
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

Graph Generative Models for Decoy Targets in Active
Directory

Master’s thesis

Bc. Onďrej Lukáš

Master programme: Open Informatics
Field of study: Data Science

Supervisor: Ing. Sebastián Garćıa, Ph.D.

Prague, August 2020

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

434714Personal ID number:Lukáš OndřejStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Data ScienceBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Graph Generative models for Decoy Targets in Active Directory

Master’s thesis title in Czech:

Generativní grafové modely pro klamné cíle v Active Directory

Guidelines:
1. Review the state-of-the-art methods for creating and deploying interactive
honeypots with attention to systems focusing on Active Directory. Also,
analyze state of the art of generative models with focus on Graph Models
2. Analyze common attacker behavior patterns and goals when targeting
Active Directory.
3. Design and implement a model for adversarial generation of decoy targets
in Active Directory Structures.
4. Experimentally evaluate proposed solution in real-world environment and
compare it with currently used solutions.
5. Critically analyze the results and propose further extensions of the
solutions with respect to possible integration with existing interactive
honeypots.

Bibliography / sources:
[1] Goodfellow, Ian J., Pouget-Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde-Farley,
David, Ozair, Sherjil, Courville, Aaron C., and Bengio, Yoshua. Generative adversarial
nets. NIPS, 2014
[2] Roger A. Grimes: Honeypots for Windows, Apress, 22. 11. 2006
[3] https://github.com/gentilkiwi/mimikatz
[4] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative
adversarial nets with policy gradient. In AAAI, pages 2852–2858, 2017.
[5] Wu, Zonghan et al. “A Comprehensive Survey on Graph Neural Networks.” IEEE
Transactions on Neural Networks and Learning Systems (2020): 1–21. Crossref. Web.

Name and workplace of master’s thesis supervisor:

Ing. Sebastián García, Ph.D., Artificial Intelligence Center, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 14.08.2020Date of master’s thesis assignment: 02.07.2019

Assignment valid until: 19.02.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signatureIng. Sebastián García, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

iii

iv

Declaration

I hereby declare I have written this thesis independently and quoted all the sources of
information used in accordance with methodological instructions on ethical principles for
writing an academic thesis.

In Prague, August 2020

..
Bc. Ondřej Lukáš

v

vi

Abstract

Abstract

Active Directory (AD) is one of the cornerstones of internal network administration in
many organizations. It holds information about users, resources, access rights and other
relations within the organization’s network that helps administer it.

Because of its importance, attackers have been targeting AD in order to obtain ad-
ditional information for attack planning, to access sensitive data, or to get persistence
and ultimately complete control of the domain. By design, any user with basic access
rights can query the AD database, which means that a password leak of even the most
unprivileged user is sufficient to gain access to the AD and eventually compromise other
accounts with higher privileges.

A common technique while attacking the AD is called lateral movement. Attackers
try to explore the network of the organization without being detected. During this time,
they are performing reconnaissance in the AD in order to find high-value targets and ways
of getting persistence in the domain. In these attacking scenarios the use of honeypots
may greatly improve the detection capabilities of the organization by providing an early
warning system. Honeypots are a well-known form of passive security measures. In the
most basic form, they are decoys disguised as real devices or information about a user, in
this last form they are known as honeytokens.

Despite being useful and promising a good detection, the basic constraint of a honeypot
is that it should be found before the intruders attack a real target.Therefore, it is crucial to
have the honeyuser placed correctly into the AD structure. However, with the complexity
and diversity of AD structures, this task is very hard.

In this thesis we propose a machine learning framework for analysing an AD structure
and enriching it with honeyuser accounts. We use graph neural networks and auto encoder
models together with the original structure of the AD to select the best placement of the
honeyusers. The models are trained and evaluated using a number of artificial datasets
created from the analysis of real structures. We propose three variants of the model
architecture and evaluate the performance of each them. Results show that the proposed
models achieve F1 score over 0.6 in structure reconstruction tasks. Moreover, the validity
ratio of the predicted placement is over 60% for the graphs of sizes similar to the real-world
AD environments.

We conclude that recurrent neural networks modified for DAG processing are capable
of modelling the structure of the AD and extending it with honeytokens. The generated
honeytokens have similar properties to entities in the original graph which reduces the
chance of their discovery.

Keywords: Honeypots, Active Directory, Machine Learning, Generative models, Au-
toencoders

vii

viii

Abstrakt

Služba Active Directory (AD) je základńım stavebńım kamenem interńıch śıt́ı ve většině
organizaćı. Jedná se o službu, která obsahuje informace o uživateĺıch, prostředćıch v śıti,
kontaktech, př́ıstupových právech k dat̊um a daľśıch závislostech v rámci vnitřńı śıtě
organizace. Z těchto d̊uvod̊u je Active Directory ćılem útočńık̊u, kteř́ı se snaž́ı výše po-
psané informace źıskat a využ́ıt k daľśımu plánováńı útoku, př́ıstupu k citlivým dat̊um
nebo źıskańı trvalého př́ıstupu. AD je koncipováno tak, že každý uživatel s př́ıstupem k
vnitřńı śıti se může dotazovat ř́ıd́ıćıho serveru na daľśı objekty v doméně, takže źıskáńım
př́ıstupových údaj̊u k libovolnému běžnému účtu bez zvlástńıch práv může útočńık př́ımo
komunikovat s ř́ıd́ıćım serverem AD a źıkat informace a př́ıstup k daľśım účt̊um s větš́ımi
pravomocemi.

V těchto př́ıpadech je možné použit́ım honeypot̊u zvýšit šanci na včasnou detekci.
Honeypot je běžně použ́ıvaný nástroj pasivńı ochrany. V nejjednodušš́ı formě se jedná
o past, která připomı́ná reálné zař́ızeńı službu či data. Posledńı zmiňované se nazývá
honeytoken.

Největš́ım omezeńım při použit́ı honeypotu je fakt, že k tomu aby byl účinný, jej
útočńıci muśı naj́ıt před interakćı s reálných systémem. Proto je zásadńı, aby i ve struktuře
Active Directory byl honeypot vhodně umı́stěn. Vzhledem ke složitosti, kterou struktura
AD může mı́t se jedná o netriviálńı úkol.

V této práci představujeme framework založený na strojovém učeńı, který analyzuje
strukturu AD a rozšǐruje ji o honeytokeny. S využit́ım grafových neuronových śıt́ı a auto-
enkodér̊u vyb́ıráme vhodné umı́stěńı honeytokenu v exituj́ım AD. Modely jsou trénovany
a testovány za použit́ı uměle vytvořených dataset̊u, které jsou vytvořeny podle existuj́ıćıch
AD. Představené modely dosahuj́ı 0.6 pro F1 metriku při rekonstrukci graf̊u a přes 60 %
úspěšnnost při predikci hran pro honeytokeny a to i v grafech, které jsou velikost́ı srov-
natelné s produkčńımi AD. Tato práce ukazuje, že rekurentńı neuronové śıtě upravené
pro zpracováńı orientovaných acyklických graf̊u jsou schopné modelovat strukturu Active
Directory a rozš́ı̌rit ji o honeytokeny. Generované uživatelské účty jsou svými vlastnostmi
podobné uživatelským účt̊um v p̊uvodńı struktuře, č́ımž se snižuje pravděpodobnost jejich
odhaleńı.

Kĺıčová slova: Honeypot, Active Directory, Strojové učeńı, Generativńı modely, Auto-
enkodéry

ix

x

Acknowledgements

I would first like to thank my thesis advisor Ing. Sebastián Garćıa, Ph.D. from the FEE,
Czech Technical University. I am truly grateful for his never-ending support, encour-
agement and guidance throughout the process of writing of this thesis. He consistently
allowed this paper to be my own work, but steered me in the right the direction whenever
he thought I needed it.

I would also like to thank Ing. Maria Rigaki for her comments and insights as she was
kind enough to help with this thesis as a specialist consultant. Without her passionate
participation and input, the thesis could not have been successfully conducted.

Furthermore, I would like to acknowledge Ing. Veronica Valeros and all other members
of Stratosphere Laboratory as additional readers of this thesis, and I am gratefully in-
debted to their valuable comments. I also gratefully acknowledge the support of NVIDIA
Corporation with the donation of the Titan V GPU used for this research.

Finally, I must express my very profound gratitude to my parents and to my fam-
ily for providing me with unfailing support and continuous encouragement throughout
my years of study and through the process of researching and writing this thesis. This
accomplishment would not have been possible without them. Thank you all.

Ondřej Lukáš

xi

xii

List of Tables

2.1 Scopes of security groups in Active Directory [15] 9

5.1 Comparison of artificial datasets in terms of number of samples, number of
nodes and edges. 42

6.1 Metrics used for the model evaluation in graph reconstruction experiment . 45
6.2 Performance of Model 1 for generating an AD structure using datasets of

various graph sizes. 45
6.3 Performance of Model 2 using datasets of various graph sizes 47
6.4 Evaluation of DAG-RNN VAE using datasets with various graphs sizes . . 49
6.5 Color codes for the comparison of Models 2 and 3 52

7.1 Results of generative experiments for Model 1 55
7.2 Results of the generative experiments for Model 2 56
7.3 Results of the generative experiments for Model 3 56
7.4 Examples of generated honeyusers and predicted direct predecessors in the

real AD . 60

A.1 Evaluation of the influence of the latent space dimensionality on DAG-RNN
Autoencoder performance (Dataset 50) . 64

A.2 Evaluation of the influence of the latent space dimensionality on DAG-RNN
Autoencoder performance (Dataset 150) 64

xiii

List of Figures

2.1 Active Directory attack kill chain . 10
2.2 Example of a simple neural network . 11
2.3 Basic recurrent cell and its unfolding . 14
2.4 Block diagram of LSTM cell . 15
2.5 Comparison of GRU and LSTM cells . 15
2.6 Unfolding of a bidirectional RNN . 16
2.7 Deep Sets Architecture - Invariant . 16

4.1 General concept of the framework . 25
4.2 Design of the generic model . 26
4.3 DAG Ordering Example . 28
4.4 Details of the structure of our special DAG-RNN layer, created for this thesis. 29
4.5 Decoder in Model 1 . 33
4.6 Decoder in Model 2 . 34
4.7 DAG-RNN VAE Model . 37

5.1 Simple example of user-related graph . 41
5.2 Matrix representation of the example User Related Graph 41
5.3 Example of AD data . 43

6.1 ROC Curves of Model 1 per dataset . 46
6.2 Precision/Recall Curve of Model 1 per dataset 46
6.3 ROC Curve of Model 2 per dataset . 47
6.4 Precision/Recall Curve of Model 2 per dataset 47
6.5 Sample from Dataset 15 reconstructed with Model 2 48
6.6 Sample from Dataset 50 reconstructed with Model 2 48
6.7 ROC Curve of Model 3 per dataset . 49
6.8 Precision/Recall Curve of Model 3 per dataset 49
6.9 Examples of VAE output - Dataset15 . 50
6.10 Examples of VAE output - Dataset50 . 50
6.11 PR curve comparison (Dataset15) . 51
6.12 PR curve comparison (Dataset50) . 51
6.13 Model 2 & 3 comparison (Dataset50) . 52
6.14 Model 2 & 3 comparison (Dataset150) . 52

7.1 Comparison of structures generated by Models 2 and 3 (Dataset 15) 58
7.2 Comparison of structures generated by Models 2 and 3 (Dataset 50) 59

A.1 δ hyper-paremeter tuning for Model 2 . 65
A.2 PR curve comparison (Dataset150) . 65

xiv

A.3 PR curve comparison (Dataset500) . 65

xv

Contents

Abstract vii

Acknowledgements xi

List of Tables xiii

List of Figures xiv

1 Introduction 1

2 Background 4
2.1 Directory Service . 4
2.2 Lightweight Directory Access Protocol (LDAP) 5

2.2.1 Distinguished Name (DNs) . 5
2.2.2 Attributes . 5

2.3 Active Directory . 6
2.3.1 Active Directory Objects . 7
2.3.2 Groups . 8
2.3.3 Relations Between Objects in AD 8
2.3.4 Active Directory Attacks . 9

2.4 Neural Networks . 10
2.4.1 Backpropagation Algorithm . 12
2.4.2 Stochastic Gradient Descent . 12
2.4.3 Recurrent Neural Networks . 13
2.4.4 Graph Neural Networks . 15
2.4.5 Deep Sets . 16
2.4.6 Generative Models . 17

2.5 Honeypots . 17
2.5.1 Types of Honeypots . 18

3 Previous Work 20

4 AD Structure Modelling 23
4.1 Notation and Definitions . 24
4.2 General Description of the Framework . 24
4.3 Components Design in the Generic Model 26

4.3.1 DAG-RNN Encoder . 27
4.3.2 DAG Recurrent Layer . 27
4.3.3 Bi-directional DAG Recurrent Layer 29

xvi

4.3.4 Loss Function . 30
4.3.5 Implementation Details . 31
4.3.6 Model Training . 32

4.4 Model 1: Direct Edge Prediction . 32
4.4.1 Model Components . 32

4.5 Model 2: DAG-RNN AutoEncoder . 33
4.5.1 Model Components . 34
4.5.2 Loss Function . 35

4.6 Model 3: Variational AutoEncoder . 36
4.6.1 DAG-RNN VAE Model Architecture 37

4.7 Transition from a User Related Graph to AD Entries 39

5 Dataset 40
5.1 Artificial Dataset Creation . 42
5.2 Extracting Data From The Active Directory 43

6 Graph Reconstruction Experiments 44
6.1 Evaluation Metrics . 44
6.2 Structural Experiment Results and Analysis 45

6.2.1 Model 1: Direct Edge Prediction 45
6.2.2 Model 2: DAG-RNN Autoencoder 46
6.2.3 Model 3: Variational Autoencoder Model 48
6.2.4 AD Structure Modelling: Model Comparison 51

7 Generative Experiments 53
7.1 Evaluation Metrics . 53
7.2 Generative Experiment Results and Analysis 54

7.2.1 Generative Experiment: Model 1 55
7.2.2 Generative Experiment: Model 2 55
7.2.3 Generative Experiment: Model 3 55
7.2.4 Model Comparison . 57
7.2.5 Examples of Generated Structures 57

7.3 Generation of Honeyusers . 57
7.3.1 Examples of Predicted Parent Nodes Testing Domain 58

8 Conclusion 61
8.1 Future Work . 62

A Detailed experiment results 64
A.1 AD Structure Modelling . 64

A.1.1 Auto encoder with variable z-dimension 64
A.1.2 δ hyper-parameter of Huber loss . 65
A.1.3 Model comparison with Datasets 150 & 500 65

References 69

xvii

Chapter 1

Introduction

It is only a matter of time until an organization receives an attack. It is no longer a matter

of if, but when [1]. The security community has known for a long time that some attackers

will succeed, and the only solution for these cases is a security protection in every level

of the organization that is dynamic and constantly evolving [2]. No unique solution is

enough to deal with all attacks. Among the attacks that an organization can receive, the

most critical are those which give the attacker access to the internal network. In such

situations,the attackers are considered as part of the organization and security measures

are more relaxed. In the last decade large companies like Sony, Austria Telekom, NTT

and Citrix have been compromised and attackers gained access to their networks [3]–[6].

If those companies were breached, any company may be as well. Attackers that can

access internal networks are not only amazingly hard to detect and stop, but also security

protections in that level are scarce and difficult to implement.

Some of the reports of security attacks inside organizations suggest that attackers

first gain access to the Active Directory (AD) system of an organization in order to

learn about the internal structure and the assets to attack [7]. Therefore, many security

solutions attempt to deal with how to secure AD systems and how to better gain visibility

on the attackers before they get what they want.

Solving the problem of external attackers with access to the internal network and at-

tacking the Active Directory is not an easy task, and it is usually addressed in different

ways. First, there are solutions endeavoring to stop attackers from accessing and explor-

ing the AD, for example by using network segmentation and limiting access to critical

servers [8]. The key to performing an AD reconnaissance attack is to get access to any

user in the domain. Due to the default nature of an AD, any user has the right to read the

information stored in the AD. This allows the attackers to perform the initial reconnais-

sance before moving to privilege escalation attempts [9]. However, for the same reason,

detecting scanning attacks to the AD is a very difficult task. Common defense practices

1

in this area use techniques that rely on hardening AD configurations and monitoring of

system events [8], [10].

Another way of finding attackers in a network before they attack is to place honeyto-

kens in the production environment. A honeytoken is a trap that is disguised as a real

object and is designed to attract the attention of the attacker [11]. By definition, normal

users should never interact with honeytokens and therefore, any interaction assures the

detection of an attacker. Honeytokens have been used for other security detections in the

past, for example as fake accounts, fake database entries, etc. [12], but nobody created, as

far as we know, honeytokens for Active Directory services in order to detect the attackers

as soon as they choose to access information about the fake users (also referred to as

honeyusers).

The problem of creating a fake user in the AD system is larger than just creating

the information about a user. An attacker can easily identify if a user is fake, thus it is

important to create a user with realistic information and, more importantly, a user that

is placed correctly inside the organization. Therefore, where to place a fake user inside

the AD system is paramount for the success of the detection mechanism. Since there is

no research so far solving these problems, AD systems in production right now do not

have a good way of creating honeyusers inside their systems in a way that actually looks

like a normal user.

In an attempt to solve these issues, this thesis proposes to reconstruct the structure of

an existing AD and to generate a new structure that adds new fake users in it. This is done

by training a generative machine learning model that generates AD structures with fake

users inside. In our approach, we analyze the structure of the whole AD domain with deep

learning methods and use a model to determine which is a suitable location for placing

the fake users. Since Active directory is designed as a tree structure considering a group

membership as a type of edge in the graph, the whole domain can be transformed into

a directed acyclic graph. In recent years, deep learning methods focusing on graphs and

graph structured data have been shown to be powerful enough to outperform traditional

ML methods. This thesis researches the following problems: reconstruct a current AD

structure effectively, and find the best location in that current AD structure to place

honeyusers.

In order to train a good generative model of an AD structure we need good labeled

data. However, since AD holds sensitive information about the structure of an organi-

zation, its components, users and resources, its is extremely difficult to obtain the real

AD data from an organization. Sharing or even extracting information from a production

AD is often forbidden for third parties by company policy. Since training an ML model

required a substantial amount of data samples, we had to reuse limited real data samples,

2

by combining them with expert knowledge and known best practices for AD set up, to

create artificial datasets. These datasets are good enough to perform the required task

and they only differ in the number of nodes of their graph structures.

There are two main experiments performed: Evaluation of on task, where models

attempt to reconstruct the original graph, and generative task, where models enrich the

existing structure. The structures created in second type of experiments are evaluated

with existing tools to verify compatibility.

We showed that model architecture based on the auto encoder is capable of capturing

the relation withing the graphs and create node-level encoding of a fixed size. Comparison

of the models resulted in finding that models base on direct edge prediction are scalable

to a graph sizes common in the AD domains.

Experiments with sequential generation of honeyusers for the existing domains showed

that proposed framework can be utilized for such task. The proposed model produces AD

objects with properties similar to the objects of same type in the original. The experiment

results suggest that objects generated using proposed framework are viable for using as a

honeypots. However, further evaluation with human interaction is necessary for conclu-

sive proof of this hypothesis. One of the outcomes of this work is a functional tool for

automated honeypot deployment in the Active Directory. For the model, we created a

Tensorflow implementation of DAG-RNN scalable for use in structures containing hun-

dreds of nodes, which is two orders of magnitude higher than the original paper. The

custom layer is based on the Tensorflow/Keras API and is compatible with other modules

in the library.

The thesis is structured as follows: Chapter 2 describes the directory services with

special impact on Active Directory. Additionally, it briefly mentions the basic building

blocks of modern neural networks. Chapter 3 describes the state of the art of graph neu-

ral networks with special attention to generative models and autoencoders. It also shows

examples of work using ML methods in honeypot creation and deployment. Moreover, it

also mentions commonly used tools for scanning the Active Directory. Chapter 4 contains

proposed model architectures for processing the AD structure, mainly the description of

our design and implementation of the DAG-RNN layer and its use in graph encoding.

Chapter 5 explains how the datasets used in this thesis are created and their proper-

ties. Chapter 6 provides information about the experiment setup structural modelling

evaluation while Chapter 7 shows methodology and results for generative experiments.

3

Chapter 2

Background

2.1 Directory Service

Directory service is a shared infrastructure used to manage, organize and locate resources

in a network. Such structures can include data, users, devices and groups that are being

used on a daily basis. Directory service is a cornerstone of shared resources, accounts, and

credentials within a computer network inside an organization. The directory server, also

known as name server, provides the service for the particular network. Each object in the

network has a collection of attributes associated to it and also a name that is unique in

the namespace defined by the directory service. This illustrates how a directory service

and a relational database can be similar. However, with a directory service, data can be

redundant in the interest of performance. There are two basic types of attributes which

a class of objects can have. These are defined in a Directory Schema:

• Must - attributes which each instance of a particular class must have

• May - attributes which may be defined for a instance but can be omitted. (Similarly

to NULL in a relational database)

In 1980s, the International Telecommunication Union (ITU) and International Or-

ganization for Standardization (ISO) published a collection of standards for directory

services known as X.500 which are also incorporated in ISO/IEC 9594[13]. Based on this

standard the Lightweight Directory Access Protocol (LDAP) was founded as an open,

vendor-neutral, string encoded protocol for accessing and maintaining directory services

over the Internet.

4

2.2 Lightweight Directory Access Protocol (LDAP)

Lightweight Directory Access Protocol (LDAP) is a protocol based on TCP/IP which is

designed to perform a variety of operations in a directory server. The standard TCP

ports for LDAP are 389 for unencrypted communication, and 636 for LDAP over a TLS-

encrypted channel. However, for a variety of reasons it is not uncommon for LDAP servers

to listen on alternate ports.

An LDAP entry is a collection of information about an entity. There are three com-

ponents in each entry: the distinguished name, a collection of attributes, and a collection

of object classes.

2.2.1 Distinguished Name (DNs)

Distinguished name of an entry, often referred to as DN, is a unique identifier of an entry

and its position within the directory information tree. It is much like a path to a file in

file system. A DN is composed of zero or more elements called Relative Distinguished

Names (RDNs). If an entry has multiple RDNs, their order specifies the exact location

of the entry in the structure. RDNs are separated by commas, and each RDN in a DN

represents a level in the hierarchy in descending order (moving closer to the root of the

tree, which is called the naming context). That is, if you remove an RDN from a DN,

you get the DN of the entry, considered the parent of the former DN. For example, the

DN ”uid=john.doe,ou=People,dc=example,dc=com” has four RDNs, with the parent DN

being “ou=People,dc=example,dc=com”.

Each RDN consists of a name-value pair. Note that despite each component of a DN

is a RDN, it is common practice to refer to the leftmost component of an entry’s DN as the

RDN for that entry. In the example “uid=john.doe,ou=People,dc=example,dc=com”

the component “uid=john.doe” would be called the RDN of the entry. The attribute

name-value pairs in this leftmost component must be present in the entry (so the entry

“uid=john.doe,ou=People,dc=example,dc=com” must contain a uid attribute

with a value of “john.doe”).

2.2.2 Attributes

Attributes are the elements used for storing data in a directory. The LDAP Schema

defines the rules for which AttributeTypes may be used in an LDAP Entry, which values

those AttributeTypes may take, and how users may interact with those Attribute Values.

Microsoft’s AD Schema further holds:

1. the syntax of each Attribute in the schema

5

2. which Attributes are replicated to the Global Catalog

3. whether they are SINGLE-VALUE or MULTI-VALUE

4. which class of objects can use each attribute.

A complete list of AD object attributes can be found in [14]. Object Classes are elements

that specify a collection of attributes types that can be related to a particular object. Each

entry has its structural object class which defines the core type of the entry. Structural

classes are the only classes that can have instances.

2.3 Active Directory

Active Directory (AD) is an implementation and extension of Directory Services created

by Microsoft for Windows domain networks. AD was first released with Windows Server

2000 and its functionality was extended over the years. Nowadays, AD is composed of

the following services:

• Domain Services

• Certificate Services

• Lightweight Directory Services

• Rights Management Services

• Federation Services

In this work, we are mainly focused on the Domain Services part of Active Directory

(AD DS). It is the core part which manages users and computers and allows sysadmins to

organize the data into logical hierarchies. AD DS also provides services for security cer-

tificates, Single Sign-On (SSO), LDAP, and rights management. There are two important

classes of objects we will focus on: container classes and account classes. Containers are

objects designed to hold other objects such as OrganizationalUnit or GroupPolicyCon-

tainers. Account classes are objects which represent a specific entity in the structure. An

obvious example is the User object, although Computer objects are also part of this class.

In the following subsections, we will examine objects that are used later in the thesis in

detail.

6

2.3.1 Active Directory Objects

Domains

The core entity in the logical structure of AD is the domain. It is a special object which

allows grouping of other objects to reflect the company organization. The domain also

serves as a security boundary. Access Control Lists (ACLs) are used to define which users

or groups of users can gain access to an AD object and what kind of access. Security

policies do not cross from one domain to another.

Trees

In case the organization has more than one domain which all share a namespace, those are

organized in a tree. All domains in a tree share a common schema, which is a definition

of all object types and additional attributes. Moreover, all domains within a tree share a

common Global Catalog, which is a centralized repository of information about all objects

in a tree. Parent and child domains in a tree are linked by a special type of connection

called trust. Trust allows users from one domain to access resources in another assuming

they have access.

Forests

A forest is a collection of one or more trees. All trees in a forest share the same schema.

Similarly to trust links in one tree, trust between trees can be formed in a forest to connect

one or more trees.

Organizational Units

An Organizational Unit (OU) is special type of container in AD which can hold different

objects from the same domain such as other containers, groups, users, and computer

accounts. The structure of OUs usually follows the structure of the organization either

functionally (Sales, R&D, IT, etc.) or geographically. Note that since an OU is a type of

container, it can be nested. There are two main reasons for using OUs:

1. Delegation of management and administrative tasks to other administrators and

users without the necessity of granting them domain administrator permissions

2. Linking Group Policies to all objects within the OU

7

2.3.2 Groups

In order to simplify the communication and administration of large organizations, there

are two group types in AD: Distribution groups and Security groups. Distribution groups

are used to distribute messages to group members with email applications such as Mi-

crosoft Exchange. Distribution groups are not related to security and therefore cannot be

used to assigning permissions to resources. For that reason we are not focusing on them

in this thesis and use the term group as an equivalent to Security Group.

Security Groups

The purpose of security groups is to allow system administrators to assign permissions

and user rights to members of the group. Granting permissions for the whole group

rather than for each user independently is much more efficient. Additionally, it allows for

changing the rights of single users just by adding or removing them from the group based

on the current requirements while leaving the groups’ permissions or rights unchanged.

Groups can have different scopes, meaning the permissions and user rights of that

group are only valid in certain parts of the AD structure. Table 2.1 describes the differ-

ences in scopes of each security group type [15].

2.3.3 Relations Between Objects in AD

So far, we have talked about different object types within the Active Directory. Let us

briefly look at the relations that can exist between the objects. Earlier we described the

simplest relation determined by RDN. It describes the position of the object within the

AD as a path from the root node to the particular object. Other relations are described

by the permissions, and most importantly by attributes memberOf and members which

describe membership of objects in groups. By combining the attributes of a pair of objects

one can infer more relations such as AdminTo, hasSession and a number of specific Access

Control Entries. Using these relations as oriented edges and objects as nodes, we can view

the whole structure of an Active directory as a Directed Oriented Graph. A notable tool

that uses graph theory to plot and analyze the structure of an AD is called Bloodhound

[16]. Bloodhound is an open source tool that relies on Powershell[17] and LDAP to query

the AD, and uses a neo4j [18] database to store and analyse the structure. It is widely

used by both system administrators and red teams to find the weak points in AD setups

and to plan attack vectors for gaining persistence in the domain and further escalate

privileges.

8

Scope Possible Members Can Grant Permis-
sions

Possible Member of

Universal Accounts from any domain in
the same forest

On any domain in the
same forest or trusting
forests

Other Universal groups in the
same forest

Global groups from any do-
main in the same forest

Domain Local groups in the
same forest or trusting forests

Other Universal groups from
any domain in the same forest

Local groups on computers in
the same forest or trusting
forests

Global Accounts from the same do-
main

On any domain in the
same forest, or trusting
domains or forests

Universal groups from any do-
main in the same forest

Other Global groups from the
same domain

Other Global groups from the
same domain

Domain Local groups from any
domain in the same forest, or
from any trusting domain

Domain Local Accounts from any domain or
any trusted domain

Within the same domain Other Domain Local groups
from the same domain

Global groups from any do-
main or any trusted domain

Local groups on computers in
the same domain, excluding
built-in groups that have well-
known SIDs

Universal groups from any do-
main in the same forest

Other Domain Local groups
from the same domain

Accounts, Global groups, and
Universal groups from other
forests and from external do-
mains

Table 2.1 Scopes of security groups in Active Directory [15]

2.3.4 Active Directory Attacks

Holding information about users, devices and resources within the organization, Active

Directory is a natural target. The scope and goals of attacks spread from stealing and

leaking user data to complete destruction of the domain. Example of the latter can be the

Maersk incident [19]. In 2017, one of the offices of this international shipping company

was attacked with a malware called NotPetya. According to the reports, within minutes

from the infection of the first user, the worldwide network of the company was rendered

useless. This included more than 40,000 devices, over 1,000 applications, file-sharing and

printing capabilities, cloud, and Active Directory servers all being put offline.

Despite having a different outcome, the attacks typically start with breaching one

account using various phishing techniques. The goal of this part of the attack is to get

access to any account in the domain. Due to the protocol design, an initial foothold on

the AD Domain allows the attacker to query the AD server and get additional information

about the objects in the domain. In this thesis we are not focusing on the detection of the

first step of the attack which is the credential breaching. We work with the assumption

9

that some non-privileged account was already compromised.

Figure 2.1 | Active Directory attack kill chain. Sequence of steps that the attackers
perform to dominate a domain [9].

The common sequence of steps that the attackers perform when attacking AD is shown

in Figure 2.1. After breaching the domain, the first phase of the AD recon starts - Low

privileges lateral movement. In this phase, attackers try to find and compromise accounts

with higher privileges, map the domain, and prepare the ground for more targeted attacks.

It is common practice to achieve persistence even in case of a password change in the

compromised accounts. The final step of this phase is called Domain dominance and at

this point, the attacker controls the domain, has access to admin accounts, can execute

code and move freely in the domain. Note that the lateral movement phase can take

anything between a couple of hours to weeks depending on the size of the domain. In

this period, it is crucial for the attacker to remain undetected until the domain is fully

controlled. In this thesis we aim to focus on using honeyusers to detect attackers during

lateral movement phase.

2.4 Neural Networks

The human brain is capable of learning tasks without prior knowledge, using examples

and experience. This has been a great inspiration and a founding idea for a field of

artificial intelligence called machine learning. In certain domains it is impractical or even

impossible for a human to create a program to perform a particular task. However, we

can collect a set of samples described by features and encode the desired output for each

of them. For utilizing the training process, a mathematical model which can adapt itself

is required. Such models are designed to use statistics to find and encode underlying

patterns in the training samples.

10

Inspired by the way information is processed in a biological system, mathematical

model neural systems were created [20], which we call them Neural Networks. The first

idea of artificial neuron was proposed in 1943 in [21] and later extended and further

developed into more complex systems such as Multi-Layer Perceptron [22].

Figure 2.2 | Example of a simple neural network.

Figure 2.2 shows an example of a simple neural network. On the left, there is an input

layer which takes a feature vector X = {x1, x2, ..., xn}, xi ∈ R describing an arbitrary data

sample. Next, there is a hidden layer, consisting of three neurons. There are two opera-

tions performed in each neuron during the forward propagation of information: weighted

sum of the inputs and activation functions

Next there is a hidden layer, which consists of three neurons {h1, h2, h3}. Each neuron

in the hidden layer first computes a linear combination of all of its inputs. In case of h1

it is computed as:

hin1 = x1w1,1 + x2w2,1 + x3w3,1 + ...+ xnwn,1 (2.1)

where wi,j represents weight on the link from xi to hj. The collection of all such weights in

the network is called trainable parameters and finding the optimal values for them is the

core task during the training of the model. After computing the weighted sum of inputs,

the activation function is used to produce houtj , the output of neuron hi. In the example

such activation function is the sigmoid function so the computation is as follows:

houti =
1

1 + e−h
in
i

(2.2)

In Figure 2.2, there is only one neuron in the output layer which follows the exact steps.

In some cases, the activation in the output layer is omitted, which is equal to using a linear

11

activation function. To finish the computation, the output o of the model is computed as

o =
1

1 + e−(
∑

hi∈{h1,h2,h3}
hiwi)

(2.3)

That is the last step of forward propagation in the network. We can use the output of the

model and the expected value (training samples consist of inputs and expected outputs)

and compute the error. For that we use a loss function L. The loss function is a key

component in the training because it servers as a feedback for the model and for the

estimation of how well it performs for each training sample. In order to decrease the loss

of the model we need to tune the parameters of each of the operations in the forward

propagation. In the example in Figure 2.2 the only trainable parameters are the weights

of the linear combinations wi. The optimization of the parameters of the model are done

with the Backpropagation algorithm.

2.4.1 Backpropagation Algorithm

For an estimate of the error for a given training sample we need to know how to adjust

individual parameters in order to lower the loss. Backpropagation takes this error value

and computes its partial derivatives with respect to every parameter in the network.

The value of the derivative for each weight shows how much does a weight contribute to

the output of the network. Computation of backpropagation runs in the exact opposite

direction as computation of the outputs of the network. Using the chain rule, we can reuse

the computed derivatives that make the algorithm efficient as all the partial derivatives

are computed in one pass. The backpropagation algorithm was one of the first ways of

showing that neural networks are actually capable of learning non-trivial features. Until

then, hand-crafting features was often the taken approach, which was limiting because of

the time and computational power required to include more fields of problems. Now, it is

commonly used together with a gradient descent type of algorithm to complete the whole

training process of a neural network.

2.4.2 Stochastic Gradient Descent

The main goal is still optimization, meaning that we want to converge to the minimum

possible error regarding the results of our network. One possible way to perform the

right adjustments to the weights of our network, is to use an algorithm such as gradient

descent. As described in [23], we pick a point in the weight space by initializing all the

weights in our network. By computing the gradient with the backpropagation algorithm,

we will move to a neighboring point, which is downhill and repeat until we converge to

a minimum. A very important part of this process is the learning rate which determines

12

how large is the step taken. It can either be a constant or it can change overtime.

However, using the gradient descent method over the whole data set may be very costly,

because data sets for neural networks tend to be large. One solution is to use stochastic

gradient descent, which is probably one of the most used optimization algorithms when

it comes to deep learning. The SGD works over mini-batches and not the whole data.

Algorithm 1: Stochastic Gradient Descent

1 Stochastic gradient descent update in time step k requires learning rate εk and
initial parameters Θ on the input. The function f denotes computation done by
neural network.

2 Until a stopping criterion is met, repeat:

1. Sample a mini-batch of data samples {x1, x2, ..., xn} and their corresponding labels
{y1, y2, ..., yn}

2. Compute the gradient

ĝ ←− +
1

n
∇Θ

∑
i

loss(f(xi; Θ), yi)

3. Update the parameters
Θ←− Θ− εĝ

Further development of optimizers focus on making the training faster, more reliable,

and avoid situations when the algorithm finds local minimum. Detailed explanations of

the methods and their empirical comparison can be found in [24]. For training our models

we use the Adam optimizer [25].

Capabilities of such models have been thoroughly examined. The Universal Approxi-

mation Theorem states that feed forward neural network with a single hidden layer of finite

number of neurons is capable of approximating continuous functions under mild assump-

tions on the activation function. Leshno et al. [26] showed that a multilayer feedforward

network with a locally bounded piecewise continuous activation function can approximate

any continuous function to any degree of accuracy if and only if the activation function

is not polynomial.

2.4.3 Recurrent Neural Networks

In some domains, such as time series prediction, sequence classification or text processing,

there is an implicit sequence of data samples. Recurrent Neural Networks (RNNs) are

architectures which are designed to process sequential data and learn the underlying

dependencies. The building block of RNN is called a recurrent cell. In theory, recurrent

neural networks can process sequences or arbitrary length.

13

Figure 2.3 | Basic recurrent cell and its unfolding. [22]

In Figure 2.3 we can see an example of the basic type of recurrent cell. In each step

of the sequence, the cell has two inputs:

1. xi: features of the current step of the sequence

2. h(i−1):output of the cell in a previous step of the sequence

When the cell is unfolded (also known as unroll), it can be see the how the information

flow as the sequence is being processed. Based on the task, either the concatenation of

hidden states from each step is used as an output or just the last output of the sequence.

Since the cell uses the same weights and biases for each step of the sequence, we can

see the process as learning what information to store in memory. In practice, however,

simple RNN cells tend to struggle with learning long-term dependencies as they keep

”overwriting” the memory with incoming data. There are two extensions of the RNN cell

architecture designed to combat this problem.

Long-Term Short Memory cells

Long Short-Term Memory (LSTM) [27] cells, are an extension of simple RNN cells de-

signed to capture long-term dependencies in the data. There are three non-linear functions

called gates added to the cell as shown in Figure 2.4.

Each of the gates has the same inputs: previous hidden state and current feature vec-

tor. Such architecture enables controlled forgetting in the training process. The downside

of this approach is that the amount of parameters for training is much higher.

Gated Recurrent Units

Gated recurrent units (GRU) were first proposed in 2014 in [28] as a tool for neural

translation in a sequence-to-sequence manner. In the diagram shown in 2.5it can be seen

that unlike LSTMs, GRU cells don’t have an output gate which means they have less

parameters to train. However, it also means that there is less control over the forgetting.

In [30] it has been shown that LSTMs consistently outperform GRU cells in Natural

Language Processing tasks.

14

Figure 2.4 | Block diagram of LSTM cell. [22]

Figure 2.5 | Comparison of GRU and LSTM cells. Diagrams showing different gates
in Gated Recurrent Unit(left) and Long-Term Short Memory (right) cells [29]

Bidirectional RNN Cells

In some domains, such as text processing, elements of the sequence are dependant not

only in the previous elements but also on those coming after. Bidirectional RNNs take

this into account and process the sequence in both directions combining or concatenating

the outputs. Results from processing the sequence in either direction are either stacked

or aggregated. Commonly, simple aggregation functions such as sum or max are used,

but in theory, any differentiable aggregation can be applied for this task.

2.4.4 Graph Neural Networks

Graph structures are commonly used for representation of data in various domains. In-

spired by the the success of convolutional neural nets in image processing, there have been

attempts in recent years to use the same concept on graphs. Unlike images, where the

15

Figure 2.6 | Unfolding of a bidirectional RNN. [31]

neighborhood of a pixel is defined by a grid of fixed size, in graphs we use the edges to

gather the information from the node’s neighbours in a similar manner. Such methods

were very successful in a variety of tasks from node classification to graph modeling.

2.4.5 Deep Sets

Traditional approaches for training neural networks account for fixed dimensions of feature

vectors. Image processing can be listed as an example of a domain that is suitable for such

an approach. In recent years, there have been several attempts to extend machine learning

tasks to sets of samples. Pevný and Somol [32] showed that the underlining tree structure

of the data can be used for aggregation of partial estimators to perform classification

tasks on the complete structure. Similarly, Zaheeer et al. [33] proposed a framework for

inference over a set of objects which outperform the approach using recurrent networks.

Both teams use similar techniques to process a set (bag) of samples: Firstly, each item in

a set is embedded in a fix size vector space using a estimator φ. Next, all embedded items

are aggregated using a sum function and fed into a second estimator ρ. Such approach is

applicable to sets with arbitrary sizes and element ordering.

Battagalia et al. [34] showed that learning from a set of samples can be viewed as a

special case of graph learning (considering a set to be a graph without edges) and that

Graph Neural Networks are applicable for such a task.

Figure 2.7 | Deep Sets Architecture - Invariant. [33]

16

2.4.6 Generative Models

Neural networks are commonly used for two types of tasks: classification of samples and

regression. With advances in image and text processing, another use-case for such models

became popular: generation of new data with similar properties as those of the training

samples [35]. There are two popular directions in the development of generative models:

Generative adversarial networks (GANs) and autoencoders.

Generative Adversarial Networks

The first approach uses Game Theory to find the equilibrium state of a system of two

models which compete against each other. The first model, called the generator, attempts

to generate a sample. The second model, called the discriminator, takes as input a mixture

of real data points and generated samples and attempts to classify them as either real or

fake. Using each others outputs, both model update their parameters until convergence.

Autoencoders

The second approach to generative models also uses two separate models, but in a very

different fashion. Training samples from Rn are embedded (encoded) in a fixed size latent

space Rm m < n by a first model called an Encoder. Afterwards, the second model,

called a Decoder, attempts to reconstruct the samples in the original space Rn. Since

the dimensionality of the latent space is lower than in the case of the real data, there is

implicit information loss. Encoder-Decoder architectures are optimized to minimize the

information loss of the process.

2.5 Honeypots

A honeypot is a system which is set up as a decoy to lure attackers and to detect and

study attempts to gain unauthorized access to information systems. By definition, no

legitimate user should ever interact with a honeypot, therefore anyone who attempts to

connect or interact with it is considered an attacker.

As with any other defense system there are pros and cons when deploying honeypots.

The main benefit of a honeypot is that it allows researchers and security professionals to

collect real data from actual attacks and unauthorized activities in the network. Such

information provides insight about the course of the attack, tools used, and all together

allows for designing better defense mechanisms. Another aspect is that since there is no

interaction from legitimate users, the false positive rate is significantly reduced. Deploy-

ing honeypots is also cost-effective: in contrast with the majority of intrusion detection

17

systems, with honeypots there is no need to analyze large volumes of network traffic which

reduces hardware demands. It is common to use virtual machines as a honeypots.

There are a couple of disadvantages of honeypot usage which often discourage sys-

tem administrators from using the technology. The most pressing question is about the

security of a honeypot: If it allows a lot of interaction with a potential attacker, there

is a risk of misconfiguration, or even errors in the honeypot system which can lead to

security breaches.. There is a trade-off between the distinguishability of a honeypot and

the amount of interaction it provides. Especially in setups where the attacker suspects

a presence of honeypots in the network, one has to pay a lot of attention to make them

look real and important enough to attract the attacker. Last, but not least, is the issue

of analysis of the collected data. Honeypots, which are freely accessible in the Internet

can generate big volumes of data mainly because of the background ”noise” which is

present in the network. In general, honeypots are not a substitution for intrusion detec-

tion systems, but can be a valuable addition to a setup that provides more information

about the attacks. In the following section we present a brief classification of honeypots.

2.5.1 Types of Honeypots

Honeypots can be split into several groups. The most common classification is based on

the level of interaction the system allows: pure, high-interaction and low-interaction.

Pure Honeypots

A pure honeypot is a full-fledged production system which has been assigned as a bait.

To monitor the attacker’s actions additional software needs to be installed. While a pure

honeypot may be useful when the defence mechanisms are required to be exorbitantly

stealthy, a more controlled environment is usually desirable [36].

High-interaction Honeypots

High Interaction honeypots make use of the actual vulnerable service or software. High-

interaction honeypots are usually complex solutions as they involve real operating systems

and applications. In High Interaction honeypots nothing is emulated - everything is real.

High Interaction honeypots provide a far more detailed information of how an attack or

intrusion progresses, or how a particular malware executes in real-time. Since there is no

emulated service, High Interaction honeypots help in identifying unknown vulnerabilities.

However, they are more prone to infections and increased risk because attackers can use

these real honeypot operating systems to attack and compromise production systems.

18

Low-interaction Honeypots

When adversaries exploit a high-interaction honeypot, they gain capabilities to install new

software and modify the operating system. This is not the case with a low-interaction

honeypot. A low-interaction honeypot provides only limited access to the operating sys-

tem. By design, it is not meant to represent a fully featured operating system and usually

cannot be completely exploited. As a result, a low-interaction honeypot is not well suited

for capturing zero-day exploits. Instead, it can be used to detect known exploits and

measure how often a network gets attacked. The term low-interaction implies that an ad-

versary interacts with a simulated environment that tries to deceive him to some degree

but does not constitute a fully fledged system. A low-interaction honeypot often simu-

lates a limited number of network services and implements just enough of the Internet

protocols, usually TCP and IP, to allow interaction with the adversary and make them

believe they are connecting to a real system.

19

Chapter 3

Previous Work

In this chapter we examine state of the art techniques for graph processing with ML

methods, as well as tools for honeypot generation and deployment. We also look at

using ML methods in honeypot deployment with special focus on generative models.

Additionally, we present some of the existing honeypot generation and management tools

for active directory.

The automatic generation of data for Active Directory is not a very common topic in

the industry. This is because most companies already have a structure with users and

groups, and it does not make sense to generate data automatically. The only situations

where this may be needed are during testing of AD deployments or for fake AD setups

for simulations. Another situation where this may be needed is for automatic honeypot

generation, which is the topic of this thesis. As far as we know, there is no academic

research on the automatic generation of AD structures. However, there are some tools for

this task which require human interaction and can be later used for managing existing

honeypots.

The main tool for detecting malicious activities in an Active Directory is the Advanced

Threat Analytics by Microsoft [37]. It is a complex tool which monitors all the traffic of

a domain controller and uses the data for detection of known attacks such as password

bruteforcing, Pass-the-Hash, Malicious replications, etc. Additionally, it detects abnormal

activity in the domain and reports results to the system administrator. It also contains

modules for detecting weak points in security such as shared passwords, broken trust

and known protocol vulnerabilities. BlueHive [38] is a Honeypot user management tool.

It is used for manual creation, management and monitoring of fake users in an Active

Directory. It can track the history of actions for registered user accounts and provides

automatic updates for lastLogOn attribute and other attributes which change in time.

Static values in such attributes show that the account In areas outside the AD domain,

there are some attempts to use automation and machine learning methods to design

20

honeypots or emulate responses of certain devices or services. Leita et al. [39] proposed

to use state machines to generate scripts for creating honeypots for the popular open-

source honeypot manager honeyd [40]. Downling et al. proposed to use Reinforcement

Learning for generation of honeypot responses in order to extend the duration of the

attacker’s session. In particular, the authors worked with a Cowrie honeypot which is

based on emulation of SSH, Telnet and several other protocols [41] .

The problem of placing a honeypot or honeytokens in such a way as to attract the

most attackers has been a point of interest for Game Theory (GT) researchers. In the GT

approach, the interaction between the attacker and the system administrator is modeled

as a two player game and the goal is to find an optimal strategy for either player [42].

Advances in machine learning methods in various domains of the last decade influenced

progress in the area of graph processing. Graphs in general are universally used across

various domains of computer science and therefore applying the methods of ML on them

has become a hot research topic in recent years. Wu et al. [43] provided a detailed study

of various ML methods for graph processing, along with an evaluation of performance for

different models and graph classes. One of the first papers on generative graphs models

was GraphRNN [44]. The graph in GraphRNN is generated iteratively using two recurrent

modules, one on the node level and another on the graph level. The authors show that

GraphRNN outperforms methods based on Graph Convolutional Networks in the task of

generating realistic looking undirected graphs. In addition, the GraphRNN method can

scale up to structures of hundreds of nodes.

In the area of generative models for graphs, Simonovsky and Komodakis success-

fully used Variational Autoencoders to generate small undirected graphs representing

molecules. The method, however, lacks scaling capabilities and was not able to capture

complex interactions in larger molecules [45]. Usage of Graph Recurrent Neural Networks

proposed in [46] showed great success in modeling protein data with results exceeding

both GrapVAE and GraphRNN by combining the GNN with attention layers. All the

above mentioned methods work with undirected graphs.

Taking directed edges in the graph into account, [47] proposed to use custom RNN cells

to analyze a DAG structure of Logical formulas and train the model to directly solve the

SA Logical Formula Satisfiability (SAT) problem. Results show that the proposed model

is able to learn the structural information of the graph using a sequential propagation of

DAG structured data. Further advancing the proposed idea, Kaluza et al. [48] proposed

a framework for DAG to DAG Translation inspired by Sequence-to-Sequence processing

in the Natural Language Processing domain. The framework is based on the Encoder-

Decoder architecture using similar modules as in [47] in the encoder part of the model.

The proposed framework is evaluated on the task of simplification of logical formulas

21

where it shows promising results on a dataset with limited graph size. The scaling ability

of the proposed framework is yet to be investigated.

There are a number of libraries implementing models of graph neural networks. Deep-

GraphLibrary [49] is an open-source library for efficient graph storing and pre-processing,

mostly built for the PyTorch framework. It is well integrated with NetworkX. Spek-

tral [50] is a Tensorflow related library implementing mostly Graph Convolutional and

Polling layers. An even more complex library introduced by DeepMind in [34] is based

on Tensorflow and Sonnet frameworks.

To our best knowledge, the amount of publications using generative models for honey-

pot design is limited. There is a very recent work on using generative models in honeypots,

mainly the NeuralPot [51], where authors propose to use Generative Adversarial Networks

or AutoEncoders to generate the network traffic of the industrial Modbus honeypot. De-

spite the low complexity of the model it shows that it is able to generate traffic that

closely resembles the original protocol.

There are several tools which are being used by red team members and attackers.

Bloodhound [16] is an example of a software designed to simplify the task of AD Re-

connaissance and taking over of a domain. It is based on Powershell [17] and neo4j

database [18] and is used to visualize the AD structure and to find potential attack vec-

tors for dominating the domain. Similarly, the ADRecon tool by Sense of Security [52]

uses the LDAP protocol to gather information about the domain and its components.

Both tools require valid credentials of a domain user with no additional privileges.

Finally, it is worth mentioning some tools which are specifically designed to detect

honeypots. An example of such tool is Honeypot Buster developed by Javelin [53]. It

analyses the attributes of the objects in a AD looking for missing, repeated or inconsistent

entries and reporting it to the user.

22

Chapter 4

AD Structure Modelling

In this chapter we describe the proposed framework for placing honeyusers in the existing

Active Directory structure. In its simplest form, AD is a Tree structure for a single domain

or a Forest for the cases of multiple domains. When we take into account the security

group membership and relations provided by the Global Policy Objects, the resulting

structure forms a Directed Acyclic Graph (DAG).We consider all edges to be the same

and therefore we don’t use any edge features in the framework. Such a graph has exactly

one starting node representing the Domain. The goal of the proposed framework is to

process the whole graph structure and predict a location (in this context all edges) for

additional nodes which are used as honeytokens. Finding a meaningful location for the

honeypot reduces the chance of its detection.

In contrast with most of the existing graph processing ML frameworks which were de-

veloped for general graphs, the proposed framework utilizes the properties of the DAG.One

of the properties of a DAG is that there exists a topological ordering of the vertices. In

general, such ordering is not unique unless there is a directed path in the graph which

contains all vertices. With such ordering, we can make a sequence of nodes from graph

G which guarantees that for any node vi in the sequence all of its predecessors have been

processed in timestamps t < i.

Subsequently, every node vi can be defined by a sequence of its predecessors starting

with the root node. Each node in the graph is defined by a combination of the features

of the node and the sequence of predecessors.

The task of adding a new node to the existing structure consists of two actions: Finding

the features describing the node itself and finding a sequence of its predecessors. Given the

fact that the existing structure must not be changed in the process, it means evaluating

all nodes in the existing graphs and deciding which of them should be direct predecessors

of the node appended to the structure. In other words, the framework is finding a missing

links between the nodes in that are already in the structure and the new node.

23

To the best of our knowledge there is no Tensorflow 2 compatible library with imple-

mentation of DAG Recurrent Neural Network and its extensions. In this thesis we created

set of modules capable of processing arbitrary data in structured as DAG which are com-

patible with Tensorflow 2 framework and its GPU acceleration. All models designed in

this thesis is free software.

4.1 Notation and Definitions

Let G = 〈VG, EG〉 denote a Directed Acyclic Graph. We assume that VG, the set of nodes

of G is ordered according to the topological sort of the DAG. Let πG(v), v ∈ VG be a set

of direct predecessors of v in G. δ−(vi) represents the in-degree of the node vi which is

the number of incoming edges.

Additionally, for a given DAG G, let Gr be a reversed DAG with the same set of nodes

and reversed edges. Using the same topological sort, nodes of Gr are in reversed order

of the sorted nodes of G. Lastly, for a given DAG G, we define µG : VG → R to be a

d -dimensional vector function defined on nodes of G. We call µG encoding function and

use it in all proposed models.

As for the inputs and outputs of the models, X ∈ {0, 1}n×f is used to represent the

original feature matrix of the model using one-hot encoding. n represents the number of

nodes and f the size of the feature vector.A ∈ {0, 1}n×n is the adjacency matrix of the

original graph. m represents the number of new nodes and X ′ ∈ {0, 1}m×f is the feature

matrix of the new nodes.

Thê symbol is used for estimated values, in particular Â for the generated adjacency

matrix and X̂ generated feature matrix, in cases where the model is outputting one.

h = [h0, ..., hi] represents hidden states of nodes. When working with a hidden state of a

single node we use [hi, while h is used for operations with the list of the all hidden states.

H = [H0, ..., Hi] represents the hidden states of the whole graph after processing node i.

4.2 General Description of the Framework

In contrast to other graph generation tasks, in our domain we are not generating the

whole graph as the original AD structure has to remain unchanged. Therefore, the main

task is to generate a extension of the existing graph with properties as close to the original

as possible. The key of successful deployment of the honeypot is in disguising it properly

so it is not recognisable for the attacker. It is even more important in scenarios when the

adversary expects the presence of the honeypot. We assume that proposed models are

capable of generating node placements to meet such criteria while remaining worthy for

24

the adversary to interact with.

In the generation process, machine learning is utilized in the structural part of the

task. For the node feature generation which consists of generating attributes independent

on the position of the node in the graph we use external tools. The process is described

in 4.7.

Figure 4.1 | General concept of the framework. Sequence of steps for extending
Active Directory with GNN generated Honeyusers

The framework pipeline shown in Figure 4.1 starts with extracting the existing struc-

ture from the AD. For that, either the Sharphound tool[54] can be used or a collection of

Powershell utilities. Since the Active Directory is much richer than the graph structure,

the next step is processing of the raw data in order to get the graph of user-related nodes

and dependencies. We refer to the graph as User Related Graph. The data in the graph is

later represented in two input matrices for the ML model: A which is is the binary matrix

representing input edges to each node and X which is the one-hot encoded matrix of node

types. The machine learning model predicts the incoming edges for the new nodes which,

together with A, form Â. The part of Â which contains the original graph must remain

intact because any changes in this sub-graph would influence the functionality of the AD.

Using the extended graph, node features for the honeyusers can be generated. Since some

of the features, such as membership in organizational units depend on the position in the

graph, they cannot be generated beforehand. The last part of the pipeline is the actual

addition of the newly generated objects in the structure of AD. Powershell cmdlets or

LDAP addition queries are used at this point. If any anomaly detection tool or honeypot

manager is used in the system we can register the newly added users for proper reporting

and alerting.

25

4.3 Components Design in the Generic Model

This section is focused on the core of the framework; the machine learning model that

processes the original structure and generates the extended structure.

Figure 4.2 | Design of the generic model. The different components of the generic
model used for generating Honeyusers.

In Figure 4.2 we can see the main components of the model. The leftmost nodes are

the inputs: the matrix A ∈ {0, 1}n×n, matrix X ∈ {0, 1}n×f and matrix Xnew ∈ {0, 1}m×f

where n is the number of nodes in the original structure, f is the number of object types,

and m the number of new nodes to be added to the structure. The matrix A represents

the structure of the graph because it has the relationships between nodes (edges). It

is a lower triangular matrix due to the directed edges in the graph and the topological

ordering O. Matrices X and Xnew are one-hot encoded feature vectors of the nodes of the

original structure and the new nodes which should be inserted in the graph. The matrix

Xnew is denoted as a dotted line because in later variants (Model3) it is not used.

The first component in all versions of the model is the node embedding layer. When

we consider the space of one-hot encoded features the distance between any two node

types is exactly 1. In reality however, some node types are more similar than others.

For example, distances between node types Computer and User should be smaller than

the distance between User and Domain because of the properties of either class. The

node embedding layer is capable of learning the parameter mapping from the original

space to continuous vectors. In all of our models, the embedding layer is an off-the-

shelf model from the Tensorflow/Keras library. Using feature embedding has proven to

be a powerful tool for enhancing the models capabilities in various domains (such as in

word2vec [55], and node2vec [56]). The embedding layer is trained simultaneously with

the rest of the model layers. The embedded node features together with the adjacency

26

matrix are processed by the encoder, described in detail in Subsection 4.3.1. Using either

the node-level encoding or the graph-level encoding output of the encoder we use another

module to reconstruct the original structure with added nodes. We call the last module

in the model the Decoder. The architecture of the decoder module, and subsequently the

way using the output of the encoder is where the models proposed in this thesis differ

from the work in [47]. We tested three variants of the model:

Model 1 (Section 4.4) attempts to directly predict the edges to the new nodes using

the exiting node encoding and the candidate node type.

Model 2 (Section 4.5), uses the hidden state of the complete graph as additional source

of information for the edge prediction in the decoder.

Model 3 (Section 4.6) uses a Variational Auto Encoder to regularize the latent space

of the node representation as a probability distribution and sample the new node repre-

sentation from the distribution.

4.3.1 DAG-RNN Encoder

The DAG-RNN Encoder is a model for encoding either a graph or its individual nodes of

any Directed Acyclic graph. It is the core part of all of the models used in this thesis.

The primary motivation for the Encoder is to capture the information from the nodes

and all relations among them in a vector of fixed size. The encoding can be used for

a wide variety of tasks such as node clustering, node classification, graph classification,

edge prediction or even graph generation as we demonstrate later in the thesis. The

motivation for finding such embedding space is twofold: Firstly, it allows to have a fixed

the size representation of combined node features and its relations within the graph, and

using the representation in models which are usually designed for an input of fixed size.

Secondly, studying properties of the latent space allow better control of the properties of

generated artificial samples.

4.3.2 DAG Recurrent Layer

For the DAG-RNN we created our own DAG recurrent layer. This new type of layer was

needed to deal with the details and complexities of the DAG. This subsection explain its

components, structure, computation and training process, as well as possible extensions.

The concept of a Recurrent Layer designed to process Directed Acyclic Graphs shares

the concept of standard RNNs. We have shown that in every DAG there exits a topological

ordering O which allows processing the nodes sequentially. In a regular RNN cell there

are two inputs: the feature vector of the current element in the sequence and the previous

state of the cell which is the output of the cell after processing the previous element in the

27

sequence. The DAG-RNN is an extension of this idea. For the input feature vector at each

timestamp, we use the features of the nodes under the ordering O. In the previous chapter

we showed that unlike normal time series or text processing, in the case of DAG, there

can be a situation when two nodes share only one node in their sequence of predecessors

(the first node of the sequence), yet they can be following each other in the ordering O.

Figure 4.3 shows an example of such a setup.

Figure 4.3 | DAG Ordering Example. A Simple Directed Acyclic Graph example
where node 4 is following node 3 in the topological ordering O despite sharing only one
predecessor.

We can see that node 4 should be processed right after node 3, but using only the out-

put of the previous timestamp would mean to completely ignore the topological structure

of the graph. The desired behavior is to use the outputs of the the direct predecessors of

node 4 which is output of node 0.

When processing node 3 there are multiple direct predecessors which means that all

their outputs have to be aggregated. There a is variety of functions that can be used for

the aggregation of a set predecessors of node v, which we previously defined as πG(v). In

theory any differentiable function can be used. In this work we are using two methods:

sum function and DeepSets which are described in Subsection 2.4.5. Predecessors πG(v)

are gathered using the adjacency matrix A which is one of the inputs for the model. We

assume that all processed graphs are valid structures which means they have exactly one

starting node. It also implies that every node in the graph has except fro the starting

node has at least one predecessor.

With the aggregation of previous states, we can use regular RNN cells to process the

sequence. Following the ideas from [47] we use Gated Recurrent Units for the task. The

complete DAG-RNN layer structure is shown in the Figure 4.4: Input at is the part of

the matrix A which contains the incoming edges to the node vt. Input xt is an output of

the node feature embedding layer for the node vt. Instead of using the previous output

of the RNN cell, the aggregation of the set of hidden states of the direct predecessors

{hi, i ∈ πG(vt)} is used as previous state for the RNN cell. In the

The RNN cell in the layer has no adjustments in the architecture. We use the GRU

cell which has two gates: the update gate zt which decides how much of the new input

to store and the reset gate rt which decides which part of the memory to erase. The

28

Figure 4.4 | Details of the structure of our special DAG-RNN layer, created for
this thesis..

GRU cell is used instead of an LSTM to reduce the amount of parameters in the training

process.

There are two possible outputs of the DAG-RNN layer depending on the configuration.

The first option is to just output a sequence of hidden states h = [h0, h1, ..., hn]. The

second option is to aggregate all of the hidden states hi≤t at the timestamp t creating

a representation of the complete sub-graph containing nodes v0, v1, ..., vt. We previously

defined such graph representation as Hi. Arbitrary aggregation function such as sum or

mean can be used for combining [h0, h1, ..., hi] into Hi.

The DAG-RNN can be used as a building block for more complex models. In order

to capture better all the relations in the structure.

4.3.3 Bi-directional DAG Recurrent Layer

One of the most common techniques when using RNNs is to process the sequence in both

directions. It has proven to be successful in text processing tasks to capture the context

of a sentence. Following this idea we also implemented our own bi-directional DAG-RNN.

Our DAG-RNN can work in a bi-directional setup, using one instance of DAG-RNN for

each direction of the edges. Transposing the adjacency matrix reverses the edge directions

in the graph and with the reversed ordering we can apply the same operations to reversed

graph Gr.

Bidirectional RNNs produce one output for each of the directions the sequence is

processed in. We can either use the outputs independently or combine them to obtain a

more detail representation of each element in the sequence. Commonly, the two outputs

are concatenated producing a representation of 2∗rnn cell dimension or combined using

a simple aggregation function such as sum, mean or max to keep the dimensionality of

the layer output same as in the unidirectional RNN. In our implementation, sum of the

29

outputs is the default option. Bi-directional DAG-RNN is used as an encoder in Model

3(4.6).

4.3.4 Loss Function

To estimate how correct the model is and subsequently to train the model we need to

define a loss function. This subsection defines a loss function that is used in all our model

types. Moreover, Models 2 and 3 use additional components of the loss functions which

are described in their respective sections of the thesis.

Since the goal for the model to reconstruct the original matrix A, we call this function

the reconstruction loss.

Binary Cross Entropy

We consider the presenceor absence of an edge to be a binary classification problem. A

commonly used loss function for binary classification tasks is called Binary Cross-Entropy

and it is defined as follows:

BCE(p, y) =

−log(p) if y = 1

−log(1− p) otherwise
(4.1)

where p are the predicted values and y the ground truth values. We can rewrite the

formula using parameter pt

pt =

p if y = 1

1− p otherwise
(4.2)

as

BCE(p, y) = BCE(pt) = −log(pt) (4.3)

We can see that misclassification of either class is treated the same. This is well suited

for domains where both classes are balanced. In the case of the adjacency matrix this

assumption is not met (the reason why is described in detail in Chapter 5). The majority

of edges are not present and therefore the prior probability for the classes is skewed

towards the no-edge option.

Focal Sigmoid Loss

To mitigate the issue of imbalance in the target classes, we use a modification of binary

cross-entropy called Sigmoid Focal loss which was proposed by the Facebook AI Research

30

(FAIR) team in [57]. The Focal loss (FL) advances the idea of weighted cross-entropy

defined as:

BCE(pt) = −αtlog(pt) (4.4)

where α ∈ [0, 1] for class 1 and 1− α for class -1.

”While the parameter α balances the importance of positive/negative examples, it

does not differentiate between easy/hard examples” Lin, Goyal, Girshick, et al. [57]. The

proposed method adds a modulating factor (1−pt)γ to the cross entropy loss where γ ≥ 0.

Then Focal loss is defined as:

FL(pt) = −(1− pt)γlog(pt) (4.5)

It accounts for high imbalance in the classes and subsequently makes Type II errors more

severe. It other words, we consider that not adding an edge in the place where it is

expected is more severe than predicting an extra edge. Focal loss was originally used in

computer vision problems where an object’s presence in the background or foreground of

an image is predicted. In practice, the FAIR team uses the α balanced version of the focal

loss as it showed slightly better results in their experiments:

FL(pt) = −αt(1− pt)γlog(pt) (4.6)

4.3.5 Implementation Details

To the best of our knowledge there is no Python based Tensorflow 2 compatible DAG-

RNN framework. The Graph Nets library [34] contains tools which simplify the building of

such models but requires using the in-house library Sonnet. Our implementation is based

purely on Tensorflow 2 and Keras frameworks and it is fully compatible with standard

Tensorflow pipelines. Since it uses the Tensorflow backend for all the computation it is

usable with CUDA GPUs which significantly speed up the computations.

In the aspect of scalability of the implementation we are aware of sub-optimal memory

usage. The implementation works with the adjacency matrix A represented as a dense

matrix. But due to the ordering OG, the matrix is lower triangular. One possible future

improvement is to utilize the concept of Sparse Tensors introduced in Tensorflow 2 which

allows a more efficient representation and computation.

The time complexity of the encoder is O(N). Since the nodes are processed sequen-

tially according to the ordering, before processing node v the model needs to wait until

all nodes u ∈ πG(v) are processed. The decoding part of the framework works in O(N2)

time as each pair of nodes (u, v), where u is a node from the original graph and v new

node, is evaluated.

31

For the graph pre-processing we use numpy [58] and networkx[59] libraries for numer-

ical and graph operations respectively. All tools used in this thesis are free software and

accessible at https://github.com/stratosphereips/AD-Honeypot.

4.3.6 Model Training

Models are trained using a single computer with 32 GB of RAM and Nvidia Titan V

GPU1 card with 12 GB of memory. The artificial datasets described in Chapter 5 were

used for training of all model instances. In all cases the Adam [25] optimizer was used for

the training with exponentially decayed learning rate for fine tuning of the parameters

towards the end of the training period. All the models use the Encoder with 64 units in

the RNN cells and same MLP module for the edge prediction. Weights in the models are

initialized using the Glorot uniform initializer [60] with the exception of the zlog variance

Dense layer in Model 3 where weights are initialized to 0.

4.4 Model 1: Direct Edge Prediction

Model 1 is designed to predict the edges between xi, the existing nodes in the structure

and the new nodes x‘j. During training we attempt to reconstruct the existing adjacency

matrix using the node embedding generated by the DAG encoder. In other words, we

aim to learn the probability of adding an edge from a exiting node encoded in the latent

space hi to a candidate node with known type x′j.

4.4.1 Model Components

Inputs for the models are matrix X which contains one-hot encoded node features of

the existing graph, the adjacency matrix A of the existing graph and matrix X ′ which

consists of one-hot encoded node types of target nodes. Model 1 has a single output: the

estimated adjacency matrix Â.

The first part of the model is the node embedding layer which transforms the one

hot encoded node types into a continuous vector of a set dimension. The embedding

dimension is one of the hyper-parameters of the model.

Figure 4.5 shows the architecture of Model 1. Using each pair of (hi, x
′
j) ∈ h × x’

the decoder performs a binary classification task with a MLP producing a probability of

1Provided by NVIDIA as part of Higher Education and Research Grant

32

https://github.com/stratosphereips/AD-Honeypot

Figure 4.5 | Decoder in Model 1. Detailed architecture of the decoder part of Model
1. The decoder performs a binary classification task with an MLP that outputs the
probability of adding an edge.

adding an edge. The output matrix Â elements are the individual outputs of the decoder:

Â =


D(h0, x

′
0) · · · D(h0, x

′
m)

...
. . .

...

D(hn, x
′
0) · · · D(hn, x

′
m)


Where D(hi, x

′
j) ∈ [0, 1] is the output of the Decoder and a probability estimate of edge

presence from node i to node j.

Training and Generation Process

During the training process we encode the existing structure of the graph to get the node

hidden states h = [h0, ..., hi]. Using the embedding layer and the original features of

the nodes X the we obtain the embedding of the input node features x′ = [x′0, ..., x
′
i].

Afterwards, pairs of (hi, x
′
j) are classified with the MLP forming predicted adjacency

matrix Â.

During the generation, we use the node types of the candidate nodes as input X ′

instead of the original X. Focal Loss function showed in Subsection 4.3.4 is used for the

model training.

4.5 Model 2: DAG-RNN AutoEncoder

The motivation for this model in comparison to the previous architecture is that it takes

full advantage of the latent space encoding. Experiments using the Model 1 as an Autoen-

coder where pairs of hidden states (hi, hj) are used for predicting edges from i to j showed

promising results even with small dimensionality of the latent space (See A.1.1). In the

Model 1, the candidate node is represented only by its type. That leads to more precise

33

prediction in the nodes in the beginning of the node sequence. However, experiments with

larger structures show that the simplicity of the architecture of Model 1 results in very

poor performance in the graph structure reconstruction tasks.

In order to improve the quality of the reconstructed matrix Â, additional information

for predicting the edge to the candidate node from nodes in the original structure is

required. In Model 2 we propose to add context information with the graph level hidden

state Ht. Which is computed as aggregation of node hidden states h0, h1, ..., ht where t

is index of currently processed node. Edge prediction is performed on using the (hi, ĥj)

where ĥj = [x′j, Hi]. Inputs and outputs for the model remain same as in the Model 1:

matrices X,A,X ′ are inputs of the model and matrix Â is the only output.

4.5.1 Model Components

Encoding of the original graph remains similar to the case of Model 1 with one extension:

Apart from the hidden state of the nodesh = [h0, h1, ..., hn], the encoder also produces

hidden states of the graph after processing the node i H = [H0, H1, ..., Hn]

In the decoder part of the model, there are two steps (and subsequently two MLP

modules to perform the operations): Firstly, estimating ĥ = [ĥ0, ĥ1, ..., ĥn] using the

concatenation of [Hi, x
′
j] and secondly, predicting the edge for each pair (hi, ĥj) forming

the estimated adjacency matrix Â. The whole architecture of Model 2 is shown in Figure

4.6.

Figure 4.6 | Decoder in Model 2. Detailed architecture of Model 2. There are two
parts in the decoder, each of them with their own MLP. First to estimate the hidden
states h hat; and second predicting the edge of each pair of nodes to finally output a
complete adjacency matrix.

Training and Generation Process

When training the model, we use the input matrices as targets and essentially use the

model as an autoencoder where we try to minimize the reconstruction loss of the adjacency

34

matrix. Such setup forces the model to encode the nodes in a way that they can be

transformed again from the latent space. In addition we attempt to train another MLP

to use HGi
the state of the graph after processing node i and the candidate node type

embedding to estimate the hidden state of the candidate node ĥi+1.

When extending the graph during the generation process, the model adds one node at

a time using the given feature vector of a candidate node xn+1 and the hidden state of the

graphHn to estimate the hidden state of the candidate node hn+1. After that, probabilities

of adding an edge from nodes v0, v1, ...vn to candidate node vn+1 are estimated. Edges

are added based on the predicted probability and a threshold given as a hyper-parameter.

Afterwards, Hn+1 and hn+1 are computed with the encoder and used for predicting edges

for next candidate node vn+2.

4.5.2 Loss Function

In the case of Model 2, the loss function is composed of two parts: first is the reconstruction

loss shown in Subsection 4.3.4 which estimates the correctness of the generated adjacency

matrix. Second component of the loss measures how well the model estimates the hidden

states of the candidate nodes ĥ. For each node, the difference between the predicted

values ĥi and the output of the encoder h. Both hi and ĥi are vectors of real numbers.

Two most commonly error measures used for regression tasks are Mean Squared Error

(MSE):

MSE =

n∑
i=1

(yi − ŷi)2

n
(4.7)

and Mean Absolute Error (MAE):

MAE =

n∑
i=1

|yi − ŷi|

n
(4.8)

While MAE can handle outliers in the data much easier that MSE (where the square

in the error makes the overall mean very high), it suffers from a drawback: Unlike MSE

where gradients are high for large loss and decrease as the loss approaches zero, for MAE

the gradients can be large even for small loss which leads to difficulties in the gradient

descent algorithms with fixes learning rate. In Model 2 we use the Huber loss shown in

equation4.9 which is behaves like MAE when the error is large and turns into MSE in

cases where the error gets smaller than hyper-parameter δ. Additionally, unlike MAE,

it is differentiable in 0 (when y = ŷ). Empirically, we have found δ = 0.01 to be a well

performing value for the parameter. In the Tensorflow library, δ = 1 by default. In our

proposed model, however, the cell unit we use in the encoder has a hyperbolic tangent

35

activation which means that h ∈ [−1, 1]. Similarly, the last layer of the MLP estimating

the ĥ has the same output range which means that the latent loss values are very small.

Figure A.1.2compares various values of δ parameter.

Lδd(y, ŷ) =

1
2
(y − ŷ)2 if |y − ŷ|2 ≤ δ

δ|y − ŷ| − 1
2
δ2 otherwise

(4.9)

The loss for Model 2 is a weighted sum of the Focal loss(Equation 4.5) and the Huber

loss(Equation 4.9) and is computed as follows:

L =
n2FL(A, Â)

2
+ |h|Lδ(h, ĥ) (4.10)

Where n is a number of nodes an |h| the dimensionality of the latent space (which is equal

to the number of units in the RNN cell)

4.6 Model 3: Variational AutoEncoder

Having shown that the DAG-RNN is capable of encoding the DAG nodes in the latent

space, we want to utilize it now for generating nodes which are not present in the input

(new nodes that we want to add to the graph). For doing so, knowing the properties of

the latent space is essential so the output of the model is easily controlled. Variational

Autoencoder is a special type of Auto Encoder model which parametrizes the latent

space as a probability distribution. The parameters of the distribution are estimated

during the training process. During the generation phase new samples are generated from

the probability distribution with the estimated parameters and decoded from the latent

space. In addition to simple way to sample the latent space representation of the new

samples, modelling the latent space as probability distribution helps to regularize it.

In contrast with Model 2,learning the parameters of the probability distribution cor-

responding to the latent space is to remove the direct ĥ estimation as it is reducing the

generalizing capabilities of the model. Since the we use hyperbolic tangent as the activa-

tion in the recurrent cell which creates the hidden states of the nodes, the range of the

hidden states is in interval [−1, 1]. Lastly, with estimated parameters of the probability

distribution we can sample hidden states of nodes with ”mixed” types which is impossible

with the previous models. Model 3 has fewer inputs than the previous model architectures

as the matrix X ′ is omitted.

36

4.6.1 DAG-RNN VAE Model Architecture

For encoding the individual nodes of the graph structure we use the Bidirectional DAG-

RNN described in Subsection 4.3.3. The parameters of Normal distribution µ and zσ

are estimated using the separate Dense layers with no activation, and z = [z0, z1, ..., zn]

which are the estimates of the hidden states h = [h0, h1, ..., hn] which are sampled from

the probability distribution N (zµ, zσ). The next step in the computation is to make a

Cartesian product of h and z: h × z = { (hi, zj) | hi ∈ h and zj ∈ z }. The final step

is to use the MLP with sigmoid activation function to classify each pair of (hi, zj) to

determine the presence of the edge from node i to node j. All the pair form the estimate

of the adjacency matrix Â. The complete structure of the DAG-RNN VAE is shown in

the Figured 4.4

Figure 4.7 | DAG-RNN VAE Model. Architecture of DAG-RNN Variational AutoEn-
coder for adjacency matrix reconstruction. The parameters of the normal distribution are
estimated using two separate dense layers. Then the layer does a Cartesian product which
is the input into a MLP decoder with a sigmoid activation that determines the presence
or not of an edge between the elements. Th output is the estimate matrix of adjacency
of nodes.

Training Process

The hidden states h = [h0, h1, ..., hn] are used to estimate the parameters µ, σ of the

latent space and producing z = [z0, z1, ..., zn] from the corresponding normal distribution.

Decoding the Cartesian product of h × z with the MLP decoder yields the estimate of

adjacency matrix Â. There are two loss functions used for the training of the model. For

estimating the error of the parameters zµ and zσ we use the Kullback-Leibler Divergence

which estimates the difference of two probability distributions. We refer to this loss as

latent loss. For two normal distribution p = N(µ1, σ
2
1) and q = N (µ2, σ

2
2) the Kullback-

37

Leibler divergence is computed as follows:

DKL(p ‖ q) = −
∫
p(x) log q(x)dx+

∫
p(x) log p(x)dx

=
1

2
log(2πσ2

2) +
σ2

1 + (µ1 − µ2)2

2σ2
2

− 1

2
(1 + log 2πσ2

1)

= log
σ2

σ1

+
σ2

1 + (µ1 − µ2)2

2σ2
2

− 1

2

(4.11)

The latent loss is used for regularizing the latent space and allowing sampling represen-

tations of new nodes from it.

The second part of the loss function for Model is the reconstruction loss which esti-

mates the quality of the result matrix Â. For this purpose, we use the Focal loss described

in detail in Subsection 4.3.4. The two parts of the loss function have contradictory effects:

While the reconstruction loss pushes the model to predict the matrix Â more accurately

regardless of the latent space properties, the latent loss forces the model to encode the

nodes as samples from the Normal distribution regardless of the quality of the output.

The final combined loss function for Model 3 is defined as weighted sum of the Focal loss

and the latent loss.

L =
n2FL(A, Â)

2
+ |z|DKL(N (zµ, z

2
σ) ‖ N (0, 1)) (4.12)

where n is the number of nodes, is A the original adjacency matrix,zµ and zσ are the

estimated parameters of the normal distribution and Â is the estimated adjacency matrix.

We divide the Focal loss term by 2 because we only estimate the half of the matrix A

since it is a lower triangular matrix.

Generation process

During the training phase, two fully connected layers are used for learning the parameters

zµ and zσ. Afterwards, zj are sampled from N (µ2, σ
2
2) and used for predicting the edge

from node i to node j. When generating an extended graph, the latent space representa-

tion of desired nodes z = [z0, z1, ..., zm], zi are sampled ∼ N (0, 1) where m is number of

nodes to be added in the structure.The decoding step is the same as is the training phase.

Examples of generated structures are shown in Chapter 7.

38

4.7 Transition from a User Related Graph to AD En-

tries

In the described models we focused on analyzing the input structure and finding a place-

ment for extra nodes of a given type. Despite working with artificially created datasets,

the framework has to be applicable in the real world environments, which means ex-

traction of the data from the real AD (described in Chapter 5) and after the processing

inserting the new nodes and their relations back in the AD

For that we need to populate the attributes of the created nodes. There are two types

of attributes we focus on: attributes independent on the context and attributes implied

by the placement in the structure. An example of the second type is Distinguished name

or group membership. DN is build from all RDN on the way from the node to the root

node, which means it is depend on the placement of the node as the parent node (OU or

container) RDN is necessary for building the DN. Same applies for group memberships

and other ACLs. The edge in the user related graph from the group node to the user

node marks the group membership which means that after creating the new node entry,

the next step is to add the membership to all the selected groups.

The other type of attributes is not dependent on the graph context and therefore can

be randomly generated using external tool. Examples of such attribute is name, address,

email , etc. For this task we propose to use either LDIF Generator[61] or services such as

FakeNamesGenerator[62] which use either large database of human identity information

or are based on ML models. The main pitfall when generating the fake identity for

a honeyuser is ensure that the generated attributes do no reveal the presence of the

honeyuser. Some of the attributes such as last logon, last password change etc, are filled

in automatically by the AD server. Build-in commands of th AD can be used for inserting

the data in the AD database.

39

Chapter 5

Dataset

This chapter contains description of the all data used for training and evaluation of all

models presented in this thesis. As described in the previous chapters, AD holds sensitive

data of possibly high value. Some of the information is considered private under the recent

regulations of privacy of user data. Since deep learning models require thousands of data

samples to train, using real data is not an option. Sharing or even extracting information

from the production AD is often forbidden for third parties by company policy. Moreover,

some of the data stored in the AD are considered personal under the law of the EU and

as such, consent of the owner is required for processing it.

Therefore, we used the expert knowledge gained from the analysis of a few real AD

samples to create an artificial dataset for training the models. The real data samples were

used for evaluation and testing. The generated data samples are valid directed acyclic

graphs with correct node type sequences. In Chapter 2 we showed that there is a wide

variety of built-in object types in AD further extened with the AD schema. In order to

model such structures we limited the number of classes in the data to ones closely related

to the user type, which is our primary target. The structure is referred to as User Related

Graph and it can contain following node types:

• User

• Computer

• Domain

• OrganizationalUnit (OU)

• Group (in this context equivalent to SecurityGroup)

Assumption is made in this thesis, that relations among listed object are notable when

inferring the value of the targets int the AD.

40

The models, trained using the dataset, are designed to predict the presence or absence

of an edge between a pair of nodes. It is important to note that due to the structure of

the graph, the cases are highly imbalanced. Let us see the example of an AD graph in

5.1.

Figure 5.1 | Simple example of user-
related graph. Example showing
structure with 1 Domain node (in red),
2 Groups (green), 1 Organizational Unit
(blue), 2 User nodes (white) and one
Computer (yellow). The numbers in
the nodes represent the ordering of this
DAG

X =



0
1
1
2
3
4
3


, A =



0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 1 1 0 0 0
0 1 0 1 0 0 0
0 0 0 1 0 0 0


Figure 5.2 | Matrix representation of
the example User Related Graph.
Matrix representation of the structure in
Figure 5.1. X represents the node types
and A is the adjacency matrix of incom-
ing edges. Nodes are ordered according
to their IDs showed in the figure.

Even for the small graph, such as the one in Figure 5.1, we can see that its corre-

sponding matrix shown in Figure 5.2 is rather sparse. When adding the new nodes to

the structure, we have to account for possible edges with any of the existing nodes. For

a structure of containing n nodes and m new nodes that means n ∗m possible edges.

Yet in most of the cases, the edges do not exist which means that the prior prob-

ability of adding a new edge is shifted heavily towards 0 (meaning no connection). A

common practice in similar situations is resampling of the dataset. In particular there

are two options: under sampling and oversampling. Undersampling is a process during

which, samples from the majority class are randomly deleted to match the class size of

the minority class. The opposite approach, called oversampling, tackles the imbalance

by artificially creating samples from the minority class with similar properties.Neither

of the two methods is applicable in the case of the User Related Graph because such

modifications would change the very structure of the graph we want the model to learn.

A second possible approach to imbalanced dataset handling is to make the model

aware of the situation. The easiest way to do so is to modify the loss function that is

being used for training in such way, that it is penalizing errors of minority class more.

This places more impact on that particular class which is shown in Subsection 4.3.4.

In simple terms, in our domain that means considering one type of error less important

than the other, more specifically, we consider adding an extra edge less severe than missing

41

an edge which should be added.

5.1 Artificial Dataset Creation

For the training and evaluation of the model, we created several artificial datasets which

differ in the size of the graphs and the average degree of nodes in the graph. The process

of generating samples in the datasets consists of three step. First one is a generation of a

random directed graph using the Networkx [59] library. In the generation the the amount

of edges in the graph is samples from a Normal distribution with mean determined from

the statistic of the real examples.

Second step is assigning node types to all vertices in the generated graph. Nodes

are labeled according to the constrains described in Subsection 2.3.3. Cases where there

are multiple valid node types are assigned randomly with prior probabilities extracted

from the real samples. The last step of the generation process is the validity check.

In particular, any inconstant edges are removed from the graph. An example of such

inconstancy is the User node being a successor of two Organizational unit nodes which is

not allowed in the AD. In case of an opposite situation where user node is not a member of

any OU, the relation is created with a randomly selected OU in the graph. Subsequently,

each of the graphs contain at least one Organizational Unit node which is constant with

the AD architecture where Organizational Unit ”Users” is present by default.

Four artificial datasets were created for model training and evaluation. Table 4.3.4

shows the details of each of the datasets.

Dataset #samples Mean |V | Mean |E|

Dataset15 2,000 12.5155 19.0255
Dataset50 2,000 39.8835 65.4965
Dataset150 2,500 115.11 192.49
Dataset500 1,000 353.369 600.173

Table 5.1 Comparison of artificial datasets in terms of number of samples, number of
nodes and edges.

The number used in the name of the dataset references the number of nodes in the

graphs of that dataset. The smaller datasets, Dataset15 and Dataset50, are motivated by

the work in [47] which used a DAG of up to 30 vertices. We include the smaller datasets

to evaluate our approach on graphs of similar size. For active directory domain however,

such graphs are unrealistic and therefore we also work with 150 nodes in the Dataset150

and 500 nodes in the Dataset500, which have a size more comparable with a small to

medium size organization.

42

5.2 Extracting Data From The Active Directory

Structure of the existing AD has to be extracted in order to use the proposed framework

for extending it with honeytokens.

The simplest way of extracting data from an existing AD is a tool called Sharphound

[54] which is a utility designed to gather the data required for the Bloodhound software.

It performs several queries in the AD and gathers the nodes of each type in separate JSON

files. By loading the JSON files in the Bloodhound, one can see the whole AD structure

as shown in Figure 5.3.

Figure 5.3 | Example of AD data. Data extracted with the Sharphound tool and
visualized using the Bloodhound tool.

Even though Sharphound only reads the AD and makes no modification, Windows

Defender, the built-in antivirus software by Microsoft has the signature of Sharphound in

the database and therefore it blocks its execution. In order to bypass the alert, one needs

Administrator rights in the domain.

The second option is to query the AD directly using either Powershell cmdlets or the

LDAP protocol. For this purpose we have developed Powershell tool which gathers the

information in a JSON format and a Python utility to process the JSON files either from

Sharphound or the AD query results. To build the graph we are using the networkx

library. Both of the tools are available in the Git repository. Once the data is extracted

from the AD it is used for building of the User Related Graph which can be processed by

the machine learning models.

43

Chapter 6

Graph Reconstruction Experiments

This chapter describes the AD structure modelling experiments and analysis of the results

for each proposed model. The goal of the experiments is to evaluate how well each of the

model is capable of capturing the structure of the processed graph and reconstruct it. That

is important for the honeypot placement task since the main goal of the framework is to

find a honeypot placement with respect to the original structure. Additionally, the models

that are based on autoencoders are evaluated to estimate the amount of information lost

in the autoencoding process. The models are evaluated using the artificial datasets that

we created and was shown in Chapter 5.

6.1 Evaluation Metrics

For estimating the quality of the output of the models, some metric functions have been

defined. The models perform a repeated binary classification task for each pair of nodes,

and therefore the common metrics used for the evaluation of classifiers are applied. The

most common metric for classification tasks is accuracy. However, in the case that the

classes are unbalanced, such metric can be misleading. Chapter 5 describes why one of our

datasets contains a class with the majority of the samples. Since accuracy is computed

as accuracy = TP+TN
TP+TN+FP+FP

we can see that a high accuracy can be achieved even if

the model predicts only the majority class. In our domain that means predicting no edge

at all times. For that reason we need to evaluate the quality of the model using other

metrics. In particular Precision, Recall and F1 score which is a harmonic mean of the

previous two. To emphasize the importance of precision or recall, a Fβ score is used where

β is a parameter which determines how many times one of the metric is more important

than the other. In this thesis, we worked with β = 2 which shifts importance in F score

towards recall.

The complete list of metrics used in this experiment together with the formulas is

44

shown in Table 6.1

Metric Formula

Accuracy TP+TN
TP+TN+FP+FN

Precision TP
TP+FP

Recall TP
TP+FN

F1 Score 2 ∗ Precision∗Recall
Precision+Recall

Fβ Score (1 + β2) ∗ Precision∗Recall
β2∗Precision+Recall

Table 6.1 Metrics used for the model evaluation in graph reconstruction experiment

Additionally, the Area Under the Curve (AUC) of Precision/Recall and the curve

itself is used for analysis of the model quality and comparison of the model types. Preci-

sion/Recall curve, similar to the well known ROC curve, shows the precision and recall of

the model with various thresholds used for the binary classification. Area under the curve

can be used for evaluating of the model quality. Apart from the evaluation, this curve

can be used for choosing the optimal threshold if there are additional constrains (such as

that either metric has a minimal lower bound). AUC for both PR curve and ROC curve,

has range [0, 1]) where higher value means better model (AUC = 1 would be a perfect

classifier which makes no mistakes with arbitrary threshold).

6.2 Structural Experiment Results and Analysis

This section shows the results for the experiments modelling the AD Structure for each

model type. The results are evaluated per dataset.

6.2.1 Model 1: Direct Edge Prediction

Metric Dataset15 Dataset50 Dataset150

Precision 0.1693 0.0793 0.0392
Recall 0.9525 0.9530 0.6069
AUC (PR Curve) 0.2442 0.1205 0.0524
F1 Score 0.2875 0.1464 0.0783
Fβ Score(β = 2) 0.4947 0.2974 0.1557

Table 6.2 Performance of Model 1 for generating an AD structure using datasets of various
graph sizes.

From the data in Table 6.2 we can see that the performance of the Model 1 is unsat-

isfactory. As the size of the graphs grows, it converges towards the performance of the

45

random model as shown in the Figures 6.1 and 6.2. Even with a small dataset with a

maximum graph size of 50, the area under the Precision/Recall curve is extremely small

which means that there is a high trade-off between the two metrics. In other words, even

a slight increase in recall means a huge drop in precision.

The main explanation for the results is that the simplicity of the model and the amount

of additional information about the node pair where an edge is predicted, causes the poor

performance. We can demonstrate such a case on the following example: Let there be a

hidden state of a node hi and two candidate ancestors of type group x′1, x
′
2 out of which

only the first one is a true ancestor. The model attempts to classify pairs (hi, x
′
1) and

(hi, x
′
2) and the desired output is 1 in the first case and 0 in the second case. However,

since both candidate nodes x′1, x
′
2 are of the same type, the embeddings are identical which

means that the model is forced to output different predictions with identical input.

Figure 6.1 | ROC Curves of Model 1
per dataset.

Figure 6.2 | Precision/Recall Curve
of Model 1 per dataset.

For achieving better results we either need to provide more information for the model

to distinguish the two nodes shown in the example, or change the architecture of the

model in such a way that the predictions are not independent. This way at the time of

predicting the edge for (hi, x
′
2) the model can take the result of (hi, x

′
1) into account.

6.2.2 Model 2: DAG-RNN Autoencoder

In the results in Table 6.3 we can see that with the extension of the model capacity,

we achieve significant improvements in smaller graph datasets. Data from experiments in

larger graph datasets show, that the generalizing capabilities of the model are still limited.

Figure 6.4 shows that the difference of AUC for PR curve in the smallest and the largest

dataset is more than 60%.

The comparison between reconstructed graphs and the original structure shown in

Figure 6.5, shows that in the small graphs, Model 2 is capable of capturing and correctly

46

Metric Dataset15 Dataset50 Dataset150 Dataset500

Precision 0.6921 0.6854 0.2351 0.0421
Recall 0.6253 0.1981 0.2109 0.5733
AUC (PR Curve) 0.7501 0.4041 0.2025 0.0720
F1 Score 0.6569 0.3074 0.2223 0.0784
Fβ Score(β = 2) 0.6376 0.2309 0.2153 0.05167

Table 6.3 Performance of Model 2 using datasets of various graph sizes

Figure 6.3 | ROC Curve of Model 2
per dataset.

Figure 6.4 | Precision/Recall Curve
of Model 2 per dataset.

predicting the majority of the relations among the nodes. One of the notable errors that

Model2 makes, is to predict more edges from Organizational units to User nodes. In other

words, the model correctly decides that there should be an edge, but is not able to limit

the edges from multiple OUs to a single User node. Similarly, to Model 1, the decision

about a pair of nodes is isolated and other predictions are not taken into account which

results in this type of error. Model 2 also tends to predict more edges than are present

in the original which can be reduced by increasing the threshold. Higher thresholds,

however, often yield graphs which are not connected.

With an increased graph size the reconstructive powers of the model drop, something

that was already illustrated in the PR Curve. In Figure 6.6 we can see an example of

such a case. The reconstructed graph is connected, but we can see that while nodes 21-24

are assigned to two OUs, other User nodes in the left part of the graph are not members

of any OU. From other examples it is clear that even the capacity of Model 2 is not

enough to correctly capture the relationships in the graph. Nevertheless, Model 2 is able

to learn some of the underlying pattern in the graph. Despite the limitations described

in this subsection, Model 2 can still be used for generating new nodes for a graph. In the

generation process, the model only predicts edges to a single node at a time which is a

simpler task in comparison to predicting the whole adjacency matrix.

47

Figure 6.5 | Sample from Dataset 15 reconstructed with Model 2.

Figure 6.6 | Sample from Dataset 50 reconstructed with Model 2.

6.2.3 Model 3: Variational Autoencoder Model

This subsection shows the results of AD Graph structure modelling experiments for

Model 3. Apart from the metrics, we show examples of reconstructed graphs together

48

with the original structures which were used as input for the model.

The results per dataset listed in Table 6.4 show that Model 3 outperforms previous

models in all datasets. Unlike Models 1 and 2, the performance drop with the increased

graph size is much milder. Despite promising results in Dataset 50 and Dataset 150, in

the largest dataset, the AUC of the PR curve is notably lower. In the case of the curves

for the smaller datasets, we can clearly identify the point where the area under the curve

is largest and it is therefore the optimal threshold for out model. In the case of Dataset

500, depicted in cyan in the plot, finding such point is not straightforward.

Metric Dataset15 Dataset50 Dataset150 Dataset500

Precision 0.8093 0.7994 0.8038 0.5185
Recall 0.9456 0.8948 0.4553 0.7267
AUC (PR Curve) 0.9210 0.8877 0.7281 0.6923
F1 Score 0.8722 0.8444 0.5813 0.6052
Fβ Score(β = 2) 0.9147 0.8739 0.4985 0.6726

Table 6.4 Evaluation of DAG-RNN VAE using datasets with various graphs sizes

Figure 6.7 | ROC Curve of Model 3
per dataset.

Figure 6.8 | Precision/Recall Curve
of Model 3 per dataset.

In Figures 6.9 and 6.10 we see the original structure and the output reconstructed

using Model 3. Despite the significant similarity of the graphs, there are inconsistencies

introduced during the auto encoding process. Namely, in Figure 6.9, node 14 is shown to

be a member of 2 Organizational Units something which is not possible in the AD. Addi-

tionally, nodes 12 and 14 are incorrectly placed in the structure. In the larger structure

shown in 6.10, differences between the original and the prediction are even more visible.

Similarly to Model 2, we can see that some of the User node are located in two Organi-

zational Units simultaneously while other are not located in an which is equally wrong.

Majority of the group membership is estimated correctly which is great improvement from

the Model2 where group membership was often interchanged.

49

Figure 6.9 | Examples of VAE output - Dataset15. Examples of structures generated
with the VAE of Model 3. Sample from Dataset 15 is used in the comparison

Figure 6.10 | Examples of VAE output - Dataset50. Examples of structures gener-
ated with the VAE of Model 3. This is a specific sample from Dataset50 that was used
for a comparison.

50

6.2.4 AD Structure Modelling: Model Comparison

So far we evaluate each model type individually. In this subsection we compare the results

examine the differences and show outputs of each model for the same inputs.

We compare the model quality using mainly the Precision/Recall curve as it is not

dependable on single classification threshold.PR curve shows the performance of the model

when certain levels or Precision and Recall metrics are set. For the comparison, we use

the area under the PR curve. Higher value means better model because of there is smaller

trade off when increasing the threshold for either metric. Perfect model has AUC=1. As

a baseline, in the figures depicted with dotted line, we use the Random classifier. The

baseline is model using the prior probability of the edge presence for each pair of node

types.

Figures 6.11 and 6.12 show model comparison in Dataset15 and Dataset50. We can

see that while in the smallest dataset Model 1 is slightly better than random classifier, as

the size of the graphs increases, Model 1 performance drops to the same level as in the

random classifier. In case of Model2, we ca see almost 50% drop in AUC when graph size

increase from 50 to 150.

Note that such result does not necessarily imply flaws in the generated structures. We

discuss generative capabilities of the model in Chapter 7 which also shows examples of

generated structures.

Figure 6.11 | PR curve compar-
ison (Dataset15). Graph showing
Precision-Recall curve for each of the
models for Dataset15. Random model
is shown as a baseline.

Figure 6.12 | PR curve compar-
ison (Dataset50). Graph showing
Precision-Recall curve for each of the
model for Dataset50. Random model is
shown as a baseline.

For comparison of Models 2 and 3 we show reconstruction of the same input graphs

from Dataset 50 and Dataset 150. Use visualize the original A, ÂModel2 and ÂModel3 as

red, green and blue channels of RGB image. In the visualization we can see for every edge,

how well can each model predict it. Cases where both models predict the edge correctly,

51

are shown in black for true positives and in white in true negatives. Any depicted pixel

in color shows an error in one of the models. Detail color codes of all possible cases are

shown in 6.5.

Model 3 TP Model 3 FP Model 3 TN Model 3 FN

Model 2 TP None None

Model 2 FP None None

Model 2 TN None None

Model 2 FN None None

Table 6.5 Color codes for the comparison of Models 2 and 3

Figure 6.13 | Model 2 & 3 com-
parison (Dataset50). Comparison of
graph adjacency matrix reconstruction
for Models 2 and 3 using the Dataset
50. Color codes listed in Table 6.5.

Figure 6.14 | Model 2 & 3 compar-
ison (Dataset150). Comparison of
graph adjacency matrix reconstruction
for Models 2 and 3 using the Dataset
150. Color codes listed in Table 6.5

As we can see in Figures 6.13 and 6.14 in task of adjacency matrix reconstruction,

Model 2 performs well in the nodes close to the root of the structure. Moving further in

the node sequence, the performance drops significantly. The reconstructive capabilities of

the Model 3 are far more consistent with the increasing size of the graph. In general, both

models tend predict more edges than is present in the original A. As we described earlier

such type of error is more acceptable in the the process of honeyuser creating since we

put more impact on not missing an edge.We can see that especially in the larger domains

Model 3 clearly outperforms Model 2 and therefore is more suitable for modelling the

structure of the AD it can scale to thousands of nodes.

52

Chapter 7

Generative Experiments

The main goal of the framework is to extend exiting structure with generated users nodes.

This chapter describes experiment which evaluates the generative capacity of the models.

There are several conditions for what we consider a well-placed honeypot: Firstly, it has

to be accessible by the attacker. In the context of the AD, it means not only connected to

the structure, but also detectable by AD reconnaissance or domain listing tools. Secondly,

its placement in the structure must not raise suspicion of a honeypot presence. In other

words, we aim for such a placement, which is not abnormal, or alarming in any way for

the attacker. Additionally, since certain objects are expected to be connected together

if the generated placement doesn’t meet these expectations, it increases the chances of

being spotted by the attacker.

7.1 Evaluation Metrics

In general, evaluation of artificially generated samples struggles with absence of good

criterion which means it is difficult to define a measure of quality. For the purposes of

the AD graph extension task, we define three metrics. Disconnected node ratio, Edge

Validity Ratio and Mean User Node Edge Count Ratio which are defined as follows:

Disconnected Node Ratio

DisconnectedNodeRatio =
1

m

V0∑
i=1

1,where V0 = {v | δ−(v) = 0} (7.1)

where m is a amount of newly added nodes, δ−(v) number of incoming edges to a node v

(in-degree) and V0 set of all nodes with δ−(v) = 0. For this metric, a lower value means

a better result because in Active Directory the whole structure has to be connected.

53

Validity Ratio

V alidityRatio =

m∑
i=1

|Ei
valid|

m∑
i=1

δ−(vi)
(7.2)

The validity ratio measures how many of the valid edges to a node the model got

correctly. where m is a number of new nodes, δ−(vi) is a in-degree of a node and |Ei
valid| is

th set of valid edges to a node i. Edge (x, y) is considered valid if such a relation can exist

in the AD. For instance, if the group membership is consistent with the AD structure and

there is an edge from a node type Group to the new User node, we consider it a valid

edge.

A special case is when there are multiple edges from Organizational Unit nodes to a

single User node. Such setup is inconsistent with the AD and if there are multiple edges

from an OU node to a single User node, only one of them is considered valid.

Mean User Node Edge Count Ratio

MeanUserNodeEdgeCount =

nUser∑
i=1

δ−(vi)

nUser
(7.3)

The Mean User Node Edge Count measures mean amount of incoming edges for a user

node type. In the previous equation nUser is the number of user nodes in the graph and

δ−(v) is the in-degree of a node v.

By computing the Mean User Node Edge Count for the extended graph and dividing

by the Mean User Node Edge Count of the original structure we get the Mean User

Node Edge Count Ratio. The best value for this metric is 1, where the user nodes in the

extended graph have in average the same amount of incoming edges as in the original.

Values higher than 1 suggest that the User nodes in the extended graph have a higher

in-degrees while values lower than zero show less incoming edges. Only connected nodes

(nodes with at least one incoming edge) are included in this metric.

7.2 Generative Experiment Results and Analysis

In order to better evaluate our proposal we focused on two main criteria: If the resulting

structure is connected and the ratio of invalid edges to the new nodes. An additional

evaluation metric is the overall number of added nodes with respect to the node type

average in the original graph. In contrast with the usual setup of models which generate

artificial samples, in the framework the model is not designed to generate the graph from

scratch but extend the existing structure in a meaningful way. We evaluate the quality

54

with two metrics: Connectivity of the graph and validity of the predicted edges. Moreover,

we examine if the average number of connection to the new nodes is similar to the same

node type in the original graph. We directly compare the models and their results.

7.2.1 Generative Experiment: Model 1

From the data in Table 7.1 we can see that the threshold parameter does not influence

the output in any way. Even in the smallest dataset only one third of the predicted edges

is valid despite predicting 9 times more edges per User node on average. It is clear that

Model 1 does not have enough capacity for performing the generative task in neither small

nor large graphs. For this reason, Model 1 is not included in the model comparisons.

t = 0 t = 1e−5 t = 1e−3 t = 0.1 t = 0.25 t = 0.5 t = 0.75

Dataset15 0.3627 0.3627 0.3627 0.3627 0.3627 NaN NaN
Dataset50 0.3051 0.3051 0.3051 0.3051 0.3051 NaN NaN
Dataset150 0.3437 0.3437 0.3437 0.3437 NaN NaN NaN

(a) Edge validity ratio with various thresholds

t = 0 t = 1e−5 t = 1e−3 t = 0.1 t = 0.25 t = 0.5 t = 0.75

Dataset15 9.0902 9.0902 9.0902 9.0902 9.0902 0.0 0.0
Dataset50 27.0835 27.0835 27.0835 27.0835 27.0835 0.0 0.0
Dataset150 73.040 73.040 73.040 73.040 0.0 0.0 0.0

(b) Mean User Node Edge Count Ratio with various thresholds

Table 7.1 Results of generative experiments for Model 1

7.2.2 Generative Experiment: Model 2

With Model 2, we can see substantial improvement in both metrics shown in Table 7.2

across all datasets. With edge threshold close to 0.25 most of the edges in the generated

nodes are valid while keeping the edge count average very close to the original nodes. In

contrast withe the experiment described in 6, the performance of the Model 2 does not

drop as the size of the processed graph increases. In the examples shown, it can be seen

that despite producing valid edges, Model 2 tends to predict the majority of the new

nodes in the same location within the structure. That is undesirable in the honeypot

placement scenarios.

7.2.3 Generative Experiment: Model 3

Based on the results of graph reconstruction experiment, where Model 3 dominated the

other models, it is expected to perform similarly well in the generative tasks. In 7.3 we can

55

t = 0 t = 1e−5 t = 1e−3 t = 0.1 t = 0.25 t = 0.5 t = 0.75

Dataset15 0.3627 0.6487 0.6586 0.6838 0.64510 0.3084 0.1444
Dataset50 0.3051 0.6887 0.7187 0.7221 0.6742 0.5126 0.1921
Dataset150 0.3437 0.4574 0.4577 0.4587 0.6918 0.4335 0.4456
Dataset500 0.30698 0.3734 0.39182 0.5886 0.4789 0.4642 0.0

(a) Edge validity ratio of with various thresholds

t = 0 t = 1e−5 t = 1e−3 t = 0.1 t = 0.25 t = 0.5 t = 0.75

Dataset15 9.0902 5.0372 4.7765 3.6223 2.7446 0.7753 0.6249
Dataset50 27.0835 11.9958 11.4949 11.3986 7.4761 1.0479 0.6266
Dataset150 73.0409 19.1629 9.9250 2.6583 1.0819 0.0671 0.8781
Dataset500 220.2978 172.6761 172.6001 139.595 1.8808 0.9523 0.0

(b) Mean User Node Edge Count Ratio with various thresholds

Table 7.2 Results of the generative experiments for Model 2

see that with increasing size of the graphs, the threshold with best performance lowers.

In most cases, at least one node generated by the Model 3 remains unconnected which

results in higher Disconnected Node ratio for Model 3. That is placement which is not

compatible withe AD, but there is a simple way to overcome such problem: After pre-

dicting the node edges, additional validation is performed and if no edges are predicted

the node is not added to the structure. Repeated generation of nodes with no edges can

be also considered a stopping signal.

t = 0 t = 1e−5 t = 1e−3 t = 0.1 t = 0.25 t = 0.5 t = 0.75

Dataset15 0.3627 0.5773 0.6868 0.69277 0.6693 0.61876 0.2756
Dataset50 0.3051 0.4296 0.3901 0.3922 0.4116 0.5959 0.2916
Dataset150 0.3437 0.3311 0.2521 0.1761 0.1466 0.0471 0.0
Dataset500 0.3069 0.39165 0.6751 0.2675 0.05726 0.0 0.0

(a) Edge validity ratio with various thresholds

t = 0 t = 1e−5 t = 1e−3 t = 0.1 t = 0.25 t = 0.5 t = 0.75

Dataset15 9.0902 4.4599 2.5240 1.0157 0.7231 0.3556 0.1582
Dataset50 27.0835 8.9144 4.9581 1.3672 0.6860 0.06724 0.0020
Dataset150 73.0409 19.1629 9.9251 2.6583 1.0819 0.0671 0.0086
Dataset500 84.9209 13.9511 2.5811 0.10462 0.04576 0.0 0.0

(b) Mean User Node Edge Count Ratio with various thresholds

Table 7.3 Results of the generative experiments for Model 3

56

7.2.4 Model Comparison

From results in Tables 7.2 and 7.3 it is clear the edge threshold hyper-parameter plays

important role in the quality of the outcome. The results show that the best perform-

ing value of threshold remains consistent as the graph size grows, with lower values for

Model 3.

Unlike Model 2, which produces connected graphs in vast majority of times, Model 3

has tendency of not connecting all nodes. However, nodes with predicted edges are well

distributed in the structure which is desirable with respect to the honeypots. Model 2

produces node placements which are similar to each other resulting in structures with lot

of new nodes in the same place. Figure 7.1 shows the case where Model 2 predicts edges

from multiple Organizational Units to a single node while Model 3 distributes the new

nodes in multiple OUs in the graph.

Figure 7.2 shows the result of the generation process of Model 2 and 3 in larger dataset.

It shows the same specifics of generation as we described for graphs in Figure 7.1. Model

2 places all nodes in one organizational unit while Model 3 leaves more than half of the

nodes disconnected.

In comparison with the graph reconstruction experiment, where Model 3 outperformed

the other models, in this experiment the results do not show such dominance in the

performance. Results of Model 1 are unsatisfactory and in current setup it is not possible

to utilize for generating additional nodes for graph extension.

7.2.5 Examples of Generated Structures

7.3 Generation of Honeyusers

Apart from analysis of the generated structures in the artificial datasets, testing in real-

world environment is in order. The honeyusers are meant to attract the attention of the

attacker so any inconsistencies can reveal that the user is not real. For this evaluation we

are using data from an existing Active Directory. Data extracted with Sharphound tool.

For the purpose of the evaluation the data has been anonymized to avoid leaking sensitive

data. For the purpose of the experiment, the domain name has been changed to TEST.cz

and name of the container objects translated to English with kept semantic. The domain

originally consists of 120 User objects, 106 Computer objects, 35 Organizational Units

and 170 Groups. In the experiments, 20 new nodes are predicted as a honeyusers.

57

Figure 7.1 | Comparison of structures generated by Models 2 and 3 (Dataset
15). Model 3 generates more realistic looking placements for the new User nodes but it
also generates nodes that are disconnected from the rest of the graph.

7.3.1 Examples of Predicted Parent Nodes Testing Domain

In this subsection we show the output of the model when applied to real production AD.

Table 7.4 shows examples form the generation process. Only for 25 % of the generated

users the model correctly predicted parent Organizational Unit. On average, for 21,6 %

of generated users at least one of the predicted predecessors was inconsistent. In the first

example in Table 7.4 both errors were made as the user is was predicted to be a successor

58

Figure 7.2 | Comparison of structures generated by Models 2 and 3 (Dataset
50). Model 2 generates new User nodes with a lot of connections or under the same OU,
while Model 3 generates better placements but more disconnected nodes.

of a Computer object ”CN=CZPRG-P-EXC01”.

The example of successful placement of the honeyuser is shown in the last row of

the table. For the user, being placed in the OU Engineering, the model also predicted

59

membership in groups representing access list of the organizational unit.

attribute value

RDN CN=CN=Sizemore C. Colin
Ou None

memberOf
CN=Domain Admins,CN=Users,DC=TEST,DC=cz
CN=ACL TEST domain users,OU=Access rights,OU=Groups,OU= TEST,DC=TEST,DC=cz
CN=Administrators,CN=Builtin,DC=TEST,DC=cz
CN=CZPRG-P-EXC01,OU=Servers,OU=Computers,OU= TEST,DC=TEST,DC=cz

RDN CN=Zalewski Adam
Ou OU=Operations,OU= Users,OU= TEST,DC=TEST,DC=cz

memberOf

CN=Exchange Windows Permissions,OU=Microsoft Exchange Security Groups,DC=TEST,DC=cz
CN=Role Group SER2,OU=User roles,OU=Groups,OU= TEST,DC=TEST,DC=cz
CN=ACL Disk S&PS share Full Access,OU=Access rights,OU=Groups,OU= TEST,DC=TEST,DC=cz
CN=Domain Users,CN=Users,DC=TEST,DC=cz
CN=Account Operators,CN=Builtin,DC=TEST,DC=cz
CN=ACL TEST domain users,OU=Access rights,OU=Groups,OU= TEST,DC=TEST,DC=cz

RDN CN=Růžičková Vlasta
Ou OU=Engineering,OU= Users,OU= TEST,DC=TEST,DC=cz

memberOf

CN=Exchange Windows Permissions,OU=Microsoft Exchange Security Groups,DC=TEST,DC=cz
CN=Role Group ENG2,OU=User roles,OU=Groups,OU= TEST,DC=TEST,DC=cz
CN=ACL Disk Stag Full Access,OU=Access rights,OU=Groups,OU= TEST,DC=TEST,DC=cz
CN=ACL Disk Public Projects Full Access,OU=Access rights,OU=Groups,OU= TEST,DC=TEST,DC=cz
CN=ACL Disk Public Skill Matrix - Full Access,OU=Access rights,OU=Groups,OU= TEST,DC=TEST,DC=cz
CN=ACL TEST domain users,OU=Access rights,OU=Groups,OU= TEST,DC=TEST,DC=cz
CN=Domain Users,CN=Users,DC=TEST,DC=cz
CN=ACL TEST domain users,OU=Access rights,OU=Groups,OU= TEST,DC=TEST,DC=cz
CN=Engineering - TEST,OU=Distribution,OU=Groups,OU= TEST,DC=TEST,DC=cz

Table 7.4 Examples of generated honeyusers and predicted direct predecessors in the real
AD

60

Chapter 8

Conclusion

In this thesis we showed how modern machine learning techniques for graph processing

can be utilized in honeypot deployment, mainly in the Active Directory domain which is

a common target of Advanced Persistent Threat (APT) attacks.

We introduced a framework which is capable of processing the existing structure of

an Active Directory and propose where to place honeypot users. Such task is commonly

done manually by system administrators or security professionals.

The core of the framework is a machine learning model based on the DAG-RNN

module which utilizes the structure of the graph to create a node-level encoding. The

DAG-RNN Encoder implemented in this thesis processes the complete graph in a single

pass and is capable of working with graphs of arbitrary size. Additionally, we proposed,

implemented and evaluated three model types using the DAG-RNN Encoder which differ

in the Decoder module. All proposed models are implemented for the Tensorflow 2 library

and they are compatible with the standard API of the library.

Given the sensitivity of the data stored in the AD and subsequent complications with

the collection of a dataset large enough for the model training, we created four artificial

AD User Related Graph Datasets. Expert knowledge was used in the generation process

to ensure that the datasets contain valid structures for model training and evaluation.

The generated datasets differ in maximal size of the graphs which was used to test the

models’ scalability.

We evaluated proposed models in two experimental directions: modelling of the AD

structures and generation of additional nodes for existing structures. In the first exper-

iment we showed that while all models perform well in the small-sized graphs, with an

increasing amount of nodes in the structure, Model 3, which is based on Variational Au-

toencoder architecture, has superior results with F1 score over 0.6 and recall over 70%.

In the same experiment we demonstrated that while the DAG-RNN is suitable for DAG

node encoding, a model using only the target node type is not able to scale up to the

61

sizes of graphs common in the real-world AD structures.

In the generative experiments, we showed that the clear dominance of the VAE model

in the structural modelling task, does not imply the same results in the existing graph

extension task. We showed that the performance of the models depends heavily on the

threshold parameter. Models 2 and 3 showed promising results both in small and large

graphs, producing node placements with similar properties to the nodes in the original

structures. In particular, Model 2 generated over 50% of valid edges and the Model 3

achieved 67.5% of edge validity in the largest dataset while keeping the mean amount of

edges per node close to the value in the original graph.

The main outcome of this thesis is a novel framework for honeypot placement in an

AD domain. Moreover, we created a free software implementation of a DAG-RNN model

which can process Directed Acyclic Graphs of arbitrary size. Our implementation is

compatible with Tensorflow 2, one of the leading ML frameworks in the industry, and its

GPU acceleration.

8.1 Future Work

There are several directions for future development of the proposed framework. One of the

main drawbacks is the memory inefficiency of the data representation in the current imple-

mentation. With Tensorflow 2 support of Sparse tensor operations and the fact that the

majority of the adjacency matrix elements are zeros, a transition to the sparse represen-

tation would enable processing even bigger structures using the same hardware.Another

implementation aspect to be addressed in the future is that of full compatibility with

the Tensorflow API, especially the sequential API and the default pipeline. In the cur-

rent state, the Sequential API is not applicable due to the output shapes of the custom

DAG-RNN encoder layer which is designed to process graphs of arbitrary size.

In the model design area, future plans include involving the previous predictions into

the decision making process making the model aware of the other predicted edges for a

candidate node. Such direction could further improve both the autoencoding and gener-

ative capabilities of the model. The same applies for including additional node features

as well as extra node types in the model design.

One of the most important future steps is an evaluation with real users and attackers

or penetration testers. Since honeypots are mainly focused on rational attackers, testing

within a real-world environment is crucial for the proper evaluation of the honeypot

quality.

Despite showing that the framework produces object with similar properties as the

same type objects in the original graph, further evaluation with security professionals,

62

penetration testers and red-team members is necessary to for conclusive analysis of the

quality of the generated honeyusers.

63

Appendix A

Detailed experiment results

A.1 AD Structure Modelling

A.1.1 Auto encoder with variable z-dimension

Data from the experiment that is focused on the variable latent space size and its influence

on DAG-RNN based autoencoder reconstructive capabilities.

z dimension Precision Recall F1 Score AUC (P-R curve)

|z| = 2 0.4118 0.4489 0.4295 0.4532
|z| = 8 0.3968 0.7795 0.5259 0.6167
|z| = 32 0.5732 0.9302 0.7093 0.8325
|z| = 128 0.6686 0.9377 0.7806 0.8885

Table A.1 Evaluation of the influence of the latent space dimensionality on DAG-RNN
Autoencoder performance (Dataset 50)

z dimension Precision Recall F1 Score AUC (P-R curve)

|z| = 2 0.2087 0.1418 0.1689 0.1498
|z| = 8 0.2556 0.2948 0.2738 0.2494
|z| = 32 0.3228 0.4886 0.3887 0.4007
|z| = 128 0.47099 0.8382 0.6031 0.7264

Table A.2 Evaluation of the influence of the latent space dimensionality on DAG-RNN
Autoencoder performance (Dataset 150)

64

A.1.2 δ hyper-parameter of Huber loss

Figure A.1 | δ hyper-paremeter tuning for Model 2. AUC of the PR curve using
various δ values. MSE and MAE shown for comparison.

A.1.3 Model comparison with Datasets 150 & 500

Figure A.2 | PR curve comparison
(Dataset150). Graph showing the
Precision-Recall curve for each of the
model for Dataset150. andom model is
shown as a baseline.

Figure A.3 | PR curve comparison
(Dataset500). Graph showing the
Precision-Recall curve for each of the
model for Dataset500. Random model
is shown as a baseline.

65

References

[1] T. Norris, Perspectives: It’s Not If, It’s When, A Cyber Attack Will Hit. [Online].
Available: https://www.rsa.com/en-us/blog/2019-06/perspectives-its-
not-if-its-when-a-cyber-attack-will-hit.

[2] National Security Agency of the United States of America (NSA), Defense in Depth,
2010. [Online]. Available: https://apps.nsa.gov/iaarchive/library/ia-

guidance/archive/defense-in-depth.cfm (visited on 11/08/2020).

[3] C. Cimpanu, Hackers breached A1 Telekom, Austria’s largest ISP. [Online]. Avail-
able: https:/ /www.zdnet .com/article /hackers- breached- a1- telekom-

austrias-largest-isp (visited on 11/08/2020).

[4] Z. Whittacker, Hackers went undetected in Citrix’s internal network for six months.
[Online]. Available: https://techcrunch.com/2019/04/30/citrix-internal-
network-breach (visited on 11/08/2020).

[5] C. Cimpanu, Fortune 500 company NTT discloses security breach. [Online]. Avail-
able: https://www.zdnet.com/article/fortune-500-company-ntt-discloses-
security-breach (visited on 11/08/2020).

[6] K. Zetter, Sony Got Hacked Hard: What We Know and Don’t Know So Far. [Online].
Available: https://www.wired.com/2014/12/sony-hack-what-we-know (visited
on 11/08/2020).

[7] J. Crabtree, Active Directory Attacks Hit the Mainstream. [Online]. Available: https:
/ / www . darkreading . com / endpoint / authentication / active - directory -

attacks-hit-the-mainstream/a/d-id/1337405 (visited on 11/08/2020).

[8] S. Metcalf, Red vs. Blue: Modern Active Directory Attacks, Detection, & Protec-
tion, 2015. [Online]. Available: https : / / www . blackhat . com / docs / us - 15 /

materials/us-15-Metcalf-Red-Vs-Blue-Modern-Active-Directory-Attacks-

Detection-And-Protection-wp.pdf (visited on 11/08/2020).

[9] Microsoft, What threats does ATA look for? [Online]. Available: https://docs.
microsoft.com/en-us/advanced-threat-analytics/ata-threats (visited on
11/08/2020).

[10] R. Nurfauzi, Active Directory Kill Chain Attack & Defense, 2020. [Online]. Avail-
able: https : / / github . com / infosecn1nja / AD - Attack - Defense (visited on
11/08/2020).

[11] A. P. de Barros, RES: Protocol Anomaly Detection IDS - Honeypots. [Online]. Avail-
able: https://seclists.org/focus-ids/2003/Feb/95 (visited on 11/08/2020).

[12] X. Han, N. Kheir, and D. Balzarotti, “Deception techniques in computer security:
A research perspective”, ACM Computing Surveys (CSUR), vol. 51, no. 4, pp. 1–36,
2018.

66

https://www.rsa.com/en-us/blog/2019-06/perspectives-its-not-if-its-when-a-cyber-attack-will-hit
https://www.rsa.com/en-us/blog/2019-06/perspectives-its-not-if-its-when-a-cyber-attack-will-hit
https://apps.nsa.gov/iaarchive/library/ia-guidance/archive/defense-in-depth.cfm
https://apps.nsa.gov/iaarchive/library/ia-guidance/archive/defense-in-depth.cfm
https://www.zdnet.com/article/hackers-breached-a1-telekom-austrias-largest-isp
https://www.zdnet.com/article/hackers-breached-a1-telekom-austrias-largest-isp
https://techcrunch.com/2019/04/30/citrix-internal-network-breach
https://techcrunch.com/2019/04/30/citrix-internal-network-breach
https://www.zdnet.com/article/fortune-500-company-ntt-discloses-security-breach
https://www.zdnet.com/article/fortune-500-company-ntt-discloses-security-breach
https://www.wired.com/2014/12/sony-hack-what-we-know
https://www.darkreading.com/endpoint/authentication/active-directory-attacks-hit-the-mainstream/a/d-id/1337405
https://www.darkreading.com/endpoint/authentication/active-directory-attacks-hit-the-mainstream/a/d-id/1337405
https://www.darkreading.com/endpoint/authentication/active-directory-attacks-hit-the-mainstream/a/d-id/1337405
https://www.blackhat.com/docs/us-15/materials/us-15-Metcalf-Red-Vs-Blue-Modern-Active-Directory-Attacks-Detection-And-Protection-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Metcalf-Red-Vs-Blue-Modern-Active-Directory-Attacks-Detection-And-Protection-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Metcalf-Red-Vs-Blue-Modern-Active-Directory-Attacks-Detection-And-Protection-wp.pdf
https://docs.microsoft.com/en-us/advanced-threat-analytics/ata-threats
https://docs.microsoft.com/en-us/advanced-threat-analytics/ata-threats
https://github.com/infosecn1nja/AD-Attack-Defense
https://seclists.org/focus-ids/2003/Feb/95

[13] “ISO/IEC 9594-1:2017 Information technology — Open Systems Interconnection —
The Directory — Part 1: Overview of concepts, models and services”, 2017.

[14] https://ldapwiki.com/, ldapwiki.com. [Online]. Available: https://ldapwiki.com/
wiki/Microsoft%20Active%20Directory%20Attributes (visited on 07/02/2020).

[15] Microsoft, Active Directory Security Groups. [Online]. Available: https://docs.
microsoft.com/en- us/windows/security/identity- protection/access-

control/active-directory-security-groups (visited on 11/08/2020).

[16] A. Robbins and R. Vazarkar, Bloodhound. [Online]. Available: https://github.
com/BloodHoundAD/BloodHound (visited on 09/07/2020).

[17] Microsoft, Powershell. [Online]. Available: https://docs.microsoft.com/en-
us/powershell (visited on 12/06/2020).

[18] https://neo4j.com/, Neo4j. [Online]. Available: https://neo4j.com/ (visited on
12/06/2020).

[19] A. Greenberg, The Untold Story of NotPetya, the Most Devastating Cyberattack
in History. [Online]. Available: https : / / www . wired . com / story / notpetya -

cyberattack-ukraine-russia-code-crashed-the-world (visited on 11/08/2020).

[20] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[21] G. Palm, “Warren McCulloch and Walter Pitts: A Logical Calculus of the Ideas
Immanent in Nervous Activity”, in Brain Theory, G. Palm and A. Aertsen, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 1986, pp. 229–230, isbn: 978-3-642-
70911-1.

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[23] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia;
Pearson Education Limited, 2016.

[24] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl, On
Empirical Comparisons of Optimizers for Deep Learning, 2019. arXiv: 1910.05446
[cs.LG].

[25] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, 2014. arXiv:
1412.6980 [cs.LG].

[26] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function”, Neural
networks, vol. 6, no. 6, pp. 861–867, 1993.

[27] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[28] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation, 2014. arXiv: 1406.1078 [cs.CL].

[29] Kowsari, J. Meimandi, Heidarysafa, Mendu, Barnes, and Brown, “Text Classifica-
tion Algorithms: A Survey”, Information, vol. 10, no. 4, p. 150, Apr. 2019, issn:
2078-2489. doi: 10.3390/info10040150. [Online]. Available: http://dx.doi.org/
10.3390/info10040150.

[30] D. Britz, A. Goldie, M.-T. Luong, and Q. Le, Massive Exploration of Neural Machine
Translation Architectures, 2017. arXiv: 1703.03906 [cs.CL].

67

https://ldapwiki.com/wiki/Microsoft%20Active%20Directory%20Attributes
https://ldapwiki.com/wiki/Microsoft%20Active%20Directory%20Attributes
https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/active-directory-security-groups
https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/active-directory-security-groups
https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/active-directory-security-groups
https://github.com/BloodHoundAD/BloodHound
https://github.com/BloodHoundAD/BloodHound
https://docs.microsoft.com/en-us/powershell
https://docs.microsoft.com/en-us/powershell
https://neo4j.com/
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world
https://arxiv.org/abs/1910.05446
https://arxiv.org/abs/1910.05446
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1406.1078
https://doi.org/10.3390/info10040150
http://dx.doi.org/10.3390/info10040150
http://dx.doi.org/10.3390/info10040150
https://arxiv.org/abs/1703.03906

[31] classic.d2l.ai, classic.d2l.ai. [Online]. Available: https://classic.d2l.ai/chapter_
recurrent-neural-networks/bi-rnn.html (visited on 09/07/2020).

[32] T. Pevny and P. Somol, Discriminative models for multi-instance problems with
tree-structure, 2017. arXiv: 1703.02868 [cs.CR].

[33] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and A. Smola,
Deep Sets, 2017. arXiv: 1703.06114 [cs.LG].

[34] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M.
Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, C. Gulcehre, F.
Song, A. Ballard, J. Gilmer, G. Dahl, A. Vaswani, K. Allen, C. Nash, V. Langston,
C. Dyer, N. Heess, D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and
R. Pascanu, Relational inductive biases, deep learning, and graph networks, 2018.
arXiv: 1806.01261 [cs.LG].

[35] Avinash Hindupur, The GAN zoo. [Online]. Available: https://github.com/

hindupuravinash/the-gan-zoo (visited on 11/08/2020).

[36] S. J. Russell and P. Norvig, ECIW2006-Proceedings of the 5th European Conference
on i-Warfare and Security: ECIW 2006. Academic Conferences Limited, Jan. 2019,
p. 286, isbn: 9781905305209.

[37] Microsoft, https://docs.microsoft.com/en-us/advanced-threat-analytics. [Online]. Avail-
able: https://docs.microsoft.com/en- us/advanced- threat- analytics/

(visited on 09/07/2020).

[38] https://github.com/leeberg, https://github.com/leeberg/BlueHive. [Online]. Avail-
able: https://github.com/leeberg/BlueHive (visited on 09/07/2020).

[39] C. Leita, K. Mermoud, and M. Dacier, “ScriptGen: an automated script genera-
tion tool for Honeyd”, in 21st Annual Computer Security Applications Conference
(ACSAC’05), 2005, 12 pp.–214.

[40] http://www.honeyd.org/, www.honeyd.org. [Online]. Available: http://www.honeyd.
org/ (visited on 07/05/2020).

[41] S. Dowling, M. Schukat, and E. Barrett, “Using Reinforcement Learning to Conceal
Honeypot Functionality”, in ECML/PKDD, 2018.

[42] W. Tian, X.-P. Ji, W. Liu, J. Zhai, G. Liu, Y. Dai, and S. Huang, “Honeypot
game-theoretical model for defending against APT attacks with limited resources
in cyber-physical systems”, ETRI Journal, vol. 41, no. 5, pp. 585–598, 2019.

[43] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A Comprehensive Survey
on Graph Neural Networks”, IEEE Transactions on Neural Networks and Learning
Systems, 1–21, 2020, issn: 2162-2388. doi: 10.1109/tnnls.2020.2978386. [Online].
Available: http://dx.doi.org/10.1109/TNNLS.2020.2978386.

[44] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec, GraphRNN: Generat-
ing Realistic Graphs with Deep Auto-regressive Models, 2018. arXiv: 1802.08773
[cs.LG].

[45] M. Simonovsky and N. Komodakis, GraphVAE: Towards Generation of Small Graphs
Using Variational Autoencoders, 2018. arXiv: 1802.03480 [cs.LG].

[46] R. Liao, Y. Li, Y. Song, S. Wang, C. Nash, W. L. Hamilton, D. Duvenaud, R. Ur-
tasun, and R. Zemel, “Efficient Graph Generation with Graph Recurrent Attention
Networks”, in NeurIPS, 2019.

68

https://classic.d2l.ai/chapter_recurrent-neural-networks/bi-rnn.html
https://classic.d2l.ai/chapter_recurrent-neural-networks/bi-rnn.html
https://arxiv.org/abs/1703.02868
https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1806.01261
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://docs.microsoft.com/en-us/advanced-threat-analytics/
https://github.com/leeberg/BlueHive
http://www.honeyd.org/
http://www.honeyd.org/
https://doi.org/10.1109/tnnls.2020.2978386
http://dx.doi.org/10.1109/TNNLS.2020.2978386
https://arxiv.org/abs/1802.08773
https://arxiv.org/abs/1802.08773
https://arxiv.org/abs/1802.03480

[47] S. Amizadeh, S. Matusevych, and M. Weimer, “Learning To Solve Circuit-SAT: An
Unsupervised Differentiable Approach”, in International Conference on Learning
Representations, 2019. [Online]. Available: https://openreview.net/forum?id=
BJxgz2R9t7.

[48] M Kaluza, C. De Paolis, S. Amizadeh, and R. Yu, “A neural framework for learning
DAG to DAG translation”, in NeurIPS’2018 Workshop, 2018.

[49] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou, Q. Huang, C.
Ma, Z. Huang, Q. Guo, H. Zhang, H. Lin, J. Zhao, J. Li, A. Smola, and Z. Zhang,
Deep Graph Library: Towards Efficient and Scalable Deep Learning on Graphs, 2019.
arXiv: 1909.01315 [cs.LG].

[50] D. Grattarola and C. Alippi, Graph Neural Networks in TensorFlow and Keras with
Spektral, 2020. arXiv: 2006.12138 [cs.LG].

[51] I. Siniosoglou, G. Efstathopoulos, D. Pliatsios, I. Moscholios, A. Sarigiannidis, G.
Sakellari, G. Loukas, and P. Sarigiannidis, NeuralPot: an industrial honeypot imple-
mentation based on convolutional neural networks, Apr. 2020. [Online]. Available:
http://gala.gre.ac.uk/id/eprint/27976/.

[52] Sense of Security, ADRecon. [Online]. Available: https://github.com/sense-of-
security/ADRecon (visited on 11/08/2020).

[53] Javelin Networks, Honeypot Buster. [Online]. Available: https://github.com/

JavelinNetworks/HoneypotBuster (visited on 11/08/2020).

[54] BloodHoundAD, https://github.com/BloodHoundAD/SharpHound. [Online]. Avail-
able: https://github.com/BloodHoundAD/SharpHound (visited on 07/05/2020).

[55] T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient Estimation of Word Rep-
resentations in Vector Space, 2013. arXiv: 1301.3781 [cs.CL].

[56] A. Grover and J. Leskovec, node2vec: Scalable Feature Learning for Networks, 2016.
arXiv: 1607.00653 [cs.SI].

[57] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, Focal Loss for Dense Object
Detection, 2017. arXiv: 1708.02002 [cs.CV].

[58] T. Oliphant, NumPy: A guide to NumPy, USA: Trelgol Publishing, 2006–. [Online].
Available: http://www.numpy.org (visited on 11/08/2020).

[59] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring Network Structure, Dy-
namics, and Function using”, in Proceedings of the 7th Python in Science Confer-
ence, G. Varoquaux, T. Vaught, and J. Millman, Eds., Pasadena, CA USA, 2008,
pp. 11 –15.

[60] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-
ward neural networks”, in In Proceedings of the International Conference on Ar-
tificial Intelligence and Statistics (AISTATS’10). Society for Artificial Intelligence
and Statistics, 2010.

[61] Willeke, J and Wolkhart,M, LDIFGenerator. [Online]. Available: https://github.
com/jwilleke/LDIFGenerator (visited on 11/08/2020).

[62] C. Works, Fake Name Generator. [Online]. Available: https://www.fakenamegenerator.
com (visited on 11/08/2020).

69

https://openreview.net/forum?id=BJxgz2R9t7
https://openreview.net/forum?id=BJxgz2R9t7
https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/2006.12138
http://gala.gre.ac.uk/id/eprint/27976/
https://github.com/sense-of-security/ADRecon
https://github.com/sense-of-security/ADRecon
https://github.com/JavelinNetworks/HoneypotBuster
https://github.com/JavelinNetworks/HoneypotBuster
https://github.com/BloodHoundAD/SharpHound
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1607.00653
https://arxiv.org/abs/1708.02002
http://www.numpy.org
https://github.com/jwilleke/LDIFGenerator
https://github.com/jwilleke/LDIFGenerator
https://www.fakenamegenerator.com
https://www.fakenamegenerator.com

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Background
	Directory Service
	Lightweight Directory Access Protocol (LDAP)
	Distinguished Name (DNs)
	Attributes

	Active Directory
	Active Directory Objects
	Groups
	Relations Between Objects in AD
	Active Directory Attacks

	Neural Networks
	Backpropagation Algorithm
	Stochastic Gradient Descent
	Recurrent Neural Networks
	Graph Neural Networks
	Deep Sets
	Generative Models

	Honeypots
	Types of Honeypots

	Previous Work
	AD Structure Modelling
	Notation and Definitions
	General Description of the Framework
	Components Design in the Generic Model
	DAG-RNN Encoder
	DAG Recurrent Layer
	Bi-directional DAG Recurrent Layer
	Loss Function
	Implementation Details
	Model Training

	Model 1: Direct Edge Prediction
	Model Components

	Model 2: DAG-RNN AutoEncoder
	Model Components
	Loss Function

	Model 3: Variational AutoEncoder
	DAG-RNN VAE Model Architecture

	Transition from a User Related Graph to AD Entries

	Dataset
	Artificial Dataset Creation
	Extracting Data From The Active Directory

	Graph Reconstruction Experiments
	Evaluation Metrics
	Structural Experiment Results and Analysis
	Model 1: Direct Edge Prediction
	Model 2: DAG-RNN Autoencoder
	Model 3: Variational Autoencoder Model
	AD Structure Modelling: Model Comparison

	Generative Experiments
	Evaluation Metrics
	Generative Experiment Results and Analysis
	Generative Experiment: Model 1
	Generative Experiment: Model 2
	Generative Experiment: Model 3
	Model Comparison
	Examples of Generated Structures

	Generation of Honeyusers
	Examples of Predicted Parent Nodes Testing Domain

	Conclusion
	Future Work

	Detailed experiment results
	AD Structure Modelling
	Auto encoder with variable z-dimension
	 hyper-parameter of Huber loss
	Model comparison with Datasets 150 & 500

	References

