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Abstrakt

Tato práce se zabývá vytvořeńım spolehlivého systému detekce chodc̊u
pro autonomńı vozidla, který je schopen fungovat v nepř́ıznivých
povětrnostńıch podmı́nkách. Systém využ́ıvá kombinaci lidaru a radaru,
které jsou použity společně za pomoćı sensorické fúze pro lepš́ı přesnost
detekćı. Systém použ́ıvá nejen sensorickou fúzy, ale i učeńı jeden druhého.
Systém pro detekci chodc̊u je zkombinován s navigačńım systémem, který
dokáže autonomně proj́ıždět dř́ıve naučenou trasu. Schopnosti systému,
které jsou ukázány v této práci jsou detekce chodc̊u v mlze, schopnost
systému se spolehlivě autonomně navigovat za pomoćı reálného robotu i
v př́ıpadech, kdy do cesty vstouṕı chodec, a nakonec je demonstrována
schopnost detekce objekt̊u na vozidlu nasazeném v poloprovozu automo-
bilky.

Abstract

This thesis focuses on creating a reliable pedestrian detection system for
autonomous vehicles, which is capable of operating in adverse weather
conditions. The system uses a combination of radar-lidar sensors, which
using sensor fusion, the system obtains higher precision of the detec-
tions. The uses not only sensor fusion, but also for learning one the
other. The pedestrian detection pipeline is combined with a navigation
system capable of autonomously traversing a previously taught path.
The experiments of the system that this work shows, is the detection of
a pedestrian under the influence of fog, the capability of the system to
reliably autonomously navigate a real robot even when pedestrians are
walking in its way, and the capability of object detection on a car-like
machine, deployed at a car manufacturing plant.
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1. INTRODUCTION

1 Introduction

One hundred years ago Karel Čapek published his science fiction play R.U.R (Rossum’s
Universal Robots). This play was the first where the word robot was used. The word comes
from the Czech word ”robota” which means forced labour. After that, the robots received
the famous three laws of robotics which appeared in the Isaac Asimov book ”I, Robot” in
the 1950s. Ever since, the topic of creating a universal artificial servant has received broad
interest from the general public.

The recent advances in the field of robotics and artificial intelligence are pushing some
of the science fiction authors’ ideas towards reality and helping to make the robots be-
come part of everyday life. One of the advances is the computational power of onboard
robot computers, which allows processing a large amount of sensor data, which improves
the robotic perception and situational awareness. The understanding of the environment
in which the robots operate comes mainly from onboard cameras, lidars or radars. The
autonomous vehicles typically use a combination of these and then with the principles of
sensor fusion, they achieve a better understanding of the surrounding environment and
other participants of their environment. Another advantage is the ever-decreasing cost of
the hardware, which allows broader scientific interest even for not so well funded robotic
laboratories or anyone at can home build a simple robot with obstacle detection or line
follow algorithms. Lastly, we can observe a lot of the robotic contests which attract media
attention, e.g. MBZIRC or DARPA Subterranean Challenge, which has helped with the
advancement of knowledge of robotics and artificial intelligence in human society.

The growing number of robots entering human-populated areas comes with safety con-
cerns. This applies also to the topic of autonomous cars, which are deployed in some cities
around the world. These cities are typically in climates where it is mainly sunny and consis-
tently sunny throughout the year. In these weather conditions, the cameras provide dense
data of the cars, and its range is basically unlimited. The visual information obtained
from the camera depends mainly on the weather and illumination conditions. For the au-
tonomous car to operate fully autonomously and in the long-term domain, they need to
address the problem of driving in adverse weather conditions, e.g. rain, fog, dust, or snow
or they need to address a problem of changing environment, which can be varying illumi-
nation (day/night) or seasonal changes (winter/summer). The adverse conditions are still
one of the most problematic aspects when it comes to fully autonomous driving.

The main concern of the general public is their safety when it comes to autonomous
driving. However, for the safety of pedestrians and other traffic participants the authors
of [1] suggest that the accident-per-mile of autonomous cars is lower than the human-
driven cars, but every accident always has significant attention in the news. In particular,
the crash by Uber cars [2], which happened during the night and Tesla car crashes [3], which
happened in foggy weather conditions implies that for autonomous car these conditions are
a challenging task.

In this thesis, I would like to investigate the possibility of a pedestrian detection system

1



1. INTRODUCTION

being deployed on a real robot, which represents a possible autonomous vehicle driving
through an human populated environment while meeting pedestrians on its way. I want
to introduce an untraditional combination of sensors being used for pedestrian detection
while focusing on the ability to sense and detect pedestrians in adverse weather conditions
while driving autonomously.

This thesis is segmented in a way where firstly, I will describe current solutions to
robotic navigation and pedestrian detection with a focus on adverse weather conditions
and changing environments. Then I will describe the proposed system which combines
a navigation system and a pedestrian detection system. Lastly, I will show a series of
experiments, where their purpose is to investigate possible usage of the system on a real
robot.

2



2. AUTONOMOUS NAVIGATION

2 Autonomous navigation

One of the essential problems related to autonomous driving is the problem of au-
tonomous navigation. When navigating from place to place the mobile robots are dealing
with a variety of related problems. These problems typically are - where is the robot known
as localization and how to get to the destination, which is known as path planning. The
robot localizes itself and plans a path in an environment which can be represented by
the map. The creation of maps is a robotic problem called mapping. When both of the
autonomous localization and mapping is done at the same time, we refer to this problem
as simultaneous localization and mapping (SLAM). For solving these problems the robots
use onboard sensors, these can be cameras, lidars, radars. These sensors give the robot
representations of the environment in which they operate. One simple classification of the
environments is outdoor or indoor. The indoor environments can be buildings or storages,
which typically tend not to change over time. The changes in these environments happen
because of the people activity, such as opening doors or their movement. The outdoor
environments are typical for their significant change in the appearance over time, which is
a result of adverse conditions like a daily change, from day to night, or seasonal changes
ranging from winter to summer.

This section summarizes different approaches to the problems as mentioned above re-
lated to autonomous driving. For this thesis, I will focus on problems of localization,
mapping, navigation.

2.1 Mapping

The problem of mapping is creating a spatial model of the robot’s environment. The
maps can be created by driving autonomously or by teleoperated driving, where a robotic
operator drives the robot through the environment manually. To obtain information about
the surrounding environment, the robots use sensors, e.g. cameras, lidars, radars, GPS,
IMU. However the sensors have some sort of error in their measurements, we call it the
measurement error. Another error, which the robots encounter is the error of odometry,
e.g. the error of motion sensors, that give us the position of a robot from the start [4].
These errors, in addition to the change of the environment, results in the model of a map,
which is strongly affected by noise and errors that need to be addressed. There are two
basic types of maps: Metric and Topological [5].

2.1.1 Metric map

The first map type is metric, that is used as a representation of geometric primitives
in either 2D or 3D space. One of the used representation is called the occupancy grid,
which segments the surrounding environment of the robot into evenly spaced-grids. Each

3



2. AUTONOMOUS NAVIGATION

cell of the grid has its coordinates x,y, (z) in the coordinate system and has information
on whether it is occupied (or the probability of being occupied), not occupied or unknown.
The map is created by using the onboard sensors; typically by depth cameras or by range
measuring sensors with the combination of the robot motion [6]. The advantage of using
grid-maps is their easy creation and representation. Another advantage is the useability of
the map across different robots. On the other hand, it requires a more precise position of
a robot to be known, which can result in feeding the occupancy grid with a lot of noise.

The problem of occupancy grid is that it contains a large number of not used unoccupied
cells, which only uses a lot of memory; thus, the geometric maps were introduced [7, 8].
The geometric maps extract geometric features about the obstacles. Their problem is the
difficulty of the extraction. Another possibility is the octomap [9], which divides the space
into differently sized octants. Each cell can be divided and based on the importance of
the place. The division is higher to obtain a more precise map. The reasoning for these is
saving space, compared to the continuous metric maps. The Figure 1 shows examples of
metric maps - the occupancy grid and the octomap.

Figure 1: (left) Occupancy grid [10], (right) Octomap

2.1.2 Topological map

The representation of the topological map is a graph in which the nodes are distinct
places or landmarks, and the arcs represent the connection (path) between these places.
Unlike the metric maps, the position of a robot is represented relative to the specific
place. The problem of the topological map is that it is sometimes hard to distinguish the
places that appear similar especially if the robot can visit the specific place from multiple
paths [11]. Their advantage is they do not need such a precise localization of the robot
and the path-planning in them is much simpler. Also, the topological map is more human-
readable and understandable in a more natural way, which can be two rooms joined by a
corridor; for example this is depicted in Fig. 2.

4



2. AUTONOMOUS NAVIGATION

Figure 2: Topological map, where rooms, corridors, doors are represented as a graph [12]

2.1.3 Hybrid map

Hybrid maps combine both of the ideas behind the two mapping processes mentioned
above - metric and topological. Typically the metric map is on a lower-level map which
represents a particular place where needed, like a more complex structure of a room. Above
the detailed structure of a place, there is a higher level of a topological map which joins
them. The advantage is that it takes the best of both approaches, e.g. simple planning
for the robot between rooms and then a detailed map of a room where the robot should
operate as an occupancy grid [6, 13, 14].

2.2 Localization

Localization is the process of determining the current position of a robot. To determine
the position of a robot we can use the odometry and onboard sensors. However, as described
above, both of these are subject to error. The sensors and their advantages will be described
in Sec. 3.

The localization can be either relative or absolute. The relative localization is determin-
ing the robot position relative to its starting position. The localization is done continuously.
It is based on the previous estimation of the position of the robot. The estimation contains
uncertainty, which needs to be handled during the autonomous drive of the robot. This
problem is also called the position tracking.

Complete localization is determining the position of a robot in the world coordinate
frame with or without the prior knowledge of its previous position. The absolute localization
is sometimes referred to as global. For the absolute localization, beacons are typically used,
where the robot calculates its position based on the position of the beacons. Beacons can be
markers, GPS or active beacons, which transmit signals. The problem is referred to as the

5



2. AUTONOMOUS NAVIGATION

kidnapped-robot problem. This problem is coming from the idea, where the robot operates
in an environment, localizes itself, and then we simply take it to an entirely different place
in the map, and the robot needs to localize itself again.

The popular approaches to deal with the localization is the Kalman filter or the Particle
filter [15, 16].

2.2.1 Kalman filter

The Kalman Filter (KF) is based on the bayesian filters, used for linear systems. The
filter takes into account the belief of the actual position, which at a specific time is rep-
resented by its mean and covariance. The motion model with added noise determines the
next position (state). The correction of the position is updated by the sensor measurements
also with the noise. The Kalman filter is optimal but has the biggest constraints when it
can be used. The nonlinear extension, the Extended Kalman filter (EKF), uses a linearized
version of the system. The improved version of the EKF is the Unscented Kalman filter
(UKF), which approximates the probability distribution [17]. The localization using EKF
is shown in Figure 3

2.2.2 Particle filter

The particle filter is a method for localization, which is used only for discrete systems.
In this method, we use the particles as a hypothesis of the robot position in the map. The
particles are a sampled probability distribution of the position. The particles are randomly
placed points on the map that have the position of the robot x,y, its heading and weight of
the particle. The algorithm works as follows. First is the prediction step, where we update
all the particles by the motion model. Then it continues with the measurement step where
we compute the particle posterior probability (weight) by the sensor measurement. The
method of updating by the sensor measurements is called ray-tracing, where we for each
particle compute the probability that the sensor measurement happened in that specific
point. We then regenerate particles with new weights, and the algorithm continues. The
position of a robot can be either the center of the biggest cluster of particles or we can
take the particle with the highest weigth [15]. The problem of particle filters is that the
position estimation is not precise, and it takes a long time to converge. However, for some
of the robotic tasks, a perfect localization is not needed, and the particle filter is good
enough. The problem of particle filters is the particle depletion which is when the number
of particles cannot properly sample the probability distribution due to the size of the map.
The localization using particle filter is depicted in Fig. 3.

6



2. AUTONOMOUS NAVIGATION

Figure 3: Localization using (left) Extended Kalman Filter , (right) particle filter [18]

2.3 Navigation

The problem of navigation is when the robot is getting from place A to place B following
a path. The problem is related to localization, mapping and motion planning. On the way,
the robot is capable of avoiding or assessing an unexpected encounter with an object. We
can separate the navigation problem into three types: map-based, map-building based,
map-less [19].

2.3.1 Navigation without metric maps

For the map-less navigation, the robots learn about the traversable structures in the
environment. These can be paths in the park or roads on a highway, which are used by
the robot to determine the next motion [20]. The navigation can be also done using the
topological maps.

Another approach is to use the so-called teach-and-repeat methods, where the human
operator teaches the robot the desired path. After the teaching phase, the robot simply
repeats the commands from the operator and drives the desired path. The problem of
this method that the stored information about the path is also under the influence of the
measurement error. One of the possible solutions is to use the visual teach-and-repeat,
where during the teaching phase, the robot stores visual information from the equipped
camera about the environment in a way which extracts keypoints from the image. During
the repeat phase the robot traverses the taught path and replays the stored keypoints and
matches them with the currently visible ones [14, 21].

2.3.2 Navigation with metric map building

The navigation with building the maps is referred to as the Simultaneous Localization
and Mapping (SLAM) [22, 23]. The SLAM problem is related to the fact that for precise
mapping, we need to have precise localization in the environment; however, for precise

7



2. AUTONOMOUS NAVIGATION

localization, we need good maps. The measurement from the sensors, which help the robot
to perform SLAM are noisy and therefore, for the approach we use probabilistic methods
to lower the noise in the sensor data. More about SLAM methods can be seen in [15].
Sometimes we want the robot to navigate around the whole area, while continuously map-
ping without having a predefined ending point. This is a problem called exploration. The
exploration is using points of interest, which can be frontiers [24] or entropy based [25] and
navigate itself using these.

2.3.3 Navigation with metric maps

The navigation in this approach is using maps which are known a priori. The map is
done typically by teleoperated drive, where the operator drives through the environment
or one can use the known maps for the Global Positioning System (GPS). The self-driving
cars use in particular where the car localizes inside the map and then performs navigation.
The usage of GPS is limited to outdoor roads. The advantage of navigating in a known
map is that it focuses only on localization in this map to successfully navigate itself. The
maps have a much better quality and can be manually edited and updated. The manual
editation can be, for example, removing points that appear as an obstacle but are noise.
An example of navigation with map known a priori is work of [26] where the hand-drawn
maps are used for navigation or use CAD drawing for navigating in the environment [27].

2.4 Navigation in adverse conditions

Another division of navigation methods is if they are used in a static or dynamic en-
vironment. The dynamic environment, unlike the static and structured environment, has
to deal with the changes in the environment, e.g. illumination changes, seasonal changes,
weather changes, people movement. These changes inject into the system another type
of noise, which has to be to handled when creating maps in which the robot navigates.
The goal of the self-driving car if they want to operate in the long-term is to address this
problem. For the temporary changes like people movement or a car passing the trend is to
remove those by using either some sort of filtering, which can filter all the moving objects.
The authors of [28] have done this by removing objects with moving shades. Dealing with
the illumination changes one can use navigation by streetlight [29] or where the robot has
its illumination own device [21]. One of the approaches to illumination or seasonal changes
is to exploit the fact that they are periodic and thus we can predict those changes and
use them for navigation [30, 31]. Most of the current approaches use the combination of
sensors in a sensor fusion fashion [32, 33], which uses the fact that the lidar is unaffected
by the illumination change. The illumination changes can be improved if the robot is using
its own illumination device [21, 34].

The problem with the map systems is that the outdoor environment gradually changes
over time, which makes the mapped environment unreliable to the point at which the robot
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does not recognize any of the stored places. For this thesis, the focus is on outdoor robots
that operate in the changing environments in the long-term scenarios. The focus here is
on the teach-and-repeat navigation systems, which are more robust to the environmental
changes where especially one can adapt to the changes [35, 31].

9



3. SENSORS IN AUTONOMOUS DRIVING

3 Sensors in autonomous driving

Sensors give the autonomous vehicles the ability to sense the surrounding environment
and its own states. They give information about what is happening around and inside the
robot. The robots typically have multiple sensors, where one can combine the information
obtained through sensor fusion [36]. The sensors can have limitations to their range and
resolution, which comes from the physical laws they are based on. The limitations can be,
for example, a camera that cannot see through the walls, but the radars can see through
them, or the reflectivity of the material, which the sensor is detecting.

This section describes the sensors which are used for the proposed pedestrian detection
system in Sec. 5, and the navigation system in Sec. 4. I will focus on their principles and
the effects of environmental changes and the effects of the adverse weather conditions.
Moreover, I will describe other widely used sensors for autonomous driving, which are
mentioned in the previous Section 2.

3.1 Interoceptive sensors

The sensors that give robot information about the inner states are interoceptive. The
first sensor is the wheel encoder which outputs the rotation of a motor of a robot. The
wheel encoders are used for the odometry. Odometry is a method which uses information
about the motion of a robot by to determine its position. To obtain the position of the
robot, we need to integrate the obtained velocity, which results in a linear error. The linear
error is accumulating with the further distance travelled. This means that the odometry
is not suitable for long-term autonomy. The error of odometry is also subject to a surface
slippage or by the wheel material and the tire inflation. Best usage is for indoor robots
where it robot operates for a shorter period of time.

Another interoceptive sensor is the Inertial Measurement Unit (IMU). This sensor typ-
ically combines an acceleration sensor, gyroscope, magnetometer or pressure sensors. The
acceleration sensor outputs the acceleration across three axes. The gyroscope measures ori-
entation in space. In mobile robotics, they are typically used together with GPS to correct
their error. The IMU can also be used for collision detection, and if a car hits something, it
will be easily detectable by the IMU. An example of the IMU sensor is shown in Figure 4.

Lastly, the Global Positioning System (GPS) is a sensor which is used for outdoor
robotics. The GPS takes information from satellites around the Earth and uses this to
determine its position in the global frame. However, it does provide the robot with a global
position, which can be off by a couple meters, which makes it an unreliable sensor for
precise localization. The problematic part can be in the city where the GPS is affected by
surrounding buildings. A GPS sensor, which can be equipped to the autonomous vehicle,
can be seen in Figure 4.
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Figure 4: Example of sensors - (left) IMU XSens MTI-30-2A8G4-ND (right) GPS Module
BU-353S4

3.2 Camera

Cameras became a favourable sensor to use for mobile robotics and its well-developed
field of study. Their advantage is that simple monocular cameras are not expensive and
they provide the robot with dense data. They have low spatial dimensions, which means
they are suitable for a variety of robots and they are lightweight, so even autonomous
vehicles or UAVs that have small payloads can carry them.

Cameras are composed of lenses and a shutter through which the outside light rays
fall onto the light-sensitive digital sensor, which converts the light into data. The time of
the opened shutter is known as exposure, which correspond to the amount of light that is
exposed to the sensor. The effect of exposure on the ability of the autonomous navigation
is described in [35].

Cameras used in mobile robotics vary from monocular cameras, stereo cameras from
which the object position in 3D can be computed, RGB-D cameras, which have their own
source of light that serves for obtaining depth images, and event-based cameras, which
react to the change of brightness instead of capturing images. Another type of camera is
the infra-red (IR) camera which uses the infrared light (heat) as a source. However, these are
very expensive and have a low resolution. The higher their resolution is, the more expensive
they are. Some of the cameras use near-infrared light, which is used for illuminating the
space,e.g. surveillance cameras. Last type is the multispectral camera which is widely used
in agriculture [37]. The widely used cameras for mobile robots can be seen in Figure 5.

3.2.1 Effects of adverse conditions on cameras

The camera depends on the surrounding light conditions, which makes them hard to
use during the night or even throughout the day where the shades and intensity cause
the environment to change dramatically even for a shorter period of time which can be a
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Figure 5: Different types of cameras - (a) TARA Stereo vision camera, (b) Intel realsense
D345 [38]

matter of hours or even minutes. The intensity of the sun can be problematic when the sun
directly shines into the camera, which causes over-illumination, meaning that the camera
image is too bright. Another problem of cameras is that they need a medium through
which the light can travel. This medium has to be transparent and not translucent for the
cameras. Also, the transparency of the medium should not change dramatically in shorter
periods which can be caused by hot air on the surface of the road or by heavy rain. In
other words, if we take dense fog where the light is dispersed and diffused, the camera will
not capture any data of sufficient quality.

3.3 Lidars

The light detecting and ranging sensors (lidar) is one of the widely emerging sensors
which are used to obtain in either 2D or 3D space distance measurements. They can provide
the robot with up to 360◦ field of view, where most of the commonly used lidars have a
lower field of view. Based on their resolution, the robot receives for each of the angles
the distance to the object. The distance the lidar measures can be up to 300 m for the
best lidars. Unlike the stereo cameras, which can correctly measure distance defined by the
width of both lenses, their range is much lower than the lidar. The 3D lidars have multiple
layers placed one top of the other, which takes the scan around the sensor but with various
heights. Their most significant disadvantage is the price, which is the most expensive part
of an autonomous vehicle when using a multilayer 3D lidar. One of a widely used brand of
lidars together with data collected by this sensor can be seen in Fig. 6.

The sensor is active, which means it emits near-infrared light (laser beams) and then the
sensor measures the time of flight of the specific beam and converts it to the distance to
the object once reflected. An essential part of the reflection is that the material is reflective
to the laser beams. Otherwise, the sensor does not recognize the object, which results in
losing the data. However, the object cannot be absolutely reflective, which causes to lidar
to measure the distance to the material plus the distance to the objects it reflected the
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Figure 6: Example of lidar sensor the Velodyne Puck (a) and an example of data collected
(b) [39]

beam to. The problematic medium is for example glass which for most of the cases needs
to be modified so the infrared light can go through.

In mobile robotics, they are widely used mainly for localization, mapping, object detec-
tion, or for safety reasons. They are practical because unlike cameras, where the information
about the environment is obtained from the direction the camera is facing, it receives in-
formation all around the robot, the batch size of the data can be much larger also the data
is different. Contrary to cameras, they are much harder to train for the traditional neural
network due to the sparsity of points [40].

3.3.1 Effects of the adverse conditions on lidars

The advantage of lidar is that they are less affected by the changing light conditions,
which means that the data received from the sensor is the same during the day or during
the night. They are affected by the outside heat or density of the rain. The operational
ranges are typically provided by the company creating the sensors. The disadvantage of
them are that they are strongly affected by the weather, e.g. the fog disperses the beam,
and the data are lost [41]. With the lidar being usually used as a safety sensor, the possible
error in data caused by these conditions is critical, where either it can hit a pedestrian, or
it can spontaneously stop even when there is not an object in front.

3.4 Radar

Radio Detection and Ranging (Radar) sensors being used for the autonomous vehicle is
not a new topic, authors of [42, 43] are showing the radar being used as a safety sensor for
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obstacle detection. As the abbreviation suggests, the principle of the radar is similar to the
lidar. Where for the radar instead of light beams the radio wavelength signal is emmited
via the antenna, meaning that a different part of the electromagnetic spectrum is used.
Once the radio signal reflects from a material, the waves are reflected and then returned
to the receiving antenna. The returned signal strength in influenced by the conductivity of
the material. There are two technologies that simplified using the radars for autonomous
driving: The Synthetic-Aperture (SAR) which is no moving parts on the radar and Ultra
WideBand (UWB) that uses wide spectrum.

The sensors can vary with the frequency they are using. The autonomous cars, the most
common radars have a frequency around 77 GHz, which corresponds to the milimeter
wavelength. They can provide information such as distance and velocity of the detected
objects. The radars can be either 2D or 3D. The field of view varies based on the company
and can be up to 360◦. Sample images of radar used for an autonomous cars can be seen
in Fig 7. The data can be either points in 2D space or sparse pointclouds in the 3D space.

Figure 7: Example of radar sensor - SICK RMS320

3.4.1 Effects of adverse conditions on radars

The most significant advantage of these sensors is that they are a lot less affected by
weather changes. They are not affected by snow, rain, dust, extreme weather conditions
or different lighting conditions, resulting in their suitability for day and night. Unlike the
cameras, they can have water drops or dirt on them and still function. A comparison of
the effects of adverse weather conditions can be seen in Fig 8 where a person is hard to
detect by the lidar, where the typical U-shape for the legs in the 2D lidar data disappears
entirely in the simulated foggy conditions.

3.5 Sensor fusion

Sensor fusion is a method of combining data from multiple sensors, which results in
having better sensing abilities of the whole system. The advantage of a sensor fusion system
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Figure 8: The effect of adverse weather conditions on different sensors in a sample scene,
where a person and a wall can be observed. The Figure (left) shows normal conditions,
where the orange dots represent the radar pointcloud, green dots represent a 2D lidar
scan. The Figure (right) shows the sensor data when under the effect of smoke. Note the
dissappearance of the wall.

is a robust and reliable system, where in the case that one sensor fails entirely or is damaged,
the other can still perform the task. Their combination can be used to have a better view
around the robot when the field of view of the sensors is limited. Another advantage is
the increase of confidence in the detections, which can help in having much more precise
detections of surrounding objects [36].

There are many different ways to divide sensor fusion methods. Based on the level of
the fusion, which can be low-level meaning combining their data to produce new data;
intermediate-level, which combines features of the data like positions or edges and high-
level fusion which combines decisions of the algorithms. Another division is based on the
sensor configuration, where the first one is the complementary configuration. This config-
uration is to use the same sensors to have a better view on the overall scene, like multiple
cameras creating a 360◦ field of view. The second configuration is competitive, where each
sensor delivers measurements of the same object, and the final decision is based on the
voting scheme. The last sensor configuration is the cooperative configuration, where two
sensors produce information otherwise not obtainable by a single sensor. An example of a
cooperative configuration can be a stereo camera, which combines two monocular cameras
together with the knowledge about the width of both of the lenses.

Sensor fusion allows the robot to have multiple options when it comes to adverse weather
conditions. Some sensors are useful to use in different weather conditions. Due to the higher
precision, the lidars are preferable for object detection during day and night, and cameras
outperform the lidar during the day, however both of them struggle with adverse weather
conditions where it is better to use radar.
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4 Navigation system

The chosen navigation system in this thesis is called the Bearing-only Navigation (Bear-
Nav). The bearing-only stands for using bearing-only sensors, which are those that give
the robot a relative orientation of the objects it sees, e.g. cameras. The BearNav method
comes from the work [14] and its following work [21].

This method is based on the teach-and-repeat system, where the robot does not need
to localize itself but can reliably navigate itself in the traversed environment. The teach-
and-repeat methods were chosen because it is being reported that they are more robust
at dealing with the adverse conditions [44]. The robustness makes the method suitable for
use in long-term scenarios. To achieve higher reliability authors of [45, 46] suggest using
trainable image descriptors or using adaptive techniques [35, 31].

Another factor of this method is its simple implementation for various autonomous ve-
hicles [47], it is computationally efficient, and it does not require expensive equipment.
The proposed system uses only a monocular camera, which does not require calibration
and odometry for its functioning. It is also suitable for various outdoor or indoor envi-
ronments [21]. All of the mentioned advantages makes it a suitable navigation system for
outdoor robots operating in different scenarios under various conditions.

The teach-and-repeat methods works in two steps, firstly in the teaching phase the robot
is taught a path to traverse by the human operator, it is analogous to the industrial robotics
where the operator moves the robotic arm to perform welding and then in the repeat phase
the robot follows the taught action. The repeated process is not the same because of the
noise in the sensors; however, in industrial robotics, the errors are minimal because it is
an entirely controlled environment, free from external processes. The used method in this
work deals with the noise in a way which is described [14, 21, 18].

4.1 Teaching phase

In the teach phase of the navigation system, the operator drives the robot in the envi-
ronment. The commands are done by teleoperated driving by using some controller where
the robot traverses a path like in Fig. 9 on its way, the robot stores images at regular
intervals. From those images, it extracts the image features. The images were taken on a
specific location, which is denoted by the red dots in Fig. 9, which is marked by the trav-
elled distance from the start. The odometry measures the distance from the start. Thus
we have an image with its extracted features and the known distance at which this image
was taken. These images at a particular distance are referred to as local maps. The blue
line represents the taught path, which the robot traverses. This taught path is referred to
as the path profile.
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Figure 9: The taught path (blue line) and local maps (red dots) in the form of images [47]

4.1.1 Local maps

The robot on its way stores images in the form of local maps. The local maps serve as
a place which the robot needs to recognize every time it travels. The information obtained
from those images is called feature extraction. The feature extraction works in two steps -
detection and description. The detection part locates and identifies keypoints. These key-
points are detected so that they can be observed from various angles, and these typically
include points with high contrast or edges. This can be done by using Hessian matrix [48]
or by comparing the brightness of pixels [49]. Once the keypoints are detected, their sur-
roundings are described by the feature descriptor. The description can be, for example, the
vector which stores information about the brightness comparison between specific pixels
around keypoints.

For the method, the local map is the saved keypoints with their descriptors saved at
a distance from the starting point. This method combines the SURF [48] descriptors and
the AGAST [49] detectors for extraction. Note that the system is reconfigurable meaning
that any combination of these features can be used.
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4.1.2 Path profile

The path profile is created through the commands of the operator. At the begging the
distance travelled is set to zero, once the operator gives the robot forward or angular
velocity this information is saved. At every distance where the operator changes those
velocities to perform a turn, the profile stores the distance from the start at which this
change happened and the value of the velocity. Thus at the end, the path profile has all the
velocities (forward, angular) that were applied by the operator at specific distances from
the starting position.

4.2 Repeat phase

Once the teaching phase of the method is done, the operator tells the robot to repeat the
path, and the robot starts to navigate autonomously. At the beginning, the robot pre-loads
all of the stored maps together with their distance and loads the path profile. The distance
travelled by the robot is set to zero, and the map at distance zero is loaded.

The robot loads the first command from the path profile and moves forward. The loaded
commands adjust the movement on its way based on the travelled distance from the starting
point. The measurement of the travelled distance is subject to noise from the odometry,
which is increased based on the surface. Thus the path profile itself is not sufficient for
navigation, because of these reasons the robot moves slowly away from the original path.

To suppress the error, [14, 21] suggests that the correction of the heading is enough
to compensate for the odometric errors. For the correction of the heading, the robot uses
the stored local maps. Once the robot passes the threshold distance of the specific map it
loads all the features from this map.

The current view from the camera, where the robot again performs feature extraction, is
then matched against the currently loaded local map. The feature matching is a method to
match features from the two images. The robot uses the matched features to determine its
correct heading by histogram voting. For every pair matched, we obtain the difference in
the horizontal axis of those points. The histogram voting takes the most frequent difference
between the features and steers the robot so that the difference in the horizontal axis is
zero. Using the histogram voting the robot steers to the original taught path. An example
of the steering influence is in Figure 10.

18



4. NAVIGATION SYSTEM

C
u

rr
en

tl
y

 s
ee

n
 i

m
ag

es
L

o
ca

l 
m

ap
 i

m
ag

es

Steering control output Steering control outputSteering control output

Figure 10: The Figure shows how the correction of the heading is performed, the loaded
local map (white dot) and the current image view (red dot) both have their image fea-
tures extracted, here we see the result of histogram voting, the most frequent horizontal
displacement, which steers the robot toward zero (red arrows). The blue dots represent
following local map on the traversed path. [47]

4.3 System implementation

The system is implemented in the Robotic Operating System (ROS) [50] version Melodic.
The prosed system is shown in Figure 11.

Figure 11: Navigation system in ROS [47]

The navigation system works as follows: The odometry monitor node obtains data from
the odometry of the robot and transfers this into the travelled distance. The feature ex-
traction node extracts features from the equipped camera of a robot and sends them to
the mapper node, which saves the image and its features together with the travelled dis-
tance tag provided by odometry monitor node at regular intervals. The mapper node also
stores the information about the path profile; after the teaching phase, the obtained data
is stored in the robot. For the navigation, the robot loads all the images with the features
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and the path profile by using the map preprocessor. The map preprocessor sends the data
to the navigator based on the distance provided by the odometry monitor. The navigator
node reads the information from the map preprocessor and performs feature matching and
histogram voting with the current features from the camera from the mapper node. The
robot then follows the commands from the navigator node.
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5 People detection

There is a strong need for autonomous vehicles and especially self-driving cars to know
about all the other participants of the traffic [51]. In particular to know about the most
vulnerable participants such as pedestrians or cyclists.

The need for pedestrian detection is a topic which typically uses the lidars or camera
or their fusion. The authors of [52] and its extension [53] proposed a pedestrian detection
system while using four layers of laser scans, where they fuse the information from all
of them. Zhi et al. proposed a system for human detection used in an online learning
fashion [54]. Another approach is to combine depth images and lidar data [55].

However, one of the challenges for people detection is detection in adverse weather
conditions. The section 3 describes the effect of the adverse weather conditions on the
sensors. Most of the works, as mentioned above, do not focus on this problem. The authors
of [56] are using an updated version of the popular YOLOv3 [57], used for object detection
from cameras, where they used images from a thermal camera. The authors of [58, 59] are
following the idea of the combination of sensors to enhance the ability of object detection.

The combination of sensors used for the same purpose, e.g. detecting the same object
or used for navigation is typical for autonomous vehicles. The idea is to combine sensors
which are better in some scenarios but have problems in others. The widely used cameras
provide an autonomous vehicle with dense data. However, they are affected by illumination
and the weather. The lidars are unaffected by the illumination, but they are affected by
the weather conditions, e.g. thick fog or rain. Another factor is their representation and
understandability for people, where the camera and lidar give the user straightforward
data, which are intuitive. Contrary to these two sensors, the radar is less affected by both
weather conditions and varying illumination, but they provide sparse and noisy data. The
understandability of the radar data is a problem due to the noisiness and low amount of
data coming from them. The amount of data and their understandability is critical when
it comes to training and classifying objects.

The proposed system combines best of the both worlds - using already trained and
shown to be suitable pedestrian detection algorithm and using it for training otherwise
difficult to train sensor data from the radar. Unlike the popular methods for deep learning
which require a large amount of data where those data have to be manually labelled, which
is a long and tedious job to do, the proposed system goes a different way by automatically
labelling the data and then performing training and classification based those labels.

This section describes the proposed system for automatic labelling, online learning and
finally the sensor fusion, which comes from combining the detections from radar and lidar.

5.1 System description

The proposed system consists of four processing modules (see Fig. 12). This section goes
through each of those modules and describes them.
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Figure 12: A diagram of the system. Lidar data in the form of pointclouds are sent for
pedestrian detection. The radar sends the data in the form of pointclouds also. This point-
cloud is clustered, and the clusters are labelled based on their relative position to the lidar
pedestrian detections. The labelled clusters are sent to an SVM, which is trained based
on the clusters, and outputs its detection to the sensor fusion module. The sensor fusion
combines the position from the lidar and radar detections and estimates the final position
of pedestrians.

5.1.1 Lidar detection module

The lidar detection module takes the input from the lidar sensor, which can be either
a 2D or 3D scan. As mentioned above the proposed system uses an already developed leg
detector [60] and uses a 2D lidar. This leg detector is widely used and simply accessible in
ROS as a package. The leg detector uses AdaBoost as the chosen classifier. The algorithm
searches for the typical U-shape of the legs in the lidar scan. For training the AdaBoost,
the authors created 14 different features, which includes - number of points, linearity,
circularity, radius, mean speed, mean curvature, width. The features are created from the
input scan, where the scan is segmented. Each segment consists of points which represent
the possible leg belonging to a pedestrian. The module output position of the pedestrian
in the x,y coordinate system, moreover it also outputs the covariance matrix, reliability
and the timestamp of the detection.

5.1.2 Clustering module

The clustering module has two inputs a radar scan and the output of the pedestrian
detection module. The radar scan is output from the radar sensor, which is a 3D pointcloud.
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The poincloud is firstly segmented into different clusters using the Euclidean clustering from
the Point Cloud Library(PCL) [61]. The Euclidean clustering is a method which segments
the points into clusters, where each point can be only part of one cluster. A point is put
into a cluster if it lies within the distance threshold, which is variable. Then if the point
is far from all the previous clusters, the algorithm creates a new cluster with only one
point and continues creating clusters until all points are used. Once the module finishes
the clustering, it proceeds with labelling the data. The module received an estimation of
the position of the pedestrian from the pedestrian detection module, which gives a position
in the x,y coordinates and uses these positions to search for clusters that are in the vicinity
of this position, it also takes into account the reliability of the detection r. It compares the
distance between the centroid of the cluster and the detected position. If the distance is
lower than a certain threshold (different from the threshold used for clustering), then the
particular cluster is labelled as a pedestrian if the reliability of the leg detector detection
is over 0.7. The rest of the clusters are labelled as other.

Since the aim of the system and this thesis is to apply the radar detection on a real
robot, which would operate for extended periods of time implies that the robot should
operate over a day or possibly months. With that in mind, the clustering module uses
the ideas of life-long learning, which means that the robot learns throughout the entire
lifetime of its operation, the same as human counterparts [62]. The ability to continuously
learn about the appearance of the pedestrians is useful for the adaptation of a robot to
various situations. Also, the idea is that the robot does not rely on the immediate a priori
known models but can learn continuously. Thus the module also has implemented the
ideas of life-long learning. The clusters can be labelled as pedestrian only if it has received
continuous detections of a pedestrian for couple of seconds, and the interval between them
is lower than a specific time, 1 second is being used. When using this feature the system
can be more confident about the incoming detections being true, and also if the pedestrian
is not clear enough or is seen only for a fraction of time, it is simply not used as the output
cluster which is used for training. Those clusters are labelled as unknown. Also if we are not
receiving any detections from the pedestrian detection, module all the clusters are labelled
as unknown.

Once the module is done with the labelling, it outputs the results. The output is com-
posed of all the points in the respective cluster, its label (pedestrian, other, unknown),
reliability, covariance matrix, and timestamp.

5.1.3 Support Vector Machine (SVM) module

The purpose of the SVM module is to train and classify the incoming radar clusters.
The chosen classifier of an SVM is suitable for its excellent performance on small training
sets and the required time for training small datasets is small. Unlike the recent popular
deep learning classifiers, which require much data, and the training lasts much longer than
the SVM.
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Additionally, the idea is to have this done using online learning so that we can use the
principles of life-long learning. Unlike the traditional offline learning, where the classifier
has access to the whole training data set, and trains itself and the model it outputs does
not change over time or with new data information coming. The online learning does the
opposite, where at the beginning, the classifier knows only the classes to be classified, and
is continuously trained with an incoming batch of data. The batch of data is split between
the training rounds. For each training round the module gathers the labelled clusters from
the clustering module for each of the known classes (pedestrian, other), which are equal. In
the proposed setup, the size for each class is set to 10. Thus, every time the SVM module
obtains ten samples of a pedestrian cluster and ten samples of the other cluster, it starts the
training round. Note that for the next training round, it uses all of the previous samples plus
those newly obtained. The online learning is using the new data, which helps the robot to
adapt to the new data, which, due to the long-term deployment of the autonomous vehicles
in the real-world environment, can be outdated.

Another used technique for the training and classification is using the transfer learn-
ing [63]. Transfer learning, in general, uses two learning tasks and two domains. The learn-
ing tasks are called the source and the target task. The idea is to use the results from the
source task, and then use the output of this to improve the learning of the target learning
task (the SVM). This results in the source task transfering its knowledge to the target
task. For the case of this work, the source learning task is the lidar-based leg detector,
which is trained offline, and its domain is the lidar data. The target task is the radar-based
pedestrian classifier with its domain, the radar data. This classifier is trained from the
knowledge of the leg detector. The transfer learning allows to avoid labelling the radar
data, which is hard to interpret for the human eye and also is very noisy. Both of these
factors make the individual labelling of the clusters for the SVM a hard task. Combining
the two principles of online learning and the transfer learning brings the robot towards
more robust and higher ability to operate long-termly.

The SVM itself is using the features which were originally developed for 3D lidar. This
can be done because the radar and the 3D lidar output pointclouds which have similar
properties. The classifier is using 7 different features, which are shown in Table 1. The 7
features have together 62 dimensions.

The features, which were introduced for the 3D lidar are, (f1, . . . , f4) from the work
of [65], Kidono et. al [66] introduced the usage of f5 and f6. The last feature f7 is a feature
which was introduced in [64] specifically for the radar.

The SVM is using the Gaussian Radial Basis Function kernel [67]. The SVM classifier
is trained to clasify two classes - pedestrian or other.

From the clustering module the SVM also obtains clusters which are labelled as un-
known, which means that these are not being used for training but only for classifying.
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Feature Description Dimension

f1 Number of points included
in the cluster

1

f2 Minimum cluster distance
from the sensor

1

f3 3D covariance matrix of the
cluster

6

f4 Normalized moment of iner-
tia tensor

6

f5 Slice feature for the cluster 20

f6
Reflection intensity’s dis-
tribution (mean, standard
dev. and normalized 1D his-
togram)

27

f7 Average velocity of all
points in the cluster

1

Table 1: Features for radar-based human classification [64]

5.1.4 Sensor fusion module

The sensor fusion module takes the outputs of both the SVM and the lidar detection
modules and estimates the final position of the detected pedestrian. The need for having
a module like this is related to the fact that when combining the two sensors, the final
estimation from both is better than when the detections run separately.

The sensors are placed on different places on a robot, which means that firstly they
need to be aligned in the same coordinate frame. Otherwise, the detections would differ by
their distance. A separate calibration achieved the obtained transformation, which using
the iterative closest point (ICP) and outputs of both modules for detections, the lidar
detection and SVM. At first, the transformation between the sensors is set to be zero, and
then it proceeds with taking the output positions of the system and from that using the
ICP the transformation from one sensor frame to another is obtained.

The sensor fusion module uses all of the outputs provided by both of the detection
modules, e.g. the pedestrian position, the reliability of the detection, reliability, covariance
matrix and the timestamp of the detection. When running the detectors and observing
their covariance matrices pointed to the idea of the position uncertainty being a sphere
(3D radar/3D lidar) or a circle (2D lidar). The covariance matrix has dimensions of 3× 3
for the radar detections and 2×2 for the 2D lidar detections. Having a spherical or circular
covariance matrix can be simplified as Cr,l = σ2

r,lI, where Cr,l is the covariance matrix for
radar or lidar detections, σ2

r,l is their variance and I is the unit matrix. With that in mind,
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the variance for the respective detection is the only number to characterize the uncertainty
of the position estimation.

For the fusion, two filters were implemented - weighted and switching filters. The
weighted filter fuses the position estimations provided by both the lidar and SVM modules,
and uses the weighted uncertainties of the particular position estimations. The switching
filter uses the position estimation but instead of weighting the estimation simply outputs
the position with the lower uncertainty.

For both filters, the idea is that it is expected that the pedestrian detection is not
continuous, which means that for a certain amount of time the sensor fusion module
obtains the position of the pedestrian which comes from the most recent data from the
sensor, but there will be gaps in these detections. These gaps can happen thanks to the
pedestrian walking out of the field-of-view of the sensors, the classification fails, or in the
case of lidar, it is under the effect of adverse weather conditions. These lower or completely
shuts down the ability to detect. The filters are designed so that if the detections are old,
which can be simply checked by using the timestamp of the detection, the detection is given
less weight. With that in mind the inverted variance (precision) gr,l is computed using the
following equation:

gr = (σ2
r e

t−tr)−1

gl = (σ2
l e

t−tl)−1 (1)

Where t corresponds to the current time, tr,l corresponds to the most recent timestamp of
the detection and σ2

r,l is the variance of the detection. Here, the important part is the et−tr,l ,
which inflates the covariances over time. Thus the older detections are penalized, making
the system depend on more recent observations or older, which have lower uncertainty.
The module working with the weighted filter has the final position estimation determined
by the equation:

x =
gr xr + gl xl

gr + gl
(2)

Which is the position estimation provided by the SVM module for radar detections and
the lidar detections multiplied by the weighted inverted variances. For the switching filter
the final position estimation is done by the equation:

x = xr if gr ≥ gl

x = xl if gr < gl
(3)

The sensor fusion module has two filters implemented, which both provide the final
position estimation of the pedestrian, when combining the radar-lidar system. The inflation
helps the system to be less reactive but more robust because it is exponential, which means
that the inflation is slower when the detection modules stops sending pedestrian positions
but gradually is getting higher with time. It results in old data having a low impact on the
final pedestrian position.
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Figure 13: Sample image from RVIZ during the detections obtained from both radar and
lidar data, while having a person walking in front of the sensors. The orange dots represent
the incoming lidar data, where the wall can be recognized from each side. The cyan spheres
are the detected legs from the leg detector, and the magenta sphere is the estimated position
of the person from the lidar. Blue dots are representing the radar data. The pink bounding
box represents all of the points classified as a pedestrian from the SVM. Note that the
bounding box is off by one frame due to the visualization having being processed.

5.2 System implementation and summary

The system was implemented in the ROS [50] framework, which allows for simple reuse
of the system. The system is implemented in the nodes and topics following the structure
of the diagram 12. The system has one node for the clustering, which takes the incoming
radar data, clusters them by using the PCL library and labels based on the relative position
of the pedestrian position provided by the lidar detection. The lidar detection is a module
based on the leg filter, which is not an implemented node but only a package in ROS.
The SVM uses the LIBSVM library [68], which trains the classifier by using the labelled
clusters and then classifies the unlabelled clusters. Both detectors output the pedestrian
position, which is combined in the sensor fusion, which gives the whole framework’s final
position estimate from the combination of the radar-lidar sensors. The final positions are
output from the two filters implemented - switching and weighted. Figure 13 show sample
detections from the ROS framework, namely the RVIZ (ROS 3D Robot Visualizer) [69],
which is used to display any sort of sensory data or outputs of its processing.

The described system in this section uses ideas of transfer learning to support the
training of the radar, where the labels from the leg detector are used to train the SVM
via the clustering. The sensor fusion used for this combination allows the system to either
be more precise under normal conditions or rely more on the radar detections during
the adverse weather conditions, where the radar is less affected than the lidar. The lidar
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detector used is well developed and will have a lower error in position estimation. However,
suppose the autonomous vehicle enters fog. In that case, the detections will either not
appear at all, which makes the radar the only sensor to determine any possible detections
or the lidar detection will have a much lower reliability and accuracy of detections, which
also makes the radar immediately the favourable sensor from the sensor fusion pipeline.
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6 Experiments

The experimental evaluation is aimed at evaluating the accuracy of pedestrian detection
by using the radar-lidar combination. The second experiment is about the implementation
of the pedestrian detections framework onto the real robot, while navigating using the
proposed navigation system from Sec. 4. The last experiment was designed to show the
ability of the radar to perform potential collision detections of other objects on a real robot.
The purpose of the last experiment is to show the systems ability to detect and stop (or
slow down) the robot if an unexpected obstacle appears in front of the moving vehicle.

6.1 Experiment 1 - Pedestrian detection

The purpose of this experiment is to show the ability of the system to detect a person in
normal conditions and adverse conditions (fog). The setup for this experiment is depicted
in the Figure 14.

6.1.1 Hardware setup

The experiment uses a RGB-D camera, a 2D lidar, and a 3D radar as the sensors.

One can see in the setup the 3D radar from Texas Instruments IWR1443BOOST
mmWave, which has a frequency bandwidth from 76 to 81 GHZ, 30◦ field of view and
an update rate of 10 Hz. Its range depends on its settings, where the range is a maximum
of 50 m, but this setting only provides single points in a 2D plane. The 3D setup offers a
maximum range of 10 m which is the setting, which was used for this experiment. Another
parameter the radar offers to tune is the maximum velocity of the points to be detected,
and clutter removal to remove the noise. The clutter removal setting removes most of the
static points and extra noise. For the evaluation of the experiment, we used the setup with
static removal for the system to be trained only from relevant points, also with a lower
chance of being noise.

The 2D lidar is the Hokuyo URG-04LX with 240◦ field of view, and 0.352◦ angular
resolution. The range of this sensor is up to 5.6 m, and its update rate is 10 Hz. The
reasoning for using simple 2D lidar is its price, which is around $300USD.

For this experiment, the fog machine used is the Beamz S500 Fazer, which can provide up
to 30 s continuous stream of haze. The hazer has another limitation which is the thickness
of the fog, which affects both of the sensors. In Figure 14 we can observe the cardboard
box, which serves as a structure for mounting the sensors and also as the plane, where the
fog can float and not disappear right away and can affect both the radar and lidar the
same way. The 2D lidar was placed on the bottom of the cardboard box, where one can
see only the scanning plane of the sensor in Figure 14. The radar was placed at the end of
the cardboard box not far from the 2D lidar.
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Figure 14: A photo from the experimental setup, where 1) is a Hokuyo URG-04LX 2D lidar,
2) a Texas Instruments IWR1443BOOST 3D radar, and 3) an Intel Realsense D415 RGB-
D camera. The Figure also contains the haze generator Beamz S500 Fazer for generating
the adverse conditions

Outside of the structure and 30 cm above the cardboard box we placed the RGB-D
camera, the Intel RealSense D415 camera. Its purpose is to provide the system with ground
truth data, and its placement was designed not to be affected by the fog. Even though the
leg detector is well established, one metric for the experiment could be to compare the
ability of radar detection with the leg detector, but in this case, the idea is to show that
the sensor fusion of both detections results in more precise detections, thus an external
detection system to obtain the ground truth is needed.

Every sensor was connected to the laptop, which had an Intel i5 processor, 8GB RAM
and was running on Ubuntu 16.04 LTS and ROS Melodic.

6.1.2 Experimental setup

The experiment took place in a corridor of the Czech Technical University in Prague
on Charles square. This experiment aims to show the ability of the pedestrian detection
framework to detect people in both normal conditions and adverse conditions reliably.
Thus, the setup was designed to evaluate the precision of the detections for both lidar and
radar, and also their sensor fusion. The experiment is composed of the hardware setup
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mentioned above and a single demonstrator. The demonstrator walks in front of all the
sensors and remains there for the entire duration of the experiment. One could argue that
the person could walk away and then come back, to show the ability of the framework,
that if there is no person in front of the sensors, there will be no detections. However, the
field of view of the radar, lidar and camera is different. This means that for some of the
frames, the person is detected by the two sensors, but the third sensor will not see it. So
to have a fair comparison, the person stays the entire experiment in the field of view of all
the used sensors. Note that during the testing of the framework the person walked out of
the scene and no detections were present.

The idea of the experiment is that the pedestrian moves around for two minutes in
which the radar performs the online training. After the two minutes, we start the haze
generator, putting the fog directly onto the surface of the cardboard to affect both the
radar and lidar. Due to the hardware limitations of the haze generator, this part lasts for
approximately 30 s.

6.1.3 Obtaining the ground truth

For obtaining the ground truth, we use the RGB-D camera mounted above the cardboard
structure. From the RGB-D camera, only the depth images are used. Firstly the image was
cropped in a way to remove walls on the sides, pixels with a distance too far in the scene
(more than 6 m) and pixels closest to the camera (less than 1 m). This results in having
a rectangular shape in the horizontal plane where the demonstrator moves. In addition to
removing pixels pointing to the floor and ceiling the lowest point where setup to 0.5 m and
the highest to 1.5 m. Thus, we received a bounding box where the demonstrator walks, the
remaining points in the image are clustered, and the biggest cluster is considered to be the
detected pedestrian. To obtain the position of the pedestrian, we simply take the centroid
of this cluster for each incoming image from the RGB-D camera. The Figure 15 shows the
sample image from the RGB-D camera and then the filtered one with the biggest cluster.

Figure 15: Obtaining ground truth (left) Standard depth image (right) Filtered and clus-
tered person
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6.1.4 Experimental evaluation

The experimental evaluation is composed of comparing the position of the pedestrian
detection framework - its outputs from the radar, lidar and the sensor fusion from both
of the sensors in the form of the two filters - switching and weighted. The metric used in
the evaluation is the Multiple Object Tracking Precision (MOTP) from [70], which is used
only to track a single person. Note the system is designed that for the future work it can
detect multiple people. Thus the metric for multi people detection is introduced. Moreover,
the paper introduced the Multiple Object Tracking Accuracy (MOTA), but this metric is
based among others on the false negatives, which do not exist in the experiment, where
the person always appears in the scene, thus the MOTP is used as the only metric. The
MOTP metric can be writen for a single object to be detected as:

ε(tk) =
1

k

k∑
i=1

||x(ti)− xg(ti)||. (4)

The ε(tk) is the average position error over time, tk is time from the start of the experiment,
x(ti) is position estimation by the pedestrian detection framework and the xg(ti) is the
ground truth position at time ti. Thus, the equation gives the average error at time tk,
which is computed from all the previous times, ti and the error is the Euclidean distance
between the estimation and the ground truth. The reasoning for averaging the error is
that occasional false positive detections will be visible in the graph and also it gives us an
idea of how the online training process affects the entire evaluation and how the system
converges over time.

6.1.5 Experimental results

The idea behind the experiment is a person walking in front of three sensors for some
time. At the beginning of each experiment, the SVM from the framework is being trained,
and once the learning time is over, the experiment continues with a person walking so we can
observe how the particular detection or sensor fusion filters converge over time. The primary
purpose of this experiment is to show that not only we can obtain reliable detections from
the online trained radar, which is trained from the lidar, but more importantly, if we
use their combination in the form of sensor fusion, we obtain a system that is capable of
detections with much higher precision. The evolution of the error under normal conditions
is shown in Figure 16.

Figure 16 shows four different position estimate errors radar-only, lidar-only, switching
filter, weighted filter. The graph shows the learning phase of the radar, where the error
rapidly grows in the first couple of seconds, once it passes the first round of training. Next
visible is a drop in the accuracy of the radar-only at 20 s, which is the time where the
last training round happened, which took much longer to train. Overall the radar-only
error is 0.13 m. The most important part of the graph are the two filters switching and
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Figure 16: Evolution of the pedestrian localisation error during learning in normal condi-
tions [64]

weighted, where the error is 0.11 m. Both of them are slightly better than the lidar-only
error and better than the radar-only error, which corresponds to the hypothesis that the
sensor fusion of radar-lidar will achieve higher accuracy than the respective sensor-only
errors.

The experiment then followed with starting the haze generator, which was running for
approximately 30 s. The evolution of the error is visible in the Figure 17.
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Figure 17: Evolution of the pedestrian localisation error during learning in adverse condi-
tions of fog [64]

The second part in the adverse conditions, which in the Figure 17 is visible by the change
of the lidar error. Here we can observe that the lidar error rapidly increased, resulting in an
error of 20 cm. During the experiment it was visible that the entire incoming data from the
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lidar disappeared, which results in the lidar-only system not beiing capable of detecting
the pedestrian. Also, we can observe that sensor fusion is much better than if we are using
the sensor detections separately. In the end, the filters and the radar-only detection have
an error of 10-12 cm, with the weighted filter having the best results. Table 2 summarizes
the values obtained in the experiment.

Conditions
Sensor Fusion

Lidar Radar Switching Weighted

Normal+Hazy 20.8 12.5 10.6 11.0
Normal 11.9 13.0 10.7 11.2

Table 2: Average pedestrian localisation error [cm] of different schemes in different condi-
tions.

6.2 Experiment II - Real robot

The purpose of this experiment is to show the ability of the pedestrian detection frame-
work to reliably detect a person while operating on a real robot and prevent a collision
with the pedestrian while preserving the ability to navigate autonomously in the terrain.
The idea is to use the navigation system from Section 4, teach the robot a path, then let
the robot traverse it autonomously. After the repeat phase, the experiment continues with
turning on the pedestrian detection pipeline and observing if the navigation succeeds and
if it does not diverge from its previous path because of the deviation from the path profile.

This experiment runs only under normal conditions because the ability of the pedestrian
detection system was described above in the previous experiment. Also, the reason is limited
hardware, where ideally some sort of chamber, which could be filled with smoke is needed.
Moreover, the used haze generator does not generate enough fog for this experiment. The
fog was emulated by switching off the lidar after the training phase.

6.2.1 Experimental setup

For this experiment we are using the setup depicted in the Figure 18.

The Husky robot is a wheeled platform produced by Clearpath. It is capable of speeds
up to 3 m/s, the chassis is capable of traversing mud, light rocks, and steep inclines, which
makes it suitable for most of terrains. Lead-acid batteries power this platform. The payload
of the Husky platform is up to 50 kg [34]. The robot is controlled by NUC-i7, which runs all
the frameworks, and provides the communication and control between the human operator
and the hardware of the robot. The NUC is running Ubuntu 18.04 LTS and ROS Melodic.
For this experiment, we are using the same 3D radar and RGB-D camera as in the previous
experiment.
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Figure 18: Husky A200 platform equipped with sensors. The red circled sensors are those
being used for this experiment as follows: 1) a Texas Instruments IWR1443BOOST 3D
radar, 2) an Intel Realsense D415 RGB-D camera, and 3) a Velodyne Puck VLP-16.

The robot is shared within the Center for Robotics and Autonomous Systems (CRAS),
where the unique setup of the robot, its sensors and their position on the robot is needed
for each experiment. I decided to leave the already equipped Velodyne Puck VLP-16 3D
lidar, where the 16 stands for the amount of layer (rings) the sensor is measuring with.
This lidar has 30◦ × 360◦ field of view. Its range is up to 100 m. For the same conditions
as in the previous experiment, only a single ring is used in the height of the pedestrian
legs. Note that other sensors equipped on the robot are not being used, for experimental
consistency.

The experiment took place in the yard of the Czech Technical University in Prague. The
first part of the experiment was the teaching phase of the navigation system. The taught
path is depicted in Figure 19, where the start of the path is at the location of the end of
the arrow.

The reason for having a circuit-shaped path is that one can quickly determine if the
robot repeats the path and does not diverge from it when running multiple iterations. The
initial experiments with the navigation system showed that it can traverse an arbitrarily-
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Figure 19: Schoolyard of CTU with the taught path (red)

shaped path but if the end of it ends on a different place or the robot is facing other
direction, the operator needs to place it back to the original one. Thus, for the simplicity
of the experiment, the start of the path is the same as the end.

After the teaching phase, the robot was moved 50 cm away from its starting point and
repeated the taught path several times, the amount of the iterations of the traversed path
was limited due to the low capacity of the batteries. Note that for the navigation system
to work the robot needs to see at least some part of the first taught image. Meaning that if
we moved the robot and turn it, so none of the features could be matched the navigation
system would fail. This happened because of the prolonged teaching phase, which needed
to be run multiple times because there was a car parked right in front of the robot and the
lack of skills of the operator to avoid obstacles.

After the teaching phase, the batteries were changed, and the experiment continued with
restarting the pedestrian detection framework. For this to have the same framework with
online learning, a pedestrian needed to walk in front of the lidar and radar in order to teach
it. After a few training rounds of the SVM, the experiment followed again with moving the
robot away from its initial position by 50 cm and starting the navigation system.

The collision detection was implemented in a way where a bounding box in front of the
robot was created. This bounding rectangle was 0.5 m to 1.7 m in front of the robot, with
0.5 m to the left and 1.1 m to the right because of the placement of the radar. If a person
was detected in this bounding rectangle, the robot would stop and wait for the pedestrian
to leave it. Pedestrians appearing further than the 1.5 m were ignored, and anything lower
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than 0.5 m meant an immediate stop, but this would mean a pedestrian jumping right in
front of the robot or getting hit from side of the robot. During the autonomous traversal,
the operator walked in front of the robot several times in random places on the taught
path, making it detect the person in front of it and investigating its ability to detect a
pedestrian and avoid collision with it. Sample image from the experiment show how the
person was walking into the path of the autonomous vehicle, can be seen in Figure 20. Note
that I have encountered a problem with the leg detector, where its parameters needed to be
changed, which prolonged the training of the radar. Also, the detections were not perfect,
meaning that a few times the pedestrian was not detected and had to escape from the
front of the robot. This was happening mainly at the beginning of the experiment, where
the system was not trained well enough. Thanks to the lengthy training, the batteries of
the robot were enough to repeat the traversed path 6 times, which is the same amount as
in the navigation-only traversals.

Figure 20: Experiment on a real robot with pedestrian crossing its path during the au-
tonomous navigation.

6.2.2 Experimental evaluation

The experimental evaluation takes the error of the autonomous navigation without the
pedestrian detection framework and then when it is turned on. The error is computed as
the Euclidean distance from the starting point of the path and its ending.

The Figure 21 shows that without the pedestrian detection framework, the error was
about 25 cm. However, the system did not diverge, which means that the robot was able
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Figure 21: Evolution of the error during the autonomous traversals with the real robot
with the navigation system and navigation with the pedestrian detection framework.

to traverse to the taught path repeatedly. One of the reasons for higher error in the taught
path is that the ending and the beginning of the path were not the same, and was only
estimated. This means that their difference appears in this error.

During the experiment with collision detection on, the person was stepping in front of
the robot from different sides and different places on its traversed path. Those places were
randomly selected during each traversal. Figure 21 shows that the overall error was about
30 cm, having higher error during some traversals. The difference in the error is not signif-
icant enough to diverge the whole navigation system. The whole path was about 100 m,
which means that the robot traversed 600 m autonomously while encountering pedestrians
on its way, successfully detected them, stopping and once the pedestrian left continued
with the navigation, where the error was about 0.3 m at the end of the experiment.

6.3 Experiment III - obstacle detection

For this experiment, I decided to investigate the ability of the radar to detect any object
in the direction of the heading of the robot. The idea is to show the possible usage of the
radar as a sensor for collision detection in adverse conditions for any object. The pedestrian
detection has a much higher priority since the pedestrians are the most vulnerable traffic
participants. Detecting other objects that can be in front of the vehicle is also crucial
because of the safety of the driver in autonomous cars or safety of the autonomous vehicle
without any crew in the vehicle.

For this experiment, only the 3D radar (same as in previous experiments) and the robotic
platform is needed. The platform used for this experiment is different, which is a heavy
four tons industrial car-like machine. This platform is capable of loading and unloading
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regular cars. The platform can be seen in Figure 22. The experiment also tested how the
steel vehicle structure affects radar reliability.

Figure 22: Car-like platform where (left) front image with the radar in red circle (right)
Platform from the back

For this experiment, the pedestrian detection was changed; the entire training radar from
lidar was removed. The algorithm takes the incoming pointcloud from the radar clusters
using the same Euclidean clustering as in Section 5. After the clustering, the clusters with
a low amount of points were removed because the radar is very noisy. The number of
points needed was set empirically to five. Thus the entire pointcloud is segmented into
clusters with variable size. After the segmentation, the important information for further
processing is the centroid of each cluster. If the centroid of the cluster lies somewhere
within the bounding box in front of the sensor the robot reacts accordingly. The bounding
box was set to be 0.5 m over each side of the vehicle, and from 1-2.5 m in the direction,
which the robot is facing. If a centroid of a cluster appears in the bounding rectangle, the
vehicle starts to slow down until the centroid lies within the 1 m range. Clusters closer to
the vehicle than 1 m stops the car immediately.

This experiment involved placing objects in the bounding rectangle of the robot and
observing if the object is detected, and if the robot slows when getting closer. After this,
the navigation system was turned on. However, due to the heavy rain where the platform
was still in the development phase, meaning it was not waterproof. The testing had to
be indoors, where thanks to its dimension and the testing indoor area not being ready,
the taught path was only a couple of meters long line in the warehouse of the robot. The
robot was facing the direction of the heavy rain, and a pedestrian was standing in the rain.
During the repeat phase, the robot was able to detect an object in front of it and also the
pedestrian in the rain. The robot slowed down or stopped based on the distance to the
object while preserving the ability to traverse the taught path.

The experiment proved that the steel structure of the vehicle is not negatively affecting
the radar detection, and it detected a pedestrian which was standing outside during the
heavy rain.
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7 Conclusion

This work introduces an autonomous navigation system which combines a visual teach-
and-repeat system and a pedestrian detection system. The pedestrian detection system
is capable of the reliable detection of vulnerable traffic participants in adverse weather
conditions and uses a 2D lidar and 3D radar. Apart from traditional sensor fusion scheme,
we use the lidar detection results to train the radar detection pipeline. The online learning
allows the robot to train the radar data processing continuously and perpetually, leading
to a gradual improvement of the detection accuracy. The radar processing training takes
a few minutes of the system operation after which the system can detect pedestrians in
heavy fog and rain.

To achieve safe long-term operation, the pedestrian detection module is integrated into a
teach-and-repeat navigation system. This navigation method requires a simple monocular
camera and can be deployed for extended periods of time in adverse weather conditions.

In the set of experiments, the ability of the radar-lidar framework to detect a person
in adverse weather conditions was demonstrated and proved that the learning-fusion has
better precision even if one of the sensors fails due to environmental conditions. The fol-
lowing experiment combined the navigation method and the pedestrian detection on a real
robot, which autonomously traversed a given path while evading collisions with pedestri-
ans. This experiment proved that the pedestrian detection does not negatively affect the
navigation accuracy, and the system can avoid collisions with pedestrians while reliably
navigating. The last experiment showed the possibility to use the radar for collision avoid-
ance on a heavy duty robotic platform, and it also showed that the system is able to detect
pedestrians in heavy rain.

This thesis shows the evolution of setting up the system from a piece of cardboard, to ob-
tain pedestrian positions, then having the pedestrian detection on an experimental robotic
platform with the evolution ending with setting the system to the industrial machine.

The navigation system which I helped develop is a subject of works [71, 21, 47], and
was used for experiments in [35, 31]. The pedestrian detection system using the learning-
fusion principle was introduced in [64] and was selected among the ten best papers of the
conference. An extended version of the paper was accepted with minor revisions in a special
issued of the Robotics and Autonomous Systems Journal [40].
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navigation system based on the convergence theorem. In Student Conf. on Planning
in AI and Robotics (PAIR), 2017.

47



Apppendix

CD Content

Directory name Description
text diploma thesis in pdf
sources source codes
datasets recorded rosbags for experimens
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