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Abstract

We apply Scaled-Diagonally-Dominant-Sum-of-Squares (SDSOS) opti-
mization to the problem of two-player zero-sum polynomial games. Our
baseline is a version of a Sum-of-Squares (SOS) Program by Parrilo
extended to solve polynomial games over semialgebraic sets. SDSOS
optimization (via a change-of-basis method) promises to alleviate the
large problem sizes inherent to SOS optimization without a significant
loss of accuracy. Unfortunately, the results are overly conservative to
be useful for our problem. We show the results on examples extracted
from the literature, and on games with prescribed solutions generated
using an equation by Gale and Gross. In addition, we extend the Double
Oracle algorithm to solve semialgebraic games and demonstrate its speed
of convergence. All our code is available online on Github and Gitlab. We
explain all of the fundamental parts of the source code in the appendix
of this thesis.

Abstrakt

Aplikujeme optimalizaci Scaled-Diagonally-Dominant-Sum-of-Squares
(SDSOS) k řešeńı polynomiálńıch her s nulovým součtem o dvou hráč́ıch.
Náš algoritmus vycháźı z programu Sum-of-Squares (SOS) formulovaného
Parrilem, který jsme rozš́ı̌rili pro řešeńı her se semialgebraickými prostory
strategíı. I přestože je optimalizace SDSOS schopna řešit větš́ı problémy
než optimalizace SOS, pro náš problém jsou jej́ı výsledky př́ılǐs konzerva-
tivńı. Problém předvedeme na př́ıkladech z literatury, a také na hrách
se zadaným ekvilibriem vytvořených pomoćı Galovi a Grossovi rovnice.
Představ́ıme také rozš́ı̌reńı algoritmu Double Oracle pro řešeńı semial-
gebraických her a demonstrujeme rychlost jeho konvergence. Veškerý
zdrojový kód je dostupný na Github a Gitlab. Důležité úryvky kódu
vysvětĺıme na konci práce.

ii



Acknowledgments

I would like to extend my sincere thanks to doc. Ing. Tomáš Kroupa, Ph.D. for
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Chapter 1

Introduction

In 2006, Parrilo presented a considerable contribution to the two-person zero-
sum games with infinite sets of strategies. In his paper (Parrilo, 2007), he
illustrates a constructive method for computing the optimal polynomial games’
optimal strategies by solving a single semidefinite programming problem.

While his paper deals with one-dimensional strategy spaces only, the under-
lying techniques are based on a much more general framework of sum-of-squares
optimization and extend naturally to semialgebraic games, that is, games with
a polynomial payoff, and basic semialgebraic strategy sets. Unfortunately, while
his original technique is exact, the semialgebraic extension is not. The problem
of determining the value of a Semialgebraic game is NP-hard since its funda-
mental problems of determining polynomial nonnegativity and the recognition
of valid moment sequences are hard problems. Nonetheless, both the optimal
value and the moment problem can still be approximated in polynomial time
by a hierarchy of semidefinite relaxations, in the spirit of the moment approach
developed in Lasserre (2004). Furthermore, techniques based on sums of squares
often need only a few relaxations for good approximations (and possibly finite
convergence), and they might, in some sense, even be optimal.

Even then, Sum-Of-Squares (SOS) optimization itself is dependent on
semidefinite programming, which A. Ahmadi and Majumdar classify as its
weakness. Compared to linear or second-order-cone programs, Semidefinite
Programming (SDP) is relatively expensive, and SDP solvers are slow. This is
further amplified by the fact that sum-of-squares problems are large by default

— a problem undeniably shared by the quickly growing Lasserre hierarchies. As
a result, scalability is a significant challenge for sum-of-squares optimization.
A. Ahmadi and Majumdar (2017) propose a more tractable alternative in their
recent work. They suggest techniques based on diagonally-dominant matrices
as a way to inner-approximate a general semidefinite program by a sequence
of linear programs. Their approach has already been successfully applied to
several areas. In this thesis, we explore how it can be used to solve semialgebraic
games.
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Chapter 2

Background on Two-Player
Zero-Sum Games

Two-Player Zero-sum games are games where one player wins what the other
loses. They are defined by a strategy space X for player 1, a strategy space Y
for player 2, and a single function which determines the payoff of player 1 (and
accordingly, the loss of player 2). The strategy spaces are classically expected
to be convex, but as we will see later, this limitation can be overcome.

2.1 Finite games

A matrix game is a two-person zero-sum game with finite strategy sets for
both players. Without loss of generality, let X = {1, . . . , n} be the strategy
set of player 1, and Y = {1, . . . , m} the strategy set of player 2. Any matrix
A ∈ Rn×m is called a payoff matrix and its entry aij is the payoff of player 1
(the loss incurred by player 2) when the strategy profile (i, j) is selected. The
elements of the sets X and Y are called pure strategies.

A mixed strategy of player 1 is a probability distribution µ = [µ1, . . . , µn] ∈
∆n, where ∆n is a probability simplex1. An analogous definition applies to
player 2. When players use the mixed strategy profile (µ, ν), the expected payoff
to player 1 is

p(µ, ν) =

n∑
i=1

m∑
j=1

µiaijνj or µAνᵀ,

for the payoff matrix

A =

1 · · · m


1 a11 · · · a1m
...

...
. . .

...
n an1 · · · anm

A trivial example of a game resulting in mixed strategies is rock-paper-
scissors, where the optimal strategy is to pick all options randomly.

1The standard simplex in Rn is ∆n = {x ∈ Rn+ |
∑n
i=1 xi = 1}
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Optimal strategies

Every finite game has a point in ∆n ×∆m called a Nash equilibrium, that is, a
choice of concrete strategies of all players, such that no player can improve their
payoff by deviating from it. Remember that the expected payoff of player 1 is
given by p(µ, ν) = µAνᵀ and player 1 wants to maximize it. Equivalently, since
one players win is another players loss, player 2 wants to minimize it. Then
(µ?, ν?) is a Nash equilibrium if it is a saddle point in the sense

max
µ

p(µ, νᵀ) = p(µᵀ, νᵀ) = min
ν
p(µᵀ, ν),

which we can rewrite specifically for matrix games as

max
µ

min
ν

µAνᵀ = µ?Aν?ᵀ = min
ν

max
µ

µAνᵀ.

This follows directly from the Minimax theorem. First, note for any function
f : X × Y → R the ineqality

sup
x∈X

inf
y∈Y

f(x, y) ≤ inf
y∈Y

sup
x∈X

f(x, y)

always holds. The Minimax theorem classifies the situations, in which the
relation is an equality.

Theorem 1 (Minimax Theorem (Kjeldsen, 2001)). Let X ⊂ Rm and Y ⊂ Rn
be convex and compact sets, and f a continuous function f : X ×Y → R, which
is quasiconcave in x and quasiconvex in y, then:

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y)

In our case, the sets X and Y are standard simplices, which are convex and
compact, and the function p is a bilinear form.

Finding optimal strategies using linear programming

We can find a Nash equilibrium using linear programming. First, assume that
player 2 is forced to play first and reveal his strategy y. player 1 can obviously
do no better, than to respond with a strategy with the maximal payoff, and
has no incentive to randomize, even if there are multiple strategies with the
same payoff. This means that

max
x

xᵀAy = max
i

eᵀiAy = max
i

A[i, :] · y,

where A[i, :] is the i-th row of A, and ei is a standard basis vector. With this,
we can rewrite the saddle point condition as

max
x

min
j

x ·A[:, j] = x?ᵀAy? = min
y

max
i

A[i, :] · y.
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The left and the right sides if the equation can be written as linear programs.
Taking first the left side maxx minj x · A[:, j], we formulate it as the linear
program

maximize
γ,x

γ

such that γ − x ·A[:, j] ≤ 0 ∀j ∈ 1, . . . ,m∑n
i=1 xi = 1

xi ≥ 0 ∀i ∈ 1, . . . , n

(2.1)

where γ is the value of the game.
Instead of formulating the other side of the equation, we can dualize this

one. The first line of m “nonpositivity” constraints generates m nonnegative
dual variables y ∈ Rn+. The one equality constraint generates one free variable
λ ∈ R. The one free primal variable in the objective 1γ creates the constraint
= 1. Finally, the n xi’s become:

λ+

n∑
j=1

−A[i, j]yi ≥ 0 ∀i ∈ 1, . . . , n,

or λ−A[i, :] · y ≥ 0, giving the dual formulation

minimize
λ,y

λ

such that λ−A[i, :] · y ≥ 0 ∀i ∈ 1, . . . , n∑m
j=1 yj = 1

yj ≥ 0 ∀j ∈ 1, . . . ,m

(2.2)

which exactly corresponds to the right hand side miny maxi A[i, :] · y. Source
code implementing this formulation is in the appendix of this thesis.

2.2 Infinite games

A natural extension to finite games are games with infinite-dimensional strategy
spaces. Similarly to finite games, infinite games are defined by a strategy space
X for player 1, a strategy space Y for player 2, and a single payoff function.
Likewise, the concept of a solution, or optimal strategies, is generally given by
the Nash equilibrium. For the same reason, the equation

max
x

min
y
f(x, y) = min

y
max
x

f(x, y)

is expected to hold. At this point, if the strategy spaces were convex and
compact, and f(x, y) were quasiconcave in x and quasiconvex in y, then we
could simply apply the minimax theorem and this would not be a problem. In
general, we do not have such guarantees.

Assume for a moment, that the condition holds. We can then define the
infinite analogs to the payoffs and strategies. Consider a game given by sets X,
Y , and a continuous function f . Then let X and Y to be sets of all probability
measures supported on X and Y respectively. Given a µ ∈ X and ν ∈ Y,

Eµ,ν [f ] =

∫
X

∫
Y

f dµ dν

4



is the expected payoff, provided that the payoff function f is measurable. The
elements of X and Y can be interpreted as sets of Dirac measures δx, centered
on x. The measures in X are analogous to the pure strategies of finite games,
and the measures in X are the mixed analogues.

Polynomial games

A polynomial game is a separable, continuous game, whose payoff function is
defined as

p(x, y) =

n∑
i=1

m∑
j=1

pijx
iyj .

In a simplified setting, polynomial games are played on a unit square. In that
case, there exists an exact numerical approach to solving them. In a more
general sense, polynomial games can be multi-dimensional, and their strategy
spaces can be solution sets of polynomial equations and inequalities, that is,
semialgebraic sets. Due to their polynomial nature (and their separability),
polynomial games have some nice properties, which make them easier to analyze
and solve compared to other types of continuous games.

However, even our basic requirement of

max
x

min
y
f(x, y) = min

y
max
x

f(x, y)

does not have an obvious answer. The requirements for the applicability of the
Minimax theorem were: the strategy spaces must be convex and compact, and
f(x, y) must be quasiconcave in x and quasiconvex in y. We will satisfy the
requirements on sets by projecting them into higher dimensional sets. At the
same time the requirement for f ’s convexity will be satisfied by exploiting its
separability.

5



Chapter 3

Computation of Equilibria via
SOS Optimization

The goal in a two-player polynomial game is to maximize the value gained
from the other player. As the outcome ultimately depends on the actions of all
players, this corresponds to finding strategies whose worst-case is as favourable
as possible. Each player is doing the same, and due to the Minimax theorem
we know that the worst-cases are exactly the equilibria they settle on. This
is analogous to the finite problem, except the strategy space now has infinite
dimensions. Linear programming can not solve this exactly , but semidefinite
programming can. Finding a strategy with the best worst-case are actually two
sides of polynomial optimization.

3.1 Polynomial Optimization

We are interested in the following polynomial optimization problem: Given a
polynomial p, find the constrained global minimum

minimize
x

p(x)

such that x ∈ X

where X is a compact, but not necessarily convex set, defined by a system of
polynomial equations and inequalities (Semialgebraic set). When possible, we
are also interested in finding the global minimizers x? of p1.

Sum of Squares optimization transforms this nonconvex finite-dimensional
polynomial optimization problem into a linear infinite-dimensional one. Very
loosely, to find the optimal y? = f(x?), we can either try to guess the y or
the x’s. Finding all the optimal x’s is essentially a problem of finding an
appropriate probability measure. Conversely, the y? is unique, and it is the
functions lower-bound. The implicit assumption behind both formulations
being that it is easy to enumerate probability measures, and to check whether
something is a lower-bound.

1Multivariate polynomials which are bounded below do not necessarily achieve a global
minimum. A famous example is x2 + (1 − xy)2, which is clearly nonnegative and can get
arbitrarily close to zero, but can never achieve it. Since we are interested in solving the
problem numerically, we will make no accommodation for this fact.

6



More formally, minimizing a polynomial p(x) over a compact semi-algebraic
set X is equivalent to either: finding any probability measure supported on p’s Measure:

µ

Lower bound:

α

global minimizers; or finding the largest lower-bound α, which makes p(x)− α
nonnegative on X . These problems are mutually dual.

minimize
µ

∫
p dµ

such that µ(X ) = 1

µ ∈M+(X )

∣∣∣∣∣∣∣∣∣
maximize

α
α

such that p(x)− α ≥ 0, ∀x ∈ X
(3.1)

where M+(X ) is a convex cone of all measures on2 X .
An example of an optimal solution in the first case is when µ is a Dirac

measure δx? , and x? is a global minimizer of p(x), since by definition

min
x

p(x) = p(x?) =

∫
p dδx? .

In the second case, the largest lower-bound α is a global minimum on X .
The expression p(x)− α is then nonnegative on X and p’s global minimizers
are its zeros.

These problems are linear, and their formulations are straightforward. Un-
fortunately, there exist no computationally efficient representations of neither
M+ nor of polynomials nonnegative on X . Semidefinite Programming has a
numerical answer to both of these problems — Sum-of-Squares optimization.
Rather than checking membership in the set of all nonnegative polynomials,
the space is restricted to sums of squares of polynomials of bounded degrees.
An SOS decomposition p(x) =

∑n
i=0 si(x)2 syntactically certifies nonnegativity.

Similarly, truncated sequences of moments replace nonnegative measures. These
bounded degree SOS decompositions and the dual truncated moment-problems
make up the Lasserre hierarchies (Lasserre, 2004).

Relaxations for Nonnegative Polynomials

Checking if a polynomial is globally-nonnegative is NP-hard, but checking a
sufficient condition for nonnegativity is possible in polynomial time. One such
certificate is a Sum-of-Squares decomposition, giving an easily verifiable answer,
albeit approximate in general.

The Gram-matrix Method (Choi et al., 1994) A polynomial p(x) of an
even degree 2d with n variables is Sum-of-Squares if it can be written as a sum
of finitely many squared polynomials: p(x) =

∑m
i=0 q

2
i (x). For example, picking

the monomial basis3[x]d, the equation can be rewritten using vectors as:

p(x) =

 q0(x)
...

qm(x)


ᵀ  q0(x)

...
qm(x)

 =

 1
...
xdn


ᵀ

Q

 1
...
xdn


2µ is a measure on X , if the support of µ is a subset of X
3 Monomial basis is defined by a vectors of monomials [x]d = [1, . . . , xdn] in the graded-

lexicographical order, where n is the number of variables, and d is the degree bound.
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where, since p is nonnegative, Q must be positive semidefinite4. Additionally, if
p(x) has a Sum-of-Squares decomposition, it involves at most

(
n+d
n

)
polynomials,

and their degrees are no more than d (This will not be the case for constrained
optimization). Ensuring the equality of coefficients on both sides requires a finite
number of linear constraints, and with the Q’s only positive-semidefiniteness
constraint, this is exactly a semidefinite program.

Nonnegative polynomials on compact semialgebraic sets For exam-
ple, in a polynomial game, we are not interested in optimizing over the whole
Rn, but rather some compact subset of it. In our case, the strategy-spaces
are basic-semialgebraic sets5. We are no longer interested in conditions for a
single polynomial, but for systems of polynomial equations and inequalities.
Furthermore, rather than trying to satisfy the equations and inequalities them-
selves, what we are interested in is the object they define. Sacrificing a bit of
generality, which we did not need in the first place, and constraining our sets
to be compact, we can use Putinar’s simplification of the Positivstellensatz.

Theorem 2 (Putinar’s Positivstellensatz (Putinar, 1993, p. 972)). Given a
compact semialgebraic set6 X , if a polynomial p(x) is positive7 on X , then

p(x) = s0(x) +
∑

si(x)gi(x)

where s0(x) and si(x) are SOS.

Putinar’s Positivestellensatz does not form a semidefinite program on its
own, as it does not guarantee any bounds on the degrees of si(x)’s. It turns
out, however, that simply iteratively bounding their degrees approximates, and
eventually converges to the answer of the original problem (3.1); more on that
in the section 3.2 on Lasserre’s Hierarchies.

Because Putinar’s Positivstellensatz applies only to strictly positive polyno-
mials, we can only generate approximate representations in general. Alternative
approximations exist, as well as special problem classes which lead to exact rep-
resentations. The existence of an exact semidefinite representation is currently
an open question.

Univariate polynomials on an interval Univariate polynomials nonneg-
ative on an interval are an example of a special problem class with an exact
characterization.

Theorem 3 (Theorem of Lukács (Szegő, 1939)). Let p(x) be an nth degree
polynomial nonnegative on [−1, 1]. Then p(x) can be written as:

p(x) =

{
s(x) + (1 + x)(1− x)t(x), if n is even

(1 + x)s(x) + (1− x)t(x), if n is odd

4We always assume PSD matrices are symmetric
5Basic(-closed)-semialgebraic sets are subsets of Rn defined by polynomials inequalities

as: {x ∈ Rn | g0(x) ≥ 0, g1(x) ≥ 0, . . . }.
6Compact semialgebraic sets are compact sets formed by finite sequences of unions,

intersections and complements of basic-semialgebraic sets.
7By positive we mean strictly positive, otherwise we use the term nonnegative.
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Where s(x) and t(x) are sums-of-squares of polynomials, such that the degrees
of the single terms on the right-hand side do not exceed n.

We can easily rewrite the Theorem of Lukács as an SDP. Since the conditions
are both sufficient and necessary, the SDP will be exact.

Semidefinite Program 1. A polynomial p with an even8 degree 2n is non-
negative on the interval [−1, 1], if the following SDP constraints are feasible:

p(x) = a(x) + (1− x2)b(x)

b(x) = [x]n−1B[x]ᵀn−1
a(x) = [x]nA[x]ᵀn

A,B � 0

where polynomial equality is understood as f = g ⇐⇒ ~f = ~g; and the
variables A ∈ Sn+1, B ∈ Sn.9 The equivalence to the multivariate case is
apparent when the interval [−1, 1] is written as the basic semialgebraic set
X = {x ∈ R | 1− x2 ≥ 0}.

Conditions for Valid Moment Sequences

We previously mentioned that Sum-of-Squares optimization is useful for repre-
senting not only nonnegative polynomials but also measures. The problems are,
in fact, duals. Instead of relaxing the original dual formulation using SOS, we
relax the original primal formulation by projecting it into a higher-dimensional
space. The primal formulation tries to minimize the expectation of a polynomial
p(x) under a variable measure µ:

Eµ[p] =

∫
p dµ

Factoring out the coefficients10 of p(x) leaves the expectation of monomials,
which are exactly the moments of µ. The expectation of p under µ is then equal
to ~p · ~µ, where ~p are the coefficients of p(x), and ~µ is the moment vector of
µ. This automatically relaxes the problem by replacing non-linear monomials
by moments acting as lifting variables. This procedure introduces what is
known as the Problem of Moments. The moment vector ~µ must actually have
a representing measure. For multivariate moments, only necessary conditions
exist; for univariate moments, the following conditions on moment matrices are
sufficient as well as necessary.

Moment matrices (Lasserre, 2004) In the most general sense, a moment
matrix M(µ) is an infinite generalized Hankel matrix, where each entry is a
moment of a measure µ. Vectors of monomials provide a simple way to describe

8Odd degree polynomials can be interpreted as even degree polynomials with the leading
coefficient equal to zero.

9Sn denotes the set of symmetric matrices in Rn×n
10A polynomial p(x) = ~p · [x]d, where ~p are coefficients of monomials [x]d.
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their structure. For example, given an [x]2 = [1, a, b, a2, ab, b2]:

[x]ᵀ2 [x]2 =


1 a b a2 ab b2

a a2 ab a3 a2b ab2

b ab b2 a2b ab2 b3

a2 a3 a2b a4 a3b a2b2

ab a2b ab2 a3b a2b2 ab3

b2 ab2 b3 a2b2 ab3 b4


Similarly — replacing every entry aibj by ∫ aibj dµ = µi,j — a moment matrix
Mm(µ) truncated to order m = 2 has the structure11:

M2(µ) =


µ0,0 µ1,0 µ0,1 µ2,0 µ1,1 µ0,2

µ1,0 µ2,0 µ1,1 µ3,0 µ2,1 µ1,2

µ0,1 µ1,1 µ0,2 µ2,1 µ1,2 µ0,3

µ2,0 µ3,0 µ2,1 µ4,0 µ3,1 µ2,2

µ1,1 µ2,1 µ1,2 µ3,1 µ2,2 µ1,3

µ0,2 µ1,2 µ0,3 µ2,2 µ1,3 µ0,4


The matrix [x]ᵀm[x]m is always positive-semidefinite, and in order for the moment
vector ~µ to have a representing measure, Mm(µ) must be as well. The reason is
that given a multivariate polynomial p(x) = ~p · [x]n, the expected value of p2(x)
can be written as:

Eµ[p2] = ~p ᵀMn(µ) ~p

and given that µ is nonnegative, the result should be too; therefore Mn(µ)
must be positive-semidefinite. As in the dual problem, we need conditions for
measures supported on a compact semialgebraic set. Given a polynomial g(x),
start analogously to the Moment Matrix construction with g(x)[x]ᵀ[x], and
define the associated Localizing Matrix, as its linearization. For example, given
g(x) = 1− x2 and a univariate µ:

g(x)[x]ᵀ1 [x]1 =

[
x0 − x2 x1 − x3
x1 − x3 x2 − x4

]
and M1(gµ) =

[
µ0 − µ2 µ1 − µ3

µ1 − µ3 µ2 − µ4

]
where M1(gµ) is a Localizing matrix of order 1. As before, for µ to be a represent-
ing measure of ~µ on X = {x ∈ Rn | g ≥ 0}, M(gµ) must be positive-semidefinite,
because for every polynomial p(x), the result of Eµ[g p2] = ~p ᵀMn(gµ) ~p (or∫
g(x)p2(x)dµ) must be nonnegative when g(x) ≥ 0. A simple combination of

these two definitions gives a relaxation for probability measures on a compact
semialgebraic set:

11The similarity to a Hankel matrix is visible from the degrees of the monomials.

0 1 1 2 2 2

1 2 2 3 3 3
1 2 2 3 3 3

2 3 3 4 4 4
2 3 3 4 4 4
2 3 3 4 4 4


For univariate measures, moment matrices and Hankel matrices are equivalent.
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Lemma 1 (Moment matrix of a measure on X (Lasserre, 2004, p. 805)). Let
µ be a probability measure supported on a compact semialgebraic set defined by
polynomials gi(x), then for all even m ≥ max(deg(g0), . . . ):

Mm−deg(gi)(giµ) � 0 ∀i
Mm(µ) � 0

µ0 = 1

where µ0 = 1, constrains the mass of µ to be 1, as it is supposed to be a
probability measure.

Conditions for univariate measures The inverse condition, when every
solution is also a valid measure, will be useful for solving polynomial games
exactly. In that case, the measure is only univariate.

Semidefinite Program 2. A sequence of moments ~µ = [µ0, . . . , µn] has a
univariate representing measure on [−1, 1] if and only if the following SDP
constraints are feasible:

µ0 = 1

Mn−1((1− x2)µ) � 0

This result follows from the characterization of univariate polynomials (3.1) by
the duality between nonnegative polynomials and moment spaces, and the fact
that [−1, 1] is compact.

3.2 Polynomial Optimization using Lasserre Hierarchies

Neither of the previously discussed relaxations (3.1, 3.1) directly forms a
semidefinite program, as it is not obvious how to bound the order of moment
matrices, nor the degrees of the constituent polynomial squares. The Moment–
SOS hierarchy is a numerical approach, which fixes the degree, starting with
the smallest possible degree, and then iteratively increases it. All solutions of
the hierarchy provide a monotone sequence of bounds on the solution of the
original problem (3.1), and eventually, they are guaranteed to converge.

Substituting the original intractable problems with the semidefinite con-
straints from Lemma 1 and Putinar’s Positivstellensatz, and using m as an
upper bound on their degrees, results in the following relaxations ordered by m.

Semidefinite Program 3 (Moment SDP). Optimization of a polynomial
p(x)12 over a compact semialgebraic set X with n inequalities — in other words,
finding minx∈X p(x) — can be formulated as a moment semidefinite program
in the following way:13

minimize
~µ∈Rm

~p · ~µ

such that Mm−deg(gi)(giµ) � 0 ∀i
Mm(µ) � 0

µ0 = 1

(Mom. opt.)

12A polynomial of a lower degree can be written as a polynomial of a higher degree with
the leading coefficients equal to zero.

13~p is the coefficient vector of p(x) = ~p · [x]m, and A � 0 denotes a positive-semidefiniteness
constraint.
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where m ≥ max(deg(p), deg(g1), . . . , deg(gn)), and ~µ is the moment vector of a
(hypothetical) measure µ.

Semidefinite Program 4 (Sum-of-Squares SDP). For an even parameter m ≥
max(deg(p), deg(g1), . . . , deg(gn)), the corresponding dual problem is formulated
as follows:

maximize
γ∈R

γ

such that s0(x) +

n∑
i=1

si(x)gi(x) = p(x)− γ

deg(s0), deg(sigi) ≤ m ∀i
s0, si ∈ SOS ∀i

(SOS opt.)

where by f ∈ SOS we mean the Gram-matrix method (3.1).

The Lasserre hierarchy converges for some value of m ≥ max(deg(p), . . . ).
Unfortunately, when dim(X ) ≥ 3, there exist p(x)s for which the optimal m is
infinite. For univariate polynomials the lowest relaxation is exact already.

3.3 Pablo A. Parrilo’s Algorithm for Polynomial Games

Parrilo’s algorithm (Parrilo, 2007) uses semidefinite representations of non-
negative univariate polynomials and measures to solve two-player zero-sum
polynomial games supported on [−1, 1]×[−1, 1]. While the resulting formulation
looks unlike its finite-strategy counterpart, the underlying ideas are similar.

Both players are trying to find the best mixed-strategy. Parrilo defines their
goals probabilistically — as an optimization of their expected payoffs:14

max
µ

min
ν
Eµ×ν [p]

∣∣∣ min
ν

max
µ

Eµ×ν [p]

where µ and ν are probability measures defining the strategies of players x
and y; and p is the payoff polynomial. We can rewrite the goals as bilinear
forms and, using an idea similar to Lasserre’s moment relaxations, optimize
over truncated sequences of moments instead of their representing measures.

max
µ

min
ν
Eµ×ν [P (x, y)] −→ max

~µ
min
~ν

∑
i

∑
j

pijµiνj

Where µi and νj are the ith and jth moments of µ and ν. At this point,
the Minimax Theorem (1) confirms that strategies found using this approach
correspond to the equilibria of the new “relaxed” game. In our case X and
Y are moment spaces, which are convex and compact (Karlin & Shapley,
1972); and since f is a bilinear form, it is continuous and trivially satisfies the
concave-convexity.

The last idea exploits the separability of the payoff function.∑
i

∑
j

pijµiν
?
j ≤

∑
i

∑
j

pijµ
?
i ν
?
j ≤

∑
i

∑
j

pijµ
?
i νj

14Eµ×ν [ . . . ] denotes the expectation under the product measure.
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where µ? and ν? are any strategies resulting in a saddle-point. Just like in
finite-games, it does not matter if a player plays first or responds to a strategy
of the other player. The opponent can also do no better than to respond with
the (constrained) global minimum. Thus simplifying the requirement from
the optimal mixed-strategy to a set of strategies with the highest payoffs. For
polynomial payoffs, this is a simple lower-bound constraint. This means that
instead of a problem with a min, a max, and two variables, we can solve a
constrained univariate polynomial optimization problem. Furthermore, since
the problem is only univariate, optimizing over truncated sequences of moments
instead of their representing measures does not actually “relax” the payoff
function in any way (3.1).

Reformulation into a semidefinite program

Given a payoff function p(x, y) =
∑n
i=0

∑m
j=0 pijx

iyj , player 2 can find a
strategy with the smallest payoff on Y = [−1, 1] by solving the following
optimization problem over measures:

minimize
α, µ

α

such that Eµ[p] ≤ α ∀x ∈ [−1, 1]

µ(Y) = 1

where α ∈ R, and µ ∈ M+(Y). Using the ideas above, Parrilo, 2007 then
reformulates this as an optimization over moment vectors:

minimize
α, ~µ

α

such that α−∑n
i=0

∑m
j=0pijx

iµj ≥ 0 ∀x ∈ [−1, 1]

µ0 = 1

~µ has a representing measure µ

Finally, applying the SDP conditions for univariate representing measures (3.1)
and nonnegative univariate polynomials (3.1) results in a semidefinite program
for polynomial games.

Semidefinite Program 5 (Parrilo, 2007’s polynomial-game solver (Parrilo,
2007)). Given a polynomial game on X = {x ∈ R | g1(x) ≥ 0}, and Y = {y ∈
R | g2(x) ≥ 0}, where g1(x) = 1− x2 and g2(y) = 1− y2, with a payoff function
p(x, y) =

∑n
i=0

∑m
j=0 pijx

iyj , player 2 can find a truncated moment sequence of
a representing optimal mixed-strategy using the following semidefinite program:

minimize
α, ~ν

α

such that α−∑n
i=0

∑m
j=0pijx

iνj − s(x)g1(x) = [x]zZ[x]ᵀz

s(x) = [x]wW [x]ᵀw

Z � 0

W � 0

Mm−deg(g2)/2(g2ν) � 0

Mm(ν) � 0

ν0 = 1

(3.2)
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where polynomial equality is understood as f = g ⇐⇒ ~f = ~g; and the variables

Z ∈ Sz, W ∈ Sw,15 z = dn−12 e, and w = dn−12 e − d
deg(g1)

2 e.

3.4 Extension to Semialgebraic Games

At the end of his paper, Parrilo, 2007 mentions that his algorithm 3.3 could be
extended to solve Semialgebraic games, i.e. games with a polynomial payoff,
and strategy spaces defined by semialgebraic sets. While the problem setup is
only slightly more complex than its univariate counterpart, it loses the necessary
guarantees for exactness. It is no longer the case that all globally nonnegative
polynomial are sums of squares, nor can the dual sets completely classify the
moment problem. The problem suddenly becomes NP-hard.

That is not to say that the approach is no longer usable, nor do we have
to significantly modify it. Applying the very same framework to the extended
problem automatically results in an approximation algorithm.

The reasoning is anologous to the univariate problem. The two players x
and y are given two algebraically-compact basic semialgebraic sets X and Y,
over which they are trying to find the strategies µ? and ν? with the best payoff
determined by a polynomial p. This results in the following min-max problem:

max
ν∈Y

min
µ∈X

∫ ∫
p dµ dν

∣∣∣∣ min
µ∈X

max
ν∈Y

∫ ∫
p dµ dν

Due to the compactness of X and Y , we can again use the Minimax theorem to
conclude that at optimality, the two problems are equal. In other words, there
exists an equilibrium for some optimal strategies µ? and ν?, such that

value of the game =

∫ ∫
p dµ? dν?

At this point the solutions start to differ.

Reformulation into a hierarchy of semidefinite programs

Whereas in the original problem we had concrete bounds on the size of the
SOS decomposition of p and the orders of moment matrices, we now have two
unbounded and growing hierarchies in the same problem. Unlike in the simple
cases of polynomial optimization using either the moment or SOS hierarchy,
the convergence of this complex problem is no longer monotone.

Given a multidimensional payoff function p(x, y) =
∑
i

∑
j pijx

iyj , where
i and j are now multiindexes, player 2 can find a strategy with the smallest
payoff on Y = [−1, 1] by solving the following optimization problem:

minimize
α, µ

α

such that Eµ[p] ≤ α ∀x ∈ X
µ(Y) = 1

15Sn denotes the set of symmetric matrices in Rn×n
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where α ∈ R, and µ ∈M+(Y). Using the same idea as in the univariate case,
we can reformulate this as an optimization over moment vectors:

minimize
α, ~µ

α

such that α−∑n
i=0

∑m
j=0pijx

iµj ≥ 0 ∀x ∈ X
µ0 = 1

~µ has a representing measure µ on Y
Finally, applying the full Lasserre hierarchy results in a hierarchy of semidefinite
programs for semialgebraic games.

Semidefinite Program 6. Given a polynomial game with a payoff function
p(x, y) =

∑
i

∑
j pijx

iyj, where i ∈ Na and j ∈ Nc are multiindexes, and
compact basic-semialgebraic strategy sets X and Y, where

X = {x ∈ Ra | gi(x) ≥ 0, i = 1, . . . , b}
Y = {x ∈ Rc | hj(x) ≥ 0, j = 1, . . . , d}

player 2 can find an optimal strategy ν? by solving the following hierarchy of
semidefinite programs (where g0 = 1)

minimize
α, ~ν

α

such that α−∑n
i=0

∑m
j=0pijx

iνj =
∑b
i=0si(x)gi(x)

[x]diQi[x]ᵀdi = si ∀i = 0, . . . , b

Mt−deg(hj)/2(hjν) � 0 ∀j = 1, . . . , d

Mt(ν) � 0

ν0 = 1

(3.3)

where t is the order of the hierarchy, and the degrees 2di of si are such that the
degrees of si(x)gi(x), do not exceed 2t, and the size of Qi is di − deg(gi)/2.

We also denote as t0 the minimal order required to formulate the SOS and
moment constraints, that is t0 equals the highest exponent of p, any gi’s, or
any hj ’s, depending on whichever is highest.

Finally, let ν? be an optimal solution of 6 at some order t. We can then
conclude optimality if

rank(Mt−maxdeg(Y)/2(ν?)) = rank(Mt(ν
?)).

This condition is sufficient, but not necessary. Global optimum may have been
attained, yet the rank condition may still be unsatisfied. If the condition holds,
however, it also proves that ν? is a rank(Mt(ν

?))-atomic measure supported
on Y, and we have a technique to extract its atoms.

3.5 Recovering Players’ Mixed Strategies

Neither of the algorithms (3.4, 3.3) returns an optimal strategy, only a moment
vector that describes one. There exist several techniques16 to extract the

16On the other hand, no techniques exist for recovering the global minimizers straight
from the dual SOS decomposition.
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(atomic) representing measure of a moment vector, but we will only describe
one numerical approach (Henrion & Lasserre, 2005) which seems to work well
in practice.

Since the optimal strategy µ has finitely many atoms, and each entry of its

moment matrix M(µ) is a moment17
∫
xn dµ =

∑r
i=1 wi

?i
xn, we can exploit the

structure of any truncated moment matrix Mk(µ)18,

Mk(µ) =

r∑
i=1

w2
i [
?i
x]ᵀk · [

?i
x]k =

?

VW
?

V ᵀ

where
?

V =
[
[
?1
x ]k, [

?2
x ]k, . . . , [

?r
x ]k

]
, and W is a diagonal matrix of weights w2

i .

Given a Mk(µ) obtained from some level of the hierarchy (3.4), we can use
Cholesky-like decomposition to get Mk(µ) = V V ᵀ instead. The columns of V ᵀ

are indexed by monomials of [x]k, and after reducing V ᵀ to row-echelon form,
the pivots correspond to the basis of µ’s atoms.

To extract the atoms, first create multiplication matrices for each variable
xi. Given a V ᵀ reduced to row echelon form, for example 1 0 0 -2 -4 -6

0 1 0 3 2 0
0 0 1 0 2 5


1 x1 x2 x21 x1x2 x22

,

its basis is [1, x1, x2], and the multiplication matrix of x1 consists of all the
columns of V ᵀ indexed by x1 × [1, x1, x2] (i.e. the columns x1, x

2
1, and x1x2).

That is

Nᵀ
x1

=

0 −2 −4
1 3 2
0 0 2

 whereas Nᵀ
x2

=

0 −4 −6
0 2 0
1 2 5

 .
The solutions are now embedded as common eigenvalues of the matrices Nxi

. To
recover them without duplicates, pick a vector λ ∈ ∆n from random simplex19,
and create a linear combination of all the multiplication matrices

N =

n∑
i=1

λiNxi .

Finally, compute the ordered Schur decomposition N = QUQᵀ, and use the
columns of Q = [q1, . . . , qr] to recover the r solutions:

?i
xj = qᵀi Nxjqi

for each variable xj , j = 1, . . . , n and each atom
?i
x, i = 1, . . . , r.

17We use the notation
?i
x to denote the ith global minimizer (in this case, an atom).

18Similarly, the notation [
?i
x ]d denotes the basis vector [x]d, except x =

?i
x .

19The standard simplex in Rn is ∆n = {x ∈ Rn |
∑n
i=1 xi = 1, xi ≥ 0 ∀i = 1 . . . n}
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Extracting atoms of univariate measures from the
primal-dual solutions

In the original paper, Parrilo (2007) suggests we extract the atomic measures
from the primal-dual solution instead. Since many solvers solve the primal and
dual problems simultaneously anyway, no additional overhead is created. The
following approach to recover a univariate atomic measure from its moments is
based on a classical procedure. Only the first step differs, when we extract the
support from the dual problem.

The first step uses the fact that the entire reason for the polynomial (3.3)
α−E[p] nonnegative on X , was to be a proxy for the opponent’s best response.
The zeros of the polynomial must then give the support of the optimal strategy,
that is, an atomic measure. Then let µj for j = [0 : n] be the moments of µ, and
zi for i = [0 : n] zeros of p. The corresponding weights can then be obtained by
solving a Vandermonde system given by

n∑
i=0

wiz
j
i = µj ,

or in a matrix format by z00 · · · zn0
...

. . .
...

z0n · · · znn


w0

...
wn

 =

µ0

...
µn

 .
However, this procedure will work only if the supports and the moments are
sufficiently accurate; otherwise, it runs into numerical problems. The general
technique, which extracts measures from their moment matrices, can handle
inaccuracies better. In that case, we may have to solve a larger problem first.
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Chapter 4

Approximation

We follow up on Parrilo’s algorithm idea 3.3 and apply on top of it a relaxation
sequence based on diagonally-dominant matrices recently introduced by A.
Ahmadi and Majumdar, 2017. Their approach promises to improve scalability
at the cost of suboptimal solutions. The basic idea is simple:

A semidefinite program optimizes over the intersections of a cone of PSD
matrices and an affine subspace. If we could inner-approximate the cone of
PSD matrices with linear constraints, we could transform any SDP problem
into a linear program and get only feasible solutions. The idea of A. Ahmadi
and Majumdar was to use Diagonally-Dominant matrices for this purpose.

4.1 DSOS Optimization

Every symmetric diagonally-dominant real matrix with nonnegative diagonal
entries is positive-semidefinite. We assume that the symmetric and real con-
straints are satisfied. On top of that, diagonal-dominance with nonnegative
diagonal entries requires only linear constraints.

Definition 1. A matrix M is diagonally-dominant, or M ∈ dd, if:

|Mii| ≥
∑
i 6=j

|Mij |, ∀i

Removing the absolute value function from the left-hand-side of the inequality
also constrains the diagonal entries of M to be nonnegative (for matrices with
side-length greater than 1).

This idea can immediately relax any SDP into an LP (also called DDP):

min 〈C,X〉
subject to 〈Ai, X〉 = bi ∀i

X � 0

7−→
min 〈C,X〉

subject to 〈Ai, X〉 = bi ∀i
X ∈ dd

In case the trade-off in optimality is unacceptable, the relaxation can be
iteratively improved using knowledge from a previous iteration. Instead of X
being diagonally-dominant directly, X could be dd in a different basis. For this
A. Ahmadi and Majumdar define a family of cones parametrized U :

DD(U) = {X ∈ Sn | X = UᵀQU, Q ∈ dd.}
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where Sn are symmetric matrices of size n.
The nth relaxation in the DSOS sequence is then defined as:

DSOSk =

min 〈C,Xk〉
subject to 〈Ai, Xk〉 = bi ∀i

Xk ∈ DD(Uk)

(4.1)

And the sequence of U ’s (starting at 0) as: [I, chol(X0), chol(X1), . . . ], where
chol(X) is the Cholesky-like1 factor V , as in: X = V V ᵀ.

Since Uk+1 = Vk is a factor of the solution from the previous iteration, then
Xk = Uᵀ

k+1IUk+1; and since I is dd, then Xk ∈ DD(Uk+1). This means that
Xk is feasible solution to DSOSk+1, and so the optimal solution can not be
worse than it. Therefore the sequence of solutions is non-increasing.

SDP Relaxation using Scaled-Diagonally-Dominant Matrices

The same idea as with diagonally-dominant matrices applies to scaled-diagonally-
dominant matrices (A. Ahmadi & Majumdar, 2017), except second-order-cone
constraints are required.

Definition 2. A symmetric scaled-diagonally-dominant matrix is a matrix of
the form DMD, where M is symmetric and diagonally-dominant, and D is an
arbitrary nonsingular diagonal matrix.

Checking if a matrix is sdd is possible using linear programming, but a constraint
for sdd requires second-order-cone constraints.

Lemma 2. A symmetric matrix Q is sdd iff Q =
∑
i≤jM

ij, where each M ij

only has four nonzero entries (M ij)ii, (M ij)ij, (M ij)ji, (M ij)jj, such that:[
(M ij)ii (M ij)ij
(M ij)ji (M ij)jj

]
� 0

The family of SDD(U) cones is then defined analogously to the diagonally-
dominant case:

SDD(U) = {X ∈ Sn | X = UᵀQU, Q ∈ sdd.}

and the SDSOS sequence is analogous as well. The nth iteration in the SDSOS
sequence is then defined as:

SDSOSk =

min 〈C,Xk〉
subject to 〈Ai, Xk〉 = bi ∀i

Xk ∈ SDD(Uk)

(4.2)

with the same sequence of U ’s = [I, chol(X0), chol(X1), . . . ].

1A. Ahmadi and Majumdar (2017) define chol(X ) as a Cholesky factor. However, since
diagonally-dominant matrices are only positive-semidefinite, not positive-definite, Cholesky
decomposition is not applicable. In another related paper (A. A. Ahmadi & Hall, 2015)
the authors suggest using the spectral decomposition, or the LDL decomposition. Either of
those approaches would work; however, the proof of iterative improvement would be different.
In a related survey (Majumdar et al., 2019), the authors also suggest using “the square
root operation”, by which we assume they mean the factorization X = F ∗F , where F ∗ is a
conjugate transpose of F . For positive-semidefinite matrices, such a factor is non-complex.
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4.2 Application of DSOS to Semialgebraic Games

We can use several techniques to attempt to simplify the problem of finding
equilibria in semialgebraic games:

The full iterative change-of-basis approach In this method, we first trans-
form the abstract formulation into the standard SDP form, then use the
literal interpretation of transformation 4.1, or 4.2. Apart from the require-
ment of a specific SDP form, the apparent flaw in this approach is that the
resulting number of constraints will be excessively large, as the method
does not exploit the structure of the problem. This method will almost
certainly never lead to faster solve-times compared to SOS optimization.
The change-of-basis method is likely only a simplified academic example
of a converging SDSOS hierarchy, and was not intended to be practical.

By inner-approximating each SDP matrix separately This is both sim-
pler to implement and does not lose the structure of the problem.

Using (S)DSOS polynomials A. Ahmadi and Majumdar also define DSOS
and SDSOS polynomials analogously to SOS polynomials, except their
Gram-matrices are diagonally-dominant instead of positive semidefinite.
This method is the simplest to implement, reduces the number of PSD
constraints, but does not lead to LP and SOCP programs.

A disadvantage of DSOS and SDSOS polynomial constraints is that it is
not obvious how to extract the minimizers from the dual.

4.3 Double Oracle Algorithm for Polynomial Games

The Double Oracle Algorithm (McMahan et al., 2003) is an efficient and
converging iterative algorithm originally created to solve zero-sum matrix games
for which it was impractical to account for all possible strategies. As the main
idea of the algorithm requires only that we be able to compute the best response
to an opponent’s strategy, we see no reason why it could not be applied to
continuous games. Nonetheless, to the best of our knowledge, such use does
not appear in the literature. We formulate the natural extension of the Double
Oracle algorithm to polynomial games, implement a proof-of-concept, and test
its convergence in practice.

Conceptually, the algorithm has four main parts:

1. Guess random initial supports of the optimal strategies

2. Evaluate the utility polynomial at each point in the Cartesian product of
the supports of the current strategies, thereby reducing the problem to a
matrix game.

3. Solve the matrix game, and using the solutions compute the loss functions
for the possible strategies of each player.

4. Minimize the loss function, and append the best responses to the current
supports.
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Steps 2 through 4 repeat until the strategies meet some optimality criteria.
The original Double Oracle algorithm is guaranteed to converge to a minimax
equilibrium eventually. Unfortunately, there exists no such guarantee for the
continuous version. We are also not aware of any bounds on the speed of
convergence of either this or the original algorithm.

An obvious difficulty in our continuous formulation are the “oracles” which
should provide the best responses against concrete strategies (Step 4). The
choice depends on the dimensionality of the utility polynomial, the complexity
of strategy spaces, and whether an exact best response is required. Options
range from Monte Carlo Sampling, through Lasserre’s Moment Hierarchy, all the
way to local optima search. The selection will ultimately dictate the practicality
of the algorithm, however, as we do not know the implications of any of them,
we can only guess. Going forward, we will assume that for polynomial games
on a unit square, Simulated Annealing is a sufficient oracle.

Pseudocode

Algorithm 1 shows a template for our simple proof-of-concept program.2 While
it is obviously inefficient, it should be simple to understand. We take the
notational liberty and assume that functions are transparently vectorized and
broadcast, that is, that a function f(x) evaluated on a sequence f([a, b, c]) is
equivalent to it being evaluated on each element [f(a), f(b), f(c)]. Line 6 solves a
matrix game (in our case, using linear programming 2.1) and returns the optimal
strategies as probabilities corresponding to the supports given. Lines 9 and
10 invoke the “best-response oracles” min, which minimize the loss functions.
Convergence in the original algorithm (McMahan et al., 2003) was concluded
when best responses were already parts of the current strategies. For continuous
games, which can have infinitely many equilibria, either a deterministic oracle
is necessary, or we may, for example, infer it from the change in the value of
the game.

Algorithm 1 Double Oracle for Polynomial Games

1: procedure double oracle(p(x, y),X ,Y)
2: supportx ← random points on X . Initial guess
3: supporty ← random points on Y
4: repeat
5: matrix← p(supportx × supporty)
6: probx, proby ← solve matrix game(matrix)

7: lossx ← −prob y · p(x, supporty)
8: lossy ← prob x · p(supportx, y)
9: best responsex ← min(lossx)

10: best responsey ← min(lossy)

11: supportx ← [supportx; best responsex]
12: supporty ← [supporty; best responsey]
13: until convergence
14: end procedure

2The corresponding Julia implementation is in the appendix of this thesis.
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Chapter 5

Conclusions and results

The following tests were performed based on techniques from sections 3.3, 3.4,
3.5, 4.1, and 4.1, using implementations described in appendix A. We use t0
to denote the minimum order (3.5) of the hierarchies required for a problem,
and call each additional order an iteration (order t0 is the first iteration). As
these tests were mainly intended as a proof-of-concept, run-time should not be
viewed as an estimator of real performance. All tests were performed on an
Intel Core i5-7200U Processor, and 8 GB of RAM.

5.1 Numerical Experiments with SOS Optimization and
the comparison to DSOS and SDSOS Optimization

In this section, we test the algorithm for polynomial games by Parrilo (3.3)
along with its extension to semialgebraic games (3.4). We then take each
known converging solution (at the appropriate order in the hierarchy), and
attempt to solve it using DSOS and SDSOS. Below each example, we list every
such successful application. We consider a failure every relaxation that fails to
complete within 5 minutes or fails due to numerical issues.

The following examples are not original1, except for the polynomials gener-
ated using the equation (5.1) of Gale and Gross (1958).

Examples on intervals

The following examples and solutions were taken from Parrilo (2007), and those,
in turn, have been “extracted from the literature”. In these examples, the sets
are: X = [−1, 1] and Y = [−1, 1], where [−1, 1] has the defining polynomial
g = 1− x2.

1. This example is a guessing game defined by

-1
	0

	1

-1
	1 y

p(x, y) = (x− y)2.

We can solve this game using Parrilo’s algorithm (3.3) and recover the
optimal strategies from the primal-dual solutions (3.5). Choosing to

1Some of the following results differ in their sign compared to the original solutions.
As the solutions are identical otherwise, we conclude this is likely caused by the accidental
inversion of players.
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extract the atoms using the general method (3.5) instead, would require
the solution to the second iteration (order t0 + 1) of the hierarchies (3.4).

The Lasserre hierarchy converges during the second iteration, while the
value of the game is exact at the first iteration (order t0) already. Both
the Parrilo’s algorithm and it’s semialgebraic extension return the correct
result:

?
µ =

−1 with weight 0.5
1 with weight 0.5

,
?
ν = 0 with weight 1

resulting in a value of the game α = 1.

DSOS and SDSOS polynomials Relaxations using DSOS and SD-
SOS polynomials result in the same value of the game and the same
strategies.

Approximating each PSD constraint Inner-approximation of PSD
constrained matrices by DD and SDD constraints results in the same
answers.

Iterative change-of-basis The series based on DD matrices returns
the same answers after one iteration.

2. Consider the function

-1
	0

	1

-1
	1 y

p(x, y) = 2xy2 − x2 − y,

which is convex in x, and therefore has only pure strategy solutions.
Because of this, the first iteration is sufficient for convergence. Both
algorithms return the correct result:

?
µ = 0.397 with weight 1 ,

?
ν = 0.63 with weight 1

resulting in a value of the game α = −0.4724.

DSOS and SDSOS polynomials Relaxation using SDSOS polyno-
mials results in the same value of the game and the same strategies.
Relaxation using DSOS polynomials approximates the value of at −0.56,
and returns the strategies

µ′ = 0.25 with weight 1 , ν′ = 0.5 with weight 1 .

Approximating each PSD constraint Inner-approximation of PSD
constrained matrices by DD constraints approximates the value of the
game at 0 and fails to extract any strategies. SDD constraints fail similarly,
with an approximation of the value of the game at 0 and strategies
incorrectly centered at 1.
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Iterative change-of-basis The series based on DD matrices results in
the sequence of approximations [−0.7,−0.5,−0.479,−0.478], but does not
improve further. The best approximations of the strategies is:

?
µ = 0.353 with weight 1 ,

?
ν = 0.84 with weight 1

Using SDD matrices instead returns the correct result after one iteration.

3. The payoff function is given by

-1
	0

	1

-1
	1 y

p(x, y) = 5xy − 2x2 − 2xy2 − y,

which is neither convex nor concave. The hierarchy converges during the
second iteration, while the value is exact already on the first iteration.
Both algorithms return the correct result:

?
µ = 0.2 with weight 1 ,

?
ν =

1 with weight 0.78
−1 with weight 0.22

resulting in a value of the game α = −0.48.

DSOS and SDSOS polynomials Relaxations using DSOS and SD-
SOS polynomials result in the same value of the game and the same
strategies.

Approximating each PSD constraint Inner-approximation of PSD
constrained matrices by DD constraints approximates the value of the
game at 0 and returns strategies incorrectly centered at (0, 0). DD
constraints approximate the value at 0.5 and return the correct strategy
for player 1, but not player 2.

Iterative change-of-basis The series based on SDD matrices results
in the sequence of approximations [−0.28,−0.42,−0.453], but does not
improve further. The best approximations of the strategies is:

?
µ = 0.2 with weight 1 ,

?
ν =

1 with weight 0.73
−1 with weight 0.26

The run-time for all of the examples above is trivial, regardless of the solver
and formulation used.

Examples on simplices

The following examples and their expected solutions were taken from Nie et
al. (2018). In these examples, the sets are X = ∆n and Y = ∆m, where
∆n = {x ∈ Rn | eᵀx = 1, x ≥ 0} is a simplex with the defining polynomial tuple
g = (eᵀx− 1, x1, . . . , xn). As these examples are multi-dimensional and defined
using Semialgebraic sets, they can not be solved using Parrilo’s algorithm.
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1. Let n = m = 3, and

p(x, y) = x1x2 + x2x3 + x3y1 + x1y3 + y1y2 + y2y3.

We confirm one saddle point of Nie et al., 2018, and find two more solutions.
The hierarchy converges during iteration 3, while the value of the game is
exact from the second iteration. The resulting strategies are:

?
µ = 0, 1, 0 with weight 1 ,

?
ν =

0.02, 0.5, 0.48 with weight ∼ 0.3
0.25, 0.5, 0.25 with weight ∼ 0.3
0.48, 0.5, 0.02 with weight ∼ 0.3

which result in a value of the game of α = 0.25. The run-time is around 3
seconds, and the results are inaccurate due to the large order.

All attempts to relax the problem using DSOS and SDSOS optimization
result in infeasibility or fail due to numerical issues.

2. Let n = m = 3, and

p(x, y) = x3y1y2(y1 + y2) + x2y1y3(y1 + y3) + x1y2y3(y2 + y3)

+ x31 + x32 − x33 − y31 − y32 − y33 .
Our results agree with the original paper. The answer is already exact at
first iteration:

?
µ = 0, 1, 0 with weight 1 ,

?
ν = 0, 0, 1 with weight 1

which result in a value of the game of α = 0. The run-time is around a
tenth of a second.

DSOS and SDSOS polynomials Relaxations using DSOS and SDOS
polynomials result in the same value of the game, but both fail during
the extraction of the optimal strategies.

Other attempts to use SDSOS optimization result in infeasible problems.

3. Let n = m = 4, and

p(x, y) =

4∑
i,j=1

x2i y
2
j −

∑
i 6=j

(xixj + yiyj)

Our results agree completely. The strategies and the value of the game
converge at the second iteration:

?
µ = 0.25, 0.25, 0.25, 0.25 with weight 1,

and

?
ν =

1, 0, 0, 0 with weight 0.25
0, 1, 0, 0 with weight 0.25
0, 0, 1, 0 with weight 0.25
0, 0, 0, 1 with weight 0.25

,
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which result in a value of the game of α = 0.688. The run-time is around
a tenth of a second.

DSOS and SDSOS polynomials Relaxation using DSOS and DSOS
polynomials result in the same value of the game, but the extraction of
the optimal strategies fails.

Approximating each PSD constraint Inner-approximation of PSD
constrained matrices by SDD constraints approximates the value of the
game at 0.79, but fails to return strategies.

The change-of-basis method failed to return a result.

4. Let n = m = 3, and

p(x, y) = x1x2y1y2 + x2x3y2y3 + x3x1y3y1 − x21y23 − x22y21 − x23y23 .

In this case, the original paper found no saddle points, optimal mixed-
strategies exist regardless. Our strategies converge at second iteration,
and the value is exact on first iteration:

?
µ =

1, 0, 0 with weight 1/3
0, 1, 0 with weight 1/3
0, 0, 1 with weight 1/3

,
?
ν = 1/3, 1/3, 1/3 with weight 1

which result in a value of the game of α = 0.11. The run-time is around a
tenth of a second.

DSOS and SDSOS polynomials Relaxations using DSOS and SD-
SOS polynomials result in the same value of the game, but the extraction
of the optimal strategies fails.

Approximating each PSD constraint Inner-approximation of PSD
constrained matrices by SDD constraints returns the correct value of the
game and strategies for player 1, but not for player 2.

The change-of-basis method failed to return a result.

Examples on boxes

In these examples, the sets are X = [0, 1]n and Y = [0, 1]m, where [0, 1]n is a
box with the defining polynomial tuple g = (x1, . . . , xn, 1− x1, . . . , 1− xn).

1. Let n = m = 2, and

p(x, y) = (x1 + x2 + y1 + y2 + 1)2 − 4(x1x2 + x2y1 + y1y2 + y2 + x1).

Our strategies disagree with the saddle points, but the value of the game
is the same. The strategies and the value converge at second iteration:

?
µ =

0.639, 0.639 with weight 0.605
0.144, 0.144 with weight 0.368

,
?
ν = 1, 0 with weight 1
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which result in a value of the game of α = −4. The run-time is less than
a tenth of a second.

DSOS and SDSOS polynomials Relaxations using DSOS and SD-
SOS polynomials results in the same value of the game, but the extraction
of the optimal strategies fails.

Approximating each PSD constraint Inner-approximation of PSD
constrained matrices by SDD constraints returns the correct value of the
game, but fails to extract strategies.

The change-of-basis method failed to return a result.

2. Let n = m = 3, and

p(x, y) =

n∑
i=1

(xi + yi) +
∑
i<j

(x2i y
2
j − y2i x2j ).

In this case, the original paper found no saddle points. An equilibrium is
guaranteed, however, we had trouble finding it. Our strategies converge
at third iteration:

?
µ = 0, 0, 0 with weight 1 ,

?
ν = 1, 1, 1 with weight 1

which result in a value of the game of α = 4. The run-time was a couple of
seconds. In this example most solvers failed to return the correct strategy:
the SCS solver exited with Solved/Inaccurate; the CSDP solver only
found player 2’s strategy, and gave up for a lack of progress; and while
the SDPA solver did eventually find the correct solution, it resulted in a
segmentation fault the first couple of times. We rationalize this by the
fact that the Julia language is fairly new, and its modeling framework
JuMP is an open source effort, currently undergoing rapid development.

DSOS and SDSOS All attempt to approximate the problem run into
numerical issues.

Examples on hypercube sets

In these examples, the sets are X = [−1, 1]3 and Y = [−1, 1]3, where [−1, 1]n is
a hypercube with the defining polynomial tuple g = (1− x21, . . . , 1− x2n).

1. Consider the function

p(x, y) =

3∑
i=1

(xi + yi)−
3∏
i=1

(xi − yi).

We confirm the results of Nie et al., 2018. The hierarchy converges at
iteration 2 returning the strategies:
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?
µ =

−1, 1, 1 with weight 1/3
1, −1, 1 with weight 1/3
1, 1, −1 with weight 1/3

,
?
ν = −1, −1, −1 with weight 1 ,

which result in a value of the game of α = −2. The run-time was less
than a tenth of a second.

DSOS and SDSOS polynomials Relaxations using DSOS and SD-
SOS polynomials results in the same value of the game and the same
strategies.

Approximating each PSD constraint Inner-approximation of PSD
constrained matrices by DD and SDD constraints approximates the value
of the game at −4, but fails to extract strategies.

The Iterative change-of-basis method failed to return a result.

2. Consider the function

p(x, y) = yᵀy − xᵀx+
∑

1≤i<j≤3

(xiyj − xjyi).

Our results find the original saddle point, but our full solutions are
larger. The hierarchies converge during the second iteration, returning
the strategies:

?
µ =

1, 1, 1 with weight 1/8
1, 1, −1 with weight 1/8
1, −1, 1 with weight 1/8
1, −1, −1 with weight 1/8
−1, 1, 1 with weight 1/8
−1, 1, −1 with weight 1/8
−1, −1, 1 with weight 1/8
−1, −1, −1 with weight 1/8

,
?
ν =

1, 1, 1 with weight 1/8
1, 1, −1 with weight 1/8
1, −1, 1 with weight 1/8
1, −1, −1 with weight 1/8
−1, 1, 1 with weight 1/8
−1, 1, −1 with weight 1/8
−1, −1, 1 with weight 1/8
−1, −1, −1 with weight 1/8

which result in a value of the game of α = 0. The run-time was less than
a tenth of a second.

DSOS and SDSOS polynomials Relaxations using DSOS and SD-
SOS polynomials result in the same value of the game and the same
strategies.

Other methods of approximations failed to return a result.

Example on a sphere set

The sets are X = O2 and Y = O2, where On−1 = {x ∈ Rn | ‖x‖ = 1} is a
hypersphere with the defining polynomial g = 1− xᵀx.

1. Consider the function

p(x, y) = 2(x1x2y1y2 + x1x3y1y3 + x2x3y2y3)

+ x31 + x32 + x33 + y31 + y32 + y33 .
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We confirm the results of Nie et al., 2018. The hierarchy converges on the
first iteration, and returns the strategies:

?
µ =

−1, 0, 0 with weight 1/3
0, −1, 0 with weight 1/3
0, 0, −1 with weight 1/3

,
?
ν =

1, 0, 0 with weight 1/3
0, 1, 0 with weight 1/3
0, 0, 1 with weight 1/3

,

which results in a value of the game of α = 0. As an aside, we note that,
purely thanks to the immediate convergence, our run-time was less than a
tenth of a second (compared to over a minute) on comparable hardware.

DSOS and SDSOS polynomials Relaxations using DSOS and SD-
SOS polynomials result in the same value of the game and the same
strategies.

Approximating each PSD constraint Inner-approximation of PSD
constrained matrices by DD constraints approximates the value of the
game at −1. The corresponding strategies are

µ =
−1, 0, 0 with weight 1/2

1, 0, 0 with weight 1/2
, ν =

0, 0, −1 with weight 1/2
0, 0, 1 with weight 1/2

.

Approximation using SDD constraints performs similarly.

The iterative change-of-basis failed to return a result.

Example on a ball set

The sets are X = B3 = Y, where Bn = {x ∈ Rn | ‖x‖ ≤ 1} is a hypersphere
with the defining polynomial g = 1− xᵀx.

1. Let

p(x, y) = x21 ∗ y1 + 2 ∗ x22 ∗ y2 + 3 ∗ x23 ∗ y3 − x1 − x2 − x3.

Our results agree with those of Nie et al., 2018. The hierarchy converges
after a single iteration. The returned strategies are:

?
µ = 0.688, 0.546, 0.477 w. 1 ;

?
ν = 0.726, 0.458, 0.349 w. 1

which result in a value of the game of α = −0.77. The run-time was,
again, less than a tenth of a second.

DSOS and SDSOS polynomials Relaxation using DSOS polynomials
results in the same value of the game and the same strategies for player
1, but the extraction of strategies fails for player 2. SDSOS polynomials
result in the correct answer in both cases.
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Approximating each PSD constraint Inner-approximation of PSD
constrained matrices by DD constraints approximates the value of the
game at −1.5, but fails to extract strategies.

Approximation using SDD constraints also fails to return strategies, but
approximates the value of the game at −1.1.

The iterative change-of-basis failed to return a result.

The remaining examples from Nie et al. (2018) are not applicable as their sets
are not compact.

A generated game with a prescribed solution

The sets are intervals X = [−1, 1] and Y = [−1, 1].

1. Consider a game generated using the Gale and Gross equation 5.1, with
prescribes strategies µ = 0.2 with weight 1, and ν = −0.3 with weight 1.
The resulting polynomial has degree 12.

After two iterations the resulting solutions are optimal

?
µ = 0.1997 with weight 1 ;

?
ν = −0.2987 with weight 1

which result in a value of the game of α = 0. The run-time was, again,
less than a tenth of a second.

DSOS and SDSOS polynomials Relaxation using DSOS polynomials
results in the approximate value of 0.06 and the strategies

µ′ =
0.2 with weight 0.57
−1 with weight 0.42

; ν′ =
−0.3 with weight 0.33

1 with weight 0.67

SDSOS polynomials improve the approximation of the value of the game
to 0.01 and the strategies to:

µ′ =
0.2 with weight 0.85
−1 with weight 0.15

; ν′ =
−0.3 with weight 0.7

1 with weight 0.3

Approximating each PSD constraint Inner-approximation of PSD
constrained matrices by DD and SDD constraints returns the approximate
value of the game 0.05. The strategies of player 2 are incorrectly centered
around 0 in both cases, while the extraction of the strategy of player 1
fails altogether.

Iterative change-of-basis fails due to numerical issues.

5.2 The Double Oracle Algorithm

This section demonstrates the speed of convergence of the continuous Double
Oracle Algorithm 1 on polynomial games. Our implementation uses the Julia
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language, its optimization modeling framework JuMP, and the extension for
polynomial optimization PolyJuMP. The problem setup is equivalent to that of
Parrilo’s paper (Parrilo, 2007), and we borrow all of his examples.

We apply no post-processing to the output of our algorithm, except in the
case of visualization, where we apply a convolution with a bell curve, purely to
aid readability.

We have tested multiple “oracles”, including stochastic search algorithms
(simulated annealing), simplicial homology global optimization, sum-of-squares
optimization, and local non-linear optimization via the interior point method. In
the following examples, we mainly show the performance of the Sum-of-Squares
oracle. Only note that NLP is much faster and has equivalent accuracy unless
it gets stuck in a local optimum.

• The payoff function is a polynomial p(x, y) = 2xy2 − x2 − y convex in
x. Due to its convexity, it has only pure strategy solutions. player 1 is
expected to play 0.3969, while player 2 should play 0.6299. The resulting
expected value of the game is −0.4725.
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Figure 5.1: Example 5.2. Graph showing the convergence of player 1’s best-
response strategies on 2xy2 − x2 − y, using the Double Oracle algorithm over
the course of 10 iterations. The SOS optimization algorithm (SOS opt.) was
used as an oracle.

Using an SOS algorithm (SOS opt.) as an oracle, the algorithm starts
converging during the 4th iteration. After 10 iterations, the actual strate-
gies are: player 1 plays 0.3955 with probability 51.6 %, and 0.3985 with
probability 48.4 %; while player 2 plays 0.6321 with 57.22%, and 0.6274
with 42.78% probability. The actual value of the game is −0.4725.

• The payoff function is a nonconvex polynomial p(x, y) = 5xy − 2x2 −
2xy2 − y. player 1 is expected to play 0.2, while player 2 should play −1
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with probability 22 % and 1 with probability 78 %. The resulting expected
value of the game is −0.48.
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Figure 5.2: Example 5.2. Graph showing the convergence of player 2’s best-
response strategies on 5xy− 2x2− 2xy2− y, using the Double Oracle algorithm
over the course of 10 iterations. The SOS optimization algorithm (SOS opt.)
was used as an oracle.

Using an SOS algorithm (SOS opt.) as an oracle, the algorithm starts
converging during the 3rd iteration. After 10 iterations, the actual strate-
gies are: player 1 plays 0.1925 with probability 14.29 %, and 0.2013 with
probability 85.71 %; while player 2 plays −1 with 22.12%, and 1 with
77.88%. The actual value of the game is −0.48.

• The payoff function is a simple “guessing game” defined by the polynomial
p(x, y) = (x− y)2. player 1 should play −1 and 1 with equal probability,
while player 2 is expected to play 0. The resulting expected value of the
game is 1.

This example appears to be more difficult for the Double Oracle algorithm
than others. The choice of player 1 oscillates around the optimum as player
2 tries to guess his strategy. The algorithm can also run into numerical
problems when both players begin with the same initial support. By using
random initialization, this eventuality is unlikely.

After 10 iterations, the actual strategies are: player 1 plays −1 with
probability 49.84 %, and 1 with probability 50.16 %; while player 2 plays
0.0125 with 60 %, and −0.0188 with 40% probability. The actual value of
the game is 1.
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Figure 5.3: Example 5.2. Graph showing the convergence of player 2’s best-
response strategies on (x − y)2 (“guessing game”), using the Double Oracle
algorithm over the course of 10 iterations. The SOS optimization algorithm
(SOS opt.) was used as an oracle.
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Figure 5.4: Example 5.2. Graph showing the convergence to the optimal value
of the (“guessing game”). The lines follow the executions of the Double Oracle
algorithm for each of 411 initial guesses on [−1, 1]× [−1, 1], from a grid with a
0.1 step. The SOS optimization algorithm (SOS opt.) was used as an oracle.
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Two semialgebraic examples

If we use the SOS hierarchy as an oracle, we can solve semialgebraic games as
well. Take the third example on simplices. The sets are X = ∆n and Y = ∆m.

• Let n = m = 4, and

p(x, y) =

4∑
i,j=1

x2i y
2
j −

∑
i6=j

(xixj + yiyj)

After 20 iterations, we get the results

µ =

0.23, 0.26, 0.26, 0.25 with weight 0.0,
0.25, 0.25, 0.26, 0.24 with weight 0.1,
0.25, 0.26, 0.25, 0.25 with weight 0.1,
0.25, 0.25, 0.25, 0.25 with weight 0.6,

and

ν =

1, 0, 0, 0 with weight 0.27
0, 1, 0, 0 with weight 0.23
0, 0, 1, 0 with weight 0.23
0, 0, 0, 1 with weight 0.25

,

which result in a value of the game of α = 0.688.

• Let n = m = 3, and

p(x, y) = x1x2y1y2 + x2x3y2y3 + x3x1y3y1 − x21y23 − x22y21 − x23y23 .
In this case, the original paper found no saddle points, optimal mixed-
strategies exist regardless. Our strategies converge at second iteration,
and the value is exact on first iteration:

µ =
1, 0, 0 with weight 1/3
0, 1, 0 with weight 1/3
0, 0, 1 with weight 1/3

, ν =
0.34, 0.33, 0.33 with weight 0.49
0.33, 0.34, 0.33 with weight 0.22
0.33, 0.33, 0.33 with weight 0.29

which result in a value of the game of α = −0.11.

A generated game with a prescribed solution

The sets are intervals X = [−1, 1] and Y = [−1, 1].

1. Consider a game generated using the Gale and Gross equation 5.1, with
prescribes strategies µ = 0.2 with weight 1, and ν = −0.3 with weight 1.
The resulting polynomial has degree 12.

Using the local optimizer Ipopt, we obtain the optimal answer during the
second iteration.

?
µ = 0.2 w. 1 ;

?
ν = −0.3 w. 1

which result in a value of the game of α = 0. The run-time was around a
tenth of a second.
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Polynomial games with prescribed unique solutions

We use a simplified algorithm by Gale and Gross (1958) to generate games with
known unique equilibria.

Theorem 4. If X and Y are algebraically-compact subsets of Rn, then for any
finitely-atomic measures µ and ν there exists a polynomial p, such that the
associated game has µ and ν as its unique equilibrium.

Let X and Y be compact basic semialgebraic sets (5) defining the strategy
spaces of each player. Let µ on X and ν on Y be the optimal strategies, with
atoms n and m atoms respectively. Then define the following functions:

f(x, µ) =
∏

a∈a(µ)

| x− a |2,

fi(x, µ) =
∏

a∈a(µ)
a 6=a(µ)i

| x− a |2
| a(µ)i − a |2

,

where a(µ) are the atoms of µ and m = length(a(µ)); Finally, let r(X ) and
r(Y) be m+ 1 and n+ 1 distinct points (which do not overlap with the atoms)
in each set, and define:

φ(x,X ) =
∏

a∈r(X )

| x− a |2,

φi(x,X ) =
∏

a∈r(X )

a6=r(X )i+1

| x− a |2,

The polynomial p solving Theorem 4 is then defined as

p = f(x, µ)φ(x,X )
(
f(y, ν)φm+1(x,X ) +

∑n
j=1

(
fj(y, ν)− w(ν)j

)
φj(x,X )

)
− f(y, ν)φ(y,Y)

(
f(x, µ)φn+1(y,Y) +

∑m
j=1

(
fj(x, µ)− w(µ)j

)
φj(y,Y)

)
− (f(x, µ)φ(x,X ))2 + (f(y, ν)φ(y,Y))2

(5.1)
where w(µ) are the weights of atoms a(µ) of µ.

Disadvantages of this approach The games generated by this equation
are larger than necessary. For example, given a game on [−1, 1]× [−1, 1] with
solutions µ = [(100%, 0.0)], and ν = [(50%,−1.0), (50%, 1.0)], the following
polynomial would suffice

p(x, y) = x2 − 2xy + y2,
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Figure 5.5: A 16th degree game generated by equation 5.1 with an equilibrium
at x = 0 and y = −1 with probability 50 % and y = 1 with probability 50 %
indicated by an arrow.

as polynomials of second degree can have two roots. However, the algorithm by
Gale and Gross generates a polynomial of 16th degree:

p(x, y) = −x16 + x12y4 + y16 + 13.084x15 − 10.437x11y4 − 6.187y15 − 79.592x14

− 1.5x12y2 + 49.569x10y4 + 12.674y14 + 298.609x13 + 16.306x11y2 − 141.526x9y4

− 0.817y13 − 772.258x12 + 0.002x11y − 80.297x10y2 + 270.26x8y4 − x2y10

− 36.307y12 + 1455.555x11 − 0.02x10y + 236.739x9y2 − 363.19x7y4 + 4.37x2y9

+ 2.0xy10 + 50.314y11 − 2056.646x10 + 0.072x9y − 465.094x8y2 + 351.653x6y4

− 5.91x2y8 − 8.741xy9 + 3.094y10 + 2199.351x9 − 0.153x8y + 640.801x7y2

− 246.716x5y4 − 1.151x2y7 + 11.819xy8 − 66.18y9 − 1764.811x8 + 0.214x7y

− 634.091x6y2 + 124.202x4y4 + 10.745x2y6 + 2.301xy7 + 52.415y8 + 1025.39x7

− 0.204x6y + 453.314x5y2 − 43.635x3y4 − 9.649x2y5 − 21.489xy6 + 10.799y7

− 388.975x6 + 0.135x5y − 231.898x4y2 + 10.224x2y4 + 19.299xy5 − 36.949y6

+ 58.331x5 − 0.062x4y + 82.576x3y2 + 5.269x2y3 − 1.591xy4 + 16.846y5

+ 29.33x4 + 0.019x3y − 23.17x2y2 − 10.538xy3 + 2.827y4 − 22.165x3 + 1.157x2y

+ 10.278xy2 − 4.73y3 + 6.662x2 − 2.32xy + 1.19y2 − 0.8x− 0.046y + 0.047

For this reason, we do not show the concrete polynomials generated for our test
examples. The high, redundant degree, combined with the relative “flatness” of
the generated polynomials, causes numerical problems in some solvers.
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5.3 Conclusion

While DSOS and SDSOS optimization can speed up polynomial optimization,
the application to semialgebraic games appears limited. Diagonally-dominant
and Scaled-diagonally-dominant constraints on PSD matrices often resulted in
poor approximations or even infeasibility. Attempts to improve the approxima-
tions using the change-of-basis method required the use of an excessively large
number of constraints. They failed to produce either faster-to-solve problems
or reasonably accurate solutions to most examples. This, combined with the
requirement on a specific SDP formulation, makes the method impractical.

On the other hand, the “Double oracle” algorithm is trivial to implement, and
was able to converge to the equilibrium in only a few iterations. The algorithm’s
ultimate practicality depends on the choice of the “oracles”; however, in our
experience, even stochastic methods result in good approximations.
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Appendix A

Code

The complete source code of our implementation is available online (the Julia
solver for semialgebraic games and the remaining algorithms and this thesis).
This section explains some of the more important parts of our code.

A.1 Julia

Our solver for semialgebraic games is implemented in Julia1 using the JuMP
modeling framework, and SumOfSquares.jl, the JuMP extension for Sum-of-
Squares programming.

Problems in JuMP are modeled roughly as follows:

1 model = Model(Clp.optimizer) # wrap an optimizer in an adapter model

2

3 @variable model x[1:2] # create a variable of size 2

4 @objective model Min sum.(x) # objective is to minimize the sum of x

5 @constraint model x .>= 0 # constrain x to be nonnegative

6

7 optimize!(model) # solve the problem

The Model is actually a complex hierarchy of caches and adapters intended to
transform the internal DSL model into a formulation accepted by the optimizer.

Instead of the more straight-forward approach of reformulating the problems
into various “standard” forms (conic or otherwise), since the adoption of
MathOptInterface, JuMP takes a different approach. The internal model is now
a completely generic list of X ∈ AbstractSet constraints. Solvers only specify
types of constraints they accept, and a network of JuMP bridges attempts
to reformulate the problem into that form. This means, incidentally, that
the internal problem representation is now an implementation detail, and is
inaccessible by the user. This is unfortunate for the iterative DSOS and SDSOS
implementations, as it means that we have to implement a complete model.

Formulating a semialgebraic game The implementation of a solver for
semialgebraic games is straight-forward. SumOfSquares.jl can already formulate

1For anyone unfamiliar with the Julia language, we only have three remarks. Firstly,
arrays are 1-indexed by default; Secondly, functions are broadcast using the “dot-notation”:
f.([a b c]) means [f(a) f(b) f(c)]. Thirdly, Julia has implicit return.
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constraints necessary for a nonnegative polynomial on a semialgebraic set. It
remains only to create the constraints for the dual (moment) problem, and to
combine the constraints.

1 function solve_game(p::AbstractPolynomial, Sx::AbstractSemialgebraicSet,

2 Sy::AbstractSemialgebraicSet, optimizer; iteration::Integer = 0)

3

4 order = min_order(p, Sx, Sy) + iteration * 2 # hierarchy order

5 monoms = reverse(monomials(variables(Sy), 0:order))

6

7 m = SOSModel(optimizer)

8

9 @variable m a # upper bound

10 @variable m u[1:length(monoms)] # moments of measure

11 @objective m Min a # objective: minimize upper bound a

12

13 us = measure(u, monoms)

14

15 @constraint(m, c, expect(us, p) <= a, domain=Sx, maxdegree=order)

16 @constraint(m, us in MomentSequence(), domain=Sy) # valid moments

17 @constraint(m, u[1] == 1)

18

19 optimize!(m) # optimize

20

21 sos_atoms = extractatoms(moment_matrix(c), 1e-4) # extract atoms

22 mom_atoms = extractatoms(moment_matrix(us), 1e-4)

23 value(a), sos_atoms, mom_atoms

24 end

We formulate the problem as in 3.4. SumOfSquares.jl transparently reinter-
prets the constraint expect(us, p) <= a as the appropriate SOS conditions
for nonnegativity on the semialgebraic set Sx. min_order is the smallest order
required to build the moment matrices and to compute the expectation of the
payoff function p. After optimization, we dualize the SOS constraint, create its
moment matrix, and attempt to extract the global optimizers. Similarly, we
attempt to extract the optimizers from the moment matrix of the measure us.

Reformulation into iterative DSOS/SDSOS To solve a semialgebraic
game, we need both SOS constraints and moment constraints. For this reason
we can not directly apply the DSOS relaxations to each polynomial, and have
to use the general method (4.1) instead. This immediately means that the
problem requires two passes through JuMP : first, to reformulate the abstract
problem into the standard SDP trace form

min 〈C,X〉
subject to 〈Ai, X〉 = bi ∀i

X � 0

and then after the modification, a second pass to reformulate it into the standard
LP or SOCP form.

We also can not leverage the internal JuMP framework of bridges, as the
mapping X � 0 7→ X ∈ DD(U) is not a mapping into an equivalent constraint.
Forcing the transformation regardless would lead to different results when
applied to problems that are not in the standard SDP form.
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Instead, we transform the problem into the standard form and then apply
the transformation as

1 X = @variable(optimizer, [1:m, 1:m], Symmetric)

2 @objective optimizer Min tr(C*X)

3 @constraint(optimizer, [i in 1:n], tr(As[i]*X) == b[i]) # forall A[i]

4 @constraint(optimizer, X in DD(U))

which is exactly the DDP form

min 〈C,X〉
subject to 〈Ai, X〉 = bi ∀i

X ∈ DD(U)

This is only a simplified example. The variable X may contain a large number
of nonnegativity constraints encoded as a diagonal block. Since any solver
can handle nonnegativity constraints, we can extract them and create a much
smaller problem.

Semialgebraic Double Oracle Listing A.1 shows a trivial Julia implemen-
tation of the continuous double oracle algorithm for semialgebraic games. To
reiterate the idea of the algorithm: we make an initial guess of the supports;
from our current guesses, create a matrix game; solve the game; compute the
best response against the current strategies and append them to our guesses.
The implementation is trivial for the purpose of being easy to follow. We will
walk through it nonetheless.

1 function double_oracle(p::Polynomial, domain_x::BasicSemialgebraicSet,

2 domain_y::BasicSemialgebraicSet)

3

4 x, y = variables(domain_x), variables(domain_y)

5

6 support_x, prob_x, vx = [], nothing, nothing # allocation

7 support_y, prob_y, vy = [], nothing, nothing

8

9 response_x = oracle(polynomial(x), domain_x) # initial guess

10 response_y = oracle(polynomial(y), domain_y)

11

12 for i = 1:10 # no convergence criteria

13 append!(support_x, response_x)

14 append!(support_y, response_y)

15

16 matrix = [p(x=>a, y=>b) for a in support_x, b in support_y]

17 vx, prob_x = matrix_game( matrix )

18 vy, prob_y = matrix_game(-matrix') # solve game

19

20 loss_x = -prob_y' * [subs(p, y => sy) for sy in support_y]

21 loss_y = prob_x' * [subs(p, x => sx) for sx in support_x]

22 response_x = oracle(loss_x, domain_x)

23 response_y = oracle(loss_y, domain_y) # minimize loss

24 end

25

26 vx, support_x, prob_x, support_y, prob_y

27 end

Lines 9 and 10 invoke the “oracles” with the polynomials
∑
xi. This is

simply to obtain a feasible initial solution.
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Line 16 is a matrix comprehension which evaluates the payoff polynomial
on the cross product of the support guesses and thereby creates a matrix game.
The following two lines solve the matrix game.

loss x and loss y are the loss functions, which are the weighted sums of the
polynomial “cross sections”. Or in different words, they define the loss weighted
by the probability of the opponent playing the corresponding strategy. Finally,
the oracles minimize this loss function.

The SOS Oracle The next listing (A.1) shows an implementation of such an
oracle, implemented using Lasserre hierarchies. As many frameworks implement
Sum-Of-Squares optimization already, we only have to formulate the problem.
SumOfSquares.jl even transparently interprets the constraint f ≥ lb as an SOS
constraint for nonnegativity with a bounded degree, on a specified domain.

To extract the optimizers, we dualize to SOS constraint, create its moment
matrix, and extract its atoms (for example using procedure 3.5).

1 function oracle(f::Polynomial, set::BasicSemialgebraicSet)

2 deg = order_guess(p, set)

3

4 model = SOSModel(CSDP.Optimizer)

5 @variable model lb

6 @objective model Max lb

7 @constraint(model, con, f >= lb, domain = set, maxdegree = deg)

8

9 set_silent(model)

10 optimize!(model)

11

12 measure = extractatoms(moment_matrix(con), 1e-3) # get atoms

13 [a.center for a in measure.atoms]

14 end

Solving a matrix game We use the “standard” formulation (2.1) to solve
matrix games using LP. Only two things to note: Firstly, line 6 is equivalent to
“Let p ∈ Rm+”; Secondly, the operator . >= denotes an elementwise ≥ relation.

1 function matrix_game(payoff::AbstractArray)

2 m, n = size(payoff)

3

4 model = Model(Clp.Optimizer) # standard LP formulation

5 @variable model v

6 @variable model p[1:m] >= 0

7 @objective model Max v

8 @constraint(model, payoff' * p .>= v * ones(n))

9 @constraint(model, sum(p) == 1)

10

11 set_silent(model)

12 optimize!(model)

13

14 JuMP.objective_value(model), value.(p) # value and strategy

15 end
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Different oracles Of course, using an SOS oracle might not make much sense
in practice. Replacing the requirement of semialgebraic strategy spaces with,
for example, an interval, allows us to use most local and stochastic methods.

Listing A.1 shows an oracle implemented using the Ipopt local optimizer.
To use it we need to provide the first and second derivatives of our function.
Also, since modeling in JuMP is done using macros, we have to register our
user-defined function before using it in the objective.

1 function oracle(loss::Polynomial, x::PolyVar, interval::Tuple)

2 lp = differentiate(loss, x)

3 lpp = differentiate(lp, x) # Ipopt requires second derivative

4

5 f(x) = loss(x) # Polynomial isn't a Function (°_°>)
6 fp(x) = lp(x)

7 fpp(x) = lpp(x)

8

9 model = Model(Ipopt.Optimizer)

10 @variable model interval[1] <= v <= interval[2] # constrain variable

11 JuMP.register(model, :loss, 1, f, fp, fpp) # register user defined

12 @NLobjective model Min loss(v)

13

14 optimize!(model)

15

16 value(v)

17 end

In exactly the same manner we could have used simulated annealing, or
random sampling, and since we have roughly halved the dimensionality of the
problem, perhaps even discretization.

A.2 Matlab

We have also implemented Parrilo’s algorithm (3.3) in YALMIP (Löfberg, 2004)
with the use of the SeDuMi2 SDP solver. YALMIP already implements SOS
constraints on polynomials; however, it does not implement the SOS conditions
for nonnegative polynomials on semialgebraic sets. YALMIP also has a built-in
module for polynomial optimization using moment relaxations and a procedure
for the extraction of global optimizers. These modules can, unfortunately, not
be readily combined. We can still abuse the provided features to formulate our
problem as follows:

Firstly, given an input polynomial p(x, y), we create a new univariate poly-
nomial px(x) such that deg(px) ≤ deg(p), and create the nonlinear constraint

‖coefficients with respect to x of (p− px)‖ = 0

Then we apply the Putinar’s Positivstellensatz (2) on px to constrain it to
be nonnegative on a semialgebraic set X = {z ∈ R | gx(z) ≥ 0} given by the
polynomial gx. For this we only need one additional polynomial s(x), such that
the degree of s(x)gx(x) is no more than the degree of px.

Similarly, we use the method for constructing a moment matrix 3.1 from
vectors of monomials. We create the matrix [y]ᵀ[y] and constrain it to be

2SeDuMi: Optimization over symmeric cones, http://sedumi.ie.lehigh.edu/
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positive semidefinite. This constraint is not only nonlinear, it is also redundant
as any matrix [y]ᵀ[y] is both rank-1 and positive semidefinite by construction.

The final step is to use YALMIP ’s setting “relax = 3”, to treat nonlinear
variables as independent variables, that is, y2 and y3 are interpreted as the
independent variables y2 and y3.

We can now call YALMIP ’s module for solving SOS problems, using the
coefficients ~s of s(x) as decision variables (but not the coefficients of px, otherwise
YALMIP can not tell which variables are decision variables, and which are
polynomial variables).

1 function [val, mom, pol] = moment_solve(p, x, y, gx, gy)

2 % automatic linearization

3 settings = sdpsettings('relax', 3);

4

5 % Even degree simplifies positivity on interval

6 deg_px = round_up_even(degree(p, x));

7 deg_py = round_up_even(degree(p, y));

8 deg_gx = degree(gx, x);

9 deg_gy = degree(gy, y);

10 % hierarchy order

11 deg_max_x = max(deg_px, deg_gx);

12 deg_max_y = max(deg_py, deg_gy);

13 % value of game

14 val = sdpvar;

15

16 % mu for moment relaxations; mg reduces degree of interval constraint

17 mu = monolist(y, deg_max_y);

18 mg = mu(1:end-deg_gy);

19

20 % px is expectation of p; s is sos multiplier.

21 [px, cx] = polynomial(x, deg_px);

22 [s , cs] = polynomial(x, deg_max_x - deg_gx);

23

24 % moment matrices - half-hankel

25 st_mom = [hankh(mu) >= 0, hankh(mg*gy) >= 0];

26 st_sos = [coefficients(p - px, x) == 0, sos(val - px - s*gx), sos(s)];

27

28 res = solvesos([st_sos, st_mom], val, settings, cs);

29

30 e1 = eye(deg_px + 1, 1);

31 pol = double(val * e1 - cx);

32 mom = relaxdouble(mu);

33 val = double(val);

34 end
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A.3 Python

A Python implementation corresponding to the LP formulation 2.1 for solving
a matrix game. The implementation uses CVXPY (Diamond and Boyd, 2016,
Agrawal et al., 2018). The input is an m-by-n NumPy array, and the outputs
are: the value of the game, and the optimal strategy for player x.

1 def strategy(payoff, optimizer):

2 m, n = payoff.shape

3

4 e = np.ones(m)

5 v = cp.Variable()

6 x = cp.Variable(n)

7

8 objective = cp.Maximize(v)

9 constraints = [v * e - payoff @ x <= 0, cp.sum(x) == 1, x >= 0]

10 cp.Problem(objective, constraints).solve(solver=optimizer)

11

12 return v.value, x.value

Note that CVXPY interprets the constraints <= and => as element-wise.
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Attachments

Attached to this thesis are the following items:

1. A Julia solver for semialgebraic games implemented using Algorithm 3.4
and extended by generic implementations of Algorithms 4.1 and 4.2 based
on iterative change-of-basis.

2. Two trivial implementations of the Double Oracle Algorithm 1 in Julia.

3. A YALMIP solver for polynomial games on intervals implemented using
Algorithm 3.3.

4. The source code of this thesis,

The items above are also accessible on Github and Gitlab ( The Julia solver
for semialgebraic games3 and the remaining algorithms and this thesis4).

3https://github.com/votroto/SemialgebraicGamesCVUT.jl
4https://gitlab.fel.cvut.cz/votroto1/sdsos

https://github.com/votroto/SemialgebraicGamesCVUT.jl
https://github.com/votroto/SemialgebraicGamesCVUT.jl
https://gitlab.fel.cvut.cz/votroto1/sdsos
https://github.com/votroto/SemialgebraicGamesCVUT.jl
https://gitlab.fel.cvut.cz/votroto1/sdsos



	Contents
	Introduction
	Background on Two-Player Zero-Sum Games
	Finite games
	Infinite games

	Computation of Equilibria via SOS Optimization
	Polynomial Optimization
	Polynomial Optimization using Lasserre Hierarchies
	Pablo A. Parrilo's Algorithm for Polynomial Games
	Extension to Semialgebraic Games
	Recovering Players' Mixed Strategies

	Approximation
	DSOS Optimization
	Application of DSOS to Semialgebraic Games
	Double Oracle Algorithm for Polynomial Games

	Conclusions and results
	Numerical Experiments with SOS Optimization and the comparison to DSOS and SDSOS Optimization
	The Double Oracle Algorithm
	Conclusion

	Code
	Julia
	Matlab
	Python

	Bibliography

