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Abstract

This thesis is concerned with the control of position, velocity, and torque in permanent
magnet synchronous motors. The mathematical model of a synchronous motor is thoroughly
described and then simplified to a linear model used by model predictive control methods.
Then, three types of control algorithms are described including the classical field-oriented PI
controller, model predictive control, and finite-control-set model predictive control. In case of
the predictive methods, both single-loop and cascaded multi-loop structures are considered.
The described methods are then evaluated in simulation.

Keywords: Permanent magnet synchronous motor, PMSM, brushless DC motor, BLDC,
model predictive control, MPC, finite-control-set model predictive control, FCS-MPC

Abstrakt

Tato práce se zabývá řízením polohy, rychlosti a momentu síly synchronních motorů s per-
manentním magnetem. Matematický model synchronního motoru je důkladně popsán a na
jeho základě je odvozen zjednodušený lineární model použitý pro prediktivní řízení. Poté jsou
popsány tři typy řídicích algoritmů zahrnující klasické vektorové řízení pomocí PI regulátoru,
prediktivní řízení a prediktivní řízení s uvažováním diskrétních aktuátorů známé jako finite-
control-set MPC. U prediktivních metod je uvažována kaskádní i jednoregulátorová struktura.
Popsané metody jsou ověřeny v simulaci a následně zhodnoceny.

Klíčová slova: Synchronní motor s permanentním magnetem, PMSM, bezkartáčový DC
motor, BLDC, prediktivní řízení, MPC, FCS-MPC
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Chapter 1

Introduction

Permanent-magnet synchronous motors (PMSMs) and brushless DC (BLDC) motors are
three-phase motors with permanent magnets on the rotor and the phase windings on the
stator, which makes the motor construction commutator-free. The absence of commutator
ensures energy efficiency and mechanical simplicity, and thus makes these motors more reliable
than their brushed counterparts as there are fewer components that may wear out. PMSMs
and BLDC motors also have a relatively high torque-to-volume ratio [1]. Another advantage
is that they allow for reducing the magnitude of the magnetic field inside the motor by means
of a technique known as field weakening, which in turn enables operation at higher speeds.
For these reasons, PMSMs and BLDC motors are a suitable option for torque, velocity, or
position control in many industrial applications.

The advantages of PMSMs and BLDC motors come at the cost of the increased complexity
of control methods. The commutation, i.e., the process of varying currents through individual
phases, is realized electrically without an electromechanical commutator. Usually, a three-
phase inverter is employed together with a digital controller that operates the switching
elements in the inverter. The digital controller must operate at a sufficiently high frequency
determined primarily by the motor parameters and the requirements on the precision of
control.

Many PMSM/BLDC motor control algorithms neglect the switching nature of the inverter
and generate three phase voltages in the form of three real numbers. The generated numbers
are then translated into two-state signals driving the switching elements in the inverter.
The translation utilizes a modulation scheme such as pulse-width modulation (PWM) or
space-vector modulation (SVM). These algorithms include scalar control and field-oriented
proportional-integral-derivative (PID) controller.

There is another class of control algorithms that take the switching nature into account
and generate two-state signals directly. Direct torque control (DTC) is an example. Another
example is a combination of DTC and model-predictive control (MPC) called FCS-MPC.
It formulates the control task as an optimization problem with binary decision variables, a
problem belonging to the class of integer programs. In this context, MPC with real-valued
decision variables is sometimes referred to as CCS-MPC [2], [3].

FCS-MPC and CCS-MPC provide a framework to deal with the control of, possibly
nonlinear, constrained multi-input, multi-output (MIMO) systems. They both find optimal
control over a finite time horizon with the possibility to take into consideration time-varying
reference. All these advantages can be exploited to control PMSMs and BLDC motors.

1



2 Chapter 1 Introduction

Also, a subtle selection of the cost function in an MPC algorithm can result in an inherent
flux weakening at higher speeds. When compared to continuous-control-set algorithms,
FCS-MPC may yield an improved performance provided that it operates at a significantly
higher frequency. Higher sampling frequency does not necessarily mean higher switching
frequency, but it provides the controller more options to select optimal time instants for the
switching events. In fact, FCS-MPC provides a convenient way to select a trade-off between
the performance and the maximum switching frequency. Low switching frequencies usually
yield significant torque ripple whereas high switching frequencies yield smoother torque. On
the other hand, high switching frequencies are also associated with significant power losses.
FCS-MPC does not keep fixed switching frequency, unlike in the case of algorithms using
modulators. In some applications, this is considered a problem because of the possibility of
low-order harmonics being propagated into the grid [4]. FCS-MPC is often implemented using
very short control horizons of length 1 or 2. The reasons are high sampling frequency and the
computational burden of finding the optimal solution, which grows exponentially with the
length of the prediction horizon.

This thesis describes the following control algorithms for PMSMs presented in the available
literature: field-oriented proportional-integral (PI) controller, CCS-MPC, and FCS-MPC. The
algorithms were tested in simulation and both single-loop and multi-loop cascaded structures
were analyzed. The tests examined the ability to track torque, velocity, and position references
under no-load conditions and with an external load torque. Suitable platform for hardware
implementation was chosen, however, verification of the algorithms on an actual PMSM have
not been done yet. All simulation files are provided in the attachment to this thesis.

1.1 Classification of Electric Motors

A possible classification of the basic types of electric motors based on the principle of their
operation is given in [5] and is shown in fig. 1.1.

Perhaps the simplest and the easiest to control are permanent magnet DC motors. Specif-
ically, the application of constant voltage results in constant steady-state velocity. When
the stator permanent magnets are replaced by controlled winding, one gains an extra degree
of freedom, which allows for field weakening. Such motors are called separately excited DC
motors. The main drawback of DC motors is the presence of commutator, which makes them
less efficient than PMSMs and BLDC motors.

Induction motors are more similar to PMSMs and BLDC motors. The difference is that
induction motors do not have permanent magnets on the rotor. Instead, the rotor is made of
soft magnetic material that enables the induction of rotor currents by commutating the stator
currents. Such a design requires asynchronous operation. In other words, the rotor is required
to rotate at a different velocity than the magnetic field generated by the stator and the
difference determines the generated torque. For high-performance control, the induced rotor
currents must be estimated. Thus, control of induction motors is slightly more complicated
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Figure 1.1: Classification of electric motors. Adapted with permission from [5, Figure 1.1].

than control of PMSMs and BLDC motors.
Permanent-magnet stepper motors are very similar to PMSMs and BLDC motors. As

shown in [6], their mathematical model is identical to the two-phase equivalent model of
PMSM, and therefore the same control algorithms may be applied. A high number of pole
pairs in the stepper motors makes open-loop position control reasonably precise. Nonetheless,
closed-loop feedback control greatly improves performance and efficiency.

The difference between PMSMs and BLDC motors is in the back electromotive force
(EMF), i.e., the voltage1 induced in the phase windings by the rotating permanent magnets.
PMSMs have a sinusoidal shape of the back EMF at the constant speed, whereas in the case of
BLDC motors, the shape is trapezoidal [6]. The trapezoidal shape makes the motors suitable
for six-step operation [7], which is easy and cheap to implement. The reason BLDC motors
are called brushless DC is that they often come with a current controller, and the overall
closed-loop system can be controlled in a similar way as a DC motor [6]. It is worth noting
that some texts do not make the distinction between PMSMs and BLDC motors, e.g. [1].
Also, some PMSMs and BLDC motors have neither sinusoidal nor trapezoidal shape of the
back EMF and the shape is described by more general periodic function. Control of such
motors is addressed in [8].

1Here, no distinction between voltage and EMF is made based on the remark in [6, Section 1.5.1].
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1.2 Related Work

Now, a short list of relevant work done by others is given. A comprehensive overview of
CCS-MPC and FCS-MPC algorithms applied in different areas of power electronics is given
in [4]. A possible implementation of CCS-MPC for PMSM with hardware in the loop (HIL)
verification was presented by authors of [2]. A comparison of FCS-MPC and CCS-MPC is
given in [3], where both algorithms showed similar results. An overview focused on FCS-MPC
is given in [9]. A detailed description of one-step FCS-MPC implementations used for different
topologies of power converters is given in [10]. Several variants of FCS-MPC with a long
prediction horizon designed for medium-voltage induction motors are described in [11]. Also,
the author of [11] shows that FCS-MPC applied to a three-level power converter can both
reduce the switching losses and improve the performance at the same time when compared to
algorithms with voltage modulation stage. In contrast, in this thesis, FCS-MPC is designed
for low-voltage PMSM with a two-level inverter.



Chapter 2

Permanent Magnet Synchronous Motors

This chapter describes the principle of the operation of a PMSM and the mathematical
model. The model is then transformed into a two-phase equivalent model using the Clarke
transformation. Further, the DQ model is obtained using the Park transformation, which is
then linearized and discretized. Then, model parameters are discussed. Finally, constraints
on the inputs and state variables are addressed. For a rigorous derivation of the model, the
reader is referred to [6] and [1]. Also, the model of a BLDC motor can be found in [6].

2.1 Principle of Operation

Fig. 2.1(a) shows the basic idea of the operation of a PMSM. The motor consists of three
stator phases, usually denoted as A, B, and C, and a permanent magnet on the rotor. Each of
the three phases consists of two coils that generate a magnetic field when current is running
through them. The orientation of the magnetic field around each coil is determined by the
direction of the current. The figure depicts the orientation for a given situation by N (for
North pole) and S (for South pole). The stator magnetic poles attract opposite rotor poles
and create torque. The stator currents are varied such that the created torque turns the
rotor in the desired direction. At constant rotor speed and constant external load torque, the
optimal phase currents are of sinusoidal shape, as a function of time, as shown in fig. 2.1(b).
Such current waveforms produce constant torque that compensates for the load torque and
friction. The optimal shape is a result of the sinusoidal shape of back EMFs, which is a result
of the actual motor construction and geometry.

Although a typical PMSM consists of three phases, the number may be different. The same
applies to the number of coils per phase and the number of rotor magnets. The phase windings
are not necessarily solenoidal, as in fig. 2.1(a). Instead, they can be distributed around the
stator perimeter. Also, the rotor magnets may be either inside the stator, as in fig. 2.1(a),
or outside. Such configurations are called interior PMSM (IPMSM) and surface-mounted
PMSM (SPMSM), respectively. Usually, the three phases are not controlled independently
but, rather, they are connected together in a star or delta configuration, which are depicted
in fig. 2.2. Both configurations reduce the number of wires connected to the motor and make
it a three-terminal device.

5



6 Chapter 2 Permanent Magnet Synchronous Motors

(a) Principle of operation of PMSM. (b) Optimal current waveforms.

Figure 2.1: Principle of operation of PMSM (a) and optimal current waveforms at constant
speed and constant load torque (b). The three phases A, B, and C are represented
by red, blue, and yellow colors, respectively.

(a) Star configuration. (b) Delta configuration.

Figure 2.2: Two common configurations of PMSM phase windings.

2.2 Mathematical model

2.2.1 Assumptions

The following mathematical model was derived making certain assumptions. Firstly, the motor
is assumed to be a three-phase symmetrical PMSM. In other words, all three phases have the
same properties and the only difference is that they are rotated in space by 120 degrees with
respect to each other, and the motor geometry is such that the back EMFs are of sinusoidal
shape. Secondly, it is assumed that the motor is made of ideal linear magnetic materials and
that there are no losses in the magnetic circuit. Hence, effects such as magnetic saturation of
the materials, hysteresis of B-H curve, and eddy-current losses are not considered. Also, the
model parameters are assumed to be constant, whereas in reality they can vary significantly
due to temperature rise in the motor and due to magnetic saturation.
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(a) Star configuration. (b) Delta configuration.

Figure 2.3: Model of electrical part of PMSM (the voltage arrows are oriented toward the
reference point).

2.2.2 Definition of Rotor Angle

As depicted in fig. 2.1(a), the rotor angle θ is defined to be the angle between the magnetic
axes of the rotor magnet and phase A. This implies that positive current through phase A
creates torque that attracts the rotor to zero angle. The orientation is such that phase B is
rotated in space by 120 degrees from phase A and phase C is rotated by 240 degrees (or −120
degrees) from phase A. The angular velocity is

ω = dθ
dt . (2.1)

When there are more coils per phase and/or more rotor magnets, there are more possibilities
to choose zero angle according to the above definition as the rotor and/or phase A have more
than one magnetic axis. In such case, any position at which the magnetic axes are aligned
is picked as zero angle. The effects of the rotor position on the phase windings are periodic
functions of θ with period 2π/npp, where npp is the number of pole pairs on the stator and
the rotor.

2.2.3 Voltage Equations

Fig. 2.3 shows model of electrical part of PMSM in star and delta configurations. In both
cases, the phase voltages va, vb, and vc are expressed in terms of the phase currents ia, ib, ic
and the total flux linkage in each phase ψa, ψb, ψc as

vabc = Rsiabc + d
dtψabc, (2.2)
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where

vabc =


va

vb

vc

 , iabc =


ia

ib

ic

 , ψabc =


ψa

ψb

ψc

 , (2.3)

and Rs is phase resistance. The flux linkages consist of two components

ψabc = ψabcs +ψabcr, (2.4)

where ψabcs = [ ψas ψbs ψcs ]T are the components of the flux linkages due to the stator currents
and ψabcr = [ ψar ψbr ψcr ]T are the components of the flux linkages due to the rotor magnets.
The components of the flux linkages due to the stator currents are

ψabcs = Liabc (2.5)

with L being the inductance matrix. If the air gap between the stator and rotor is uniform,
self-inductance of each phase Ls and mutual inductance between each two phases −Ms are
constant and the inductance matrix is

Luniform =


Ls −Ms −Ms

−Ms Ls −Ms

−Ms −Ms Ls

 . (2.6)

The negative signs at the mutual inductances are due to the phases being rotated with
respect to each other by 120 degrees and, thus, positive current in a phase winding induces
negative currents in the other two phases. If the motor has salient poles and the air gap is
non-uniform, the inductances vary with the rotor angle. The changes in the inductances can
be approximated as

L = Luniform + Lg


cos 2

(
nppθ

)
cos 2

(
nppθ − π

3

)
cos 2

(
nppθ + π

3

)
cos 2

(
nppθ − π

3

)
cos 2

(
nppθ − 2π

3

)
cos 2

(
nppθ

)
cos 2

(
nppθ + π

3

)
cos 2

(
nppθ

)
cos 2

(
nppθ + 2π

3

)

 , (2.7)

where the constant inductance matrix Luniform is used to represent the mean inductances and
Lg is the amplitude of the changes in inductance. The fluctuations are periodic functions
with period π/npp, which corresponds to the fact that the inductances are not affected by
the rotor magnetic field and, hence, the polarity of the rotor magnets does not matter. It is
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assumed that flux linkages due to rotor magnets are

ψabcr = Ψm


cos

(
nppθ

)
cos

(
nppθ − 2π

3

)
cos

(
nppθ + 2π

3

)

 , (2.8)

where Ψm denotes the amplitude of the components of ψabcr. The back EMFs in each phase
are then1

eabc =


ea

eb

ec

 = d
dtψabcr = −nppωΨm


sin
(
nppθ

)
sin
(
nppθ − 2π

3

)
sin
(
nppθ + 2π

3

)

 . (2.9)

Using (2.4), (2.5) and (2.9), the phase voltages vabc are expressed as

vabc = Rsiabc +Ldiabc
dt + ω

∂L

∂θ
iabc + eabc. (2.10)

where the effects of the magnetic field of the rotor magnets are contained in the back EMF
term.

2.2.4 Balanced Conditions

In a star-connected PMSM, Kirchhoff’s current law applied at the motor neutral point N̂
states that the phase currents are balanced and satisfy

ia + ib + ic = 0. (2.11)

From (2.5) and (2.7) it follows that

ψas + ψbs + ψcs = 0. (2.12)

The sinusoidal shape of flux linkages due to rotor magnets given by (2.8) implies

ψar + ψbr + ψcr = 0 (2.13)

and as a result

va + vb + vc = 0. (2.14)

1Some texts use different sign convention and define the back EMFs to be the negative of the expression
in (2.9). The sign conventions used here is, however, more common [6].
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Put into words, the phase voltages are also balanced.
In a delta-connected PMSM, Kirchhoff’s voltage law applied to the phase voltages states

that they are balanced and satisfy

va + vb + vc = 0. (2.15)

The sinusoidal shape of back EMFs given by (2.9) implies

ea + eb + ec = 0. (2.16)

Therefore, summing up the equations in (2.10) gives

0 = Rsizs + (Ls − 2Ms)
d
dt izs, (2.17)

where

izs = 1
3(ia + ib + ic) (2.18)

is the zero-sequence (also called common-mode) current. This is the common component
of the phase currents which is running in circle in the delta-connected PMSM. Under ideal
conditions, there are no voltages in (2.17) that would drive the zero-sequence current and for
this reason

izs = 0. (2.19)

Thus, the phase currents are balanced and

ia + ib + ic = 0. (2.20)

In practice, the zero-sequence current might be nonzero due to imbalance and asymmetry in
the motor. For example, if the back EMFs are non-sinusoidal and contain triplen harmonics
(as in case of BLDC motors), they are not balanced and the common-mode back EMF drives
the zero-sequence current. However, in delta-connected PMSMs izs is usually negligible.

2.2.5 Relationship Between Phase and Source Variables

The voltage equations given in section 2.2.3 are in terms of the phase voltages vabc and phase
currents iabc. The manipulated variables are, however, the source voltages

vabcs =
[
vas vbs vcs

]T
(2.21)
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Figure 2.4: PMSM connected to a three-phase voltage source.

and the currents drawn from the three-phase power supply are the source currents

iabcs =
[
ias ibs ics

]T
. (2.22)

This is shown in fig. 2.4. The relationship between the phase variables and the source variables
is now given.

In star-connected PMSM, the phase voltages vabc are taken with respect to the motor
neutral point N̂. The source voltages vas, vbs, vcs are taken with respect to the source neutral
point N. The relationship between the two sets of voltages is

vas = va + vn̂n, (2.23)

vbs = vb + vn̂n, (2.24)

vcs = vc + vn̂n (2.25)

where vn̂n is the voltage at the motor neutral point N̂ with respect to the source neutral point
N. Summing up these three equations and using the balanced conditions of va, vb, and vc
gives

vn̂n = 1
3 (vas + vbs + vcs) . (2.26)

Thus, the voltage between the two neutral points vn̂n is equal to the common-mode voltage of
the three source voltages. The source voltages need not to be balanced and, therefore, the
common-mode voltage vn̂n may be chosen non-zero. However, vn̂n does not drive the phase
currents because the phase voltages va, vb, and vc are obtained from the source voltages by
substracting vn̂n. In other words, only the differential modes of the source voltages drive the
phase currents and the common-mode voltage can be chosen arbitrarily. For example, when
the limits on the maximum and minimum source voltage are considered, the common-mode
can be used to shift the source voltages such that the voltage range is fully utilized. The
phase currents in star-connected PMSM are equal to the source currents

iabcs = iabc. (2.27)
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In delta-connected PMSM, the phase voltages vabc are the line-to-line voltages

va = vas − vbs, (2.28)

vb = vbs − vcs, (2.29)

vc = vcs − vas. (2.30)

The inverse relationship is

vas = 1
3(va − vc) + vcms, (2.31)

vbs = 1
3(vb − va) + vcms, (2.32)

vcs = 1
3(vc − vb) + vcms, (2.33)

where

vcms = 1
3(vas + vbs + vcs) (2.34)

is the common-mode voltage of the source voltages. As the phase voltages are line-to-line, they
do not depend on the common mode of the source voltages and vcms can be chosen arbitrarily
as in case of star-connected PMSM. Applying Kirchhoff’s current law at each terminal of
delta-connected PMSM gives

ias = ia − ic, (2.35)

ibs = ib − ia, (2.36)

ics = ic − ib. (2.37)

The inverse relationship is obtained using the balanced conditions of the phase currents as

ia = 1
3(ias − ibs), (2.38)

ib = 1
3(ibs − ics), (2.39)

ic = 1
3(ics − ias). (2.40)

When the source currents are measured, the above transformation is required to obtain
the phase currents. Similarly, when given phase voltages are to be applied, they should
be transformed to obtain required source voltages. These transformations can be avoided
by transforming motor parameters to star-connected PMSM equivalent parameters and by
changing the definition of the rotor angle. By doing so, one can treat delta-connected PMSM
in the same way as star-connected PMSM. Details are provided in appendix A.

In practice, a PMSM is driven by an inverter connected to a DC power supply. Fig. 2.5
shows PMSM connected to a simplified model of an inverter. Although one usually uses a
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Figure 2.5: PMSM connected to a simplified model of an inverter.

single DC power supply that provides vdc voltage between its terminals with one terminal
being the neutral, it is convenient to choose the source neutral point N in between as in fig. 2.5.
The control signals Sah, Sal, Sbh, Sbl, Sch, Scl ∈ {0, 1} determine whether the respective
switch is open or closed, and thus determine whether the respective motor phase is connected
to +vdc/2, −vdc/2, or if it is left floating.

2.2.6 Mechanical Equation

The rotor angle is governed by

J
dω
dt = τel + τfr + τcog + τex, (2.41)

where J is the moment of inertia of the rotor, τel is electromagnetic torque generated by the
stator currents, τfr is torque due to mechanical friction, τcog is cogging torque, and τex is
external torque applied to the rotor shaft.

The friction torque is

τfr = −Bω, (2.42)

where B is the coefficient of viscous friction.
The electromagnetic torque is derived in appendix A and it is

τel = 1
2i

T
abc

∂L

∂θ
iabc + 1

ω
iTabceabc. (2.43)

The first term is called reluctance torque and the second is called synchronous torque. The
reluctance torque is an effect of motor saliency and it is zero in PMSMs with uniform air
gap. It can be shown that the electromagnetic torque is constant when the phase currents are
sinusoidal functions of θ. Specifically, setting

iabc = −Im
[
sin
(
nppθ

)
sin
(
nppθ − 2π

3

)
sin
(
nppθ + 2π

3

)]T
(2.44)
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results in

τel = 3
2nppΨmIm. (2.45)

Thus, the selected amplitude Im of the stator currents is proportional to the generated torque.
The current waveforms in (2.44) are depicted in fig. 2.1(b) for PMSM with npp = 1. More
generally, setting

iabc = −Im
[
sin
(
nppθ − φ

)
sin
(
nppθ − φ− 2π

3

)
sin
(
nppθ − φ+ 2π

3

)]T
(2.46)

results in

τel = 3
2nppΨmIm cosφ+ 9

4nppLgI
2
m sin(2φ), (2.47)

where φ is constant phase shift.
The cogging torque τcog is another effect of the motor saliency. It is torque that attracts the

rotor to certain positions even when there are no currents running through the phase windings.
Many PMSMs available on the market have a nominal value of cogging torque of 5 %–10 % of
the rated torque [12]. Cogging torque does not result directly from the mathematical model
used here. It can be left as an unknown component of the external torque τex, or it can be
measured and accounted for.

2.2.7 Resulting Model

The model is now summarized and written as

L
diabc
dt = −Rsiabc − ωL′iabc − eabc + vabc, (2.48)

J
dω
dt = 1

2i
T
abcL

′iabc + 1
ω
iTabceabc −Bω + τcog + τex, (2.49)

dθ
dt = ω (2.50)

where

L′ = ∂L

∂θ
. (2.51)

From this model, the model of PMSM with uniform air gap is obtained by setting Lg = 0 and
τcog = 0.
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2.3 Two-Phase Equivalent Model

The balanced conditions of three variables mean that only two of them can be chosen as
independent. For this reason, only two of the three voltage equations are needed and the
third state variable may be computed from (2.11). However, it is convenient to transform the
equations using Clarke transformation. The transformed variables are

iαβγ =
[
iα iβ iγ

]T
= Kiabc, (2.52)

vαβγ =
[
vα vβ vγ

]T
= Kvabc, (2.53)

eαβγ =
[
eα eβ eγ

]T
= Keabc, (2.54)

where the transformation matrix K is defined as

K = 2
3


1 −1

2 −1
2

0
√

3
2 −

√
3

2

1
2

1
2

1
2

 (2.55)

with inverse matrix

K−1 =


1 0 1

−1
2

√
3

2 1

−1
2 −

√
3

2 1

 . (2.56)

The first two components of the transformed vectors, α and β, are two differential modes and
the third component, γ, is common mode of the abc varibles. Due to the balanced conditions,
the γ components are always zero. The voltage equation (2.48) is transformed by substituting
in for the currents, voltages, and back EMFs and then multiplying by K from the left. The
mechanical equation (2.49) is transformed by substituting in for the currents and back EMFs.
This results in

Lαβγ
diαβγ
dt = −Rsiαβγ − ωL′αβγiαβγ − eαβγ + vαβγ, (2.57)

J
dω
dt = 1

2i
T
αβγK

−TK−1L′αβγiαβγ + 1
ω
iTαβγK

−TK−1eαβγ

−Bω + τcog + τex, (2.58)
dθ
dt = ω, (2.59)
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where

Lαβγ = KLsalK
−1, (2.60)

L′αβγ = ∂Lαβγ

∂θ
. (2.61)

As the current iγ is always zero, it is not associated with any energy transfer and
the corresponding equation can be dropped. For this reason, one can use reduced Clarke
transformation

iαβ =
[
iα iβ

]T
= K̃iabc, (2.62)

vαβ =
[
vα vβ

]T
= K̃vabc, (2.63)

eαβ =
[
eα eβ

]T
= K̃eabc, (2.64)

where

K̃ = 2
3

1 −1
2 −1

2

0
√

3
2 −

√
3

2

 . (2.65)

The model is then written as

Lαβ
diαβ
dt = −Rsiαβ − ωL′αβiαβ − eαβ + vαβ, (2.66)

J
dω
dt = 3

4i
T
αβL

′
αβiαβ + 3

2ω i
T
αβeαβ −Bω + τcog + τex, (2.67)

dθ
dt = ω, (2.68)

where Lαβ and L′αβ are obtained from Lαβγ and L′αβγ by taking only the first two columns
and the first two rows. Inspecting

Lαβ =

Ls +Ms 0

0 Ls +Ms

+ 3
2Lg

cos(2nppθ) sin(2nppθ)

sin(2nppθ) − cos(2nppθ)

 , (2.69)

L′αβ = 3nppLg

− sin(2nppθ) cos(2nppθ)

cos(2nppθ) sin(2nppθ)

 , (2.70)

eαβ = −nppωΨm

[
sin(nppθ) − cos(nppθ)

]T
(2.71)

gives an insight into the transformed model. The model in αβ variables is very similar to
the model of two-phase PMSM with the two phases orthogonal to each other and magnetic
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axis of phase α is aligned with magnetic axis of phase A. Phase β is rotated in space by +90
degrees from phase α. The difference is in the electromagnetic torque, which greater by a
factor of 3/2 due to the fact that Clark transformation is not unitary and it does not preserve
the magnitude of the transformed vectors.

The αβ variables are two differential modes of the abc variables and it is possible to obtain
the transformed voltages by applying the Clarke transformation directly to the source voltages

vαβ = K̃

[
vas vbs vcs

]T
. (2.72)

Further notes on the Clarke transformation are given in appendix A.

2.4 Transformation to DQ Variables

The model is further simplified by expressing αβγ variables in a rotating reference frame fixed
to the rotor. In the resulting model, the dependence on the rotor angle is eliminated. This is
done using Park transformation

idqz =
[
id iq iz

]T
= Rz

(
nppθ

)
iαβγ, (2.73)

vdqz =
[
vd vq vz

]T
= Rz

(
nppθ

)
vαβγ, (2.74)

edqz =
[
ed eq ez

]T
= Rz

(
nppθ

)
eαβγ, (2.75)

where the rotation matrix is

Rz (ϕ) =


cos (ϕ) sin (ϕ) 0

− sin (ϕ) cos (ϕ) 0

0 0 1

 . (2.76)

The first component of the transformed variables is called direct component, the second is
called quadrature component, and the third is called zero component.

The voltage equation (2.57) is transformed by substituting in for the currents, voltages, and
back EMFs and then multiplying by Rz

(
nppθ

)
from the left. The mechanical equation (2.58)

is transformed by substituting in for the currents and back EMFs. This results in

Ldqz
didqz
dt = −Rsidqz − ω ˜̃Ldqzidqz − edqz + vdqz, (2.77)

J
dω
dt = 1

2i
T
dqzK

−TK−1L̃dqzidqz + 1
ω
iTdqzK

−TK−1edqz

−Bω + τcog + τex, (2.78)
dθ
dt = ω, (2.79)
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where

Ldqz = RzLαβγR
−1
z , (2.80)

L̃dqz = RzL
′
αβγR

−1
z , (2.81)

˜̃Ldqz = L̃dqz +RzLαβγ
∂R−1

z
∂θ

. (2.82)

As the third component of the transformed variables is zero and the equation for iz can
be dropped, the transformation can be done for the direct and quadrature components only

idq =
[
id iq

]T
= R̃z

(
nppθ

)
iαβ, (2.83)

vdq =
[
vd vq

]T
= R̃z

(
nppθ

)
vαβ, (2.84)

edq =
[
ed eq

]T
= R̃z

(
nppθ

)
eαβ, (2.85)

where the rotation matrix is

R̃z (ϕ) =

 cos (ϕ) sin (ϕ)

− sin (ϕ) cos (ϕ)

 . (2.86)

The model is then written as

Ldq
didq
dt = −Rsidq − ω ˜̃Ldqidq − edq + vdq, (2.87)

J
dω
dt = 3

4i
T
dqL̃dqidq + 3

2ω i
T
dqedq −Bω + τcog + τex, (2.88)

dθ
dt = ω, (2.89)

where

Ldq =

Ls +Ms + 3
2Lg 0

0 Ls +Ms − 3
2Lg

 , (2.90)

L̃dq = 3npp

 0 Lg

Lg 0

 , (2.91)

˜̃Ldq = npp

 0 −
(
Ls +Ms − 3

2Lg
)

Ls +Ms + 3
2Lg 0

 (2.92)

edq = nppωΨm

[
0 1

]T
. (2.93)
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The direct and quadrature inductances are defined as

Ld = Ls +Ms + 3
2Lg, (2.94)

Lq = Ls +Ms −
3
2Lg. (2.95)

The back-EMF constant is defined as

Kb = nppΨm. (2.96)

The DQ model of PMSM is then expressed in scalar form as

Ld
did
dt = −Rsid + nppωLqiq + vd, (2.97)

Lq
diq
dt = −Rsiq − nppωLdid −Kbω + vq, (2.98)

J
dω
dt = 3

2nppidiq(Ld − Lq) + 3
2Kbiq −Bω + τcog + τex, (2.99)

dθ
dt = ω. (2.100)

From this model, model of PMSM with uniform air gap is obtained by setting Ld = Lq

and τcog = 0. The main component of the electromagnetic torque is the synchronous torque
3Kbiq/2 and the reluctance torque 3nppidiq(Ld − Lq)/2 is usually significantly smaller. In
other words, the electromagnetic torque is primarily produced by the quadrature current iq
alone. The direct current id creates magnetic field aligned with the rotor magnetic field and
does not produce significant torque. At low speeds, the direct current is usually commanded
to zero. At high speeds, it is commanded to negative values to weaken the rotor magnetic
field in order to decrease the voltage induced in the quadrature phase.

In steady state with constant rotor speed and sinusoidal phase currents given in (2.44),
the direct current is zero and the quadrature current is the amplitude of the phase currents.
More generally, if the steady-state currents are as given in (2.46), then

id = Im sin(φ), (2.101)

iq = Im cos(φ). (2.102)

2.5 Linearized Model

For control purposes, the DQ model of PMSM is linearized into the following standard
state-space form

ẋ = Acx+Bcu, (2.103)

y = Ccx+Dcu, (2.104)
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where the state vector and input vector are

x =
[
id iq ω θ

]T
, (2.105)

u =
[
vd vq

]T
. (2.106)

The cogging torque and the external torque are not considered in this model. The linear
DQ model is obtained by making a two assumptions and approximations, which simplify the
nonlinear model into a linear one. Firstly, the reluctance torque is neglected as it is usually
small compared to the synchronous torque. Secondly, it is assumed that ω does not change
too much during controller sampling period, or over the prediction horizon in case of MPC.
This justifies one to consider ω a constant parameter in the nonlinear terms nppωLqiq and
nppωLdid. This gives linear time-varying model

Ac =



−Rs
Ld

nppω
Lq
Ld

0 0

−nppω
Ld
Lq

−Rs
Lq

−Kb
Lq

0

0 3
2
Kb
J

−B
J

0

0 0 1 0


,Bc =



1
Ld

0

0 1
Lq

0 0

0 0


(2.107)

parametrized by ω. Matrix Dc = 0 is zero matrix and Cc is chosen based on the control
objective. Such linearized model was also used in [13].

2.6 Discretization

Discrete-time linear model of PMSM with sampling period Ts

xk+1 = Adxk +Bduk, (2.108)

yk = Cdxk +Dduk (2.109)

is obtained from the continuous-time model assuming constant inputs over the sampling
period, which results in

Ad = eTsAc , (2.110)

Bd =

 τ=Ts∫
τ=0

eτAcdτ

Bc, (2.111)

Cd = Cc, (2.112)

Dd = Dc. (2.113)
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When the discrete-time state-space matrices are to be computed online within a limited
amount of time, Euler approximation

Ad ≈ I + TsAc, (2.114)

Bd ≈ TsBc (2.115)

can be used.

2.7 Model Parameters

Usually, datasheets provide only line-to-line inductance Lline-line, line-to-line resistance Rline-line,
and torque constant Kt or line-to-line back-EMF constant K line-line

b . The relationships between
the datasheet parameters and the model parameters are presented in [6]. However, the DQ
model in [6] is derived using different Clarke transformation and different definition of the
back-EMF constant than the one used here. For the sake of completeness and to make things
clear, the same procedure as in [6] is adapted for the parameters used here.

Now, star-connected PMSM with uniform air gap is assumed. The direct and quadrature
inductances are equal L = Ld = Lq. The line-to-line inductance and resistance are measured
with locked rotor by applying voltage between two terminal, e.g. A and B, and the third
terminal is left unconnected. Thus, ω = 0, ic = 0, and ib = −ia. The equations for ia and ib
are obtained from (2.48) by substituting in for ω are

Ls
dia
dt −Ms

dib
dt = −Rsia + va, (2.116)

−Ms
dia
dt + Ls

dib
dt = −Rsib + vb. (2.117)

Substituting in ib = −ia and substracting the second equation from the first one gives

2(Ls +Ms)
dia
dt = −2Rs + (va − vb). (2.118)

Therefore, the line-to-line inductance and resistance are

Lline-line = 2(Ls +Ms), (2.119)

Rline-line = 2Rs. (2.120)

Comparing the line-to-line inductance with the definition of Ld in (2.94) and definition of Lq

in (2.95) gives

L = Ld = Lq = 1
2Lline-line, (2.121)

Rs = 1
2Rline-line. (2.122)
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The line-to-line back-EMF constant is measured by leaving all motor terminals unconnected
and rotating the rotor at constant speed using another motor. Thus, ia = ib = ic = 0. The
induced voltage is measured between two terminals, e.g. B and C. The equations for vb and
vc are obtained from (2.48) by substituting in for the currents

vb = nppωΨm sin
(
nppθ −

2π
3

)
, (2.123)

vc = nppωΨm sin
(
nppθ + 2π

3

)
. (2.124)

Substracting the second equation from the first one and rearranging gives

vb − vb
ω

=
√

3nppΨm cos
(
nppθ

)
. (2.125)

Therefore, the line-to-line back-EMF constant relating the amplitude of the induced line-to-line
voltage to the rotor speed is

K line-line
b =

√
3nppΨm. (2.126)

Comparing with the definition of Kb in (2.96) gives

Kb = 1√
3
K line-line

b . (2.127)

The torque constant relates the generated electromagnetic torque to the root mean square
(RMS) value of the source currents in steady state when the currents are sinusoidal and
synchronized with the rotor as in (2.44). Such currents result in constant torque given in
(2.45). Thus, the torque constant is

Kt =
√

23
2nppΨm (2.128)

and

Kb = 1√
2

2
3Kt. (2.129)

Both K line-line
b and Kb have units of V(peak)/(rad/s) = N m/A(peak) whereas Kt has unit of

V(rms)/(rad/s) = N m/A(rms). However, some datasheets give the torque constant using the
peak current and/or the line-to-line back-EMF constant using the RMS voltage. When motor
saliency is to be considered, one usually has to identify the inductances Ld and Lq as they
are not usually provided by the manufacturer.

Similar but slightly modified steps can be taken for delta-connected PMSM to find the
relationships between the datasheet parameters and the parameters used here. Another
approach is to treat the motor as star-connected and the star-equivalent parameters are
obtained in the same way as for an actual star-connected PMSM. This is justified in appendix A.
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The control algorithms inspected in this thesis were evaluated on PMSM BLWR233D-36V-
4000 by Anaheim Automation. (According to the manufacturer it is BLDC motor, however,
according to the terminology used here, it is rather PMSM.) The motor is delta-connected
but it was treated as star-connected using star-equivalent parameters. The parameters given
in datasheet [14] are in tab. 2.1. The motor is designed such that it can continuously operate
at rated conditions without overheating. At the rated conditions, the motor is controlled
such that it rotates at the rated speed with an external load torque equal to the rated torque,
τex = −0.22 N m. The rated current is the steady-state RMS value of the source currents
running to the motor terminals. The generated electromagnetic torque equals the rated current
times the torque constant and is approximately equal to the rated torque. There is, however,
a small component of the electromagnetic torque that compensates for the friction. As the
coefficient of viscous friction is not given in the datasheet, one might try to estimate B from
the precision of the rated values assigning the difference between the electromagnetic torque
and the load torque to the friction torque. This would, however, provide very inaccurate
and uncertain value and one should rather identify B experimentally. The rated voltage is
recommended inverter DC-bus voltage vdc.

For the control design, experimentally identified star-equivalent parameters were used.
The identification method used to obtain these parameters was similar to the one in [15]. The
identified parameters and parameters derived from the datasheet are in tab. 2.2.

2.8 Constraints

PMSM manufacturers usually state two constraints on the currents supplied to the motor
terminals. The first one is the rated current, which is the maximum current at which the motor
can operate continuously without overheating. The second one is the peak current, which
can be supplied to the motor terminals for short period of time. Thus, the current can be
increased above the rated current up to the peak current for certain amount of time and then
it must not exceed the rated current for some other amount of time to prevent overheating.
To simplify the control task, single hard constraint is imposed on the phase currents using
the fact that the phase currents are equal to the source currents when star-connected PMSM
model is used. As the motor is to be operated both at high speeds with sinusoidal phase
curents and at speeds close to zero with almost constant currents, the RMS value of the rated
current is used as the limit on the instantaneous values of the phase currents. Although this
conservative choice reduces the maximum admissible torque at the rated speed, it enables
simple formulation of the constraints

|ia| ≤ Imax, (2.130)

|ib| ≤ Imax, (2.131)

|ic| ≤ Imax, (2.132)

Imax = 3.67 A. (2.133)
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Parameter Given value Converted to SI

Number of poles 4 4
Rated voltage 36 V 36 V
Rated speed 4000 RPM 418.9 rad s−1

Rated power 92 W 92 W
Rated torque 31.2 ozf in 0.22 N m
Peak torque 93.5 ozf in 0.66 N m
Rated current 3.67 A(rms) 3.67 A(rms)

Line-to-line resistance 0.64Ω 0.64Ω
Line-to-line inductance 2.1 mH 2.1 mH
Torque constant 8.50 ozf in A−1

(rms) 0.06 N m A−1
(rms)

Rotor inertia 0.00169 ozf in s2 1.19× 10−5 kg m2

Table 2.1: Parameters given in datasheet for BLWR233D-36V-4000 motor.

Parameter Symbol Identified From datasheet Unit

Number of pole pairs npp 2 2 1
Phase resistance Rs 0.45 0.32 Ω

Direct inductance Ld 0.8 1.05 mH
Quadrature inductance Lq 0.9 1.05 mH
Back-EMF constant Kb 0.23 0.028 V(peak)/(rad/s)
Rotor inertia J 2.8× 10−5 1.19× 10−5 kg m2

Friction coefficient B 1.3× 10−5 – Nm/(rad/s)

Table 2.2: Star-equivalent parameters identified experimentally and derived from datasheet.

The Clarke transformation translates these constraints to

|iα| ≤ Imax, (2.134)∣∣∣iα +
√

3iβ
∣∣∣ ≤ 2Imax, (2.135)∣∣∣iα −√3iβ
∣∣∣ ≤ 2Imax, (2.136)

which is area bounded by a hexagon as shown in fig. 2.6(a). In order to transform this feasible
region to the rotating reference frame it is approximated by inscribed disk

i2α + i2β ≤ I2
max. (2.137)
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The disk remains unchanged when Park transformation is applied and it is written in the DQ
variables as

i2d + i2q ≤ I2
max. (2.138)

This nonlinear constraint is further approximated by set of linear constraints. Specifically,
octagon is used as the approximated feasible region in a similar way as in [2]. The octagon is
in fig. 2.6(c) and is described by

Pxx ≤ px, (2.139)

where

Px =



+1 +
√

2− 1 0 0
+1 −

√
2 + 1 0 0

−1 +
√

2− 1 0 0
−1 −

√
2 + 1 0 0

+
√

2− 1 +1 0 0
+
√

2− 1 −1 0 0
−
√

2 + 1 +1 0 0
−
√

2 + 1 −1 0 0


, px =



Imax
Imax
Imax
Imax
Imax
Imax
Imax
Imax


. (2.140)

In this thesis, no constraints are imposed on the other two state variables, the rotor velocity
and position.

Assuming that the inverter always connects each phase to either +vdc/2 or −vdc/2 and
that no phase is left unconnected, there are 8 possible voltage vectors that can be applied to
the motor. When modulation stage is used, one can assume that each source voltage is a real
value from interval [−vdc/2,+vdc/2]. Thus, constraints on the source voltages are

|vas| ≤
1
2vdc, (2.141)

|vbs| ≤
1
2vdc, (2.142)

|vcs| ≤
1
2vdc, (2.143)

where vdc = 24 V was chosen instead of the rated voltage. These constraints are translated by
the Clarke transformation using

vabcs = K−1vαβγ +
[
vcms vcms vcms

]T
, (2.144)

where the common-mode voltage vcms is chosen arbitrarily. The constraint on the αβ voltages



26 Chapter 2 Permanent Magnet Synchronous Motors

are

|vα + vcms| ≤
1
2vdc, (2.145)∣∣∣vα +

√
3vβ + 2vcms

∣∣∣ ≤ vdc, (2.146)∣∣∣vα −√3vβ + 2vcms
∣∣∣ ≤ vdc (2.147)

and the feasible region consists of all points vαβ for which some vcms exists such that these
conditions are satisfied. The extra degree of freedom in form of vcms enlarges the feasible
region to ∣∣∣vβ∣∣∣ ≤ 1√

3
vdc, (2.148)∣∣∣vβ +

√
3vα

∣∣∣ ≤ 2√
3
vdc, (2.149)∣∣∣vβ −√3vα

∣∣∣ ≤ 2√
3
vdc, (2.150)

which is area bounded by a hexagon as shown in fig. 2.6(b). In order to transform this feasible
region to the rotating reference frame it is approximated by inscribed disk

v2
α + v2

β ≤ V 2
max, (2.151)

Vmax = vdc√
3
. (2.152)

The disk remains unchanged when Park transformation is applied and it is written in the DQ
variables as

v2
d + v2

q ≤ V 2
max. (2.153)

This nonlinear constraint is again approximated by octagon

Puu ≤ pu, (2.154)

where

Pu =



+1 +
√

2− 1
+1 −

√
2 + 1

−1 +
√

2− 1
−1 −

√
2 + 1

+
√

2− 1 +1
+
√

2− 1 −1
−
√

2 + 1 +1
−
√

2 + 1 −1


, pu =



Vmax
Vmax
Vmax
Vmax
Vmax
Vmax
Vmax
Vmax


. (2.155)

The octagon is in fig. 2.6(d).
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(a) Constraints on αβ currents. (b) Constraints on αβ voltages.

(c) Aprroximated constraints on DQ currents. (d) Approximated constraints on DQ voltages.

Figure 2.6: Current and voltage constraints transformed to αβ variables (a) and (b), and
approximated constraints in DQ variables (c) and (d).





Chapter 3

Control for PMSM

This chapter describes the examined control algorithms. Firstly, different controller structures
are compared. Then, voltage modulation schemes are briefly discussed. Finally, three types of
PMSM controllers are described: PI controller, CCS-MPC, and FCS-MPC. All of them are so
called field oriented because they are formulated in the DQ variables, where each of the two
DQ currents defines one components of the generated magnetic field. When reluctance torque
is neglected, only quadrature current generates torque. Thus, control of electromagnetic
torque is easily reformulated to control of the quadrature current.

The field-weakening operation is not considered here and the controllers are intended to
operate at lower speeds. At low speeds, the maximum torque can be generated by commanding
id to zero and iq to the maximum possible value. There is a transition speed above which
id should be commanded to negative values in order to achieve the maximum torque. For
the used motor and inverter DC-bus voltage 24 V, the transition speed is around 4100 RPM
(it would be around 6300 RPM for the rated voltage). Current references maximizing torque
above the transition speed are given in [6]. The formulations of MPC used here are inherently
capable of flux weakening to some extent by choosing small penalization of the deviation of
the direct current from zero. On the other hand, small penalization enlarges the direct current
and the power losses even at lower speeds. More subtle solutions choose the cost function and
state vector differently and yield better results. Examples of such solutions are [16] and [17].

3.1 General Controller Structures

To control PMSM using the DQ model, the controller structure in fig. 3.1 is often used.
The measured three-phase currents are transformed to the DQ currents. Based on the state
variables x and the references r, DQ voltages are computed and transformed to three-phase
voltages. The common-mode can be adjusted or left zero. The voltages then modulate the
switching signals to the inverter by means of PWM. The actual voltages applied to the motor
are vai, vbi, vci, and vas, vbs, vcs are rather reference values. The structure is simpler for
FCS-MPC. In that case, the control algorithm generates the switching signals directly and the
inverse transformations and modulation stage are not present. Also, the sample rate should
be higher than with modulation stage.

When rotor velocity or angle are to be controlled, single-loop or cascaded multi-loop
structures in fig. 3.2 can be considered. The cascaded multi-loop comprises three nested
controllers. The position controller G3 generates reference for the velocity controller G2,
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Figure 3.1: Typical structure of PMSM controller.

(a) Single-loop controller. (b) Cascaded multi-loop controller.

Figure 3.2: Comparison of structures of single-loop and cascaded multi-loop controllers.
(The three dots stand for the transformations, modulation stage, inverter, and
motor.)

which generates references for the current controller G1. Controller G1 should have higher
sample rate than G2 and the current control loop should have faster dynamic response than
the velocity control loop. Similarly, G2 should have higher sample rate than G3 and the
velocity control loop should have faster dynamic response than the position control loop.
This usually achievable for electric motors as the electrical time constants τd = Ld/Rs and
τq = Lq/Rs are usually noticeably smaller than the mechanical time constant τm = J/B.
The single-loop structure, on the other hand, can take the whole dynamic model of PMSM
into account and provide better performance, especially when the time constants are close
to each other. However, significant difference in the time constants might be challenging for
single-loop controllers.

3.2 Voltage modulation

Carrier-based digital PWM is commonly used by digital controllers. There are three variants,
trailing-edge, leading-edge, and symmetrical PWM, which are described in [18]. Three single-
phase PWM modulators can be used for control of PMSMs but there is another modulation
scheme designed specifically for three-phase motors called space-vector modulation (SVM). It
replaces the inverse Clarke transformation, common-mode injection, and PWM, and expresses
vαβ in terms of the eight achievable voltage vectors vαβ0, vαβ1, . . . , vαβ7 the inverter can
apply to the motor. The eigth achievable vectors are in tab. 3.1 and as shown in fig. 3.3,



3.2 Voltage modulation 31

Figure 3.3: SVM expresses vector vαβ as a linear combination of the adjacent achievable
vectors and zero vectors.

vectors vαβ1, . . . , vαβ6 are the six corners of the feasible region, and vectors vαβ0 = vαβ7

are two zero vectors. The voltage vαβ is expressed as a linear combination of two adjacent
achievable vectors and the two zero vectors. For example, vector vαβ in fig. 3.3 would be
decomposed into

vαβ = t′0vαβ0 + t′1vαβ1 + t′2vαβ2, (3.1)

1 = t′0 + t′1 + t′3. (3.2)

The coefficients are then scaled by the SVM sampling period Tsvm to t0 = t′0Tsvm, t1 = t′1Tsvm,
t2 = t′2Tsvm. The scaled coefficients define the time duration the achievable voltage vectors
are applied to the motor during the sampling period. Both zero vectors vαβ0 and vαβ7 can be
used and the order at which the achievable vectors are applied is chosen such that the number
of switching events is minimized [12].

The SVM yields lower harmonic distortion than PWM with zero common-mode voltage
[19]. However, as mentioned in [11] and shown in [19], the common-mode voltage can be chosen
such that symmetrical PWM outputs the same switching signals as SVM. This common-mode
is obtained as

vcms = −1
2
(
min(vabc) + max(vabc)

)
, (3.3)

which also ensures full utilization of the inverter voltage range. The continuous-control-set
algorithms examined in this thesis were combined with symmetrical PWM and common-mode
injection defined by (3.3).
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k vak vbk vck vαk vβk

0 −1
2vdc −1

2vdc −1
2vdc 0 0

1 +1
2vdc −1

2vdc −1
2vdc +2

3vdc 0
2 +1

2vdc +1
2vdc −1

2vdc +1
3vdc + 1√

3vdc

3 −1
2vdc +1

2vdc −1
2vdc −1

3vdc + 1√
3vdc

4 −1
2vdc +1

2vdc +1
2vdc −2

3vdc 0
5 −1

2vdc −1
2vdc +1

2vdc −1
3vdc − 1√

3vdc

6 +1
2vdc −1

2vdc +1
2vdc +1

3vdc − 1√
3vdc

7 +1
2vdc +1

2vdc +1
2vdc 0 0

Table 3.1: The achievable vectors vαβk and corresponding vabck vectors.

3.3 PI Controller

As the PI controller is single-input, single-output (SISO), the cascaded multi-loop control
structure is employed. A general discrete-time PI controller without anti-windup assigns
control u(k) to error signal

e(k) = yref(k)− y(k) (3.4)

as follows

u(k) = up(k) + ui(k), (3.5)

up(k) = Kpe(k), (3.6)

ui(k) = ui(k − 1) + Ki
Ts
e(k). (3.7)

The constant Ki is scaled by the controller sampling period Ts. The control law changes to
the following form when output saturation and simple clamping anti-windup is implemented

u(k) = max
{

min
{
up(k) + ui(k − 1), umax

}
, umin

}
(3.8)

up(k) = Kpe(k), (3.9)

ui(k) =


ui(k − 1) + Ki

Ts
e(k) for u(k) = up(k) + ui(k − 1),

ui(k − 1) otherwise.
(3.10)

In this formulation, the effect of integral action is delayed by one sample to avoid algebraic
loop.

The DQ currents are controlled independently and the controller G1 consists of two separate
PI controllers. The velocity controller G2 outputs the reference value for the quadrature
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current for controller G1, and the direct current is commanded to zero. The position controller
G3 outputs the reference velocity. The constraints were relaxed to |id| < Imax and

∣∣iq∣∣ < Imax,
|vd| < Vmax and

∣∣vq∣∣ < Vmax and implemented using saturation blocks.

3.4 Continuous-Control-Set Model Predictive Control

3.4.1 Single-Loop

CCS-MPC formulates the control task as an optimization problem. The following formulation
of convex quadratic program with linear constraints was chosen

min
z

N−1∑
k=0

(yk+1 − rk+1)TQ(yk+1 − rk+1) + ∆uT
kR∆uk (3.11a)

s.t. xk+1 = Axk +Buk, (3.11b)

yk+1 = Cxk+1, (3.11c)

Pxxk+1 ≤ px, (3.11d)

Puuk ≤ pu, (3.11e)

z =
[
u0

T u1
T . . . uT

N−1

]T
, (3.11f)

∆uk = uk − uk−1, (3.11g)

x0 = x(t), (3.11h)

u−1 = u(t− Ts), (3.11i)

rk+1 = r(t+ kTs), (3.11j)

where weighting matrix Q is symmetric and positive semidefinite and weighting matrix R
is symmetric and positive definite. Px, px, Pu, pu are given by (2.140) and (2.155), and N
is the prediction horizon. In this formulation, the control horizon is the same as prediction
horizon. The controller operates with sampling period Ts and the control law is as follows.
At time t, state x(t) is measured and system matrix A is obtained by discretizing (2.107),
which is parametrized by ω. Matrices B and C stay fixed. The controller then finds optimal
sequence z, from which only ∆u0 is taken to compute u0 = u−1 + ∆u0. The voltage vector
u0 is then applied to the motor and saved for the next sampling period. If the reference
output r is given for the next sampling period r(t + Ts) only, constant reference over the
whole prediction horizon is assumed, i.e. rk+1 = r(t+ Ts).

The above formulation of the optimization problem can be expressed in condensed form,
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in which the predicted state is eliminated. The condensed form is

min
z

1
2z

THz +
[
xT0 uT

−1 rT1 rT2 . . . rTN

]
FTz (3.12a)

s.t. Gz ≤ W + Sx0, (3.12b)

z =
[
uT

0 uT
1 . . . uN−1T

]T
, (3.12c)

x0 = x(t), (3.12d)

u−1 = u(t− Ts), (3.12e)

rk = r(t+ kTs), k = 1, 2, . . . , N, (3.12f)

where matricesH , F , G,W , S are derived in appendix B. To obtain solution, this formulation
can be easily plugged into standard QP solvers. Choice of matrix C determines reference
outputs to be tracked.

3.4.2 Cascaded

In cascaded structure, controller G1 is chosen to be the above stated CCS-MPC with

C =

1 0 0 0

0 1 0 0

 . (3.13)

Thus, G1 controls the DQ currents. Controllers G2 and G3 are merged together into CCS-MPC
applied to the mechanical equations

ẋ = Acx+Bcu, (3.14)

Ac =

−
B

J
0

1 0

 , Bc =


3Kb
2J
0

 , (3.15)

x =
[
ω θ

]T
(3.16)

u =
[
iq

]
. (3.17)

Based on choice of the output matrix, one can control position or velocity (or both).
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3.5 Finite-Control-Set Model Predictive Control

FCS-MPC formulates the control task almost identically as CCS-MPC:

min
z

N−1∑
k=0

(yk+1 − rk+1)TQ(yk+1 − rk+1) + ∆uT
kR∆uk (3.18a)

s.t. xk+1 = Axk +Buk, (3.18b)

yk+1 = Cxk+1, (3.18c)

Pxxk+1 ≤ px, (3.18d)

uk ∈ U (3.18e)

z =
[
u0

T u1
T . . . uT

N−1

]T
, (3.18f)

∆uk = uk − uk−1, (3.18g)

x0 = x(t), (3.18h)

u−1 = u(t− Ts), (3.18i)

rk+1 = r(t+ kTs). (3.18j)

The main difference is that uk belongs to a finite set of vectors

U =




+1

2

+1
2

+1
2

 ,


+1
2

+1
2

−1
2

 ,


+1
2

−1
2

+1
2

 ,


+1
2

−1
2

−1
2

 ,

−1

2

+1
2

+1
2

 ,

−1

2

+1
2

−1
2

 ,

−1

2

−1
2

+1
2

 ,

−1

2

−1
2

−1
2




, (3.19)

where each vector describes one switching combination in the inverter. Each element of
the vectors corresponds to one phase-leg in the inverter, where +1/2 means it is connected
to +vdc/2 and -1/2 means it is connected to −vdc/2. Matrix B is therefore obtained by
discretizing BcR̃K̃vdc, which is the continuous-time input matrix multiplied by the reduced
Park and Clarke transformation matrices and by DC-bus voltage. In this formulation, the
2-norm squared ‖∆uk‖22 is equal to the number of switching transitions that happen during
step from time k−1 to k. As there is usually no reason to penalize some switches of the inverter
more than others, one usually chooses R = λI, where λ is a scalar weighting parameter.
This parameter penalizes the switching events and, thus, it can be used to tune the average
steady-state switching frequency. This is problem can be solved by enumerating all possible
sequence of the input vector. However, number of such sequences is 8N , which makes the
exhaustive search a feasible option only for very short prediction horizons.
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FCS-MPC can also be expressed in a condensed form as

min
z

1
2z

THz +
[
xT0 uT

−1 rT1 rT2 . . . rTN

]
FTz (3.20a)

s.t. Gz ≤ W + Sx0, (3.20b)

z =
[
uT

0 uT
1 . . . uN−1T

]T
, (3.20c)

uk ∈ U, (3.20d)

x0 = x(t), (3.20e)

u−1 = u(t− Ts), (3.20f)

rk = r(t+ kTs), k = 1, 2, . . . , N, (3.20g)

where the definition of some matrices slightly differs from CCS-MPC. In [11], reformulation
of the problem using the unconstrained solution and Cholesky decomposition of the hessian
matrix H is given. This changes the branching factor from 8 to 2, while increasing the depth
of the tree three times. Also it enables application of branch and bound method called sphere
decoding which allows effective search in the tree if close-to-optimal solution is available. More
details are in [11]. Here, the initial guess of the close-to-optimal solution was modified in
order to account for constraints imposed on the DQ currents. The initial guess was obtained
by sequential solution of one-step FCS-MPC.



Chapter 4

Simulation

This chapter evaluates the control algorithms in simulation. The continuous-control-set
algorithms were combined with symmetrical PWM with SVM equivalent common-mode
voltage injection. Other nonidealities, such as measurement noise and model uncertainty, were
not considered. The reference is assumed to be known in advance and the controllers may
anticipate it.

4.1 Chosen Parameters

The sampling frequencies and prediction horizons were chosen such that the controllers fit
the capabilities of the platform chosen for hardware evaluation. Other tuning parameters of
the control algorithms were chosen such that the controllers give similar steady-state torque
ripple. The exact values are not of great importance because the goal of this chapter is not to
find the best controller, but rather to describe the main characteristics.

4.1.1 PI Controller

The current loop of the PI controller was designed to operate at Ts1 = 25 kHz the the
proportional constant was tuned to 20.3 and the integral constant was tuned to 0.95Ts1 (the
units of the constants are omitted). The velocity controller was designed to operate at
Ts2 = 1 kHz with the proportional constant 1.2 and the integral constant 0.04Ts2. The position
controller operates at 100 Hz the proportional constant 50 and the integral constant 0 (the
integral action is not necessary because the position is the integral of velocity).

4.1.2 CCS-MPC

Single-loop CCS-MPC was chosen to operate at 25 kHz and two lengths 5 and 10 of the
prediction horizon were tested. In the cascaded structure, the inner loop operated at 25 kHz
and the outer one at 1 kHz.

4.1.3 FCS-MPC

The evaluation was done with the sampling frequency of 500 kHz and prediction horizon 3.
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4.2 Current Control

Tracking of reference current was tested at velocity of 307 rad s−1 (2900 RPM) by commanding
the direct current to zero and the quadrature current from steady-state value of 2 A to 3 A.
The steady state current compensated for nonzero load torque of −0.065 N m. Also, to find
the effects of the external torque on the current controllers, a step change of the load torque
from −0.065 to −0.2 was introduced. The results in fig. 4.1 show that all three algorithms
control the DQ currents as required — the qudrature current tracks the reference and the
direct current stays close to zero.

Even though PI controller is very simple to implement, it provides very good results when
properly tuned. The main drawback is that the constrained are not properly imposed. The
choice of the relaxed constraints is justified here by the control of the direct current close to
zero.

The anticipation of the reference is apparent in the response of CCS-MPC. The small
overshoot could be eliminated by choosing longer prediction horizon. However, with short
prediction horizon, it is difficult to completely remove the overshoot.

FCS-MPC also anticipates the reference but on much smaller time interval because it
operates at much higher sampling rate. It has also the fastest response to the step-change in
reference. The current ripple is not uniform, which results in wider spectrum of frequencies
in the phase currents. This can be fixed by choosing longer prediction horizon. Doing so
results in more uniform torque ripple. Another interesting result is that the number of nodes
FCS-MPC visit during the search for optimal control is greater during transients and small
during steady state, see fig. 4.2.

The step change in the load torque happened at time 1× 10−3 and it had no direct effect
on the DQ currents. However, it indirectly influences them by increasing or decreasing the
angular velocity.

4.3 Velocity Control

Reference velocity tracking was tested by setting the reference velocity to 10 rad s−1 (95 RPM)
from zero state. A step-change of the external load torque from 0 to −0.05 N m was applied.
It turned out to be perhaps impossible to tune the FCS-MPC for velocity tracking and all
attempts gave unstable closed-loop. The reason is probably high sampling frequency relative
to the velocity response. Thus, FCS-MPC is excluded from the analysis. As shown in fig.
4.3, all controllers tracked the velocity reference up to the step in the external load. The
constant torque disturbance was rejected only by the PI controller because it is the only
controller with integral action. Although the MPC cost function penalizes ∆u, it does not
have integral action and thus the steady-state error when the external torque was applied.
There are variants of MPC that reject constant disturbance, but they are not considered here.
Note that the reference on the quadrature current is available only for the cascaded structures.
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(a) PI control of iq. (b) CCS-MPC control of iq. (c) FCS-MPC control of iq.

(d) PI control of id. (e) CCS-MPC control of id. (f) FCS-MPC control of id.

Figure 4.1: Control of the DQ currents.

Figure 4.2: The number of nodes visited by FCS-MPC.

The single-loop CCS-MPC showed the fastest response.

4.4 Position Control

Position control using single-loop fast CCS-MPC turned out to be challenging and is therefore
excluded. The PI and cascaded FCS-MPC responses are in fig. 4.4. The overshoot of the
FCS-MPC could be reduced if properly tuned.
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(a) PI controller, ω. (b) CCS-MPC, ω. (c) Cascaded CCS-MPC, ω.

(d) PI controller, iq. (e) CCS-MPC, iq. (f) Cascaded CCS-MPC, iq.

Figure 4.3: Velocities and quadrature currents durint velocity tracking.

Figure 4.4: Position tracking.



Chapter 5

Hardware Implementation

To verify the algorithms discussed in the previous chapters on an actual PMSM, suitable
commercially available platform was chosen. However, due to struggles with the hardware
implementation, only field-oriented PI controller and one-step FCS-MPC were put into
operation. Thus, the experimental evaluation is not provided and only general notes are given
in this chapter.

5.1 Selected Hardware Platform

For hardware implementation, AD-FMCMOTCON2-EBZ driver by Analog devices together
with ZedBoard was chosen. AD-FMCMOTCON2-EBZ is a driver system allowing control
of two motors simultaneously. It contains sigma-delta modulators for measuring the phase
currents with 16-bit resolution at 78.1 kHz. To measure at higher frequency, the resolution
has to be decreased by decreasing decimation ration of demodulating filters. ZedBoard is a
prototyping platform with Zynq-7000 system on a chip (SoC), which contains ARMr dual
Cortexr-A9 and Xilinx 7-series field-programmable gate array (FPGA) fabric on a single
chip. Both the ARMr processing system and FPGA fabric are supported by MATLAB
and Simulink, and one can relatively easily implement co-designs both parts of the chip. A
photograph of the platform is shown in fig. 5.1.

5.2 Bootstrap Circuit Limitations

One drawback of AD-FMCMOTCON2-EBZ driver is that uses bootstrap circuits to power the
high-side switches. The board uses n-channel MOSFETs, which are switched when positive
voltage is applied between the gate and source. When high-side MOSFET is switched, its
source is connected to the DC-bus voltage and it is necessary to have voltage above this level
to keep the switch on. One possibility is to use a bootstrap capacitor which is charged when
the high-side MOSFET is off and the low-side MOSFET on, and provides sufficient voltage
level when it is the other way around. However, the bootstrap capacitor gets discharged after
some time (typically a few milliseconds) when the high-side MOSFET is kept on. This limits
the maximum admissible duty cycle when a modulation stage is used. In principle, FCS-MPC
may keep the high-side switches on indefinitely and the bootstrap capacitor should be taken
into account. A very simple but not efficient solution is to override the controller switching
sequence when a high-side MOSFET is on for too long [20].
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Figure 5.1: ZedBoard and AD-FMCMOTCON2-EBZ with two coupled PMSMs.

To avoid problems with the bootstrap capacitor, an attempt was to modify AD-FMCMOTCON2-
EBZ driver by adding charge pumps, which would allow the high-side switches to be on
indefinitely. However, the output voltages of the charge pumps dropped significantly when
loaded and this solution did not work.

5.3 Delay Compensation

As the MPC algorithms are computationally demanding and it takes some time to obtain the
result of the optimization problem, delay compensation should be implemented. A simple
method is presented in computationally demanding. The idea is to delay the control
input and apply it at the beginning of the next sampling period. The controller then uses
state predicted for the next step instead of the current state.



Chapter 6

Conclusion

This thesis describes the mathematical model of PMSM and analyzes three control algorithms
for this type of motor. All three of them, the field-oriented PI controller, CCS-MPC, and
FCS-MPC, were capable of current control. For the velocity control, however, it turned out
that it is difficult to design a stable closed-loop with FCS-MPC. This is a general problem
in systems with both fast and slow dynamics. In PMSM, the electrical part requires fast
controller as the electrical time constant is small. The mechanical one is usually greater and
cascaded control structures are more suitable. However, when voltage modulation stage is
used, it is possible to design single-loop velocity controller. To design stable position controller
for used PMSM, it turned out that the cascaded structure is required.
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Appendix A

Notes on PMSM Model

A.1 Derivation of Electromagnetic Torque

The electromagnetic torque generated by the phase currents is now derived using the law of
conservation of energy

Wel +Wex = Wres +Wfr +Wfield +Wkin, (A.1)

where Wel is the overall energy supplied by the electrical power supplies, Wex is the overall
energy supplied by external mechanical sources, Wres is the energy dissipated on the winding
resistances, Wfr is the energy dissipated due to mechanical friction, Wfield is the energy stored
in the magnetic field, and Wkin is the kinetic energy stored in the rotor motion. Since eq.
(A.1) holds at each time instant, it can be differentiated and expressed in terms of power

Pel + Pex = Pres + Pfr + Pfield + Pkin, (A.2)

where each power term is the time derivative of corresponding energy. The external power
Pex taken with negative sign is the output power of the motor, i.e. the mechanical power
supplied by the motor. Multiplying (2.2) by iTabc from the left and (2.41) by ω gives two
power equations

iTabcvabc = Rsi
T
abciabc + iTabc

d
dtψabc, (A.3)

Jω
dω
dt = ωτel + ωτfr + ωτcog + ωτex. (A.4)

Defining

Pel = dWel
dt = iTabcvabc, (A.5)

Pex = dWex
dt = ωτcog + ωτex, (A.6)

Pres = dWres
dt = Rsi

T
abciabc, (A.7)

Pfr = dWfr
dt = −ωτfr, (A.8)

Pkin = dWkin
dt = Jω

dω
dt , (A.9)

45



46 Appendix A Notes on PMSM Model

substracting (A.4) from (A.3) and rearranging yields

Pel + Pex = Pres + Pfr + Pkin + iTabc
d
dtψabc − ωτel. (A.10)

By comparing (A.10) and (A.2), it can be stated that

Pfield = dWfield
dt = iTabc

d
dtψabc − ωτel, (A.11)

which is further modified using (2.4), (2.5), and (2.9) as

dWfield
dt = iTabc

d
dt (Liabc) + iTabceabc − ωτel (A.12)

The magnetic field in the motor is fully determined by the stator currents and the rotor angle
alone. Thus, the energy stored in the magnetic field can be expressed as a function of the
phase currents and the rotor angle Wfield(ia, ib, ic, θ) and it does not depend on the rotor
velocity. For this reason, Wfield can be derived by setting θ = const and ω = 0, which gives

dWfield
dt

∣∣∣∣∣
θ=const

= iTabc
dLiabc

dt

∣∣∣∣∣
θ=const

(A.13)

and upon integrating

Wfield = 1
2i

T
abcLiabc. (A.14)

Note that the symmetry property of the inductance matrix L was used. Now the rate of
change of Wfield is expressed as

dWfield
dt = ∂Wfield

∂iabc

diabc
dt + ∂Wfield

∂θ

dθ
dt , (A.15)

where

∂Wfield
∂iabc

=
[
∂Wfield
∂ia

∂Wfield
∂ib

∂Wfield
∂ic

]
. (A.16)

From (A.11) and using the fact that the stator flux linkages ψabc are also functions of the
stator currents and the rotor angle it follows that

dWfield
dt = iTabc

(
∂ψabc
∂iabc

diabc
dt + ∂ψabc

∂θ

dθ
dt

)
− ωτel (A.17)

= iTabc
∂ψabc
∂iabc

diabc
dt +

(
iTabc

∂ψabc
∂θ

− τel

)
dθ
dt , (A.18)
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where

∂ψabc
∂iabc

=


∂ψa
∂ia

∂ψa
∂ib

∂ψa
∂ic

∂ψb
∂ia

∂ψb
∂ib

∂ψb
∂ic

∂ψc
∂ia

∂ψc
∂ib

∂ψc
∂ic

 . (A.19)

Comparing the coefficients at the derivatives in (A.15) and (A.18) gives

∂Wfield
∂θ

= iTabc
∂ψabc
∂θ

− τel, (A.20)

which is rewritten as

τel = iTabc
∂ψabc
∂θ

− ∂Wfield
∂θ

(A.21)

= ∂W ∗field
∂θ

, (A.22)

where

W ∗field = iTabcψabc −Wfield (A.23)

= 1
2i

T
abcLiabc + iTabcψabcr (A.24)

is the field co-energy. The resulting expression for the electromagnetic torque is

τel = 1
2i

T
abc

∂L

∂θ
iabc + 1

ω
iTabceabc. (A.25)

A.2 Notes on Clarke Transformation

The Clarke transformation matrix given in (2.55) can be written as

K = 2
3


1 cos

(
2π
3

)
cos

(
−2π

3

)
0 sin

(
2π
3

)
sin
(
−2π

3

)
1
2

1
2

1
2

 . (A.26)

For balanced vectors, e.g. current vector iabc, the γ component is zero and the α and β

components are iα
iβ

 = ia
2
3

1

0

+ ib
2
3

cos
(

2π
3

)
sin
(

2π
3

)
+ ic

2
3

cos
(
−2π

3

)
sin
(
−2π

3

)
 . (A.27)
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Figure A.1: Interpretation of Clarke transformation.

Thus, the Clarke transformation interprets balanced phase vectors as a linear combination of
three basis vectors in a plane rotated by 120 degrees from each other and with magnitude
of 2/3. The transformed components α and β are coordinates in an orthogonal reference
frame as depicted in fig. A.1.

For balanced variables, Clarke transformation can be modified as

Kmod = K +


1
3

1
3

1
3

√
3

3

√
3

3

√
3

3

0 0 0

 (A.28)

=


1 0 0
√

3
3

2
√

3
3 0

1
3

1
3

1
3

 . (A.29)

The modified Clarke transformation gives the same results as the original Clarke transformation
when applied to balanced vectors. Thus, one can compute the α and β variables using only a
and b variables. Similar modification can be made for the inverse transformation.

The Clarke transformation as defined in (2.55) does not preserve the magnitude of the
transformed vectors and is not power invariant. For example, the power dissipated on the
phase resistances is

Pres = Rsi
T
abciabc (A.30)

= Rsi
T
αβγK

−TK−1iαβγ (A.31)

= 3
2Rsi

T
αβγiαβγ (A.32)

and the factor 3/2 is required when computing actual power using the transformed vectors.
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However, the Clarke transformation preserves amplitude of sinusoidal balanced variables.
There are also two other variants of the Clarke transformation defined as

Kv2 =
√

2
3


1 cos

(
2π
3

)
cos

(
−2π

3

)
0 sin

(
2π
3

)
sin
(
−2π

3

)
1
2

1
2

1
2

 , (A.33)

Kv3 =
√

2
3


1 cos

(
2π
3

)
cos

(
−2π

3

)
0 sin

(
2π
3

)
sin
(
−2π

3

)
1√
2

1√
2

1√
2

 . (A.34)

The transformation Kv2 is power invariant for balanced variables and it preserves the magni-
tude of the transformed balanced vectors. The transformation Kv3 is unitary transformation
and is power invariant and preserves the magnitude of the transformed vectors even when
they are not balanced. As the phase currents and voltages in PMSM are balanced, both
transformation result in the same DQ model

Ld
did
dt = −Rsid + nppωLqiq + vd, (A.35)

Lq
diq
dt = −Rsiq − nppωLdid −Kbω + vq, (A.36)

J
dω
dt = nppidiq(Ld − Lq) +Kbiq −Bω + τcog + τex, (A.37)

dθ
dt = ω, (A.38)

where

Kb =
√

3
2nppΨm (A.39)

and other parameters are defined in the same way as in the case of the original Clarke
transformation. Thus, care should be taken to have consistency in the used DQ model, Clarke
transformation, and the definition of the parameters.

A.3 Star PMSM Equivalent to Delta PMSM

To obtain star-connected equivalent of delta-connected PMSM, the phase variables of delta-
connected PMSM are transformed to the source variables and denoted as iabc?, vabc?, which
are interpreted as the phase variables of a star-connected PMSM It is tehn shown that the
model of delta-connected PMSM expressed in the transformed vectors is equivalent to model
of star-connected PMSM. The transformations are as in subsection 2.2.5 and the following
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forms are used

iabc = Ksc→pciabc?, (A.40)

vabc? = Kpv→svvabc, (A.41)

where

Ksc→pc = 1
3


1 −1 0

0 1 −1

−1 0 1

 , (A.42)

Kpv→sv = 1
3


1 0 −1

−1 1 0

0 −1 1

 (A.43)

and the common-mode voltage of vabc? was set to zero. The subscript sc→ pc stands for the
transformation of source currents to phase currents. The subscript pv→ sv stands for the
transformation of phase voltages to source voltages. It is worth noting that

Ksc→pc = KT
pv→sv. (A.44)

Further, star-equivalent back EMF is defined as

eabc? = Kpv→sveabc. (A.45)

The voltage equation (2.48) is transformed by substituting in for the phase currents and
then multiplying by Kvp→vs from the left. The mechanical equation (2.49) is transformed by
substituting in for the phase currents. This results in

L?
diabc?
dt = −Rs?iabc? − ωL′?iabc? − eabc? + vabc?, (A.46)

J
dω
dt = 1

2i
T
abc?L

′
?iabc? + 1

ω
iTabc?eabc? −Bω + τcog + τex, (A.47)

dθ
dt = ω (A.48)

where

Rs? = Kpv→svRsKsc→pc, (A.49)

L? = Kpv→svLKsc→pc, (A.50)

L′? = Kpv→svL
′Ksc→pc. (A.51)
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Now the rotor angle is transformed to θ? by defining

θ? = θ + 1
npp

(
π

3 −
π

2

)
. (A.52)

The transformation of the rotor angle is required because iabc? are the source currents of the
delta-connected PMSM, not the phase currents. The equations (A.46), (A.47), and (A.48)
expressed in θ? are then transformed to DQ model using Clarke and Park transformations.
This gives star-equivalent DQ model

Ld?
did?
dt = −Rs?id? + nppωLq?iq? + vd?, (A.53)

Lq?
diq?
dt = −Rs?iq? − nppωLd?id? −Kb?ω + vq?, (A.54)

J
dω
dt = 3

2nppid?iq?(Ld? − Lq?) + 3
2Kb?iq? −Bω + τcog + τex, (A.55)

dθ?
dt = ω, (A.56)

where

Rs? = 1
3Rs, (A.57)

Ld? = 1
3

(
Ls +Ms + 3

2Lg

)
= 1

3Ld, (A.58)

Lq? = 1
3

(
Ls +Ms −

3
2Lg

)
= 1

3Lq, (A.59)

Kb? =
√

3
3 nppΨm =

√
3

3 Kb. (A.60)

Thus, delta-connected PMSM is equivalent to a star-connected PMSM with parameters scaled
as shown above.





Appendix B

MPC in Condensed Form

The MPC control task (3.11) is reformulated to condensed form by defining

X =
[
xT1 xT2 . . . xTN

]T
, (B.1)

Y =
[
yT1 yT2 . . . yTN

]T
, (B.2)

U =
[
uT

0 uT
1 . . . uT

N−1

]T
, (B.3)

∆U =
[
∆uT

0 ∆uT
1 . . . ∆uT

N−1

]T
, (B.4)

Y ∗ =
[
rT1 rT2 . . . rTN

]T
. (B.5)

Using these vectors, the cost function in (3.11a) can be expressed as

J = (Y ∗ − Y )TQ(Y ∗ − Y ) + ∆UTR∆U , (B.6)

where

Q =



Q 0 · · ·

0 Q

... . . .

Q


, R =



R 0 · · ·

0 R

... . . .

R


. (B.7)

Equations describing the model (3.11b) and (3.11c) are rewritten as

X = Ax0 +BU , (B.8)

Y = CX, (B.9)
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where

A =



A

A2

A3

...

AN


, B =



B 0 0 · · ·

AB B 0 · · ·

A2B AB B · · ·
...

...
... . . .

AN−1B AN−2B AN−3B · · · B


, (B.10)

C =



C 0 · · ·

0 C

... . . .

C


. (B.11)

Vector ∆U can be expressed as

∆U = SU −Eu−1, (B.12)

where

S =



I 0 0 · · ·

−I I 0

0 −I I

... . . .

I


, E =



I

0

0
...

0


. (B.13)

The dimensions of identity matrix I are nu × nu, where nu = 2 is the number of inputs.
Using (B.8), (B.9), and (B.12), the cost function (B.6) is rewritten as

J = (Y ∗ −CAx0 −CBU)TQ(Y ∗ −CAx0 −CBU)

+ (SU −Eu−1)TR(SU −Eu−1). (B.14)

Expanding, rearranging, and using the fact that Q and R are symmetric

J = 1
2U

THU + FT
U + c, (B.15)
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where

H = 2
(
B

T
C

T
QCB + ST

RS

)
, (B.16)

F
T = 2

(
xT0A

T
C

T
QCB − uT

−1E
T
RS − Y ∗TQCB

)
, (B.17)

c =
(
Y ∗T −CAx0

)T
Q
(
Y ∗T −CAx0

)
+ uT

−1E
T
REu−1. (B.18)

Further

J = 1
2U

THU +
[
xT0 uT

−1 Y ∗T
]
FTU + c, (B.19)

where

FT =


2AT

C
T
QCB

−2ET
RS

−2QCB

 . (B.20)

As c is a constant that does not depend on the optimization variable U , it does not influence
the solution of the optimization problem. Thus,

J̃ = 1
2U

THU +
[
xT0 uT

−1 Y ∗T
]
FTU (B.21)

has the same minimizer as J .
The inequality constraints (3.11d) and (3.11e) are rewritten as

P xX ≤ px, (B.22)

P uU ≤ pu, (B.23)

where

P x =



Px 0 · · ·

0 Px
... . . .

Px


, px =



px

px
...

px


, (B.24)

P u =



Pu 0 · · ·

0 Pu
... . . .

Pu


, pu =



pu

pu
...

pu


. (B.25)
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Using (B.8) the constraint (B.22) is rewritten as

P xBU ≤ px − P xAx0. (B.26)

Combining (B.23) and (B.26) gives

GU ≤ W + Sx0, (B.27)

where

G =

P xB

P u

 , W =

px
pu

 , S =

−P xA

0

 . (B.28)

Therefore, MPC control task can be written in condensed form as

min
z

1
2z

THz +
[
xT0 uT

−1 rT1 rT2 . . . rTN

]
FTz (B.29a)

s.t. Gz ≤ W + Sx0, (B.29b)

z =
[
uT

0 uT
1 . . . uN−1T

]T
, (B.29c)

x0 = x(t), (B.29d)

u−1 = u(t− Ts), (B.29e)

rk = r(t+ kTs), k = 1, 2, . . . , N. (B.29f)

.
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