
This work was submitted to the Institute of High Voltage Technology

Master Thesis

by
Herrn Markus Stroot

Co-Simulation of distributed flexibility coordination
schemes

Co-Simulation dezentraler Flexibilitätskoordinationsmechanismen

Examiner: Dr.-Ing. Ralf Puffer

Supervisor: Thomas Offergeld, M. Sc.
Immanuel Hacker, M.Sc.

Date of Submission: 22. May 2020

v

Declaration

Name, Vorname Matrikelnummer

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Masterarbeit mit
dem Titel

Co-Simulation dezentraler Flexibilitätskoordinationsmechanismen

selbstständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusät-
zlich auf einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die
elektronische Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher
Form noch keiner Prüfungsbehörde vorgelegen.

Ort, Datum Unterschrift

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Ver-
sicherung falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Frei-
heitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt
(1) Wenn eine der in §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.
(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des §
158 Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

Ort, Datum Unterschrift

vi

vii

Abstract

For many years now, there has been an unmistakable trend in the energy sector towards
Renewable Energy Sources (RES). This has been encouraged both by political measures
as well as general public awareness of environmental issues tied to the usage of fossil
or nuclear energy sources. However, this leads to an increased volatility of the overall
residual demand.

In that context, the flexibility provided by participants on all levels of the grid takes an
increasingly important role. Especially small, private sources of flexibility are usually in-
accessible for congestion reduction measures. In order to leverage that flexibility potential
new control strategies must be designed and implemented. These strategies need to en-
courage local energy consumption and peak reduction.

The development of such a control system is complex task involving multiple engineering
domains. In order to provide a platform on which such a collaborative development can
take place a co-simulation environment is implemented and tested in this thesis. The
environment uses a co-simulation framework, which enables the connection and com-
bined execution of multiple simulators. To realize individual runtime environments, each
simulator is packaged into a separate software container. The container deployment is
automated and incorporated into an extension of the framework API.

To test the environment, an exemplary flexibility coordination scheme is designed and
simulated within it. Several simulators are implemented in order to realize the individual
grid and control components. These include a smart home simulation consisting of load,
PV, and storage elements which are augmented by a Model Predictive Control (MPC)
based flexibility optimization system. This scenario is scaled up to 20 households with
varying flexibility to test a superordinate controller which facilitates inter-household flexi-
bility coordination.

The exemplary results show that the environment works as expected and can handle
a variety of simulation scenarios. Concerning the flexibility coordination simulation, the
results show how smart flexibility control instead of uncoordinated consumption optimiza-
tion can decrease the danger of grid congestion. The implemented MPC approach not
only lowers the absolute energy demand, but also the maximum power drawn from the
grid. Additionally, it shows how the coordination of flexible and static households in con-
junction can lead to a grid wide flexibility optimization which single households could not
achieve without outside information.

viii

ix

Kurzfassung

Seit vielen Jahren gibt es einen erkennbaren Trend im Energiesektor zugunsten erneuer-
barer Energien. Dies wird sowohl durch politische Maßnahmen als auch durch die öf-
fentliche Meinung gegenüber fossiler Brennstroffe und Atomkraft bestärkt. Jedoch führt
dies zu einer gesteigerten Variablilität der Residuallast im Energienetz.

Dadurch gewinnt Flexibilität auf allen Netzebenen immer mehr an Bedeutung. Besonders
kleine und private Flexibilitätsquellen stehen oft nicht für die Vermeidung von Netzüber-
lastung zur Verfügung. Um dieses Flexibilitätspotential nutzen zu können, müssen neue
Regelungsstrategien entwickelt werden. Diese Startegien sollten lokale Energienutzung
und die Vermeidung von Leistungsspitzen begünstigen.

Die Entwicklung eines solchen Regelungssystems ist eine komplexe Aufgabe, welche
eine Vielzahl von Ingenieursbereichen vereint. Im Rahmen dieser Abschlussarbeit wird
eine Co-Simulationsumgebung implementiert und getestet, welche eine Plattform für
gemeinsame Entwicklungsarbeit zur Verfügung stellt. Die Umgebung nutzt ein Co-
Simulationsframework, um verschiedene Simulatoren zu verknüpfen und auszuführen.
Jeder Simulator erhält eine isolierte Ausführungsumgebung durch den Einsatz von Soft-
warecontainern. Die Cointainerbereitstellung ist automatisiert und in das Framework-API
integriert.

Zum Test der Co-Simulationsumgebung wird ein exemplarischer Flexibilität-
sregelungsmechanismus entwickelt und simuliert. Dazu werden unterschiedliche
Simulatoren implementiert, die verschiedene Netzelemente darstellen. Zu diesen
gehören Haushaltskomponenten, wie Last-, PV- und Speicherelemente, welche durch
ein Model Predictive Control (MPC)-basiertes Regelungssystem ergänzt werden. Dieses
Szenario wird schließlich auf 20 Haushalte mit variierender Flexibilität hochskaliert, um
einen weiteren, übergeordneten Regelungsmechanismus zu testen.

Die exemplarischen Ergebnisse zeigen, dass die Simulationsumgebung funktioniert und
unterschiedliche Szenarien verarbeiten kann. Im Zuge der Flexibilitätssimulation kann
festgestellt werden, dass intelligente Regelungsstrategien im Gegensatz zu unkoor-
dinierter Eigenverbrauchsoptimierung die Gefahr von Netzüberlastung verringern kön-
nen. Der implementierte MPC Regelungsansatz optimiert nicht nur den Eigenverbrauch,
sondern reduziert auch Leistungsspitzen. Des Weiteren zeigen die Ergebnisse, dass
die Regelung von flexiblen Haushalten mit Rücksicht auf statische Teilnehmer zu einer
haushaltsübergreifenden Optimierung der Flexibilitätsnutzung führen kann.

xi

Contents

Abstract vii

Kurzfassung ix

Table of Contents xi

List of Figures xiii

List of Tables xv

List of Abbreviations xvii

1 Motivation and Goals 1
1.1 Motivation . 1
1.2 Goals . 2

2 Theoretical Background 3
2.1 Flexibility . 3

2.1.1 Definition . 4
2.1.2 Energy Management Systems . 6
2.1.3 Model Predictive Control (MPC) . 7
2.1.4 Mixed-Integer Linear Programming (MILP) 8

2.2 Simulation . 10
2.2.1 Basic Modeling and Simulation . 11
2.2.2 Co-Simulation . 15

2.3 Virtualization . 16

3 Modeling 19
3.1 Simulation Environment . 19

3.1.1 Mosaik . 19
3.1.2 Docker . 22
3.1.3 Functional Co-Simulation Environment Design 25

3.2 Flexibility Co-Simulation . 28
3.2.1 Simulators . 28
3.2.2 Simulation Data Flow . 42

xii

4 Results and Discussion 47
4.1 Exemplary Flexibility Coordination Simulation 47

4.1.1 Environment Test . 48
4.1.2 Single Household . 49
4.1.3 Neighborhood . 54

4.2 Robustness and Problems . 58
4.2.1 High Noise Level . 59
4.2.2 Time Shift . 60
4.2.3 Other Known Challenges . 62

4.3 Grafana Interface . 63

5 Conclusion and Outlook 65
5.1 Conclusion . 65
5.2 Outlook . 66

Bibliography 69

xiii

List of Figures

2.1 Basic MPC structure . 8
2.2 Simulation unit . 12
2.3 Classification of time flow mechanisms . 13
2.4 Co-Modeling and Co-Simulation Comparison 15
2.5 Different forms of virtualization . 17

3.1 Basic Mosaik Architechture . 20
3.2 Mosaik inter time step scheduling . 20
3.3 Mosaik intra time step scheduling . 21
3.4 Docker Workflow . 23
3.5 Container-API Extension . 26
3.6 Simulation Environment stucture . 28
3.7 CSVTimeseries input/output block diagram 31
3.8 Storage model input/output block diagram 32
3.9 HEMS coordinator input/output block diagrams 34
3.10 CSVPredictor input/output block diagram 35
3.11 Illustration of the min-of-max optimization algorithm. 37
3.12 MILPOptimizer input/output block diagram 39
3.13 LPOptimizer input/output block diagram . 41
3.14 DatabaseCollector model input/output block diagram 42
3.15 Data flow chart example . 43
3.16 Complete simulation data flow . 43
3.17 Prosumer layer model . 45
3.18 Grid layer model . 46

4.1 Simulation scenario overview . 47
4.2 Standard Household Load Consumption Curve 49
4.3 Standard Household PV Generation Curve 49
4.4 Single household grid layout, including observed parameters 50
4.5 Single household, no storage scenario . 51
4.6 Single household with uncoordinated storage scenario: simulation output . 52
4.7 Single household with coordinated storage scenario: simulation output . . . 53
4.8 Neighborhood grid layout, including observed system parameters 54
4.9 Neighborhood residual demand curve in a no flexibility scenario 55

xiv

4.10 Neighborhood residual demand curves in a no flexibility and local control
scenario . 56

4.11 Household prediction curves including flexibility margins 57
4.12 Neighborhood residual demand curves in a coordinated control scenario . . 58
4.13 Single household, global coordination scenario: simulation output 59
4.14 Single household peak shaving in high-noise scenario 60
4.15 Multiple household peak shaving in high-noise scenario 61
4.16 Single household peak shaving in time-shifted scenario 61
4.17 Multiple household peak shaving in time-shifted scenario 62
4.18 Default Grafana dashboard layout . 64

xv

List of Tables

3.1 Time series simulator initialization parameters 31
3.2 ESS simulator initialization parameters . 32
3.3 HEMS coordinator simulator initialization parameters 33
3.4 Local flexibility controller initialization parameters 36

4.1 Simulation Initialization Values . 48

xvi

xvii

List of Abbreviations

DER Distributed Energy Resource

RES Renewable Enegry Source

ESS Energy Storage System

SH Smart Home

HEMS Home Energy Management System

EMS Energy Management System

MPC Model Predictive Control

PV Photovoltaic

SoC State of Charge

OS Operating System

VM Virtual Machine

IP Intellectual Property

IC Integrated Circuit

LP Linear Programming

MILP Mixed-Integer Linear Programming

ICT Information and Communication Technology

HLA High Level Architecture

CPES Cyber-Physical Energy System

API Application Programming Interface

JSON JavaScript Object Notation

PaaS Platform as a Service

CLI Command Line Interface

PFE Power Flow Equation

CSV Comma Separated Value

xviii

RNG Random Number Generator

SNR Signal-to-Noise Ratio

Motivation and Goals 1

1 Motivation and Goals

1.1 Motivation

For many years now, there has been an unmistakable trend in the energy sector towards
Renewable Energy Sources (RES) [EDE14]. This has been encouraged both by political
measures as well as general public awareness of environmental issues tied to the usage
of fossil or nuclear energy sources. Therefore, energy providers and private households
have contributed to the rising number of distributed generation units and Energy Storage
Systems (ESS). The coordination and efficient use of these new technologies forces the
distribution grid to continuously evolve and become a smart grid [FAR10; INT15]. An
interesting part of this new grid is the coordination of flexibility provided by adjustable de-
mand and generation units and ESSs. An increasing amount of these systems, however,
are deployed “behind the meter”, meaning they are currently not directly observable or
controllable by the grid operator. Such grid entities, which are more involved in grid op-
eration than simple consumption can be called prosumers. Currently, prosumers’ ESSs
and flexible generation and demand units are mostly used to minimize their own energy
expenditures by lowering the demand from the grid. Such uncoordinated behavior, how-
ever, can lead to unexpected consequences, like grid congestion due to rapidly changing
demand curves. With proper coordination, on the other hand, the flexibility might addi-
tionally be used to benefit the overall grid state. Especially hierarchical distributed control
schemes are a point of interest to coordinate the decentralized generation and storage in-
frastructure. Therin, prosumers and traditional entities are grouped into microgrids, which
use their local flexibility to become more independent from the overall grid.

To realize these goals, new communication and coordination schemes must be devel-
oped and tested. That work is usually not done in-field because of the cost of setting
up a secured large-scale testbed [STR17]. Therefore, we turn to simulations to analyze
problems and test new solutions. However, the simulation of a complex system like this
involves models from different domains, which a suitable tool should be able to combine.
Naturally, this includes the behavior of the electrical grid and all of its components. Ad-
ditionally, it should consider communication and control strategies, as well as auxiliary
processes, such as environmental effects and human behavior. It becomes clear that no
single simulation tool provides this kind of environment. On the other hand, the areas
of research involved already provide individual tools and expert knowledge. Therefore,

2

it would be useful for research and industry alike to be able to combine these domain
specific tools in one framework. This thesis addresses this by using the co-simulation
approach to provide a customizable multi-domain simulation environment. In this envi-
ronment, individual tools should work in conjunction with each other, whether they were
especially designed for it or not. This will allow different groups of researchers to work
individually on improving and expanding the simulation environment, each in their area
of expertise. In turn, they will be able to use high-quality simulation models from other
domains in their own research without detailed knowledge of that domain. In the end, this
will yield a more complete and realistic analysis of everyone’s models and ideas.

1.2 Goals

The goal of this thesis is the development and implementation of an environment for the
co-simulation of smart grid entities. Furthermore, the concept of electrical grid flexibility
will be analyzed and an exemplary flexibility coordination scheme will be integrated into
the previously developed simulation environment.

Functionally, the environment needs to facilitate time-synchronicity between individual
simulations and coherent data flow, a task called scheduling. Next, it should retain a
persistent, shared data center which forms the ground truth for and collects relevant data
from the individual simulators. Lastly, a shared monitoring unit should provide an overview
over all simulation processes and the simulation’s meta information.

A special focus is laid on horizontal and vertical scalability, as well as usability of the
environment. Horizontal scalability means that the environment should be extensible to
accommodate and interact with a variety of different simulation tools. These might include
grid entity simulation for loads, DERs, and ESSs, alongside with control and communica-
tion system simulators. Vertical scalability signifies the ability to create multiple instances
of these simulators in order to extend the scenario to more realistic sizes in the context of
grid wide coordination tasks. Usability includes clean and simple interfaces and deploy-
ment automation, which enables even inexperienced users to integrate their subsystems
into more complex simulation scenarios and execute them.

The exemplary simulation task for this environment is a hierarchical approach to low-level
flexibility coordination in private prosumer households. This includes local EMSs which
control prosumer behavior locally and form a layer of abstraction and aggregation on top
of the actual controllable assets. These abstracted systems can then be provided with
external control signals from an superordinate, multiple-household controller. The main
goal of these controllers is the reduction of injection peaks caused by renewable energy
sources (RES), such as PV systems.

Theoretical Background 3

2 Theoretical Background

In this chapter, the theoretical background of this thesis will be discussed. Section 2.1
discusses the practical use case of this thesis: the concept and usage of flexibility in
the context of energy systems. While subsection 2.1.1 explores different definitions of
the concept itself, subsection 2.1.2 concentrates on the implementation and usage of
flexibility in a private end-user scenario. Additionally, subsection 2.1.3 explains the MPC
scheme and subsection 2.1.4 the involved optimization approach, which will be used for
flexibility coordination.

In section 2.2, the processes of modeling and simulation is introduced. It includes basic
simulation theory, highlighting different kinds of simulation models and solving procedures
(subsection 2.2.1). Furthermore, the co-simulation approach is motivated as a strategy
for multi-domain system design simulation and design (subsection 2.2.2).

Lastly, the software engineering basics for software virtualization are presented in sec-
tion 2.3. Here, the idea of virtualization itself is explained and different levels of virtual-
ization are described.

2.1 Flexibility

In the context of smart grid technology, flexibility is a central concept. The power grid is
shifting from its traditionally passive and hierarchical structure to a new, more distributed
structure. In accordance with public opinion and political incentives, energy providers are
starting to add more and more RESs into their energy mix. Estimates expect that even in
the mid-term, RESs will make up 50 % of the produced energy in Germany. Conventional
energy sources are increasingly forced to adapt to the residual demand, the energy de-
mand after the consideration of RES injection. The volatile nature of this injection leads
to rapid changes in residual demand. Given a high enough penetration of RESs, the con-
ventional energy sources might not be able to follow that demand anymore. [BUN17]

And not only large-scale projects like wind parks are getting more abundant, but also
private energy generation solutions like PV systems. These systems introduce additional
challenges for grid operators because they distort the standard demand behavior. Nor-
mally, private consumers are served using standard load profiles. These profiles get less
and less accurate and the consumers energy demand gets more and more volatile, the

4

more RESs are deployed behind the meter. Furthermore, if a region can regularly pro-
duce more energy than it is consuming, that energy needs to be transported to other
regions, increasing the potential for grid congestions. [BUN17]

All of this leads to the conclusion that the passive grid infrastructure must change to-
wards a smarter grid, which allows the intelligent and automated control of distributed
and volatile energy sources. A central feature of this new grid infrastructure is its ob-
servability. Instead of relying only on statistical load profiles, grid operators should have
access to real-time data provided by smart power meters from all grid entities, including
consumers, generators, and distribution hardware. This enables a more realistic overview
over the current grid state. Together with environmental factors, even behavioral projec-
tions into the future can be generated. This information can be used to take necessary
control decisions in order to avoid congestion and instability in the grid before they occur.
[MOM09]

This goal can only be reached if together with observability, the system’s controllability is
increased. Storage systems and smart appliances are one way to introduce more con-
trollable assets into the grid. However, the amount of active grid participants is currently
limited. Private consumers have virtually no possibility to interact with any global or local
energy market. The lack of incentives leads these consumers to optimize their own de-
mand instead of using potential flexibility in their behavior to benefit grid balancing and
congestion reduction. After all, transmission grid resources are limited. Being able to
control these prosumers down to the private household level using markets or explicit
control signals can help avoid imbalances where they occur and alleviate grid congestion
problems. [MOM09]

2.1.1 Definition

In literature, there are several different definitions of flexibility in the domain of energy
systems. They often depend on the use case or scope of the article in question. In
[NEU15] the given definition is:

The possibility to influence the operation mode of energy producers or con-
sumers by shifting production or consumption under given constraints is called
flexibility[.]

This captures the main aspect of being able to change production and consumption pat-
terns to achieve some goal. However, it is not very precise. It is not stated whether the
shift is meant to be temporally, in amplitude or both. Moreover, it is not clear what is
included in the “given constraints”.

A more broad definition can be found in [DAL17]:

Theoretical Background 5

Flexibility can generally be seen as a system’s ability to provide secure and
economical supply-demand balance across spatial and temporal scales by
leveraging and seamlessly coordinating various controllable assets.

This definition mentions spatial and temporal aspects of flexibility and references its
source as the “controllable assets” of the system. Nevertheless, it already implies a use
case to be supply-demand balancing, which might not necessarily be true. In that light,
any potential for change in a system that is not available for balancing purposes would
not be considered flexibility. Additionally, any system that purposefully needs to be kept
in an imbalance would also not be taken into account.

The most technical definition is probably proposed in [MAU17]:

The flexibility of an energy system is the collection of valid combinations of
system inputs and their state dependent outputs in terms of all energy carriers,
i.e., all combinations that provide all mandatory energy services in manner of
ensuring system stability.

This definition neither limits the existence of flexibility to any specific use case, nor to any
energy type. The only constraints are those within the capability and stability of the given
system itself. Nevertheless, this definition is so very focused on general applicability that
it loses most explicitness in the context of smart grid development.

The probably most useful definition, and basis for this thesis, is therefore taken from
[CEN14]:

The flexibility in demand and supply in the context of Smart Grids [...] covers
the changes in consumption/injection of electrical power from/to the power
system from their current/normal patterns in response to certain signals, ei-
ther voluntarily or mandatory.

This definition gives one of the best idea of what is means for a power system to be
flexible. One might consider generalizing it away from only “electrical power”, since smart
grids might incorporate other energy carriers. Moreover, flexibility itself is technically only
the possibility of change, while the actual change as stated in the definition would be the
use of said flexibility.

In the end, flexibility is an abstract concept whose definition is either very broad or context
dependent. Overall, the definitions mentioned above give an outline of what it entails, as
seen from different perspectives.

6

2.1.2 Energy Management Systems

Flexibility in energy systems can be further categorized into two different types. They are
called physical and structural flexibility. Physical flexibility denotes the actual capability
of a system to provide flexible demand/generation behavior. Structural flexibility is the
ability of the system to use the physical flexibility that is present. This includes coordina-
tion infrastructure and operation or market mechanisms. [AKR19] In a simple household
scenario, installing an ESS or having controllable appliances are sources of physical flex-
ibility. They enable the household system to change its consumption or injection patterns
away from the normal, static behavior. The structural component that enables the use
of this flexibility is usually called a Home Energy Management System (HEMS). This
system, in its most basic form, tries to lower the household’s energy cost by reducing its
demand from the grid. However, physical flexibility within private homes is also potentially
interesting to the grid operators and energy providers. Given the necessary structural
flexibility, it can be used to optimize, and therefore stabilize the overall grid behavior. Dif-
ferent approaches exist on how a more overarching Energy Management System (EMS)
and HEMSs might interact in order to satisfy customer and grid operator goals alike. In
[MAU17], approaches are summed up into four different categories.

Physical Demand Response Here, the HEMS gives direct load and generation control
of the household’s internal entities to the overlying controller. It propagates device
states and capabilities and tunnels back operation commands and set points.

Direct Market Demand Response In this scheme, local devices are abstracted into
models and then aggregated into a combined flexibility model for the household.
The global EMS gets the explicit flexibility information and has to decide on suitable
flexibility settings for all participants.

Indirect Market Demand Response For this approach, the household flexibility is not
explicitly determined or modeled. Rather, the overall EMS tries to exploit implicit
flexibility by giving incentives to the households (usually changing tariffs). This al-
lows for iterative algorithms between HEMS’ and the global controller, in order to
find the optimal flexibility usage.

Decentralized Market Demand Response This category is the only one not relying on
a central entity for coordination. Decentralized schemes use peer-to-peer house-
hold networks to perform the optimization. Distributed heuristics determine the
overall coordination process. This is comparable to other distributed communica-
tion protocols as known from decentralized sensor networks or distributed robotics.
Since most approaches in literature employ at least one central entity for communi-
cation or coordination, truly decentralized schemes are rare.

Theoretical Background 7

These categories are, of course, not necessarily mutually exclusive. One might imagine a
more complex control scheme, where direct market demand response for explicitly known
flexibility is augmented by indirect market demand response to harness flexibility which
cannot be explicitly determined. Alternatively, a part of the grid (e.g. a neighborhood or a
cell) might employ a decentralized scheme while still being tied into a larger grid structure.
The overall controller could use indirect market response to incentivise the optimal use of
the distributed cells’ flexibility within the larger context.

Nevertheless, all schemes have their advantages and disadvantages. Physical demand
response is very deterministic and humanly understandable. However, the underlying
systems are not abstracted at all and almost fully controlled by the global coordinator.
This is not a realistic solution for large scale systems and raises other concerns, such
as privacy protection. Indirect market demand response, on the other hand, promises
to leverage all available flexibility with comparably little computational effort. However,
deterministic planning and human interaction with the control system become less pre-
dictable. This thesis, however, will use direct market demand response as an exemplary
use case for flexibility coordination. This approach provides a compromise between sys-
tem abstraction and determinism, which helps to showcase different system interactions.
Individual smart grid components are abstracted by fitting models and operation deci-
sions of both HEMS and global EMS are determined by a so called Model Predictive
Control (MPC) scheme.

2.1.3 Model Predictive Control (MPC)

The concept of MPC has been used in industrial process control for many years. In
recent years it has also found its way into the power engineering sector as an efficient
way to coordinate flexibility resources for load balancing. [ARN11] MPC is a collection
of feedback control schemes that all use a similar procedure to determine their control
signal. The basic principles involve the explicit use of a model in order to predict the future
behavior of the system to be controlled. Furthermore, the control signal is determined by
minimizing or maximizing a given objective function. Lastly, all MPC methods involve a
receding horizon strategy. This means that in each execution of the control loop, the
objective function is optimized up to a certain time horizon. On consecutive execution,
the horizon is displaced into the future accordingly. Therefore, MPC algorithms are also
called Receding Horizon Predictive Control (RHPC). [CAM04]

The different MPC algorithms can be distinguished by the implementation of the basic
principles. The system model is arbitrary; one of the classical examples from control
theory is an impulse response model. But also empirical models without an analytical
representation and nowadays even neural networks are valid. The only requirement is

8

Optimizer

Model

+ -
set points

system behavior

control
signal

system
output

Objective &
Constraints

prediction

Figure 2.1: Basic MPC structure

that they produce a prediction of the controlled systems behavior. The more accurate the
model, the more precise the control will usually be.

The objective function is usually some kind of optimization problem (e.g. making the
system’s output follow some reference signal). The system’s controllable values are the
variables over which the problem will be optimized, while system constants, inputs, and
predictions are seen as fixed parameters. This generates a reference trajectory for the
control horizon, thus giving the controller a priori knowledge about the system’s evolution.
Therefore, the control system can eliminate the effects of processing delays by starting
to act before the actual change has occurred.

Additionally, any practical system is subject to constraints. Those might be physical con-
straints, like an actuator’s field of action or a sensor’s limited scope. Alternatively, they
might be constructive, safety-related, environmental or operational constraints, such as
temperature, voltage, power or energy constraints. Many objective functions can be ade-
quately realized by (Mixed Integer) Linear Programming (MILP). The following of a target
trajectory is usually implemented as a Least Mean Squares problem which can be solved
by Quadratic Programming. However, other non-linear or stochastic optimization proce-
dures are also feasible.

Lastly, the control law has to be obtained from the objective function. This is done by
solving the given optimization problem. Rarely, this can be done analytically (e.g. for an
unconstrained linear problem), but normally an iterative solver is applied. The choice of
the solver also depends on the type of optimization problem. If all system constraints
have been implemented correctly, the optimized solution’s variables can be used directly
as set points for the system’s controllable entities.

2.1.4 Mixed-Integer Linear Programming (MILP)

In the context of this thesis, the MPC scheme applied in flexibility coordination uses a
Linear Programming (LP) based approach for optimization. Linear Programming is a kind

Theoretical Background 9

of optimization problem, where the goal is to minimize or maximize a linear objective
function of the form:

ζ = c1x1 + c2x2 + · · ·+ cnxn = cT x. (2.1)

Where x denotes a vector of decision variables, which are unknown and need to be
chosen in an optimal manner. The coefficient vector c can be seen as a kind of cost
parameter. The higher the absolute value of an individual coefficient is, the more influence
it has on the value of the objective function. The goals of minimization or maximization
can be converted into each other by negating the objective function (maxζ = min−ζ).
Finding the solution of such a problem can be done analytically, since it only means
finding an extreme point in a linear function.

In most real LP problems, there are additional constraints. The simplest example would
be that a variable cannot be negative. Generally, constraints are represented by:

aT x = a1x2 +a2x2 + · · ·+anxn

≤
=

≥

b. (2.2)

The kind of equation or inequality does not matter here because conversion between all
of them is possible. There can be any number of constraints m, such that

A =

aT

1

aT
2
...

aT
m

 , b =

b1

b2
...

bm

 . (2.3)

Meaning the final problem can always be expressed in the standard form:

max cT x (2.4)

s.t. Ax≤ b (2.5)

This kind of problem is commonly found in real applications, such as profit maximization
in the presence of market and resource constraints in economics.

Since LP is a subclass of convex optimization, it can be efficiently solved. A commonly
described way is called the simplex method. This is an iterative algorithm, which starts
with an arbitrary point inside the solution space. It then improves the solution in each step
as much as possible and then substitutes one of the decision variables using one of the
constraints. If no more improvement is possible, the optimal point has been found. Over
the years, even more efficient algorithms have been developed. [VAN14]

10

If at least one of the decision variables has to be an integer, the problem is called Mixed-
Integer Linear Programming (MILP). This kind of constraint can occur easily in real ex-
amples such as optimal worker deployment or flight scheduling. It is naturally impossible
to deploy half a worker or fly 2.6 planes somewhere.

Even though the change from LP to MILP seems small, the latter is a superordinate
category of optimization problems, which are not necessarily convex anymore. Finding a
general solution for an MILP problem has been proven to be NP-hard. However, there are
special cases, which are efficiently solvable and in many cases a solution can be found
within a reasonable time frame.

The most commonly known algorithm to solve these kinds of problems is called branch-
and-bound. This algorithm starts by relaxing the MILP problem into a normal LP problem.
This problem is then solved as described above. The solution can generally not be ex-
pected to be feasible in terms of the integer constraints, but it provides an upper bound
for the optimal solution. Afterwards, the problem is split into two sub-problems with an
additional constraint. These constraints split the solution space along one of the relaxed
integer variable’s optimal value xopt

i and force that variable to fulfil either (2.6) or (2.7)
respectively.

xi ≤ bxopt
i c (2.6)

xi ≥ dxopt
i e (2.7)

This procedure is applied recursively to both sub-problems (branches) until either no
integer solution is feasible anymore, the found solution fits the integer constraints or the
objective function performance is below another known integer solution (bounds). When
all branches have terminated, the best performing integer solution is the optimal solution
to the MILP problem. [VAN14]

As described, this strategy involves the repeated solution of LP problems. It is therefore
in general significantly slower than solving a single LP problem. Furthermore, the under-
lying LP-solver performance becomes more significant because even a slight speedup
there will accumulate over the repeated executions.

2.2 Simulation

The topic of simulation is important in almost any scientific area of study. It enables
researchers to gain insight into processes which are very hard or even impossible to ob-
serve in reality. Physicists for example oftentimes analyze everything, from the evolution
of the universe to quantum interactions through various means of simulation before con-
ducting physical experiments. In engineering, simulation enables the analysis of system

Theoretical Background 11

designs under a variety of circumstances in a controlled environment. In this section,
the theory behind simulation systems in general and co-simulation in particular will be
discussed.

2.2.1 Basic Modeling and Simulation

Firstly, the basic structure and workflow of a typical simulation system will be discussed.
This will help to gain an understanding of how co-simulation differs from traditional sim-
ulation. Furthermore, it lays the groundwork for the design decisions taken during the
development of the co-simulation environment.

Models and Simulators

The term model is used frequently throughout the thesis. An equivalent expression is
dynamical system, which is a theoretical model of a physical system, hence the term
model. At any point a model is described by its state, a set of values the dynamical system
can assume. The set of possible states comprises the state space of the system. The so
called evolution rules describe how the state changes over an independent variable (e.g.
time). An example in the context of this thesis is a real ESS. For the sake of clarity in this
section, energy transfer losses as well as border cases will be ignored. Therefore, the
only state variable is the ESS’s State of Charge (SoC) and its evolution rule is the simple
integral (2.8).

soc(t) = SoC0 +
∫ t

0
pin(T)dT (2.8)

The SoC changes continuously as an integral of the input power over time. Being continu-
ous, this state can take infinitely many values, although it might be bounded. On the other
hand, it is also possible for a state to only have a finite number of values (e.g. [charge,
discharge, idle]). The set of curves described by the model’s state is called the behavior
trace or simply behavior. The ESS’s behavior, for example, would follow the linear curve
(2.9) in case of constant input power Pin.

soc(t) = SoC0 +Pint (2.9)

Lastly, the validity of a model expresses the difference between the model’s and the
real system’s behavior. The individual requirements on validity depend on the use-case.
Usually, it is sufficient for a model to be valid within a limited part of the state space that
highlights the features of interest. [GOM17]

12

A simulator is an algorithm that computes the behavior of a model. For that purpose it
uses a solver, e.g. numeric or sequential solvers, depending on the model in question.
Since these solvers are executed on digital computers, the generated behavior is usually
an approximation, especially for continuous behavior of the model. The accuracy is a
measure of the closeness of generated behavior to theoretical analytic behavior. It is
important to notice that it is possible to have an accurate behavior for an invalid model and
vice versa. Therefore, the choice of the solver and proper modeling are equally important
for generating useful results. Lastly, most simulators depend on external inputs. A system
consisting of a model and solver, emulating a real system, is therefore called a simulation
unit. A simulation is the behavior obtained from a simulation unit by supplying its inputs.
[GOM17]

Sim. Unit

Solver

Model

input behavior

Figure 2.2: A simulation consisting of the simulation unit that generates a behavior trace from an
input trajectory.

Time

Another important topic for modeling and simulation is time. In physical systems, time
naturally progresses. An experiment or procedure will take some amount of physical time
to complete. Inside the simulator, this time is abstracted by an ordered set of values
where each value represents an instant in time. This is called the simulated time. Thirdly,
the time passing for the simulation user while it is processing is called wall-clock time. In
the ESS example, researchers might be interested in its performance during one day of
physical time. The simulated time t might be a float value counting the seconds passed.
The model might require 3 minutes to complete simulation which is this simulation’s wall-
clock time. [GOM17; FUJ99]

Many simulations aim for as-fast-as-possible simulation. Hence, they try to use as little
wall-clock time to execute the desired simulation time span. In that case, the progression
of simulation time is not directly tied to wall-clock time. The alternative is called scaled
real-time simulation. Here, the simulated time progresses linearly to the wall-clock time. A
special case is real-time simulation, where simulated and wall-clock time move similarly.

Theoretical Background 13

simulation

continuousdiscrete

event-driven time-stepped

Figure 2.3: Classification of time flow mechanisms for computer based simulation execution

This is interesting for several applications, such as Hardware-in-the-Loop simulations and
virtual environments (e.g. video games). [GOM17; FUJ99]

Time Flow Mechanisms

Having clarified the notion of time within the simulation, the models can be divided into
categories based on their temporal behavior, as shown in Figure 2.3. Broadly speaking,
they can be either continuous or discrete. A continuous model produces behavior that is
continuously changing over time. This is often described by differential equations. The
ESS model is actually a continuous model. It could also be described by the differential
equation (2.10).

dsoc
dt

= pin(t) (2.10)

Examples for such models can be found in many areas, such as thermodynamics, mo-
tion equations, energy transfer, etc. In discrete models, the state changes only at specific
points in time, otherwise it is considered constant. Therefore, the computation of a new
state is only necessary at those discrete points. In practice, continuous models are often-
times handled similarly. Even though their behaviour is considered continuous, their state
is only recomputed at certain time steps, as decided by the simulation program. In our
example, if the SoC soc(t) of the ESS is only needed at certain time steps, it is sufficient
to use the integral equation to solve those specific points in time. [FUJ99]

In case of continuous simulation, the notion of time flow is usually unnecessary since
models are solved analytically. Hence, they yield an analytical function describing their
behaviour during the whole simulated time. In discrete simulations on the other hand,
simulation time has to be explicitly advanced. There are generally two mechanisms that
are used in discrete execution, called time-stepped and event-driven simulation. In time-
stepped simulation, time is advanced by equal-sized time steps. All models’ states are
resolved for each step. The most basic time-stepped simulation mechanisms also as-
sume that simultaneous actions are independent and can therefore be computed in par-
allel. Causal relationships have to be realized by executing actions in concurrent time
steps. Therefore, step size has a big impact on the simulation’s accuracy. Time-stepped

14

execution is one straightforward way to approximate the behaviour of continuous models,
especially if they cannot be solved analytically. In the ESS example, this might be the
case, if the input power has no feasible analytic representation. The discrete approxima-
tion would assume the input power to be stepwise analytical (e.g. constant) and solve the
system for each time step consecutively. [FUJ99]

In contrast, event-driven simulation has no fixed time step width. Recalculating all state
variables in a fixed manner might be inefficient in some cases, yet not be precise enough
in others. Therefore, event-driven simulation will only execute a simulation step whenever
an event occurs. This event is an abstraction of an instantaneous action in a real system.
Each event has a time stamp, indicating when it will occur. The simulation in event-driven
time flow then advances from one event to the next, recalculating states according to
the event’s time stamps. The ESS simulation example could be realized by creating an
event whenever the input power changes or the change is larger than some threshold.
Then the SoC will be calculated over a long period of time during which the input stays
constant. When it changes quickly however, the state will be recalculated more frequently,
depending on the rate of change. This will give a high temporal resolution when the
system behaves dynamically and saves computation time when it behaves more statically.
However, this needs a more elaborate simulation execution. In time-stepped execution, a
simple loop that iterates simulation time will suffice. In event-driven execution, a scheduler
is needed. This is an algorithm, which handles the list of upcoming events. It keeps
them chronologically sorted, continuously triggers the execution of the next event and
advances the simulation time accordingly. This called the event-processing loop. During
the execution, the simulation unit changes its state and can schedule new events. Those
events are only allowed to have time stamps greater or equal to the current one, otherwise
the simulation would break basic causality. [FUJ99]

Additionally, it is worthwhile to note that the two aforementioned time flow mechanisms
can be emulated within each other. Time-stepped execution can be realized in event-
driven simulation by triggering events in regular time intervals. Implementing event-driven
behavior in a time-stepped simulation is less common. It can be done by defining the time
step size to be the greatest common divisor of all event time stamps. This can lead to
rather inefficient execution, though, since most time steps may not need any computa-
tions. Lastly, both mechanisms can be used to perform real-time simulations by forcing
the simulation to idle until the wall-clock time reaches the next time stamp to be simulated.
This naturally assumes the simulation to advance faster than the corresponding physical
system. [FUJ99]

Theoretical Background 15

2.2.2 Co-Simulation

A simulation as described in subsection 2.2.1 is called a monolithic simulation because a
unit is only comprised of a single model/solver stack and can only be executed as a single
entity. It can be used to obtain the behavior of a specific system. However, as motivated
in section 1.1, it is useful to obtain a correct simulation for complex multi-domain systems
as well. A first approach to do this is co-modeling, a special kind of simulation. Here, the
different parts of the system are modeled individually. The simulation unit then consists
of multiple models coupled by a common solver (see Figure 2.4a). This can help in
modeling more complex systems. However, it limits the simulation unit to one solver
and one design strategy, which might not provide sufficient accuracy and validity for all
models. [GOM17]

In co-simulation, another kind of simulation, the sub-systems are not only represented
by individual models, but by individual simulation units. These units are coupled via their
inputs and outputs to produce a co-simulation unit (see Figure 2.4b). Additionally, a co-
simulation unit also contains an orchestrator or co-simulation framework which is needed
to coordinate execution and data exchange of the simulation units. Hence, the behavior
of the co-simulation unit is called a co-simulation. The information needed to generate a
correct co-simulation unit, such as the data flow between simulators and external inputs,
is called the co-simulation scenario.

Solver

M1 M2 · · · Mn

(a) A Simulation unit with co-modeling. Dif-
ferent problems are modeled individ-
ually and then solved by a common
solver. Coupling of models is realized
through the solver.

Framework

S1

M1

S2

M2

· · · Sn

Mn

(b) A co-simulation unit consisting of in-
dividual simulation units and a frame-
work. Data exchange and coordinated
execution are realized by the frame-
work.

Figure 2.4: Co-Modeling and Co-Simulation Comparison

This approach has multiple advantages. Firstly, it improves the development of a cou-
pled system by different teams and experts. To each, the other sub-systems are black
boxes, which adhere to a clean interface. This decouples individual simulation require-
ments. Each sub-system simulation unit can be realized by the languages and tools of
the expert’s choice. The black box nature of the units also simplifies the integration of
closed-source tools and protected IP. Furthermore, the analysis of system wide prob-
lems and design choices can be realized cheaply and early into the project. Returning to

16

the ESS example, one researcher might work on the battery model, while another works
on designing a control unit. If both work within the same co-simulation environment the
controller can continuously be verified against an increasingly realistic battery simulation.
Otherwise, building an ESS test bed might be time consuming and expensive. Moreover,
in case of a design error it might even break. Additionally, since the simulation units
represent physical systems, the whole simulation setup becomes more humanly under-
standable. It also simplifies integration later on because most system interactions are
already known and tested. Lastly, with proper orchestration, the simulation units can also
be executed in a distributed manner.

On the other hand, co-simulation can introduce some uncertainties. It often cannot be
said whether and how the properties of individual simulation units translate into a com-
posite simulation. Furthermore, the distinction of highly coupled sub-system into weakly
coupled simulation units can affect solver accuracy. For instance a problem that requires
iterative solving can span across multiple simulation units. The framework has to allow
this interaction which might break the clean interface of the simulation. Lastly, several
examples in literature [GOD10; BIA15; TRO16] use co-simulation only for limited scenar-
ios such as the combination of two specific simulators, e.g. communication and power
systems. This shows its usability in multi-domain simulation, yet also how much potential
there still is with a more flexible co-simulation environment.

2.3 Virtualization

As already discussed in subsection 2.2.2, monolithic design for simulators is not always
desirable. This argument can be made for the software layer as well, especially with the
goal of a co-simulation environment in mind. Preparing such a tool as a monolithic unit
of software comes with many problems and difficulties. Firstly, maintaining such a soft-
ware project becomes very difficult. All available simulators need to be integrated with
the actual environment software which leads to system updates becoming intertwined
with external tool upgrades. Functional updates to any single component can potentially
influence the whole system. Moreover, the different tools might cause dependency con-
flicts if they depend on different, incompatible versions of the same library. A solution to
such problems in modern software development is called microservice architecture. This
approach divides a complex application into smaller, independent tasks, the microser-
vices. Each microservice should have a single, well-defined responsibility. This helps
to keep the code base cohesive, meaning all related code stays together. A cohesive
codebase is useful because it helps to reduce redundancy and makes code optimiza-
tion more straight-forward. To achieve a more complex goal, the services then interact
through a well-defined interface, oftentimes Representational State Transfer based APIs

Theoretical Background 17

(e.g. RESTful-API) or comparable protocols. It must be noted that the network commu-
nication used by microservices is always slower than the in-memory data sharing in a
monolithic application. However, the added flexibility and separation of concerns is often
worth this trade-off, especially if the interface speed is not the limiting factor for execution
speed. [DRA16; THÖ15]

To realize such an architecture, each microservice has to be developed with its own run-
time environment. Otherwise, the afore mentioned dependency issues would still exist
between the services. Additionally, microservices should be deployable to a variety of
hosts, including distributed systems. Such an abstraction of different software units from
the host system is called virtualization. The most shallow form is called application vir-
tualization. This structure involves the (partial) sandboxing of an application’s file system
access. In a virtualised application, its file system access is (partially) rerouted into a
directory, created especially for the application. This is comparable to the virtual envi-
ronments used by most Python applications. This mechanism redirects installation and
import calls of third-party Python packages into the virtual environments subdirectories.
This enables users to develop and execute different programs with potentially conflicting
dependencies in parallel by using different virtual environments. While such a strategy
can alleviate the dependency problems, it does not solve all problems. Firstly, the appli-
cation is still dependent to the host’s operating system and so is the virtual environment.
Additionally, there is no supervision over the usage of hardware resources. [WIN07]

App

Depsglob. Deps

App

Host OS
Hardware

(a) On the left: A traditional
software stack, where the
application is on the global
libraries and uses the lo-
cal OS. On the right: a
virtualised application, for
which certain dependency
calls are rerouted to its own
environment.

Apps

Libs/Deps

Apps

Libs/Deps

Container Engine

Host OS
Hardware

Cont 1 Cont 2

(b) Schematic visualization of
OS-level virtualization. Con-
tainers package their ap-
plication and dependencies
and are executed isolated
from the host system, but
can use the underlying ker-
nel.

Apps

Libs/Deps

Guest OS

Apps

Libs/Deps

Guest OS

Hypervisor

Host OS
Hardware

VM 1 VM 2

(c) Schematic visualization of
virtualization using virtual
machines. VMs package
applications with dependen-
cies and OS, completely iso-
lating it from the underlying
operating system.

Figure 2.5: Different forms of virtualization

The other extreme of virtualization are virtual machines, as provided by solutions like Vir-
tualBox or VMware. They facilitate nearly complete hardware and software abstraction

18

from the underlying host system. Here, a hypervisor software runs as a program on the
current host operating system. This hypervisor creates virtual hardware representations
as if it were an actual computer, upon which any operating system can be installed and
applications can be executed. A virtual machine therefore provides the most flexibility
and security. The application can be deployed on any host system, as long as this sys-
tem supports the hypervisor program. Scaling of the service can be realized by creating
new VM instances and all allowed interaction between such systems are equal to the
interactions of physical computer systems. However, it also comes with much overhead
because every software unit is packaged with its own OS and all system calls are per-
formed through the hypervisor. [SMI05]

A midway between these two solutions is called OS-level virtualization. This approach
describes the introduction of multiple isolated user space instances on top of a single OS
kernel. Additional user space instances for specific applications have different names,
such as containers, zones, virtual private servers, virtual kernels, jails, etc. In this thesis,
the term container will be used to refer to an instance of an OS-level virtualised software
unit. Containers are isolated from each other and the host system by different mecha-
nisms. Usually, they exist in their own kernel namespace, meaning their processes are
not directly visible to the other systems and vice versa. Additionally, most OS-level virtu-
alization mechanisms provide ways of resource control over the containers through the
kernel. More precisely, containers can be restricted in their hardware access, e.g. a con-
tainer might not be able to use more than two processor cores, or 1 GB of memory etc.
Furthermore, the container’s file system has its own root directory, making it impossible to
access other file systems without explicit connections (e.g. mounts). A Container Engine
that runs on the host system is used to keep track of all containers and provides ways for
the user to interact with them. Containers are not as versatile as VMs because they are
still tied to the kernel functionality. That makes it impossible to run applications designed
for another kernel. Programs reliant on Windows specific kernel features for example
cannot be containerized for Unix-based systems. However, the deployment of a service
to all systems based on the same kernel (e.g. different flavors of unix-based systems)
is usually no problem because the container already packages all dependencies. Fur-
thermore, containers considerably lessen the overhead compared to VMs, both in terms
of memory space and hardware interaction. Most notably, processes running inside a
container directly use the same kernel functions as normal processes on the host system
do, without the major drawback of going through translation in a hypervisor. [YU07]

Modeling 19

3 Modeling

This chapter describes the concrete design of the exemplary flexibility simulation on the
basis of the previously discussed concepts and ideas. Firstly, the simulation environment
is presented and its intended workflow is outlined. Afterwards, a description is given of
how the environment is used to implement and execute the actual simulation.

3.1 Simulation Environment

As discussed in subsection 2.2.2, the simulation environment should enable different sim-
ulation tools to work together. In literature, several solutions for application independent
co-simulation have been presented. Most notably are High Level Architecture (HLA) and
Mosaik. HLA is a standard that defines interfaces between simulators and the overall
workflow in a co-simulation setup. Mosaik is a co-simulation framework developed by
OFFIS, the institute for information technology at Carl von Ossietzky University in Old-
enburg. A comparison study can be found in [STE18]. Mosaik was chosen to be the
core part of the new co-simulation environment. From the comparison study and further
evaluation it became clear, that this tool provides the necessary customizability, while
still being easy to use. The latter aspect cannot be ignored, since the environment aims
to provide an easy solution for collaborative simulation development. This cannot be
achieved, though, if the integration of new simulation tools becomes to complicated.

3.1.1 Mosaik

Development of Mosaik started in 2011 and is still ongoing [OFF11]. It was designed
especially with CPES/smart grid simulation in mind. Its goal is to provide an easy-to-use
framework for the development of large-scale system simulation, which coincides with the
goals of this thesis. The development language is Python and the system is based on the
‘simpy’ simulation module.

The basic architecture of Mosaik can be seen in Figure 3.1. The core application consists
of a simulation manager module (sim-manager) and a scheduler. The sim-manager han-
dles the data flow between simulators. It connects to each simulator via a TCP network

20

Sim-Manager

Scheduler
Scenario-APIScenario-API

Scenario Script

Comp-API Comp-API

Interface

Sim-Code

calls

activates

calls

capsules

Mosaik Core Simulator

Figure 3.1: Basic Mosaik Architecture. The core application uses the sim-manager to control
individual simulator and the scheduler to coordinate the execution according to the
scenario definition. Component- and Scenario-API provide the necessary interfaces.

connection and sends or receives the necessary data. The scheduler coordinates this
data exchange and the simulator execution. It also maintains the global simulation clock.
The time flow scheme for the advancement of this global simulation time can be described
as a hybrid between event-driven and time-stepped execution. This is achieved by the
underlying simpy-module, which is an event-driven simulation tool. Each simulator can
tell the Mosaik core at which time step it should be executed next. The sim-manager then
schedules an execution event for that time step. Since each simulator can only request
events that trigger their own execution, this yields a time-stepped execution with the pos-
sibility of variable step width. This scheduling process is illustrated in Figure 3.2. Proper
event-driven execution, on the other hand, would entail the ability of any simulator to gen-
erate events, which could trigger the execution of other simulators. Whenever multiple
simulators in the given scheme are scheduled for execution on the same time step, the
scheduler analyzes the data dependencies. Simulators with no dependencies between
them can be executed in parallel, while those who need data from others are executed
sequentially according to the dependencies. An exemplary execution flow can be seen in
Figure 3.3b. Circular dependencies are not allowed and have to be resolved beforehand.
One way to achieve this is to explicitly define a connection within a circular dependency
to be time shifted, meaning the receiving simulator will get the data generated during the
last execution, not the current one.

Scheduler
Sim-Manager Simulator

sim t0
...

sim ts

Queue

trigger execution execute

next time step tsrequest next
execution at ts

schedule
sim event
at ts

execution
event Clock: t0

Figure 3.2: Mosaik’s variable step size execution scheme. On each execution, the simulators get
to choose when they need to be executed next. This is realized by an underlying
event queue in the scheduler.

Modeling 21

A

C D

B

(a) Exemplary data dependency
graph. Since simulators B, C
and D would produce a cir-
cular data flow, the connec-
tion between D and B is re-
alized time shifted.

Sim A

Sim B Sim C Sim D

ti,1 ti,2 ti,3

time shifted
data for ti+1

time shifted
data from ti−1

(b) The simulation schedule for time step ti. Simulators A and B have no
inter-dependencies and can therefore be executed in parallel. Simula-
tors C and D are executed sequentially, because of their dependencies.
The time-shifted connection between D and B is realized in consecutive
time steps.

Figure 3.3: Mosaik intra time step scheduling

Further shown in Figure 3.1 are two APIs, which provide the interfaces for interaction with
the Mosaik core. Firstly, there is the Component-API. This needs to be implemented by
each simulator. It defines the interactions between the sim-manager and the simulators.
A high-level API is provided for Python and some other languages (e.g. Matlab, Java,
etc.). However, those are high-level abstractions of the underlying low-level API. This
uses the aforementioned TCP network connection to exchange commands and data in
the form of JSON objects with the sim-manager. This interface can be implemented in
most common programming languages, making it possible to attach simulators indepen-
dent of the language used for development. Furthermore, this design makes it possible
for the simulators to be run locally on the same machine or on different computers within
the same network. There are two different kinds of interface calls in the component-
API. The regular or synchronous calls are triggered by the sim-manager for a simulator.
They include simulator initialization, model creation, simulation step execution and data
retrieval. Additionally, there are asynchronous calls, which are issued by the simulators
towards the sim-manager during its step execution. They include getting and setting data
asynchronously, retrieving simulation progress and dependency information.

The second API is called the Scenario-API. This is implemented in Python and provides
an interface to the scheduler. In the scenario script, this API is used to trigger the sim-
manager to initiate all necessary simulators, create simulation models and define data
flow connections between those models. Upon their start, each simulator returns a meta
description of their models, including their name, parameters and attributes. When a
model is created, this description is used to create a local proxy model, representing the
actual model to the sim-manager. During data flow definition, the proxy models ensure
some basic validity of the scenario, e.g. whether the connected parameters actually exist
in the models. The sim-manager also uses the proxy models to execute the component-
API calls during the simulation execution. Each proxy in turn holds the information on
how to reach its respective model. This structure decouples the network interface from

22

the actual simulation execution. It also makes it easy to include auxiliary, non-simulator
services into the simulation infrastructure. A data logger for example can be realized
by implementing it with the component-API, as if it were an actual simulator. The model
parameters of interest are then connected to this pseudo-simulator and it can simply save
the provided data e.g. to a database server running in the background.

This decoupled design, both in terms of component-API language and execution location
makes Mosaik a versatile tool, that can integrate most simulation tools and additional
services. Furthermore, the simplicity of the interfaces make it very straightforward to add
existing or new simulators in any language, but especially Python. A disadvantage is
that the chosen time flow mechanism only allows for variable time steps, but never for
true event-driven behavior. That is the cost Mosaik users pay for the simple interfaces
and straightforward scenario definition. Lastly, the sim-manager is, by design, the central
entity for data exchange. This simplifies Mosaik’s implementation, but it might lead to
congestion and slower execution for large-scale simulations compared to peer-to-peer
data exchange. Nevertheless, Mosaik’s versatility and ease of use made it the tool of
choice for this co-simulation environment, despite those minor drawbacks.

3.1.2 Docker

Using Mosaik as a basis for simulator execution, the next challenge for a versatile simu-
lation environment is to provide a runtime environment for different simulation tools. As
discussed in section 2.3, a co-simulation framework lends itself to being designed as
a microservice architecture. For this purpose, the individual simulators, as well as the
Mosaik core, were implemented as independent, isolated microservices, using Mosaik’s
component API as a communication interface. Since it is implemented as a RESTful-API,
this fits with the general picture of microservices as seen in most literature. As further
discussed in section 2.3, a virtualization of the services is sensible, since it avoids de-
pendency issues and limits the unwanted influence of different parts of the software on
each other. Moreover, it increases the services deployment and scaling options. There-
fore, OS-level virtualization was chosen for the implementation of the services because
it provides the mentioned advantages without introducing too much overhead, compared
to VMs. In detail, the containerization tool chosen for implementation is called Docker
[DOC20a].

Docker is an open source Platform as a Service (PaaS) containerization suite, which
was first released in 2013 and is currently developed by Docker Inc. PaaS products are
services which provide a platform for users to develop, run and manage applications on.
As a containerization tool, Docker does exactly this. It provides tools, which are used
to bundle applications into containers, deploy them to a system and manage them over
their lifetime. The heart of the service is called the Docker Engine. This engine employs

Modeling 23

a client-server architecture. The server is a long-running daemon process, which creates
and manages all Docker objects, such as images, containers, networks, etc. The clients
use different APIs, both for direct communication with the daemon on the local machine
or over a network. Additionally, a Command Line Interface (CLI) is offered for direct
interaction with the Docker daemon through command line instructions.

Docker Workflow

To create a Docker container, an image is used. This image acts like a blueprint from
which the daemon knows how to construct the container. Any number of containers can
be created from the same image. The images can also be generated and managed
by the Docker Engine. It uses a configuration file, called Dockerfile, to generate the
image. A Dockerfile defines different instructions to be executed in order to prepare an
image. Each instruction creates a new image layer. To be more resource efficient, Docker
saves intermediate layers. That way an image can be rebuild more quickly if there are
only changes in the upper layers, because the lower layers do not need to be recreated.
Additionally, different images, which have similar base layers can also use this cache.
The mechanism is called layer caching. It also allows for Dockerfiles to use other images
as a basis and apply new layers on top, which is useful for sharing base images and
adjusting them to the current use case. This general workflow is shown in Figure 3.4.

Dockerfile Image ContainerContainerContainer

Docker Hub

build run

pushpull

Figure 3.4: A simple overview of the Docker workflow, including the possibility of pulling/pushing
images from/to the online Docker repository.

Once an image is built, Docker can run a container from it. However, Docker provides sev-
eral more convenience feature for container management and interaction, like volumes
and networking. Networks are probably the most important additional feature of Docker.
Each container includes a network socket, through which it can be interacted with from
the host. The networking service can create additional virtual networks, to which contain-
ers can attach. All containers in the same network are then able to communicate through
their network interfaces. Moreover, Docker networks provide host name resolution for
all attached containers, meaning the containers can address each other using their host
names instead of potentially changing IP addresses. Additionally, this network is ab-
stracted from the actual host system’s network topology. It is therefore inconsequential

24

whether the containers are deployed on a single machine or in a distributed system. As
long as they are connected to the same Docker network, they are able to communicate
using the host name resolution.

Volumes are a service provided by the Docker Engine to persistently store container
data. One disadvantage of containers can be that all their data is deleted when they
are destroyed because their whole file system is deleted. For most containers, this is
no problem because one principle of microservice design is that services should almost
always be stateless and thus hold no data to be persisted. However, this is not always
possible, e.g. if one containerizes a database for data storage. Naturally, this data should
be kept beyond the container’s lifespan. Volumes are directories on the host system,
which are managed by the Docker Engine and can be mounted into the container. This
can be used to save data and also to provide data to a container upon its start, without
the need to copy this data into or out of the container explicitly.

Docker Community

Currently, Docker is one of the most widely used OS-level virtualization tools and its suc-
cess paired with its open-source nature has spawned a big and active community. This
provides many advantages for developers using Docker, including the Docker Hub. This
is Docker’s online image repository. Whenever the Docker daemon is instructed to run an
image which is not available in its local image repository, it checks the online Docker Hub
for the image. If it is found, the image is downloaded and available for deployment. This
enables developers to share and reuse useful images. Many software companies also
provide official Docker images for their products. This is another reason for using Docker
in co-simulation in particular, because for many simulators, a well designed Docker im-
age might already exist. Those can be used as a base, on top of which the co-simulation
interface can be implemented. In the context of this thesis, Docker Hub has been used to
provide the official Python image, which prepackages the Python interpreter. This image
forms the base for all container images, which encapsulate individual simulators and the
Mosaik Core. Moreover, the officially provided InfluxDB and Grafana images are used to
create containerized database and visualization servers.

Furthermore, Docker Inc. has not only made efforts to connect end users, but also other
companies in the field of container-based virtualization. Docker for example supports
container deployment to container orchestration platforms such as Kubernetes. This
makes it possible to easily deploy a containerized Docker application to a cloud computing
service. That is essential for scaling up microservice applications to sizes/complexities
that a single computer would not be able to handle efficiently. This is an important advan-
tage, which enables also relatively inexperienced users to move large-scale multi-domain
co-simulations to the cloud or other computing clusters.

Modeling 25

Synergy with Mosaik

On the topic of disadvantages, Docker naturally comes with all drawbacks that are inher-
ent to containerized application design. Those include the increased memory overhead
by isolating each container with its libraries, instead of sharing them across all services.
Furthermore, the increased communication overhead caused by the use of network com-
munication instead of in-memory data sharing is not negligible. However, compared to
virtual machines, the memory overhead of containers is still much smaller. Additionally,
the chosen co-simulation framework, Mosaik, uses network communication to connect to
the different simulators in any case, making this potential drawback more of an advan-
tage. Moreover, by running the Mosaik Core inside a container itself, it becomes much
easier to deploy the simulation to a variety of systems. In general, if a system provides
a Docker daemon instance, the simulation should be deployable there. For large scale
simulations, it might also be desirable to distribute the simulators over multiple comput-
ers or deploy it to a cloud computing platform. In a traditional setup, this would change
Mosaik’s simulation configuration every time the simulation network topology changes.
Within the Docker network though, each simulator is always reachable by its host name,
independent of its container’s actual location. This further increases usability by enabling
different orchestration techniques, such as load balancing.

3.1.3 Functional Co-Simulation Environment Design

Bringing Mosaik and Docker together yields a flexible and versatile co-simulation setup.
This subsection describes three different kinds of containers, which are used by the sim-
ulation environment. An exemplary container setup is visualized in Figure 3.6.

Main Container

The Mosaik Core runs inside a main container and uses the Docker network to communi-
cate with the simulators, which are running inside their own containers (see Figure 3.6).
The main image is built from its individual Dockerfile. The configuration is based on the
official Python 3.7 image provided on the Docker Hub. On this basis, the necessary
third-party libraries are installed, most importantly the Mosaik and Docker Python pack-
ages. In order for the Docker-API to function, it needs to be able to connect to a Docker
daemon. Therefore, the file system interface of the host system’s daemon is mounted
into the main container. This enables the container to access the host’s Docker daemon
and create/manage sibling containers. The scenario script and other relevant code is
copied into the image and the default operation upon container start is set to execute
the simulation scenario. The information, which additional simulation containers need

26

to be started, is already implicit in the simulation setup inside the scenario description.
Therefore, Mosaik’s Scenario-API was partially abstracted by an additional container-API
class inside the main container. This class provides the ability to start Docker contain-
ers using Docker’s Python-API [DOC20b]. Because the provided daemon is actually
running on the host system, the created containers are running as siblings to the main
container on top of the host system’s kernel. When a Docker image name and a number
of container instances is provided upon simulator initialization, the container-API starts
the given number of container instances. The containers are then added to Mosaik’s
simulation metadata and initialized via the component-API. It is the users responsibility
to assure that the given image is available to the Docker daemon. The container-API
class keeps track of all initialized simulators and their containers. It also abstracts model
creation because it realizes a simple form of load balancing. If multiple instances of a
simulator are created, the model creation method divides them evenly between all sim-
ulator instances. Having multiple container instances for a large number of simulation
models increases parallelization options and flexibility during distributed deployment. Fi-
nally, the model creation methods returns a list of proxy models, similar to the normal
Mosaik Scenario-API. Those can then be used to create data connections between mod-
els using Mosaik’s plain Scenario-API. All these interactions are visualized in Figure 3.5.
When the container-API class is deleted, i.e. when the simulation is finished, it cleans up
all running simulation containers it created.

S
ce

na
rio

S
cr

ip
t

C
on

ta
in

er
-A

P
I

S
ce

na
rio

-A
P

I

Docker-API

image name
x: instances

init x
simulators

create models create models

proxy-models proxy-models

create x containers

create connections

Figure 3.5: Co-simulation container-API functionality. It uses both the Docker-API and the original
Mosaik Scenario-API to create container instances for the simulators. Models are
created on all simulator instances in a balanced manner.

Simulation Containers

A simulation container encapsulates a single simulator, which can be used in conjunction
with the main container through the use of Mosaik’s component-API. They are build from

Modeling 27

their own Dockerfiles. A standard simulation container image is based on an adequate
base image, e.g. the official Python image for a Python-based simulator. On top of the
base image, all third-party dependencies, such as system libraries, Python packages,
etc. are installed. Lastly, the actual simulator code, including the Mosaik interface, is
copied into the image. The order of those steps is relevant because this way the Docker
layer caching accelerates the build process during simulator development. Lastly, the
default command on container start is set to execute the main simulator with the Mosaik
component-API implementation. In case of the deployment of an existing image from a
local or online repository, the build step can be skipped. The image can be used to create
any number of container instances, but it usually needs the containers’ IPs or host names
and the intended Mosaik port as additional arguments. These are forwarded to the sim-
ulator instance, so the Mosaik API knows where to to listen for incoming communication
from the sim-manager. The simulator is not initialized at this point. It is waiting for the
manager to establish a connection and trigger initialization. Usually, a simulator is set to
terminate after a certain time of waiting for a connection, but this setting can be adjusted
as needed during development of the simulator’s Mosaik interface.

Auxiliary Containers

In addition to the Mosaik-related containers, two other containers are included for the
simulation convenience. One is a database container, which runs a simple database
server for simulation result storage. The tool used for this purpose is called InfluxDB.
This is a simple time-series database. Such a database is optimized for the storage
and retrieval of timestamped data points, which fits the data structure generated by a
simulation. Here, a Docker volume can be used to save the database contents beyond
the DB-container’s lifespan for later evaluation.

Secondly, a Grafana container is deployed. Grafana is a web-server based data visual-
ization tool. It can use several database systems, including InfluxDB, as a data source.
Users can connect to the server using a web-browser. The visualization is organized in
dashboards. Each dashboard consists of a collection of panels, which hold the actual
visualized data. Upon first start of a new Grafana server previously designed default
dashboards can be provided via the provisioning system. This default setup can then be
individualized by the users by adding and editing dashboards and panels. This provides
a highly customizable visualization environment, which can be adjusted by every user to
the project and task at hand. All changes to the setup are local to the current browser
session, but they can be saved to the server’s internal visualization database. As long as
this database is not dropped, the saved setup will always be recovered when the server is
restarted. For the use with Docker, Grafana provides an official Docker image on Docker
Hub. That makes it straightforward to deploy Grafana within the microservice architecture.

28

The container is started with the above mentioned database container as its default data
source and a default dashboard is provided. A Docker volume saves the visualization
database, such that the saved layout is preserved between container deployments.

Mosaik
Core

Scenario

A
P

I

Main Container

N
W

S
oc

.

Simulation
SoftwareA

P
I

Sim. Container

N
W

S
oc

.
Simulation
SoftwareA

P
I

Sim. Container

N
W

S
oc

.

Database/
Visualization

Aux. Container

N
W

S
oc

.

JS
ON

JSON

Data

Figure 3.6: The main simulaton environment structure. A main container holds the Mosaik Core
software and the Scenario Script. Each Simulator is packaged in its own con-
tainer. Connection between the core and the smulators are realized using Mosaik’s
Component-API and the Docker network. Auxilary Containers provide additional func-
tionality.

3.2 Flexibility Co-Simulation

The previously described simulation is now used to design and execute a simulation
scenario with the goal of analyzing a flexibility coordination scheme. Firstly, the simulators
that were implemented for this purpose are described (subsection 3.2.1). Afterwards,
subsection 3.2.2 describes which instances of these simulators were created and how
they are connected in order to create the final simulation setup.

3.2.1 Simulators

All simulators for the flexibility coordination analysis are implemented in Python. The
external Python packages chosen during the development of the simulators provide suit-
able capabilities for the individual tasks. All simulators need to implement four functions
in order to be able to interface properly with the Mosaik component-API. This structure
gives the main pattern after which the simulators are designed.

Modeling 29

Firstly, the init-function is called, when the simulators are first started. Here, global sim-
ulator properties can be set. For these simulators, the standard properties are the simu-
lation’s step size and an eid-prefix. Because there is no other coordination of consistent
simulator execution, each simulator is designed to request their next execution step to
take place one step size from the current time. This parameter should be set to the same
value for all simulators, since it does not make any sense in this simulation setup to ex-
ecute any of the simulator faster or slower than the other ones. The eid-prefix is a string
that will be prepended to the entity-IDs used by Mosaik to identify the simulation model,
for user convenience.

Secondly, the create-function is called to create a certain number of simulation models
with a given set on initial parameters. The model’s logic could be implemented directly
into the simulator class. However, all simulation models in this project are implemented
as their own model classes. This allows more flexibility, in case the simulation model
needs to be refactored or exchanged for a different version. Additionally, it allows the
simulator to save only a list of model instances and execute certain interface methods to
interact with them. This greatly improves readability of the simulator class, especially if
the simulator provides multiple model types.

Next, the step-function is executed on every simulation step. Here every simulator has
a custom logic on how to handle different input parameters. However, each simulator
at some point loops through their list of simulation models and executes their respective
simulation logic for the current simulation time. Each model saves its state internally.

Finally, the get_data-function is used to retrieve the models’ state variables. Here each
simulator loops through the requested state variables, finds the respective model in its
internal model list, retrieves its state and returns it to the Mosaik Core. This data is then
propagated to other simulators by Mosaik according to the data connections defined in
the scenario script.

Power Flow Simulation

This simulator provides the basis of any electrical power system simulation: the power
flow simulation. It simulates the physical grid that connects the individual components
and models their interaction. The basis for the simulation in this implementation is the
Power Flow Equation (PFE) analysis tool pandapower. This utility is a combination of
the data analysis library pandas and the PFE solver pypower. Pypower itself is a Python
adaptation of the Matlab module matpower.

This simulator provides a variety of models, which represent the different elements within
a power grid. These models include loads, generators, transformers, etc. with all their re-
spective parameters and attributes. However, the only model that can be created through

30

the Mosaik API is a general grid model. This grid model is initialized by a configuration dic-
tionary. This dictionary is parsed by a custom configuration parser. The parser supports
a multitude of configuration settings. It can build a network directly from explicitly defined
pandapower objects or read a similar configuration from a yaml-file. Alternatively, it can
use pandapower’s load function to initialize a previously saved network from a JSON-file.
However the pandapower network is created, the simulator additionally creates a Mosaik-
model representation for all grid elements. These models are then returned as children of
the originally requested grid model. They can be used to interact with the power flow grid
from other Mosaik simulator. For example, to set the power value of a load element in-
side the pandapower simulation from an external load simulator, the respective load child
model is connected to the chosen load simulator model via Mosaik’s scenario-API.

The simulation step function is what actually converts pandapower, which is only a solver,
into a simulator. It parses all given inputs for the current simulation step and sets the
entity parameters inside the simulated grids accordingly. Afterwards the resulting PFEs
are solved.

Time Series Simulation

A time series simulator is a general purpose simulation tool. It is especially useful in case
a system needs to be simulated whose inner proceedings are unknown or too complex to
be modeled explicitly. In that case, statistical behavior data can be collected, for example
in the form of an average daily output profile. This data is saved as a series of output
values with attached time stamps: a time series. Such a time series is then interpo-
lated by the simulation model to generate its output values and hence imitate the original
system.

The only model implemented for this simulator is called CSVTimeseries. It’s initialization
data is outlined in Table 3.1. It reads the necessary time series data from a CSV-file. The
file can be as simple as one time column and one data column, but it may hold multiple
time and data columns. Which columns represent the time reference and data values
is defined by additional parameters. Moreover, a constant time offset can be defined,
in case the time reference does not correspond to the simulation time. Lastly, additive
Gaussian noise with the given standard deviation can be applied to the output data. For
that purpose a seed value can be provided. This ensures that the same random noise
values are applied during every simulation execution, making the results reproducible.

When a simulation step is executed, the input values shown in Figure 3.7 are parsed. If a
new scale or data column are given, they are applied. Afterwards, each model generates

Modeling 31

model parameter description
filename CSV file that the time series data used to produce the

simulator output is read from
time column Column within the data, which holds the data points’

time reference
data column Column within the data, which holds the data values
interpolation The scheme, which is used for data interpolation: lin-

ear or nearest-neighbor
offset Time offset, which is applied to the time series data
scale Scaling factor applied to all data values
seed Seed value for the noise generating RNG

CSVTimeseries

std. dev. Standard deviation for the noise generating RNG.

Table 3.1: Time series simulator initialization parameters

CSV
Timeseries

sim. time

scale

data
column

output
value

Figure 3.7: CSVTimeseries input/output block diagram

its new output state according to the simulation time, data, interpolation scheme and
other settings.

ESS Simulation

This simulator emulates the behavior of Energy Storage System (ESS)s. The imple-
mented model is called storage and represents a simple storage system connected to
a power bus by an adequate transformation unit and some internal protection systems.
On model creation, the parameters listed in Table 3.2 must be provided. Emax describes
the maximum amount of energy that can be stored inside the system. ESoC is the initial
amount of energy inside the system st the simulations start. The value of ε is the sys-
tem’s efficiency, which represents the energy loss during energy transactions. A value
of 0 implies all energy is lost and a value of 1 means perfect efficiency. Finally, Pmax is
a tuple of two values, which represent the system’s maximum charging and discharging
power respectively.

During the simulation step, the new SoC for the current simulation step is calculated in
each model. Since a storage system would have no reason to change its state by itself, an
external set point can be provided. The storage system then adopts this set point, if it is
within the accepted power boundaries, and updates its SoC accordingly. The theoretical

32

model parameter description
Emax System maximum energy capacity
ESoC Initial system SoC
ε System efficiency

storage

Pmax Tuple of maximum charge and discharge power values

Table 3.2: ESS simulator initialization parameters

behavior follows the integral:

soc(t + tstep) = soc(t)+
∫ t+tstep

t
ε max(Pset(τ),0)+(2− ε)min(Pset(τ),0)dτ (3.1)

The value for soc(t) is already known because it is the result of the previous execution or
the initial SoC in case it is the first execution step. The integral also takes into account
the fact that an efficiency value of ε < 1 causes a decrease in charged energy, but an
increase in retrieved energy compared to an ideal storage system.

However, the set point is expected to be a constant value for the given time step, so the
integral can be solved to:

soc(t + tstep) = soc(t)+ ε Psettstep, i f Pset > 0 (3.2)

soc(t + tstep) = soc(t)+(2−ε)Psettstep, i f Pset < 0 (3.3)

After calculating this theoretical Energy demand the energy system model verifies that
this operation will neither lower the SoC below 0 nor increase it beyond the maximum
energy level. In such a case, it will adjust the set point to stay within these bounds. The
system outputs are its actually applied power value during the current time step and the
SoC at the end of that time step. An overview is given in Figure 3.8.

storage

sim. time

Pset

Pstorage

ESoC

Figure 3.8: Storage model input/output block diagram

HEMS Coordinator Simulation

The HEMS coordinator simulator was designed to simulate the central decision making
entities for flexibility coordination inside of a single household energy system. Its main
job is to provide the set point for the ESS simulation.

Modeling 33

Two models are implemented for this simulator, one is called SetPointHEMS and the
other MinMaxHEMS. Both types of model are initialized with the target ESS model’s ini-
tial SoC ESoC, maximum power rating Pmax and maximum energy level Emax. Considering
the implementation of the ESS simulation model mentioned above, these parameters are
not necessarily needed because the storage system will protect itself from overcharging.
However, in real physical systems that is more of an security mechanism. It is always
better for the controlling system to know the state and boundaries of the controlled sys-
tem. After all, the ESS model might change to one that relies on the HEMS model for
protection.

model parameter description
Emax Controlled ESS’s maximum energy capacity
ESoC Controlled ESS’s initial SoC

SetPointHEMS
& MinMaxHEMS

Pmax Controlled ESS’s maximum power ratings

Table 3.3: HEMS coordinator simulator initialization parameters

When the execution step is called, each EMS model needs its respective household’s
current power consumption Pload and generation Pgen as input. Those values are usually
produced by other simulators, which simulate the households load behavior and any DER
inside the household energy bus. Additionally, it needs to know the storage system’s
current SoC, to produce a valid decision. Then the two models diverge.

The SetPointHEMS model only needs one additional attribute. This is a set point for the
combined household power demand Pgoal. The system then aims for an ESS set point

Pstorage,set = Pgoal− (Pload−Pgen).

If Pstorage,set is a valid set point, the overall set point Pgoal is usually perfectly reached.

The MinMaxHEMS model needs two additional attributes, a maximum load value Pmax
load

and a maximum generation value Pmax
gen . These two points are interpreted as upper and

lower bounds of the overall household demand. The set point Pstorage,set for the ESS is
therefore chosen, so that (3.4) holds.

Pmax
gen ≤ Pload−Pgen +Pstorage,set ≤ Pmax

load (3.4)

In case the difference Pload −Pgen already satisfies this condition, the set point is set to
Pstorage,set = 0.

In both cases the set point is verified against the ESS’s physical restrictions. In case they
are violated the desired value is adjusted to the closest valid one. Another interesting
observation is, that the latter model can emulate the former by setting Pmax

load = Pmax
gen = Pgoal.

34

However, the readability and intent of the simulation scenario is improved by adding the
additional interface.

SetPoint
HEMS

sim. time

Pgoal

Pload
Pgen

ESoC

Pstorage,set

(a) SetPointHEMS input/output block diagram

MinMax
HEMS

sim. time

Pmax
gen

Pmax
goal

Pload
Pgen

ESoC

Pstorage,set

(b) MinMaxHEMS input/output block diagram

Figure 3.9: HEMS coordinator input/output block diagrams

A complete physical HEMS usually includes additional components, like a predictor and
an optimizer. Those systems, however, can be seen as individual subsystems. There-
fore, it makes sense to externalize them into their own simulators. That way different
system architectures can be exchanged more easily and the interfaces are more clearly
defined.

Predictor Simulation

As mentioned in section 3.2.1, the prediction mechanism is usually part of a physical
EMS, but is externalized into its own simulator. It describes a subsystem, which provides
behavioral predictions for another system’s value/output. The complexity can reach from
simple averaging of the system’s past behavior, over more sophisticated statistical ap-
proaches, like a Kalman filter, to a neural network which is trained to deduce the systems
future behavior. As introduced in subsection 2.1.3, a MPC scheme will be deployed to
control the prosumer flexibility. This simulator will provide the ‘model’ entities, as shown
in Figure 2.1.

The only model implemented in this setup uses a simple averaging and interpolation logic.
It resembles largely the time series simulation model and implements all of its features, as
described in section 3.2.1. It is called the CSVPredictor and the initialization are exactly
identical to the CSVTimeseries as listed in Table 3.1. When a model is created it can also
be provided with data from a CSV-file. This data will form the basis for the prediction. For
any project which does not specifically focus on analyzing prediction algorithms, this is
useful because the predictor can be initialized fully trained. Therefore, no simulation time
has to be spent to train the predictor, before any other mechanisms can be analyzed.
Additional parameters include the prediction window and step size.

Modeling 35

During the simulation step execution the predictor model will generate predictions for a
timespan the length of the prediction window ∆t and starting at the current simulation
time. The resolution of the predictions is set by the input tres. If none is provided, it is
set to the predictor simulators step size. For each prediction point, the prediction data is
interpolated to generate a fitting value. Additionally, the predictor can receive the actual
value of the system it is predicting at the current simulation time vcurr. If such a value is
provided, it is set as the first prediction value instead of the possibly inaccurate prediction.
This is done only for convenience because this value could simply be left out and provided
to any subsequent simulator directly. However, by looping it through the predictor, only
one data connection is needed to get the system’s current and future behavior for the
whole prediction window. The output is a list of the predicted values. An overview is
given in Figure 3.10

Lastly, the input values can be used to train the predictor and make it adjust to changing
system behavior. If activated, the underlying prediction data is constantly updated, such
that

vpred,new(tcurr) =
vpred,old(tcurr)+ vcurr

2
.

Where vpred,new(tcurr) is the new, updated prediction value at the current simulation time,
vpred,old(tcurr) is the previous prediction value for the current simulation time and vcurr is
the current value of the system that is to be predicted.

CSV
Predictor

sim. time

scale
data

column
∆t

tres
vcurr

output
list

Figure 3.10: CSVPredictor input/output block diagram

Local Flexibility Controller

This simulator also provides models which are part of a physical HEMS system. The goal
is to gather the household’s predicted consumption and generation behavior in order to
decide how to optimally use the given flexibility in from of an ESS. As introduced in
subsection 2.1.3, a MPC scheme will be deployed to control the prosumer flexibility. This
simulator will provide the ‘optimizer’ entities, as shown in Figure 2.1.

The only model type available for this simulator is called MILPOptimizer and provides a
peak-shaving optimization. It uses the pyomo Python package to model the optimization

36

problem and the COIN Branch and Cut (CBC) solver to find the optimal solution. Upon
creation, the model is initialized with the values listed in Table 3.4. They include the
maximum energy level Emax, maximum power ratings Pmax and efficiency ε of the storage
system, which is available as a flexibility resource.

model parameter description
Emax Optimized ESS’s maximum energy capacity
Pmax Optimized ESS’s maximum power ratingsMILPOptimizer
ε Optimized ESS’s efficiency

Table 3.4: Local flexibility controller initialization parameters

When the simulation step is executed, the model is provided with prediction curves for
the household’s total power generation Ppred

gen and consumption Ppred
load . It also receives the

household’s ESS’s current SoC ESoC,init . These parameters are used to construct a MILP
optimization problem with the objective function of:

minPmax
gen +Pmax

load (3.5)

where

Ptot,i = Pload,i−Pgen,i +PstorageCh,i−PstorageDis,i, ∀i (3.6)

Pmax
load ≥ Ptot,i, ∀i (3.7)

Pmax
gen ≥−Ptot,i, ∀i (3.8)

with Pload,i ∈ Ppred
load being the predicted household consumption and Pgen,i ∈ Ppred

gen being the
predicted household generation values for each time step i into the future. The values
of PstorageCH,i and PstorageDis,i are the values representing the ESS’s charging and discharg-
ing power for any given time step. The sum in (3.6) is modeling the expected overall
household demand, which is to be optimized. The value of Pmax

load is the upper bound of
the overall household energy consumption and Pmax

gen is the maximum of the household’s
power injection into the grid. Alternatively −Pmax

gen can be interpreted as the lower bound
of the overall demand curve. By doing this min-of-max optimization, the system will au-
tomatically express a peak-shaving behavior. When the injection is high it will charge the
storage system to lower Pmax

gen and when the consumption is high it will discharge in order
to lower Pmax

load . The process is illustrated in Figure 3.11.

Additionally, the mathematical model of the ESS has to reproduce the physical bound-

Modeling 37

Pmax
load

time

−Pmax
gen

po
w

er

Figure 3.11: Illustration of the min-of-max optimization algorithm.

aries of the system:

0≤ Pstoragech,i ≤ PstorageCh,max ·diri, ∀i (3.9)

0≤ PstorageDis,i ≤ PstorageDis,max · (1−diri), ∀i (3.10)

These constraints limit the charge and discharge power to their respective intervals. They
cannot be negative, and they cannot be higher than the maximum power rating of the
storage system. Here, the rating for charging and discharging are two distinct values
in case the system does not behave symmetrically. Note the additional variable diri is
a binary value, meaning it can take up the value of 0 or 1. It ensures that the storage
system cannot charge and discharge at the same time in the mathematical model.

Next, it is necessary to model the SoC:

ESoC,0 = ESoC,init +(εPstorageCh,0− [2− ε]PstorageDis,0)tstep (3.11)

ESoC,i = ESoC,i−1 +(εPstorageCh,i− [2− ε]PstorageDis,i)tstep, ∀i≥ 1 (3.12)

0≤ESoC,i ≤ Emax, ∀i (3.13)

The constraint in (3.12) describes how the SoC changes from one time step to the next,
by calculating the (dis)charged energy using the respective power values and the given
time step size. This works for all steps except the first one. For the first step, (3.11) uses
the ESS’s current SoC as the initial energy level. Both constraints also model internal
losses in the storage system. The parameter ε represents the system’s efficiency, which
is set during model creation. That makes the system slightly asymmetrical, because
discharging with a certain power uses more energy than charging with the same power
deposits. The efficiency is only valid in the interval [0,1]. An efficiency of 0 would mean
all energy is lost during charging and an efficiency of 1 represents a lossless system.
Finally, (3.13) ensures that the SoC can never drop below 0 (undercharging) or increase
beyond the initialized energy maximum Emax (overcharging).

38

Finally, there is one functional constraint:

PstorageCh,i ≤ Pgen,i, ∀i (3.14)

This constraint is not taken from a physical system boundary, but from the fact that it
is never beneficial for the prosumer to charge its storage system from the grid. This
results from the ESS’s internal losses. Assuming a constant energy price, it is always
advantageous to draw necessary energy from the grid when needed, instead of saving
it beforehand. Therefore, the ESS is only allowed to charge from the generation unit.
Furthermore, this ensures that any stored power is purely produced by RESs. This is
especially relevant for statistical and financial reasons, if power is fed back into the grid
from the ESS.

After solving this problem, the model has found the ideal charge and discharge pattern
for its flexibility source in order to cut off load and generation peaks locally. However, this
flexibility usage is not necessarily optimal from a global view point. In order to provide
an overlying controller the opportunity to coordinate multiple independent prosumers,
the flexibility margins are calculated. In other words, it needs to determine how much
the prosumer can diverge from its optimized demand curve at any given point during
the prediction. The minimal boundaries are given by the physical system limitations.
Therefore, with

Pstorage,i = PstorageCh,i−PstorageDis,i, ∀i (3.15)

Ppred,i = Pload,i−Pgen,i +Pstorage,i, ∀i (3.16)

as the predicted household storage and demand curves after optimization, the flexibility
bounds will be:

Pf lexMin,i = min
(

PstorageDis,max,
SoCi

tstep

)
−Pstorage,i, ∀i (3.17)

Pf lexMax,i = min
(

PstorageCh,max,
Emax−SoCi

tstep
,Pgen

)
−Pstorage,i, ∀i (3.18)

Finally, the model takes the first time step in each curve and uses it to determine the
control value for the current simulation step. For that purpose it checks if a flexibility
request of an overlying controller has arrived via the input Pf lexReq. In such a case, the
request is verified against the newly determined flexibility margins and used as the set
point, otherwise the value from the local optimization is taken. This result can be used
as the desired set point (Pgoal) in the HEMS simulation described in section 3.2.1. All
other time steps in the optimized curves are seen as prediction curves for future time
steps. They are available and can be connected to a superordinate flexibility coordinator

Modeling 39

MILP
Optimizer

sim. time

Ppred
load

Ppred
gen

ESoC,init

Pf lexReq

Pgoal

Ppred

ESoC
Pmax

load
Pmax

gen
Pf lexMin

Pf lexMax

Figure 3.12: MILPOptimizer input/output block diagram

as described in section 3.2.1. An overview over all values is provided in Figure 3.12.

Coordinating Flexibility Controller

This simulator handles models which are part of a grid level EMS. These models take
the role of optimizers in an overarching second-layer MPC scheme, compared to the local
MPC described in section 3.2.1. They aim to coordinate a collection, cell or neighborhood
of flexible prosumers and normal consumers. To take an informed decision, the controller
needs predictions of the all participants’ behavior and potential flexibility. Those predic-
tions can either originate from the prosumers’ HEMS or be generated by other prediction
mechanisms inside the coordinating EMS.

The only implemented model is called LPOptimizer and provides another version of the
peak-shaving algorithm. The model has no initialization parameters because it is de-
signed to handle participants dynamically and no other information is necessary.

During the execution step, the model analyzes the received prediction data. Only entities
for which prediction data is provided considered for optimization and are therefore able
to receive flexibility set points. Entities which provide no flexibility margin are considered
to not be able to act as flexibility resources and are only considered for optimization as a
static component. Traditional customers usually fall into this category. Active prosumers
on the other hand provide a forecast of their intended system behavior, based on their
local optimization. This behavior consists of the predicted demand curve Ppred,i,e, the
flexibility margins Pf lexMin,i,e,Pf lexMax,i,e and a projection of their SoC ESoC,i,e. This SoC
information is necessary, because the controller would not have any indication on how the
change in demand at one point in the curve affects the flexibility margins at a later point
due to the maximum capacity Emax,e of the storage systems. The parameter e represents
the different entities/participants of the optimization and i indexes the consecutive time
steps. All the provided predictions are accumulated to find the overall neighborhood

40

behavior:

Ppred,i = ∑
e

Ppred,i,e, ∀i (3.19)

Pf lexMin,i = ∑
e

Pf lexMin,i,e, ∀i (3.20)

Pf lexMax,i = ∑
e

Pf lexMax,i,e, ∀i (3.21)

Emax,cell = ∑
e

Emax,e, ∀i (3.22)

ESoC,i = ∑
e

ESoC,i,e, ∀i (3.23)

The optimization is constructed as a Linear Programming (LP) problem with the objective
function:

minPmax−Pmin (3.24)

where

Pmin ≤ Pf lex,i ≤ Pmax ∀i (3.25)

Similarly to the local problem in section 3.2.1, this objective function tries to minimize the
difference between Pmax and Pmin, the upper and lower bounds of the optimized demand
curve. The variable Pf lex,i is the to-be-requested flexibility value in each time step, which
the optimization will determine. This approach, again, will shave off the peaks both in
power injection and consumption, as illustrated in Figure 3.11.

Firstly, the flexibility request is constrained by the accumulated flexibility margins:

Pf lexMin,i ≤ Pf lex,i ≤ Pf lexMax,i, ∀i (3.26)

Additionally, the collective SoC of the neighborhood will be modeled, in order to depict
the influence that a flexibility request has on the future of the flexibility margins.

ESoC f lex,i = ESoC,i + tstep

i

∑
j=0

Pf lex, j, ∀i (3.27)

0≤ESoC f lex,i ≤ Emax,cell, ∀i (3.28)

Constraint (3.27) takes the neighborhood’s accumulated predicted SoC ESoC,i and adjusts
it according to the changes caused by the flexibility requests. That is done per time step
by summing up all flexibility requests until the respective time step and multiplying it by the
step duration, to get the overall change in energy demand on that step. These changes
are then added to the respective SoC. Finally, (3.28) ensures that the adjusted SoC can

Modeling 41

never exceed the accumulated maximum stored energy.

In the end, the model demultiplexes the global flexibility request into individual requests
to the different prosumers. This is done by requesting flexibility adjustment from each
participant relative to their offered flexibility. Equations (3.29) and (3.29) show, how the
individual requests are calculated for each participant e.

if Pf lex,i < 0:

Pf lex,i,e = Pf lex,i
Pf lexMin,i,e

Pf lexMin,i
, ∀i,e (3.29)

if Pf lex,i > 0:

Pf lex,i,e = Pf lex,i
Pf lexMax,i,e

Pf lexMax,i
, ∀i,e (3.30)

These individual flexibility requests are written back as an input to the local flexibility
controllers using Mosaik’s asynchronous set_data-call. This allows the global flexibility
coordination to write the requests into the individual input buffers of each receiving par-
ticipant, instead of broadcasting them to all connected simulators via an output attribute.
A schematic overview of the models input/output behavior is provided in Figure 3.13

LP
Optimizer

sim. time

Ppred
pred

Pf lexMin

Pf lexMax

ESoC

Emax

Pf lexReq

Figure 3.13: LPOptimizer input/output block diagram

Data Collector

As described in subsection 3.1.1, the Mosaik structure allows services to be included into
the simulation infrastructure that are not actual simulators, as long as they adhere to the
interface. The data collector is such a service. It is designed with the same methods as
the other simulators, however, it plays no active role in the actual simulation procedure.

The simulator only provides one model, which is the DatabaseCollector. This model
connects to an external database server, in this case an InfluxDB server (see sec-
tion 3.1.3). The only initialization parameter is the collectors name, which also serves
as the database name. For each simulator that delivers data to the collector model, a

42

separate database tables is created. In that table, the index column holds the given sim-
ulation time stamp. The other columns represent the simulation data parameters. So
during each simulation step, a new row is added with the corresponding time step and
the current simulation data values.

As shown in Figure 3.14, the model has the special feature, that it can receive any input
parameter. Normal simulators restrict their inputs to their respective interfaces. This
enables the user to monitor any simulation data by simply connecting the model output(s)
of interest to the data collector model. The collector model will then save the produced
data in the respective table. The model currently has no output parameters, because it is
intended to be a simple data sink. Additionally, the simulator restricts the model creation
to one model instance. This ensures all data is saved to the same location and no data
fragmentation or conflicting database operations occur.

Database
Collector

arbitrary
data

Figure 3.14: DatabaseCollector model input/output block diagram

3.2.2 Simulation Data Flow

For the purpose of simulating flexibility coordination inside the newly developed co-
simulation environment, a simulation scenario was designed. This scenario includes
information about which simulators and simulation models are used and how the data
flows between them.

To visualize the simulation scenario, the graph structure introduced in Figure 3.15 will be
used. The different square blocks represent the different simulator instances, with their
name written at the top. The simulator type, written in bold, is one of the simulators
described in subsection 3.2.1. The name of the chosen model within the simulator is
given in <triangle brackets>. This information is especially relevant, when the simulator
provides multiple models. Afterwards, in italic font, additional information on the specific
simulator is given. Such information includes for example initialization data.

The final simulation setup can be seen in Figure 3.16. This overview shows the different
simulators representing the individual components. Additionally, it shows which parts of
the simulation represent a certain physical system together.

Modeling 43

sim type
<model>
additional
information

Name Sim 1
sim type
<model>
additional
information

Name Sim 2information
data flow

power
data flow
delayed
data flow

Figure 3.15: Data flow chart example

Physical HEMS Simulation

Smart Home Simulation

time series
<CSVTimeseries>
standard load
curve data

Load

time series
<CSVTimeseries>
standard PV
curve data

PV

predictor
<CSVPredictor>
standard PV
curve data

Load Prediction

predictor
<CSVPredictor>
standard PV
curve data

PV Prediction

local flexibility
controller
<MILPOptimizer>

Loc. Flexibility

storage
<storage>
SoC, Emax

Pmax

ESS

pandapower
<Grid>
smart home
bus layout

SH Bus

HEMS Coord.
<SetPointHEMS>

Coordinator

coord. flexibility
controller
<LPOptimizer>

Coord. Flexibility

pandapower
<Grid>
neighborhood
grid layout

Grid

generation
power

generation
power

load
power

load
power

storage
set point

load
prediction

generation
prediction

ESoC

storage power

household set point

flexibility
set point

behavior
prediction

grid
demand

Figure 3.16: Complete simulation data flow

44

The basis of the scenario is the household power grid simulation. This system includes
all simulators that represent the electrical grid and its components inside a single (smart)
home. Here, two time series simulators are used to represent the household’s load and
generation power. The data for the load simulation is a typical household demand curve
[BDE17]. The source CSV-file provides profiles for different times of the year and dif-
ferent weekdays. The individual data source can be chosen through the data column
attribute according to the simulated date, but in order to keep the results more compara-
ble the same curve will be used throughout all simulations in this case. Using the scale
parameter, the data can be adjusted to the desired household size.

The household’s power generation is simulated as a PV unit. The source data is a simple
Gaussian bell curve with its maximum at 1 p.m., which can be used as an adequate
approximation of the PV system’s behavior over the course of a day. Since the curve has
a maximum value of 1, the scale attribute should be set to the peak power of the system,
which might depend on the system dimensions as well as weather conditions. Both the
generation and consumption curve are distorted by uncorrelated Gaussian noise. This
does not properly model the typical variation of the systems from their average behavior,
but it provides some variance, which makes the behavior more individual.

The third element in this grid simulation is the storage element. It is simulated by the
storage simulator, using the basic storage system model. As described above, the model
implements a system with a fixed maximum capacity, fixed maximum power ratings and
internal losses. These limitations are absolute and, if necessary, will be enforced by
internal protection mechanisms.

All three simulators deliver their output to the actual power grid simulator. This simulator is
a pandapower-based power flow simulator. The power grid is set up according to the top
half of Figure 3.17, with the three grid elements connected to the households power bus.
The simulators for each element provide the values for each element respectively. Line
losses are not considered inside the household bus, therefore the power flow simulation
simply accumulates the individual power contributions of the elements. The result is
provided through a fourth element, called the external grid, which is the point where the
household is connected to an external distribution grid.

The second simulated system is the prosumer’s HEMS. Its purpose is to provide struc-
tural flexibility to the household’s power grid. The physical flexibility is given by the storage
system, which needs an external set point. This set point is generated in the HEMS.

The basis for the generation of the set point is the prediction of the household behavior.
In a real system, a predictor would be trained over time to be able to infer the future
behavior from past data and additional information, like time and date. For the purpose
of this co-simulation setup, two simulators are used, one for the load behavior and one

Modeling 45

PVstorage load

residual demand

Controller
Pstorage

SoC Pgen Pload

Pf lex

Figure 3.17: Smart Home layer. Each prosumer
network consists of three basic ele-
ments. Household load, a PV gen-
eration unit and an energy storage
system.

for the generation behavior. Each model is initialized with the same CSV-files as the
respective system it predicts. That way, the predictor resembles an already well-trained
prediction algorithm. As long as the load and PV simulators itself apply noise to their
outputs, the predictions are imperfect, but resemble a daily average of the behavior. The
simulators additionally take the current value of their to-be-predicted systems as an input,
in order to update their initial prediction.

The predicted curves are then handed to the next simulator, which is the local flexibility
controller. It solves the MILP optimization problem, as described in section 3.2.1 and
generates the overall household demand set point.

That set point is used by the coordinator simulation to generate the actual ESS set point.
In principle, this is done by simply calculating the difference

Pstorage = Pset point − (Pload−Pgen).

For this purpose, it also receives the currently measured load and generation power.
However, the coordination also takes into account the storage systems physical limi-
tations and adjusts the set point to stay within these constraints in case the flexibility
controller did not do so.

Finally, the local flexibility controller and the coordinator both require to know the ESS’s
SoC at the start of the current time step. This value is provided in a time-delayed manner,
meaning the ESS simulator is executed after these two simulators and so the provided
value always originates from the previous simulation step. This is no problem though,
because the storage system’s output SoC represents its state at the end of the current
time step, which corresponds the beginning of the next step. As there is no previous

46

step to the first execution step, the connection between the ESS and the optimizer and
coordinator is initialized with the same initial SoC that the storage system model uses.

Lastly, multiple household grid simulations are combined to simulate a whole neighbor-
hood of coordinated prosumers. Both the simulation of the power grid and of the control
infrastructure are therefore connected to their global counterparts. The external grid el-
ements of each household’s power flow simulation is connected to a single global power
flow simulation, which represents the whole neighborhood’s distribution grid, as shown
in Figure 3.18. This simulator is another pandapower-based power flow simulator, which
is provided with the corresponding neighborhood’s grid layout. Since the goal of this
simulation is the analysis of general flexibility coordination, the individual participants are
considered to be close enough together, such that line losses are still considered negli-
gible. This also makes the resulting power flow simulation a simple accumulation of all
individual grid elements’ demands. The resulting neighborhood behavior is again avail-
able at this grid’s external grid node, which represents the point where the neighborhood
grid is connected to the higher voltage levels.

SH1 SH2

· · ·
SHn

grid residual demand

Controller
Pf lex

Pf lex
Pf lex

Figure 3.18: Neighborhood grid layer.

The corresponding global element for the control system is the coordinating flexibility con-
troller. As described in subsection 2.1.2, the direct market demand response approach
is used. This means that each prosumer provides a modeled prediction of their future
behavior and an explicitly expressed flexibility potential. The global flexibility coordina-
tor then solves the LP optimization problem described in section 3.2.1 and returns an
explicit flexibility allocation to each participant. This flexibility request is also realized in
a time-delayed manner. Thus, the returned flexibility allocation is only relevant from the
upcoming step onwards and a circular data dependency is avoided.

Results and Discussion 47

4 Results and Discussion

In this chapter, the energy system as well as the simulation environment, which have
been previously modeled and implemented, are demonstrated. A systematic overview
of the final flexibility simulation scenario is displayed in Figure 4.1. In subsection 4.1.1,
the basic functionality of the environment will be tested. In addition, this provides an op-
portunity to observe the consumption and generation data, which form the base for all
further simulations. In subsection 4.1.2, a single household simulation is assembled and
analyzed throughout different scenarios of increasing complexity. This isolated analysis
emphasizes the changes that occur once multiple households are combined in subsec-
tion 4.1.3. There, 20 households are combined and their collective behavior is analyzed.
Afterwards, the established control system will be tested under high noise and time shifted
prediction conditions. Known problems and performance boundaries will be discussed
(section 4.2). Lastly, an additional environment feature, the data visualization service is
showcased (section 4.3).

Smart Home Grid

HEMS

Load

PV

SH Bus

ESS

PV pred.

Load pred.

coordinator

optimizer

Grid

coord. opt.
...

...

Figure 4.1: Simulation scenario overview

4.1 Exemplary Flexibility Coordination Simulation

In this section, the general behavior and functionality of the designed flexibility coor-
dination scheme will be analyzed in different scenarios. Therefore, the simulators are

48

initialized with realistic, yet low-noise scenario. The scenario parameters can be found
in Table 4.1. Unless otherwise defined, these values are used to initialize all necessary
simulators. The amount of consumed and produced energy in conjunction with the stor-
age capacity are chosen, such that the storage system is not able to simply store all the
produced energy.

simulator parameter value
peak Pload 11.3 kW

Load
noise σ 100 W
peak Pgen 15 kW

PV
noise σ 100 W
Pmax 30 kW
Emax 10 kWh
ESoC 0 kWh

Storage

ε 0.95

Table 4.1: Initial values for the basic smart home simulators.

4.1.1 Environment Test

Firstly, the general environment needs to be tested. For that reason, a simple test sce-
nario was designed, where one time series simulation connects to the data collector, as
described in section 3.2.1. This setup verifies the correct execution of the simulators, the
Mosaik interface and the database system used for data storage. The scenario was exe-
cuted twice, once with the standard load curve and one with the standard PV generation
curve.

The results can be seen in Figure 4.2 for the load curve and Figure 4.3 for the PV curve.
The dashed plots follow the general standard load and PV curves given as the input data
exactly. The solid plots show, how the curves diverge from the original, when noise with
a standard deviation of 700 W is applied. This first scenario shows, that the environment
works as expected, running the respective containers with their simulators and collecting
the data for later analysis. It additionally showcases the standard curves used as a basis
for all simulations and how the time series simulation randomizes the behavior.

Results and Discussion 49

0 2 4 6 8 10 12 14 16 18 20 22
0

2

4

6

8

10

12

time [h]

po
w

er
[k

W
]

Pload w/o noise
Pload with noise

Figure 4.2: Standard Household Load Consumption Curve

0 2 4 6 8 10 12 14 16 18 20 22
0

5

10

15

time [h]

po
w

er
[k

W
]

Pgen w/o noise
Pgen with noise

Figure 4.3: Standard Household PV Generation Curve

4.1.2 Single Household

After verifying the general environment behavior, the co-simulation scenario was itera-
tively increased in complexity. The first steps involved designing a single smart home
setup, a prosumer, which could later take part in a superordinate form of flexibility co-
ordination. The basic layout of the electrical grid of such a smart home can be seen
in Figure 4.4 along with the parameters, which will be observed throughout this chap-
ter. This simulation data will be used to analyze and evaluate the simulation scenario.
The load and PV elements only provide their static consumption/generation power values
Pload and Pgen. In the case of the storage system, the applied power value Pstorage can
be observed along with its SoC (in %). One of the most relevant values is the residual
household demand, which is the accumulated value of all three home grid elements. This
values is important, because it represents the behavior of the household as seen from
an outside perspective, e.g. by the energy distribution grid. Oftentimes, the household
demand is plotted together with a curve which represents the accumulated behavior of

50

only the load and PV entities, without the storage system. That curve shows the behavior
of the smart home in case it had no storage capabilities, therefore emphasizing how an
ESS influences the household’s overall behavior.

storage

Pstorage

SoC

PV

Pgen

load

Pload

residual demand
Pres

Figure 4.4: Single household grid layout, including observed parameters

No Storage Scenario

Initially, the load and PV simulations were combined with a simple power flow simulation
to create a household with a DER, but no flexibility. The resulting household demand
is displayed in Figure 4.5. For reference the original demand curve without the PV sys-
tem has been included in the plot. It can be seen that the resulting curve looks like the
standard PV curve subtracted from the standard load curve, which is exactly what was
expected of this scenario. This result again highlights the relevance of grid flexibility. A
traditional customer with a standard load profile has some variability, but it never injects
energy back into the grid. When a significant amount of private households install PV
systems, their demand curves start being more variable. Transformers need to face the
challenge of meeting vastly different demand levels during the course of a single day and
even handle excess injected energy. This problem occurs because the energy generation
is correlated between the household, since all of them will produce most of their energy
when the sunlight level is highest. This is augmented by the fact that in a typical house-
hold the peak in the consumption curve happens in the evening (as shown in Figure 4.2),
which does not coincide with the peak in the PV generation curve around noon. There-
fore, the demand curve changes over the course of the afternoon from high injection to
high consumption behavior in all households with PV systems similarly. This pattern,
which can be observed in the plot, is also sometimes called a duck curve [DEN15].

Simple Storage Scenario

A solution to the challenges faced by the grid operators mentioned in the last scenario
would be to store excess energy locally and use it at a later point, when the demand is

Results and Discussion 51

0 2 4 6 8 10 12 14 16 18 20 22

−5

0

5

10

time [h]

po
w

er
[k

W
]

Pload
Pres

Figure 4.5: Single household, no storage scenario: residual demand curve and standard load
profile for reference

higher. This is usually economically more efficient than injecting power back into the grid.
An ESS can be used to do exactly this and thus enables a household to change their
demand behavior. In other words, it provides physical flexibility.

A simple example of the usage of this flexibility can be seen in the next simulation plot
(see Figure 4.6a), which includes a storage system simulator and a HEMS coordinator in
addition to the previous setup. The set point for the coordinator in this case is always
0, meaning it will store excess energy inside the storage system whenever possible.
Furthermore, it will draw on said energy, whenever the household consumption is higher
than the energy created by the PV system. It ensures an optimal use of the storage
system from the customer’s point of view, since the storage system is always charged as
much as possible and therefore as much energy as possible is used locally.

However, the injection and demand peaks are still present. In this case, the reduction of
the injection power is about 4 %. The consumption peak is not reduced at all. Additionally,
this scenario represents the worst possible case because the system expresses a very
high power gradient. This is caused by the ESS being fully charged during the injection
peak. It becomes clear, that this simple behavior is not helpful from the grid operator’s
perspective.

The only way to avoid this with such a coordination strategy would be to dimension the
storage system big enough, such that it can save all the produced energy. However,
that is usually not economically viable. It would imply that the system is not charged
to its full capacity during most of the year, except for some very sunny days. Thus,
such a configuration imposes the additional expense of a larger storage system on the
customer, with little to no benefit from their perspective. It is therefore to be expected that
many private storage systems will not be able to store all of the expected injection energy,

52

0 2 4 6 8 10 12 14 16 18 20 22

−5

0

5

10

time [h]

po
w

er
[k

W
]

Pload
Pload−Pgen
Pres

(a) Single household residual demand with uncoordinated storage capability

0 2 4 6 8 10 12 14 16 18 20 22
0

50

100

S
oC

[%
]

SoC

0 2 4 6 8 10 12 14 16 18 20 22

−5

0

5

time [h]

po
w

er
[k

W
]

Pstorage

(b) Single household storage behavior, including storage power and state of charge. Maximum
(dis)charge power: 30 kW; Maximum Energy Capacity: 10 kWh

Figure 4.6: Single household with uncoordinated storage scenario: simulation output

especially on very productive days.

Peak Shaving Scenario

The previous scenario shows the importance of structural flexibility. That is the infras-
tructure and ability to efficiently coordinate physical flexibility, e.g. an ESS. Therefore,
the scenario was expanded by additional simulators, which provide an MPC-based opti-
mization for the flexibility usage. The layout is now equivalent to one complete instance
of the smart home grid and HEMS simulation scenario as displayed on the left side of
Figure 3.16. The predictor simulators generate the expected system behavior and the
optimizer decides which household set points will ensure an optimal usage of the flexibil-
ity.

Results and Discussion 53

In Figure 4.7, the result of this simulation scenario can be observed. As can be seen
from the SoC in Figure 4.7b, the storage system is still used to its full potential. At the
same time, Figure 4.7a shows how the optimization adjusts the timing and amount of
discharged energy such that the consumption and injection peaks are flattened. Overall,
the consumption behavior is lowered by 38 %. The absolute value of the injection peak is
smaller to begin with. Therefore, the relative reduction using the same amount of energy
is even higher. In this csase, it was reduced by roughly 60 %.

Interesting to look at is also the ESS’s power profiles in Figure 4.6b and Figure 4.7b. It is
visible how the system follows the injection curve as long as possible in the uncoordinated
case. During the optimized charging though, the storage system stays idle until a certain
point. Then the power profile follows a cut-off version of the injection peak in order to
produce the bounded behavior of the grid demand seen in Figure 4.7a. Similar behavior
can be observed at the consumption peak.

0 2 4 6 8 10 12 14 16 18 20 22

−5

0

5

10

time [h]

po
w

er
[k

W
]

Pload
Pload−Pgen
Pres

(a) Single household residual demand with peak-shaving storage coordination

0 2 4 6 8 10 12 14 16 18 20 22
0

50

100
S

oC
[%

]
SoC

0 2 4 6 8 10 12 14 16 18 20 22

−4

−2

0

2

4

time [h]

po
w

er
[k

W
]

Pstorage

(b) Single household storage behavior, including storage power and state of charge. Maximum (dis)charge power: 30
kW; Maximum Energy Capacity: 10 kWh

Figure 4.7: Single household with coordinated storage scenario: simulation output

54

4.1.3 Neighborhood

After setting up a single smart home co-simulation, the next step is the analysis of mul-
tiple households in conjunction. For that reason, all the simulation models used in the
single household scenarios are instantiated 20 times. Each instance is then connected
according to the data flow scenario in Figure 3.16, with the respective instances inside the
other simulators. This creates 20 individual processing chains, which each simulate one
individual household. Their only connection is realized via the distribution grid and global
flexibility control models. The grid is schematically shown in Figure 4.8. The relevant
parameter for the analysis of the neighborhood’s behavior is the grid residual demand
Pgrid

res . For the individual households, all previously discussed simulation values are still
available.

For all scenarios that include storage systems, the goal is to analyze inter-household flex-
ibility coordination. Therefore, 10 households were designed with no storage capabilities
(Emax = 0kWh). These are called the inflexible participants. The remaining 10 households
are the flexible participants. They were given double of the in Table 4.1 stated maximum
capacity, so Emax = 20kWh. This way, the overall storage capacity of the neighborhood
stays proportional to the scaling of the neighborhood size (20×10kWh= 10×20kWh).
However, the heterogeneous nature of the individual prosumers forces the system to rely
on grid-scale coordination for optimal flexibility usage, instead of only local control.

SH1 SH2

· · ·
SHn

grid residual demand
Pgrid

res

PSH1
res PSH2

res PSHn
res

Figure 4.8: Neighborhood grid layout, including observed system parameters

No Flexibility Scenario

For reference, the neighborhood behavior for all 20 households without any physical flex-
ibility is plotted in Figure 4.9. This simulation result looks mostly like its single household
counter part shown in Figure 4.5 scaled up by a factor of 20. As expected though, the
neighborhood’s profile looks smoother and more like the average load curve shown in
Figure 4.2. This results from the uncorrelated Gaussian noise, which is added to the
individual household simulations during the time series simulation. Equation (4.2) shows

Results and Discussion 55

how the standard deviation of the accumulated noise behaves. Opposed to the mean
value, which is multiplied by the number of accumulated values, the standard deviation
only increases with the square root of that factor. For 20 households this leads to an
increase in signal-to-noise ratio by a factor of

√
20 ≈ 4.47 (see (4.3)). The more house-

holds are accumulated, the better the SNR will get. However, this approach assumes an
underlying average across the different participants and noise with a zero mean value.
Potentially different average system behaviors are blended together and non-zero mean
noise is also accumulated.

Pres = P̄res +N(0,σ2) (4.1)

Pglob
res = 20Pres

= 20P̄res +N(0,[
√

20σ]2) (4.2)

≈ 20P̄res +N(0,[4.47σ]2)

εSNR =
SNRneighborhood

SNRsingle

=
20P̄res√

20σ
× σ

P̄res

εSNR =
√

20≈ 4.47 (4.3)

0 2 4 6 8 10 12 14 16 18 20 22

−100

0

100

200

time [h]

po
w

er
[k

W
]

Pgrid
res no flex.

Figure 4.9: Neighborhood residual demand curve in a no flexibility scenario

Local Control Only

Another point of reference is the neighborhood behavior without any global flexibility co-
ordination. Each flexible prosumer in that case would express the behavior of the local
peak shaving scenario as described in section 4.1.2 and visualized in Figure 4.7a. The
inflexible participants produce the results shown in Figure 4.2.

56

The overall neighborhood behavior can be seen in Figure 4.10. It resembles, as expected,
a curve similar to the neighborhood scenario without storage. However, the consumption
and injection peaks are flattened somewhat because half of the households are perform-
ing the local peak shaving optimization while the other half has no possibility to do so.
This behavior reduces the injection peak by 47 % and the consumption peak by 23 %
compared to the no storage scenario.

0 2 4 6 8 10 12 14 16 18 20 22

−100

0

100

200

time [h]

po
w

er
[k

W
]

Pgrid
res no flex.

Pgrid
res local only

Figure 4.10: Neighborhood residual demand curves in a no flexibility and local control scenario

Coordinated Control

In order to achieve an optimal flexibility coordination on the neighborhood’s distribution
grid level, the global flexibility coordination model has to be included into the simula-
tion. This model acts as an optimizer in a neighborhood-wide MPC flexibility coordination
scheme. Similar to the flexibility optimization in the single household scenario, this algo-
rithm performs global consumption and injection peak shaving. The modeled future be-
havior of the to-be-optimized cell is generated by the individual households themselves.
Their individual predictions are accumulated to find the overall expected system behav-
ior.

An exemplary prediction at the beginning of the simulation can be seen in Figure 4.11a. It
includes the planned system behavior and the possible flexibility margins for the next 24 h.
However, this prediction is newly generated during every simulation step and therefore
changes its shape when the system behavior is influenced by the global control system.
This effect is shown in Figure 4.11b. These plots look quite similar, but the latter displays
the prediction that was made on each time step for the upcoming step. Therefore, it
shows how the local control system is disturbed by the flexibility set points from the global
controller.

Results and Discussion 57

0 5 10 15 20

−20

0

time [h]

po
w

er
[k

W
]

prediction

(a) Initial household prediction (t = 0)

0 5 10 15 20

−20

0

time [h]

po
w

er
[k

W
]

prediction

(b) Final household predictions (t = 24h)

Figure 4.11: Household prediction curves including flexibility margins

Also visualized in Figure 4.11 are the prosumer’s flexibility constraints. Between 0 h and
7 h there is no flexibility because the ESS is empty and cannot provide negative flexibility.
The positive flexibility is limited by the amount of generated power, of which there is none
at night. For the same reason, the absolute maximum of energy demand during the whole
day is always the household load curve, which can be seen in the profile of the positive
flexibility margin.

Another constraint comes into play around 15 h, when the storage system reaches its full
capacity. Then the system cannot offer positive flexibility anymore. In terms of negative
flexibility, the SoC is the only constraining factor. As soon as the system starts charg-
ing the negative flexibility increases to the maximum value given by the storage system’s
maximum power ratings. It then follows the same profile as seen in a static household de-
mand because a constant flexibility margin is applied in addition to the original household
behavior.

The result of the global optimization can be seen in Figure 4.12. It achieves a global peak
shaving by flattening the remaining peak using the available flexibility. Instead of finding
the local optimum, the flexible prosumers are controlled so that they will compensate the
peaks of the inflexible participants. This achieves an injection peak reduction of 56 %
which is an improvement of 9 % over the local only scenario. The consumption peak is
reduced by 32 % which is an improvement of 9 % as well.

In Figure 4.13a, the coordinated behavior of a single flexible household is displayed (Pres).
For comparison, the previously discussed locally optimized behavior is also displayed
(Pres,local), along with the no flexibility case (Pload−Pgen). These references show how the
global control restricts the storage system from charging before and after the peak, but

58

0 2 4 6 8 10 12 14 16 18 20 22

−100

0

100

200

time [h]

po
w

er
[k

W
]

Pgrid
res no flex.

Pgrid
res local only

Pgrid
res

Figure 4.12: Neighborhood residual demand curves in a coordinated control scenario

makes up that deficit by increasing the charging power in between. That creates an in-
verse peak in all controllable prosumers, which negates the peaks of static consumers.

The storage system behavior in Figure 4.13b confirms that the ESS is still used to its
full potential, even with the global control system in place. This stems from the fact that
the goals peak shaving and local energy usage are complementary. The more energy
is stored, the lower the injection peak will be and the more energy will be available to
reduce the demand peak. It therefore makes sense for this optimization scheme to use
all of the storage system’s capacity. The important benefit of the control system is its
ability to mediate between prosumer capabilities and traditional consumers.

4.2 Robustness and Problems

All scenarios discussed in section 4.1 are designed to be realistic to a certain degree
by using established standard household profiles etc. Nevertheless, for the purpose of
demonstrating the basic functionality of the given control scheme, they represent an ide-
alized version of reality. There are several problems in realistic deployment, which have
not been adressed. The most significant issue is the fact that the MPC scheme relies on
accurate predictions. For generation processes like PV systems this is oftentimes fea-
sible, because the installed system stays fixed and the environmental influences can be
predicted via weather forecasts. The load prediction is a bigger problem, since it is highly
reliant on individual human behavior, which can oftentimes be hard to predict or change
spontaneously. In this section, an attempt will be made to show how the control system
performs under less ideal circumstances.

Results and Discussion 59

0 2 4 6 8 10 12 14 16 18 20 22

−5

0

5

10

time [h]

po
w

er
[k

W
]

Pres,local
Pload
Pload−Pgen
Pres

(a) Single household residual demand with global peak-shaving storage coordination

0 2 4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

S
oC

[%
]

SoC

0 2 4 6 8 10 12 14 16 18 20 22

−5

0

5

time [h]

po
w

er
[k

W
]

Pstorage

(b) Single household storage behavior, including storage power and state of charge. Maximum
(dis)charge power: 30 kW; Maximum Energy Capacity: 20 kWh

Figure 4.13: Single household, global coordination scenario: simulation output

4.2.1 High Noise Level

The first analysis is in case of high noise conditions. This scenario models the case that
the average prediction is accurate, but the individual behavior varies strongly from the
average scenario for each time step. For consumption, this might represent residents us-
ing certain appliances sporadically. A resident might, for example, use the oven to cook
their dinner for 20 minutes in the evening. This contributes to the average consumption
peak around that time, but it also creates a spike in that household’s consumption curve
on that specific occasion. For a PV system the noise might model a loose cloud cover,
which causes the system fluctuate between direct sunlight and cloud shadow. Both con-
sumption and generation noise is herein approximated by simple uncorrelated Gaussian
noise with a standard deviation of σ = 1kW, so one order of magnitude higher as in the
previous examples.

60

The results of the noisy simulation for a single household can be seen in Figure 4.14. It
is clearly visible that during the times of no flexibility, e.g. at night the noise significantly
influences the residual demand. During the peak times, however, the controller manages
to keep the demand relatively flat. This shows that the control scheme performs reason-
ably well under noisy conditions, as long as the predictions match the average trend of
the system. The reduction of the injection peak here lies at 59 % and in consumption
peak at 40 %. These values are almost identical to the less noisy scenario.

0 2 4 6 8 10 12 14 16 18 20 22
−10

−5

0

5

10

time [h]

po
w

er
[k

W
]

Pload
Pload−Pgen
Pres

Figure 4.14: Single household peak shaving in high-noise scenario

The coordinated neighborhood simulation is shown in Figure 4.15. Here, an even
smoother behavior can be observed. This underlines the averaging effect of summing
multiple households as discussed in (4.2) and (4.3). The noise also increases by a fac-
tor of 10 for the neighborhood, however, its signal-to-noise ratio is about a factor of 4.47
better than that of the single household to begin with. Therefore, the accumulated neigh-
borhood behavior is closer to the averaged prediction curve, making the prediction more
robust than in the single household scenario. The peak reduction here amounts to 51 %
and 27 % for injection and consumption respectively. This is a performance decrease of
5 % in both cases due the higher noise level.

4.2.2 Time Shift

Another problem might occur if the prediction is time shifted relative to the actual system
behavior. Reasons for such a shift could be as simple as the prediction ignoring daylight
savings time. Customers might also shift their behavior or habits, e.g. they sometimes
prepare dinner at 7 p.m. and other times at 8 p.m. Alternatively, the PV system might be
under cloud cover during the predicted peak, shifting the actual peak to another time with

Results and Discussion 61

0 2 4 6 8 10 12 14 16 18 20 22

−100

0

100

200

time [h]

po
w

er
[k

W
]

Pgrid
res no flex.

Pgrid
res

Figure 4.15: Multiple household peak shaving in high-noise scenario

direct sunlight. The prediction error was modeled by a time offset of 1 h of the household
consumption and generation.

The results of both the single household case (Figure 4.16) and the coordinated neighbor-
hood case (Figure 4.17) show much more significant peaks in injection and consumption
than the idealized cases. The peaks are only reduced by about 10 % and 17 % respec-
tively which is the worst performance out of all the peak shaving scenarios.

0 2 4 6 8 10 12 14 16 18 20 22

−5

0

5

10

time [h]

po
w

er
[k

W
]

Pload
Pload−Pgen
Pres

Figure 4.16: Single household peak shaving in time-shifted scenario

This reveals a weakness of this control scheme: its dependence on accurate predictions.
In case of noise it can cope because the underlying average is still correct. When the
prediction is shifted however, the average values for each time step are incorrect. Fur-
thermore, if the shift is correlated between the households, e.g. all are shifted in the same
direction, the average over those households will also be shifted. For design reasons, the
global flexibility controller uses pure predictions and no current values for the flexibility
coordination, which leads to a bigger discrepancy in the neighborhood coordination (see

62

0 2 4 6 8 10 12 14 16 18 20 22

−100

0

100

200

time [h]

po
w

er
[k

W
]

Pgrid
res no flex.

Pgrid
res

Figure 4.17: Multiple household peak shaving in time-shifted scenario

subsection 4.2.3).

4.2.3 Other Known Challenges

The biggest known problem in the current simulation setup is the issue of circular de-
pendencies and simulation step size. Certain simulators, namely the local and global
flexibility optimizer, depend on each other’s results. The global optimizer needs to know
the predicted behavior and the flexibility margins of the local one, while the latter needs
to know the flexibility request of the global optimizer in order to incorporate it into the set
point for the smart home coordinator. Since none of the simulators is executed twice, the
dependency in the current setup is resolved by time shifting one of the data connections.
However, no matter which simulator is executed first, the result is always that the global
controller can never influence the same time step that its prediction data stems from. This
means the global optimizer has no access to the actual output behavior for the time step
it is optimizing and only predicted data is available. Naturally, a delay between local and
superordinate control is actually a realistic scenario, but that should always be a choice
within the simulation scenario and not forced by the environment.

Under normal circumstances, the circular connection could simply be split into two se-
quential connections, but in this case it is not as easy. Since multiple households provide
their data to a single global entity, all these connections need to be split and the global
controller needs information on which input entity corresponds to which output entity. That
usually breaks the clean interfaces because it introduces the task of data exchange and
part of the simulation topology into the simulators instead of letting Mosaik handle the
data exchange.

Similar problems arise any time handshake procedures of certain communication pro-
tocols or iterative algorithms across multiple models are considered. Any time data is

Results and Discussion 63

exchanged back and forth between entities in order to find an actual physical outcome,
there are currently two choices: Find a workaround that does not have circular depen-
dencies or use a small execution step size to approximate the continuous or iterative
behavior. The latter alternative might not be possible without significant increase in com-
putation time and the former might not lead to accurate results. An important part of
future work in this project will be to solve this problem for the benefit of more complex
simulation setups.

4.3 Grafana Interface

As mentioned in section 3.1.3, a graphical front-end was introduced into the simulation in-
frastructure, in order to enable users to observe the simulation outputs during execution.
This is a convenient feature especially for debugging the simulated models. During the
development of a multi-domain system such as this flexibility control scenario, many indi-
vidual parts need to be implemented and design decision need to be taken. It is therefore
helpful to have a quick way to look how changes and additions influence the simulation
behavior. Moreover, being able to view the output at runtime saves development time,
because developers can see significant bugs or other problems immediately, stop the ex-
ecution and fix the problem. Otherwise they might have to wait for a long and complex
simulation to finish, only to find out that the results are unusable.

The default dashboard can be seen in Figure 4.18. At the top of the dashboard, a
progress bar shows the current simulation progress, which is provided by Mosaik as ad-
ditional meta information. The two bottom panels are used to observe a single household
(left) and the whole neighborhood (right). For the single household the residual demand
is plotted in green while the underlying load reference is plotted in blue. The orange
plot is the households residual reactive power which is always at 0 in this scenario. The
neighborhood plot shows the residual grid demand and reactive power accordingly. In the
center there are two panels which show the outputs of the flexibility optimization simula-
tors. On the left, the local controller is shown with its optimized prediction and flexibility
margins. These values are forwarded by all households to the coordinating flexibility con-
troller which is shown on the right. Here, the combined predictions are visualized along-
side the flexibility requests and the resulting optimized neighborhood behavior. Finally,
the predicted local and global SoC is shown as an outline in the respective panels.

64

Figure 4.18: Default Grafana dashboard layout

Conclusion and Outlook 65

5 Conclusion and Outlook on Future Work

In this chapter, the overall results of the thesis are summarized and analyzed in reference
to the original goals. Afterwards a quick outlook is given on potential future developments
for the simulation environment and the flexibility control scheme.

5.1 Conclusion

The goal of this thesis is the development of a scalable, easily usable co-simulation envi-
ronment in the context of smart grid simulation and flexibility coordination. Furthermore, it
should involve the testing and analysis of a distributed hierarchical coordination scheme
for privately deployed flexibility sources.

The development of the final simulation was split into two parts, the development of the
environment and the design of the simulation scenario within it. The environment uses
the Mosaik co-simulation framework, which provides well-defined interfaces between the
simulators as well as simulator scheduling capabilities. To provide individual runtime
environments and deployment variability for each simulator the Docker containerization
software was chosen. This tool packages individual simulators and the Mosaik Core
application into separate containers, which can be freely instantiated and deployed across
a variety of systems without the risk of dependency issues. The simulator container
deployment was automated and incorporated into an extension of the Mosaik Scenario-
API.

For the flexibility simulation scenario, several simulators needed to be implemented, to
realize the individual grid and control components. Firstly, a smart home simulation with
load, PV generation and ESS elements was designed. This was augmented by an MPC-
based flexibility optimization HEMS, which uses the given flexibility to reduce injection and
consumption power peaks. Finally, the simulation was scaled up to 20 households with
varying flexibility. A superordinate controller was applied over all these grid participants
in order to achieve inter-household flexibility coordination and realize cumulative peak
reduction.

The exemplary results show on the one hand, that the environment works as expected
and can handle a variety of simulation scenarios. Since all simulators implement the

66

common interface and are deployed automatically, the generation of the resulting obser-
vations for different setups and conditions is straightforward. The scenario script serves
as the central simulation definition, where all necessary parameters can be adjusted. The
database is the central repository from which the result data can be retrieved afterwards.
Even runtime simulation monitoring is possible via the provided visualization server.

Concerning the exemplary flexibility coordination simulation, the results show how smart
flexibility control instead of uncoordinated consumption optimization can decrease the
danger of grid congestion. The implemented MPC approach not only lowers the absolute
energy demand, but also the maximum power drawn from the grid. Additionally, it shows
how the coordination of flexible and static households in conjunction can lead to a grid
wide flexibility optimization, which single households could not achieve without outside
information.

5.2 Outlook

Firstly, the developed co-simulation environment still offers many possibilities for improve-
ment and expansion. In the current setup for example, the given scenario script still
involves the user calling similar API initialization and connection functions for all the in-
volved simulators and models. The next step in simulation automation would be to create
an automated scenario implementation, which reads in the scenario from a configuration
file, object or database. In such a case the user effort would be reduced to providing only
the basic scenario data with as little redundancy as possible.

Another important feature is the distributed deployment of simulators. Through the design
of the simulation as a containerized microservice infrastructure, the groundwork has been
laid for the environment to interact with clusters and cloud computing services. However,
a proper support still needs to be implemented and tested, before this kind of deployment
is possible.

Additionally, it might be worth investigating if the Mosaik scheduling service could be
altered to bring forth the underlying event-driven simpy scheduling as an additional option.
In many cases, the currently provided variable time step execution might be sufficient,
but the system loses the flexibility of employing a true event-driven scheme, if necessary.
Even other hybrid schemes might be thinkable, where the normal schedule follows the
known strategy, but certain events can be triggered that cause the execution of other
simulators on the fly.

Lastly, for simple user comfort, the environment could be extended by a simple web-
service, which can react to callbacks from the Grafana visualization interface. This would

Conclusion and Outlook 67

enable users to actually interact with the simulation through this graphical interface, in-
stead of passively watching the simulation progess. Basic examples are buttons to start,
stop and pause the simulation or a file dialogue, which allows the users to load a new
simulation scenario into the environment.

On the topic of flexibility coordination, the simulations have show that an hierarchical MPC
scheme can be useful. A more elaborate optimization can increase the robustness of this
scheme towards unexpected disturbances such as the prediction time shift.

In order to give even more reliable results, the simulation should also be increased in
complexity at several points. A more dynamic load curve and a PV simulation depen-
dent on underlying environmental factors would create more realistic and heterogeneous
household behavior. Additionally, the incorporation of grid elements like transmission
lines and transformers would increase the accuracy of the grid simulation.

Finally, there are also other flexibility coordination strategies in literature, like price signal
based approaches, which incentivise prosumers to adjust their demand depending on a
form of local energy market. These and other strategies need to be tested under similar
simulation conditions in order get comparable results.

68

69

Bibliography

[AKR19] Alireza Akrami, Meysam Doostizadeh, and Farrokh Aminifar. “Power system
flexibility: an overview of emergence to evolution”. In: Journal of Modern
Power Systems and Clean Energy 7.5 (May 2019), pp. 987–1007.

[ARN11] Michele Arnold and Göran Andersson. “Model predictive control of energy
storage including uncertain forecasts”. In: Power Systems Computation Con-
ference (PSCC), Stockholm, Sweden. Vol. 23. Citeseer. 2011, pp. 24–29.

[BDE17] BDEW. Standardlastprofile. https : / / www . bdew . de / energie /

standardlastprofile-strom/. Jan. 2017.

[BIA15] D. Bian et al. “Real-time co-simulation platform using OPAL-RT and OPNET
for analyzing smart grid performance”. In: 2015 IEEE Power & Energy Soci-
ety General Meeting. IEEE, July 2015.

[BUN17] Bundesnetzagentur. Flexibilität im Stromversorgungssystem. Bestandsauf-
nahme, Hemmnisse und Ansätze zur verbesserten Erschließung von Flexi-
bilität. Diskussionspapier. Apr. 2017.

[CAM04] Eduardo F. Camacho and Carlos Bordons. Model Predictive Control.
Springer-Verlag GmbH, June 1, 2004. ISBN: 1852336943.

[CEN14] CEN-CENELEC-ETSI Smart Grid CoordinationGroup. SG-CG/M490/L Flexi-
bility Management – Overview of the main concepts of flexibility management
– Version 3.0. Nov. 2014.

[DAL17] Emiliano Dall’Anese, Pierluigi Mancarella, and Antonello Monti. “Unlocking
Flexibility: Integrated Optimization and Control of Multienergy Systems”. In:
IEEE Power and Energy Magazine 15.1 (Jan. 2017), pp. 43–52.

[DEN15] Paul Denholm et al. Overgeneration from Solar Energy in California: A Field
Guide to the Duck Chart. Tech. rep. National Renewable Energy Laboratory,
Nov. 2015.

[DOC20a] Docker Inc. Docker. https://www.docker.com/. 2020.

[DOC20b] Docker Inc. Docker SDK for Python. https://docker-py.readthedocs.io/
en/4.2.0/. 2020.

[DRA16] Nicola Dragoni et al. “Microservices: yesterday, today, and tomorrow”. In:
(June 13, 2016).

https://www.bdew.de/energie/standardlastprofile-strom/
https://www.bdew.de/energie/standardlastprofile-strom/
https://www.docker.com/
https://docker-py.readthedocs.io/en/4.2.0/
https://docker-py.readthedocs.io/en/4.2.0/

70

[EDE14] Ottmar Edenhofer. Climate change 2014 : mitigation of climate change :
Working Group III contribution to the Fifth Assessment Report of the Inter-
governmental Panel on Climate Change. New York, NY: Cambridge Univer-
sity Press, 2014. ISBN: 978-1-107-05821-7.

[FAR10] H. Farhangi. “The path of the smart grid”. In: IEEE Power and Energy Maga-
zine 8.1 (Jan. 2010), pp. 18–28.

[FUJ99] Fujimoto. Parallel and Distributed Simulation. John Wiley & Sons, Dec. 20,
1999. 324 pp. ISBN: 0471183830.

[GOD10] Tim Godfrey et al. “Modeling Smart Grid Applications with Co-Simulation”. In:
2010 First IEEE International Conference on Smart Grid Communications.
IEEE, Oct. 2010, pp. 291–296.

[GOM17] Cláudio Gomes et al. “Co-simulation: State of the art”. In: Computing Re-
search Repository (Feb. 2017).

[INT15] International Energy Agency (IEA). Technology Roadmap How2Guide for
Smart Grids in Distribution Networks: Roadmap Development and Imple-
mentation. OECD Publishing, 2015.

[MAU17] I. Mauser et al. “Definition, Modeling, and Communication of Flexibility in
Smart Buildings and Smart Grid”. In: International ETG Congress 2017.
2017, pp. 1–6.

[MOM09] James A. Momoh. “Smart grid design for efficient and flexible power networks
operation and control”. In: 2009 IEEE/PES Power Systems Conference and
Exposition. IEEE, Mar. 2009.

[NEU15] Judith Neugebauer, Oliver Kramer, and Michael Sonnenschein. “Classifica-
tion Cascades of Overlapping Feature Ensembles for Energy Time Series
Data”. In: Data Analytics for Renewable Energy Integration. Springer Inter-
national Publishing, 2015, pp. 76–93.

[OFF11] OFFIS Oldenburg. Mosaik. https://mosaik.offis.de/. Oldenburg, 2011.

[SMI05] Jim Smith. Virtual Machines. Elsevier LTD, Oxford, June 1, 2005.

[STE18] C. Steinbrink et al. “Smart grid co-simulation with MOSAIK and HLA: a com-
parison study”. In: Computer Science - Research and Development 33.1-2
(Sept. 2018), pp. 135–143.

[STR17] Thomas Strasser et al. “Towards holistic power distribution system validation
and testing—an overview and discussion of different possibilities”. In: e & i
Elektrotechnik und Informationstechnik 134.1 (Dec. 2017), pp. 71–77.

[THÖ15] J. Thönes. “Microservices”. In: IEEE Software 32.1 (2015), pp. 116–116.

https://mosaik.offis.de/

71

[TRO16] Gustavo O. Troiano et al. “Co-simulator of power and communication net-
works using OpenDSS and OMNeT++”. In: 2016 IEEE Innovative Smart Grid
Technologies - Asia (ISGT-Asia). IEEE, Nov. 2016.

[VAN14] Robert Vanderbei. Linear programming : foundations and extensions. New
York: Springer, 2014.

[WIN07] Philip Winslow et al. Desktop Virtualization Comes Of Age. Tech. rep. Cred-
itSuisse, Nov. 2007.

[YU07] Yang Yu. “OS-level Virtualization and Its Applications”. PhD thesis. Stony
Brook University, Dec. 2007.

72

	Abstract
	Kurzfassung
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Motivation and Goals
	Motivation
	Goals

	Theoretical Background
	Flexibility
	Definition
	Energy Management Systems
	Model Predictive Control (MPC)
	Mixed-Integer Linear Programming (MILP)

	Simulation
	Basic Modeling and Simulation
	Co-Simulation

	Virtualization

	Modeling
	Simulation Environment
	Mosaik
	Docker
	Functional Co-Simulation Environment Design

	Flexibility Co-Simulation
	Simulators
	Simulation Data Flow

	Results and Discussion
	Exemplary Flexibility Coordination Simulation
	Environment Test
	Single Household
	Neighborhood

	Robustness and Problems
	High Noise Level
	Time Shift
	Other Known Challenges

	Grafana Interface

	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography

