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Abstrakt / Abstract

Cílem práce je navržení efektivních
heuristik a/nebo aproximačních algo-
ritmů pro konstrukci relačních margi-
nálních polytopů. Ty jsou geometrickou
reprezentací množiny přípustných řešení
tzv. relačního marginálního problémů,
což je konvexní optimalizační úloha hle-
dající pravděpodobnostní rozdělení nad
možnými světy v Markovských logických
sítích mající maximální entropii. Heuris-
tický algoritmus je porovnán s naivním
exaktním doménově liftovatelným algo-
ritmem popsaným Kuželkou a Yangem
v jejich článku Domain-Liftability of
Relational Marginal Polytopes, 2020 [1].

Klíčová slova: Markovské logické sítě,
relační marginální polytopy

Překlad titulu: Efektivní algoritmy
pro konstrukci relačních marginálních
polytopů

The goal of the thesis is to design an
efficient heuristic and/or approximation
algorithms for construction of relational
marginal polytopes, a geometrical repre-
sentation of the set of feasible solutions
of the relational marginal problem,
which is a convex optimization task of
finding the max-entropy distributions
over possible worlds in Markov logic net-
works (MLN). The heuristic is compared
to naive exact domain-liftable algorithm
described by Kuželka and Yang in their
paper Domain-Liftability of Relational
Marginal Polytopes, 2020 [1].

Keywords: Markov Logic Networks,
Relational Marginal Polytopes
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Chapter 1
Introduction

The goal of the thesis is to design an efficient heuristic and approximation algorithms
for calculation of relational marginal polytopes, a geometrical representation of the set
of feasible solutions of the relational marginal problems which is a convex optimization
task of finding the max-entropy distributions over possible worlds in Markov logic net-
works (MLN). MLNs are systems used in the statistical relational learning, a subfield
of machine learning that is concerned with learning from relational data. MLNs are
a generalization of the first-order probabilistic logic where each predicate is associated
with a weight. The weight of the formula roughly specifies the level of our belief in it
and importance of the formula — the higher the weight, the less probable is the possible
world which violates it. The MLN may be also considered a template for creation of
Markov random fields (or Markov nets), which are — together with Bayesian networks
— one of the most commonly used probabilistic graphical models, which capture de-
pendencies among random variables into a graph, allowing for more efficient evaluation
of inference queries over (possibly) large field of random variables.

The thesis is structured into following chapters:

. Preliminaries — the chapter summarizes important basic concepts related to Markov
logic networks. First the general approaches for handling uncertainty in logic are
described followed by overview of probabilistic graphical models.. Markov logic networks — the chapter describes properties and definitions related to
Markov logic networks.. Implementation — the chapter describes implementation of algorithms.

1



Chapter 2
Preliminaries

This chapter provides a basic background about mathemathical, logical and machine
learning concepts that are related to the topic of the thesis. First the first-order logic
(FOL) considered in the thesis is described, followed by description of probabilistic
logics which incorporate uncertainty into the standard first-order or propositonal log-
ics. Finally a notion of probabilistic graphical models is debated, focused on Bayesian
networks and Markov random fields. The former are integral part of Markov logic
networks, the key topic of the thesis.

2.1 First-Order Logic
The thesis considers a function-free first-order logic language L built from sets Const
(constants), V ars (variables) and Rel (predicates). The set of predicates Rel is parti-
tioned into subsets Reli each containing predicates of arity i, so Rel =

⋃
iReli. The

constants represent the domain objects (e.g. Alice, Bob, Prague) and the variable sym-
bols range over them. The predicates represent relations among objects (e.g. Friends)
or their attributes (e.g. Capital). These three sets together constitute non-logical
symbols and their actual meaning is specified by an interpretation. In addition to them
the language L is also built from a standard set of logical symbols:

. universal (∀) and existential (∃) quantifiers,. unary logical connective – negation (¬),. binary logical connectives – and (∧), or (∨), implication (⇒) and equivalence (⇔).

First-order logic theories about domains being modelled are formulated by means of
formulas. Following list summarizes terminology related to their creation.

. Term is a constant or a variable.. Atom or atomic formula is a k-ary predicate R(a1, a2, ..., ak) with arguments
a1, a2, ...ak ∈ Const ∪ V ars (i.e. terms).. Literal is an atom or its negation.. Formula is a literal or a logical connection of two formulas (may be also applied
recursively),

• set of variables appearing in formula α is denoted as V ars(α),
• formula α is called ground formula if its arguments are constants,
• formula α0 is called grounding of formula α if it can be obtained by substituting
all variables in V ars(α) with constants from Const,

• a variable in a formula is called free if it is not bound by any quantifier.

. Sentence is a formula with no free variables.

A special type of formula is a clause which is a disjunction of literals. Every formula in
FOL can be mechanically transformed to conjunction of clauses, so called clausal form
or conjuctive normal form (CNF). This form is convenient for automated processing

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 First-Order Logic

and due to beforementioned transformation we can consider all formulas to be in CNF
without loss of generality.

A possible world ω is an assignment of truth values to every possible ground atom.
A formula is satisfiable if there exists at least one possible world in which it holds true.
All formulas together form a knowledge base (KB). The knowledge base might be
considered a one big conjunction of all its formulas, as in basic setting it is expected
that all formulas in the KB are simultaneously true. A typical inference problem
involving usage of a knowledge base is to decide if the KB entails formula F (denoted
as KB |= F ), that is if F is true whenever KB holds. This is usually checked by
refutation – KB |= F holds iff KB ∪ ¬F is not satisfiable. Note however that this
yields a positive answer also in cases when KB contains a contradiction.

First-order logic used in the thesis is further restricted by following assumptions:

. unique names assumption – different constants refer to different objects,. injective substitution – different variables in a formula must be mapped to different
terms,. only domains of finite size are considered.

2.1.1 Probabilistic logic
Probabilistic logic is an extension of standard predicate (or propositional) logic which
aims to handle uncertainty about actual truth values of formulas. Most common ways
to achieve this goal are either specifying a probability that the formula is true or using
multi-valued logic. An example of the former approach is the probabilistic logic defined
in (Nilsson, 1986 [2]), which is the basis for formalism used in Markov Logic Networks,
the main topic of the thesis. The latter approach is usually described in terms of fuzzy
logic where the truth value of a formula may be any real number in interval [0,1].

The key difference between these two concepts is that in the (Nilsson’s) probabilistic
logic it is assumed the formula is true with some probability (let’s say 0.5), but in the
end the formula will eventually be evaluated as strictly true or false. The probability
just captures our belief about the actual truth value — we are not sure what the value
is at first, but once we are, there’s no room for any value between true and false and the
probabilistic logic becomes a standard 0–1 valued predicate logic. On the other hand
it is perfectly valid to state that a truth value of a formula is 0.5 in fuzzy logic as it is
built upon fuzzy set theory which extends the set membership function from bivalent
to multi-valued, usually being defined as real number in the unit interval (but fuzzy
theories with discrete values are also studied) [3].

With multi-valued logic it’s possible to formally capture vague or imprecise definitions
that naturally arise in everyday language, such as “Tom is a little old.” This may be
represented as a predicate old(Tom). In the standard predicate logic, we would have
to decide if a little old is enough to declare this predicate true (maybe after asking for
Tom’s exact age and comparing it with some threshold), but in fuzzy logic the truth
value of old(Tom) may be set to some appropriate value such as 0.3, indicating that
Tom is not “fully” old yet but he’s indeed a little old. With extending the range of
possible truth values we also need to redefine behaviour of logic connectives (usually
conjunction and implication) and it turns out there is not just one unique way how to
do it, but there are actually many well-behaved definitions, each one creating a slightly
different variant of fuzzy logic. Examples of some commonly used fuzzy conjunctions
are shown in Figure 2.1.

The probabilistic logic as defined by Nilsson introduces a probability of sentence and
possible worlds semantics to incorporate uncertainty about the truth values into the

3



2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.1. Surface and contour plots of two fuzzy conjunction examples which are
also triangular norms (t-norms). Upper: Minimum t-norm >min = min{a, b}.

Lower: Łukasiewicz t-norm >Luk = max{0, a+ b− 1}.

first-order logic. If we consider only one sentence S, the sentence may be either true or
false. This induces two sets of possible worlds — W1 containing possible worlds where
S is true and W2 containing the worlds where S is false. Then we can reason about
the truth value of sentence S in terms of probabilities by specifiying probability p1 that
the actual world is in W1 (and S is therefore true) and probability p2 = 1− p1 that the
actual world is inW2. We can then say that the (probabilistic) truth value of sentence S
is p1.

When we incorporate more sentences, the number of sets of possible worlds rises as
every set of possible worlds Wi now represents a distinct combination of truth values
assigned to each sentence. For N sentences this may result in up to 2N sets of possible
worlds, but usually their total count is lower as some combinations are logically incon-
sistent and therefore define an impossible world (e.g. S1 true, S2 true but S3 = S1 ∧ S2
false). The set of consistent possible worlds is then considered a sample space over
which a probability distribution is defined. For every set of possible worlds Wi a prob-
ability pi specifies the probability that the actual world is inWi. As the sets of possible
worlds are exclusive and exhaustive, all pi sum to 1. The probabilistic truth value of a
sentence S is then simply defined as a sum of probabilities of all sets of possible worlds
where S is true. Analogically the logical entailment of sentence S from set of sentences
B (B ` S) is generalized as the probabilistic entailment which is the probability that S
is true given the probabilities of sentences in B (set of beliefs).

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 First-Order Logic

Now suppose there are N sentences S1, S2, ...SN which together specify K sets of
consistent possible worlds, denote the probabilistic truth values of sentences as a column
vector Π = [π1, π2, ..., πN ], denote the probability distribution over the possible worlds
as P = [p1, p2, ...pK ] and denote the actual truth values of sentences associated with
each possible world as matrix V of dimensions N ×K, where element vij represents the
truth value of sentence Si in set of possible worlds Wj . Note that each column of V
there represents one set of possible worlds. Calculation of the probabilistic truth values
of all sentences then may be concisely represented as a matrix equation

Π = V P (2.1)

As a concrete example consider a theory with three sentences (taken from Nilsson’s
original article [2])

. S1 = ∀x : P (x),. S2 = ∀x : P (x)⇒ Q(x),. S3 = ∀x : Q(x).

The sentences define 4 distinct sets of possible worlds with following combinations of
consistent truth values:

W1 W2 W3 W4

S1 = ∀x : P (x) true true false false
S2 = ∀x : P (x)⇒ Q(x) true false true true
S3 = ∀x : Q(x) true false true false

Table 2.1. Consistent combinations of truth values of sentences in possible worlds.

Translation of the table to matrix V is straightforward and omitted. Instead we’ll
focus on possible range of the truth values πi. As we see from Equation (2.1), the value
of Π depends on probabilities of possible worlds P . Now consider at first the extremal
case where exactly one possible world achieves probability 1 and the probability of the
rest is 0. This obviously results in Π being equal to the column of V corresponding
with the currently selected set of posible worlds. We can then proceed with modifying
probabilities pi which in turn changes the outcome of all πi. The probabilities pi are
however also constrained as their sum must be 1, so the actual attainable truth values
pii are convex combinations of those achieved for extremal distributions of pi. This
is visualized in Figure 2.2. In this geometrical interpretation the extremal values are
vertices of a polytope and all attainable truth values of the sentences lie inside or on
boundaries of the polytope.

Figure 2.2 also shows that it is not straightforward to just arbitrarily set values of
πi independently on each other, as their consistent combinations are restricted by the
polytope. This doesn’t pose a problem in case when the calculation proceeds exactly
in the direction of Equation (2.1) and the probability distribution of possible worlds is
already specified, because the equation guarantees the result Π will be consistent. In
practise however the reasoning often works the other way around — the probabilities
of some sentences are assigned first (e.g. as an input from some expert), the sentences
then form the knowledge base, and the goal is to find the probabilities of the other
sentences, i.e. to evaluate a probabilistic entailment of the sentences with unspecified
probabilities from those in the knowledge base. In this setting the actual probability

5



2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.2. Polytope representing consistent truth values for a set of sentences S1 = ∀x :
P (x), S2 = ∀x : P (x)⇒ Q(x) and S3 = ∀x : Q(x) (the image is a rotated remake of Fig. 2

in (Nilsson, 1986 [2], p. 76))

values P of possible worlds may not be even specified in advance as we’re just interested
in the values of Π.

As an example we will now consider sentences S1 and S2 as the knowledge base and
we will calculate the truth value of S3, i.e. perform probabilistic entailment

{∀x : P (x), ∀x : P (x)⇒ Q(x)} ` {∀x : Q(x)}.

In accordance with Figure 2.2 we’ll assign some consistent truth values to the formulas
in the knowledge base, for example π1 = π(S1) = 0.6 and π2 = π(S2) = 0.7. Then we
can use Equation (2.1) to solve for π3 as following:

1. Add vectors of 1 as the first row into V and Π. This may be interpreted as adding tau-
tology to the knowledge base, but it is also a way to enforce the constraint

∑
pi = 1.

[
1
Π

]
=
[

1
V

]
· P ⇒


1

0.6
0.7
π3

 =


1 1 1 1
1 1 0 0
1 0 1 1
1 0 1 0

 ·

p1
p2
p3
p4


2. Eliminate the last rows of V and Π and calculate P from the modified matrices V ′,Π′.

Generally the equation is under-determined (and this holds in our example) as the
number of possible worlds is usually higher than the number of sentences present in
the probabilistic entailment, therefore we should expect the solution for P will not
be unique.

Π′ = V ′P ⇒

 1
0.6
0.7

 =

 1 1 1 1
1 1 0 0
1 0 1 1

 ·

p1
p2
p3
p4


6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 First-Order Logic

Formally we could proceed with multiplying the equation with left pseudo-inverse of
V ′ but in this trivial case we can caluclate P by solving the system of linear equations:

0.6 = p1 + p2

p1 = 0.6− p2

p1 = 0.3

0.7 = p1 + p3 + p4

0.7 = 0.6− p2 + p3 + p4

p2 = −0.1 + p3 + p4

p2 = 0.3

1 = p1 + p2 + p3 + p4

1 = 0.7− p2

0.3 = −0.1 + p3 + p4

p3 + p4 = 0.4
3. Enforce non-negativity constraint pi ≥ 0 on possible values of P and check that P

may actually represent a probability distribution — this may not hold if the initial
truth values for sentences in knowledge base were assigned inconsistently. In our
example the check passes and we find boundaries for p3 and p4 as:

p3 ∈ [0.0, 0.4], p4 ∈ [0.0, 0.4] , p3 + p4 = 0.4

4. Denote the last row of V (the one eliminated in step 2) as S. Target probability π3
then may be calculated as:

π3 = SP

π3 = [ 1 0 1 0 ] · [ 0.3 0.3 p3 p4 ]T

π3 = 0.3 + p3

π3 ∈ [0.3, 0.7]

As we can see, the result of the probabilistic entailment is not unique, but gives us
only possible bounds on the values of π3. More intuitive picture of the situation is
shown in Figure 2.3, where the calculation is described in a geometric way as finding
intersection of the polytope of consistent values with planes π1 = 0.6 and π2 = 0.7.

If we need to select only one solution, we may calculate π3 from the probability
distribution over the possible worlds with the largest entropy, as this is the one about
which we know least prior information [4]. Entropy H of probability distribution p is
defined as [5]:

H = −
∑

pi log pi
Maximization ofH could be solved using the method of Lagrange multipliers, however

in our example where p1 and p2 are already set and the only constraint on p3 and p4 is
p3 +p4 = 0.4 we may conclude that the maximal entropy will be reached when p3 = p4,
i.e. p3 = 0.2 and p4 = 0.2. The probabilistic truth value of sentence S3 for this solution
is π3 = 0.3 + 0.2 = 0.5.

Following list summarizes the facts about Nilsson’s probabilistic logic that were de-
scribed in this section:. Calculation of probabilistic truth values may be performed in a form of matrix equa-

tions, however as the first step all consistent truth values assignments in the possible
worlds must be enumareted, and the complexity of the enumeration grows exponen-
tialy in the nubmer of sentences N .. Assignment of initial probabilistic truth values πi to the sentences in the knowl-
edge base must be performed carefully because a random assignment may also be
inconsistent.. Even if the initial assignment of πi is consistent, the probabilistic entailment usually
doesn’t provide a unique solution to probability of entailed sentences. In this case
we may choose the solution associated with the distribution over possible worlds P
having the largest entropy.

7
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Figure 2.3. Intersection of the polytope from Figure 2.2 with planes π1 = 0.6 (blue) and
π2 = 0.7 (orange). The red segment is the intersection of the planes and the polytope and

represents admissible values for π3 (interval [0.3, 0.7]).

2.2 Probabilistic Graphical Models
This section describes two most commonly employed probabilistic statistical models —
the first is a Bayesian network and the other one is a Markov random field (MRF),
sometimes called analogically with the first model a Markov network. The models were
devised as an approach to encode dependency relations between random variables as
a graph and then exploiting this knowledge for an efficient evaluation of random fields
and their underlying joint probability distributions, also utilizing methods of the graph
theory.

The models are based on the chain rule for calculation of joint probability distribu-
tions of multiple random variables. The chain rule is a generalization of an observation
that the joint probability distribution of two random variables X,Y may be expressed
as a product of the marginal probability of one variable and the conditional probability
of the other given the first one:

P(X,Y ) = P(X | Y ) · P(Y )

In order to generalize this observation for multiple random variables we only need
to apply the rule for one variable at time, always conditioning on the rest of not-yet
entered variables, until the last one is reached:

P(X1, X2, ..., Xn) = P(X1 | X2, ..., Xn) · P(X2, ..., Xn) (2.2)
= P(X1 | X2, ..., Xn) · P(X2 | X3, ..., Xn) · P(X3, ..., Xn) (2.3)
= ...

= P(X1 | X2, ..., Xn) · P(X2 | X3, ..., Xn) · ... · P(Xn) (2.4)

Actual order of the variables may be of course different as long as the intention of the
chain rule is followed. In the thesis we will also use a shorthand notation p(x1, x2, ...xn)

8



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Probabilistic Graphical Models

for probability of actual assignment of values to random varibles (analogically also for
conditional probabilities):

p(x1, x2, ...xn) = P(X1 = x1, X2 = x2, ..., Xn = xn)

Equation (2.4) is a good insight into splitting the calculation of the full joint proba-
bility distribution into the number of more tractable factors which could be represented
by smaller probability tables or functions with less variables than the ones for the full
joint probability. However applying the chain rull exactly in the form of Equation (2.4)
doesn’t actually considerably reduce the complexity. If we consider discrete random
variables and denote the size of the largest domain of values for any Xi as K, eval-
uation of the left hand side requires construction of a probability table with O(KN )
elements, while evaluating first expression on the right hand side requires construction
of a conditional probability table for (up to) K possible values of X1 conditioned on
O(KN−1) values for the rest of variables, i.e. the time complexity generally remains
the same O(KN ).

The key problem in evaluating the Equation (2.4) is that each variable is conditioned
on all remaining variables, while in practice most of the remaining variables influence
the value of the conditional probability only negligible or not at all. This is captured
in the concept of conditional independence [6].
Definition 2.1. (Conditional independence) Two random variables A, B are condition-
ally independent given a random variable C (denoted A ⊥⊥ B | C) if and only if they are
independent in their conditional probability distribution given C for all possible values
of A,B,C:

P(A,B | C) = P(A | C) · P(B | C) (2.5)

The defition of conditional independence may be equivalently rephrased as follows
— if we’re given conditional probability P(A | C) and know A ⊥⊥ B, observing B has
no effect on the value of the conditional probability, that is:

A ⊥⊥ B | C ⇔ P(A | B,C) = P(A | C) (2.6)

Conditional independence may be also generalized for sets of random variables —
actually it is more or less sufficient just to interpret random variables A,B,C in Def-
inition 2.1 as sets of random variables. Equation (2.6) then may be used to simplify
factors of the joint probability distribution if we can efficiently represent conditional
(in)dependencies between variables, because as the equation suggests, all conditionally
independent variables then may be ignored and the conditional probability tables may
be calculated only w.r.t. conditioning variables. As an example, we may simplify cal-
culation of the probability of X1 in Equation (2.4) if we know that X1 is conditionally
independent on all other variables given X2, X5 as

P(X1, X2, ..., Xn) = P(X1 | X2, ..., Xn) · P(X2 | X3, ..., Xn) · ... · P(Xn)
= P(X1 | X2, X5) · P(X2 | X3, ..., Xn) · ... · P(Xn)

The process then may be similarly repeated for conditional probability of X2 and an-
other random variables present in the equation.

As a last point before proceeding to the description of two most common proba-
bilistic graphical models — Bayesian networks and Markov networks — we should note
that conditional independence of random variables is not related to their standard inde-
pendence. Two random variables may be independent on each other but conditionally
dependent given another variable, and vice versa.
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Figure 2.4. Graph of Bayesian network of 5 variables.

For example of two independent variables that become conditionally dependent let’s
consider rolling two fair six-sided dice, denote the result of the first die A and the
result of the other B. As usually in such a case we expect that results of each roll are
independent so P(A,B) = P(A)·P(B). However, when we also observe variable C which
checks if sum of rolls is even or odd, A and B become conditionally dependent given
C — knowing that the sum of rolls is even doesn’t provide any additional information
without also knowing the result of the other die, so the conditional probability is equal
to the marginal (same applies to P(B | C)):

P(A = a | C = c) = P(A = a) = 1
6 .

However if we know that C = even and A = 3, then we see that B must be also odd,
so if we take even value B = 2, Equation (2.5) doesn’t hold and therefore A 6⊥⊥ B | C:

P(A = 3 | C = even) · P(B = 2 | C = even) = 1
6 ·

1
6 = 1

36 6=

6= P(A = 3, B = 2, C = even) = 0

2.2.1 Bayesian Networks
Bayesian network is a directed acyclic graph (DAG) where vertices represent variables of
interest (random variables, parameter models, hypotheses) and oriented edges represent
conditional dependencies between the variables; oriented edge Xu → Xv specifies that
Xv is conditionally dependent on Xu. Edge direction however primarily captures the
real causal connections and not the actual direction used for computations, because the
information necessary for reasoning can still be propagated in both ways [7].

The most important property of Bayesian networks is that every vertex X is inde-
pendent from its non-descendants given set of its parent vertices PaX . Computation
of the marginal probability of variable X is then conditioned on the parent nodes and
only requires knowledge of their probabilities:

P(X) = P(X | PaX) (2.7)
Probabilities of parent nodes are usually stored in the child node in a form of condi-

tional probability table. Provided the number of parents for each node is bounded, the
number of required conditional distributions for each node grows only linearly in the
size of the Bayesian net, which is a considerable improvement over exponential growth
for Equation (2.2).

Computation of full joint probability distribution in the Bayesian net is factorized
into product of conditional distributions conditioned on parent nodes:

P(X1, X2, ..., Xn) =
n∏
i=1

P(Xi | PaXi)

10
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Figure 2.5. Illustration of Bayesian net described in the calcualtion example. R represents
raining, S sprinkler and W a wet pavement. Initial situation is captured in the left graph, in
the central graph we observe the pavement is wet which influences marginal probabilities
of both R and S. In the right graph we find out that it was actually raining, but this
information also affects our knowledge about S, because they become dependent after

observing W.

Let’s take as an example the Bayesian network presented in Figure 2.4. The joint
probability distribution of the network may be expressed as:

P(A,B,C,D,E) = P(A) · P(B | A) · P(C | A) · P(D | B,C) · P(E | D)

More illustrative example which will also point to a not so obvious property of
Bayesian networks is illustrated in Figure 2.5. In the morning, we may observe that the
pavement in front of the house is wet. There are two possible causes for this — it may
have been raining during the night or early in the morning the sprinkler on the grass
was on. The sprinkler should be watering the grass every morning, but it is faulty and
works more or less randomly. It also doesn’t have any detector to check whether the
grass is already wet, so it may also turn on even if it was raining. We have these prior
probabilities for the sprinkler (S) and the raining (R):

P(S = on) = 0.5
P(R = true) = 0.2

The conditional probabilities for observing wet pavement (W ) given the other two
events are stated as follows:

P(W = wet | S = on, R = true) = 0.9
P(W = wet | S = on, R = false) = 0.7
P(W = wet | S = off , R = true) = 0.6
P(W = wet | S = off , R = false) = 0.01

Now in the morning we actually observe the pavement is wet and we may want to
evaluate the posterior probability that the sprinkler was on. This may be done using
Bayes’ theorem:

P(S |W ) = P(W | S) · P(S)
P(W ) (2.8)

The denominator is evaluated by marginalizing over R, S:

P(W = wet) =
∑

s∈{on,off }

∑
r∈{true,false}

P(W = wet | S = s,R = r) · P(S = s) · P(R = r)

= 0.434

11
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Similarly for conditional probability P(W | S):

P(W = wet | S = on) =
∑

r∈{true,false}

P(W = wet | S = on, R = r) · P(R = r) = 0.74

So plugging all the numbers into Equation (2.8) we get:

P(S = on |W = wet) = 0.74 · 0.5
0.434 =̇ 0.853

We see that P(S = on | W = wet) > P(S = on) so observing that the pavement
is wet makes it more likely that it the sprinkler was on, which is something we would
intuitively expect. Now let’s see if something changes when we find out that it was
raining in the night (e.g. from a weather report). The posterior probability for the
sprinkler changes to:

P(S |W,R) = P(W | S,R) · P(S) · P(R)∑
s∈S P(W | S,R) · P(S) · P(R)

P(S = on |W = wet, R = true) = P(W = wet | S = on, R = true) · P(S = on)∑
s P(W = wet | S = s,R = true) · P(S = s) = 0.6

After observing that it was raining the probibility that sprinkler was on drops, even
though initially these two variables were independent. They however became coupled
when we observed the actual value of their common child.

As we can see from the previous example, even though the Bayesian network is a di-
rected graphical model, the information may still flow in any direction when reasoning
and evidence provided in the descendant node actually influenced the marginal proba-
bility of the parent node. Earlier in the beginning of the section it was declared that
a node is conditionally independent from its non-descendants given its parents. This is
indeed true, but we may be actually also interested in which nodes actually separate
the node from the rest of the network, so we know which nodes may influence reasoning
about the node and which are irrelevant.

Identification of separating set of nodes may be defined in terms of d-separation,
which is based on a notion of active paths. First we should consider what configuration
of nodes w.r.t. directed edges may be observed over triplets of nodes [8]:

1. Cascade: A→ B → C or A← B ← C
If B is observed, then A ⊥⊥ C | B, because we can determine output of C solely on
B and A doesn’t influence it. If B is unobserved, then A 6⊥⊥ C, because observing A
provides information about B and in turn we may also reason about C.

2. Common parent: A← B → C
Reasoning is actually the same as above — if B is observed, A ⊥⊥ C | B, otherwise
A 6⊥⊥ C.

3. V-structure: A→ B ← C
The results in this case are opposite to previous ones — if the common descendant
B is unobserved, then parents are independent — A ⊥⊥ C. But when B is observed,
then A 6⊥⊥ C | B. This is also called explaining away.

These checks may be recursively applied on larger sets of variables in the graph,
leading to a notion of active paths in Bayesian network. An undirected path in the
Bayesian network is active given a set of observed variables O if for every consecutive
triple of variables X,Y, Z one of the following holds:

12
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B
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C

D E

Figure 2.6. Graph of Markov random field of 5 variables with two 3-cliques {A,B,C} and
{B,C,D} and one 2-clique {D,E}.

. X → Y → Z and Y is unobserved (Y /∈ O),. X ← Y ← Z and Y is unobserved,. X ← Y → Z and Y is unobserved,. X → Y ← Z and Y is or any of its descendants is observed.

The independence of sets in Bayesian networks is then specified using d-separation.
Two sets of variables A,B are d-separated given set O if there is no active path con-
necting A and B given O. Then set O is also a separating set of sets A,B. Separating
set is not actually unique — adding a variable which is not in A or B into the sepa-
rating set still yields a separating set. The minimal separating set is a separating set
from which no variable can be removed without violating d-separation property. In
Bayesian networks, the minimal separating set for a variable from the rest of graph
consists from variable’s parents, its immediate children and all other parents of these
immediate children.

2.2.2 Markov Random Fields
Markov random field (MRF) or Markov network is a graphical probabilistic model that
represents dependencies between variables as an undirected graph. An MRF may be
also cyclic, therefore it may, unlike Bayesian networks, conveniently represent cyclic
dependencies. Also the notion of separating set for a node is simpler in MRFs as it
consists only from all neighbours of the node in question [9].

If graph G = (V,E) represents an MRF, it must satisfy following three Markov
properties, ordered from the weakest to the strongest (variable represented by vertex v
is denoted as Xv) [10]:

1. Pairwise Markov property:
Any two non-adjacent variables are conditionally independent given all other vari-
ables:

Xv ⊥⊥ Xu | XV \ {u,v}

2. Local Markov property:
A variable is conditionally independent of all other variables given its neighbors:

Xv ⊥⊥ XV \N [v] | XV \N(v)

where N(v) is the set of neighbors of v and N [v] = v ∪N(v) is the closed neighbour-
hood of v.

3. Global Markov property:
Any two subsets of variables are conditionally independent given a separating subset:

XA ⊥⊥ XB | XS

13
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Figure 2.7. Moralization of a Bayesian network (left) into a Markov random field (right).

where XA, XB are sets of vertices and XS is their separating subset (i.e. all paths
between a node from XA to a node in XB pass through a node in XS).

All three Markov properties are actually equivalent if the underlying probability
distribution induced by variables in the graph is strictly positive.

Computation of the full joint probability distribution in MRFs can be factorized
similarly to Bayesian networks as a product of quantities over sets of variables. Unlike
the Bayesian networks the quantity is not represented in a form of probability tables,
but as a potential function. The factorization is then performed over maximal cliques
of a graph (graph clique is a fully-connected subgraph of the graph1):

p(x1, x2, ..., xn) = 1
Z

∏
C ∈ cl(G)

φ(C),

where cl(G) is the set of maximal cliques of graph G, φ(C) is a potential function
associated with assignments to all variables (vertices) in clique C, and Z is the partition
function. This function ensures that the result is actually a probability distribution by
summing potential functions for all possible configurations of MRF:

Z =
∑

x1,x2...xn

∏
C ∈ cl(G)

φ(C)

As an actual example we show factorization of MRF presented in Figure 2.6, the set
of maximal cliques is cl(G) = {{A,B,C}, {B,C,D}, {D,E}} (note that if there was
an edge connecting A,D the 3-cliques would be replaced with a 4-clique {A,B,C,D})
and the probability of a configuration factorizes into:

p(a, b, c, d, e) = 1
Z
· φ(a, b, c) · φ(b, c, d) · φ(d, e)

Two problems however arise when we try to perform exact inference in MRFs. The
first one is that listing all maximal cliques in the graph is NP-complete problem (it is
also listed in Karp’s 21 NP-complete problems in formulation where we try do detect
any clique of size k [11]). This may be overcome by the fact that the structure of MRFs
is usually not random, but it is crafted intentionally, so the structure of maximal cliques
is usually known beforehand and it is not needed to detect them. The other problem is
that evaluating the partition function requires summing over all possible assignments,
which is in general NP-hard. This problem may not be overcome so easily and so the
exact inference in MRFs is generally intractable, even though there are classes of MRFs
that may be computed efficiently.
1 We may prepend a clique with a number of vertices present in it, i.e. 3-clique, 4-clique etc. 2-clique is

an edge and 1-clique is just a vertex
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There are also procedures to transform Bayesian networks into MRFs and vice versa.
As a first step in transforming Bayesian network into MRF we only need to trivially
substitute every directed edge with an undirected one. As a second step we need to
add an edge between all vertices, which share a direct descendant and are disconnected
in the Bayesian network. This is called moralization as it enforces a relation between
parent nodes (a “marriage”, though it may easily result in a polygamy if the node
has more than 2 parents). If the second step is omitted, we lose information that the
value of the child node is actually dependent on values of all its parents simultaneously.
The procedure is illustrated in Figure 2.7. Potential functions for each clique then
correspond to joint probability of all variables in the clique, which may be in turn
calculated from the conditional probability table associated with the leaf node of the
clique by Equation (2.7). The partition function of such a transformed net is trivially 1
(as all probabilities in the Bayesian network must sum to 1). The converse process of
transforming an MRF into a Bayesian net is called triangulation, but is seldom used,
as it is usually intractable (it often results in an almost fully connected DAG).
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Chapter 3
Markov Logic Networks

This chapter describes Markov logic networks (MLN), a probabilistic logic framework
used in the statistical relational learning (SRL). Markov logic networks encode statis-
tical regularities in a from of weighted logical formulas. The following section provides
definitions of MLNs and related concepts, then basic properties, means of inference
and standard learning tasks in MLNs are discussed. Finally we’ll focus on the key
concept of the thesis — relational marginal polytope which originates from relational
marginal problem — a task concerned with finding the maximum-entropy probability
distribution satisfying specified marginal probabilities.

3.1 Definition
The concept of Markov logic networks first appeared in the paper of Richardson and
Domingos in 2006 [12]. The rationale behind their proposal is that when we model a
problem using first-order logic formulas (these form a knowledge base), the formulas
are actually hard-constraints and any potential world that violates just one of them
is consequently impossible. This behaviour however may not be always desirable as
often a formula that doesn’t hold in all cases may still capture useful information about
modelled relationships. In order to soften the constraint checking a weight is associated
with each formula. The weight should represent how important the constraint is in
the model — the higher the wieght, the higher the importance of the constraint. In
this setting the world violating a constraint doesn’t become instantly impossible, only
less probable. If the world violates higher number of constraints or if it violates more
important ones, the world’s probability decreases proportionally.
Definition 3.1. (Markov logic network): A Markov logic network (MLN) is a set of
weighted first-order logic formulas (α,w) where w ∈ R and α is function-free and
quantifier-free first-order logic formula.

MLN Φ induces a probability distribution over a set of possible worlds Ω:

for ω ∈ Ω : pΦ(ω) = 1
Z

exp

 ∑
(α,w)∈Φ

w · N(α, ω)

 (3.1)

In this equation pΦ(ω) denotes probability of observing possible world ω, N(α, ω)
is total number of groundings of formula α that are satisfied in ω relative to a finite
set of constants ∆ (called the domain) and Z is the partition function that normalizes
the result so it forms a probability distribution similarly as in MRFs. Presence of the
normalizing term Z draws exact inference in MLNs generally intractable in the same
way as in MRFs, as its evaluation requires summation over all possible worlds whose
number is exponential in the size of domain.

An MLN can be created from a first-order logic knowledge base just by assigning
arbitrary weights to each formula in the KB. The first-order logic is actually a special
case of MLN where all weights are infinite, i.e. any violation of a formula renders
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the associated world impossible. The probability distribution over satisfiable possible
worlds in this case is uniform. The weight of the formula can be interpreted as a log-
odd between observing a world where the formula holds and a world where it doesn’t,
assuming all remaining weights are equal.

3.1.1 Relation to MRF
Markov logic networks are closely related to Markov random fields — grounding an
MLN with respect to a domain results in an instance of a MRF and in this sense MLNs
may be considered templates for a variety of MRFs. The resulting MRFs may vary
significantly in size but they will share common structures. The procedure for grounding
MLN into MRF was described in the initial paper by Richardson and Domingos [12]).
An instance of MRF MΦ,∆ may be grounded from MLN Φ with respect to the domain ∆
this way:

1. MΦ,∆ contains one binary node for each possible grounding of each predicate appear-
ing in Φ. The value of the node is 1 if the ground atom is true, and 0 otherwise.

2. MΦ,∆ contains one feature for each possible grounding of each formula αi in MLN Φ.
The value of this feature is 1 if the ground formula is true, and 0 otherwise. The
weight of the feature is the wi associated with αi in MLN Φ.

3.2 Inference
Exact inference in MLNs is in general intractable for similar reasons as in MRFs — the
partition function Z is calculated as a sum of terms over all possible worlds, and the
number of all possible worlds in general grows exponentially w.r.t the size of domain |∆|.

Calculation of the partition function may be converted to the weighted first-order
model count problem (WFOMC)[13]:
Definition 3.2. (WFOMC): Let w(P ) and w(P ) be functions from predicates to real
numbers (w and w are called weight functions) and let Φ be a first-order theory. Then

WFOMC(Φ, w, w) =
∑

ω∈Ω:ω|=Φ

∏
a∈P(ω)

w(Pred(a))
∏

a∈N (ω)

w(Pred(a))

where P(ω) and N (ω) denote the positive literals that are true and false in ω, re-
spectively, and Pred(a) denotes the predicate of a (e.g. Pred(friends(Alice, Bob)) =
friends).

The evaluation of WFOMC then proceeds with addition of a formula ξi for every
weighted formula (αi, wi) in Φ whose free variables are exactly x1, x2, ...xk :

∀x1, ..., xk : ξi(x1, ..., xk)⇔ αi(x1, ..., xk)

Then we set w(ξi) = exp(wi), w(ξi) = 1 for all new predicates and w(αi) = 1 and
w(αi) = 1 for the original predicates. If we denote the resulting set of predicates Γ, it
will turn out that actually WFOMC(Γ, w, w) = Z. WFOMC may be also easily used
for evaluation of the marginal probability of query q under Γ:

PΦ,Ω(q) = WFOMC(Γ ∪ {q}, w, w)
WFOMC(Γ, w, w)

The WFOMC however doesn’t change asymptotical complexity of computation of
the partition function w.r.t. the domain (it remains exponential). However there are
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classes of MLNs where inference may be performed more efficiently, in polynomial time
w.r.t. to the size of the domain. These problems are called domain liftable.
Definition 3.3. (Domain liftability) An algorithm for computing WFOMC is said to be
domain-liftable if it runs in time polynomial in the size of the domain.

Example of domain-liftable MLN instances are MLNs where each predicate contains
at most two variables [14].

3.3 Relational marginal polytopes
This section introduces relational marginal polytopes (RMP) with which approximation
the thesis is mainly concerned. RMPs emerge as a set of feasible solutions to the rela-
tional marginal problems which try to find weights for a maximum-entropy distribution
over the possible worlds w.r.t. statistical marginal probabilities of formulas in the MLN.

3.3.1 Relational marginal problem
The total number of satisfiable formula groundings N(α, ω) in Equation (3.1) presents
the absolute number of admissible groundings. It may be however more convenient to
express this quantity relative to the size of the number of possible groundings. This
quantity is called formula statistic w.r.t. the possible world ω:
Definition 3.4. (Formula statistic) Let α be a quantifier-free first-order logic formula
with k variables {x1, ...xk}. Its formula statistic w.r.t. a possible world ω is defined as:

Qω(α) =
(
|∆|
k

)−1
· (k!)−1 · N(α, ω) (3.2)

There |∆| denotes size of the domain and k denotes arity of predicate α. Intuitively
the formula statistic represents the probability that a random injective substitution of
variables that ground formula α will be satisfied in the possible world ω if we draw the
substitution randomly from the uniform distribution.

With notion of formula statistics, we may continue with a defintion of the relational
marginal problem.
Definition 3.5. (Relational marginal problem): The relational marginal problem is a
convex optimization with the following formulation:

min
∑

Pω :ω∈Ω
Pω log Pω s.t. (3.3)

∀i : 1, ..., l :
∑
ω∈Ω

Pω · Qω(αi) = θi (3.4)

∀ω ∈ Ω : Pω ≥ 0,
∑
ω∈Ω

Pω = 1 (3.5)

where Pω denotes the probability of possible world ω, Q(αi) is formula statistic
associated with formula αi in the particular possible world, and θ1, ...θk are the target
expected values for each formula statistics, also called the relational marginals (hence
the name of the task).

To provide a more thorough analysis of the formulation — Equation (3.3) minimizes
negative entropy of the probability distribution over the possible worlds, Equation (3.4)
represents constraints specified by the relational marginals and the last Equation (3.5)
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ensures the result of the task is a probability distribution. Assuming strictly positive
solution, the optimal solution is:

Pω = pΦ(ω) = 1
Z

exp

 ∑
(αi,λi)∈Φ

λi · Qω(α)


where λi are obtained by maximizing dual criterion which is incidentally MLN’s

log-likelihood w.r.t. some training example whose statistics are equal to expected ones:

L(λ) =
∑
αi

λi · θi − log
∑
ωinΩ

e
∑
αi
λi·Qω(αi)

Due to the duality if we’re able to efficiently solve relational marginal problems, we
can also efficiently solve maximum likelihood estimation of MLN. However in order to
compute values of λi we have to calculate the gradient of L which involves computation
of the partition function. Solving the relational marginal problem is therefore as hard
as evaluating the partition function, which is generally #P-hard.

3.3.2 RMP Definitions

When solving relational marginal problems it is possible to encounter a relational
marginals that define expected values of formula statistics which are actually not real-
izable on the domain of the specified size (or on a domain of any size at all). Consider
following example, which describes edges and triangles present in a graph in terms of
propositional logic [14]:
Example 3.6. : Consider a MLN Φ consisting of following formulas (weight omitted):

. φ : edge(x1, x2),. ψ : edge(x1, x2) ∧ edge(x2, x3) ∧ (x1, x3).. ∆ = {c1, c2...c100}

Now when considering expected values of formula statistics E[(Qω(φ))] = 0 and
E[(Qω(ψ))] = 0.5, we can easily see that no possible world can conform to this distri-
bution as there simply cannot be even one triangle in a graph without edges. Values
of statistics corresponding to some actual probability distributions form so called rela-
tional marginal polytope [1]:
Definition 3.7. (Relational marginal polytope): Let Ω be the set of possible worlds on
domain ∆ and Φ = (α1, ..., αm) be a list of formulas. The relational marginal polytope
RMP(Φ,∆) w.r.t. Φ is defined as:

RMP(Φ,∆) = {∃ distribution on Ω s.t. E[Q(α1, ω)] = x1 ∧ ... ∧ E[Q(αm, ω)] = xm}.

Relational marginal polytopes form w.r.t. list of formulas (α1, ..., αl) a convex hull
of a set:

{(Qω(α1), ..., Qω(αl)) | ω ∈ Ω}.

Important property of RMPs is that RMPs associated with larger domains are subsets
of RMPs associated with domains with less elements. Furthermore, using a notion of
η-interiority a bound can be provided on the maximal difference between any points in
these polytopes.
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Figure 3.1. Examples of RMP w.r.t. domain of size 3 for two MLNs (both under unique
names assumption). Blue area represents RMP, red points denote actual formula statistics
Q that can be achieved in the MLN. Left A = a(X,Y ), φ = a(X,Y ) ∨ ¬ a(Y,X).

Right B = b(X,Y ), ψ = b(X,Y ) ∧ b(Y,X).

Definition 3.8. (η-interiority [14]): Let η > 0, P be a polytope and A=x = c be the
maximal linearly independent system of linear equations that hold for the vertices of P.
A point θ is said to be in the η-interior of P if {θ′|A=θ′ = c, ‖ θ′ − θ ‖≤ η} ⊆ P.

Equivalently point y is in η-interior of polytope P if there a ball with radius η centered
in y is subset of the polytope. Regardless on the definition we use, detecting if a point
is in η-interior of RMP is NP problem.

Sometimes it is more convenient use an integer relational marginal polytope, which is
a convex hull of all realizable groundings count:

IRMP = {N(α1, ω), ..., N(αm, ω) : ω ∈ Ω} (3.6)

Both types of relational polytopes are interchangeable as there is a straightforward
relation between number of groundings and the formula statistics:

Q(αi, ω) = |∆|−|vars(αi) ·N(αi, ω)
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Chapter 4
Implementation

This sections describes programmatical implementation of the thesis.

4.1 Realizability of statistics
Realizability of expected formula statistics for a domain of specified size may be checked
by integer linear program. As only the feasibility of constraints is checked, the program
doesn’t actually perform any optimization, so the constant is used as the objective
function. Also total number of satisfied formula groundings N(α, ω) with respect to
domain size must be used instead of formula statistics Qω(α). The program expects as
input a size of domain |∆|, a list of function-free quantifier-free first-order formulas Φ
in CNF, and an expected number of groundings Ni for each formula αi ∈ Φ.

For the formulation of the ILP we also define sets:

. A – set of all grounded atoms. Lit+ν,α, Lit−ν,α – sets of all positive/negative ground literals created by a substitution
ν from formula α. Clν,α – set of all clauses created by a substitution ν from formula α.

The formulation of the ILP is as follows:

max 0 s.t.

∀ ground atoms ai ∈ A : ai ∈ {0, 1}, l+i = ai, l
−
i = 1− ai

∀ clauses, substitution ν cj,ν,α ∈ Clν,α : cj,ν,α = max{l ∈ Lit+ν,α ∪ Lit−ν,α}
∀ formulas, substition ν fk,ν ∈ Fν : fk,ν = min{cj,ν,α| cj,ν,f ∈ Clν,f}

∀ Fi : Ni =
∑
ν

fi,ν

Definition might look a little bit complicated, but description of the steps actually
performed should make it more clear:

1. Binary variable is created for every possible ground atom present in Φ and Φ0.
2. Another binary variable is created for every positive and negative literals, for positive

it is equal to underlying ground atom a, for negative it is 1− a.
3. Variables are created for all possible substitutions of clauses, taking maximum value

from appropriate positive/negative literal variables (this represents disjunctions of
literals in the CNF).

4. Analogically variables representing whole CNF formulas for all possible substitutions
are created, but now taking the minimum value of the variables associated with the
CNF (this represents conjunctions of clauses in the CNF)

5. Finally a sum of CNF formula variables is set to be equal to expected statistic.

ILP solver (specifically gurobi [15]) checks feasibility of generated constraints and
if no violation is found, it also returns an assignment of all variables which in turn
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represent one of vaild possible worlds. However it should be noted, that the program
doesn’t actually perform containment test for underlying IRMP. As is specified in the
definition of IRMP (Equation (3.6)), the IRMP is a convex hull of feasible formula
grounding counts, therefore the point may be still contained in the IRMP even if it
represents infeasible grounding count as we cannot reject the possibility that it is indeed
in the convex hull of feasible points. But we can at least conclude that after in case of
failure, the point is not a vertex of IRMP.

This model is straightforward, but its performance is not overwhelming. Generally
it creates O(nk) ground atom variables (where n is domain size and k the highest
number of variables in atoms) for every possible substitution and similarly for clauses
and formulas. Even though number of variables and constraints remains polynomial
in n, their number still grows steadily. We should also note that ILP is an NP-hard
problem in general, so we cannot expect that this model will be efficient in general.
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Chapter 5
Conclusion

The goals of the thesis were met only partially at most. An exact ILP program for
testing feasibility of the marginal problem constraints was implemented in Python using
Gurobi solver. This may be a part of actually implemented heuristical algorithm, when
an exact solution for a small subset of vertices will be needed.
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Appendix A
List of abbreviations

CNF conjuctive normal form
FOL first-order logic (also predicate logic)
ILP integer linear programming
KB knowledge base

MLN Markov logic network
MRF Markov random field (also Markov network)
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Appendix B
Supplementary data and documentation

B.1 Source code
Source code of the thesis is publicly available at https://github.com/kozakja4/
m_thesis

B.2 Content of CD
root
|_ Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . source code folder
|_ img . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . figures including their TikZ or Python definitions
|_ text.pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . text of the thesis
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