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Abstract

Abstract

Active Directory (AD) is one of the cornerstones of internal network administration in
many organizations. It holds information about users, resources, access rights and other
relations within the organization's network that helps administer it.

Because of its importance, attackers have been targeting AD in order to obtain ad-
ditional information for attack planning, to access sensitive data, or to get persistence
and ultimately complete control of the domain. By design, any user with basic access
rights can query the AD database, which means that a password leak of even the most
unprivileged user is su�cient to gain access to the AD and eventually compromise other
accounts with higher privileges.

A common technique while attacking the AD is called lateral movement. Attackers
try to explore the network of the organization without being detected. During this time,
they are performing reconnaissance in the AD in order to �nd high-value targets and ways
of getting persistence in the domain. In these attacking scenarios the use of honeypots
may greatly improve the detection capabilities of the organization by providing an early
warning system. Honeypots are a well-known form of passive security measures. In the
most basic form, they are decoys disguised as real devices or information about a user, in
this last form they are known as honeytokens.

Despite being useful and promising a good detection, the basic constraint of a honeypot
is that it should be found before the intruders attack a real target.Therefore, it is crucial to
have the honeyuser placed correctly into the AD structure. However, with the complexity
and diversity of AD structures, this task is very hard.

In this thesis we propose a machine learning framework for analysing an AD structure
and enriching it with honeyuser accounts. We use graph neural networks and auto encoder
models together with the original structure of the AD to select the best placement of the
honeyusers. The models are trained and evaluated using a number of arti�cial datasets
created from the analysis of real structures. We propose three variants of the model
architecture and evaluate the performance of each them. Results show that the proposed
models achieve F1 score over 0.6 in structure reconstruction tasks. Moreover, the validity
ratio of the predicted placement is over 60% for the graphs of sizes similar to the real-world
AD environments.

We conclude that recurrent neural networks modi�ed for DAG processing are capable
of modelling the structure of the AD and extending it with honeytokens. The generated
honeytokens have similar properties to entities in the original graph which reduces the
chance of their discovery.

Keywords: Honeypots, Active Directory, Machine Learning, Generative models, Au-
toencoders
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Abstrakt

Slu�zba Active Directory (AD) je z�akladn��m stavebn��m kamenem intern��ch s��t�� ve v�et�sin�e
organizac��. Jedn�a se o slu�zbu, kter�a obsahuje informace o u�zivatel��ch, prost�redc��ch v s��ti,
kontaktech, p�r��stupov�ych pr�avech k dat�um a dal�s��ch z�avislostech v r�amci vnit�rn�� s��t�e
organizace. Z t�echto d�uvod�u je Active Directory c��lem �uto�cn��k�u, kte�r�� se sna�z�� v�y�se po-
psan�e informace z��skat a vyu�z��t k dal�s��mu pl�anov�an�� �utoku, p�r��stupu k citliv�ym dat�um
nebo z��skan�� trval�eho p�r��stupu. AD je koncipov�ano tak, �ze ka�zd�y u�zivatel s p�r��stupem k
vnit�rn�� s��ti se m�u�ze dotazovat �r��d��c��ho serveru na dal�s�� objekty v dom�en�e, tak�ze z��sk�an��m
p�r��stupov�ych �udaj�u k libovoln�emu b�e�zn�emu �u�ctu bez zvl�astn��ch pr�av m�u�ze �uto�cn��k p�r��mo
komunikovat s �r��d��c��m serverem AD a z��kat informace a p�r��stup k dal�s��m �u�ct�um s v�et�s��mi
pravomocemi.

V t�echto p�r��padech je mo�zn�e pou�zit��m honeypot�u zv�y�sit �sanci na v�casnou detekci.
Honeypot je b�e�zn�e pou�z��van�y n�astroj pasivn�� ochrany. V nejjednodu�s�s�� form�e se jedn�a
o past, kter�a p�ripom��n�a re�aln�e za�r��zen�� slu�zbu �ci data. Posledn�� zmi�novan�e se naz�yv�a
honeytoken.

Nejv�et�s��m omezen��m p�ri pou�zit�� honeypotu je fakt, �ze k tomu aby byl �u�cinn�y, jej
�uto�cn��ci mus�� naj��t p�red interakc�� s re�aln�ych syst�emem. Proto je z�asadn��, aby i ve struktu�re
Active Directory byl honeypot vhodn�e um��st�en. Vzhledem ke slo�zitosti, kterou struktura
AD m�u�ze m��t se jedn�a o netrivi�aln�� �ukol.

V t�eto pr�aci p�redstavujeme framework zalo�zen�y na strojov�em u�cen��, kter�y analyzuje
strukturu AD a roz�si�ruje ji o honeytokeny. S vyu�zit��m grafov�ych neuronov�ych s��t�� a auto-
enkod�er�u vyb��r�ame vhodn�e um��st�en�� honeytokenu v exituj��m AD. Modely jsou tr�enovany
a testov�any za pou�zit�� um�ele vytvo�ren�ych dataset�u, kter�e jsou vytvo�reny podle existuj��c��ch
AD. P�redstaven�e modely dosahuj�� 0.6 pro F1 metriku p�ri rekonstrukci graf�u a p�res 60 %
�usp�e�snnost p�ri predikci hran pro honeytokeny a to i v grafech, kter�e jsou velikost�� srov-
nateln�e s produk�cn��mi AD. Tato pr�ace ukazuje, �ze rekurentn�� neuronov�e s��t�e upraven�e
pro zpracov�an�� orientovan�ych acyklick�ych graf�u jsou schopn�e modelovat strukturu Active
Directory a roz�s���rit ji o honeytokeny. Generovan�e u�zivatelsk�e �u�cty jsou sv�ymi vlastnostmi
podobn�e u�zivatelsk�ym �u�ct�um v p�uvodn�� struktu�re, �c��m�z se sni�zuje pravd�epodobnost jejich
odhalen��.

Kl���cov�a slova: Honeypot, Active Directory, Strojov�e u�cen��, Generativn�� modely, Auto-
enkod�ery
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Chapter 1

Introduction

It is only a matter of time until an organization receives an attack. It is no longer a matter

of if , but when[1]. The security community has known for a long time that some attackers

will succeed, and the only solution for these cases is a security protection in every level

of the organization that is dynamic and constantly evolving [2]. No unique solution is

enough to deal with all attacks. Among the attacks that an organization can receive, the

most critical are those which give the attacker access to the internal network. In such

situations,the attackers are considered as part of the organization and security measures

are more relaxed. In the last decade large companies like Sony, Austria Telekom, NTT

and Citrix have been compromised and attackers gained access to their networks [3]{[6].

If those companies were breached, any company may be as well. Attackers that can

access internal networks are not only amazingly hard to detect and stop, but also security

protections in that level are scarce and di�cult to implement.

Some of the reports of security attacks inside organizations suggest that attackers

�rst gain access to the Active Directory (AD) system of an organization in order to

learn about the internal structure and the assets to attack [7]. Therefore, many security

solutions attempt to deal with how to secure AD systems and how to better gain visibility

on the attackers before they get what they want.

Solving the problem of external attackers with access to the internal network and at-

tacking the Active Directory is not an easy task, and it is usually addressed in di�erent

ways. First, there are solutions endeavoring to stop attackers fromaccessing and explor-

ing the AD, for example by using network segmentation and limiting access to critical

servers [8]. The key to performing an AD reconnaissance attack is to get access to any

user in the domain. Due to the default nature of an AD, any user has the right to read the

information stored in the AD. This allows the attackers to perform the initial reconnais-

sance before moving to privilege escalation attempts [9]. However, for the same reason,

detecting scanning attacks to the AD is a very di�cult task. Common defense practices

1



in this area use techniques that rely on hardening AD con�gurations and monitoring of

system events [8], [10].

Another way of �nding attackers in a network before they attack is to place honeyto-

kens in the production environment. A honeytoken is a trap that is disguised as a real

object and is designed to attract the attention of the attacker [11]. By de�nition, normal

users should never interact with honeytokens and therefore, any interaction assures the

detection of an attacker. Honeytokens have been used for other security detections in the

past, for example as fake accounts, fake database entries, etc. [12], but nobody created, as

far as we know, honeytokens for Active Directory services in order to detect the attackers

as soon as they choose to access information about the fake users (also referred to as

honeyusers).

The problem of creating a fake user in the AD system is larger than just creating

the information about a user. An attacker can easily identify if a user is fake, thus it is

important to create a user with realistic information and, more importantly, a user that

is placed correctly inside the organization. Therefore, where to place a fake user inside

the AD system is paramount for the success of the detection mechanism. Since there is

no research so far solving these problems, AD systems in production right now do not

have a good way of creating honeyusers inside their systems in a way that actually looks

like a normal user.

In an attempt to solve these issues, this thesis proposes to reconstruct the structure of

an existing AD and to generate a new structure that adds new fake users in it. This is done

by training a generative machine learning model that generates AD structures with fake

users inside. In our approach, we analyze the structure of the whole AD domain with deep

learning methods and use a model to determine which is a suitable location for placing

the fake users. Since Active directory is designed as a tree structure considering a group

membership as a type of edge in the graph, the whole domain can be transformed into

a directed acyclic graph. In recent years, deep learning methods focusing on graphs and

graph structured data have been shown to be powerful enough to outperform traditional

ML methods. This thesis researches the following problems: reconstruct a current AD

structure e�ectively, and �nd the best location in that current AD structure to place

honeyusers.

In order to train a good generative model of an AD structure we need good labeled

data. However, since AD holds sensitive information about the structure of an organi-

zation, its components, users and resources, its is extremely di�cult to obtain the real

AD data from an organization. Sharing or even extracting information from a production

AD is often forbidden for third parties by company policy. Since training an ML model

required a substantial amount of data samples, we had to reuse limited real data samples,
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by combining them with expert knowledge and known best practices for AD set up, to

create arti�cial datasets. These datasets are good enough to perform the required task

and they only di�er in the number of nodes of their graph structures.

There are two main experiments performed: Evaluation of on task, where models

attempt to reconstruct the original graph, and generative task, where models enrich the

existing structure. The structures created in second type of experiments are evaluated

with existing tools to verify compatibility.

We showed that model architecture based on the auto encoder is capable of capturing

the relation withing the graphs and create node-level encoding of a �xed size. Comparison

of the models resulted in �nding that models base on direct edge prediction are scalable

to a graph sizes common in the AD domains.

Experiments with sequential generation of honeyusers for the existing domains showed

that proposed framework can be utilized for such task. The proposed model produces AD

objects with properties similar to the objects of same type in the original. The experiment

results suggest that objects generated using proposed framework are viable for using as a

honeypots. However, further evaluation with human interaction is necessary for conclu-

sive proof of this hypothesis. One of the outcomes of this work is a functional tool for

automated honeypot deployment in the Active Directory. For the model, we created a

Tensorow implementation of DAG-RNN scalable for use in structures containing hun-

dreds of nodes, which is two orders of magnitude higher than the original paper. The

custom layer is based on the Tensorow/Keras API and is compatible with other modules

in the library.

The thesis is structured as follows: Chapter 2 describes the directory services with

special impact on Active Directory. Additionally, it briey mentions the basic building

blocks of modern neural networks. Chapter 3 describes the state of the art of graph neu-

ral networks with special attention to generative models and autoencoders. It also shows

examples of work using ML methods in honeypot creation and deployment. Moreover, it

also mentions commonly used tools for scanning the Active Directory. Chapter 4 contains

proposed model architectures for processing the AD structure, mainly the description of

our design and implementation of the DAG-RNN layer and its use in graph encoding.

Chapter 5 explains how the datasets used in this thesis are created and their proper-

ties. Chapter 6 provides information about the experiment setup structural modelling

evaluation while Chapter 7 shows methodology and results for generative experiments.
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Chapter 2

Background

2.1 Directory Service

Directory service is a shared infrastructure used to manage, organize and locate resources

in a network. Such structures can include data, users, devices and groups that are being

used on a daily basis. Directory service is a cornerstone of shared resources, accounts, and

credentials within a computer network inside an organization. The directory server, also

known as name server, provides the service for the particular network. Each object in the

network has a collection of attributes associated to it and also a name that is unique in

the namespace de�ned by the directory service. This illustrates how a directory service

and a relational database can be similar. However, with a directory service, data can be

redundant in the interest of performance. There are two basic types of attributes which

a class of objects can have. These are de�ned in a Directory Schema:

� Must - attributes which each instance of a particular class must have

� May - attributes which may be de�ned for a instance but can be omitted. (Similarly

to NULL in a relational database)

In 1980s, the International Telecommunication Union (ITU) and International Or-

ganization for Standardization (ISO) published a collection of standards for directory

services known as X.500 which are also incorporated in ISO/IEC 9594[13]. Based on this

standard the Lightweight Directory Access Protocol (LDAP) was founded as an open,

vendor-neutral, string encoded protocol for accessing and maintaining directory services

over the Internet.
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2.2 Lightweight Directory Access Protocol (LDAP)

Lightweight Directory Access Protocol (LDAP) is a protocol based on TCP/IP which is

designed to perform a variety of operations in a directory server. The standard TCP

ports for LDAP are 389 for unencrypted communication, and 636 for LDAP over a TLS-

encrypted channel. However, for a variety of reasons it is not uncommon for LDAP servers

to listen on alternate ports.

An LDAP entry is a collection of information about an entity. There are three com-

ponents in each entry: the distinguished name, a collection of attributes, and a collection

of object classes.

2.2.1 Distinguished Name (DNs)

Distinguished name of an entry, often referred to as DN, is a unique identi�er of an entry

and its position within the directory information tree. It is much like a path to a �le in

�le system. A DN is composed of zero or more elements called Relative Distinguished

Names (RDNs). If an entry has multiple RDNs, their order speci�es the exact location

of the entry in the structure. RDNs are separated by commas, and each RDN in a DN

represents a level in the hierarchy in descending order (moving closer to the root of the

tree, which is called the naming context). That is, if you remove an RDN from a DN,

you get the DN of the entry, considered the parent of the former DN. For example, the

DN "uid=john.doe,ou=People,dc=example,dc=com"has four RDNs, with the parent DN

being \ou=People,dc=example,dc=com".

Each RDN consists of a name-value pair. Note that despite each component of a DN

is a RDN, it is common practice to refer to the leftmost component of an entry's DN as the

RDN for that entry. In the example \uid=john.doe,ou=People,dc=example,dc=com"

the component\uid=john.doe" would be called the RDN of the entry. The attribute

name-value pairs in this leftmost component must be present in the entry (so the entry

\uid=john.doe,ou=People,dc=example,dc=com" must contain a uid attribute

with a value of \john.doe" ).

2.2.2 Attributes

Attributes are the elements used for storing data in a directory. The LDAP Schema

de�nes the rules for which AttributeTypes may be used in an LDAP Entry, which values

those AttributeTypes may take, and how users may interact with those Attribute Values.

Microsoft's AD Schema further holds:

1. the syntax of each Attribute in the schema
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2. which Attributes are replicated to the Global Catalog

3. whether they are SINGLE-VALUE or MULTI-VALUE

4. which class of objects can use each attribute.

A complete list of AD object attributes can be found in [14]. Object Classes are elements

that specify a collection of attributes types that can be related to a particular object. Each

entry has its structural object class which de�nes the core type of the entry. Structural

classes are the only classes that can have instances.

2.3 Active Directory

Active Directory (AD) is an implementation and extension of Directory Services created

by Microsoft for Windows domain networks. AD was �rst released with Windows Server

2000 and its functionality was extended over the years. Nowadays, AD is composed of

the following services:

� Domain Services

� Certi�cate Services

� Lightweight Directory Services

� Rights Management Services

� Federation Services

In this work, we are mainly focused on the Domain Services part of Active Directory

(AD DS). It is the core part which manages users and computers and allows sysadmins to

organize the data into logical hierarchies. AD DS also provides services for security cer-

ti�cates, Single Sign-On (SSO), LDAP, and rights management. There are two important

classes of objects we will focus on: container classes and account classes. Containers are

objects designed to hold other objects such as OrganizationalUnit or GroupPolicyCon-

tainers. Account classes are objects which represent a speci�c entity in the structure. An

obvious example is the User object, although Computer objects are also part of this class.

In the following subsections, we will examine objects that are used later in the thesis in

detail.
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2.3.1 Active Directory Objects

Domains

The core entity in the logical structure of AD is the domain. It is a special object which

allows grouping of other objects to reect the company organization. The domain also

serves as a security boundary. Access Control Lists (ACLs) are used to de�ne which users

or groups of users can gain access to an AD object and what kind of access. Security

policies do not cross from one domain to another.

Trees

In case the organization has more than one domain which all share a namespace, those are

organized in a tree. All domains in a tree share a common schema, which is a de�nition

of all object types and additional attributes. Moreover, all domains within a tree share a

common Global Catalog, which is a centralized repository of information about all objects

in a tree. Parent and child domains in a tree are linked by a special type of connection

called trust. Trust allows users from one domain to access resources in another assuming

they have access.

Forests

A forest is a collection of one or more trees. All trees in a forest share the same schema.

Similarly to trust links in one tree, trust between trees can be formed in a forest to connect

one or more trees.

Organizational Units

An Organizational Unit (OU) is special type of container in AD which can hold di�erent

objects from the same domain such as other containers, groups, users, and computer

accounts. The structure of OUs usually follows the structure of the organization either

functionally (Sales, R&D, IT, etc.) or geographically. Note that since an OU is a type of

container, it can be nested. There are two main reasons for using OUs:

1. Delegation of management and administrative tasks to other administrators and

users without the necessity of granting them domain administrator permissions

2. Linking Group Policies to all objects within the OU
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2.3.2 Groups

In order to simplify the communication and administration of large organizations, there

are two group types in AD: Distribution groups and Security groups. Distribution groups

are used to distribute messages to group members with email applications such as Mi-

crosoft Exchange. Distribution groups are not related to security and therefore cannot be

used to assigning permissions to resources. For that reason we are not focusing on them

in this thesis and use the term group as an equivalent to Security Group.

Security Groups

The purpose of security groups is to allow system administrators to assign permissions

and user rights to members of the group. Granting permissions for the whole group

rather than for each user independently is much more e�cient. Additionally, it allows for

changing the rights of single users just by adding or removing them from the group based

on the current requirements while leaving the groups' permissions or rights unchanged.

Groups can have di�erent scopes, meaning the permissions and user rights of that

group are only valid in certain parts of the AD structure. Table 2.1 describes the di�er-

ences in scopes of each security group type [15].

2.3.3 Relations Between Objects in AD

So far, we have talked about di�erent object types within the Active Directory. Let us

briey look at the relations that can exist between the objects. Earlier we described the

simplest relation determined by RDN. It describes the position of the object within the

AD as a path from the root node to the particular object. Other relations are described

by the permissions, and most importantly by attributesmemberOf and memberswhich

describe membership of objects in groups. By combining the attributes of a pair of objects

one can infer more relations such asAdminTo, hasSessionand a number of speci�c Access

Control Entries. Using these relations as oriented edges and objects as nodes, we can view

the whole structure of an Active directory as a Directed Oriented Graph. A notable tool

that uses graph theory to plot and analyze the structure of an AD is called Bloodhound

[16]. Bloodhound is an open source tool that relies on Powershell[17] and LDAP to query

the AD, and uses a neo4j [18] database to store and analyse the structure. It is widely

used by both system administrators and red teams to �nd the weak points in AD setups

and to plan attack vectors for gaining persistence in the domain and further escalate

privileges.
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Scope Possible Members Can Grant Permis-
sions

Possible Member of

Universal Accounts from any domain in
the same forest

On any domain in the
same forest or trusting
forests

Other Universal groups in the
same forest

Global groups from any do-
main in the same forest

Domain Local groups in the
same forest or trusting forests

Other Universal groups from
any domain in the same forest

Local groups on computers in
the same forest or trusting
forests

Global Accounts from the same do-
main

On any domain in the
same forest, or trusting
domains or forests

Universal groups from any do-
main in the same forest

Other Global groups from the
same domain

Other Global groups from the
same domain

Domain Local groups from any
domain in the same forest, or
from any trusting domain

Domain Local Accounts from any domain or
any trusted domain

Within the same domain Other Domain Local groups
from the same domain

Global groups from any do-
main or any trusted domain

Local groups on computers in
the same domain, excluding
built-in groups that have well-
known SIDs

Universal groups from any do-
main in the same forest

Other Domain Local groups
from the same domain

Accounts, Global groups, and
Universal groups from other
forests and from external do-
mains

Table 2.1 Scopes of security groups in Active Directory [15]

2.3.4 Active Directory Attacks

Holding information about users, devices and resources within the organization, Active

Directory is a natural target. The scope and goals of attacks spread from stealing and

leaking user data to complete destruction of the domain. Example of the latter can be the

Maersk incident [19]. In 2017, one of the o�ces of this international shipping company

was attacked with a malware called NotPetya. According to the reports, within minutes

from the infection of the �rst user, the worldwide network of the company was rendered

useless. This included more than 40,000 devices, over 1,000 applications, �le-sharing and

printing capabilities, cloud, and Active Directory servers all being put o�ine.

Despite having a di�erent outcome, the attacks typically start with breaching one

account using various phishing techniques. The goal of this part of the attack is to get

access to any account in the domain. Due to the protocol design, an initial foothold on

the AD Domain allows the attacker to query the AD server and get additional information

about the objects in the domain. In this thesis we are not focusing on the detection of the

�rst step of the attack which is the credential breaching. We work with the assumption

9



that some non-privileged account was already compromised.

Figure 2.1j Active Directory attack kill chain. Sequence of steps that the attackers
perform to dominate a domain [9].

The common sequence of steps that the attackers perform when attacking AD is shown

in Figure 2.1. After breaching the domain, the �rst phase of the AD recon starts - Low

privileges lateral movement. In this phase, attackers try to �nd and compromise accounts

with higher privileges, map the domain, and prepare the ground for more targeted attacks.

It is common practice to achieve persistence even in case of a password change in the

compromised accounts. The �nal step of this phase is called Domain dominance and at

this point, the attacker controls the domain, has access to admin accounts, can execute

code and move freely in the domain. Note that the lateral movement phase can take

anything between a couple of hours to weeks depending on the size of the domain. In

this period, it is crucial for the attacker to remain undetected until the domain is fully

controlled. In this thesis we aim to focus on using honeyusers to detect attackers during

lateral movement phase.

2.4 Neural Networks

The human brain is capable of learning tasks without prior knowledge, using examples

and experience. This has been a great inspiration and a founding idea for a �eld of

arti�cial intelligence called machine learning. In certain domains it is impractical or even

impossible for a human to create a program to perform a particular task. However, we

can collect a set of samples described by features and encode the desired output for each

of them. For utilizing the training process, a mathematical model which can adapt itself

is required. Such models are designed to use statistics to �nd and encode underlying

patterns in the training samples.
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Inspired by the way information is processed in a biological system, mathematical

model neural systems were created [20], which we call them Neural Networks. The �rst

idea of arti�cial neuron was proposed in 1943 in [21] and later extended and further

developed into more complex systems such as Multi-Layer Perceptron [22].

Figure 2.2 j Example of a simple neural network.

Figure 2.2 shows an example of a simple neural network. On the left, there is an input

layer which takes a feature vectorX = f x1; x2; :::; xng; x i 2 R describing an arbitrary data

sample. Next, there is a hidden layer, consisting of three neurons. There are two opera-

tions performed in each neuron during the forward propagation of information: weighted

sum of the inputs and activation functions

Next there is a hidden layer, which consists of three neuronsf h1; h2; h3g. Each neuron

in the hidden layer �rst computes a linear combination of all of its inputs. In case ofh1

it is computed as:

hin
1 = x1w1;1 + x2w2;1 + x3w3;1 + ::: + xnwn;1 (2.1)

wherewi;j represents weight on the link fromx i to hj . The collection of all such weights in

the network is called trainable parameters and �nding the optimal values for them is the

core task during the training of the model. After computing the weighted sum of inputs,

the activation function is used to producehout
j , the output of neuron hi . In the example

such activation function is the sigmoid function so the computation is as follows:

hout
i =

1

1 + e� h in
i

(2.2)

In Figure 2.2, there is only one neuron in the output layer which follows the exact steps.

In some cases, the activation in the output layer is omitted, which is equal to using a linear
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activation function. To �nish the computation, the output o of the model is computed as

o =
1

1 + e� (
P

h i 2f h 1 ;h 2 ;h 3g h i wi )
(2.3)

That is the last step of forward propagation in the network. We can use the output of the

model and the expected value (training samples consist of inputs and expected outputs)

and compute the error. For that we use a loss functionL. The loss function is a key

component in the training because it servers as a feedback for the model and for the

estimation of how well it performs for each training sample. In order to decrease the loss

of the model we need to tune the parameters of each of the operations in the forward

propagation. In the example in Figure 2.2 the only trainable parameters are the weights

of the linear combinationswi . The optimization of the parameters of the model are done

with the Backpropagation algorithm.

2.4.1 Backpropagation Algorithm

For an estimate of the error for a given training sample we need to know how to adjust

individual parameters in order to lower the loss. Backpropagation takes this error value

and computes its partial derivatives with respect to every parameter in the network.

The value of the derivative for each weight shows how much does a weight contribute to

the output of the network. Computation of backpropagation runs in the exact opposite

direction as computation of the outputs of the network. Using the chain rule, we can reuse

the computed derivatives that make the algorithm e�cient as all the partial derivatives

are computed in one pass. The backpropagation algorithm was one of the �rst ways of

showing that neural networks are actually capable of learning non-trivial features. Until

then, hand-crafting features was often the taken approach, which was limiting because of

the time and computational power required to include more �elds of problems. Now, it is

commonly used together with a gradient descent type of algorithm to complete the whole

training process of a neural network.

2.4.2 Stochastic Gradient Descent

The main goal is still optimization, meaning that we want to converge to the minimum

possible error regarding the results of our network. One possible way to perform the

right adjustments to the weights of our network, is to use an algorithm such as gradient

descent. As described in [23], we pick a point in the weight space by initializing all the

weights in our network. By computing the gradient with the backpropagation algorithm,

we will move to a neighboring point, which is downhill and repeat until we converge to

a minimum. A very important part of this process is the learning rate which determines
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how large is the step taken. It can either be a constant or it can change overtime.

However, using the gradient descent method over the whole data set may be very costly,

because data sets for neural networks tend to be large. One solution is to use stochastic

gradient descent, which is probably one of the most used optimization algorithms when

it comes to deep learning. The SGD works over mini-batches and not the whole data.

Algorithm 1: Stochastic Gradient Descent
1 Stochastic gradient descent update in time stepk requires learning rate� k and

initial parameters � on the input. The function f denotes computation done by
neural network.

2 Until a stopping criterion is met, repeat:

1. Sample a mini-batch of data samplesf x1; x2; :::; xng and their corresponding labels
f y1; y2; :::; yng

2. Compute the gradient

ĝ  � +
1
n

r �

X

i

loss(f (x i ; �) ; yi )

3. Update the parameters
�  � � � � ĝ

Further development of optimizers focus on making the training faster, more reliable,

and avoid situations when the algorithm �nds local minimum. Detailed explanations of

the methods and their empirical comparison can be found in [24]. For training our models

we use the Adam optimizer [25].

Capabilities of such models have been thoroughly examined. The Universal Approxi-

mation Theorem states that feed forward neural network with a single hidden layer of �nite

number of neurons is capable of approximating continuous functions under mild assump-

tions on the activation function. Leshno et al. [26] showed that a multilayer feedforward

network with a locally bounded piecewise continuous activation function can approximate

any continuous function to any degree of accuracy if and only if the activation function

is not polynomial.

2.4.3 Recurrent Neural Networks

In some domains, such as time series prediction, sequence classi�cation or text processing,

there is an implicit sequence of data samples. Recurrent Neural Networks (RNNs) are

architectures which are designed to process sequential data and learn the underlying

dependencies. The building block of RNN is called a recurrent cell. In theory, recurrent

neural networks can process sequences or arbitrary length.
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Figure 2.3 j Basic recurrent cell and its unfolding. [22]

In Figure 2.3 we can see an example of the basic type of recurrent cell. In each step

of the sequence, the cell has two inputs:

1. x i : features of the current step of the sequence

2. h(i � 1):output of the cell in a previous step of the sequence

When the cell is unfolded (also known as unroll), it can be see the how the information

ow as the sequence is being processed. Based on the task, either the concatenation of

hidden states from each step is used as an output or just the last output of the sequence.

Since the cell uses the same weights and biases for each step of the sequence, we can

see the process as learning what information to store in memory. In practice, however,

simple RNN cells tend to struggle with learning long-term dependencies as they keep

"overwriting" the memory with incoming data. There are two extensions of the RNN cell

architecture designed to combat this problem.

Long-Term Short Memory cells

Long Short-Term Memory (LSTM) [27] cells, are an extension of simple RNN cells de-

signed to capture long-term dependencies in the data. There are three non-linear functions

called gatesadded to the cell as shown in Figure 2.4.

Each of the gates has the same inputs: previous hidden state and current feature vec-

tor. Such architecture enables controlled forgetting in the training process. The downside

of this approach is that the amount of parameters for training is much higher.

Gated Recurrent Units

Gated recurrent units (GRU) were �rst proposed in 2014 in [28] as a tool for neural

translation in a sequence-to-sequence manner. In the diagram shown in 2.5it can be seen

that unlike LSTMs, GRU cells don't have an output gate which means they have less

parameters to train. However, it also means that there is less control over the forgetting.

In [30] it has been shown that LSTMs consistently outperform GRU cells in Natural

Language Processing tasks.
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Figure 2.4 j Block diagram of LSTM cell. [22]

Figure 2.5j Comparison of GRU and LSTM cells. Diagrams showing di�erent gates
in Gated Recurrent Unit(left) and Long-Term Short Memory (right) cells [29]

Bidirectional RNN Cells

In some domains, such as text processing, elements of the sequence are dependant not

only in the previous elements but also on those coming after. Bidirectional RNNs take

this into account and process the sequence in both directions combining or concatenating

the outputs. Results from processing the sequence in either direction are either stacked

or aggregated. Commonly, simple aggregation functions such as sum or max are used,

but in theory, any di�erentiable aggregation can be applied for this task.

2.4.4 Graph Neural Networks

Graph structures are commonly used for representation of data in various domains. In-

spired by the the success of convolutional neural nets in image processing, there have been

attempts in recent years to use the same concept on graphs. Unlike images, where the
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Figure 2.6 j Unfolding of a bidirectional RNN. [31]

neighborhood of a pixel is de�ned by a grid of �xed size, in graphs we use the edges to

gather the information from the node's neighbours in a similar manner. Such methods

were very successful in a variety of tasks from node classi�cation to graph modeling.

2.4.5 Deep Sets

Traditional approaches for training neural networks account for �xed dimensions of feature

vectors. Image processing can be listed as an example of a domain that is suitable for such

an approach. In recent years, there have been several attempts to extend machine learning

tasks to sets of samples. Pevn�y and Somol [32] showed that the underlining tree structure

of the data can be used for aggregation of partial estimators to perform classi�cation

tasks on the complete structure. Similarly, Zaheeer et al. [33] proposed a framework for

inference over a set of objects which outperform the approach using recurrent networks.

Both teams use similar techniques to process a set (bag) of samples: Firstly, each item in

a set is embedded in a �x size vector space using a estimator� . Next, all embedded items

are aggregated using a sum function and fed into a second estimator� . Such approach is

applicable to sets with arbitrary sizes and element ordering.

Battagalia et al. [34] showed that learning from a set of samples can be viewed as a

special case of graph learning (considering a set to be a graph without edges) and that

Graph Neural Networks are applicable for such a task.

Figure 2.7 j Deep Sets Architecture - Invariant. [33]

16



2.4.6 Generative Models

Neural networks are commonly used for two types of tasks: classi�cation of samples and

regression. With advances in image and text processing, another use-case for such models

became popular: generation of new data with similar properties as those of the training

samples [35]. There are two popular directions in the development of generative models:

Generative adversarial networks (GANs) and autoencoders.

Generative Adversarial Networks

The �rst approach uses Game Theory to �nd the equilibrium state of a system of two

models which compete against each other. The �rst model, called the generator, attempts

to generate a sample. The second model, called the discriminator, takes as input a mixture

of real data points and generated samples and attempts to classify them as either real or

fake. Using each others outputs, both model update their parameters until convergence.

Autoencoders

The second approach to generative models also uses two separate models, but in a very

di�erent fashion. Training samples fromRn are embedded (encoded) in a �xed size latent

spaceRm m < n by a �rst model called an Encoder. Afterwards, the second model,

called a Decoder, attempts to reconstruct the samples in the original spaceRn . Since

the dimensionality of the latent space is lower than in the case of the real data, there is

implicit information loss. Encoder-Decoder architectures are optimized to minimize the

information loss of the process.

2.5 Honeypots

A honeypot is a system which is set up as a decoy to lure attackers and to detect and

study attempts to gain unauthorized access to information systems. By de�nition, no

legitimate user should ever interact with a honeypot, therefore anyone who attempts to

connect or interact with it is considered an attacker.

As with any other defense system there are pros and cons when deploying honeypots.

The main bene�t of a honeypot is that it allows researchers and security professionals to

collect real data from actual attacks and unauthorized activities in the network. Such

information provides insight about the course of the attack, tools used, and all together

allows for designing better defense mechanisms. Another aspect is that since there is no

interaction from legitimate users, the false positive rate is signi�cantly reduced. Deploy-

ing honeypots is also cost-e�ective: in contrast with the majority of intrusion detection
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systems, with honeypots there is no need to analyze large volumes of network tra�c which

reduces hardware demands. It is common to use virtual machines as a honeypots.

There are a couple of disadvantages of honeypot usage which often discourage sys-

tem administrators from using the technology. The most pressing question is about the

security of a honeypot: If it allows a lot of interaction with a potential attacker, there

is a risk of miscon�guration, or even errors in the honeypot system which can lead to

security breaches.. There is a trade-o� between the distinguishability of a honeypot and

the amount of interaction it provides. Especially in setups where the attacker suspects

a presence of honeypots in the network, one has to pay a lot of attention to make them

look real and important enough to attract the attacker. Last, but not least, is the issue

of analysis of the collected data. Honeypots, which are freely accessible in the Internet

can generate big volumes of data mainly because of the background "noise" which is

present in the network. In general, honeypots are not a substitution for intrusion detec-

tion systems, but can be a valuable addition to a setup that provides more information

about the attacks. In the following section we present a brief classi�cation of honeypots.

2.5.1 Types of Honeypots

Honeypots can be split into several groups. The most common classi�cation is based on

the level of interaction the system allows: pure, high-interaction and low-interaction.

Pure Honeypots

A pure honeypot is a full-edged production system which has been assigned as a bait.

To monitor the attacker's actions additional software needs to be installed. While a pure

honeypot may be useful when the defence mechanisms are required to be exorbitantly

stealthy, a more controlled environment is usually desirable [36].

High-interaction Honeypots

High Interaction honeypots make use of the actual vulnerable service or software. High-

interaction honeypots are usually complex solutions as they involve real operating systems

and applications. In High Interaction honeypots nothing is emulated - everything is real.

High Interaction honeypots provide a far more detailed information of how an attack or

intrusion progresses, or how a particular malware executes in real-time. Since there is no

emulated service, High Interaction honeypots help in identifying unknown vulnerabilities.

However, they are more prone to infections and increased risk because attackers can use

these real honeypot operating systems to attack and compromise production systems.
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Low-interaction Honeypots

When adversaries exploit a high-interaction honeypot, they gain capabilities to install new

software and modify the operating system. This is not the case with a low-interaction

honeypot. A low-interaction honeypot provides only limited access to the operating sys-

tem. By design, it is not meant to represent a fully featured operating system and usually

cannot be completely exploited. As a result, a low-interaction honeypot is not well suited

for capturing zero-day exploits. Instead, it can be used to detect known exploits and

measure how often a network gets attacked. The term low-interaction implies that an ad-

versary interacts with a simulated environment that tries to deceive him to some degree

but does not constitute a fully edged system. A low-interaction honeypot often simu-

lates a limited number of network services and implements just enough of the Internet

protocols, usually TCP and IP, to allow interaction with the adversary and make them

believe they are connecting to a real system.
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Chapter 3

Previous Work

In this chapter we examine state of the art techniques for graph processing with ML

methods, as well as tools for honeypot generation and deployment. We also look at

using ML methods in honeypot deployment with special focus on generative models.

Additionally, we present some of the existing honeypot generation and management tools

for active directory.

The automatic generation of data for Active Directory is not a very common topic in

the industry. This is because most companies already have a structure with users and

groups, and it does not make sense to generate data automatically. The only situations

where this may be needed are during testing of AD deployments or for fake AD setups

for simulations. Another situation where this may be needed is for automatic honeypot

generation, which is the topic of this thesis. As far as we know, there is no academic

research on the automatic generation of AD structures. However, there are some tools for

this task which require human interaction and can be later used for managing existing

honeypots.

The main tool for detecting malicious activities in an Active Directory is the Advanced

Threat Analytics by Microsoft [37]. It is a complex tool which monitors all the tra�c of

a domain controller and uses the data for detection of known attacks such as password

bruteforcing, Pass-the-Hash, Malicious replications, etc. Additionally, it detects abnormal

activity in the domain and reports results to the system administrator. It also contains

modules for detecting weak points in security such as shared passwords, broken trust

and known protocol vulnerabilities. BlueHive [38] is a Honeypot user management tool.

It is used for manual creation, management and monitoring of fake users in an Active

Directory. It can track the history of actions for registered user accounts and provides

automatic updates for lastLogOn attribute and other attributes which change in time.

Static values in such attributes show that the account In areas outside the AD domain,

there are some attempts to use automation and machine learning methods to design
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honeypots or emulate responses of certain devices or services. Leita et al. [39] proposed

to use state machines to generate scripts for creating honeypots for the popular open-

source honeypot manager honeyd [40]. Downling et al. proposed to use Reinforcement

Learning for generation of honeypot responses in order to extend the duration of the

attacker's session. In particular, the authors worked with a Cowrie honeypot which is

based on emulation of SSH, Telnet and several other protocols [41] .

The problem of placing a honeypot or honeytokens in such a way as to attract the

most attackers has been a point of interest for Game Theory (GT) researchers. In the GT

approach, the interaction between the attacker and the system administrator is modeled

as a two player game and the goal is to �nd an optimal strategy for either player [42].

Advances in machine learning methods in various domains of the last decade inuenced

progress in the area of graph processing. Graphs in general are universally used across

various domains of computer science and therefore applying the methods of ML on them

has become a hot research topic in recent years. Wu et al. [43] provided a detailed study

of various ML methods for graph processing, along with an evaluation of performance for

di�erent models and graph classes. One of the �rst papers on generative graphs models

was GraphRNN [44]. The graph in GraphRNN is generated iteratively using two recurrent

modules, one on the node level and another on the graph level. The authors show that

GraphRNN outperforms methods based on Graph Convolutional Networks in the task of

generating realistic looking undirected graphs. In addition, the GraphRNN method can

scale up to structures of hundreds of nodes.

In the area of generative models for graphs, Simonovsky and Komodakis success-

fully used Variational Autoencoders to generate small undirected graphs representing

molecules. The method, however, lacks scaling capabilities and was not able to capture

complex interactions in larger molecules [45]. Usage of Graph Recurrent Neural Networks

proposed in [46] showed great success in modeling protein data with results exceeding

both GrapVAE and GraphRNN by combining the GNN with attention layers. All the

above mentioned methods work with undirected graphs.

Taking directed edges in the graph into account, [47] proposed to use custom RNN cells

to analyze a DAG structure of Logical formulas and train the model to directly solve the

SA Logical Formula Satis�ability (SAT) problem. Results show that the proposed model

is able to learn the structural information of the graph using a sequential propagation of

DAG structured data. Further advancing the proposed idea, Kaluza et al. [48] proposed

a framework for DAG to DAG Translation inspired by Sequence-to-Sequence processing

in the Natural Language Processing domain. The framework is based on the Encoder-

Decoder architecture using similar modules as in [47] in the encoder part of the model.

The proposed framework is evaluated on the task of simpli�cation of logical formulas
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where it shows promising results on a dataset with limited graph size. The scaling ability

of the proposed framework is yet to be investigated.

There are a number of libraries implementing models of graph neural networks. Deep-

GraphLibrary [49] is an open-source library for e�cient graph storing and pre-processing,

mostly built for the PyTorch framework. It is well integrated with NetworkX. Spek-

tral [50] is a Tensorow related library implementing mostly Graph Convolutional and

Polling layers. An even more complex library introduced by DeepMind in [34] is based

on Tensorow and Sonnet frameworks.

To our best knowledge, the amount of publications using generative models for honey-

pot design is limited. There is a very recent work on using generative models in honeypots,

mainly the NeuralPot [51], where authors propose to use Generative Adversarial Networks

or AutoEncoders to generate the network tra�c of the industrial Modbus honeypot. De-

spite the low complexity of the model it shows that it is able to generate tra�c that

closely resembles the original protocol.

There are several tools which are being used by red team members and attackers.

Bloodhound [16] is an example of a software designed to simplify the task of AD Re-

connaissance and taking over of a domain. It is based on Powershell [17] and neo4j

database [18] and is used to visualize the AD structure and to �nd potential attack vec-

tors for dominating the domain. Similarly, the ADRecon tool by Sense of Security [52]

uses the LDAP protocol to gather information about the domain and its components.

Both tools require valid credentials of a domain user with no additional privileges.

Finally, it is worth mentioning some tools which are speci�cally designed to detect

honeypots. An example of such tool is Honeypot Buster developed by Javelin [53]. It

analyses the attributes of the objects in a AD looking for missing, repeated or inconsistent

entries and reporting it to the user.
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Chapter 4

AD Structure Modelling

In this chapter we describe the proposed framework for placing honeyusers in the existing

Active Directory structure. In its simplest form, AD is a Tree structure for a single domain

or a Forest for the cases of multiple domains. When we take into account the security

group membership and relations provided by the Global Policy Objects, the resulting

structure forms a Directed Acyclic Graph (DAG).We consider all edges to be the same

and therefore we don't use any edge features in the framework. Such a graph has exactly

one starting node representing the Domain. The goal of the proposed framework is to

process the whole graph structure and predict a location (in this context all edges) for

additional nodes which are used as honeytokens. Finding a meaningful location for the

honeypot reduces the chance of its detection.

In contrast with most of the existing graph processing ML frameworks which were de-

veloped for general graphs, the proposed framework utilizes the properties of the DAG.One

of the properties of a DAG is that there exists a topological ordering of the vertices. In

general, such ordering is not unique unless there is a directed path in the graph which

contains all vertices. With such ordering, we can make a sequence of nodes from graph

G which guarantees that for any nodevi in the sequenceall of its predecessors have been

processed in timestampst < i .

Subsequently, every nodevi can be de�ned by a sequence of its predecessors starting

with the root node. Each node in the graph is de�ned by a combination of the features

of the node and the sequence of predecessors.

The task of adding a new node to the existing structure consists of two actions: Finding

the features describing the node itself and �nding a sequence of its predecessors. Given the

fact that the existing structure must not be changed in the process, it means evaluating

all nodes in the existing graphs and deciding which of them should be direct predecessors

of the node appended to the structure. In other words, the framework is �nding a missing

links between the nodes in that are already in the structure and the new node.
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To the best of our knowledge there is no Tensorow 2 compatible library with imple-

mentation of DAG Recurrent Neural Network and its extensions. In this thesis we created

set of modules capable of processing arbitrary data in structured as DAG which are com-

patible with Tensorow 2 framework and its GPU acceleration. All models designed in

this thesis is free software.

4.1 Notation and De�nitions

Let G = hVG; EG i denote a Directed Acyclic Graph. We assume thatVG, the set of nodes

of G is ordered according to the topological sort of the DAG. Let� G(v); v 2 VG be a set

of direct predecessors of v in G.� � (vi ) represents the in-degree of the nodevi which is

the number of incoming edges.

Additionally, for a given DAG G, let Gr be areversedDAG with the same set of nodes

and reversed edges. Using the same topological sort, nodes ofGr are in reversed order

of the sorted nodes of G. Lastly, for a given DAG G, we de�ne� G : VG ! R to be a

d-dimensional vector function de�ned on nodes of G. We call� G encoding function and

use it in all proposed models.

As for the inputs and outputs of the models,X 2 f 0; 1gn� f is used to represent the

original feature matrix of the model using one-hot encoding.n represents the number of

nodes andf the size of the feature vector.A 2 f 0; 1gn� n is the adjacency matrix of the

original graph. m represents the number of new nodes andX 0 2 f 0; 1gm� f is the feature

matrix of the new nodes.

Thê symbol is used for estimated values, in particular̂A for the generated adjacency

matrix and X̂ generated feature matrix, in cases where the model is outputting one.

h = [ h0; :::; hi ] represents hidden states of nodes. When working with a hidden state of a

single node we use [hi , while h is used for operations with the list of theall hidden states.

H = [ H0; :::; H i ] represents the hidden states of the whole graph after processing nodei .

4.2 General Description of the Framework

In contrast to other graph generation tasks, in our domain we are not generating the

whole graph as the original AD structure has to remain unchanged. Therefore, the main

task is to generate a extension of the existing graph with properties as close to the original

as possible. The key of successful deployment of the honeypot is in disguising it properly

so it is not recognisable for the attacker. It is even more important in scenarios when the

adversary expects the presence of the honeypot. We assume that proposed models are

capable of generating node placements to meet such criteria while remaining worthy for
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the adversary to interact with.

In the generation process, machine learning is utilized in the structural part of the

task. For the node feature generation which consists of generating attributes independent

on the position of the node in the graph we use external tools. The process is described

in 4.7.

Figure 4.1 j General concept of the framework. Sequence of steps for extending
Active Directory with GNN generated Honeyusers

The framework pipeline shown in Figure 4.1 starts with extracting the existing struc-

ture from the AD. For that, either the Sharphound tool[54] can be used or a collection of

Powershell utilities. Since the Active Directory is much richer than the graph structure,

the next step is processing of the raw data in order to get the graph of user-related nodes

and dependencies. We refer to the graph as User Related Graph. The data in the graph is

later represented in two input matrices for the ML model:A which is is the binary matrix

representing input edges to each node andX which is the one-hot encoded matrix of node

types. The machine learning model predicts the incoming edges for the new nodes which,

together with A, form Â. The part of Â which contains the original graph must remain

intact because any changes in this sub-graph would inuence the functionality of the AD.

Using the extended graph, node features for the honeyusers can be generated. Since some

of the features, such as membership in organizational units depend on the position in the

graph, they cannot be generated beforehand. The last part of the pipeline is the actual

addition of the newly generated objects in the structure of AD. Powershell cmdlets or

LDAP addition queries are used at this point. If any anomaly detection tool or honeypot

manager is used in the system we can register the newly added users for proper reporting

and alerting.
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