ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ

Ústav automobilů, spalovacích motorů a kolejových vozidel

Diplomová práce

Šestinápravová kloubová Cargo tramvaj s otočnými podvozky

Six-axle articulated Cargo tram with pivoting bogies

Studijní program:	Strojní inženýrství
Studijní obor:	Dopravní, letadlová a transportní technika
Vedoucí práce:	doc. Ing. Josef Kolář, CSc.

Praha 2020

Pavel Čermák

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení:	Čermák	Jméno: Pavel	Osobní číslo: 457650
Fakulta/ústav:	Fakulta strojni		
Zadávající k a te	dra/ústav: Ústav ai	utomobilů, spalovacích motorů a	kolejových vozidel
Studijní progran	m: Strojní inženýrst	ví	
Studijní obor:	Dopravni, letadlo	vá a transportní technika	
ÚDAJE K DIPI	LOMOVÉ PRÁCI		
Název diplomové	práce:		
Šestinápravová	kloubová Cargo tra	mvaj s otočnými podvozky	
Název diplomové	práce anglicky:		
Six-axle articula	ted Cargo tram with	i pivoting bogies	
Pokyny pro vypra	cování:		
 Typový výkres O Hmotnostní rozb 3D model základ Pevnostní výpod Výpočet bezpeč Průvodní techní 	argo tramvaje a oboust or kloubové Cargo tram Iní konstrukce kloubové tet pružících prvků tram nosti proti vykolejení při ckou zprávu a sestavný	němé tramvajové soupravy měřítku 15 vaje a výpočet statických kolových a ná Cargo tramvaje. vajového podvozku jízdě v definovaném traťovém úseku. výkres zástavby středního podvozku p	50 a výpočet obrysu pro konstrukci. ápravových zatížení. od kloubovou Cargo tramvaj.
Seznam doporuče	ené literatury:		
Odborné časopisy, Skripta ČVUT: KOLÁŘ, J.: Teoret ŠÍBA, J.: Kolejová ŠÍBA, J.: Kolejová MARUNA, Z., HOF podvozky	firemní literatura, pater cké základy konstrukce vozidla II. vozidla II - pojezd FMANN, V., KOULA, J.	ntová literatura, normy. : kolejových vozidel KROUPOVÁ, Z.: Met odika konstruovár	ní kolejových vozídel - osobní a nákladní
Jméno a pracoviš	tě vedoucí(ho) diplon	nové práce:	
doc. Ing. Josef	Kolář, CSc., ústav	automobilů, spalovacích motorů	a kolejových vozidel FS
Jméno a pracoviš	tě druhé(ho) vedouci	(ho) nebo konzultanta(ky) diplomov	/é práce:
Datum zadání di Platnost zadání doc. Ing. Josef	plomové práce: 28.0 diplomové práce:	04.2020 Termín odevzdání doc. Ing. Oldřich Vítek, Ph.D.	diplomové práce: 15.07.2020

Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci. <u>30. 4. 2020</u> Datum převzetí zadání Podpis studenta

CVUT-CZ-ZDP-2015.1

Prohlášení

Prohlašuji, že jsem Diplomovou práci s názvem: "Šestinápravová kloubová Cargo tramvaj s otočnými podvozky" vypracoval samostatně pod vedením doc. Ing. Josefa Koláře, CSc. s použitím literatury uvedené na konci mé bakalářské práce v seznamu použité literatury.

V Praze 14. 7.2020

Pavel ČERMÁK

Climp

Poděkování

Tímto bych chtěl poděkovat doc. Ing. Josefu Kolářovi, CSc. a Ing. Janu Kalivodovi, Ph.D. za odborné vedení, cenné rady a příjemný přístup při tvorbě mé diplomové práce. Dále bych chtěl poděkovat Bc. Janu Gruberovi a Bc. Matěji Dynybylovi za poskytnutí jejich konstrukčních CAD modelů do této práce.

Anotační list

Jméno autora:	Bc. Pavel Čermák					
Název BP:	Šestinápravová kloubová Cargo tramvaj s otočnými podvozky					
Anglický název:	Six-axle articulated Cargo tram with pivoting bogies					
Rok:	2020					
Studijní program:	Strojní inženýrství					
Obor studia:	Dopravní letadlová a transportní technika					
Ústav:	Ústav automobilů, spalovacích motorů a kolejových vozidel					
Vedoucí BP:	doc. Ing. Josef Kolář, CSc.					
Bibliografické údaje:	počet stran: 69					
	počet obrázků: 63					
	počet tabulek: 59					
	počet příloh: 5					
Klíčová slova:	Cargo tramvaj, průjezdný průřez, kontejner, kloubová tramvaj, Jakobsův podvozek, vypružení, kolébkový podvozek, vinutá pružina, bezpečnost proti vykolejení					
Key words:	Cargo tram, clear cross-section, container, articulated tram, Jakobs bogie, suspension, cradle chassis, coil spring, derailment safety					

Abstrakt

Námět mé diplomové práce vznikl v návaznosti na projekt pro transport a zpracování směsného komunálního odpadu v Praze, který probíhal na ČVUT Fakultě strojní ústav konstruování. Projekt probíhal pod vedením prof. Ing. Vojtěcha Dynybyla, Ph.D.

Má diplomová práce se v souladu se zadáním zabývá několika hlavními konstrukčními výpočty pro návrh kloubové Cargo tramvaje. Tyto postupy jsem se snažil aplikovat na můj koncept Cargo tramvaje. Diplomová práce obsahuje výpočet kontroly obrysu pro konstrukci tramvaje ve vazbě na průjezdný průřez pro ověření, zda souprava nekoliduje s prvky trati. Dále jsem vytvořil 3D CAD konstrukční model jednosměrné Cargo tramvaje s typovým výkresem. Tento model není rozkreslený do všech detailů, obsahuje jen hlavní nosné a funkční prvky a vnější tvar kabiny pro řidiče. Potom jsem vytvořil hmotnostní rozbor hlavních částí a rozložení hmoty dvoučlánkové tramvaji a z toho jsem uvedl výpočet statických kolových a nápravových zatížení. Tato diplomová práce také obsahuje větší část, která se zabývá návrhovým pevnostním výpočtem sekundárního vypružení tramvajového podvozku. Zabýval jsem se také optimalizací sekundárního vypružení z hlediska tuhosti pro Cargo kloubovou tramvaj. V příloze je sestavný výkres dvou verzí uložení duplexní pružiny. V další kapitole jsem se zabýval návrhovými výpočty bezpečnosti proti vykolejení pro Cargo tramvaje. Z této zástavby je v příloze přiložen sestavný výkres.

Tato práce je studentské dílo (studie), ve které jsem se snažil uplatnit a aplikovat poznatky z dvouletého magisterského studia oboru kolejových vozidel na ČVUT. Pro uskutečnění výroby takového vozu by bylo potřeba provézt mnohem více výpočtů a konstrukčních modelů. Nicméně konstrukční návrhy, které jsou v této práci, jsou jedny z prvních, které se při návrhu provádějí. Jsou někdy rozhodující při posuzování, zda je vozidlo možné vyrobit, aby fungovalo a splňovalo normy pro kolejová vozidla.

Abstract

The topic of my diploma thesis was created in connection to the project on transport and processing of mixed municipal waste in Prague, which took place at the CTU Faculty of Mechanical Engineering. The project took place under the leadership of prof. Ing. Vojtech Dynybyl, Ph.D.

My diploma thesis deals with several main designs of calculations for the design of an articulated Cargo tram. I tried to apply these procedures to my Cargo tram concept. The diploma thesis contains the calculation of the control cross-section to verify whether the tram does not collide with the track elements. I also created a 3D CAD construction model of a one-way Cargo tram with a type drawing. This model is not drawn into all the details, it contains only the main load-bearing and functional elements and the external shape of the driver's cab. Then I created a mass analysis of the main parts and the mass distribution of a two-section tram and from this I presented the calculation of static wheel and axle loads. This work also includes a larger part, which deals with the design strength calculation of the secondary suspension of the tram chassis. I also dealt with the optimization of the secondary suspension in terms of rigidity for the Cargo tram. The appendix contains an assembly drawing of two versions of the duplex spring bearing. In the next chapter, I dealt with the design calculations of derailment safety for the Cargo tram. At the end of this work, I describe my design of the installation on the second Jakobs chassis of the Cargo tram. An assembly drawing of this development is attached in the appendix.

This work is a student work and it is a tangible application of two years of study in the field of rolling stock at CTU. To carry out the production of such a car, it would be necessary to perform many more calculations and construction models. However, the designs that are in this work are among the first to be made in the design and are sometimes crucial in assessing whether a vehicle can be manufactured to function and meet rolling stock standards.

Obsah

Obsah

1.	Úv	od	9
2.	Vý	počet konstrukčního obrysu Cargo tramvaje1	2
	2.1.	Kontrola předního článku na vybočení 1	5
	2.2.	Kontrola zadního článku na vybočení 1	8
	2.3.	Výškové snížení průjezdného průřezu1	9
	2.4.	Zhodnocení výsledků kontroly obrysu2	20
3.	3D	konstrukční model kloubové Cargo tramvaje2	22
4.	Hn	notnostní rozbor dvoučlánkové kloubové Cargo tramvaje2	23
5.	Vý	počet statických kolových a nápravových zatížení2	25
6.	Pev	vnostní výpočet pružících prvků tramvajového podvozku2	28
	6.1.	Návrh parametrů šroubových vinutých duplexních pružin	30
	6.2.	Příčná tuhost příčného vypružení	36
	6.2.1	. Aplikace pryžového prvku3	38
	6.2.2	. Charakteristika příčného vypružení4	11
	6.3.	Kontrola duplexní pružiny na únavu4	13
	6.4.	Kontrola vzpěrné stability duplexní pružiny4	15
	6.5.	Kontrola duplexní pružiny na převrácení4	17
7.	Vý	počet bezpečnosti proti vykolejení při jízdě v definovaném traťovém úseku4	18
	7.1.	Stanovení minimální kolové síly Q _{min}	50
	7.1.1	. Analytické odvození změny kolové síly od podvozku5	51
	7.1.2	.Změna kolové síly od skříně pomocí MBS simulace v programu Simpack, p vyjíždění prvního podvozku z převýšen	oři 52
	7.1.3	. Výpočet změn kolových sil v programu Simpack při vyjíždění druhého podvozku převýšení	z 53
	7.1.4	. Číselný výpočet změn kolových sil5	55
	7.2.	Bezpečnost proti vykolejení	58
8.	Ses	stavný výkres zástavby středního podvozku pod kloubovou Cargo tramvaj6	50
9.	Záv	věr6	54
Př	ílohy	<i>.</i>	58

1. Úvod

Návrh Cargo tramvaje vznikl v rámci projektu SKOTRANS. Součástí projektu bylo najít způsob, jak přepravovat uzavřené kontejnery s komunálním odpadem, co nejšetrněji k okolnímu prostředí, zejména ve vztahu k čistotě ovzduší v ulicích města.

Prvním posuzovaným konceptem byly tramvajové soupravy pro přepravu čtyř kontejnerů, naplněných směsným komunálním odpadem, které vzniknou úpravou již existujících tramvajových vozů. Pro úpravu byl vybrán vůz Tatra T3, protože je to vysluhující typ, který je pražským DP postupně nahrazován novými typy vozů. Upravené vozy T3 nebyly ovšem pro Cargo tramvajovou soupravu vhodné, neboť byla tramvajová souprava tvořená čtyřmi spřaženými vozy T3 příliš dlouhá a poskytovala s ohledem na maximální nápravové zatížení do 90 kN malou měrnou přepravní kapacitu. Myšlenka vytvoření Cargo tramvaje z vozů T3 byla i s ohledem na jejich únosnost, stáří a předpokládanou životnost nevhodná. Mnoho dalších podrobných informací o projektu SKOTRANS je k nalezení v těchto zdrojích [3] [4]. Proto realizační tým SKOTRANSu-Projektu K2 došel k závěru, že bude potřeba navrhnout novou tramvaj, která bude konstrukčně vhodnější. Tato diplomová práce pojednává o konstrukci nově navržené Cargo tramvaje. V této práci se každá kapitola věnuje určité konstrukční části, dle zadání mojí diplomové práce. Tato diplomová práce nepředstavuje kompletní návrh tramvajového vozu, ale studentskou práci, která se zaměřuje na hlavní konstrukční části návrhu tramvaje. Kompletní konstrukcí takovéto Cargo tramvaje se v dnešních firmách zabývají desítky inženýrů někdy i několik let.

Obr. 1 Zmenšený typový výkres Cargo tramvaje. (Typový výkres vozu v měřítku 1:50 je v příloze práce)

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

Na obrázku Obr. 1 je typový výkres navržené jednosměrné kloubové Cargo tramvaje, která je naložena dvěma kontejnery s komunálním odpadem. Pro vytvoření tramvajové soupravy lze zapojit dvě kloubové Cargo tramvaje zády k sobě a tím lze soupravu využívat jako obousměrnou Cargo soupravu, jak je vidět na obrázku Obr. 2.

Tramvaj má na čele kabinu pro řidiče. Na střeše kabiny je jeden pantograf, který se skládá ve směru jízdy, aby nekolidoval s nákladem, hlavně při vykládání a nakládání. Vůz se skládá ze dvou nosných rámů, které jsou spojeny kloubem se dvěma stupni volnosti tzn., že první a druhý článek se vůči sobě nemohou kolébat v ose x, tedy ve směru jízdy.

Tím se dostáváme k řešení pojezdu kloubové článkové Cargo tramvaje. Tu tvoří dvounápravové trakční podvozky Komfort plus, který vyrábí Krnovské strojírny s.r.o. Na tomto podvozku jsem v následujících kapitolách této práce navrhl vypružení. Přední a zadní trakční podvozky jsou otočně uloženy pod nosnými rámy. Druhý dvounápravový trakční podvozek je umístěn pod kloubovým spojením článků a natáčí se kolem společného otočného čepu, proto jej můžeme nazvat *Jakobsův trakční podvozek*. Všechna dvojkolí jsou hnaná, čili Cargo tramvaj využívá sto procent adheze v režimu brzdy i pohonu. Z hlediska pohonu splňuje Cargo tramvaj požadavky Pražské integrované dopravy.

Obr. 2: Typový výkres obousměrné soupravy Cargo tramvaje. (Typový výkres soupravy v měřítku 1:50 je v příloze práce)

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

Pod hlavními rámy jsou zavěšeny tři trakční měniče a jeden brzdový odporník. Mezi kontejnery je umístěná elektrická baterie.

Zjednodušený model trakčního podvozku je vidět na obrázku Obr. 3. Tento podvozek jsem překreslil po vzoru podvozku Komfort plus Krnovských strojíren s. r. o. Podvozek má pro snadné překonávání dílčích zborcení tramvajové tratě torzně poddajný rám (v Obr. 3 tyrkysovou barvou). Rám podvozku je typu H, čili je to otevřený, vnější rám dosedající na dvojkolí vně kol, viz obrázek Obr. 3. Rám podvozku je tvořen dvěma "prolomenými" podélníky spojenými ve středové rovině dvěma příčníky. Podélníky a příčníky jsou svařované konstrukce.

Podvozek má primární a sekundární vypružení. Primární vypružení je upevněno v ložiskové komoře (v Obr. 3 světle zelenou barvou) a je řešeno dvojicí pryžových pružin. Sekundární vypružení tvoří šroubovité vinuté pružiny mezi kolébkou a rámem podvozku. Nosný rám vozidla dosedá na kolébku přes čtyřbodové kuličkové ložisko. Trakční podvozek má částečně odpružený individuální pohon dvojkolí. Pohon se skládá z asynchronního trakčního motoru (v Obr. 3 modrou barvou) a částečné odpružené dvoustupňové čelní nápravové převodovky, která je spojena s motorem přes kloubový hřídel opatřený kardanovými klouby. Převodovka je částečně odpružená což znamená, že její výstupní hřídel je nalisována na osu dvojkolí a na druhém konci je převodovka opřena o pružnou závěsku na rámu podvozku. Provozní brzdou trakčních podvozků je brzda elektrodynamická tzn., že brzdí elektromotory, které posílají elektrickou energii nazpět do troleje, nebo ji maří v brzdovém odporníku. Záložní brzdou podvozku je brzda kotoučová sloužící k dobrzďování a zajištění vozidla. Podvozek má ještě elektromagnetickou třecí kolejnicovou brzdu pro nouzové brzdění (v Obr. 3 žlutou barvou).

Obr. 3: Model podvozku Komfort plus z Krnovských strojíren s.r.o.

2. Výpočet konstrukčního obrysu Cargo tramvaje

Toto je jedna ze zásadních částí návrhu vnějších rozměrů tramvajového vozidla. V jednoduchosti jde o to, aby vozidlo projelo bez kolize po celé infrastruktuře, ve které bude provozováno. To zajistíme tím, že článkové tramvajové vozidlo nebude žádnou svou částí přesahovat vypočítaný obrys pro konstrukci.

Základní část obrysu pro tramvaj je hraniční linie příčného průřezu v rovině kolmé na podélný směr dané tratě. Za tuto linii nesmí zasahovat žádná část tramvajového vozidla jedoucího po této trati. Vztažná linie statického obrysu pro vozidlo je definována ve vazbě na průjezdný průřez tramvajové trati tak, že mezi průjezdným průřezem tramvajové trati a statickým obrysem musí zůstat přiměřená vůle, tzn. přiměřený bezpečný prostor, který má zajistit, aby se tramvajové vozidlo nedostalo do kolize se stavebními částmi tramvajové trati.

ČSN 28 0318, viz obrázek Obr. 4, definuje linii obrysu pro tramvajová vozidla, který je tvořen dvěma částmi:

- **sběračovou částí**, která vymezuje prostor pro pantografický sběrač. Do tohoto prostoru nesmí zasahovat žádná jiná část vozidla.
- základní část, která vymezuje základní prostor pro vozidlo

Horní vymezení obrysu pro vozidla určuje maximální výšku povrchu prázdného vozidla s novými koly od roviny temena koleje. Spodní vymezení obrysu pro vozidla určuje minimální vzdálenost povrchu maximálně zatíženého vozidla s maximálně opotřebenými (ojetými) koly od roviny temena koleje.

Obr. 4: Norma průjezdného průřezu a statického obrysu pro tramvaje.

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

Průjezdný průřez tramvajové trati (PP TT) tvoří obrys obrazce v rovině kolmé k ose koleje, který vymezuje vzdálenost vně ležících staveb, zařízení, předmětů a jiných kolejových vozidel na sousední trati a sousedních jízdních pruhů nekolejové dopravy od svislé osy průjezdného průřezu a od roviny temene koleje tak, že nad kolejí vzniká volný prostor pro průjezd tramvajového vozidla.

Velikost bezpečnostní vůle a vzájemné souvislosti mezi PP TT a obrysem pro vozidlo v přímé koleji a v obloucích o poloměru oblouku $R_o \ge 1000 m$ dokumentuje Obr. 4. Levá strana platí pro situaci v širé trati, pravá strana pro situaci v zastávce. Z hlediska kolize je nejnebezpečnější situace u nástupiště, neboť linie PP TT a obrysu pro vozidlo jsou totožné a dále oblast pro vaznici střechy vozidla, kde je příčná vůle 200 mm.

V této práci jsem spočítal **statický obrys pro konstrukci pro tramvaje**, *podle ČSN 28 0318*, který při výpočtu zúžení respektuje pouze statické svislé výchylky a příčné posuvy rovnoběžné s rovinou temene koleje s podmínkou, že žádná část vozidla při tomto příčném pohybu nesmí při kontrole v přímé trati překročit obrys pro tramvaj. Je tu ovšem výjimka pro zrcátka, která můžou zasahovat mimo obrys. V některých normách je i definován prostor, kde se zrcátka mohou nacházet. Další speciální vybavení jako například kamera, musí být uvnitř statického obrysu.

ČSN 28 0318								
Poloměr Rozšíření vnější části oblouku obrysu pro vozidlo		Rozšíření vnitřní Mezní pološířka části obrysu pro obrysu pro vozidlo vozidlo vnější		Mezní pološířka obrysu pro vozidlo vnitřní				
Ro [m]	Δ_a [m]	Δ_i [m]	$k + \Delta_a [m]$	$k + \Delta_i [m]$				
20	0,65	0,31	2	1,66				
22	0,6	0,28	1,95	1,63				
25	0,53	0,235	1,88	1,585				
30	0,44	0,185	1,79	1,535				
35	0,38	0,15	1,73	1,5				
40	0,33	0,125	1,68	1,475				
45	0,29	0,105	1,64	1,455				
50	0,26	0,085	1,61	1,435				
75	0,165	0,035	1,515	1,385				
100	0,115	0,01	1,465	1,36				
150	0,065	0,005	1,415	1,355				
200	0,045	0	1,395	1,35				
250	0,03	0	1,38	1,35				
300	0,02	0	1,37	1,35				
400	0,015	0	1,365	1,35				
500	0,01	0	1,36	1,35				
750	0,005	0	1,355	1,35				
1000	0	0	1,35	1,35				

Tab. 1: Tabulka mezních rozšíření vozidla v závislosti na poloměru oblouku.

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

Ve směrových obloucích o poloměru $R_o < 1000 m$ se provádí nesymetrické rozšíření obrysu pro vozidlo. Šířka základní části obrysu pro vozidlo v oblouku se oproti šířce základní části obrysu pro vozidlo v přímé koleji zvětšuje o hodnoty Δ_a a Δ_i . Tyto hodnoty jsou proměnné s poloměrem oblouku. Norma ČSN 28 0318 obsahuje tabulku mezního rozšíření obrysu pro tramvaje. To znamená, že pro jednotlivé poloměry oblouků dané normou budou různé mezní obrysy tramvaje.

Obrys pro vozidlo v oblouku není symetrický, neboť pro rozšíření platí $\Delta_a > \Delta_i$. Označímeli si základní pološířku obrysu pro vozidlo v přímé trati písmenem k, potom mezní pološířku vnější části obrysu pro vozidlo v oblouku můžeme vyjádřit vztahem $k + \Delta_a$ a mezní pološířku vnitřní části obrysu pro vozidlo v oblouku můžeme vyjádřit vztahem $k + \Delta_i$. Hodnoty mezní pološířky obrysu pro tramvajové vozidlo udává tabulka Tab. 1.

V diplomové práci jsem zkontroloval, zda navržená Cargo tramvaj nepřesahuje mimo obrysy dané normou.

Kloubová Cargo tramvaj má dva nosné rámy, jeden pro přední článek a druhý pro zadní článek, které se svými rozměry liší. Proto jsem v této kapitole provedl kontrolu pro oba rámy. Nosný rám předního článku je uložen na předním podvozku a na prostředním podvozku. To znamená, že jednotlivé články kloubové tramvaje představují samostatný čtyřnápravový vůz, jehož rozměry, důležité pro kontrolu obrysu pro konstrukci, jsou zobrazeny na obrázku Obr. 5.

Na obrázku Obr. 6 jsou naznačené vybrané příčné řezy vozu, které jsem kontroloval. V tabulce Tab. 2 jsou uvedeny všechny potřebné vstupní parametry pro kontrolu obrysu.

Obr. 5: Schéma čtyřnápravového vozu.

2.1. Kontrola předního článku na vybočení

Vstupní data pro kontrolu obrysu předního článku Cargo tramvaje jsou uvedena v tabulce Tab. 2 a poloha kontrolovaných průřezů je zobrazena na obrázku Obr. 6.

Obr. 6: Přední rám Cargo tramvaje. Polohy kontrolovaných míst na voze.

Vstupní data výpočtu								
Délka skříně vozidla (přední čelo – zadní čelo)	$L_s =$	12,548	[m]					
Vzdálenost otočných čepů	a =	6,400	[m]					
Rozvor podvozku (u jednonápravového podvozku p = 0)	p =	1,900	[m]					
Rozvor podvozku pod zadním článkem	p ₃ =	1,900	[m]					
Šířka kolejového kanálu	2σ=	0,020	[m]					
Příčná vůle ve vedení dvojkolí	q =	0,0050	[m]					
Příčná vůle podvozek – skříň	p =	0,020	[m]					
Vzdálenost prvního vnějšího řezu od roviny otočného čepu předního podvozku	$n_{a1} =$	2,883	[m]					
Šířka vozové skříně v rovině prvního vnějšího příčného řezu, tj. v odlehlosti nal	$2.b_{a1} =$	1,520	[m]					
Vzdálenost druhého vnějšího řezu od roviny otočného čepu předního podvozku	$n_{a2} =$	1,561	[m]					
Šířka vozové skříně v rovině druhého vnějšího příčného řezu, tj. v odlehlosti n _{a2}	$2.b_{a2} =$	2,500	[m]					
Vzdálenost vnitřního průřezu od roviny otoč. čepu podvozku	n _{i2} =	2,438	[m]					
Šířka vozové skříně v odlehlosti n _{i12}	$2.b_{i2} =$	2,438	[m]					
Vzdálenost vnitřního průřezu od roviny otoč. čepu podvozku	n _{i1} =	3,200	[m]					
Šířka vozové skříně v odlehlosti n _{i11}	$2.b_{i1} =$	2,338	[m]					

Tab. 2: Vstupní data k výpočtu obrysu přední skříně.

V následující části je spočítáno vybočení skříně vnější $E_a(n_a)$ a vnitřní $E_i(n_i)$ ve vybraných řezech představku n_a a střední části n_i . Kontrola průřezu skříně vozidla spočívá ve splnění podmínky:

$$E_a(n_a) \le k + \Delta_a(R_o)$$
 Rov. 1
 $E_i(n_i) \le k + \Delta_i(R_o)$ Rov. 2

k ...mezní pološířka v přímé trati

 $k + \Delta_a(R_o) \dots$ mezní vnější pološířka v oblouku $k + \Delta_i(R_o) \dots$ mezní vnitřní pološířka v oblouku

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

V rovnici Rov. 3 je odvozen vztah pro vnější vybočení v řezu n_a ve směrovém oblouku R_o. V rovnici Rov. 4 je odvozen vztah pro vnitřní vybočení v řezu n_i ve směrovém oblouku R_o. Tyto vztahy platí pro dvoupodvozkové vozidlo typu B₀'B₀' a jsou převzaté z [1].

$$\frac{E_a(n_a) =}{R_o^2 + b_a^2 + \left(\frac{a}{2} + n_a\right)^2 - \frac{p^2}{4} - \frac{a^2}{4} + d^2 + \frac{4d}{a}\left(\frac{a}{2} + n_a\right)\sqrt{R_o^2 - \frac{p^2}{4} - \frac{a^2}{4} + d^2} + 2b_a\sqrt{R_o^2 - \frac{p^2}{4} - \frac{a^2}{4} + d^2}\sqrt{1 - \frac{4d^2}{a^2}} - R_o$$

Rov. 3

$$E_{i}(n_{i}) = R_{0} - \sqrt{R_{0}^{2} - \frac{p^{2}}{4} + d^{2} + b_{i}^{2} - a * n_{i} + n_{i}^{2} - 2d\sqrt{R_{0}^{2} - \frac{p^{2}}{4}} - 2b_{i}\sqrt{R_{0}^{2} - \frac{p^{2}}{4} - \frac{a^{2}}{4} + d^{2} - 2d\sqrt{R_{0}^{2} - \frac{p^{2}}{4}}}$$

Rov. 4

Do těchto vztahů jsou při výpočtu číselně dosazeny hodnoty předního článku Cargo tramvaje. Výsledky pro požadované poloměry oblouku a vybrané řezy jsou uvedeny v Tab. 3.

	Výsledky kontroly vozidla Vypočtená data kontroly průřezu vozidla dle statického obrysu												
Kontrola vybočení předního představku						Kontrola vybočení střední			Kontrola vyt	očení předníh	io představki	Kontrola vyb	očení střední
ve vzpříčené poloze			části vozové skříně			ve vzpříčené poloze		části vozové skříně					
				E _{aj} < k+∆ _a		E _{ij} < k+∆ _i				E _{aj} < k+∆ _a	1	E _{ij} < k+∆ _i	
			1. podvozek	vysunut k vněj	ší kolejnici	1. a 2. podvoz	ek vysunuty	Maximální	1. podvozek	vysunut k vněj	jší kolejnici	1. a 2. podvozek vysunuty	
Poloměr	Mezní vyl	oočení	2. podvozek	vysunut k vnit	řní kolejnici	k vnitřní kole	ejnici	radiální	2. podvozek	vysunut k vnit	řní kolejnici	k vnitřní kolejnici	
oblouku	dle ČSN 2	8 0337	n _{a1}	n _{a2}		n _{i1}	n _{i2}	posuv	n _{a1} n _{a2}		n _{i1} n _{i2}		
	vnější	vnitřní	2,883	1,561		3,200	2,438	otočného	2,883	1,561		3,200	2,438
Ro	k+∆a	k+∆ _i	[m]	[m]		[m]	[m]	čepu	[m]	[m]		[m]	[m]
[m]	[m]	[m]	E _{a1} [m]	E _{a2} [m]		E _{i11} [m]	E _{i12} [m]	d [m]	E _{a1} [m]	E _{a2} [m]		E _{i11} [m]	E _{i12} [m]
20	2	1,66	splňuje	splňuje		splňuje	splňuje	0,045	1,443	1,564		1,495	1,529
22	1,95	1,63	splňuje	splňuje		splňuje	splňuje	0,045	1,393	1,545		1,469	1,505
25	1.88	1 585	splňuje	splňuje		splňuje	splňuje	0.045	1 331	1 521		1 438	1 476
30	1 79	1 535	splňuje	splňuje		splňuje	splňuje	0.045	1,001	1,021		1 401	1 440
35	1,73	1.5	spiňuje	splňuje		splňuje	splňuje	0.045	1,200	1,467		1 374	1,415
40	1.68	1.475	splňuje	splňuje		splňuje	splňuje	0.045	1,156	1,450		1,354	1.396
45	1.64	1,455	splňuje	splňuje		splňuje	splňuje	0.045	1,123	1,436		1.338	1.381
50	1,61	1,435	splňuje	splňuje		splňuje	splňuje	0,045	1,096	1,424		1,326	1,370
75	1,515	1,385	splňuje	splňuje		splňuje	splňuje	0,045	1,014	1,390		1,288	1,334
100	1,465	1,36	splňuje	splňuje		splňuje	splňuje	0,045	0,972	1,372		1,270	1,317
150	1,415	1,355	splňuje	splňuje		splňuje	splňuje	0,045	0,931	1,354		1,251	1,299
200	1,395	1,35	splňuje	splňuje		splňuje	splňuje	0,045	0,909	1,345		1,242	1,290
250	1,38	1,35	splňuje	splňuje		splňuje	splňuje	0,045	0,897	1,339		1,236	1,285
300	1,37	1,35	splňuje	splňuje		splňuje	splňuje	0,045	0,888	1,336		1,233	1,282
400	1,365	1,35	splňuje	splňuje		splňuje	splňuje	0,045	0,878	1,331		1,228	1,277
500	1,36	1,35	splňuje	splňuje		splňuje	splňuje	0,045	0,871	1,328		1,225	1,275
750	1,355	1,35	splňuje	splňuje		splňuje	splňuje	0,045	0,863	1,324		1,221	1,271
1000	1,35	1,35	splňuje	splňuje		splňuje	splňuje	0,045	0,858	1,322		1,220	1,269
10000	1,35	1,35	splňuje	splňuje		splňuje	splňuje	0,045	0,847	1,317		1,215	1,265
18	2	1,66	splňuje	splňuje		splňuje	splňuje	0,045	1,503	1,588		1,527	1,559

Tab. 3 Výsledky kontroly obrysu přední skříně.

Pro kontrolu, že výpočetní program počítá správně, jsem stanovil velikost vybočení skříně na představku E_a v oblouku $R_o = 20$ m pro odlehlost $n_a = 2,883$ m dosazením vybraných vstupních veličin z tabulky Tab. 2 do rovnice Rov. 3.

ČVUT FS **DP 2020 - DLTT**

$E_a($	$(n_a) =$	
	$20^{2} + 0.76^{2} + \left(\frac{6.4}{2} + 2.883\right)^{2} - \frac{1.9^{2}}{4} - \frac{6.4^{2}}{4} + 0.045^{2} + \frac{4 \times 0.045}{6.4} \left(\frac{6.4}{2} + 2.883\right) \sqrt{20^{2}}$	$-\frac{1,9^2}{4} - \frac{6,4^2}{4} + 0,045^2$
=	$\sqrt{+2*0.76}\sqrt{20^2 - \frac{1.9^2}{4} - \frac{6.4^2}{4} + 0.045^2}\sqrt{1 - \frac{4\cdot0.045^2}{6.4^2}}$	
-2	20 = 1,443 m	

Názorně vypočtená hodnota vybočení $E_{a(2,8883)} = 1,443$ m odpovídá výsledku uvedeném v programu, viz obrázek Tab. 3.

Pro kontrolu, že výpočetní program počítá správně jsem stanovil velikost vybočení skříně předního článku Cargo uprostřed vzdálenosti otočných čepů E_i v oblouku $R_o = 20$ m. Na příklad při odlehlosti $n_{i1} = 2,4$ m jsem stanovil $E_i = 1,495$ m dosazením vstupních veličin z tabulky Tab. 2 do rovnice Rov. 4.

$$E_{i}(n_{i}) = 20 - \sqrt{20^{2} - \frac{1,9^{2}}{4} + 0,045^{2} + 1,169^{2} - 6,4 * 3,2 + 3,2^{2} - 2 * 0,045\sqrt{20^{2} - \frac{1,9^{2}}{4}}}{-2 * 1,169\sqrt{20^{2} - \frac{1,9^{2}}{4} - \frac{6,4^{2}}{4} + 0,045^{2} - 2 * 0,045\sqrt{20^{2} - \frac{1,9^{2}}{4}}}} = \frac{1,495 \text{ m}}{4}$$

Vypočtená hodnota vybočení $E_{a(2,8883)} = 1,443$ m odpovídá výsledku uvedeném v programu, viz obrázek Tab. 3.

Obr. 7 Zadní skříň Cargo tramvaje. Polohy kontrolovaných míst na voze.

2.2. Kontrola zadního článku na vybočení

Na obrázku Obr. 7 jsou zobrazeny vybrané kontrolované řezy pro výpočet obrysu zadního článku Cargo tramvaje. Dále v tabulce Tab. 4 jsou vstupní hodnoty pro výpočet vybočení rámu. Výpočet vybočení byl provedený stejným programem a postupem jako u přední skříně. Výsledky kontroly zadního článku pro požadované poloměry oblouku a vybrané řezy jsou uvedeny v tabulce Tab. 5. Tento typ kontroly jsem provedl pro zadní článek, protože má jiné rozměry, a to hlavně kratší vzdálenost otočných čepů.

Vstupní data výpočtu					
Délka skříně vozidla (přední čelo – zadní čelo)	$L_{S} =$	8,062	[m]		
Vzdálenost otočných čepů	a =	5,840	[m]		
Rozvor podvozku (u jednonápravového podvozku p = 0)	p =	1,900	[m]		
Rozvor podvozku pod zadním článkem	$p_3 =$	1,900	[m]		
Šířka kolejového kanálu	2σ=	0,020	[m]		
Příčná vůle ve vedení dvojkolí	q =	0,0050	[m]		
Příčná vůle podvozek – skříň	p =	0,020	[m]		
Vzdálenost vnitřního průřezu od roviny otoč. čepu podvozku	n _{i4} =	3,194	[m]		
Šířka vozové skříně v odlehlosti n _{i12}	$2.b_{i4} =$	2,438	[m]		
Vzdálenost vnitřního průřezu od roviny otoč. čepu podvozku	n _{i3} =	2,920	[m]		
Šířka vozové skříně v odlehlosti ni11	$2.b_{i3} =$	2,338	[m]		
Vzdálenost čtvrtého vnějšího řezu od roviny otočného čepu zadního podvozku	n _{a3} =	1,670	[m]		
Šířka vozové skříně v rovině čtvrtého vnějšího příčného řezu, tj. v odlehlosti na4	$2.b_{a3} =$	2,500	[m]		

Tab. 4 Vstupní data k výpočtu obrysu zadní skříně.

	Výsledky kontroly vozidla Vypočtená data kontroly průřezu vozidla dle statického obrysu												
Kontrola vybočení střední		Kontrola vybočení zadního představku			Kontrola vybočení střední		Kontrola vybočení zadního představku		no představku				
části		části vozové	skříně	ve vzpříčené poloze			části vozové skříně		ve vzpříčené poloze				
			$E_{ij} < k + \Delta_i$			E _{aj} < k+∆a			E _{ij} < k+∆ _i		E _{aj} < k+∆a		
			1. a 2. podvo	zek vysunuty	1. podvozek v	/ysunut k vniti	ŕní kolejnici	Maximální	1. a 2. podvoz	ek vysunuty	1. podvozek	vysunut k vn	itřní kolejnici
Poloměr	Mezní vyl	oočení	k vnitřní ko	ejnici	2. podvozek v	/ysunut k vněj	ší kolejnici	radiálni	k vnitřní kol	ejnici	2. podvozek	vysunut k vn	ější kolejnici
oblouku	dle ČSN 2	8 0337	n _{i3}	n _{i4}		n _{a3}		posuv	n _{i3}	n _{i4}		n _{a3}	
	vnější	vnitřní	2,920	3,194		0,000		otočného	2,920	3,194		1,670	
Ro	k+∆ _a	k+∆ _i	[m]	[m]		[m]		čepu	[m]	[m]		[m]	
[m]	[m]	[m]	E _{i11} [m]	E _{i12} [m]		E _{a5} [m]		d [m]	E _{i11} [m]	E _{i12} [m]		E _{a5} [m]	
20	2	1,66	splňuje	splňuje		splňuje		0,045	1,452	1,500		1,573	
22	1.95	1.63	splňuje	splňuje		splňuje		0.045	1,430	1.478		1.553	
25	1.88	1 585	eplňuje	eplňuje		entňuje		0.045	1,404	1 452		1.528	
30	1,00	1,505	splňuje	splňuje		spinuje		0,045	1,404	1,452		1,020	
35	1,73	1,555	splňuje	splňuje		spinuje		0,045	1,372	1,420		1,430	
40	1,70	1 /75	splňuje	splňuje		spinuje		0.045	1 332	1 381		1,475	
45	1,00	1 455	splňuje	splňuje		spinuje		0.045	1 319	1 368		1 441	
50	1,04	1 435	splňuje	splňuje		spiňuje		0.045	1 308	1 358		1,430	
75	1,515	1 385	splňuje	splňuje		splňuje		0.045	1 277	1 326		1 305	
100	1,010	1,365	spinuje	spinuje		spinuje		0,045	1,277	1,320		1,393	
150	1,405	1,30	spinuje	splňuje		spinuje		0,045	1,201	1,311		1,377	
200	1,415	1,555	spinuje	spinuje		spinuje		0,045	1,243	1,295		1,330	
250	1 38	1,35	splňuje	splňuje		spinuje		0,045	1,230	1,207		1,343	
200	1,30	1,35	spinuje	splňuje		spinuje		0,045	1,235	1,205		1,040	
400	1,37	1,55	spinuje	spinuje		spinuje		0,045	1,230	1,280		1,340	
500	1,305	1,35	spinuje	spinuje		spinuje		0,045	1,220	1,270		1,333	
300	1,30	1,35	spiriuje	spinuje		apinuje		0,045	1,223	1,273		1,002	
/50	1,355	1,35	spinuje	spinuje		spinuje		0,045	1,220	1,270		1,328	
1000	1,35	1,35	spinuje	spinuje		spinuje		0,045	1,219	1,269		1,326	
10000	1,35	1,35	splňuje	splňuje		splňuje		0,045	1,214	1,264		1,321	
18	2	1,66	splňuje	splňuje		splňuje		0,045	1,478	1,526		1,597	

Tab. 5 Výsledky kontroly obrysu zadní skříně.

2.3. Výškové snížení průjezdného průřezu

U předního článku jsem provedl kontrolu nepřekročení linie obrysu při maximálním kývání skříně. U tohoto výpočtu vycházím z předpokladu, že skříň na jedné straně maximálně poklesne a na druhé straně se maximálně přizvedne. Při této poloze je přední část článku s kabinou v čele ve své nejvyšší poloze. Provedl jsem tedy výškové snížení obrysu pro konstrukci. Tím je zajištěno, že vozidlo "nevyskočí" nad linii vztažného statického obrysu. Na obrázku Obr. 8 je geometrie, ze které vychází tento výpočet.

Obr. 8 Kontrola kývání přední skříně.

přitížení primárního a sekundárního vypružení	$[\Delta p(+)+\Delta s(+)]$	22	[mm]
odlehčení primárního a sekundárního vypružení	$[\Delta p(-)+\Delta s(-)]$	17	[mm]
	$[\Delta p(-)+\Delta s(-)]+[\Delta p(+)+\Delta s(+)]$	39	[mm]
představek kabiny	n _{akab}	2438	[mm]
	tg(qv)	0,006	
	$\Delta \mathrm{f}_\mathrm{z}$	15	[mm]
výškové snížení PP	$\Delta f_z + \Delta p(-) + \Delta s(-)$	32	[mm]

Tab. 6 Hodnoty a výsledek výškového snížení průjezdného průřezu u předního článku.

přitížení primárního a sekundárního vypružení	$[\Delta p(+)+\Delta s(+)]$	22	[mm]
odlehčení primárního a sekundárního vypružení	$[\Delta p(-)+\Delta s(-)]$	17	[mm]
	$[\Delta p(-)+\Delta s(-)]+[\Delta p(+)+\Delta s(+)]$	39	[mm]
představek kontejneru	na _{kont}	888	[mm]
	tg(\u00f6v)	0,007	
	Δf_z	6	[mm]
výškové snížení PP	$\Delta fz + \Delta p(-) + \Delta s(-)$	23	[mm]

Tab. 7 Hodnoty výškového snížení průjezdného průřezu u zadního článku.

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

Výškové snížení obrysu pro konstrukci jsem snížil o 32 mm, což je hodnota z tabulky Tab. 7. O tolik se přizvedne přední nejvyšší bod kabiny při nejkritičtějším stavu. Na obrázku Obr. 9 je pak nákres pro výpočet snížení zadního článku, který se přizvedne méně, jak je vidět tabulce Tab. 7, kde se dole nachází hodnota 23 mm.

Obr. 9 Kontrola kývání zadní skříně s kontejnerem.

2.4. Zhodnocení výsledků kontroly obrysu

Všechny kontroly obrysu přední i zadní části článkové Cargo tramvaje s kontejnery jsem spočetl v programu Excel a vyšly kladně, jak je vidět v příloze v tabulkách Tab. 3 a Tab. 5. Pro grafické znázornění je na obrázku Obr. 10 vynesena základní část obrysu rozšířená pro poloměr oblouku 20 m a vybočení vozidla $E_i(n_i)$ v řezu n_{i1} . Na obrázku Obr. 10 jsem dal ukázku, že vozidlo nevybočuje za základní obrys daný normou ČSN 28 0318. Lze i vidět snížení linie obrysu pro konstrukční obrys střechy o 32 mm. Dále je na obrázku Obr. 10 linie vybočení vozu v řezu n_{i1} . Neuvádím zde kompletní uzavřený obrys pro konstrukci, protože pro tramvajová vozidla se kontrolují různé řezy vozu pro různé poloměry oblouku, jak už bylo řečeno v předchozí části. Výsledek kontroly obrysu je tedy v tabulkách Tab. 3 a Tab. 5.

Při kompletní konstrukci takového vozu bych nechal vytvořit 3D obálku obrysu pro konstrukci vozidla, do které bych konstruoval postupně celý vůz. V prostředí CAD softwaru se pak dají jednoduše hlídat kolize se skořepinou. Taková skořepina by mohla být i parametricky vymodelovaná. Vstupní parametry by pak stačilo mít přehledně v nějaké tabulce nejlépe datového typu daného CAD softwaru.

ČVUT FS	
DP 2020 -	DLTT

Obr. 10

3. 3D konstrukční model kloubové Cargo tramvaje.

Model tramvaje je v přiloženém CD diplomové práce. Na obrázku Obr. 11 náhled na model dvoučlánkové kloubové Cargo tramvaje.

Model dvounápravového trakčního podvozku Komfort Plus, viz obrázek Obr.3 byl vytvořen v rámci předmětu Projekt I.

Nosné rámy Cargo tramvaje jsou pouze funkčně navržené, ale nebyly pevnostně optimalizovány. Model kabiny řidiče je jen designová studie vnějšího tvaru. Pod hlavními rámy jsou zavěšeny tři trakční měniče (na Obr. 11 modrou barvou) a jeden brzdový odporník (na Obr. 11 tmavě zelenou barvou). Mezi kontejnery je umístěná elektrická baterie (na Obr. 11 červenou barvou).

Obr. 11 Model Cargo tramvaje.

Na nosné rámy článků tramvaje jsou přivařeny Platformy (na Obr. 11 světle zelenou barvou) pro fixaci kontejnerů SKO, které v projektu SKOTRANS vytvořil Bc. Matěj Dynybyl a poskytl mi je. Tyto platformy jsou speciálně vytvořeny, aby umožňovaly vykládání kontejnerů z boku tramvaje pomocí speciálního vykládacího vozíku. Kontejnery vytvořil Bc. Jan Gruber v rámci projektu SKOTRANS.

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

4. Hmotnostní rozbor dvoučlánkové kloubové Cargo tramvaje.

Při výpočtu hmotností sekundárně a primárně odpružených hmot dvoučlánkové kloubové tramvaje je potřeba si uvědomit, kam které dílčí hmotnosti přiřadit. Je to důležité pro správné vytvoření dvou hmotového modelu vypružení viz. obrázek Obr. 18 vlevo. Níže jsem uvedl slovní výpočet hmot s plnými SKO kontejnery:

(sekundárně odpružené hmoty) = (hmotnost vozu s plnými SKO kontejnery) - (podvozky) + (kolébky) + (0,5 · pružiny sekundárního vypružení)

(primárně odpružené hmoty) = (podvozky) - (dvojkolí) - (0,5 · pružiny sekundárního vypružení) - (0,5 · dvoustupňové převodovky - ložiskové domky)

(neodpružené hmoty) = (hmotnost s plnými SKO kontejnery) - (sekundárně odpružené hmoty) - (primárně odpružené hmoty)

Rozdělil jsem hmotnost dvoustupňových převodovek, protože jsou částečně odpružené. To, že je nápravová převodovka v podvozku částečně odpružená znamená, že je na jedné straně pružně zavěšena na rámu podvozku a na druhé straně je uložena na osu dvojkolí, která prochází převodovkou. Menší část hmoty převodovky je tedy nesena rámem podvozku a větší část hmoty se přenáší na osu dvojkolí. Na obrázku Obr. 12 je zobrazeno toto rozložení pohonu.

Obr. 12 Model pohonu v podvozku Komfort+ Cargo tramvaje

V tabulce Tab. 8 je v zelené části seznam jednotlivých uvažovaných hmotností. Oranžová tabulka obsahuje vypočtené hmotnosti jednotlivých odpružených a neodpružených hmot pro tři zátěžové stavy.

hmotnost bez SKO kontejn	22127		
m _{2PV} – sekundárně odpružen	né hmoty		10412
m _{1PV} – primárně odpružen	é hmoty		5325
m _{0PV} – neodpružené hr	noty		6390
hmotnost s prázdnými SKO kor	ntejnery [kg]		30507
m _{2PK} – sekundárně odpružen	né hmoty		18792
m _{1PK} – primárně odpružen	é hmoty		5325
m _{0PK} – neodpružené hr	noty		6390
hmotnost s plnými SKO kont	ejnery [kg]		52127
m _{2PL} – sekundárně odpružen	né hmoty		40412
m _{1PL} – primárně odpružene	é hmoty		5325
m _{0PL} – neodpružené hr	noty		6390
	hmotnost [kg]	ks [1]	dílčí součet [kg]
stanoviště řidiče + vybavení	200	1	200
klimatizace řidiče	80	1	80
pantograf	150	1	150
rám kabiny	1 000	1	1000
statický měnič	150 1		150
Součet hmotnosti kabiny	1580	1	1580
trakční kontejner	850	3	2550
kabeláž	300	1	300
brzdový odporník	150	1	150
baterie	300	1	300
platforma	1 641	2	3281
rám1	778	1	778
rám2	1 014	1	1014
dvojkolí	880	6	5280
kolébka	100	3	300
Pružina sekundárního vypružení vnější	30	6	180
pružina sekundárního vypružení vnitřní	23	6	138
dvoustupňová převodovka	190	6	1140
ložiskový domek 45			540
Součet hmotnosti podvozku	4 058	3	12174
konteiner SKO plný	15 000	2	30000
konteiner SKO prázdný	4 190	2	8380

Tab. 8 Hmotnostní rozbor Cargo tramvaje.

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

5. Výpočet statických kolových a nápravových zatížení.

Kolové statické zatížení je síla, kterou působí tramvajové kolo v místě styku kola s kolejnicí, když tramvajové vozidlo stojí na vodorovné přímé koleji.

Nápravové statické zatížení je výsledná síla vyvolaná dvojkolím ve stycích tramvajových kol s kolejnicemi, když vozidlo stojí na vodorovné přímé koleji.

Z hmotnostního rozboru znám hmotnosti jednotlivých dílů vozu. Z modelu vozu znám i polohy a rozmístění každého dílu. Představil jsem si Cargo tramvaj jako dva nosníky s třemi podporami, kde jedna podpora je společná. Rozmístil jsem zatížení jednotlivých dílů jako zatěžující síly. Na obrázku Obr. 13 je model takového nosníku. Pro přehlednost v něm ovšem nejsou zakresleny všechny síly (jsou uvedeny v tabulce Tab. 9).

Výpočet jsem provedl ve svém výpočetním programu, který jsem si vytvořil v MS Excelu. Nejprve jsem vytvořil tabulku s jednotlivými silami a jejich polohy na nosníku (Tab. 9).

síly F(x)	souřadnice x	souřadnice x
[N]	[mm]	podpor
-1472	2275	0
-163245	3301	6400
-9105	3200	
-8339	3975	
-15500	6400	
	T 1 0 07	7

Tab. 9 Síly na nosníku.

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

Potom jsem maticově zapsal rovnice statické rovnováhy. Získal jsem jen dvě rovnice statické rovnováhy, protože třetí je nulová. Na levé straně rovnic jsou reakce R1 a R2 ve vektoru **f** na pravé straně jsou zatěžovací síly.

$$A \cdot \mathbf{R} = f$$

$$\begin{bmatrix} 1 & 1 \\ 0 & d\acute{e}lka \ nolsniku \ l \end{bmatrix} \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} = \begin{bmatrix} \sum sily \ F(x) \\ \sum momenty \ F(x) * x \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 6400 \end{bmatrix} \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} = \begin{bmatrix} -197 \ 660 \\ -7 \cdot 10^8 \end{bmatrix}$$

Nyní pro zjištění reakcí R1 a R2 čili vektoru R, stačí spočítat inverzní matici A⁻¹.

$$\boldsymbol{A}^{-1} = \begin{bmatrix} 1 & 16 \cdot 10^{-5} \\ 0 & 156 \cdot 10^{-6} \end{bmatrix}$$

Provedl jsem součin matic $A^{-1} \cdot f = R$. Tím jsem získal reakce. :

R1	109 953	Ν
R2	87 707	Ν

Stejným programem/postupem jsem spočetl i zadní článek. U zadního článku vyšly rekce takto:

R3	57 761	Ν
R4	136 522	Ν

Reakce R2 a R3 jsou společné pro druhý otočný čep, takže jsem je sečetl a bral jako výslednou reakci v prostředním otočném čepu.

V rovnici Rov. 5 jsem dopočetl nápravové statické zatížení na prvním dvojkolí.

$$G_{n\acute{a}pravov\acute{e}} = \frac{(G_{podvozku} + R1)}{2g} = \frac{(4058 + 87\ 707)}{2g} = 7\ 688\ kg$$
 Rov. 5

Výpočet kolové síly A:

$$A = \frac{G_{napravové}}{2} = \frac{7688}{2} = 3\ 817\ \text{kg}$$
 Rov. 6

Podobně jsem vypočítal i další nápravové statické zatížení v tabulce Tab. 10. Při výpočtu jsem uvažoval, že jsou podvozky dokonale symetrické a osa otáčení prochází těžištěm. Nápravové statické zatížení vychází stejně pro obě dvojkolí v podvozku.

ČVUT FS **DP 2020 - DLTT** Diplomová práce U 12 120

Prázdný vůz							
	statické zatížení na kolébku Nápravové statické zatížení kolové zatížení						
	[N]	[kg]	[kg]	[kg]			
ot. čep 1	34 056	3 472	3 765	1 882			
ot. čep 2	37 049	3 777	3 917	1 959			
ot. čep 3	26 538	2 705	3 382	1 691			

Vůz s prázdnými kontejnery							
	statické zatíženi	kolové zatížení					
	[N] [kg]		[kg]	[kg]			
ot. čep 1	55 256	5 633	4 845	2 423			
ot. čep 2	67 334	6 864	5 461	2 730			
ot. čep 3	57 260	5 837	4 947	2 474			

Plně ložený vůz							
	statické zatížení na kolébku Nápravové statické zatížení kolové zatíže						
	[N] [kg]		[kg]	[kg]			
ot. čep 1	109 953	11 208	7 633	3 817			
ot. čep 2	145 468	14 828	9 443	4 722			
ot. čep 3	136 522	13 917	8 987	4 494			

Tab. 10 Nápravové statické zatížení a kolové statické zatížení. Pro plně ložený vůz.

Touto metodou jsem stanovil všechny statické nápravové a statické kolové zatížení. Hodnoty nápravových zatížení nepřekračují maximální nápravové zatížení na pražských tramvajových tratích.

Obr. 14 Cargo tramvaj s a bez kontejnerů. (pro ilustraci)

6. Pevnostní výpočet pružících prvků tramvajového podvozku.

Vypružení vozidla slouží primárně ke snížení dynamických účinků na cestující a náklad. Cestující by měl bez problémů vydržet i dlouhou cestu vlakem bez únavy z houpání nebo přílišného hluku. Přepravovaný náklad chceme zase přepravit z místa A na místo B nepoškozený. Vypružení vozidla nám také chrání vozidlo samotné od dynamických účinků, takže vozidlo vydrží mnohem delší provozní dobu bez oprav. Konstrukce vozidla může být také o něco lehčí díky tomu, že vypružení pohlcuje velkou část rázové energie od tratě. V neposlední řadě vhodným vypružením chráníme dopravní cestu a nezáleží nám na tom, zda je to silnice nebo železnice.

Dvoučlánková kloubová Cargo tramvaj je, jak název napovídá, nákladní tramvaj. Může převážet kontejnery s komunálním odpadem, ale i jiný náklad, pokud by se dodržela maximální hmotnost nákladu. Tramvaj převáží jednoho řidiče. Při řešení komfortu jízdy řidiče se lze spolehnout na speciální odpružené sedadlo. Taková sedadla jsou dnes standardem u většiny stanovišť pro řidiče, aby řidič lépe zvládl řízení vozidla bez výrazných známek únavy. Odpružená sedadla můžeme dnes najít i v dalších vozidlech jako jsou autobusy ale také traktory atd.

Vypružení dvoučlánkové Cargo tramvaje jsem navrhl jako dvoustupňové:

- **primární vypružení,** viz obrázek Obr. 15, je umístěno na ložiskové komoře a je tvořeno dvojicí prstencových pryžových prvků, které zachycují statické a dynamické účinky ve směru x, y i z.

Obr. 15 Prvek primárního vypružení. [6]

sekundární vypružení, viz obrázek Obr. 17. tvoří šroubovité vinuté duplexní pružiny. Vnější pružina vždy podpírá kolébku a vnitřní pružina pracuje pouze při naložení tramvajového vozu kontejnery. Jakmile toto nastane, změní se tuhost svislého vypružení. Vozidlo tak dokáže jet bezpečněji. Vedle duplexních pružin je sekundární vypružení ještě vybaveno hydraulickými tlumiči pro rychlejší útlum při rozkývání nosného rámu Cargo tramvaje.¹)

¹ Duplexní šroubovité vinuté pružiny jsem zvolil proto, aby byla zajištěna bezpečnější a plynulejší jízda než s jednoduchou pružinou, neboť s ní nelze dosáhnout požadované svislé tuhosti vypružení. Jednoduchá pružina umístitelná do daného prostoru vykazovala větší tuhost a nesplnila by kritéria bezpečnosti proti vykolejení na zborcené koleji. Duplexní pružiny při tom nekomplikují konstrukci vozidla jako by tomu bylo se vzduchovými pružinami. K tomuto závěru jsem došel v rámci předmětu Projektu 3.

Obr. 17 Výkres sestavy sekundárního vypružení.

(Originální výkres ve v příloze.)

Duplexní pružina na obrázku Obr. 17 je první verze sekundárního vypružení, jak se můžete

dočíst dále v textu této diplomové práci. Duplexní pružiny na obrázku Obr. 17 mají pryžové podložky číslo 2 a 4 pro snížení emitovaného hluku do okolí. Vnitřní pružina 2 s číslem 8 je při prázdném stavu odlehčená. Pružina 2 je zajištěna proti volnému relativnímu pohybu při odlehčeném stavu pryžovým kroužkem číslo 5. Pryžový kroužek je sevřen dílem 1 a 2. Díl 2 leží na rámu podvozku a díl 1 se prostrčí rámem podvozku a připevní šestihrannou pojistnou maticí. Uprostřed vypružení je pryžový nárazník pro případ velkého dynamického rázu. Pružina 2 a doraz se při provozu opotřebovává o horní desku, která je nalisována za studena (jen s malým přesahem, aby deska 9 při montáži šla dorazit kladivem) do kolébky. Deska se při plánované revizi vytlačí čtyřmi otvory, viz obrázek Obr. 17 vlevo nehoře.

Pružiny sekundárního vypružení musí mít opačný

smysl závitu na levé a pravé straně vozu. Tímto požadavkem jsem eliminoval nesymetrickou torzní tuhost podvozku vůči kolébce kolem svislé osy z.

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

Podvozek Komfort+ je ovšem volně otočný kolem svislé osy, takže by to nemělo mít velký negativní dopad na stabilitu jízdy, přihlédneme-li k tomu, že vozidlo je konstruováno do 60 km/h. V jedné kolébce by měly být na jedné straně vinuté pružiny s jedním smyslem stoupání a na druhé straně pružiny s opačným smyslem stoupání. To znamená, že v jedné Cargo tramvaji bude polovina pružin s levým stoupáním a druhá polovina se stoupáním pravým. Opačné stoupání platí i v samotné duplexní pružině (pokud vnější má levé stoupání tak vnitřní je pravotočivá). Dále je nutné pružiny pro montáž do podvozku napárovat tak, aby měly stejnou výšku, neboť pružiny jsou vyráběny s tolerancí \pm 1,5 % jmenovité volné výšky pružiny. Proto je nutné pro eliminaci výrobních nepřesností pružin, pružiny do jednotlivých podvozků párovat.

6.1. Návrh parametrů šroubových vinutých duplexních pružin

V této kapitole jsem navrhl sekundární vypružení vozidla, řešené pomocí duplexní pružiny, aby byla zajištěna bezpečnější a plynulejší jízda. Nejprve jsem zkoušel navrhnout jednoduchou vinutou pružinu, ale ta nesplňovala požadavky bezpečného provozu prázdné tramvaje na zborcené koleji. Proto jsem musel přistoupit k návrhu lineárně lomené charakteristiky sekundárního vypružení.

Duplexní ocelové pružiny při tom nekomplikují konstrukci a nezvyšují cenu Cargo tramvaje, jako by tomu bylo při použití vzduchových pružin, které by vyžadovaly použití pneumatické výzbroje v Cargo tramvaji, a tedy její vyšší cenu.

Konstrukční řešení sekundárního vypružení pomocí ocelových šroubovitých pružin doplněných pryžovým nárazníkem mi umožnilo navrhnout základní vlastnosti vypružení pro stav prázdného vozidla (**PV**) a stav plně loženého vozidla (**PL**). Cargo tramvaj má velké rozdíly hmotnosti při stavech PV a PL, což je hlavní důvod k použití duplexních pružin a tím i k tvorbě progresivní charakteristiky sekundárního vypružení.

Obr. 18 Model dvoustupňového vypružení.

Sekundární vypružení

Na obrázku Obr. 18 je znázorněn vlevo dynamický model svislého vypružení Cargo tramvaje. Optimální vlastní frekvence houpání skříně f=1,2Hz. To je přirozené kmitání pro člověka a

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

lze jej akceptovat i pro souběžné houpání tramvajového vozidla s kontejnery s komunálním odpadem. Ze vztahu Rov. 7 jsem provedl první návrh tuhosti sekundárního vypružení v PV a PL Cargo tramvaji. Upozorňuji, že tento způsob hledání tuhostí je pro tento případ velice zjednodušující, a to hlavně pro to, že Cargo tramvaj je dvoučlánková a já o tramvaji uvažuji jako o dvouhmotové soustavě. Byl to tedy jen první odhad hodnot tuhostí vypružení, které jsem ještě dále upravoval.

Vzorec Rov. 7 je pro jedno hmotovou soustavu (Obr. 18 vpravo), neuvažuje tedy existenci primárního vypružení a hmoty podvozků. Tento předpoklad je velmi zjednodušující. S tímto zjednodušením jsem na straně bezpečnosti. Níže ovšem uvádím, že omezující faktor návrhu není vlastní frekvence, ale celkové sednutí sekundárního vypružení ve směru z, tedy ve svislém směru.

$$f = \frac{1}{2\pi} * \sqrt{\frac{k_s'}{m_2}}$$
Roy. 7

 $-k_{s,PL}...$ tuhost sekundárního vypružení, plně ložený vůz $-k_{s,PV}...$ tuhost sekundárního vypružení, prázdný vůz $-m_{2,PL}...$ hmotnost sekundárně odpružených hmot, plně ložený vůz $-m_{2,PV}...$ hmotnost sekundárně odpružených hmot, prázdný vůz

Po dosazení níže uvedených vstupních dat ($m_{2,PV} = 1$ 735 kg – hmotnost prázdného vozu připadající na jednu pružinu sekundárního vypružení, $m_{2,PL} = 6$ 735 kg - hmotnost plně loženého vozu připadající na jednu pružinu sekundárního vypružení) jsem spočetl hodnoty tuhostí v krajních bodech charakteristiky.

$$k_{s,PV} = (2\pi f)^2 \cdot m_{2,PV} = (2\pi * 1, 2)^2 * \frac{1735}{1000} = 99 N \cdot mm^{-1}$$
$$k_{s,PL} = (2\pi f)^2 \cdot m_{2,PL} = (2\pi * 1, 2)^2 * \frac{6735}{1000} = 382 N \cdot mm^{-1}$$

Obr. 19 Pomocná návrhová charakteristika.

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

Nakreslil jsem charakteristiku vypružení (Obr. 19) podle výše vypočtených tuhostí a zjistil jsem, že kritické místo návrhu duplexní pružiny je sednutí z_U . Z grafu Obr. 19 jsem odečetl $z_U = 132 mm$. Ukázalo se, že tato hodnota byla příliš vysoká. Pro reálné využití jsem požadoval alespoň $z_U = 60 mm$. Toho lze dosáhnout zvětšením tuhostí k_1 a k_2 na úkor zvětšení vlastních frekvencí houpání duplexních pružin 1 a 2. Vlastní frekvence souběžného houpání budou tedy větší než 1,2Hz.

Návrh konečných parametrů duplexní pružiny byl vytvořen tak, že jsem si vytvořil řadu vlastních frekvencí od 1 do 2,1 Hz po 0,1 Hz. Pro každou hodnotu jsem provedl přepočet parametrů pružin, podle následujícího algoritmu.:

Výpočet parametrů pro každou vlastní frekvenci má následující posloupnost:

1) Tuhosti $k_{s,PV}$ a $k_{s,PL}$.

$k = (2\pi f)^2 m$

- 2) Dosazení známého zástavbového průměru $D_{1e} = 360$ mm.
- Volba průměru drátu šroubovité vinuté pružiny je hlavní proměnná, od které se odvíjí geometrie a pevnostní vlastnosti pružiny. Průměry drátu d₁=40 mm a d₂=40 mm.

Obr. 20 Skica duplexní pružiny.

4) Výpočet roztečí pružin D₁, D_{1i}, D_{2e}, D₂, kde mezera mezi pružinami je v=10 mm.

$$D_1 = D_{1e} - d_1$$
$$D_{1i} = D_1 - d_1$$
$$D_{2e} = D_{1i} - v = D_{1i} - 20mm$$
$$D_2 = D_{2e} - d_2$$

5) Počty závitů n₁ n₂ jsou dány průměrem drátu d, roztečným průměrem pružiny D a tuhostí k, jak je vidět ve vzorci níže:

 $n_1 = \frac{Gd_1^4}{8D_1^3k_{s,PV}}; G = 81\ 000 \frac{N}{mm^2} \rightarrow modul\ pružnosti\ ve\ smyku$

$$n_2 = \frac{Gd_2^4}{8D_2^3 (k_{s,PL} - k_{s,PV})}$$

6) Definice tuhosti pružiny k₁(vnější pružina) a k₂(vnitřní pružina). Tuhosti k¹_z a k¹¹_z jsou tuhosti prvního a druhé stavu progresivního vypružení. Tím je myšleno, že vypružení v prázdném stavu vozu funguje na vnější pružině a při naložení prázdnými kontejnery pruží již obě pružiny, protože vozidlo o něco klesne a začne zatěžovat i vnitřní pružinu.

$$k_{z}^{I} = k_{1} = k_{s,PV};$$

$$k_{2} = \frac{Gd_{2}^{4}}{8D_{2}^{3}n_{2}}$$
Rov. 8
$$k_{z}^{II} = k_{1} + k_{2}.$$

7) Síly F₁, F₂, F_{zz}, F₁', F₂', a relativní stlačení Δz_z, Δz_{F1}', Δz_{F2}'. Index 1 je pro vnější pružinu a index 2 pro vnitřní pružinu. Tyto veličiny jsou vyobrazeny na nákresu Obr. 21. Tento nákres zobrazuje charakteristiky vypružení obou pružin vzájemně posunuté o Δz_z, toto posunutí nám vytváří onu progresivní charakteristiku. Vztahy níže vychází z podobnosti trojúhelníku v nákresu Obr. 21 a umožnily mi početně určit síly a stlačení z vypočtených tuhostí podle odstavce 6) výše uvedeného algoritmu.

Obr. 21 Náčrt charakteristiky duplexní pružiny.

$$F_{1} = k_{1} * \Delta z_{z} + (F_{PL} - k_{1} * \Delta z_{z}) \frac{k_{1}}{k_{1} + k_{2}}$$

$$F_{2} = (F_{PL} - k_{1} * \Delta z_{z}) \frac{k_{2}}{k_{1} + k_{2}}$$

$$F_{zz} = 1,2 * F_{PV}$$

$$\Delta z_{z} = \frac{F_{PV}}{k_{1}} + 5mm$$

$$F_{1}' = k_{1} * \Delta z_{z} + (1,2 * F_{PL} - k_{1} * \Delta z_{z}) \frac{k_{1}}{k_{1} + k_{2}}$$

$$F_{2}' = (1,2 * F_{PL} - k_{1} * \Delta z_{z}) \frac{k_{2}}{k_{1} + k_{2}}$$

z_{max} je sednutí, viz obrázek Obr. 21, která se vypočte z rozdílu stlačení vypružení při síle F₁' a F_{PV.}

$$z_{max} = \Delta z_{F1'} - \Delta z_{FPV} = \frac{F_1'}{k_1} - \frac{F_{PV}}{k_1}$$

 Výšku pružiny 1 pod prázdným vozem H₁₁. Toto je návrhový vztah z normy EN 13906-1. Tato norma popisuje návrh válcové vinuté pružiny.

$$H_{11} = (n_1 + 1)d_1 + n_10,2d_1 + z_{max}$$

10) Sednutí z_U je konstrukční hodnota sednutí podle které jsem navrhnul parametry vypružení a je to rozdíl relativních stlačení PL a PV vozu, viz vzorec níže.

$$z_U = \Delta z_{FPL} - \Delta z_{FPV} = \frac{F_{PL}}{k_1} - \frac{F_1}{k_1}$$

Tabulka Tab. 11 nastiňuje jednotlivé kroky uvedeného výpočtu v řádcích. Každý sloupec pak přepočítává parametry podle vlastní frekvence. Zeleně jsou podbarveny hodnoty přijatelné výšky H_{11} <321mm a přijatelného sednutí z_u >=60mm. Poté byly měněny průměry drátu d₁ a d₂ tak, aby u vybraného sloupce byly minimálně 3 činné závity. Červené hodnoty jsou volené.

ČVUT FS **DP 2020 - DLTT** Diplomová práce U 12 120

Číslo kroku										
z postupu výše					Řada vlasti	ních frekvei	ncí.			
1)	f	1,4	1,5	1,6	1,7	1,8	1,9	2	2,1	Hz
	k _{s,PV}	128	147	168	189	212	236	262	289	N·mm ⁻²
	k _{s,PL}	515	591	673	760	852	949	1 052	1 1 5 9	N·mm ⁻²
				Geo	metrické pa	arametry p	ružiny.			
2)	D _{1e}	360	360	360	360	360	360	360	360	mm
3)	d1	40	40	40	40	40	40	40	40	mm
	d ₂	40	40	40	40	40	40	40	40	mm
4)	D1	320	320	320	320	320	320	320	320	mm
	D1i	280	280	280	280	280	280	280	280	mm
	D _{2e}	250	250	250	250	250	250	250	250	mm
	D_2	210	210	210	210	210	210	210	210	mm
5)	n1	6,163	5,368	4,718	4,180	3,728	3,346	3,020	2,739	
	n ₂	7,234	6,302	5,539	4,906	4,376	3,928	3,545	3,215	
6)	k1	128	147	168	189	212	236	262	289	N·mm ⁻²
	k2	387	444	505	570	640	713	790	870	N·mm ⁻²
	$(k_1 + k_2)$	515	591	673	760	852	949	1 052	1 1 5 9	N·mm ⁻²
			Silové	účinky a h	odnoty výše	ek při různy	ých stavech	zatížení.		
7)	F 1	31 418	31 489	31 566	31 647	31 733	31 824	31 920	32 021	N
	F ₂	33 905	33 834	33 758	33 676	33 590	33 499	33 403	33 303	N
	Fzz	19 528	19 528	19 528	19 528	19 528	19 528	19 528	19 528	Ν
	Δ_{zz}	157	138	121	108	97	88	80	73	mm
	F_1	34 673	34 744	34 820	34 901	34 987	35 078	35 174	35 275	Ν
	$\Delta z_{F1'}$	270	236	208	184	165	148	134	122	mm
	F2'	43 715	43 644	43 568	43 486	43 400	43 309	43 213	43 113	Ν
	$\Delta z_{F2'}$	113	98	86	76	68	61	55	50	
8)	Zmax	143	125	111	98	88	80	72	66	mm
9)	H11	479	423	377	339	307	280	257	237	mm
10)	Zu	118	103	91	81	73	66	60	55	mm

Tab. 11 Výpočetní tabulka duplexní pružiny v programu MS Excel.

Výsledky výpočtu duplexních šroubovitých pružin dle ČSN EN 13 906-1							
		vnější		vnitřní			
Veličina		pružina		pružina			
Střední průměr pružiny	D =	320	mm	210	mm		
Průměr drátu	d =	40	mm	40	mm		
Vnější průměr pružiny	D _a =	360	mm	250	mm		
Vnitřní průměr pružiny	D _i =	280	mm	170	mm		
Počet činných závitů	n =	3,00		3,5			
Celkový počet závitů	n _c =	4,50		5			
Modul pružnosti ve smyku	G =	78 500	N∙mm⁻²	78 500	N∙mm ⁻²		
Modul pružnosti v tahu	E =	206 000	N∙mm⁻²	206 000	N∙mm ⁻²		
Délka (výška) pružiny pod F PV	L ₁ =	250	mm	210	mm	osová tuhost k ₀	
Maximální příčná výchylka	y _{max} =	20	mm	20	mm	1030,5	N·mm⁻¹
Osová tuhost pružin	k₀=	255,5	N∙mm⁻¹	775,0	N·mm⁻¹	ΣFz	
Síla na pružinu pod F _{PV}	F1 =	17 024	Ν	0	Ν	17 024	Ν
Síla na pružinu ložený	Flož =	33 207	Ν	32 867	Ν	66 074	Ν
Síla na pružinu pod F _{max}	F2 =	36 612	Ν	42 677	Ν	79 289	Ν
Síla na pružinu na narážce	Fn =	36 900	Ν	42 700	Ν	79 600	Ν
Maxim. stlačení pružiny s ma:	x = L1-Ln	77,8	mm	55,1	mm		
Volná délka pružiny	L ₀ =	316,6	mm	210,0	mm	příčná tuhost k y	
Délka (výška) pružiny pod F PV	L1 =	250,0	mm	210,0	mm	416,7	N∙mm⁻¹
Délka (výška) pružiny pod F _{Lož}	L _{lož} =	186,7	mm	167,6	mm	1 704,5	N · mm⁻¹
Délka (výška) pružiny pod F _{max}	L ₂ =	173,3	mm	154,9	mm	1 747,6	N · mm⁻¹
Délka (výška) pružiny na naráž	ce L _n =	172,2	mm	154,9	mm	1 748,4	N · mm⁻¹
Skutečný součet minim. mezer	sa =	4,2	mm	-33,1	mm		
	I –	168.0	mm	188.0	mm		

Tab. 12 Výsledné parametry první verze duplexní pružiny.

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

Výsledné hlavní parametry duplexní pružiny jsem zaokrouhlil a zapsal do tabulky Tab. 12. Tato tabulka zároveň obsahuje další informace o silových zatíženích. Na obrázku Obr. 22 je charakteristika sekundárního vypružení při použití duplexní pružiny z tabulky Tab. 12.

Obr. 22 Charakteristika sekundárního vypružení, ve svislém směru.

6.2. Příčná tuhost příčného vypružení

Příčná vůle kolébky vůči rámu podvozku je y=20mm. Kvůli tomu, že je sekundární vypružení namáháno kombinovaně, tedy jako na obrázku Obr. 25, tedy silami F_1 a F_2 do směru svislého a silami F_{y1} a F_{y2} do směru příčného.

Příčné zatížení $F_y = F_{y1} + F_{y2}$ tedy vychází ze vztahu Rov. 10.

$$F_y = k_y \cdot \Delta y$$
 Rov. 9 $m = \frac{F_y}{a_y}$ Rov. 10

V tabulce Tab. 13 jsem vypočetl příčné tuhosti mojí duplexní pružiny vypočtené podle [7]. Pro vyjádření příčné tuhosti na jedné kolébky při stavu plně loženého vozu jsem vzal dvojnásobnou příčnou tuhost jedné sady duplexních pružin při stavu $\mathbf{F}_{Lož}$, což je 3410 N.mm⁻¹.

orstencem.

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

Pro příčnou vůli kolébky y=20 mm jsem podle vztahu Rov. 9 vypočetl, že vypružení by přeneslo v příčném směru sílu $F_{y1} + F_{y2} = 68\ 200 \text{ N}.$

Zrychlení $a_y = 1,1 \ m \cdot s^{-2}$ je návrhová hodnota uvažující i zrychlení větru u kolejových vozidel. Ze vztahu Rov. 10 jsem vypočítal z těchto dvou hodnot hmotnost 62 000 kg. Z tabulky Tab. 8 je moje hmotnost působící na sekundární vypružení na jedné kolébce 13 471 kg, což byla výrazně odlišná hodnota. Sekundární vypružení jsem proto upravil přidáním pryžového silenbloku viz výkres na obrázku Obr. 23.

F _{PV}	417	N·mm ⁻¹
F prázdné kontejnery	1 672	N·mm ⁻¹
F _{Lož}	1 705	N·mm ⁻¹
F _{max}	1 748	N·mm ⁻¹

Tab. 13 Výsledné příčné tuhosti duplexní pružiny v různých stavech zatížení.

Obr. 25 Kombinované namáhání duplexní pružiny.

6.2.1. Aplikace pryžového prvku

Pryžový prvek má tvar prstence. Číselné parametry toho pryžového pružícího prvku jsem určil z programu na parametrizaci tohoto prvku. Tento program s názvem PRSTENCE mi poskytl doc. Ing. Josef Kolář CSc. Z programu PRSTENCE jsem získal charakteristiku mně vyhovujícího pryžového prstence, která je na obrázku Obr. 26.

Obr. 26 Charakteristika pryžového prstence.

Na obrázku Obr. 26 je modrými šipkami naznačen stav svislého zatížení prstencové pružiny silou $\mathbf{F}_{Lo\tilde{z}} = 66\ 075\ N$. V naznačeném zátěžovém stavu má navržená prstencová pružina příčnou tuhost kp = 1872 N·mm⁻¹. Konstrukčně jsou duplexní pružina a pryžový prstenec navrženy sériově. Příčnou tuhost jedné duplexní pružiny s pryžovým prstencem jsem vypočítal ze vztahu Rov. 11. Příčná tuhost sekundárního vypružení na jednom podvozku tedy vyšla $2 \cdot k_{v.sek.PL} = 1784\ N\cdot mm^{-1}$.

Při stejné úvaze, která byla provedena na začátku této kapitoly 6.2, odpovídá tato příčná tuhost hmotě 32 447 kg, což je opět velice nesrovnatelná hodnota s mojí reálnou hmotou 13 417 kg.

$$\frac{1}{k_{y,sek,PL}} = \frac{1}{k_{y,p}} + \frac{1}{k_{y,duplex}} = \frac{1}{1872} + \frac{1}{1705} = k_{y,sek,PL} = 892 \frac{N}{mm}$$
Roy, 11

Musel jsem tedy upravit duplexní pružinu při zachování svislé tuhosti. Toho jsem dosáhl změnou poměru průměru a výšky duplexní pružiny. Při zachování tohoto poměru, se nezmění svislá tuhost vinuté pružiny, jak je vidět ve vztahu Rov. 8. Výpočet je ovšem komplikovanější, protože se musí změnit štíhlostní poměr vnitřní i vnější pružiny naráz. K tomu jsem využil výpočetní tabulku duplexní pružiny v Excelu, viz tabulka Tab. 11. Pro přepočítání příčné tuhosti jsem použil stejný program, jako byl použit pro výstupy v tabulce Tab. 12. Tento program mi poskytl vedoucí mé diplomové práce doc. Ing. Josef Kolář CSc. Přehledný číselný přepočet sekundární pružící soustavy

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

je v tabulce Tab. 14. V této tabulce je zřetelná změna příčné tuhosti při mírné změně svislé tuhosti díky změně štíhlostního poměru pružin a přidání pryžového prstence. Stanovení tuhostí v tabulce Tab. 14 jsem provedl stejně jako v Rov. 11. Hmoty m_y jsem stanovil podle rovnic Rov. 9 a Rov. 10.

	První návrh samotné	Finální řešení
	duplexní pružiny l	duplexní pružína 2 + pryžový prstenec
Svislá tuhost k _{2z} při PL stavu	1031	995
$[N.mm^{-1}]$		
Příčná tuhost k _{2y} při PL stavu	1705	426
[N.mm ⁻¹]		
příčná výchylka y [mm]	20	20
příčné zrychlení a _y [m.s ⁻¹]	1,1	1,1
hmota m _v [kg]	31000	7751

Tab. 14 Změna tuhosti sekundárního vypružení v PL stavu.

Z tabulky Tab. 14 vychází tedy, že na jednu stranu kolébky připadá hmota 7751 kg. Na celou kolébku připadá tedy dvojnásobek 15 502 kg, což už velice dobře odpovídá reálné konstrukční hodnotě 13 417 kg i s dynamickou přirážkou 20 % tedy 16 165 kg. V tabulce Tab. 15 je uvedený přehled parametrů finálního řešení štíhlejší duplexní pružiny.

Výsledky výpočtu duplexních š	Výsledky výpočtu duplexních šroubovitých pružin dle ČSN EN 13 906-1						
		vnější		vnitřní			
Veličina		pružina		pružina			
Střední průměr pružiny	D =	255	mm	148	mm		
Průměr drátu	d =	40	mm	37	mm		
Vnější průměr pružiny	Da=	295	mm	185	mm		
Vnitřní průměr pružiny	D _i =	215	mm	111	mm		
Počet činných závitů	n =	5,50		7			
Celkový počet závitů	n _c =	7,00		8,5			
Modul pružnosti ve smyku	G =	78 500	N∙mm⁻²	78 500	N∙mm ⁻²		
Modul pružnosti v tahu	E =	206 000	N∙mm⁻²	206 000	N∙mm ⁻²		
Délka (výška) pružiny pod F _{PV}	L ₁ =	377	mm	356	mm	osová tuhost k ₀	
Maximální příčná výchylka	y _{max} =	20	mm	20	mm	1085,9	N ⋅ mm ⁻¹
Osová tuhost pružin	k₀=	275,4	N · mm⁻¹	810,4	N · mm⁻¹	ΣFz	
Síla na pružinu pod F PV	F1 =	17 024	Ν	0	Ν	17 024	Ν
Síla na pružinu ložený	Flož =	33 207	Ν	32 867	Ν	66 074	Ν
Síla na pružinu pod F_{max}	F2 =	36 612	Ν	42 677	Ν	79 289	Ν
Síla na pružinu na narážce	Fn =	36 900	Ν	42 700	Ν	79 600	Ν
Maxim. stlačení pružiny s _{ma}	x = L1-Ln	72,2	mm	52,7	mm		
Volná délka pružiny	L ₀ =	438,8	mm	356,0	mm	příčná tuhost k y	
Délka (výška) pružiny pod F PV	L1 =	377,0	mm	356,0	mm	226,1	N ⋅ mm ⁻¹
Délka (výška) pružiny pod F Lož	L _{lož} =	318,2	mm	315,4	mm	595,3	N · mm⁻¹
Délka (výška) pružiny pod F _{max}	L ₂ =	305,9	mm	303,3	mm	588,6	N · mm⁻¹
Délka (výška) pružiny na naráž	ice L _n =	304,8	mm	303,3	mm	588,8	N·mm ⁻¹
Skutečný součet minim. mezer	s _a =	36,8	mm	0,1	mm		
Pevná délka (výška) pružiny	L _c =	268,0	mm	303,4	mm		

Tab. 15 Přepočítaná duplexní pružina (druhá verze).

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

Na obrázcích Obr. 27 a Obr. 28 jsou charakteristiky finálního řešení duplexní pružiny a pryžového prstence ve svislém směru. Na obrázku Obr. 29 je součtová charakteristika pro svislé sekundární vypružení, tedy duplexní pružina i pryžový prstenec v sérii nad sebou.

Obr. 27 Charakteristika vypružení pro upravenou duplexní pružinu.

Když porovnáme součtovou charakteristiku svislého vypružení Obr. 29 a charakteristiku duplexní pružiny Obr. 27, tak je vidět, že pryžový prstenec moc nezměnil vlastnosti sekundárního vypružení ve svislém směru, což je pro návrh výhodné.

Obr. 28 Charakteristika svislého vypružení pryžového prstence.

Obr. 29 Finální charakteristika sekundárního vypružení.

6.2.2. Charakteristika příčného vypružení

Po konstrukční úpravě sekundárního vypružení, definovaného v předchozí kapitole jsem vytvořil grafické zobrazení charakteristiky příčného vypružení, viz obrázek Obr. 30. Pro každý zátěžový stav vyšla jiná hodnota výsledné příčné tuhosti, protože tuhost pryžového bloku není konstantní a duplexní pružina má velice odlišnou tuhost ve stavech PV a PL.

Obr. 30 Hlavní zátěžové stavy.

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

Na obrázku Obr. 30 jsou zobrazeny tři zátěžové stavy prázdná tramvaj (PV), tramvaj s prázdnými kontejnery (PS) a plně ložená s plnými kontejnery (PL). V Obr. 30 je celkem dobře vidět, jak se příčné vypružení chová při prázdném stavu PV. Zelenou čarou jsem naznačil přibližnou charakteristiku PV stavu v příčném směru a modrou čarou při stavech PS a PL. Skutečná charakteristika příčného vypružení je ovšem nelineárního charakteru.

Obr. 31 Příčný doraz (černě) mezi kolébkou a rámem podvozku.

Pro zajištění příčné výchylky y = 20 mm dosedá kolébka podvozku na stranách na pryžové dorazy na rámu podvozku, viz obrázek Obr. 31. Tyto dorazy zachytí všechny nadměrné výchylky rámu Cargo tramvaje. Pružný doraz extrémně zprogresivní charakteristiku příčného vypružení v závěru příčného pohybu, tím je dosaženo vymezení příčného pohybu 20 mm. Pryžový doraz je vyměnitelný a mírně tlumí veliké rázy.

6.3. Kontrola duplexní pružiny na únavu

Pružiny se musí pevnostně překontrolovat. K tomu jsem použil normu EN 13906-1. Norma uvádí vztah Rov. 12 výsledného smykového napětí τ_V , který bere v úvahu kombinované namáhání pružiny od osové a příčné síly, což je můj případ namáhání pružin.

Pro přesnější určení maximálního torzní napětí je podle EN 13906-1 zaveden korekční faktor k, který závisí na pružinovém indexu, což je poměr roztečného průměru pružiny **D** a průměr drátu pružiny **d**.

$$\tau_V = \frac{8}{\pi d^3} \left[F(D+y) + F_y(H-d) \right] \cdot k; \qquad k = \frac{w+0.5}{w-0.75}; \quad w = \frac{D}{d}$$

Rov. 12

Pro vyhodnocení pevnosti a životnosti pružiny se používá Goodmanův diagram, na kterém jsem vyhodnotil a zobrazil pevnostní vlastnosti. Goodmanův diagram pro duplexní pružinu je na obrázku Obr. 32. Zde je vidět, že pružina 1 a 2 v PV a PL stavech leží v bezpečné oblasti grafu. tedy pod hranicí pro průměr drátu 40 mm. Tyto meze únavy jsou pro $2x10^6$ cyklů. V grafech Obr. 32 a Obr. 33 je vidět menší bezpečnost, z hlediska únavy materiálu, vnitřní pružiny v zátěžovém stavu plně loženého vozu (PL). Vnitřní pružina není zatěžována, pokud je vozidlo prázdné, to znamená, že by mohla vydržet v porovnání s vnější pružinou podobný čas. Tabulka Tab. 16 obsahuje horní a dolní dynamická napětí duplexní pružiny jak pro **PV**, tak pro **PL** Cargo tramvaj. Při výpočtu horních a dolních napětí jsem uvažoval amplitudu jako 0,2 násobek svislého zatížení. Svislá statická zatížení **F** jsem dosazoval podle hmotnostního rozboru zvlášť pro **PV** a **PL** vůz. Protože je sekundární vypružení namáháno kombinovaně tedy jako na obrázku Obr. 25 do směru svislého a příčného, zatížení v příčném směru **F**_y, při průjezdu obloukem. při odstředivém zrychlení a= 0,8 m·s⁻² + 0,3 m·s⁻² (plus jsem připočetl 0,3 m.s⁻² vliv bočního větru a nerovností koleje). Příčné zatížení tedy vychází ze vztahu Rov. 10.

pružina 1 PL		pružina 1 PV	
τ _d [N.mm ⁻²]	τ _h [N.mm ⁻²]	τ _d [N.mm ⁻²]	τ _h [N.mm ⁻²]
468	568	237	340

pružina 2 PL		pružina 2 PV	
τ _d [N.mm ⁻²]	τ _h [N.mm ⁻²]	τ _d [N.mm- ²]	τ _h [N.mm- ²]
307	543	0	0

Tab. 16 Hodnoty smykových napětí pro Goodmanův diagram na obrázku Obr. 32 a Obr. 32.

Obr. 32 Goodmanův diagram vnější pružiny.

Obr. 33 Goodmanův diagram vnitřní pružiny.

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

6.4. Kontrola vzpěrné stability duplexní pružiny

Kontrola vzpěrné stability spočívá ve splnění podmínky Rov. 13, která říká že kritická síla F_{krit} nesmí být menší než maximální zatěžující svislá síla F. Jde obecně o Eulerův vzpěr. Vliv uložení na koncích pružiny se bere v úvahu v podobě koeficientu uložení pružiny $\boldsymbol{\nu}$. Tento koeficient je pro můj typ uložení pružiny $\boldsymbol{\nu} = 1,2$. Na obrázku Obr. 34 jsou znázorněny druhy vzpěru s příslušným součinitelem $\boldsymbol{\nu}$. Můj typ uložení je něco mezi $\boldsymbol{\nu} = 2 \div 1$. Můj typ uložení je polokloubové uložení.

$$F \le F_{krit}$$
 Rov. 13

Vztah pro kontrolní určení F_{krit} je z [10].

$$F_{krit} = \frac{\frac{1}{\psi} \cdot \frac{\pi^2}{H_R^2}}{1 + \frac{\pi^2}{H_R^2} \cdot \frac{m}{\psi}}; m = \frac{8 \cdot D^3 \cdot n_{\check{c}}}{H \cdot E \cdot d^4}; \psi = \frac{32 \cdot D \cdot n_{\check{c}}}{H \cdot E \cdot d^4} \cdot (2 + \mu); H_R = \nu \cdot H$$
Rov. 14

Součinitel tuhosti ve smyku ... m

Součinitel tuhosti v ohybu ... ψ

Ekvivalentní výška pružiny ... H_R

Poissonova konstanta ... μ

Obr. 34 Druhy vzpěru.

Jelikož jsem počítal duplexní pružinu, musel jsem zkontrolovat vnější i vnitřní pružinu zvlášť. Hodnoty maximálních svislých sil F_{max} jsem vzal z tabulky Tab. 15. F_{max} je maximální hodnoty svislého zatížení na pružinu. Hodnoty F_{max} jsou pro vnější a vnitřní pružinu odlišné, kvůli odlišné tuhosti při maximálním zatížení. Číselnou kontrolu jsem provedl v tabulce Tab. 17. Kontrola navržené duplexní pružiny vyšla kladně, jak jsem zdůraznil zeleným podbarvením.

Vnější pružina má bezpečnost na vzpěr k = 63520/36612 = 1,74. Vnitřní pružina má bezpečnost na vzpěr k = 86031/42677 = 2,01.

	Vý	počet kritick	té sily F _{krit} v	vnější pružiny	
Vstupy		jednotky	Výstupy		jednotky
D	255	[mm]	H _R	527	[mm]
d	40	[mm]	ψ	$4,478 \cdot 10^{-10}$	$[N^{-1}.mm^{-2}]$
$n_{\check{c}}$	5,5	[1]	m	3.10-6	[N ⁻¹]
H ₀	439	[mm]	Fkrit	63 520	[N]
ν	1,2	[1]			
E	206 000	[N.mm ⁻²]			
ν	0,31	[1]			
F _{max}	36 612	[N]			
	Výp	očet kritické	sily F_krit	vnitřní pružiny	
Vstupy		jednotky	Výstupy		jednotky
D	148	[mm]	H _R	427	[mm]
d	37	[mm]	ψ	$5,572.10^{-10}$	$[N^{-1}.mm^{-2}]$
nč	7	[1]	m	1.10-6	$[N^{-1}]$
		L 3			L J
H ₀	356	[mm]	Fkrit	86 031	[N]
$H_0 u$	356 1,2	[mm] [1]	F _{krit}	86 031	[N]
Η ₀ ν Ε	356 1,2 206 000	[mm] [1] [N.mm ⁻²]	F _{krit}	86 031	[N]
$egin{array}{c} H_0 \ u \ E \ u \end{array}$	356 1,2 206 000 0,31	[mm] [1] [N.mm ⁻²] [1]	F _{krit}	86 031	[N]

Tab. 17 Výsledky kontroly vzpěrné stability.

Pro porovnání jsem přidal grafickou formu kontroly vzpěrné stability na obrázku Obr. 35. Obě pružiny jsou stabilní, protože leží nalevo od linie meze stability. K vytvoření Obr. 35 jsem použil program v MS Excel s názvem SMITH-GOODMANN od vedoucího této práce doc. Ing. Josefa Koláře CSc.

Obr. 35 Hodnocení pružin 1 a 2 na vzpěr.

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

6.5. Kontrola duplexní pružiny na převrácení

Další kontrola, která se u takovýchto pružin provádí, je kontrola na převrácení. Některé pružiny mají tendenci se příliš ohýbat (hroutit). Kritická délka pružiny, na které hroucení začíná, se značí L_k. Vychylování pružiny až do bodu mezního vzpěru se nazývá mezní vzpěrné stlačení y_{krit}. Mezní vzpěrné stlačení je dáno vztahem Rov. 15.

Níže je odvození pro výpočet mezního vychýlení pružiny a následná číselná kontrola jak pro vnější, tak pro vnitřní pružinu. Uvažuji stav uložení $\nu = 1,2$ viz. obrázek Obr. 36.

$$F\left(\frac{D}{2} - y\right) = F_y \cdot H$$
$$y = \left(\frac{D}{2} - \frac{F_y}{F}H\right)$$
$$\Rightarrow y < \left(\frac{D}{2} - \frac{F_{y,krit}}{F_{krit}}H\right)$$

Rov. 15

Vnější pružina

$$y_{krit,1} = \left(\frac{255}{2} - \frac{3690}{36612} \cdot 439\right) = \mathbf{83mm} > 20mm$$

Vnitřní pružina

$$y_{krit,2} = \left(\frac{356}{2} - \frac{3690}{42600} \cdot 439\right) = 43mm > 20mm$$

Obě pružiny mají y_{krit} větší než 20 mm, což znamená že se pružiny nepřevrátí.

Obr. 36 Rovnováha momentů na příčně a svisle zatížené pružině.

7. Výpočet bezpečnosti proti vykolejení při jízdě v definovaném traťovém úseku.

Bezpečnost proti vykolejení patří k nejzákladnějším požadavkům na všechna kolejového vozidla. Každé vozidlo, které se má pohybovat po kolejích, musí být zkonstruované tak, aby ani za nejhorších provozně přípustných stavů koleje a vozidla nenastala situace, která by vedla k vykolejení vozidla, nebo se k vykolejení nebezpečně přiblížila. Bezpečnost proti vykolejení v užším slova smyslu je měřitelný parametr každého kolejového vozidla. Stanoví se jako poměr vodící síly Y a zatížení příslušného kola Q. Prověření bezpečnosti proti vykolejení je součástí typových zkoušek každého vozidla. Vodící síly se měří pomocí měrných dvojkolí s tenzometry.[8] [9]

Obr. 37 jednobodový kontakt kola s kolejnicí.[2]

$$\left(\frac{Y}{Q}\right)_{mezni} = \frac{tg\beta - f}{1 + f.tg\beta}$$
 Rov. 16

Rovnice Rov. 16 je označována jako Nadalův vztah. Tato rovnice je zapsána v normě [9] a tato norma říká, že při součiniteli tření f=0,36 a úhlu okolku $\beta = 70^{\circ}$ je mezní stav $\left(\frac{Y}{Q}\right)_{mezni} = 1,2$. Součinitel tření je potřeba vnímat spíše jako statistickou hodnotu a při samotném zkoušení se musí čekat na vhodné podmínky počasí a kolej by neměla být na povrchu zkorodovaná.

V rovnici Rov. 17 je napsaná podmínka splnění bezpečnosti proti vykolejení, kde Y_a je vodící síla na konkrétním vodícím kole (kolo a) dvojkolí a Q_{min} je minimální svislá kolová síla působící na vodícím kole tohoto dvojkolí.

$$\frac{Y_a}{Q_{min}} \ge \left(\frac{Y}{Q}\right)_{mezni} = 1,2$$
 Rov. 17

Norma [9] definuje požadavky na zkoušky kolejových vozidel. V rámci traťových zkoušek se bezpečnost proti vykolejení znovu vyhodnocuje. Bez splnění stacionární zkoušky vůbec nemohu jízdní zkoušky provádět.

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

Stacionární zkouška bezpečnosti proti vykolejení se provádí při velmi malých rychlostech a v minimálním poloměru směrového oblouku. Minimální poloměr oblouku tramvajové sítě v Praze je 20 m a 18 m na stanovištích pro otáčení tramvají (ve smyčkách). Při stacionární zkoušce proti vykolejení je ještě důležité vědět, že horší stav nastane, pokud je vozidlo v prázdném stavu (**PV**). Zkouší se tedy prázdné vozidlo. Další problematický prvek této zkoušky je přechod vozidla do stavebního převýšení po vzestupnici, to způsobuje změny kolových sil Q a je tedy potřeba tyto změny zahrnout do kontroly bezpečnosti proti vykolejení.

Horší stav z hlediska bezpečnosti proti vykolejení je při vyjíždění vozidla ze stavebně převýšeného oblouku, protože se vodící kolo prvního dvojkolí, které se již nachází na úseku zborcené koleje, odlehčí. Na toto kolo však ještě působí řídící síla téměř v plné velikosti, kterou měla v oblouku.²)

Norma [9] popisuje 3 metody statické zkoušky proti vykolejení.

Zde uvádím jejich princip:

- Metoda 1
 - Vozidlo vjede do minimálního traťového oblouku se stavebním převýšením.
- Metoda 2
 - Provede se zkrucovací zkouška vozidla na speciálním zařízení, jejíž princip je zdvihání jednotlivých kol, tak aby bylo dosaženo předepsaných hodnot zborcení. Tím je změřeno Q_{min}.
 - Vozidlo projede směrovým obloukem s minimálním poloměrem bez převýšení a naměří se při tom vodící síly Y_a.
 - Metoda 3
 - Zkrucovací zkouška stejná jako v metodě 2. Tím je změřeno Q_{min}.
 - Zjištění momentu odporu natočení podvozku M_k na speciálním stavu. Z momentové rovnováhy se stanoví vodící síly $Y_{a.}$

Při výpočtu bezpečnosti proti vykolejení jsem se s ohledem na kolébkový podvozek inspiroval metodou 2.

²) Další negativní vliv jsou nechtěné nerovnosti trati, které v méně udržovaných tratí mohou být markantní a potřeba s nimi počítat.

7.1. Stanovení minimální kolové síly Q_{min}

V této kapitole jsem částečně analyticky a částečně pomocí MBS simulací spočetl změnu kolových sil podle analytického modelu na obrázku Obr. 38. Upozorňuji, že jsem pro celou tuto kapitolu předpokládal lineární tuhost vypružení vozidla. V tomto modelu od počátku uvažuji, že rámy článků Cargo tramvaje jsou absolutně tuhé, tedy tuhost rámu jde k nekonečnu, proto s tuhostmi rámů nepočítám.

Obr. 38 Model pro výpočet změn kolových sil.

Zborcení tramvajových tratí je definováno mezní strmostí vzestupnice $\alpha_z = 1:150$ (u skříně), tj. 6,67 ‰ a u podvozku se připočítává lokální křížový propad pod jedním kolem $\Delta p_z = p_2 = 20$ mm.

Obr. 39 Kolejnicový přechod do zborcené koleje.

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

7.1.1. Analytické odvození změny kolové síly od podvozku

Tuhost (Rov. 18) mezi dvojkolím a rámem podvozku jsem odvodil podle obrázku Obr. 40 a následně vypočetl vzájemnou torzní tuhost dvojkolí v podvozku. Torzní tuhosti k_{t1A} , k_{t1B} a k_{t1C} jsou mezi dvojkolími podle obrázku Obr. 40 a uvedený vztah číslo Rov. 18 jsem převzal z [2].

Vztah Rov. 19 jsem také převzal z [2] pro výpočet změny kolové síly, způsobenou najetím podvozku na úsek s mezním zborcením. Následně jsem spočetl změnu kolové síly podvozku v rovnici Rov. 19.

Obr. 40 Model torzní soustavy dvojkolí-rám podvozku

Torzní tuhost dvojkolí vůči sobě:

$$k_{tCP} = \frac{k_{tRP} \cdot k_{tDv}}{2k_{tRP} + k_{tDv}} = \frac{k_{tRP} \cdot 2k_{1A} \cdot w_{1A}^2}{2k_{tRP} + 2k_{1A} \cdot w_{1A}^2} = \frac{300\ 000 \cdot 2 \cdot 3\ 400\ 000 \cdot 0,9095^2}{2 \cdot 300\ 000 + 2 \cdot 3\ 400\ 000 \cdot 0,9095^2}$$

= 271\ 084\ Nm \cdot rad^{-1}

 k_{tRP} ... torzní tuhost rámu podvozku

Změna kolových sil od podvozku:

$$\Delta Q_P = \frac{a_p}{(2s)^2} k_{tCP} \frac{\alpha_{zP[\%_0]}}{1000} = \frac{1}{(2s)^2} k_{tCP} \cdot p_{zp} = \frac{1}{1,4615^2} 271\ 084 \cdot 0,03267$$

$$= 4\ 147\ N$$
Rov. 19

SIM

7.1.2. Změna kolové síly od skříně pomocí MBS simulace v programu Simpack, při vyjíždění prvního podvozku z převýšen

Analytické určení změn kolových sil od skříně není tak jednoduché, proto jsem pro výpočet raději použil MBS simulaci mého modelu v programu Simpack. Simuloval jsem nakrucování dvoučlánkového vozidla viz. obrázek Obr. 41. Síly jsou reprezentovány červenými šipkami, které se v čase mění podle nastaveni simulace. Nakrucování probíhalo naklápěním podvozku viz obrázek Obr. 42. Byl to stav, kdy vozidlo vyjíždí čelním podvozkem z převýšení oblouku. Změny sil

odečítané v sekundárním vypružení jsou na obrázku Obr. 43. V tabulce Tab. 18 jsem zapsal maximální hodnoty naměřených změn a vydělil je dvěma. Tyto vydělené hodnoty jsem bral jako změny kolových sil od rámu článkového vozu.

Pro úplnost jsem na obrázku Obr. 42 uvedl průběhy zborcení a na obrázku Obr. 43 odpovídající změny sil v sekundárním vypružení.

Obr. 42 Průběhy odpovídajících změn stavebních převýšení pod podvozky 1,2,3.

Obr. 43 Změna sil v sekundárním vypružení při kroucení dvoučlánkového vozu.

	Podvozek 1	Podvozek 2	Podvozek 3	
2·∆Q _s	8385	1350	4888	[N]
ΔQs	4192,5	675	2444	[N]

Tab. 18 Maximální hodnoty změn kolových sil od skříně

7.1.3. Výpočet změn kolových sil v programu Simpack při vyjíždění druhého podvozku z převýšení

Stejnou simulaci jako v předchozí kapitole jsem provedl pro stav, kdy má vozidlo čelní podvozek na přímé trati, ale druhý podvozek teprve vyjíždí z převýšení oblouku. Obrázky Obr. 44 a Obr. 45 zobrazují průběh simulace a v tabulce Tab. 19 jsou výstupní hodnoty změn kolových sil od rámů dvoučlánkové Cargo tramvaje.

2·ΔQs 8385 1350 4888 [N] ΔQs 4192.5 675 2444 [N]		Podvozek 1	Podvozek 2	Podvozek 3	
ΔQ ₅ 4192.5 675 2444 [N]	2·∆Qs	8385	1350	4888	[N]
	ΔQs	4192,5	675	2444	[N]

Tab. 19 Maximální hodnoty změn kolových sil od skříně

Obr. 44 Průběhy stavebních převýšení pod podvozky 1,2,3.

Obr. 45 Změna sil v sekundárním vypružení při kroucení dvoučlánkového vozu.

7.1.4. Číselný výpočet změn kolových sil

V tabulce Tab. 20 jsem zapsal číselné vstupy a výstupy výpočtu změn kolových sil na prvním, třetím, čtvrtém a šestém dvojkolí. U vstupů jsem uvažoval také torzní poddajnost H-rámu podvozku, kterou jsem odhadl na základě porovnání s ostatními tuhostmi soustavy, protože je dobré, aby řetězec hmot a tuhostí byl bez nějakých velkých odchylek od ostatních hodnot. Tuhost primárního vypružení jsem přejal z pružícího prvku, který je používán na tramvajích Škody Transportation a. s. U tabulky výstupů je zásadní poměr změny kolové síly ku kolovému zatížení, pokud je ten poměr dle [9] menší než 0,6, tak se dá vozidlo považovat za bezpečné. Změnu kolové síly podvozku ΔQ_P jsem určil podle kapitoly 7.1.1 s tím, že jsem počítal s lokálním propadem kola 20 mm.

Výsledné změny kolových sil po sečtení účinků od podvozku a od skříně při postavení Cargo tramvaje na vzestupnici. Je to stav, kdy vozidlo vyjíždí z oblouku s převýšením na přímou kolej bez převýšení. Na obrázcích Obr. 46 a Obr. 47 jsou zobrazeny součty změn kolových sil na jednotlivých kolech. Obrázek Obr. 46 znázorňuje stav, kdy vyjíždí z oblouku první podvozek a obrázek Obr. 47 stav kdy vyjíždí druhý podvozek. Červená rovnice na obrázcích Obr. 46 a Obr. 47 značí kritické kolo, protože se na něm odečítají oba účinky změn kolových sil.

Zborcení tramvajových tratí je definováno mezní strmostí vzestupnice 1:150 (u skříně), tj. 6,67 ‰ a u podvozku se připočítává lokální křížový propad pod jedním kolem $\Delta p_z = p_2 = 20$ mm. Tyto hodnoty jsem zanesl do tabulky Tab. 20 mezi vstupní hodnoty. Uvažovaná tuhost sekundárního vypružení je tuhost při prázdném stavu vozidla, poněvadž to je stav nebezpečný. V tabulce Tab. 21 jsou níže i hodnoty výstupní spočtené podle výše uvedených rovnic.

Změnu kolové síly od skříně jsem vzal ze simulací v programu Simpack v kapitolách 7.1.2 a 7.1.3. V tabulkách Tab. 20 a Tab. 21 jsou dva sloupce hodnot jeden je pro stav, kdy z převýšení vyjíždí přední podvozek a tedy přední odlehčenější kolo viz obrázek Obr. 46. Druhý sloupec je pro stav, kdy má vozidlo čelní podvozek již na přímé trati bez převýšení a druhým vyjíždí z převýšeného oblouku viz obrázek Obr. 47.

Vstupy				
		vyjíždí přední podvozek	vyjíždí prostřední podvozek	
rozvor náprav podvozku	a _p	1,9	1,9	[m]
rozvor podvozků	as	6,4	5,84	[m]
mezní zborcení podvozek	α_{zp}	6,67	6,67	[‰]
mezní zborcení skříň	α_{zS}	6,67	6,67	[‰]
mezní zborcení pro podvozek	p _{zp}	0,03	0,03	[m]
mezní zborcení pro skříň	P _{zS}	0,04	0,04	[m]
báze prim. a sek. vypružení	w ₁ =w ₂	0,9095	0,9095	[m]
tuhost prim. vypruž. na kole	k1	3 400 000	3 400 000	[N/m]
tuhost sek. vypruž. jedné strany podvozku	k ₂	274 043	274 043	[N/m]
torzní tuhost rámu podvozku	k _{tRP}	300 000	300 000	[Nm·rad ⁻¹]
vzdálenost styčných kružnic	2s	1,4615	1,4615	[m]

Tab. 20 Číselné vstupy pro změny kolových sil.

		Výstupy			
tuhost dvojkolí navzájem	ktCP	271 084		271 084	[Nm·rad ⁻¹]
změna kolové síly podvozku	ΔQ_P	4 147		4 147	[N]
změna kolové síly skříně	ΔQs	4193		2238	[N]
změna kol. síly (nejodlehčenější)	ΔQ_{11}	8 340	ΔQ_{31}	6 385	[N]
změna kol. síly (nejodlehčenější)	ΔQ_{42}	46	ΔQ_{62}	1 909	[N]
kolová síla	Q ₁₁	18 462	Q ₃₁	18 462	[N]
kolová síla	Q ₄₂	19 218	Q ₆₂	19 218	[N]
poměr změny kol. síly ku kol. zatížení	ΔQ/QA	0,45		0,35	[1]<0,6
poměr změny kol. síly ku kol. zatížení	ΔQ/QB	0,43		0,33	[1]<0,6

Tab. 21 Číselné výstupy pro změny kolových sil.

Pro kontrolu jsem udělal součet změn kolových sil, ten vyšel nulový, takže změny kolových sil jsou správně.

a) Kontrola pro stav, kdy vyjíždí přední podvozek z převýšení:

náprava	levé kolo [N]	pravé kolo [N]
1	8 340	-8339,63
2	46	-46
3	-46	46
4	-8339,63	8 340
	suma	0

b) Kontrola pro stav, kdy vyjíždí druhá podvozek z převýšení:

náprava	levé kolo [N]	pravé kolo [N]
3	6 385	-6385
4	-1 909	1 909
5	1 909	-1 909
6	-6385	6 385
	suma	0

7.2. Bezpečnost proti vykolejení

Bezpečnost proti vykolejení je definována vztahem Rov. 17. Hlavní komentář k této problematice jsem již uvedl na začátku kapitoly 7. Změny kolových sil ΔQ na kontrolovaných kolech jsem již určil v předchozí kapitole.

Poloměr oblouku	Ro	150	[m]
Rychlost jízdy	v	5	[km·h⁻¹]
Součinitel tření	f	0,4	[1]

Tab. 22 Parametry MBS simulace jízdy.

Řídící síly Y jsem určil pomocí MBS simulace v programu Simpack. Za počátečních podmínek, které jsem již komentoval na straně 49 a tyto počáteční podmínky jsou v tabulce Tab. 22.

Na grafech Obr. 48 a Obr. 49 jsou zobrazeny průběhy řídících sil Y1 (první dvojkolí), Y4, Y3 a Y6 z MBS simulace. Cargo tramvaj projela simulovaně dvojicí navazujících oblouků.

Obr. 48 Vodící síly Y první případ.

Obr. 49 Vodící síly Y druhý případ.

V tabulce Tab. 23 jsou zapsány maximální vodící síly Y1, Y4, Y3 a Y6.

řídící síla na dvojkolí 1	Y1	3942	[N]
řídící síla na dvojkolí 4	Y4	5158	[N]
řídící síla na dvojkolí 3	Y3	5236	[N]
řídící síla na dvojkolí 6	Y6	4477	[N]

Tab. 23 Vodící síly Y.

Bezpečnost proti vykolejení jsem spočetl dle vztahu Rov. 17. Bezpečnosti proti vykolejení na dalších kolech a při druhém stavu, kdy vyjíždí z převýšení až druhý podvozek je v tabulce Tab. 24. Ve vztahu níže jsem názorně spočetl bezpečnost proti vykolejení pro první řídící kolo.

$$k_{BPV,11} = \frac{\left(\frac{Y}{Q_K}\right)_{mezni}}{\left(\frac{Y1}{Q_{11,min}}\right)_{prov.}} = \frac{1,2}{\left(\frac{Y1}{Q_{11,min}}\right)_{prov.}} \frac{1,2}{\left(\frac{Y1}{Q_{11} - \Delta Q_{11}}\right)_{prov.}} = \frac{1,2}{\frac{3942}{18462 - 8340}} = 3 \ge 1$$

míra bezpečnosti proti vykolejení	K _{BPV,11}	3,1 [N]
míra bezpečnosti proti vykolejení	K _{BPV,42}	4,5 [N]
míra bezpečnosti proti vykolejení	K _{BPV,31}	2,8 [N]
míra bezpečnosti proti vykolejení	K _{BPV,62}	4,6 [N]

Tab. 24 Výsledné míry bezpečnosti proti vykolejení.

ČVUT FS	Diplomová práce	Pavel Čermák
DP 2020 - DLTT	U 12 120	2019/2020

Z hlediska bezpečnosti proti vykolejení tato analýza říká, že vozidlo nevykolejí a je možné s ním provádět jízdní zkoušky. Pro kompletní kontrolu bych měl zkontrolovat i stav v oblasti změny tuhosti sekundárního vypružení v lineárně lomené charakteristice na obrázku Obr. 29, protože se změní i odezva vozidla.

8. Sestavný výkres zástavby středního podvozku pod kloubovou Cargo tramvaj.

Jak už jsem popisoval v úvodu podvozek Cargo tramvaje je kolébkový. Otočné spojení mezi kolébkou a rámem tramvaje je tvořeno čtyřbodovým kuličkovým ložiskem. Ložisko jsem vybral z katalogu firmy AB SKF. Ložisko jsem kontroloval podle statického zatížení a podle výpočtu F_{ekv} uvedeného níže. Bezpečnost z hlediska statické únosnosti s₀ vyšla na straně bezpečnosti pro vybrané ložisko QJ 1092 N2MA-technické specifikace jsou v příloze.

$$F_y = m_z \cdot a_y = 4\ 828 \cdot 1, 1 = 5\ 311\ N$$

$$F_x = m_z \cdot \mu = 4\ 828 \cdot 0, 4 = 1\ 931\ N$$

$$F_z = F_a = m_z \cdot g = 4\ 828 \cdot 9, 81 = 47\ 363\ N$$

$$F_r = \sqrt{F_x^2 + F_y^2} = \sqrt{1\,931^2 + 5\,311^2} = 5\,651\,N$$

 $F_{ekv} = X \cdot F_r + Y \cdot F_a = 0,58 \cdot 5.651 + 1,07 \cdot 47.363 = 53.956 N$

$$s_0 = \frac{F_{ekv}}{C_0} = \frac{53\,956}{1530\,000} = 28$$

Samotné ložisko jsem po sléze vybíral hlavně podle rozměrů, tak aby se dalo vhodně uložit nad kolébku podvozku viz následující obrázky.

Samotné řešení kloubu Jakobsova podvozku jsem navrhl následovně. Kloub na kolébku připevněn pomocí čepu. Čep přidržuje obrubu a ta drží vnitřní kroužek ložiska osmi šrouby viz obrázek Obr. 50. Na vnější kroužek ložiska je připevněna obruba pomocí osmi šroubů. Oky je prostrčen otočný čep a ten je zajištěn závitovými přírubami na imbusový klíč viz obrázek Obr. 51. Na koncích čepu je přímo napojen otočně rám předního článku. V prostřední části čepu je hranol s dírou. Na hranol je otočně napojen zadní článek viz obrázek Obr. 53. Na obrázku Obr. 54 je potom náhled výkresu v řezu podvozkem celý výkres je v příloze.

Obr. 50 Podélný řez podvozkem.

Obr. 51 Detaily uložení ložiska.

Obr. 52 Řez zástavbou nad podvozkem.

Obr. 53 Řez zástavbou nad podvozkem.

Obr. 55 Podélný řez podvozkem.

Obr. 54 Řez zástavbou nad podvozkem.

9. Závěr

Tato diplomová práce navazuje volně na moji bakalářskou práci. V bakalářské práci jsem se primárně zabýval trakčními charakteristikami upravené tramvaje Tatra T3 a hodnocením, zda je způsobilá provozu na Pražských tramvajových tratích. V této diplomové práci jsem se snažil navrhnout některé konstrukční části úplně nového dvoučlánkového vozu nazvaného Cargo tramvaj.

První část tohoto textu obsahuje kapitolu o výpočtu konstrukčního obrysu. Z tohoto výpočtu vychází, že Cargo tramvaj nebude při jízdě zasahovat mimo povolený průjezdný průřez na Pražských tramvajových tratích.

Ve velké části práce jsem se zabýval tvorbou základního konstrukčního modelu Cargo tramvaje. Detailněji jsem se zabýval především zástavbou kloubu nad Jakobsovým podvozkem a konstrukcí sekundárního vypružení.

Hmotnostní rozbor, který jsem použil pro ostatní výpočty v této práci, jsem sestavil na základě svého modelu a už dříve v minulosti vyráběných dílů. Z výpočtu statických nápravových zatížení je vidět, že tramvaj nemá úplně rovnoměrně rozloženou hmotnost na jednotlivá dvojkolí. Tuto nesymetrii jsem se snažil vyrovnat přesunutím zadního kontejneru do větší vzdálenosti od prostředního podvozku.

Při výpočtu a návrhu pružících prvků jsem se snažil zachytit postupný vývoj návrhu sekundárního vypružení. Sekundární vypružení v první verzi nevyhovělo kvůli jeho chování v příčném a podélném směru. Vytvořil jsem tedy druhou, a finální, verzi sekundárního vypružení, která splňuje požadované chování ve svislém i příčném směru. Duplexní šroubovitou pružinu jsem zkontroloval z hlediska statické a únavové pevnosti. Při kontrole vnitřní pružiny jsem zjistil její relativně malou únavovou bezpečnost, tato pružina, na rozdíl od vnější pružiny, není zatěžována po celou dobu provozu, proto předpokládám stejnou dobu provozu obou pružin. Vinuté pružiny jsem pozitivně zkontroloval na vzpěrnou stabilitu a na převrácení.

Další větší kapitola pojednává o bezpečnosti jízdy, tedy odborně bezpečnosti proti vykolejení. Tato bezpečnost se, kromě výpočtu, nepřímo měří na vyrobených vozidlech. Pro určení této bezpečnosti je potřeba znát změny svislých kolových sil a příčné vodící síly na dvojkolích. Pro určení změn kolových sil na stycích kol s kolejnicí jsem využil na půl analytický postup a na půl multi body simulation (MBS) v programu Simpack. Výsledné bezpečnosti na kritických kolech vyšli pozitivně.

Na konci této práce jsem se snažil ukázat co nejnázorněji, jak jsem navrhl nerozpojitelný kloub nad Jakobsovým podvozkem, tedy nad druhým podvozkem. Tento kloub má mezi předním a zadním článkem dva stupně volnosti. Články se mohou natáčet v ose y a v ose z. Články se nemohou natáčet vůči sobě kolem osy x, tedy ve směru jízdy. Podle kvazistatického zatížení jsem vybral ložisko, na kterém se volně natáčí podvozek pod tramvají.

Seznam použitých zdrojů

- KOLÁŘ, Josef a České vysoké učení technické v Praze. Strojní fakulta. *Teoretické základy konstrukce kolejových vozidel*. Vyd. 1. V Praze: České vysoké učení technické, 2009. ISBN 9788001042625;8001042626;.
- 2) Přednášky FS ČVUT předmětu Teorie Vozidel, Ing. Jan Kalivoda Ph.D.
- ČERMÁK, Pavel. VÝPOČET TRAKČNÍCH VLASTNOSTÍ TŘÍVOZOVÉ TRAMVAJOVÉ SOUPRAVY. Praha, 2018. Bakalářská práce. České vysoké učení technické. Vedoucí práce Kolář Josef.
- 4) DYNYBYL, Matěj. STUDIE REKONSTRUKCE SKŘÍNĚ TRAMVAJE T3 NA NÁKLADNÍ VERZI. Praha, 2018. Bakalářská práce. České vysoké učení technické. Vedoucí práce Kolář Josef.
- 5) ČSN 28 0318 Průjezdné průřezy tramvajových tratí a obrysy pro vozidla provozovaná na tramvajových drahách. 2015.
- 6) *GMT-Produktinformation: PUFFER SCHIENEN LAGERELEMENTE BUCHSEN UND GELENKE SONDERELEMENTE* [online]. 2020 [cit. 2020-05-08]. Dostupné z: <u>http://www.gmt-gmbh.de/fileadmin/daten/downloads/GMT_Produktkatalog_DT.pdf</u>
- 7) EN 13906-1 Cylindrical helical springs made from round wire and bar: Calculation and design Part 1: Compression spring. CEN, 2002.
- Bezpečnost proti vykolejení. In: *Wikipedia: the free encyclopedia* [online]. San Francisco (CA): Wikimedia Foundation, 2020, 12.4.2020 [cit. 2020-05-15]. Dostupné z: <u>https://cs.wikipedia.org/wiki/Bezpečnost_proti_vykolejení</u>
- 9) ČSN EN 14363: Železniční aplikace Přejímací zkoušky jízdních charakteristik železničních vozidel - Zkoušení jízdních vlastností a stacionární zkoušky. 2016.
- 10) KOLÁŘ, Josef. Konstrukce kolejových vozidel: Přednášky [online]. FS ČVUT Praha, 2020 [cit. 2020-07-08].

Seznam použitého softwaru

- Simpack
- CATIA
- Microsoft office

Seznam tabulek

Tab. 1: Tabulka mezních rozšíření vozidla v závislosti na poloměru oblouku	13
Tab. 2: Vstupní data k výpočtu obrysu přední skříně	15
Tab. 3 Výsledky kontroly obrysu přední skříně	16
Tab. 4 Vstupní data k výpočtu obrysu zadní skříně	18
Tab. 5 Výsledky kontroly obrysu zadní skříně	18
Tab. 6 Hodnoty a výsledek výškového snížení průjezdného průřezu u předního článku	19
Tab. 7 Hodnoty výškového snížení průjezdného průřezu u zadního článku	19
Tab. 8 Hmotnostní rozbor Cargo tramvaje.	24
Tab. 9 Síly na nosníku.	25
Tab. 10 Nápravové statické zatížení a kolové statické zatížení. Pro plně ložený vůz	27
Tab. 11 Výpočetní tabulka duplexní pružiny v programu MS Excel	35
Tab. 12 Výsledné parametry první verze duplexní pružiny	35
Tab. 13 Výsledné příčné tuhosti duplexní pružiny v různých stavech zatížení	37
Tab. 14 Změna tuhosti sekundárního vypružení v PL stavu	39
Tab. 15 Přepočítaná duplexní pružina (druhá verze)	39
Tab. 16 Hodnoty smykových napětí pro Goodmanův diagram na obrázku Obr. 32 Obr. 32	243
Tab. 17 Výsledky kontroly vzpěrné stability	46
Tab. 18 Maximální hodnoty změn kolových sil od skříně	53
Tab. 19 Maximální hodnoty změn kolových sil od skříně	53
Tab. 20 Číselné vstupy pro změny kolových sil	56
Tab. 21 Číselné výstupy pro změny kolových sil	57
Tab. 22 Parametry MBS simulace jízdy.	58
Tab. 23 Vodící síly Y.	59
Tab. 24 Výsledné míry bezpečnosti proti vykolejení	59

Seznam obrázků

Obr. 1 Zmenšený typový výkres Cargo tramvaje	9
Obr. 2: Typový výkres obousměrné soupravy Cargo tramvaje	10
Obr. 3: Model podvozku Komfort plus z Krnovských strojíren s.r.o	11
Obr. 4: Norma průjezdného průřezu a statického obrysu pro tramvaje	12
Obr. 5: Schéma čtyřnápravového vozu	14
Obr. 6: Přední rám Cargo tramvaje. Polohy kontrolovaných míst na voze	15
Obr. 7 Zadní skříň Cargo tramvaje. Polohy kontrolovaných míst na voze	17
Obr. 8 Kontrola kývání přední skříně	19
Obr. 9 Kontrola kývání zadní skříně s kontejnerem	20
Obr. 10	21
Obr. 11 Model Cargo tramvaje.	22
Obr. 12 Model pohonu v podvozku Komfort+ Cargo tramvaje	23
Obr. 13 Schéma modelu výpočtu nápravových statických sil	25
Obr. 14 Cargo tramvaj s a bez kontejnerů. (pro ilustraci)	27

Obr. 15 Prvek primárního vypružení [6]	28
Obr. 16 Sestava sekundárního vypružení 3D	20
Obr. 17 Výkres sestavy sekundárního vypružení	29
Obr. 18 Model dvoustupňového vypružení	30
Obr. 19 Pomocná návrhová charakteristika	30
Obr. 20 Skieg duplevní pružiny	31
Obr. 20 Skica duplexni přůžiny.	32
Obr. 22 Charakteristika sekundárního vypružení ve svislém směru	35
Obr. 22 Unravená duplevní pružina s prvžovým prstencem	30
Obr. 24 Sestava sekundárního vypružení s pryžovým prstencem 3D	30
Obr. 24 Sestava sekundarinno vypruženi s pryžovym prstencem 5D	37
Obr. 26 Charakteristika pryžového prstance	37
Obr. 20 Charakteristika pryžoveno pistence	30
Obr. 27 Charakteristika vypruženi pro upravenou duprexin pružinu	40
Obr. 20 Einální abarakteristika sakundárního uvrnužení	40
Obr. 29 Filianni charakteristika sekundarinno vypruženi	41
Obr. 30 Hiavni zalezove slavy.	41
Obr. 31 Prichy doraz (cerne) mezi kolebkou a ramem podvozku	42
Obr. 32 Goodmanuv diagram vnejši pružiny.	44
Obr. 33 Goodmanuv diagram vnitrni pružiny	44
Obr. 34 Druny vzperu.	43
Obr. 35 Hodnoceni pružin 1 a 2 na vzper.	40
Obr. 30 Kovnovana momentu na prične a svišle zaužene pružine	4/
Obr. 3/ jednobodovy kontakt kola s kolejnici.[2]	48
Obr. 38 Model pro vypocet zmen kolovych sil.	50
Obr. 39 Kolejnicovy prechod do zborcene koleje	50
Obr. 40 Model torzni soustavy dvojkoli-ram podvozku	51
Obr. 41 Ilustrace krouceni skrine v programu Simpack	
Obr. 42 Prubeny odpovidajících zmen stavebních prevysení pod podvozky 1,2,3	
Obr. 43 Zmena sil v sekundarnim vypruženi pri kroučeni dvoučlankového vožu	
Obr. 44 Prubeny stavebnich prevyseni pod podvožky 1,2,3	54
Obr. 45 Změna sil v sekundárním vypružení při kroucení dvoučlánkového vozu	54
Obr. 46	55
Obr. 47	56
Obr. 48 Vodíci síly Y první případ	58
Obr. 49 Vodící síly Y druhý případ	59
Obr. 50 Podélný řez podvozkem.	61
Obr. 51 Detaily uložení ložiska	61
Obr. 52 Rez zástavbou nad podvozkem.	62
Obr. 53 Rez zástavbou nad podvozkem.	62
Obr. 54 Rez zástavbou nad podvozkem.	63
Obr. 55 Podélný řez podvozkem.	63

130 kg

Přílohy

N 4		CI	\cap	ΝI	С
 IVI			U	IN	-
	_	-	~		-

1	460 mm
)	680 mm
3	100 mm
41	≈ 537 mm
01	≈ 603 mm
ł	399 mm
1	15.5 mm
)	20 mm
°0	3 mm
1.2	min. 6 mm

ABUTMENT DIMENSIONS

min. 488 mm	d _a
max. 652 mm	D _a
max. 5 mm	r _a

CALCULATION DATA

Basic dynamic load rating	c	1040 kN
Basic static load rating	C ₀	2650 kN
Fatigue load limit	P _u	46.5 kN
Limiting speed		1300 r/min
Calculation factor	А	67.6
Calculation factor	e	0.95
Calculation factor	x	0.6
Calculation factor	Yo	0.58
Calculation factor	Yı	0.66
Calculation factor	Y ₂	1.07

MASS

Mass bearing

P 1 Parametry ložiska QJ 1092 N2MA.