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Abstract

This thesis aims to compare and evalu-
ate directional and association methods
performance on single-cell RNA sequenc-
ing (scRNA-seq) data. The scRNA-seq
enables one to study biology at a single
cell resolution.

Although this process of RNA sequenc-
ing opens up new possibilities, the data
can be subject to technical distortions,
such as a dropout where the loss of in-
formation ranges from 30 to 90 %. Thus
methods that work reliably for the bulk
RNA data sets may perform close to ran-
dom guessing for the scRNA-seq. There-
fore I present a comparison of multiple
methods on both the simulated and the
real data sets. The directional and non-
directional studies are separated for tests
using the simulated data to prevent in-
fluencing the results by methods that de-
tect the inference inaccurately in only one
of these studies. The best performing
method is then used to discover new asso-
ciation patterns across transcriptome and
proteome in acute leukaemia cells.

Secondly, I demonstrate the impact of
data normalisation for association meth-
ods. Four current normalisation methods
and a new approach proposed here are
compared on real data. The functions are
tested for a new artefact creation and the
original artefact destruction. Examples
of these pattern transformations are pro-
vided for each approach. The findings in
this thesis suggest that the normalisation
of the scRNA-seq data must be carefully
handled to avoid introducing undesirable
artefacts into the studying of relationships
between genes.

Keywords: Single-cell RNA sequencing,
Model-free directional dependency,
scRNA-seq normalization, gene-protein
co-expression, the dropout simulation
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Abstrakt

Tato prace je zamérena na porovnani a
vyhodnoceni smérovych a asociativnich
metod na single-cell RNA sekvenc¢nich
(scRNA-seq) datech. ScCRNA-seq umoz-
nuje studovat biologii na jednobunécné
drovni.

Prestoze tento proces RNA sekveno-
vani otevira nové moznosti, data muzou
podléhat technickému zkresleni jakym je
vypadek informace s mirou ztraty pohy-
bujici se od 30 do 90 %. Proto metody,
které fungovaly spolehlivé pro bulk RNA
data, davaji vysledky blizké ndhodnému
odhadovani pro scRNA-seq. Proto pred-
stavuji porovnani nékolika metod na si-
mulovanych i redlnych datech. Smérové a
nesmérové studie jsou rozdéleny pro testy
na simulovanych datech, aby se predeslo
ovlivnéni vysledkt metodami, které predi-
kuji Spatné jen pro jednu z téchto studii.
Metoda s nejlepsim vyhodnocenim je na-
sledné pouzita pro objeveni novych vzoru
pres transkriptom a proteom v bunkach
akutni leukémie.

Za druhé, demonstruji dopad norma-
lizace dat na asociativni metody. Cty¥i
soucasné normalizacni metody a novy pii-
stup predstaveny zde jsou porovniny na
realnych datech. Funkce jsou testovany na
tvorbu novych artefaktt a destrukci pu-
vodnich artefaktt. Priklady téchto vzoro-
vych premén jsou poskytnuté pro vsechny
postupy. Vysledky této prace naznacuji,
ze normalizace scRNA-seq dat musi byt
peclivé zpracovana, aby se zabranilo za-
vadéni nezadoucich artefakti do studie
vztahll mezi geny.

Klicova slova: Single-cell RNA
sekvenovani, bezmodelova smérova
zavislost, normalizace scRNA-seq dat,
koexprese genu a proteinu, simulace
ztraty informace

Pteklad nazvu: Porovnani smérovych a
asociativnich metod na single-cell RNA
sekvencnich datech
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Chapter 1

Introduction

Ribonucleic acid (RNA) sequencing is a powerful tool, which can be used to
understand biological mechanisms. The idea of RNA sequencing is accurate
quantification of messenger RNA (mRNA) expression levels across genes.
The analysis of expression levels can reveal a gene to gene correlation of
specific cell types, which helps us understand inner molecular mechanisms.
A differential expression study can operate as treatment control in new
medical procedures. Single-cell RNA sequencing (scRNA-seq) is a novel RNA
sequencing method. One of the main characteristics of the scRNA-seq data
is high dropout [8], which causes a lack of analysis methods accuracy that
used to work for older RNA sequencing method, bulk RNA sequencing [9).
This work compares multiple methods in order to increase the accuracy of
scRNA-seq data analysis.

The recent progress in next-generation sequencing techniques provides
new possibilities in molecular biology. Especially technologies for genomics,
transcriptomics, and proteomics focus on single-cell properties. The scRNA-
seq was published for the first time by Tang et al. [I0] in 2009. After
this paper’s release, scRNA-seq has been exploited and used to characterise
biological mechanism of individual cells. Although a group of cells can share
the donor or even the same tissue, cells show heterogeneous characteristics
[T1, 12]. The main advantage of scRNA-seq is the capability of distinguishing
cells by their type and obtaining data that originates in only one type of
cells, which is impossible with the bulk RNA sequencing. An example of the
scRNA-seq application is the co-expression analysis, e.g. biological networks
construction. An example of the scRNA-seq processing from cells to the gene
expression analysis is shown in Figure |1.1.
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Figure 1.1: An example of the scRNA-seq and its futher analysis. Figure taken
from [IJ.

Although the scRNA-seq allows studying molecular mechanisms with an
unmatched resolution, the cell filtration brings data limitations. The library
preparation techniques cause additional noise characterised by an observation
of many zero values in the result data, also referred to as dropout [L13].
The dropout of values can occur when a reverse transcription skips a cell
[14]. The reverse transcription is a necessary step in the library preparation
for the scRNA-seq. The result dropout rate equals to 30-90 % [8]. The
high dropout rate causes the lack of accuracy of existing network inference
software that used to work reliably for the bulk RNA sequencing. With no
dropout consideration, old methods perform close to random guessing on
scRNA-seq [9]. Due to dropout, new artefacts are introduced which affect
the co-expression analysis.

Due to the lack of performance of existing inference methods, the accuracy
of recent association methods is compared in this work. Four association
methods are evaluated on both the simulated and the real data. The non-
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directional and the directional studies are performed separately to test each
ability with focus, when using the simulated data.

To prevent the artefacts transformation due to dropout, four present
normalisation methods are compared with a newly introduced normalisation
function. All methods are evaluated on real data provided by [15].

. 1.1 Association methods

The central hypothesis of this thesis is that the Functional index, designed
explicitly for the scRNA-seq, performs better on scRNA-seq data than other
association methods. The Functional index is a recent association method
which originates in the FunChisq and was introduced in [16], (17, [I§].

The performance of the association methods is evaluated on both artificially
generated and real data sets. The evaluation of methods is divided into two
parts to test the ability to detect the inference separately from the ability to
detect the direction of the dependency. In other words, this thesis aims to
answer the following questions:

1. How accurate does a method detect a dependency of two variables?
2. How accurate does a method detect the direction of dependency inference?

For simplicity and correct evaluation, experiments based on binary decision
making were designed. To answer the above questions, two different experi-
ments were created. In the association test, a method only decides whether
variables are dependent and therefore, half of the data consists of conditional
inference, and the other half is non-dependent. This test studies the ability
to detect an edge in the biological network.

Unlike the data set in the first experiment, the whole data set of the second
test consists of dependent variables only, but the dependency is one-sided.
The methods detect the direction of dependency inference. In this work, all
the evaluated methods were designed to tell the correlation direction.

For both methods, the normalisation method gets a contingency table as
input and returns true if f : Y — X is detected and false otherwise. In the
association design X and Y are variables either independent (f : X /A Y
and f :Y 4 X) or functional (f : X — Y and f: Y — X), thus only a
single direction of the inference is tested. Regardless of the tested direction,
the outcome must be the same so testing a single direction is a correct and
sufficient approach.

The second design shares the workflow of the contingency table processing.
The normalisation methods get one contingency table as an input. However,
since there is no assumption of the dependency type of the input table, only
one direction is checked, and the methods have no information about the
opposite direction inference. This design was chosen because when testing the
real data sets, the type of inference is also hidden. An example of scRNA-seq
data simulation is displayed in Figure [1.2}
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Figure 1.2: An example of the scRNA-seq data simulation. Figure taken from [2].
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To prove the accuracy of the Functional index, the association method
is compared with three other methods via receiver-operating characteristic
(ROC) and precision-recall (PR), and calculated areas under the curves
(AUROC and AUPR) on both the simulated and the real data. Then the
Functional index is used to discover new gene-protein correlations.

In this work, four association methods (the Kruskal-Wallis test, the Condi-
tional entropy, the Causal inference by stochastic complexity (CISC) and the
Functional index) were compared on both the simulated and the real data.
The Functional index was concluded to be the best performing association
method.

The aim has been to propose a reliable method for biological inference
networks construction given the data characteristics. There are several
methods for scRNA-seq data. The simulated data generation proposed in
this thesis allows concentrating the study to all parameters, both separately
and all together. This feature enables us to recommend methods based on
the data.

Although the scRNA-seq unfolds new fields of study, the imprecision in
scRNA-seq data analysis by existing methods prohibits the reliable outcomes.
The evaluation of new methods and their comparison helps overcome the

4
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Figure 1.3: An example of a biological network construction from the scRNA-seq
data. Figure taken from [3].

problems characteristic of scRNA-seq. The accuracy assessment of multiple
methods provides recommendations for the association method end-users to
speed up work with reliable outcomes. An example of biological network
creation is shown in Figure |1.3.

. 1.2 Normalisation methods

The existing normalisation methods implemented for the bulk RNA-seq
introduce new or destroy original artefacts. Thus a new normalisation function
is presented that prevents creating or destroying artefacts.

The Up-down-sampling (UDSM) normalisation method is presented in
Chapter 4. Then the UDSM is compared to four other normalisation methods.

The normalisation methods are compared both visually and empirically.
The co-expression graphs of the gene pairs are displayed and checked for the
artefact creation or destruction. The empirical measurement is based on the
estimate value calculated by the Spearman correlation test. The Spearman
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test was chosen because it has no assumption of the sample distribution. The
normalisation methods are expected to modify the raw values but still stay
close to the original patterns and estimate value.

To demonstrate the impact of the pattern destruction and formation, all
values with at least one gene equal to zero are omitted. To prevent the
evaluation of empty vectors, gene pairs are not included if their length is less
than three after the zero filtration.

Two experiment designs were developed to check both original pattern
exploitation and the new artefact creation. The study is designed to answer
the following questions:

1. Does a normalisation method exploit the dependency correctly?
2. Does a normalisation method introduces new artefacts?

The first experiment contains selected pairs of genes with known co-
expression dependency. The dependency types include a negative correlation,
a positive correlation and also an independent pair of genes. In this study,
the transformation of the raw values by normalisation methods is expected
to improve the known dependency, so the estimate values can differ a lot as
long as the new estimate value approaches the desired value.

The second study focuses on introducing new artefacts. The experiment
is called permutation study because all the values are permuted row by row
across cells. The permutation destroys all present dependency, and therefore
the estimate value before and after normalisation should be close to zero.
The data set for this study contains over 1000 gene pairs randomly picked
from the real data [I5]. An example of the scRNA-seq data normalisation is
provided in Figure |1.4
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Figure 1.4: An example of the scRNA-seq data normalisation and the workflow
of the analysis of the data. Figure taken from [4].

Five normalisation methods (including a newly presented method) were
compared from the point of pattern destruction and creation on the real data.
Two types of experiments were developed and evaluated.

The newly presented Up-down-sampling (UDSM) normalisation method was
compared to four other normalisation methods (Counts per million (CPM),
Relative Log Expression (SF), 99" percentile (UQ), Down-sampling (DSM)).
The experiments aim to test if any artefacts are created or destroyed during
normalisation. Although the UDSM has been proven to perform better than
the other normalisation methods, it still needs more testing of its parameters
because it created few artefacts.

The correct normalisation enhances association analysis. The connection of
the association and normalisation studies make the scRNA-seq examination
more reliable and credible. Preventing the artefact formation reduces false-
positive gene co-expression and suppressing the pattern destruction represses
false-negatives.

The new normalisation method has proved to be preventing the new artefact
creation and the pattern destruction. After further studies, the UDSM should
improve the scRNA-seq analysis.






Chapter 2

Related work

The scRNA-seq is a relatively recent method which experienced massive
development and modifications during the last decade. The idea of the RNA
sequencing is accurate quantification of mRNA expression levels. The analysis
of expression levels across genes provide valuable insights into biological
mechanisms and can be beneficial in some medical treatments.

B 2.1 Single-cell RNA sequencing

The scRNA-seq belongs to the next-generation sequencing (NGS), which faces
rapid progress in the past few years. The first description of the scRNA-seq
was provided by Tang et al. [I0] in 2009.

B 2.1.1 ScRNA-seq protocol

The scRNA-seq underwent several changes and development during the
last years, and therefore there are multiple protocols for scRNA-seq [19].
All protocols require a minimum amount of starting material. One of the
developments in scRNA-seq includes studies that increased the number of
processed single cells in the assay. The original scRNA-seq study contained
only one cell per experiment, but an improvement over the years ensures that
current studies can contain up to 100,000 single cells [14].
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Figure 2.1: Visualization of the scRNA-seq process. Figure taken from [5].

The main steps of the scRNA-seq according to [14] are:

1. Capture the single cell material.

2. Convert transcribed RNA from cells to complementary DNA (cDNA)
using the reverse transcription (RT).

3. Amplify the cDNA using the polymerase chain reaction (PCR) or the in
vitro transcription (IVT).

® When using the IVT, the resulting material is an amplified RNA
and therefore is converted to cDNA again [5].

4. Prepare sequencing library.

5. Sequence.

The second step of converting the RNA to the cDNA is essential because
the amount of the mRNA in a single cell is 1-5 % of its total RNA and
degrades quickly [20]. The reverse transcription is required to convert the
RNA to the cDNA, but it may produce positional bias during the process
[21} 22]. Molecular barcodes can partially correct the positional bias [I3],
an example of a barcoding method is illustrated in Figure However the
correction comes with other sources of bias in the result data such as the
PCR and sequencing errors [23].
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2.1. Single-cell RNA sequencing

To achieve the transfer from the RNA to the cDNA, adaptor sequences
are added to all mRNA transcripts [I4]. The PCR amplification operates
exponentially and the IVT linearly. To obtain a sufficient amount of the
c¢DNA material, multiple rounds of the IVT are needed. On the other hand,
for PCR, adaptor sequences for both ends are required. Some genes can be
preferred during the amplification which leads to additional bias in the result
data [24]. The final read counts of some genes can be lower or completely

dropped out [25].
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Figure 2.2: An illustration of a transient barcoding method. Figure taken from

[6].

B 2.1.2 ScRNA-seq data characterisics

The first main characteristic of the scRNA-seq data is the amount of the
input material. The amount of the analysed material is small and contains a
few types of cells. This quality allows the research of molecular mechanisms
and rare cell types that are difficult to cultivate.

The second characteristic is that during the essential part of the library
preparation, the final data suffer from high information loss |26, 27]. Many
zero observations in result data give the dropout with 30-90 % rate [g].

The next feature of the scRNA-seq is the creation of technical artefacts
which can originate in cell-specific sequencing depth differences [28]. The
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Figure 2.3: An example of the scRNA-seq and the bulk RNA-seq dissimilarity
in the co-expression analysis. Figure taken from [7].

scRNA-seq data share a global pattern which is probably caused by the cDNA
production [22].

B 2.1.3 ScRNA-seq vs. bulk RNA sequencing

Before the scRNA-seq became popular, the bulk RNA sequencing method
preceded. The bulk RNA-seq processes a large population of cells within a
tissue. The result data contains the average genetic content for each gene.
The averaging across a large sample of cells discriminates the cell types with
a rare type that is difficult to culture. The impact of these cells is abated
or completely faded away [5]. The scRNA-seq fills the gap of averaging out
some cell types because the scRNA-seq distinguishes cell types. Patal et al.
[29] discovered heterogeneity within a tumour which would not be possible
with the bulk RNA-seq.

Due to the divergent characteristics of the bulk RNA and the scRNA-
seq, multiple methods with various focus perform close to random guessing
[30]. Therefore a further research in order to increase the accuracy has been
conducted. An example of how the dissimilarities of the scRNA-seq and bulk
RNA-seq is shown in Figure

B 22 ScRNA-seq normalisation

Since the bulk RNA-seq is the predecessor of the scRNA-seq, many normali-
sation methods were initially invented and tested on the bulk RNA-seq [31].
The scRNA-seq differ from the bulk data by not only the high dropout [26], 27]
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Figure 2.4: An example of scRNA-seq data analysis. Figure taken from [5].

but also by a technical noise and the bulk RNA-seq assumptions that do not
apply on scRNA-seq [28]. Another problem are the technical artefacts created
during the scRNA-seq process which can not be removed [2§]. The goal of
normalisation is to reduce or remove the technical artefacts and the batch
effect influence [4]. Normalisation methods lose effectiveness when applied
on the scRNA-seq data [32]. Since normalisation is an essential step during
the data preprocessing, its improvement has become a theme of many recent

studies [32] 25], 33}, 34].

B 23 ScRNA-seq association analysis

Most of the standard association methods were designed before the invention
of the scRNA-seq and were assessed on the bulk RNA. Thus the methods
were not invented with the knowledge of the scRNA-seq characteristics. The
difference between the bulk and the scRNA-seq causes the methods widely
used for the bulk RNA analysis to perform close to random guessing [9].
Therefore new association tests are being developed, and their accuracy is
being compared [35, 9]. An example of the association methods analysis is
shown in Figure 2.4,
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Chapter 3

Data sets

In this chapter, we look closer at the data that was used to evaluate the
performance of the association methods. The experiments were performed
both on the artificially generated and the real data. The initial testing is
conducted on the simulated data set, then on the selection of genes from
the real data provided by [I5] for the final evaluation and the comparison
of the normalisation methods. The real data set is also processed with the
Functional Index association method to find new co-expressed protein-gene
or gene-protein pairs.

. 3.1 Simulated data

The generated data for the association study is created in two steps. The
first step is the data set creation with the R function simulate tables from
the FunChisq package. In the second step, the dropout is simulated.

The simulate_tables function allows the user to create a matrix represent-
ing the relationship of two variables with exclusively no inference, one-sided
inference or functional inference. This feature facilitates the two-way experi-
ment design applied in the methods evaluation. It also provides modifiable
parameters for the matrix dimensions, number of samples and noise.

Because we aim to simulate not just any interactions but interactions
specific for the scRNA-seq, the dropout is simulated. The original table
is converted to the vectors of values for each variable. Then each vector
is processed independently. According to the predefined dropout rate, a
percentage of the vector values is set to zero.

B 3.1.1 Impact of each parameter

Due to all the modifiable parameters, it is possible to test the method
robustness with a focus on each factor. The examples of all the previously
mentioned parameters follow. All the following tables share these default
settings if not mentioned otherwise:

B noise parameter: 0.2

® dimension: 5x5
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3. Data sets

B samples size: 5,000

B type of inference: Functional

B Dropout

Next Figure |3.1] illustrates the significant impact of the dropout on tables of
all types of inference. The matrices are sorted from the top to the bottom
by dropout (0-90 %) and from the left to the right by the dependency type
(Functional, Many-to-one, One-to-many, Independent). The first row of tables
shows an apparent difference between the types of inference. However, with
the growing dropout, the difference is decreasing, especially when we compare
the first line, where the dropout is set to 0 %, and the last line, where the
dropout is set to 90 %.
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Figure 3.1: Generated tables of all the dependency types with zero noise and
various dropouts. The types of inference from the left to the right: Functional,
Many-to-one, One-to-many, Independent. Dropout from the top to the bottom:
0 %, 30 %, 50 %, 70 %, 90 %.

B 3.1.2 Noise

The following graphs show the effect of various noise levels.
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Figure 3.2: Generated functional tables of various noise with a zero dropout.
The noise parameter from the left to the right: 0.0 , 0.1, 0.2, 0.3.

Figure [3.3| shows functional tables with various noise and zero dropout.
The impact of the noise is less noticeable than the impact of the dropout.
That’s because the noise produces random numbers and dropout produces
zeros, which shifts a lot of values in only one direction and introduces new
dependencies. To demonstrate the different impact of the noise and dropout,
following Figure |3.4] puts two functional tables side by side — one with the
noise parameter set to 0.3 and zero dropout and the second one with zero
noise and 30% dropout.

noise: 0.3 dropout: 0 noise: 0 dropout: 0.3
4 -l 0 1 1 213 216 680 O
1 0 0 0 |670 699| O 0 0 0

713| O 0 0 0

gene 2
§
o
o
o
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0 0 0 216 0 |487| O 0
gene 1 gene 1

Figure 3.3: The comparison of two generated functional tables, one with a zero
dropout but the noise parameter set to 0.3 (left) and the second one with a 30%
dropout and zero noise (right).

B Sample size

Demonstrating all aspects of how the various sample size impacts the inference
of two variables, eight contingency tables are provided as an example. The
set is sorted by sample size from the left to the right: 100; 1,000; 10,000;
100,000). The first line of matrices is without the dropout effect. The
second line contains the same functional tables but with the simulated 90%
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3.2. Real data

dropout. Even without the dropout, the tables with greater sample size are
distinguishable visually because the dependence is visibly more robust. The
greater number of samples also resists the dropout rate more. Even with a
very high dropout rate of 90 %, the pattern is still evident.

sample size: 100 dropout: 0 sample size: 1000 dropout: 0 sample size: 10000 dropout: 0
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Figure 3.4: Generated functional tables of various sample size with a 90%
dropout. Sample size from the left to the right: 100; 1,000; 10,000; 100,000.

B 3.1.3 Details of the data generated for the association
experiments

We simulate two primary types of data sets, which both include 200 edges.
The first type consists of both the independent and the functional inference
with a 50:50 ratio. This type aims to test whether the association method
is capable of detecting the dependency existence. The second type contains
matrices with only one-sided dependence. The generated matrix is saved with
its transpose. Due to the transposition, we know that only one direction is
dependent and that the set includes 50 % of a correctly detected inference
and the rest 50 % is independent for the tested direction.

The advantage of simulated data is the known ground truth. It allows
evaluating the methods with only pairwise dependency that precludes the
results from being affected by indirect dependencies. E.g. if a biological
network forms a circle, all the vertices are more or less dependent on each
other. Then it is harder to resolve the ground truth because even if a pair of
vertices isn’t neighbours, they still depend on each other.

B 3.2 Real data

This work uses a data set, which was presented at the end of the last year
by Granja et al. [I5]. The data collection includes the scRNA-seq, the
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Antibody-Derived Tag sequencing (scADT-seq), and the Assay of Transposase-
Accessible Chromatin using sequencing (scATAC-seq). The set contains 16
samples, where 10 were obtained from the individuals diagnosed with a
mixed-phenotype acute leukaemia (MPAL), and the rest is from the healthy
individuals (HI). The youngest MPAL donor was 22 years old and the oldest
was 72. Also, both the female and the male donors were included, which
shows the diversity of the data.

The real data are used for both the evaluation and a new association
detection, but we only use the scRNA-seq and scADT-seq. The scRNA-seq
data consists of matrices, where the rows are the genes and the columns
correspond to the cells. The values of a specific gene in a given cell represent
the number of reads of the particular gene in the given cell. The scADT-seq
shares the same logic, but instead of genes, the expression levels of proteins
are present.

Because the dropout is the main focus of this work studies, brief statistics of
the scRNA-seq data follow. The overview is mainly focused on demonstrating
a high percentage of zero values and a high amount of values per a matrix.
The dropout metric cannot be used here because all that can be seen are the
final tables, and it would only be a guess to state the dropout rate.

Name State Age Genes Cells Zero %
GSM4138872 HI 18-55 20287 6270 91 %
GSM4138873 HI 18-55 20287 6332 91 %
GSM4138874 HI 18-55 20287 2424 85 %
GSM4138875 HI 18-55 20287 5752 89 %
GSM4138876 HI 18-55 20287 7544 91 %
GSM4138877 HI 18-55 20287 7260 91 %
GSM4138878 MPAL 36 20287 196 90 %
GSM4138879 MPAL 36 20287 1539 92 %
GSM4138880 MPAL 65 20287 5885 88 %
GSM41388381 MPAL 22 20287 510 85 %
GSM4138882 MPAL 22 20287 325 85 %
GSM4138883 MPAL 46 20287 1579 86 %
GSM4138884 MPAL 46 20287 1908 86 %
GSM4138885 MPAL 71 20287 4161 90 %
GSM413888¢ MPAL 72 20287 465 91 %
GSM4138887 MPAL 72 20287 1488 88 %

Table 3.1: The statistics of the real data.

Table [3.1] demonstrates the high percentage of zeros in all tables and the
high amount of data. The average of the zero percentage per a matrix is 89
%, and the mean of the data values count is 68,009,632, which corresponds to
the average of 3352 cells per a sample. To test the gene-gene co-expression,

it takes
-1
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comparisons, where n is the number of genes. It corresponds to 411,542,082
association tests.

Figure [3.5| demonstrates how rapidly can the high dropout affect the co-
expression analysis. The graph shows a co-expression of two genes CD34
and ABCG2. According to [36], the CD34 and the ABCG2 genes should be
positively correlated. Unfortunately, the dropout shifted all points to the
axes, so the final inference statistics are negative, which would suggest a
negative correlation.

raw estimate = —-0.04093
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Figure 3.5: The illustration of the dropout effect on the CD34 and the ABCG2

genes co-expression.
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Chapter 4
Methods

In this chapter, all methods used in this work are explained in detail. The
first part is dedicated to the normalisation methods, including a presentation
of a new normalisation method. The second part contains all the association
methods.

. 4.1 Normalisation methods

Four current normalisation methods are compared using the scRNA-seq data.
Three of them are based on the normalisation factors, one of which is the
library size that corresponds to the total number of reads in one cell and is
calculated with the formula

ci = (ni)
J
where ¢; is the library size of i — th cell and n;; is number of reads of j — th

gene in ¢ — th cell.
Another important statistic is the length of j — th gene and is calculated

by
L= (ni)
(2
The length of the gene corresponds to the sum of the gene expression levels
across all cells.

The last method recreates the data by the means of a multinomial distri-
bution based random generator, and the probability is calculated from the
previously mentioned statistics.

A new normalisation method is presented, which is based on the technique
of using a multinomial distribution to recreate the data, with some additional
steps.

To demonstrate the impact of each normalisation, an example of the gene
to gene inference is provided from the real data set provided by [I5]. The
gene pair selected for the demonstration is the CDA and the CCM2. The
co-expression graph is displayed side by side with the estimate statistics calcu-
lated by the Spearman correlation method. For better visual understanding,
the data values with at least one coordinate equal to zero or both equal
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to one are omitted. However, the statistics are calculated with all values
before the zero filtration. An example of the CDA and the CCM2 gene pair
co-expression graph before any normalisation is shown in Figure |4.1L

raw estimate = —-0.07052
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Figure 4.1: The data before any normalisation.

B 4.1.1 Counts per million (CPM)

The normalisation method Counts per million [37] normalises the read counts
by the library size. The result counts are scaled by 1,000,000.

e
CMP = —"__
Zj (n;)

For a better understanding, the code in the R programming language is
provided:

- 1,000, 000

calc\_cpm <— function (expr_mat)
{

norm\ _factor <— colSums( expr\_mat )

return( t( t( expr\_mat ) / norm\__factor ) x 1076 )
}

The following graph shows the inference of two genes after the Counts per
million normalisation method. Using only the normalisation factors affects
the inference by creating or destroying artefacts.
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cpm estimate = -0.08272
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Figure 4.2: The data normalised by the Counts per million normalisation
method.

B 4.1.2 Relative log expression (SF)

The Relative log expression method [37] is based on the size factor. The
normalisation factor used for scaling is not linear but geometrical. At first a
vector gm of the geometrical mean of each row is calculated by

Zj log (”U)
gmi=e i n;#0,
where gm; is the geometrical mean of the i — th row, s; is the length of the
row, n;; is the number of reads of the j — th gene in the i — th cell.
The size factor sz is then obtained using the gm vector. The size factor is

a vector whose size is the same as the size of the column. The j — th element
of the size factor is calculated as follows

n .

szj = median (]) ,

gm

where sz; is the j — th element of the size factor n ; is the j — th row, the

zero values are omitted as in gm vector.
The normalisation is obtained by dividing the each row by the size factor

SF; ="t Vie1,2,... s €N.
Sz
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The code in R is provided for better understanding:

calc_sf <— function (expr mat) {
gm <— function (cnts) {
exp( mean( log( cnts[!(cnts==0)] ) ) )
}

geomeans <— apply( expr_mat, 1, gm)
SF <— function (cnts) {

tmp = ((cnts / geomeans )

[(is.finite (geomeans) & geomeans > 0) | )

median ( tmp [tmp>0] )
}
norm_ factor <— apply( expr_mat, 2, SF)
keep_cols = norm_ factor > 0 # prevents division by 0
expr_mat [, keep_cols| =

t( t( expr_mat[,keep_cols] ) / norm_factor )
return (expr_ mat)

The SF normalisation method also creates new patterns. However, the
artefacts affect the result estimate value less than in the case of the previous
CPM method.

sf estimate = -0.07614
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Figure 4.3: The data normalised by the Relative log expression normalisation
method.
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B 4.1.3 99" percentile (UQ)

The 99" percentile normalisation [37] creates the normalisation factor with
the percentile statistics.

Firstly, a vector uq containing the 99*"* percentile of each column is created.
Then the vector is divided by its median. The normalisation factor is obtained
and used to scale each row

9th

ug; = poy (n.5) ,
where pog (1 ;) is the 99 percentile of the j — th cell,
ng = T,Vl S 1,2, e Sist € N,
median(uq)
where Pyg is the final normalisation matrix, n; is the i — th row.

calc_uq <— function (expr_mat, quantile=0.99)

{

UQ <— function(x) { quantile( x[ x > 0 ], quantile )}
keep__cols = colSums(expr_mat) > 0 #omits 0 devision
non_zero = expr_mat[,keep_cols]

uq <— unlist ( apply( non_zero, 2, UQ ) )

norm_factor <— uq / median(uq)

result = ( t( t( non_zero ) / norm_ factor) )
expr_mat [, keep_cols] = result

return (expr_ mat)

Figure 4.4] shows the co-expression graph of the example gene pair after
the UQ normalisation method. We can see the newly created artefact with a
similar significance as after applying the CPM normalisation method.
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ug estimate = —-0.08982
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Figure 4.4: The data normalised by the 99" percentile normalisation method.

B 4.1.4 Down-sampling (DSM)

The Down-sampling (DSM) normalisation method [37] differs from the pre-
vious ones in the main idea. This method is not based on scaling by the
normalisation factor like the previous methods but on recreating the whole
set again with a multinomial distribution based random generator, the result
data of which then replace the original. In our implementation the rbinom
function is used from the stats package. The new observation is generated
with the probability of the minimal library size divided by the library size of
the current cell.

Since this normalisation method is based on regenerating the data set
instead of the normalisation factor, only the code in R is provided for better
understanding:

Down_ Sample Matrix <— function (expr mat) {
keep__cols = colSums(expr_mat) > 0 # prevents 0 probability
non_zero = expr_mat[,keep_cols]
min_lib_size <— min(colSums(non_zero))

down_sample <— function(x) {

prob <— min_lib_size/sum(x)
return (
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4.1. Normalisation methods

sapply (x, function(y) { rbinom(1, y, prob) } )

)}

down_sampled__mat <— apply(non_zero, 2, down_sample)
expr_mat[,keep_cols] = down_sampled mat
return (expr__mat)

}

A new created artefact are not present when using the DSM normalisation
function, which is demonstrated in Figure 4.5 That’s because the multinomial
random generator generates only integers. It takes the current value and the
probability of the cell library size, and based on this information it generates
a new value. The result value is, therefore, an integer lower or equal to the
original value. Unfortunately, the co-expression space is too small to keep
the original pattern.

Down_Sample_Matrix estimate = —0.03775
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Figure 4.5: The data normalised by the Down-sampling normalisation method.

B 4.1.5 Up-down-sampling (UDSM)

To improve the normalisation, I present the Up-down-sampling (UDSM)
normalisation method. In order to prevent new artefacts formation, the
Down-sampling normalisation is chosen as the method foundation. However,
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some additional steps are added to preprocess the data set and scale the
resulting space.

Firstly, noise of uniform distribution with the resulting interval of a length
one is added to the data to separate the same values. To prevent negative
values, the zero values are only increased. Secondly, the final space is stretched
by a multiplication parameter m. The last step is the random generation
performed equally as in the Down-sampling normalisation.

The code in R follows to provide a better understanding:

Add_Noise <— function (expr_mat, 1 = 0.5){
print ("adding noise")
expr_mat [expr mat==0] =
runif (sum(expr _mat = 0),min = 0, max = (1))
expr_mat [expr_mat!=0] =
expr_mat [expr_mat!=0] +
runif (sum(expr_mat !=
print ("noise added")
return (expr__mat)

}

udsm <— function (expr_mat ,m=1000) {
min_lib_size <— min(colSums (expr_mat))

up__down_sample <— function(x) {
prob <— min_ lib_ size/sum(x)

return (
sapply (x, function(y) {
if (y <= 0){

return (0)

}

if (prob >= 1){
prob =1

}

return (rbinom (1, round(yxm ), prob))

H)
)}

up_down_ sampled__mat =

apply (expr_mat, 2, up_down_sample)
expr_mat = up_down_ sampled_mat
return (expr_mat)

}

The example of the data modification by the Up-down-sampling normalisa-
tion method follows in Figure 4.6, The example proves that UDSM does not
introduce new artefacts, but at the same time holds the original patterns.
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Figure 4.6: The data normalised by the Up-Down-sampling normalisation
method.

. 4.2 Association methods

In this work, four different association methods are compared. All included
methods can predict the direction of the directional association. It is crucial
to mention that all the methods have the same settings for both directional
and non-directional experiments.

B 4.2.1 Kruskal-Wallis test

The Kruskal-Wallis (KW) test, also called Kruskal-Wallis rank sum test, is
the oldest method used in our comparison. It was firstly introduced in [38]
more than half a century ago. The zero hypothesis for this test is:

8 The samples are from the same population.
The base is the H test which is calculated by

2
o i
Uz

12 <
:7N(N+1); —-3(N+1),
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where C' is the number of samples, n; the number of observations in the i —th
sample, N is the total sum of all observations n; and R; is the sum of the
ranks of the ¢ — th sample.

If the samples come from the same population, the H value is expected
to have x2(C — 1) distribution. Thus the zero hypothesis is rejected for the
large H values. The samples with a small number of observations n; < 5
are to be handled differently as an exception. But since the scRNA-seq data
is considered “BigData”, n; is always large enough for this test. In R, the
kruskal.test function from the stats package is used in our implementation.

B 4.2.2 Conditional entropy

[39] defines the Conditional entropy H(Y|X) as:

H(Y|X)= ) p(z) HY|X = z)
reX

==Y p) Y pylz) log(pylz))

zed yey

== D pr(xy log(p(ylx))

z€X ye¥
= _Ep(z,y) lOg ( p(Y|X) ) )

where X and Y are random variables, p(z,y) is the joint probability mass
function, p(z) is the marginal probability mass function of X, p(y|x) is the
conditional probability function of y when z is observed.

As evident from the definition formula, the Conditional entropy of H(Y|X)
is not equal to H(X|Y). This means that the Conditional entropy is able
to test whether Y is a function of X or vice versa and resolve both the
dependency existence and its direction.

B 4.2.3 Causal inference by stochastic complexity (CISC)

Budhathoki and Vreeken [39] presents a new association method, which is

founded on the Minimum Description Length (MDL) principle. The causal

inference of two variables is calculated with the algorithmic Markov condition

and the provable mini-max guarantees the optimality. They also defined an

indicator for the directional association based on the stochastic complexity.
The stochastic complexity relative to M,, is calculated by

S(X;Mp,) =nlogn — Z hj log hj + logR (M, n)
j=1

n! S WA &
RMp,n)= ) MHl(n> ’
i=

where M,,, is a multinomial model class, h; is the number of times an outcome
jis seen in X, and logR(M,,,n) is the parametric complexity of the model
class M,,,, n is the size of the data set.
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The total stochastic complexity from X to Y is calculated as follows:

Sxoy =S (X5 M) + S (YX; Mp)

The smaller the Sx _,y statistics, the stronger the correlation. The statistics
in our code are divided by the sample size multiplied by 10. Then the statistics
are treated as the p-value. 1 emphasize that the p-value and Sx_,y are not
equal.

B 4.2.4 Functional index

Kumar et al. define the Functional index, a new method for dependency
analysis, in [I7]. The method originates in the Functional chi-square test.
The Functional chi-square statistics X% is defined by [16] as follows:

X—>Y

ni. 2 s Y
ZZ ”ZJ s ]_{Z(n‘]nsﬁ)]’
i=17=1 S 7=1 s
where X and Y are random variables with the same number of samples, n is
the number of samples, 7 is the number of samples of X, s is the number of
samples of Y.

The Functional index is an improvement to the Functional chi-square test.
It’s defined by the following formula

X?v (X —=Y)
n(s—1) = x*(Y)

The Functional index §; € [0;1] The correlation grows with the grow of
the {; and therefore the 1 — {; is treated a the p-value in the evaluation. I
emphasize that p-value and &; are not equal. [I7] also provide the recom-
mended thresholds for the dependency detection, which I follow when using
the Functional index to detect new dependencies in the real data. To state
the inference the statistics must satisfy the following condition: £y > 0.48
and p-value< 0.05.

§r =
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Chapter 5

Results

All the results that were achieved are presented in this chapter and described
in detail. The first part comprises the normalisation methods evaluation. The
second part displays the results of the association study.

. 5.1 Normalisation methods

The dropout creates artefacts that distort a negative correlation to the positive
correlation and exaggerate the positive correlation. The most straightforward
strategy is to remove all zeros when computing any statistics on relationships,
so all zeros are omitted when comparing the normalisation methods.

The normalisation methods were compared empirically and visually on a
real data set, provided by [15]. The estimate values of the Spearman corre-
lation test are used for empirical evaluation. The value after normalisation
is expected to be close to the original value before. The estimate value
was selected to capture the transformation of the negative to the positive
correlation or vice versa.

B 5.1.1 Examples on genes with known co-expression

The first study is focused on testing if and how the normalisation methods
modify the existing correlation. Firstly, the dependency of a pair of genes
is tested by the Spearman correlation test before normalisation. Then all
the normalisation methods are applied separately, and the estimate value is
calculated again. Then we compare how much the statistics changed.

Gene pairs with known correlations were selected to test the correctness
of the raw data statistics. The chosen pairs include negatively correlated,
positively correlated and independent genes.
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Gene X Gene Y Type of correlation H/L Source

PHTF1 BCLI11B negative L [40]
PHTF1 BCLI11B positive H [40]
PHTF1 FEMI1B positive L [40]
PHTF1  APAF1 positive L [40]
CDh34 ABCB1 positive L [36]
CDh34 ABCG2 positive L [36]
CD34 ABCC1 independent L [36]
CD34 LRP1 independent L [36]

Table 5.1: The selected genes with a known dependency.

In following Figures, one example for each type of dependency is presented.
The cases are shown in this order: negative dependency, positive dependency
and independent gene pairs. The gene pair co-expression graph of the raw
values is displayed first. Co-expression graphs after normalisation by present
methods follow. The last Figure demonstrates the normalisation of the newly
presented method.

B Negative correlation

The negative correlation is illustrated by the PHTF1 and the BCL11B gene
pair for the individuals diagnosed with an acute leukaemia, the estimate
values are therefore expected to be negative. The ground truth is taken from
[40]. The PCR was used to perform the co-expression study.

raw estimate = —0.0047
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Figure 5.1: An example of the negative correlation of the PHTF1 and the
BCL11B gene pair before any normalisation.
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5.1. Normalisation methods

The first Figure [5.1| shows the estimate value and the co-expression graph
before any normalisation. Although negative estimate values are expected,
only a weak negative correlation is present. The normalisation methods are
therefore assumed to increase the negative inference. The PCR was used to
perform the co-expression study.
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Figure 5.2: An example of the negative correlation of the PHTF1 and the
BCL11B gene pair after the normalisation by four the normalisation methods.

The effect of the present normalisation methods is illustrated in Figure
5.2. All current normalisation methods have affected the estimate value, but
the change has led to increasing the positive correlation. The CPM and UQ
methods introduced new strong positive artefact, which were the origin of
such high positive relationship. The SF method also created a new artefact,
while however affecting the correlation statistic less than the two previous
methods.

The DSM normalisation destroyed the original pattern, which also resulted
in increasing the positive correlation.

37



5. Results

Up-Down_Sample_Matrix estimate = —0.0655
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Figure 5.3: An example of the negative correlation of the PHTF1 and the
BCL11B gene pair after the newly presented method normalisation.

Figure [5.3| shows the transformation of the data by the newly presented
method. The UDSM method was the only method that increased the negative
dependency. The UDSM also shows no sign of a new artefact creation.
Therefore the UDSM normalisation was the most successful.

B Positive correlation

An example of the positive correlation is demonstrated by the CD34 and the
ABCG2 gene pair. Thus the estimate value must be positive. [36] introduces
the ground truth.

Figure [5.4] shows the co-expression graph before any normalisation.
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5.1. Normalisation methods
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Figure 5.4: An example of the positive correlation of the CD34 and the ABCG2

gene pair before any normalisation.
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Figure 5.5: An example of the positive correlation of the CD34 and the ABCG2
gene pair after the normalisation by the four normalisation methods.
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The normalisation effect of all present methods is displayed in Figure [5.5.
The two methods SF and DMS have influenced the estimate value towards
the negative correlation, although this gene pair is known to have a positive
dependency. The DSM also destroyed the pattern noticeable in the raw data.
The CPM and the U@ normalisation improved the correlation statistics. The
CPM performed the best.

Up—-Down_Sample_Matrix estimate = 0.5297

ABCG2
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Figure 5.6: An example of the positive correlation of the CD34 and the ABCG2
gene pair after the newly presented method normalisation.

The UDSM normalisation improved the positive correlation, which is
demonstrated in Figure 5.6, The estimate value approaches the best perfor-
mance of the current methods.

B Independent pair of genes

The independent pair of genes is illustrated by the CD34 and the ABCC1
gene pair for the individuals diagnosed with an acute leukaemia, the estimate
values are therefore expected to be zero. The ground truth is taken from [40].
The PCR was used to perform the co-expression study.

The estimate value before any normalisation is already close to zero as
shown in Figure 5.7
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ABCCI1 gene pair before any normalisation.
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5.1. Normalisation methods
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Figure 5.7: An example of the independent dependency is the CD34 and the
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Figure 5.8: An example of the independent correlation is the CD34 and the
ABCCI1 gene pair after the normalisation by the four current normalisation

methods.
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Figure [5.8] demonstrates the performance of how the current methods have
increased the correlation in either a positive or a negative direction. The CPM
and U(Q have also created a new artefact that affected the result significantly.
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Figure 5.9: An example of the independent gene pair the CD34 and the ABCC1
after the newly presented method normalisation.

The UDSM method performed the best, which is demonstrated in Figure
5.9l The UDSM has also increased the correlation estimate value, but the
increment is insignificant. Also, the UDSM estimate value is closest to zero
compared to the other methods.

B 5.1.2 Permutation study

To check if the normalisation methods introduce a new artefact, we present a
permutation test on the real data as a negative control study. The permutation
study was designed with the following steps. Firstly, the data are permuted,
for each row across the cells independently. Then a thousand of gene pairs is
randomly selected and tested by the Spearman correlation test. The Spearman
correlation test has no assumption of the distribution, which is the reason for
its use in this study. When all the cells are permuted randomly across the
genes, all the positive or negative correlation should be destroyed. Therefore
the estimate values are expected to be close to zero. To prevent the influence
of the dropout on the estimate value, we omit all zero values.
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Figure 5.10: The permutation study estimate value histogram of the raw data
with permuted cells.

Figures [5.10//5.11]/5.12| show the results of the permutation study. We can
see in Figure |5.10| that the estimate value of the raw permuted data set is
close to zero for most the permuted pairs, which means that the main idea of
the permutation study is correct.

The next important thing to notice are the estimate value histograms of
all three normalisation methods based on the library size in Figure |5.11.
The estimate values of Counts per million, Relative log expression and 99"
percentile normalisation methods is equal to 1 for most of the values, which
means that all of the three methods introduce a new positive correlation.
Although the permutation study shows the Down-sample (DSM) to be the
best performing method, it is not surprising because it was previously proved
that it destroys the original pattern.
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Figure 5.11: The permutation study estimate value histograms of all the current
normalisation methods.

The new normalisation method presented here performs with the most
of the estimate values falling in the [-0.5, 0.5] interval, and following the
DSM method, the results are the second-best (Figure [5.12). This proves
that the UDSM method does not introduce new patterns in most cases that
would cause a positive correlation in comparison to the previous methods.
However, some artefacts are created which is illustrated by the peaks for
absolute estimate value greater than 0.5, but no trend was captured, unlike in
the case of the library size normalisation methods. The spikes are randomly
distributed, which can be a side effect of the additional noise or the cell
permutation. Even though the histogram proves that the UDSM doesn’t
show a tendency of introducing new patterns of the same type, there was a
new pattern introduced. The decomposition of peaks illustrates a random
pattern which is probably connected to the randomised noise or the cell
permutation. This means that a new study should occur with a focus on the
parameterf of the UDSM method in the future.
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Figure 5.12: The permutation study estimate value histogram for the Up-down-
sampling normalisation method.

. 5.2 Association methods

The association experiments are divided by the data type: simulated data
and real data. To measure the performance of the methods, we use receiver-
operating characteristic (ROC) and precision-recall (PR) curves and the areas
under the curves (AUROC and AUPR).

B 5.2.1 Simulated data

The evaluation of the association methods on the simulated data sets is
divided into two main parts: The non-directional study and the directional
study. The non-directional study focuses on how accurately is a method
capable of detecting the existence of dependency. The data set generated for
both studies contains 200 contingency tables. The half of the data consists
of samples where X is a function of ¥ (f : X — Y) and Y is a function
of X (f : Y — X). The other half of the tables are contingency tables of
independent variables. The directional study tests how accurate can the
methods predict the direction of the inference. Therefore the data set for the
directional study contains contingency tables where X is a function of Y and
Y is not a function X, where both directions are tested.
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The experiments were run for varying parameters. The whole experiment
settings consist of the combination of dropout rate levels 0 %, 30 %, 50 %, 70
%, 90 %; noise parameters: 0.1, 0.2, 0.3 and sample sizes: 100; 1,000; 10,000.
The combination of all metrics allows us to detect which parameter impacts
the performance of the methods the most. The dropout rate influences the
performance most significantly; even a low dropout rate causes a visible
change in the accuracy. The sample size also causes a noticeable effect but
with the a positive tendency along with the size growth. The noise level has
almost no impact on the association experiment. Although a small range of
noise levels was tested, the impact of the dropout is noticeable even at 30 %,
while at 0.3 the noise level parameter is not. Thus the noise level impact is
the lowest in comparison to the other parameters.

Next Figures show the evaluation of all the methods between
each other by AUROC and AUPR metrics in the non-directional study. We
can see that the Functional index overcame or performed at least the same
as all the other methods. The second best is the CISC and the Conditional
entropy. Even though the Kruskal-Wallis test shows the worst performance
over all settings, its accuracy increases with a high number of the sample size.
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Figure 5.13: The performance evaluation of the association methods in the
non-directional study (AUROC).
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Figure 5.14: The performance evaluation of the association methods in the
non-directional study (AUPR).
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illustrated in Figures[5.16//5.17]/5.18. Even though the CISC and the Kruskal-
Wallis methods are designed to predict the dependency directions, their
performance is close to random in the study outlined in this thesis. The
reason for this behaviour can be the base idea of the directional test. In
the analysis presented here, no assumptions on dependency are made before
the experiment, so the methods answer the question “is X a function of Y7,
regardless of the study type instead of answering the question “is (f : X —Y)
stronger than (f : Y — X )?” The Functional index performs slightly more
accurately using the AUROC metric. Conditional entropy’s accuracy was
lightly better than the accuracy of the Functional index using the AUPR
metric. But when the patterns of the strongest correlations are printed for
both methods, we see that patterns picked by the Functional index are more
reliable than the patterns rated the highest by the Conditional entropy. An
example of these patterns is demonstrated in Figure |5.19L
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Figure 5.16: The performance of the association methods in the directional
study (AUROC).
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Figure 5.17: The performance evaluation of the association methods in the
directional study (AUPR).
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Figure 5.18: The bar plots of the directional study evaluation.

Figure [5.19 shows the patterns rated as the best by the Functional index
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and the Conditional entropy. The setting of the experiment was the same
for all selected contingency tables by both methods. The environment has
been defined by a noise parameter 0.2, a 85% dropout rate and a sample
size of 3,500 to mimic the real data set settings as much as possible. On the
left, there is a contingency table with the highest rating given by Conditional
entropy. On the right, there is the most correlated pair of variables selected
by the Functional index. The first row contains tables without dropout to
demonstrate the original pattern. The second row consists of the tables from
the first row with simulated 85% dropout.

The Conditional entropy selected the contingency table with the most
of the values with at least one of the coordinate equal to zero. But since
zero values in at least one coordinate characterise the dropout, this pattern
increases the false positive rate. Compared to that, the Functional index
rated the highest the tables with a strong correlation pattern, which prevents
false positive ratings.

Dropout: 0 CondEtrp Dropout: 0 Funind

0 0 0 0 0 0
0 0 0 0 0 0
0 0 x 0 0 0 0
0 | 0 0 0 0 0
0 0 0 0 0 0
v
Dropout: 0.85 Funind

0 0 0 171 0 87
0 0 E 0 0 0 0
0 0 x IE 0 0 0 26
0 0 E 0 24 0 0
0 | 0 115 0 | 0 0 0

Y Y

Figure 5.19: The patterns rated the highest by the Conditional Entropy (left)
and the Functional indez (right).

B 5.2.2 Real data

The real data experiments were firstly run on the genes from mouse cerebellar
development data provided by [41]. These results were already published in
[35], which has also proven that the Functional index performs the best.
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5.2. Association methods

The real data experiment in this work is based on the examples from
literature shown in Table |5.1. Since the UDSM normalisation method per-
formed the best in previous normalisation experiments, the data have been
normalised with the UDSM first. The test of the UDSM was performed with
all the zero values omitted, so this study is also evaluated with all the values
with at least one coordinate equal to zero omitted to prevent an unexpected
impact caused by the normalisation. Thus an additional rule is presented to
preclude evaluation of the empty sample, the size of which is at least 3. The
results are presented in the following graphs in Figure |5.21.

Real data Real data
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Kruskal-Walls (0.38) Kruskal-Walls (0.68)
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Figure 5.20: Results of the real data study.

The results of the real data study are illustrated in Figure 5.21. Although
the Functional index performed slightly better than the other methods, all the
functions achieved the accuracy close to random guessing using the AUROC
metric. The reason for this might be the high zero rate in the real data, as
mentioned in 3.1 The gene pairs found in the literature appear to have low
expression levels in the used real data, so further testing with more gene pairs
is encouraged.

B 5.2.3 Protein-gene dependency discovery

All real data samples of individuals diagnosed with an acute leukaemia were
processed by the Functional index association method to discover protein-gene
or gene-protein dependencies.

The experiment follows these steps

1. Normalisation of transcriptomic data (scRNA-seq) by UDSM.
2. Genes and proteins data are connected by the cell names
3. The Functional index detects inference.

The results are displayed in Table 5.2 The pairs detected in more than
one sample are listed. However, no dependency was discovered more than
twice. We can see that most of the relationships come from the GSM/138879
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5. Results

sample, the sample size of which is greater than 1,000 and lower than 2,000.
Chapter [3.1] includes the statistics of the real data samples. The samples
GSM41358883 and GSM4138887 have a similar sample size lower then 2000
cells and are also listed as a source of the dependency multiple times. Only a
single dependence originates from a sample GSM4138880 with a size greater

than 2000, which is surprising.

X Y Type  Average {y Average p-value Samples
CD46 CD3 G— P 0.76 0.03 84, 86
CEPT70 CD3 G— P 0.73 0.03 86, 87
RCN2 CD7 G— P 0.71 0.04 79,87
CLU Cbh34 G—P 0.70 0.03 79, 82
ADD1 Cb34 G—P 0.69 0.04 79,83
CD34 SSBP2 P —= G 0.67 0.02 81, 82
TCEA2 CD45RA G — P 0.64 0.01 79,83
ARHGAP11B CD45RA G — P 0.63 0.03 79,87
ARNT Cb34 G- P 0.62 0.04 79,83
SHOX2 CD7 G— P 0.61 0.03 79,87
SIGLECS CD7 G— P 0.61 0.01 79,87
ARL13B Cbh34 G—P 0.61 0.03 79,83
DNAJC5B CD7 G— P 0.60 0.03 79,87
CACNA2D2 CDh34 G- P 0.59 0.03 79,83
ASNA1 CD45RA G — P 0.58 0.03 79,80
MAGI2 CDh33 G—P 0.57 0.03 79,87

Table 5.2: The discovered protein-gene or gene-protein dependencies.

Table |5.2| shows the gene-protein correlated pairs discovered using the real
data. One record contains the name of the correlated gene and the protein
in the order of dependency direction. Then the direction type is displayed,
either G — P or P — (G, where the GG corresponds to the gene and the P to
the protein. The next two numbers are the average {; and the average p-value
statistics. The names of the samples, where the correlation was found, are
shown in the last column. The sample names are shortcuts, which correspond
to the last two digits of the sample name. All the dependencies are sorted by
the average {; value.

Figure 5.21) shows the gene-protein correlation with the highest {; values.
The example includes two graphs, the graph on the left corresponds to
CD46 — C D3 inference before any normalisation and the graph on the right
contains data after the UDSM normalisation. The added noise for zeros
seems to influence the of the association study and therefore further study
on the zero handling will be conducted in my future work.
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Figure 5.21: The discovered pattern rated the best £; from the GSM4138884

sample. The pattern before the normalisation is shown on the left and the
pattern after the normalisation is shown on the right.
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Chapter 6

Discussion

In this chapter the main findings are described.

B 61 Design of the Up-down-sampling
normalisation method

Firstly, the correctness of the new Up-down-sampling method, presented in
this work, is discussed. In the first step, new extra noise is added to the
original data. The additional noise prevents a new artefact creation. A
small distortion, in the beginning, detaches points with the same coordinates.
This separation prevents originally identical values from creating a smooth
diagonal after the data normalisation. The smaller the initial values are, the
more significant impact the distortion has. The strong correlation requires a
number of different original values that form a pattern. As long as the initial
distortion is kept relatively small, the overall pattern is not destroyed.

The extensive number of zeros is characteristic for the scRNA-seq data and
has a significant influence on the inference study, as mentioned in Chapter |1.
Therefore the data manipulation that affects the lower values the most is a
crucial advantage of decreasing the effect of the zero values. It also prevents
the creation of a diagonal pattern from many original points with equal
coordinates. The distortion breaks the smooth diagonal directly proportional
to the length parameter.

To prove that the initial distortion is appropriately designed, its detailed
description follows. The runif function from the stats package creates the
noise distribution. The noise is generated for the whole data set, separately
for the zero values and the rest. The new values are uniformly distributed
within an open interval where the minimum is set to 0 — 0.5 and the maximum
is set to 0+ 0.5, where o is the original value. E.g. all original values o = 1 are
evenly distributed into an interval (0.5, 1.5). The zero values are an exception
because it is necessary to prevent the negative values, so the permissible
minimum of the resulting interval equals zero.

The length of the distortion interval [ is one of the parameters of the
presented normalisation method. In the case of the study presented in this
work, the length parameter [ is set to one. The parameter was chosen to be
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Additional noise
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Figure 6.1: The areas where the shifted values are located. The blue square
demonstrates the location of the distorted values, the original coordinates of
which were [1, 1].

as large as possible but still reversible by rounding of the shifted values. We
emphasize that this setting is an initial compromise and worth testing the
performance for other values. This parameter reflects the accuracy of the
RNA sequencing. If the error is assumed to be greater than one, the length
parameter can reflect that.

Figure [6.1] illustrates the final distortion. The previous example of the
distortion of ones is demonstrated by the blue square, which restricts the area
of the shifted values. The figure shows a graph of a relationship between two
genes (rows). The orange squares display areas of other shifted values. The
target areas are equal and separable, which means that the shifted values are
still the closest to the original integer values.

Before generating the data with the random generator based on the multi-
nomial distribution, the target space for the generator is stretched. Each
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6.2. Possible improvement

value is multiplied by 1000. The scaling is necessary for the patterns to have
enough space to be shaped. The need for this step is demonstrated by the
Down-sampling in Chapter [5. The multiplication parameter m is also an
initial configuration which needs to be studied more.

B 6.2 Possible improvement

The UDSM normalisation method has two modifiable parameters: the length
of the noise distortion [ and the multiplication parameter m. The impact of
the parameters is not known in detail and needs to be tested further.

. 6.3 Results of the normalisation methods
evaluation

The newly presented normalisation method outperformed the other methods
in the permutation study and also in the gene examples correlation study. The
correlation study shows on examples that the UDSM improves the estimate
value and is not prone to destroying and creating an artefact.

All normalisation methods based on the library size create new artefacts
that increase the positive correlation, which has been proved in the example
study and the permutation study. The CPM creates new patterns with
the most significant impact on the estimate value. The UQ also affects the
statistics towards a positive correlation, but less notably than the CPM.
Although the SR method also impacts the estimate value, the effect is the
least significant of all the library size normalisation methods. However, the
effect of creating new artefacts is still relevant.

The DSM normalisation method prevents creating new artefacts but de-
stroys the original pattern, which was demonstrated in the example study. The
permutation study also shows the signs of the DSM erasing the dependency
patterns.

The method presented in this work, UDSM has been proved to improve
the estimate value in the example study and performed the second best in
the permutation study. The study also shows that the UDSM method has
created a few artefacts, which means that a further study of the method
parameters must follow.

. 6.4 Results of the association study

The association study evaluates four association methods. All methods are
able to detect the direction of the inference. The study using the simulated
data has been divided into two parts, where one is dedicated to testing the
ability of detecting the existence of inference. The second study evaluates
the accuracy of detecting the relationship direction.
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6. Discussion

The non-directional study shows a dominance of the Functional index. Also,
the Kruskal-Wallis method performed reliably, but only for the large sample
sizes, and therefore has the highest error rate. The Conditional entropy and
the Causal inference by stochastic complexity share similar accuracy.

The directional study is more interesting because of the performance of
the Causal inference by stochastic complezity and the Kruskal- Wallis test.
Although the CISC was explicitly designed to detect the inference direction,
its accuracy is equal to random guessing. The reason might be the design of
our experiment. In the directional experiment presented here, all methods
answer a simple question f : X — Y with false or true. There is no assumption
of the inference of the variables, and both directions are tested independently,
so there is information only about a single direction. Also, the Kruskal- Wallis
test performs close to random guessing, but its accuracy grows with the
growing sample size.

The Conditional entropy and the Functional index perform similarly. There-
fore the patterns rated the highest by both methods were examined in detail.
The contingency tables rated the highest by the Functional index reveal a
more reliable inference than the patterns selected by the Conditional entropy.
Therefore I claim the Functional index is the best performing method.

We published the evaluation of the association methods on real data in
[35], where the Functional index outperformed the other methods with the
lowest error rate. Another study on the real data was performed in this work.
Gene pair examples were selected with the ground truth from the literature
[36l, [40]. The Functional index detected dependencies with slightly better
accuracy, but the size of gene examples set should be increased for the test
in the future. The chosen data set provided by [15] contains very sparse
matrices which make the analysis more difficult.

The Functional index was used to discover new dependencies. Sixteen
dependencies were found in two samples out of ten. Some samples contain
only a few cells which makes the analysis more difficult.
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Chapter 7

Conclusions

This thesis has studied how noise in the single-cell RNA sequencing (scRNA-
seq) affects data analysis, specifically from the point of view of dropout and
normalisation. The noise is created during the necessary library preparation
process and is thus always present. The information dropout is characterised
by many zero observations in the result scRNA-seq data, with a rate of
30-90 %. Although the scRNA-seq brings new possibilities for studying, it
also decreases the reliability of analytical methods developed using the bulk
RNA-seq data. Three association methods (Causal inference by stochastic
complezity, Kruskal-Wallis test, Conditional entropy), on both directional
and non-directional tests, were evaluated and compared. A recent method
Functional index was suggested and compared with the previously mentioned
methods. The experiments were performed on both real and artificially
generated data sets. The simulated data allows us to test each parameter
separately with a precise ground truth. On the other hand, examinations
based on real data are essential for everyday use. The Functional index
performed better on both the directional and the non-directional analysis and
both the artificial and the real data. A test using real data provided by [15]
was performed in this work. Although the Functional index performed the
best, the AUROC and AUPR statistics are low for all the methods. However,
we have already published the results of an experiment using different real
data [35], which has shown more promising results of the Functional index.
The Functional index has also been used to discover protein-gene or gene-
protein correlations. Sixteen correlated pairs were detected in two different
samples.

Secondly, I have studied and demonstrated how the normalisation during
data preprocessing affects the results of the association method. The standard
normalisation methods were examined and compared using the real gene-gene
relationships. I have found out that in the case of the association analysis, it
can create and also destruct the original patterns we are trying to find. Four
standard normalisation methods (Counts per million, Relative log expression,
99" percentile, Down-sampling) were assessed to see how the artefacts are
modified after normalisation. Several examples of the artefact creation and
destruction have been shown, and a new solution has been proposed.

The new Up-down-sampling (UDSM) method, which was presented in this
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7. Conclusions

work, has been shown to improve the association methods and minimize
the distortion of gene-gene relationships. The UDSM introduced less new
artefacts in the permutation study than all the library size based methods and
improved the estimate correlation statistics in the example study. Although
the UDSM has performed well in the presented experiment, it also has
shown signs of unexpected behaviour in the permutation study, so a further
examination of the method’s parameters is planned for my future work.
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