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Abstract
In this thesis, an effective vision-based

system is proposed to accurately track a
robot’s true position and orientation us-
ing an overhead camera attached to the
robot and looking on the ceiling. The
ground truth is the Vicon system which is
a motion capture system. The robot used
in the experiment is TurtleBot, which is
a low-cost, personal robot kit with open-
source software. The selection of suitable
visual features and methods is necessary
to achieve efficient results. A map of fea-
tures is created, and a localization algo-
rithm is implemented to locate the robot.
The ceiling is chosen as a reference for
the algorithm because it is the most sta-
ble part of any indoor environment. The
camera is chosen in localization because
it is the most flexible and low cost ap-
proach.

Keywords: features detection, visual
localization, particle filter, robotics

Supervisor: Ing. Karel Košnar, Ph.D.
E225b,
Jugoslávských partyzánů 1580/3,
160 00 Prague 6,
Czech Republic

Abstrakt
Tato diplomová práce navrhuje efektivní
vizuální systém, který přesně sleduje
skutečnou polohu a orientaci robota po-
mocí stropní kamery připevněné k robotu
a snímající strop. K zachycení pohybu je
využit systém Vicon. V experimentu byl
použit TurtleBot, což je nízkonákladový
osobní robot s otevřeným softwarem. K
dosažení efektivních výsledků bylo nutné
zvolit vhodné nástroje a metody. Na zá-
kladě experimentů je vytvořená mapa
prvků a následně použit lokalizační algo-
ritmus implementovaný k nalezení robota.
Jako reference pro algoritmus je vybrán
strop, protože je nejstabilnější součástí ja-
kéhokoli vnitřního prostoru. Kamera byla
vybrána s ohledem na její flexibilitu a níz-
konákladovost.

Klíčová slova: vizuální lokalizace,
robotika, detekce příznaků, filtr částic
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Chapter 1
Introduction

Within this chapter, the general idea which surrounds this thesis will be
discussed. It starts with the motivation section, and the aim of the thesis to
be fulfilled, and a summary of the thesis structure follows.

1.1 Motivation

Workers in warehouses walk many kilometers everyday carrying some goods
from one place to another. Nevertheless, in newer warehouses outfitted with
robots, much of that walking has been eliminated. Now companies are using
robots to do such tasks.

To create an autonomous robust robotic system that works efficiently, the
major requirements that any autonomous robot system needs are localization
and planning of the robot. In other meaning, the ability of the robot to know
where it is on the map and to think and plan an optimized path with running
an avoid collision algorithm besides a frequent updating of its map so that
the robot doesn’t get lost. Sensors are needed to overcome those challenges.
Sensors allow robots to collect data about objects’ geometric and physical
properties in their surroundings, such as position, orientation, velocity, accel-
eration, distance, size, force, moment, temperature, weight, etc. The types
of sensors used in robotics vary across different applications of robots.

Sensors can be divided into two groups: internal sensors and external
sensors. Internal sensors obtain information about the robot itself such as
position sensor, velocity sensor, acceleration sensors, motor torque sensor,
etc. while external sensors such as cameras, range sensors (IR sensor, laser
range finder, and ultrasonic sensor) contact proximity sensors (photodiode,
IR detector, RFID, touch, etc.) and force sensors gather information related
to the surrounding environment.
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1. Introduction .....................................
1.2 Aim and objective of the thesis

The thesis goal is to design and implement a method for mobile robots in
a known map using ceiling monitoring. In underlying meaning, A camera
looking at the ceiling will be mounted on a robot, the robot should know the
exact position and orientation of itself on the map using only the camera.
The camera is chosen as a sensor because it is readily available and not
expensive. The ceiling is chosen to be a reference for the algorithms because
it is a stable part of any indoor environment.

1.3 Structure of the thesis

Chapter 2, Localization in mobile robots: this chapter provides a brief
explanation about mapping and localization algorithms. There will be dis-
cussed some algorithms that are widely used in the field of navigation.

Chapter 3, Algorithms description: this chapter describes the software
tools and details the methods and algorithms used to achieve the work pre-
sented in the thesis.

Chapter 4, Experimental results: this chapter defines the hardware
configurations, environment description, and the experiments done. Also,
the results of the algorithms proposed at the thesis will be presented to the
reader in this chapter.

Chapter 5, Conclusion and future work: this chapter describes the
conclusion of the experiments and future work that can be done to improve
the usability of the proposed system.
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Chapter 2
Localization in mobile robots

In this chapter, various mapping and localization algorithms will be briefly
explained.

2.1 Mapping definition

Robotic mapping [13] deals with the problem of acquiring spatial models of
physical environments through mobile robots. It is one of the most important
tasks for robots to achieve. Maps are used for robot navigation like localizing
the robot and planning a particular path or task. For a robot to see or define
the map, it should have sensors. Sensors can include cameras, range finders
using sonar, laser, and infrared technology, radar, tactile sensors, compasses,
and GPS. However, all these sensors are subject to errors, often referred to
as measurement noise. More importantly, most robot sensors are subject to
range limitations.

There are a lot of algorithms and methods that can solve such tasks for
robots. One of the most used algorithms is Simultaneous localization and
mapping (SLAM) [14]. It is the task of constructing the map and as well
keep track of the robot location in it.

2.2 Types of maps

Different types of maps will be presented in this section. Different maps
help in many ways, from navigation to establishing ownership, to presenting
specific information.

2.2.1 Occupancy grid

Occupancy grid mapping [15] usually addresses the problem of generating
maps from noisy and uncertain sensor measurement, with the assumption
that the robot pose is known. An example of an occupancy grid shown in
Figure 2.1.
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2. Localization in mobile robots..............................
The goal of an occupancy mapping algorithm is to estimate the posterior

probability that the space is occupied given the data:

p(m | z1:t, x1:t) (2.1)

where m is the map, z1:t is the set of measurements from time 1 to t, and
x1:t is the set of robot poses from time 1 to t.

Figure 2.1: G-mapping example [1]

2.2.2 Polygonal map

Polygonal maps are one of the most common representations alternative to
occupancy grids. It is represented in the shape of information that consists of
a collection of vertices, edges, and faces. If the movement between large areas
is uniform, then instead of following a grid, a polygonal map representation
can be used. The polygons can either present free spaces or obstacles.

Figure 2.2: Polygon map representation [2]

6



.................................2.3. Localization definition

2.2.3 Graph map

Usually, a graph map is formed from many connected and internally disjoint
regions of the euclidean plane. The graph maps are more general and don’t
include many details, as shown in Figure 2.3.

Figure 2.3: Graph map representation [2]

2.2.4 Topological map

It is a type of simplified diagram that includes only vital information and
excludes other unnecessary details. These maps lack scale, whereas distance
and direction are subject to changes, but the relationship between points is
maintained. The name topological map [16] is derived from topology. It is
the branch of mathematics that studies the properties of objects that do not
change as the object is deformed. An example of a topological map is the
Prague metro map, which is represented in Figure 2.4.

2.3 Localization definition

Robot localization [17] means the robot’s ability to determine its position in
its frame of reference. For the robot to navigate in its environment, the robot
requires information to react with, for example, a map of the environment
and the ability to understand that map. The localization of a mobile robot
denotes the robot’s ability to establish its position and orientation within
the frame of reference.

Localization is one of the most crucial competencies needed by an au-
tonomous robot as the robot’s location is a necessary precursor to forming
decisions about future actions. In a typical robot localization situation, a
map of the environment is available. The robot is provided with sensors that

7



2. Localization in mobile robots..............................

Figure 2.4: Topological Map of Prague metro station

observe the surroundings and observe its own motion. The localization dif-
ficulty then becomes one of determining the robot position and orientation
within the map using these sensors’ information. Robot localization meth-
ods need to be able to deal with noisy observations and defining not only an
estimate of the location of the robot but also to define the uncertainty of the
position estimation.

2.4 Types of localization algorithms

There are several methods for localizing the robot. Several factors can in-
fluence the algorithms or the methods used; some of them are mentioned
below.. Localization in static and dynamic environment.

There are no moving objects around the robot in a static environment,
and if there is, it will be following a specific trajectory without changing
it with time. The environment is constant for the robot. However, in a
dynamic environment, the robot should consider other objects that are
not part of the map and can move or change their properties with time.. Localization in known and unknown environment.
In a known environment, the robot would localize itself using the map
given as input to it. However, for the unknown environment, the robot

8



............................ 2.4. Types of localization algorithms

must build a map by itself and use it for its own localization like in
SLAM [18].. Relative and absolute localization.

Relative localization [19] determines the robot position based on the
previous sensor measurement. On the other hand, absolute localization
estimates the position without any need for the previous data measure-
ment as it can rely on external sensors.. Passive and active localization.

In passive localization, the robot receives data from the sensors and
estimates its position without influencing the robot’s behavior. In the
active localization, the robot behavior can be affected by the sensors to
do active sensing like, for example, moving the camera in some specific
direction to discover a particular area.

The general idea of robot localization is shown in Figure 2.5 . In the
next sections, there will be introduced the principles of some localization
algorithms in robotics.

Figure 2.5: General scheme for mobile robot localization [3]

2.4.1 Iterative closest point

Iterative closest point (ICP) [20] is an algorithm that is used to minimize the
difference between two clouds of points. Usually, the map is known, and it is
kept fixed as a reference for the robot. The laser sensor attached to the robot
provides readings of the surroundings with some specific range. Initially, the
sensor readings that represent the borders of the map and edges are not

9



2. Localization in mobile robots..............................
matching with the reference map, as shown in Figure 2.6(a). ICP algorithm
wishes to align the two scans.

The ICP algorithm always checks three steps: association, transformation,
and error evaluation. These are repeated until the scans are aligned satisfac-
torily [4] as shown in Figure 2.6(b).

(a) : Two unaligned scans (b) : Two aligned scans after several
iterations

Figure 2.6: ICP algorithm aligning two scans [4]

2.4.2 Kalman filter

Kalman filter [21] is an optimal estimator which is often used for mobile robot
localization. It is used in any application where uncertain information about
the system exists. It makes an educated guess about what the system is
going to do next. Kalman filters are ideal for systems that are continuously
changing. They do not need to keep any history other than the previous
state, and they are very fast, making them well suited for real-time problems
and embedded systems.

The algorithm depends on the sensors’ measurements, which can be used
to observe the surroundings like cameras or laser sensors. It also relies on
the movement of the robot from one state to another concerning time. The
Kalman filter combines the uncertainties regarding the current state of the
robot and the sensor measurements. Ideally, the uncertainty of the robot
should be decreased. A Gaussian probability distribution represents both
uncertainties. Thus, the mean represents what value of the distribution
has the highest probability to be accurate, and the variance expresses how
uncertain the measurements are concerning this mean value.

The filter keeps track of the system’s estimated state and the variance
or uncertainty of the estimate. The estimate is updated using the robot
movement and sensor measurements. The scheme of the Kalman filter is
shown in Figure 2.7.
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............................ 2.4. Types of localization algorithms

.
Figure 2.7: x̂k|k−1 denotes the estimate of the system’s state at time step k
before the k − th measurement yk has been taken into account; Pk|k−1 is the
corresponding uncertainty[5]

2.4.3 Particle filter

A particle filter is an algorithm for estimating the state of a dynamic system.
It takes the current belief to be updated based on motion information and
control commands along with observations from the sensors. It has a pre-
diction step and a correction step in order to estimate how the states develop.

The algorithm creates a large number of particles in which each particle
position represents a possible belief of where the robot is. The particles are
scattered uniformly over the map only in the beginning. So if ten thousand
particles exist, it means that there are ten thousand hypotheses where the
robot can be in the given space. The number of particles is an input that
can be defined by the user. Particles can be distributed differently if prior
information exists.

Each particle is assigned a weight; the density of the particles represents
the distribution of probability. Initially, the weight is 1/N for N particles.
1/N is used so that the sum of all probabilities is equal to one.

The next part of the algorithm is to predict the step using the control
commands. Suppose the robot received a command to move 0.3 meters while
turning by 0.005 radians. It could be possible to move every particle with
this amount, But an error is expected in such a case because the controls
of the robot are not perfect, so the robot would not move exactly as com-
manded. Therefore, adding noise to the particle’s movements is necessary to
have a better chance of determining the robot’s actual movement.

11



2. Localization in mobile robots..............................
After the motion of the robot, the correction step is applied using sensor

observations. It reflects how well the actual sensed data correlate with the
predicted state. Based on that, the particles will be assigned weights, which
estimate how well they match the measurement. The higher the weight is
assigned to the particle, the more likely that this particle is close to the robot
state.

Finally, particles re-sampling is an essential part of the filter in which par-
ticles with small weights are discarded and replaced with new particles that
have higher importance weight. In other meaning, it is the method of replac-
ing more unlikely particles with more likely ones. Re-sampling ensures that
particles stay in the meaningful area of the state space; without it, the filter
is likely to lose track of the reasonable hypotheses.

The process is repeated recursively, the high weighted particles are likely to
survive, where as the less weighted ones are likely to vanish. When the robot
move and the next observation comes in, the particles move forward with
some sampling noise that is associated to the motion, The new observations
are checked, in terms of how likely every particle is related to the new ob-
servation collected by the sensors. Finally, the re-sampling step is performed.

An example of the output of the particle filter is shown in Figure 2.8.
The figure represents the true position of the robot and the estimated posi-
tion from the algorithm implementation. The particle filter is used in the
localization algorithm of the thesis.

2.4.4 Visual SLAM

There are various types of SLAM algorithms. Visual SLAM is a specific type
which includes a 3D vision to perform mapping and localization techniques.
Using a camera has its advantages as it is less weight and does not consume
lots of power; also, it is cheap and easy to use. The algorithms need to track
a set of points or features through successive camera frames to triangulate
their 3D position concerning the camera pose. It is possible to implement the
visual SLAM with only one single 3D vision camera. As long as the camera
is tracking a sufficient number of points in each frame, the surroundings’
structure can be known, and an approximate camera pose can be defined. A
block diagram of standard visual SLAM systems is shown in Figure 2.9.

Visual SLAM systems are widespread and widely used nowadays. For ex-
ample, rovers for exploring Mars use such methods to navigate autonomously.
Drones use visual SLAM systems to travel around cities autonomously. Vi-
sual SLAM can nowadays substitute GPS navigation in specific applications,
especially indoors.
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.....................................2.5. Related work

.
Figure 2.8: Example of particle filter result[6]

Figure 2.9: Visual SLAM System[7]

2.5 Related work

Wen-Tsai Huang, Chun-Lung Tsai, and Huei-Yung Lin proposed two mobile
robot localization techniques for the indoor environment [8]. First, some
images of some markers attached to the ceiling with known positions to
calculate the robot’s location and orientation, like a global method. Second,
an RGB-D camera mounted on the robot is adapted to acquire the color and
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2. Localization in mobile robots..............................
depth images of the environment, like a local method.

Regarding the first method, the marker used in the proposed system was
a black square pattern containing few different combinations of solid white
circles. The marker is designed to provide unique localization information.
This is achieved by assigning three out of four corners as solid white circles, as
shown in Figure 2.10. When the marker image was captured by the camera,
it was immediately identified without the influence of the cameras viewpoint.
Furthermore, the positions of the corner circles are used to rectify the image
and calculate the rotation information of the robot. As for the other circles
in the pattern, they are used to indicate and distinguish the locations of
the markers in the environment. Since the acquired images are colored and
the markers are designed as black and white patterns, they are converted
to grayscale images and then binarized for further processing. The color
information is also filtered to avoid false detection. Sobel edge detection
algorithms [22] are adopted to extract the makers from the white ceiling on
the background.

Figure 2.10: Markers used in the related work [8]

In the second method [8] they used an RGB-D camera. An RGB-D camera
refers to a camera system that can capture the colored image (Red- Green-
Blue) and the associated depth map simultaneously. It usually consists of a
color digital camera and a range sensor that is capable of providing the depth
information of the scene. Given two sets of 3D points, the iterative closest
point algorithm was used to find their relative rotation and translation by
registering the two data sets in the same coordinate system. In this algorithm,
one data set was defined as model, and the other was defined as data. The
objective is to fit the data points to model points on the overlapping part
and find the transformation. As shown in Figure 2.11, the points marked in
red and green in the left figure are the model and data, respectively, prior
to registration. On the right figure, the data points (marked in blue) were
transformed and overlapped with the model points after carrying out the ICP
registration algorithm. Feature matching algorithm was also implemented as
counting only on the registration of 3D point clouds acquired by the range
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sensor might be inaccurate due to the noise of insufficient overlapping parts.
More details can be accessed from the reference mentioned above.

Figure 2.11: Iterative closest point registration algorithm [8]

Another work [23], De Xu, Liwei Han, Min Tan, and You Fu Li dealt with
parallels and corner points on the ceiling as it can serve features for visual
positioning for an indoor mobile robot. Based on the natural features on the
ceiling, a new visual positioning method is proposed. A camera is mounted
on the top of the mobile robot and pointed to the ceiling. At the beginning
of visual positioning, the initial orientation and position of the mobile robot
in the world frame is estimated by a specified block on the ceiling via(PnP)
perspective-n-point-based positioning method. With the motion of the mo-
bile robot, its global orientation is calculated from the main and secondary
lines feature when the ceiling has parallels. In other cases, its global orien-
tation is estimated by point features on the ceiling. Then, its position is
recursively computed with the point features. The error analysis and exper-
iments verify the effectiveness of this method.

Another researchers [24], WooYeon Jeong and Kyoung Mu Lee, illustrated
a new Ceiling Vision-based SLAM technique. Fast and robust CV-SLAM
(Ceiling Vision-based Simultaneous Localization and Mapping) technique us-
ing a single ceiling vision sensor. The proposed algorithm is suitable for a
system that demands very high localization accuracy, such as an intelligent
robot vacuum cleaner. A single-camera looking upward direction (called ceil-
ing vision system) is mounted on the robot, and salient image features are
detected and tracked through the image sequence. The ceiling vision has
an advantage in tracking since it involves only rotation and affine transform
without scale change. Moreover, in this paper, the researchers solved the
rotation and affine transform problems using a 3D gradient orientation es-
timation method and a multi-view description of landmarks. By applying
these methods to the solution for data association, the 3D landmark map
was constructed in realtime through the Extend Kalman filter based SLAM
framework. Furthermore, the relocation problem was solved efficiently by
using a wide baseline matching between the reconstructed 3D map and a 2D
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ceiling image. Experimental results demonstrate the accuracy and robustness
of the proposed algorithm in real environments.
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Chapter 3
Algorithms description

3.1 Software tools

In this section, the software tools, including the operating system and li-
braries used in the thesis, will be described. Also, the methods of proposed
algorithms will be explained in details.

3.1.1 Linux

Linux [25] is a family of open source operating systems. Popular Linux dis-
tributions include Debian, Fedora, and Ubuntu. Ubuntu 14.04 distribution
was installed on the computer of the robot and used as an interface for im-
plementing the algorithms.

3.1.2 ROS

Robot Operating System (ROS) [26] is a collection of frameworks for robot
software development. It provides services designed for various computer
clusters such as hardware abstraction, low level device control, message pass-
ing between processes, and package management. Running sets of ROS based
processes are represented in a graph architecture where processing takes place
in nodes that can receive, post, and multiplex various kinds of messages.

The most used distributions of ROS are Indigo, Kinetic, Lunar and Melodic.
They can be used mainly on Unix operating systems such as Ubuntu or Mac
OS. ROS allows implementation in the most modern programming languages
such as Python, C++, Lisp, Java, and Lua. ROS Indigo was installed on the
(Next Unit of Computing) NUC PC on the robot.

One of the core properties in ROS is passing messages between nodes.
This is done by a Publisher-Subscriber architecture, where a publisher node
creates a topic (or uses an existing one), and all nodes subscribed to this
topic receive its messages. Topics are the buses in which nodes can exchange
messages through it. One topic can be both published into and subscribed
by multiple nodes.
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3. Algorithms description.................................
One important feature in the ROS is the ROS bag [27] which is a backup

of data from ROS messages. It is like a container used for storing the data
sent between sensors at a specific time interval. This feature is very practical
when implementing an algorithm because it can be recorded once and then
played back to simulate a specific scenario as much as needed. The ROS bag
file format is very efficient for recording and playback, as messages are stored
in the same representation used in the network transport layer of ROS. ROS
bags were used during the experiment.

3.1.3 Python

Python programming language [28] is used in the thesis to install the pack-
ages needed and for the implementation of the algorithms.

3.1.4 Open CV

OpenCV (Open Source Computer Vision Library) [29] is a collection of open-
source libraries for computer vision and machine learning. It has more than
47,000 users besides a lot of worldwide researchers. OpenCV libraries contain
more than 2500 algorithms and methods supporting the field of computer
vision and machine learning. OpenCV was built to provide an infrastructure
for computer vision applications and accelerate the use of machine perception
in commercial products.

These algorithms include 2D and 3D feature tool kits, gesture recognition,
object identification, segmentation and recognition, structure from motion,
motion tracking, augmented reality, Human-computer interaction, etc. This
interface supports C++, Python, Java, Matlab, and a wide range of operat-
ing systems such as Windows, Linux, Android, and Mac OS. There is also
an active community forum for troubleshooting.

Several libraries from OpenCV are used in the thesis, like camera calibra-
tion which can be described in details here ([30], [31]), triangulation of points
[32] and, feature detectors and matchers [33].

3.2 Implementation

In this section, the implementation of the algorithms used in the thesis, will
be described.

3.2.1 Camera calibration

Camera calibration is the process of establishing the correct parameters of the
camera taking images during the calibration process. These parameters are
focal length, format size, principal point, and lens distortion. The camera
should be calibrated to achieve higher accuracy and low distortion, which
helps in achieving the most accurate representation of the real world in the
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................................... 3.2. Implementation

captured images. It is an essential step in the computer vision pipeline
because many subsequent algorithms require camera parameter knowledge
as an input. Shown in Equation 3.1 a representation for the camera matrix,
which is the output of the calibration process. The result of the camera
calibration was added to the camera configuration file.

K =

fx 0 cx

0 fy cy

0 0 1

 (3.1)

where,
fx and fy are the focal lengths expressed in units of pixels.
cx and cy are the principle points that are at the image center.

Chessboards are used for camera calibration as they are simple to con-
struct, and the structure of their planar grid defines many natural interest
points in an image. Camera calibration package was used which is imple-
mented in the Open CV library.

Several pictures were taken for the chessboard pattern from different an-
gles. The implemented calibration script was run. The values obtained by
this calibration were proved to be inaccurate. Several colleagues with a simi-
lar type of camera had dramatically different values. So a different calibration
method was chosen, which was using April tag calibration [34]. April tag cal-
ibration method evaluates the calibration process online after each frame. It
gives hints about how the camera should be oriented for the next frames and
guides the user for better calibration matrix as well as distortion coefficients.
Shown in Figure 3.1 the patterns used in the calibration process.

(a) : Chess pattern used for
camera calibration

(b) : April tag patterns for cam-
era calibration

Figure 3.1: Camera calibration patterns
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The result of the calibration is as follows:

Camera matrix =

1089.811186 0.000000 642.894805
0.000000 1093.843267 478.331197
0.000000 0.000000 1.000000



Distortion coefficients =
[
0.205646 0.039258 0.003634 0.001089 0.000000

]
3.2.2 Features definition

Image features are the unique places in any image frame. They correspond
to local regions in the image and are fundamental in many applications in
image analysis like recognition, matching, and reconstruction of 2D images.
Image features illustrate two different types of problems: the detection of
an area of interest in the image, and the classification of local regions in the
image, typically for matching in different images.

The best way to find the features is to look for the regions in images which
have maximum variation when moved in all regions around it. Finding these
image features is called feature detection. In the Figure 3.2, the blue patch is
a flat area and difficult to find and track. Wherever the blue patch is moved,
it looks the same. The black patch has an edge, if it is moved in the vertical
direction (i.e., along the gradient), it changes, however, if it is moved along
the edge (parallel to edge), it will look the same. And for the red patch, it
is a corner. Wherever the patch is moved, it looks different, which means it
is unique[9].

Figure 3.2: Feature detection example[9]

The computer can process such features’ definition using a feature descrip-
tor. It is an algorithm that takes an image and outputs feature vectors.
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................................... 3.2. Implementation

Feature descriptors encode interesting information into a set of numbers and
act as a kind of numerical fingerprint that can be used to distinguish indi-
vidual features from another.

Open CV provides several feature descriptors like SIFT [35], ORB [36],
AKAZE [37], SURF [38] and more. A comparison between several features
descriptors is described in this article ([39]). AKAZE descriptor will be used
according to the previous results achieved in the master thesis done by our
colleague Ing. Jií Koktan in CIIRC [40]. His thesis proved that it is effective
and the most proper to use with such systems.

Shown in Figure 3.3, the camera’s frame after visualizing the AKAZE
feature descriptor. It is obvious that it detects unique parts in the ceiling
like corners of the light frames, edges of the ventilator, and the corners of
the ceiling patterns.

Figure 3.3: AKAZE displayed on the ceiling of the laboratory

In order to illustrate more what those features represent, we can pick one
of those detected features on the ceiling and analyze it. A keypoint and
a descriptor define such features. Keypoint can be called as an interesting
point. It has a spatial location or point in the image that defines what is
interesting or what stands out in the image. What makes keypoints different
between frameworks is the way those keypoints are described. These are
what are known as descriptors. Each detected keypoint has an associated
descriptor that accompanies it. A descriptor is represented in the form of
finite vector which summarizes properties for this keypoint.

The keypoints are special as no matter how the image changes, whether
the image rotates, shrinks ,or expands, or even is translated; it will be still
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possible to find the same keypoints in this modified image when comparing
with the original image as explained in Section 3.2.3.

3.2.3 Features matching

Open CV offers libraries for matching the features in two images. The algo-
rithm is based on comparing and analyzing point correspondences between
the reference image and the target image, as shown in Figure 3.4. If any part
of the image shares similarities greater than some specified threshold then
that part of the image is targeted and considered to include the reference
object [41]. In the thesis, the Brute-Force matcher algorithm [42] is used.

Figure 3.4: Features matching between two images

3.3 Mapping algorithm

In this section, we will illustrate how the mapping of the features detected on
the ceiling will be achieved. The mapping is necessary to be included as an
input for the localization algorithm. The robot will be moving in a specific
trajectory, and the mapping algorithm will be doing the calculations during
the robot movement.

3.3.1 Projection matrix

A projection matrix describes the mapping of some point from 3D world
coordinates to 2D image coordinates. It is necessary to calculate two projec-
tion matrices, one for the previous camera frame, and the second is for the
current camera frame. They were calculated by using equation 4.2.

P = K × [R|t] (3.2)

where,
P is output 3x4 projection matrix.
K is input 3x3 camera matrix.
R is input 3x3 rotation matrix.
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.................................. 3.3. Mapping algorithm

T is input 3x1 translation vector.

K =

fx 0 cx

0 fy cy

0 0 1

 (3.3)

where,
fx and fy are the focal lengths expressed in units of pixels.
cx and cy are the principle points that are at the image center.

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (3.4)

where the rotation matrix is a sequence of three rotations, everyone around
each principle axis.

t =

x
y
z

 (3.5)

where t is the position vector of the robot.

3.3.2 Brute force matching

Brute-Force KNN (k-Nearest Neighbors) matching algorithm takes the de-
scriptor of one feature in the first camera frame and tries to match it with all
other features in the second camera frame recursively with respect to some
distance threshold which is given as an input, and the closest one is returned.
The performance of the algorithm for the task is quite effective, and no issues
are encountered. The pseudocode is shown at Algorithm 1.

Algorithm 1: Brute Force KNN Algorithm
inputs : Q, a set of query points and R, a set of reference point;
output : A list of points (k) reference points for each query;

1 foreach querypoint(q) ∈ Q do
2 Compute distances between q and all r in R
3 Sort the computed distances;
4 Select the nearest k reference points corresponding to k smallest

distances;
5 end foreach
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3.3.3 Triangulation of points

Triangulation is the idea of identifying the position of a point by forming
triangles to it from other known points, as shown in Figure 3.5. It refers to
determining a point in 3D space by knowing its projections onto a certain
number of images.

Figure 3.5: Triangulation scheme with non-parallel cameras [10]

Triangulation = Fn(ProjMat1, P rojMat2, P rojPoints1, P rojPoints2)
(3.6)

where,
ProjMat1 is a 3x4 projection matrix of the previous camera frame.
ProjMat2 is a 3x4 projection matrix of the current camera frame.
ProjPoints1 is a 2xN array of feature points of previous camera frame.
ProjPoints2 is a 2xN array of corresponding matched feature points in the
current camera frame.

3.3.4 Visualizing the map

A trajectory is done by the robot while the camera mounted on the robot is
looking at the ceiling. The current position is known from the Vicon system
as a ground truth. When the robot moves a distance of 30 centimeters, the
algorithm starts to process the calculations, and the known position becomes
the previous position. In contrast, the current position is still tracked via the
Vicon system. The projection matrices are calculated, brute force matching
between the features of the first and second frame is done, putting into con-
sideration filtering the matches according to some given distance threshold,
and the triangulation function is applied. Finally, the output of the trian-
gulate function is plotted. Shown in Algorithm 2 the pseudocode for the
mapping algorithm.

At line 16, the triangulate function is the output needed to be visualized.
The output represents the coordinates of the features in X, Y , and Z direc-
tions besides the orientation of the features w. From lines 20 till 23, swapping
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Algorithm 2: Mapping Algorithm
input : Vicon system node.

Camera node.
Robot movement with keyboard.

output : Map of features.
1 if distance between two consecutive frames > 30 cm then
2 current keypoints, descriptors = DetectAndcompute AKAZE

Features(image)
3 if previous keypoints, descriptors = None then
4 Previous keypoints= Current keypoints
5 Previous descriptors = Current descriptor
6 end if
7 current translation matrix = Matrix(x,y,z)
8 Current rotation matrix = Rotation (Orientation(x, y, z, w))
9 Current projection matrix = camera matrix . [Rotation matrix |

Translation matrix]
10 Brute Force Matching Algorithm (Previous Frame, current

Frame)
11 foreach match in Brute Force Matching do
12 if match.distance < 50 then
13 Take those "good" matches ; // Filter the matches
14 current projection points = current keypoints for m in

good matches
15 previous projection points = previous keypoints for m in

good matches
16 Triangulate (Projection matrices, Projection points)
17 Plot(Triangulate)
18 end if
19 end foreach
20 Previous position = Current position
21 Previous orientation = Current orientation
22 Previous Keypoints = Current Keypoints
23 Previous descriptors = Current descriptors
24 end if

of the variables is necessary so that after doing the calculations, the robot
will consider its current position as a previous position and then move, and
the "real" current position will be accessed from the ground truth, which is
the Vicon system. The algorithm is repeated recursively until the robot does
not receive any new observation from the Vicon system or the camera, or if
the robot did not move a distance of 30 cm. The general architecture of the
mapping algorithm can be seen in Figure 3.6.
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Figure 3.6: General architecture of proposed mapping pipeline

3.4 Localization algorithm

The particle filter is chosen to be used in the localization part. In the next
section, the implementation of the particle filter will be explained.

3.4.1 Particles distribution

The algorithm starts with a uniform random distribution of particles around
all the map.

3.4.2 Motion model

The motion model ensures the movement of the particles according to the
odometry. Noise is added to the motion, to represent any possible irregular
deviations resulting from the robot movement. The noise added is repre-
sented using four parameters, α1, α2, α3, and α4.

α1 = 0.004 (3.7)

α2 = 0.004 (3.8)

α3 = 0.4 (3.9)

α4 = 0.004 (3.10)

The values of these parameters for the Turtlebot robot were determined
on the subject B3M33MKR and appeared to give a reasonable noise for the
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odometry. An example of how the motion model works is shown in Figure
3.7.

Figure 3.7: Motion model[11]

In Figure 3.7,
<x̄, ȳ, θ̄> represents the position and orientation of the robot at time1.
<x̄′, ȳ′, θ̄′> represents the position and the orientation of the robot at time2.
δtrans is distance between two successive positions of the robot.
δrot1 is the orientation of the robot around the Z axis in the first position at
time1.
δrot2 is the orientation of the robot around the Z axis in the second position
at time2.

In order to calculate δrot1, it is necessary to calculate an angle γ using
arctan 2 function which is presented in Figure 3.8. The calculations for the
γ, δtrans, δrot1 and δrot2 are shown in equations (3.11, 3.12, 3.13, 3.14) re-
spectively.

Figure 3.8: Angle γ between the ray to the point (x, y)

γ = arctan 2((ȳ′ − ȳ), (x̄′ − x̄)) (3.11)

δtrans =
√

(x̄′ − x̄)2 − (ȳ′ − ȳ)2 (3.12)
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δrot1 = γ − θ1 (3.13)

δrot2 = θ̄′ − θ̄ − δrot1 (3.14)

A Gaussian distribution is applied with µ = 0, as the sample part in the
equations (3.15, 3.16, 3.17) represents the standard deviation σ of the normal
distribution. Example of the distribution with µ = 0 is shown in Figure 3.9.

δ̂rot1 = δrot1 + sample(α1|δrot1 | + α2|δtrans|) (3.15)

δ̂trans = δtrans + sample(α3|δtrans| + (α4(|δrot1 | + |δrot2|)) (3.16)

δ̂rot2 = δrot2 + sample(α1|δrot2 | + α2|δtrans|) (3.17)

Figure 3.9: Gaussian distribution example[12]

Finally, we add the previous calculated values to the position of the parti-
cles as shown in equations (3.18, 3.19, 3.20).

x′ = x + δ̂transcos(θ + δ̂rot1) (3.18)

y′ = y + δ̂transsin(θ + δ̂rot1) (3.19)

θ̄′ = θ + δ̂rot1 + δ̂rot2 (3.20)

where,
x is the current position of particle in X direction.
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y is the current position of particle in Y direction.
θ is the current heading of particle.

The δ̂rot1 and δ̂rot2 represent the orientation of the robot at time1 and
time2 respectively after adding the noise factors to them as well as δ̂trans

which is the distance that the robot moves. x′, y′ and θ′ are the coordinates
of the particle and its orientation respectively after adding to it noise as well.

3.4.3 Sensor model

When the robot observes the environment using the sensors attached to it,
it updates its particles to more accurately reflect where it is, depending on
a specific sensor model. The sensor model determines the measured data
reliability and assigns weights to the particles according to that. In the
proposed algorithm, the only sensor used is the camera looking at the ceiling.
So, after the distribution of the particles, each particle will be assigned a
virtual camera. The virtual cameras will have the same camera matrix and
resolution as the real one. The particles would scan some particular area
of the ceiling and see which features exist in its camera frame. The area
that the particle covers is equal to the same area that the real camera covers.
The camera resolution is 1.2 Megapixels, which means that the camera frame
covers a width of 1280 pixels and a height of 960 pixels. A demonstration of
how the sensor model works is shown in Figure 3.10.

Figure 3.10: Sensor model

In Figure 3.10, the green dots are the particles distributed in the robot

29



3. Algorithms description.................................
environment. The red squares represent the cameras, and each camera covers
the same area on the ceiling.

Projection points of each particle were calculated as shown in the following
equations.

s

u
v
w

 = P ×


X
Y
Z
1

 (3.21)

where,

P = K × [R|t] (3.22)

More detailed equation,

s

u
v
w

 =

fx 0 cx

0 fy cy

0 0 1


cosθ −sinθ 0 t1

sinθ cosθ 0 t2
0 0 1 t3




X
Y
Z
1

 (3.23)

where,

(u, v) are the coordinates of the projection point in pixels.
(fx, fy) are the focal lengths expressed in pixel units.
(cx, cy) are the principal points that is usually at the image center.
(θ) is the heading angle of the particle.
(t1, t2, t3) are the x, y and z coordinates of the particle respectively.
(X, Y, Z) are the coordinates of a 3D point in the world coordinate space
which refer to the features coordinates.

A brute force matching algorithm is applied to match the descriptors of
the features that the virtual cameras on the particles can see with the real
camera’s current descriptors in real time. Naively, if those descriptors are
close enough, then the particles which can see that feature will be close to
the robot position and should be assigned a high weight.

From the mapping algorithm. A file is saved which has the coordinates of
all the features. The file structure is shown in 3.24.

Mapping output file =


X1 Y1 Z1 W1 Descriptor1
X2 Y2 Z2 W2 Descriptor2
X3 Y3 Z3 W3 Descriptor3
...

...
...

...
...

Xn Yn Zn Wn Descriptorn

 (3.24)

where,
X is the position of the feature in X direction.
Y is the position of the feature in Y direction.
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Z is the position of the feature in Z direction.
W is the heading of the feature.
Descriptor is the descriptor of the feature. It is an array of shape (M x 61).
n is the maximum number of features.

From the equation, s

ui

vi

wi

 = P ×


Xi

Yi

Zi

1

 , theoutputui and vi should cor-

respond in the triangulate file to the descriptori which is related to Xi and
Yi and try to match this descriptor with the current seen descriptors by the
camera. A distance threshold is defined for the algorithm so that if it is not
within the specified range, the feature will be discarded and try to match an-
other one so that the closest feature will be returned. The distance is set to
be as minimum as possible, so that it only returns the very similar features.
A weight is assigned to the particles according to the formula 3.25,

W = 0.001 + N2∑
i d

(3.25)

where,
W is the weight of the particle.
N is the number of matches.
d is an Euclidean distance between the matched features.

This sensor model shows that the W is ∝ 1
d , which means if the distance

between the matched features decreases the weight will increase which refers
to a higher probability that the particle is somewhere very close to the robot.
Other sensor model will be tested and evaluated in Chapter 4.

3.4.4 Resampling method

Re-sampling is the method of replacing unlikely particles with the most likely
ones. There are several ways to do such a process. One of the used algorithms
is the roulette wheel selection. This algorithm is used in applications to select
an item proportional to its probability. Imagining a roulette wheel and the
size of the pockets are proportional to the weight of each particle, as shown
in Figure 3.11.

Several ways can be used with such an algorithm. In the first method of
the roulette wheel selection algorithm as shown in Figure 3.11(a), during the
wheel spinning if the pointer ends up pointing at pocket where for example
w3 is, then it will be picked and put in a new sample set. This process is
repeated n times. It can be described as a binary search algorithm.

O(n log n) (3.26)

So if we have a million particles, the search will be represented in the
equation as 106 log 106, which means it is computationally demanding but
can still work if the number of particles is not that huge.
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(a) : Roulette wheel (b) : Stochastic universal sampling

Figure 3.11: Roulette wheel selection methods

However, Stochastic universal sampling takes a uniform spacing of the
pointers used to point to the pockets. When we spin the roulette wheel once,
we pick the samples which correspond to the pocket at which the pointers
are pointing, as shown in Figure 3.11(b). It is named as a low variance re-
sampling. Its advantage is that it can be done in a linear time, which is not
computational demanding.

O(n) (3.27)

Another advantage is that it can help if a set of samples have the same
weight, this can happen if the sensor observation does not help much to iden-
tify which sample is better than the other one, in such case, it will guarantee
to obtain precisely the same sample set as that we had before. As if the sam-
ples have the same weight, it is not necessary to do the resampling and better
to keep the same samples as it is. Shown in Algorithm 3 the low variance
resampling algorithm which is used as a part of the localization algorithm in
the thesis.

Line 3 in Algorithm 3 shows the drawing of the random number in the
interval between 0; M−1. However, the while loop selects the particles by
repeatedly adding the fixed amount of M−1 to r by choosing the particle
that corresponds to the resulting number.

After the resampling method, the position of the robot is estimated and
can be known. The localization algorithm pseudocode is shown in Algorithm
4.

Line 4 in Algorithm 4 shows that each particle is a hypothesis as to what
the true world state may be at time t, However at line 5, the importance
weight incorporates the measurement into the particle set. Normalizing of
the weights are necessary, and then the resampling algorithm is applied.
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Algorithm 3: Low variance resampling algorithm
1 Resample (Xt, Wt):
2 Xt = ϕ
3 r = rand(0; M−1)
4 c = w[1]

t

5 i = 1
6 for m = 1:M do
7 U = r + (m-1) M−1

8 while U > c do
9 i = i +1

10 c = c+ w[i]
t

11 end while
12 add x[i]

t toXt

13 end for
14 return Xt

Algorithm 4: Localization Algorithm
1 Particle Filter (Xt−1, ut, zt):
2 Xt = Xt = ϕ
3 for i = 1:N do
4 x(i)

t ∼ p(xt|x(i)
t−1, ut) //Motion Model

5 w(i)
t ∼ p(zt|x(i)

t ) //Sensor Model

6 Xt = Xt+ < x
(i)
t , w

(i)
t >

7 end for
8 for i = 1:N do
9 w(i)

t = t−1w
(i)
t //Normalize

10 end for
11 Resample using algorithm 3:
12 {x(i)

t , w
(i)
t , −}N

i=1 = RESAMPLE[{x
(i)
t , w

(i)
t }N

i=1]
13 return Xt
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Chapter 4
Experimental results

In this chapter, the hardware configuration, experiments setup, and the re-
sults of the algorithms will be explained.

4.1 Hardware configuration

The experiments and implementation environment took place in the Czech
Institute of Informatics, Robotics and Cybernetics (CIIRC) on the third
floor in the laboratory of Intelligent and Mobile Robotics. The laboratory
and ceiling are shown in Figure 4.1, where the experiments took place.

Figure 4.1: Left: The ceiling of the laboratory which was used for the mapping
and localization algorithms. Right: The laboratory where the experiments took
place.
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4. Experimental results..................................
4.1.1 Robot description

The robot used is called TurtleBot [43]. TurtleBot is a low-cost, personal
robot kit with open-source software. TurtleBot was created at Willow Garage
by Melonee Wise and Tully Foote in November 2010.

The robot has a flat cylindrical shape with a diameter of 354 mm and a
height of 89 mm, as shown in Figure 4.2. Its weight is approximately 6.3 kg,
and the maximum load capacity is 5 kg. Furthermore, the robot is equipped
with a motor for every wheel and one wheel in the middle for stability. Turtle-
bot is able to rotate in its place up to 180. Its maximum driving speed is
limited to 0.65 meters per second.

(a) : Front view (b) : Top view

(c) : Side view

Figure 4.2: Turtlebot dimensions

4.1.2 Intel NUC computer

The central control unit of the robot is the Intel NUC5i5RYK computer, as
shown in Figure 4.3. Ubuntu 14 and ROS Indigo were installed on the (Next
Unit of Computing) NUC. This computers main advantage is its small size
and weight, so it is very suitable for being placed on Turtlebot. The power
supply to the NUC is taken from the base of the robot. The specifications
of the computer are shown in Table 4.1.
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(a) : NUC Intel computer (b) : NUC attached to the Robot

Figure 4.3: NUC Intel computer attached to the robot

Processor Intel Core i5-5250U
Graphics Card Intel HD Graphics 6000

RAM 16 GB
Storage capacity 230 GB

Ports 4x USB 3.0, mini HDMI 1.4a, mini Display Port 1.2, 3,5mm Jack

Table 4.1: NUC specifications.

4.1.3 Camera

The camera used in the experiments is the Basler daA1280-54uc (S-Mount).
It is shown in Figure 4.4. It delivers 54 frames per second at 1.2 MP resolu-
tion.

Figure 4.4: Basler camera lens
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4. Experimental results..................................
4.1.4 Vicon system

The Vicon system [44], shown in Figure 4.5 is a motion capture system that
can be used to record and analyze motion. The system is used in robotics,
film and gaming industry, and several medical fields. The goal is to obtain
an accurate record of the robot’s position, orientation, and movement.

The system covers is attached to the ceiling and it covers all the labo-
ratory. It has a specific scene from several perspectives. The cameras are
synchronized with each other emitting rays that react with some reflective
markers to create an image of a moving object. Those markers are attached
to the robot during its movement. It operates using an individual PC in the
laboratory. Vicon Tracker software is used to visualize the position of the
markers. The Vicon system has a relatively high accuracy, which is about a
tenth of a millimeter. A study of Vicon system positioning performance is
accessible on this reference [45].

(a) : Vicon tracker markers (b) : Vicon camera

Figure 4.5: Vicon camera and tracker markers

Figure 4.6: Markers attached on the robots appearing on the Vicon tracker
software
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4.2 Experiments

In this section, we will drive the robot in different trajectories and test the
mapping and localization algorithms.

4.2.1 Experiments setup

Two different trajectories are performed. The first trajectory is a rectangular
shape, and the second one is in the form of a straight line as shown in Figures
(4.7a, 4.7b) respectively.

(a) : Rectangular trajectory (b) : Straight line trajectory

Figure 4.7: Robot different trajectories

4.2.2 Mapping results

The 2D and 3D visualizations of the rectangular trajectory are shown in
Figure 4.8. The results look as expected because the features are forming
a rectangle. However, some features appears out of the map range, and
this can happen because of some external factor that was captured via the
camera during the motion of the robot, for example, random light source.
These features are filtered, and the rest of the features are considered as a
valid map.

The output of the straight-line trajectory is shown in Figure 4.9. The robot
was moving under repetitive panels of light. At the end of the trajectory, a
circular ventilator appeared in the camera frame, which can be observed in
Figure 4.1. The results reflect the real movement of the robot as well.

4.2.3 Localization results

This section shows the results of the particle filter. Different sensor models
will be evaluated. The particles formed clusters around the robot position
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4. Experimental results..................................

(a) : 2D visualization (b) : 3D visualization

Figure 4.8: Map of features for the rectangular trajectory

(a) : 2D visualization (b) : 3D visualization

Figure 4.9: Map of features for the straight line trajectory

as shown in Figure 4.10.

However, evaluation of different sensor models is necessary to see how
robust the algorithm will estimate the robot position in a long time span as
the particles could deviate with time from the robot position especially if
there are no matches found between the descriptors that the particles and
the camera can detect. Different sensor models were tested.

W = 0.001 + N2∑
i d

(4.1)

W = 0.001 + N2 (4.2)

where,
W is the weight of the particle.
N is the number of matches.
d is the euclidean distance between the matches.
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Figure 4.10: Estimated position of the robot from the particle filter

A comparison between them is shown in Table 4.2.

Sensor Model W = 0.001 + N2∑
i

d W = 0.001 + N2

Usability

Thanks to this sensor model,
the weights are assigned high
values in the area where the
robot is, which helped a lot

in keeping track of the robot,
the highly weighted particles
are all accumulated close to
the robot position as shown

in Figure 4.11, this is because
the W is ∝ 1

d , given N is
known number of matches

and d ̸= 0

Unlike the other sensor model,
this model proved to assign
high weights even for the par-
ticles which are far from the
robot as shown in Figure 4.12.
This can cause a wrong es-
timate of the robot position
with time.

Relationship
between variables

d

W

N2

W

Table 4.2: Sensor model comparison
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4. Experimental results..................................

Figure 4.11: Weights assigned to the particles using W = 0.001 + N2∑
i

d
Sensor

model

Figure 4.12: Weights assigned to the particles using W = 0.001 + N2 Sensor
model
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Chapter 5
Conclusion and future work

The thesis has proposed a practical method for the localization of a robot us-
ing a camera looking at the ceiling. The principles and methods of mapping
and localization algorithms were described. OpenCV libraries were used in
camera calibration, features detecting and matching, and triangulation of
points. A particle filter was used in the estimation of the robot position. A
comparison between different sensor models was accomplished. The work
was established in Python programming language in the ROS environment.

For the validation of the system, two experiments were accomplished, as
described in Section 4.2. It was concluded that the mapping algorithm is
effective even with such a repetitive ceiling as it was, in the laboratory, the
visualized output reflected the landmarks which were seen by the camera,
also, with prior knowledge regarding the X, Y, and Z coordinates of the
arena from the Vicon system, the features appeared in the correct coordi-
nates.

Clusters of particles were formed around the robot’s actual position and
keep track of the robot movement. A comparison of two sensor models was
achieved, and it was proved that the sensor model, which includes the Eu-
clidean distance between the matches as a factor, is more effective. Moreover,
the evaluation reveals that the particles with higher weights are more concen-
trated near the robot position, which lead to better accuracy in estimating
the robot coordinates.

As a Future work, Another programming language can be used as the
particle filter is a demanding computational algorithm. Using another pro-
gramming language that is faster in execution than Python; for example,
C++ can lead to a more reliable system. Secondly, testing the algorithm in
different environments will be beneficial for evaluation. Finally, a clustering
algorithm can be implemented so that instead of having clusters around the
robot, the algorithm can choose one particle only to track.
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