragraphs.

—— train loss
—— wvalidation loss
1.0

Loss (MSE)

T
o 5 10 15 20 25 30
Epoch

Figure 6.6: Supervised training and validation MSE loss (HDFS data)

Then distribution of model output is examined. Output of supervised
model is estimated probability of log to be anomalous. Figure |6.7| shows
distribution of estimated probability over logs in normal and anomalous
windows. Spike close to zero probability is caused by batch padding. Problem
is almost uniform distribution of probability on normal logs. This is caused by
many normal logs in anomalous blog windows, which are during the training
treated as anomalies. They force model to assign high probability even for
normal logs.

HEm anomalous
N normal
105
wy
L=l
2
‘5 105 5
s
ar
=
E
=
=
104 4
0.0 0.2 0.4 0.6 0.8 1.0

Estimated probability of being anomaly

Figure 6.7: Supervised output distribution (HDFS data)

37

6. Experiments and evaluation

Next problem can be in manually set decision threshold. Default value of 0.5
worked well for BGL, but there might be some better values for HDFS data.
Even though it is unlikely, with output distribution shown in Figure|6.7. Effect
of different thresholds on metrics is shown in Figure |6.8] Metrics are mostly
uniform and not affected by most threshold values. But over all performance
can be improved by pushing threshold to extremely high probabilities. With
such threshold only anomalies predicted with high confidence will be detected,
which partly overcome uniform probability distribution on normal logs.

1.0 | .
0.8 ‘ %
0.6 — precision

— recall

—f1

----- threshold best (0.988972, f1=0.684123)
0.4 1 —— threshold used (0.500000, f1=0.084778)
0.2 -
0.0 -

;
0.0 0.2 0.4 0.6 0.8 1.0

threshold

Figure 6.8: Effect of different threshold on metrics (HDFS data)

Modified supervised model was trained and evaluated, to further validate
suspicions that bad accuracy on HDFS data is caused by labels. It implements
sequence classification instead sequence-to-sequence approach, so it require
only labels per window. Results of this models are included in Table [6.4
and marked by "*’. Sequence classification significantly improved accuracy,
when compared to original model. It took second place among methods in
benchmark on HDFS data, with Fl-measure 95.88%. But it was slightly
worse then original model, on BGL data.

To summarize results and findings in experiments with supervised methods.
Goal of these experiments was to verify, that information required for distin-
guishing anomalous logs is included in embedding. Results on BGL dataset
definitely proven that such assumption can be made. Experiments on HDFS
data showed weaknesses of supervised approach. It relies on labels, which
need to be provided in sufficient quality and quantity. And that is hard to
fulfill in real word use-cases. But sequence classification model showed that
good results can be achieved also on HDFS data. So also embedding from
HDFS data include information required for anomaly detection.

38

6.3. Anomaly detection
B 6.3.2 Unsupervised anomaly detection

Firstly several unsupervised models with different number of layers and size of
hidden layers were evaluated to figure out reasonable parameters of the model.
Result ot this initial exploration was the same as for supervised model, that
means. Number of LSTM layers does not seem to affect accuracy, so it is set
to 1. Number and width of following dense layers affected models accuracy.
Low values did not provide sufficient number of parameters and model did
not learn or underfit the data. On the other side too large models took
significantly longer to train, while not providing any additional improvements.
Parameter values that worked well with all sizes of embedding are 3 dense
layers with hidden width of 300. These values were used in all following
experiments.

Then unsupervised model, for each of the embedding variant, was trained
and evaluated on HDFS dataset to examine effect of different embedding
sizes on accuracy. And two models in combination with default embedding
(dim=100, ngrams=3-6) were trained and evaluate on BGL dataset. One
evaluated on window level and other on log statement level. Default embed-
ding was chosen as it was the most successful embedding on HDFS dataset.
Result of these experiments are in Table [6.5]

Model Precision | Recall | F1

HDFS (dim=50, ngram=1-1) 0.8044 | 0.0474 | 0.0895
HDFS (dim=50, ngram=3-6) 0.1458 | 0.4908 | 0.2249
HDFS (dim=100, ngram=1-1) 0.1182 | 0.4337 | 0.1858
HDFS (dim=100, ngram=3-6) 0.1535 | 0.4182 | 0.2246
HDFS (dim=300, ngram=1-1) 0.6313 | 0.0474 | 0.0882
HDFS (dim=300, ngram=3-6) 0.0906 | 0.3850 | 0.1466
BGL (dim=100, ngram=3-6) 0.2207 | 0.9924 | 0.3611
BGL by log (dim=100, ngram=3-6) 0.0014 | 0.0055 | 0.0022

Table 6.5: Results of unsupervised models with different embeddings

Results in Table [6.5| show that embedding size have significant effect on
accuracy. In general it seems that larger n-grams are, better the char-grams,
which fit hypothesis that n-grams can catch help exploit syntax of parameters
like IP address or paths. Dimension of embedding seems to have smaller effect
on accuracy then n-gram size. Better performance was expected with higher
dimension, since more information can be stored and passed to the model.
But there is a drop F1 measure for the largest dimension. This could point to
insufficient training, but training and validation loss were stable for several
final epochs. On the other hand drop for BGL line evaluation related to
training. Its training and validation loss changes only first one or two epochs
and then stagnate. There were several attempts to fix it by using different
learning rate, normalization and regularization methods. But unfortunately
all attempts failed. Which is unfortunate since supervised model extreme

39

6. Experiments and evaluation

strength in line by line evaluation.

But even the best results in the table are not satisfying and far behind
state of the art methods from the benchmark. So additional effort was taken
to check some assumptions about the processes in prediction model and dig
deeper into its behavior.

Unsupervised method is build on idea, that model can learn to predict
normal log sequences. Then anomalous logs in sequence will show as deviation
from the normal sequence and will have significantly large prediction error.
Prediction errors of some anomalous and normal windows, shown in Figure
6.9, support this hypothesis. On the other hand Figure [6.9| also shows that
detection via simple threshold is not perfect. There are some FPs caused
by high prediction error on normal logs as the one around time 800. There
are also FNs when all logs anomalous window have smaller prediction error
then threshold. First two windows in Figure 6.9 are examples of such FPs.
But it looks like FNs might be limited only to very short sequences. All FN
windows in example begin with long sequence of zero prediction error, which
correspond to batch padding. It can help with reduction of FN, if most of
them are in fact very short windows. But much bigger problem are the FPs
which creates additional load on human operators. Precision values in Table
6.5/ suggest large FP numbers.

i —— prediction error
o1z 4 i+ threshold

0.10

0.08

0.06

Prediction error (MSE)

0.04

0.02

1 T v v T
o 200 400 600 800 1000
Time

0.00

Figure 6.9: Prediction errors on HDFS data. Black vertical lines are window
borders. Anomalous windows have red background.

Histogram describing prediction error distribution for normal and anoma-
lous windows is shown in Figure 6.10, to check that random sample of windows
from Figure 6.9 correctly represents prediction errors in whole dataset. It is
important to note, that whole windows are labeled anomalous, which causes
all logs in window to be considered as anomalous, even though most of them
probably is not. As result distribution for normal and anomalous logs are
expected to be similar, except the end with larger errors where there should
be significantly more anomalous logs. Distributions in Figure [6.10] match

40

6.3. Anomaly detection

these expectations.

107 3
E EEN znomalous

1 HEN normal
105

10% 4

10% §

Number of logs

103 o
102 5§

101 §

10Y 3

0.00 0.05 0.10 0.15 0.20
Prediction error (MSE)

Figure 6.10: Prediction errors distribution (HDFS data)

Next potential weakness of supervised model is setting of correct threshold.
This is true especially for simpler version anomaly detection with static
threshold based on mean and standard deviation. Figure [6.11) show, how
are metrics affected by changing threshold. It is clear, that used threshold,
computed on training data, is not ideal and better threshold could double
the Fl-measure. But even the best threshold results are far behind the other
methods from benchmark. This figure also nicely shows the trade off between
precision and recall, and the possibility to change ratio between precision and
recall by setting different thresholds.

1.0 4 —|
0.8
0.6 - — precision
— recall
— R
----- threshold best (0.020398, f1=0.342491)
0.4 7 —— threshold used (0.010175, f1=0.185806)
0.2
0.0
. T T . .
0.00 0.05 0.10 0.15 0.20
Threshold

Figure 6.11: Effect of different threshold on metrics for unsupervised model
(HDFS data)

41

6. Experiments and evaluation

The biggest problem is extremely fast fall of recall, meaning large number
of FN. There have been some hints, that FN might be reduced by special
handling of short sequences in windows. But would require more time and
effort to properly investigate and propose some solutions.

To summarize experiments on unsupervised models. It seem that they
internally work as expected and most of them learn during the training phase.
But proposed prediction model in combination with simple thresholding, just
do not provide required level of accuracy. It might be a good idea to try
different unsupervised method for sequence processing as encoder-decoder or
time convolution based models.

B 64 Experiments summary

Experiments with multiple fastText custom trained models verified that fast-
Text embedding provide meaningful representation of log statement with
parameters. Log templates can be detected as clusters in embedding space.
Relative position of clusters to each other provide additional semantic infor-
mation to template when compared with simple log key representation. And
variance within cluster allow to pass some information about parameters.

Experiments with supervised models showed that embedding includes
features required for distinguishing normal and anomalous logs. Outstanding
results on BGL dataset proved the potential of proposed solution. However
different model had to be used on HDFS dataset to properly utilize labels,
which are provided only on window level for this dataset. This points to some
weaknesses of supervised approach in real word use cases. Where large and
correctly labeled datasets are rare.

And finally unsupervised models were small disappointment. Detail exami-
nation of inner working of models showed expected behavior. Models have
learned normal sequence of logs and generated predictions. Prediction errors
was much more unstable and included many spikes in anomalous windows.
But over all accuracy of anomaly detection based on static threshold was low.
Analysis of thresholds effect on accuracy showed that better thresholds for
testing data exist. But even the best threshold would not be able to compete
with state of the art methods from benchmark.

42

Chapter 7

Conclusion

This thesis studied problem of automatic log analysis and log anomaly detec-
tion in particular. Research showed that most existing solutions depend on
log parsing to log templates or log keys. Many approaches use just the log
keys and throw away information hidden in the text, although there are some
that tried various NLP methods to enrich log keys with semantic information
from corresponding templates. But only few exceptions considered use of rich
information contained in logs as message parameters or header fields.

Log representation, based on fastTexrt sentence embedding combined with
handpicked custom features, was proposed, to address issue of including
semantic information from both log header and message including its param-
eters. Supervised and unsupervised LSTM based anomaly detection models
using this new log representation were proposed, implemented and evaluated
in this thesis.

Two publicly available datasets (HDFS, BGL) were used in experiments
and benchmarks, with other anomaly detection methods. Firstly assumption
that fastText embedding is suitable for processing log statements was verified.
Then supervised models were trained and evaluated. Labels allow supervised
model to learn directly the problem of anomaly detection. So it was used
to prove, that information needed to distinguish normal and anomalous
logs is included in proposed log representation. Supervised model showed
outstanding results on BGL dataset (F1-measure 0.9686). And on the other
hand it pointed out disadvantages of supervised method in real word, when
different labeling caused pure results on HDFS dataset. But this problem
was fixed by modified version of supervised mode, with sequence classification
instead sequence-to-sequence, which shown results comparable to the best
methods in benchmark.

Finally several unsupervised model were trained and evaluated. Unsuper-
vised models unfortunately cannot compete with high bar set by other state
of the art methods, despite very promising results of supervised models. This
thesis focused more on log representation and embedding. Though proposed
anomaly detection model is relatively simple. There are many ways how to

43

7. Conclusion

further improve unsupervised anomaly detection. One is to employ more
sophisticated analysis of prediction errors to detect anomalies, then static
threshold. There are approaches like dynamic thresholding from [22]. Or
completely different unsupervised methods, as encoding-decoding models, can
be tried. Since supervised methods proved that proposed log embedding is
suitable for anomaly detection.

44

Appendix A

Bibliography

S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System
log analysis for anomaly detection,” in 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE), pp. 207-218,
Oct 2016.

J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools
and benchmarks for automated log parsing,” CoRR, vol. abs/1811.03509,
2018.

W. Xu, System Problem Detection by Mining Console Logs. PhD thesis,
USA, 2010.

R. Vaarandi and M. Pihelgas, “Logcluster - a data clustering and pattern
mining algorithm for event logs,” pp. 1-7, 11 2015.

A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering
event logs using iterative partitioning,” in Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 09, (New York, NY, USA), p. 1255-1264, Association for
Computing Machinery, 2009.

Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection in
distributed systems through unstructured log analysis,” in International
conference on Data Mining (full paper), IEEE, December 2009.

M. Du and F. Li, “Spell: Streaming parsing of system event logs,” in
2016 IEEE 16th International Conference on Data Mining (ICDM), (Los
Alamitos, CA, USA), pp. 859-864, IEEE Computer Society, dec 2016.

P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in 2017 IEEFE International Conference
on Web Services (ICWS), pp. 33-40, 2017.

S. Khatuya, N. Ganguly, J. Basak, M. Bharde, and B. Mitra, “Adele:
Anomaly detection from event log empiricism,” in IEEFE INFOCOM

45

A. Bibliography

[12]

[13]

[18]

2018 - IEEE Conference on Computer Communications, pp. 2114-2122,
2018.

S. Zhang, Y. Liu, W. Meng, Z. Luo, J. Bu, S. Yang, P. Liang, D. Pei,
J. Xu, Y. Zhang, Y. Chen, H. Dong, X. Qu, and L. Song, “Prefix:
Switch failure prediction in datacenter networks,” in Abstracts of the
2018 ACM International Conference on Measurement and Modeling of
Computer Systems, SSIGMETRICS ’18, (New York, NY, USA), p. 64-66,
Association for Computing Machinery, 2018.

C. Bertero, M. Roy, C. Sauvanaud, and G. Tredan, “Experience report:
Log mining using natural language processing and application to anomaly
detection,” in 2017 IEEE 28th International Symposium on Software
Reliability Engineering (ISSRE), pp. 351-360, Oct 2017.

J. Wang, Y. Tang, S. He, C. Zhao, P. K. Sharma, O. Alfarraj, and
A. Tolba, “Logevent2vec: Logevent-to-vector based anomaly detection
for large-scale logs in internet of things,” Sensors, vol. 20, p. 2451, Apr
2020.

A. Tuor, R. Baerwolf, N. Knowles, B. Hutchinson, N. Nichols, and
R. Jasper, “Recurrent neural network language models for open vocabu-
lary event-level cyber anomaly detection,” CoRR, vol. abs/1712.00557,
2017.

T. Mikolov, G. Corrado, K. Chen, and J. Dean, “Efficient estimation of
word representations in vector space,” pp. 1-12, 01 2013.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” CoRR, vol. abs/1607.04606, 2016.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” CoRR, vol. abs/1607.01759, 2016.

W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun, and R. Zhou, “Loganomaly: Unsupervised detection of
sequential and quantitative anomalies in unstructured logs,” in Proceed-
ings of the Twenty-FEighth International Joint Conference on Artificial
Intelligence, IJCAI-19, pp. 4739-4745, International Joint Conferences
on Artificial Intelligence Organization, 7 2019.

X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li, and et al., “Robust log-based anomaly detection on
unstable log data,” in Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2019, (New York, NY,
USA), p. 807-817, Association for Computing Machinery, 2019.

M. Landauer, M. Wurzenberger, F. Skopik, G. Settanni, and P. Filzmoser,
“Dynamic log file analysis: An unsupervised cluster evolution approach

46

[27]

A. Bibliography

for anomaly detection,” Computers & Security, vol. 79, pp. 94 — 116,
2018.

M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” 2017.

S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” CoRR,
vol. abs/1803.01271, 2018.

K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soder-
strom, “Detecting spacecraft anomalies using lstms and nonparametric
dynamic thresholding,” in Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD
'18, (New York, NY, USA), p. 387-395, Association for Computing
Machinery, 2018.

C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising
behavior of distance metrics in high dimensional space,” in Database
Theory — ICDT 2001 (J. Van den Bussche and V. Vianu, eds.), (Berlin,
Heidelberg), pp. 420-434, Springer Berlin Heidelberg, 2001.

S. Satpathi, S. Deb, R. Srikant, and H. Yan, “Learning latent events
from network message logs,” IEEE/ACM Transactions on Networking,
vol. 27, pp. 1728-1741, Aug 2019.

J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” 2016.

W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings of
the ACM SIGOPS 22nd Symposium on Operating Systems Principles,
SOSP ’09, (New York, NY, USA), p. 117-132, Association for Computing
Machinery, 2009.

A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’07), pp. 575-584, 2007.

47

48

Appendix B

Command line interface

prediction_ main.py arguments:

—h, —help show this help message and exit
—v, ——verbose print logs to console
——data DATA path to preprocessed data
——title TITLE used when generating result directory
——path PATH directory where to save results
——load LOAD path to existing results to resume training
——only_ evaluate do not train, only evaluate on test data
——evaluate best evaluate on best epoch (default is last)
——label__by_ block force evaluation per window,

even if labels per log are available
——epochs EPOCHS number epochs to train

——batch size BATCH SIZE batch size
——limit_train LIMIT TRAIN limit number of train windows
——limit validation LIMIT VALIDATION limit number of validation windows

—Ir LR learning rate

——Ir gamma LR_GAMMA learning rate gama

——loss {cos,mse,LL1} loss function used to measure
embedding distance

——fasttext FASTTEXT path to fasText model

——Istm_ layers LSTM__LAYERS number of LSTM layers
——linear width LINEAR_WIDTH width of hidden dense layers
——linear_ layers LINEAR_LAYERS number of dense layers
——layer_norm LAYER_ NORM add layer normalization
——grad__clip GRAD_ CLIP value to which clip gradient

49

B. Command line interface

classification__main.py arguments:

—h, —help

—v, ——verbose
——data DATA
——title TITLE
——path PATH
——load LOAD
——only__evaluate
——label by_ block

——epochs EPOCHS
——threshold THRESHOLD
——Dbatch_size BATCH_SIZE
—Ir LR

——Ir _gamma LR_ GAMMA
——fasttext FASTTEXT

show this help message and exit
print logs to console
path to preprocessed data
used when generating result directory
directory where to save results

path to existing results to resume training
do not train, only evaluate on test data
force evaluation per window,

even if labels per log are available
number epochs to train

threshold for anomaly detection

batch size

learning rate

learning rate gama

path to fasText model

——Istm__layers LSTM__LAYERS number of LSTM layers
——linear_ width LINEAR_ WIDTH width of hidden dense layers
——linear_layers LINEAR_LAYERS number of dense layers

— —weight WEIGHT

additional training weight for anomaly
samples, to fight unbalanced dataset

——layer_norm LAYER_ NORM add layer normalization

——grad__clip GRAD_ CLIP

value to which clip gradient

50

Appendix C

Content of enclosed CD

log-anomaly-detection

— BGL_embedding_sample.txt
— HDFS_embedding_samples.txt
— loglizer (imported library modul)

— rci_batch_scripts

— benchmark_BGL.batch
— benchmark_HDFS.batch
L fasttext.batch

— requirements.txt

L—src

— BGL_Drain_main.py
— BGL_bechmark.py

— HDFS_Drain_main.py
— HDFS_bechmark.py
— classification.py

— classification_main.py
|— data_loaders.py

— loglizer

— logparser

|— model_environment.py
— prediction.py

— prediction_main.py
— show_losses.py

— utils.py

|— visualize_embedding.py
L— visualize_env.py

— logparser (imported library modul)

log-anomaly-detection-thesis
— assignment_cs.pdf
— assignment_en.pdf
|— assignment_en_signed.pdf
— ctu_logo_black.pdf
— ctu_logo_blue.pdf

— ctuth-core.tex

— ctuth-names.tex

— ctuth-pkg.tex

— ctuth-templates.tex
— ctuthesis.cls

— ctuthesis.ist

— figures

— architecture_overview.pdf
— bgl_window_len_hist.png
f— cd_content.pdf

|— classification_learning.png
— classification_model_arch.pdf
— classification_prob_hist.png
|— classification_thresholds.png
}— data_loading.pdf

— embedding_flow.pdf

|— fasttext_embedding_bgl.png
|— fasttext_embedding_cross.png
|— fasttext_embedding_hdfs.png
— hdfs_window_len_hist.png
— logStructure.pdf

f— models_in_out.pdf

|— prediction_error_hist.png
|— prediction_errors.png

|— prediction_model_arch.pdf
|— prediction_thresholds.png
L— preprocessing_benchmark.pdf
— log_anomaly_detection.bib
L— log_anomaly_detection.tex

o1

— anomaly_detection_framework.png

	Introduction
	Related work
	Log collection
	Log parsing
	Feature extraction
	Aggregating representations
	Per line representations
	Word2vec and fastText

	Anomaly detection

	Problem analysis
	Proposed architecture
	Embedding
	Unsupervised model
	Supervised model

	Implementation
	Preprocessing and benchmarks
	Models
	Embedding and data management

	Experiments and evaluation
	Datasets
	DHFS
	BGL

	Embedding analysis
	Anomaly detection
	Supervised anomaly detection
	Unsupervised anomaly detection

	Experiments summary

	Conclusion
	Bibliography
	Command line interface
	Content of enclosed CD

