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Abstract
This paper will investigate the develop-
ment of a landing footprint for a re-entry
vehicle. Vehicles can re-enter the atmo-
sphere with a range of orientations, ve-
locities and flight path angles. The cen-
tral question is whether a vehicle with
any combination of these states can be
brought to an acceptable landing condi-
tion at a particular landing site and with
a particular landing speed. To aide in
this investigation several models must be
implemented, including that of the atmo-
sphere, the vehicles, the Earth, and the
aerodynamics. A detailed analysis of the
aerodynamic model will be treated, and
the equations of motion subject to these
aerodynamic laws will then be compared
to results from existing atmospheric re-
entry software. The principles of optimiza-
tion will then be employed to generate the
footprint of landable states, based on max-
imum and minimum possible downrange
distances, for two vehicle concepts.
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Chapter 1

Introduction

1.1 Background

Much of the early motivation for developing guidance and control for re-entry
purposes began in the 1950s and was centered around militaristic capabilities,
with the development of the intercontinental ballistic missile. When the focus
of the US and the USSR shifted towards manned space exploration, interest in
guidance and control entered into the civilian domain, and shortly afterwards
NASA would develop interest in operating a reusable space plane, the Shuttle
Orbiter, which would need to be guided through the upper atmosphere
towards a landing runway.

In the 1960s a great deal of the theoretical framework for optimization as
applied to re-entry and ascent cases was laid out. At the same time, improved
aerodynamic models were being developed for rocket flight in the supersonic
and high angle of attack flight regimes. In 1959, Miele applied the theory of
calculus of variations to a ballistic missile equipped with a drag regulating
device to minimize heat transfer during a re-entry case.[26] Shortly afterwards
Breakwell, Speyer, and Bryson also used the theory of calculus of variations
in the context of re-entry.[6] The first example they were concerned with
consisting of thrust direction control to ascend a vehicle into a specific orbit.
The second involved generating a family of optimal paths that would maximise
final velocity, by varying the initial flight path angle by 0.2 degrees for a
constant initial altitude and re-entry velocity. Bryson and Denham would
then go on to incorporate inequality constraints into the optimal programming
problem, integrating these features into the problem of finding a steepest
ascent flight.[10] Many of the results of this early era were compiled by Vinh,
who in 1981 published the textbook, Optimal Trajectories in Atmospheric
Flight.[37]

The concept of a landing footprint, the reachable domain of all downrange

1



1. Introduction .....................................
and cross-range locations a vehicle can be guided to was explored in the
context of the Shuttle Orbiter, which was capable of a much more notable
lateral range.[31] In this study, the multiple shooting method was applied to
investigate the optimal trajectories of the vehicle.

The use of direct methods to solve optimal control re-entry problems became
more common in the 90s, with the advent of more powerful computation.
Whereas single shooting methods have found to be appropriate for ascent
models, where thrust is the dominant force and the model is simpler and
parameterised with fewer variables, they do not apply so well for more
complicated re-entry scenarios. Hargraves and Paris in 1987 applied a direct
collocation method by representing state variables with cubic Chebyshev
polynomials.[17] Using these method, direct numerical solutions were found
for the optical control problem of minimum-time supersonic climb. A few
years later, Betts and Huffman improved upon this method by implementing
methods to better handle problems with matrices that are large and sparse.[4]

In more recent history, there has been a shift towards re-entry guidance for
vertical take-off, vertical landing (VTVL) vehicles. This has been inspired
by the work done by engineers at Space X, who have developed the reusable
first stage of the Falcon 9, as well as Blue Origin’s development of the
New Shepard for suborbital flight. An early study of a similar concept
as the Falcon 9 was published by Ishijima, Matsumoto, and Hayashi who
investigated guidance for a VTVL two stage to orbit vehicle using feedback
control to modify the vehicle motion to a desired landing state[21]. Policelli
has applied MATLAB’s nonlinear programming solver FMINCON to optimize
the trajectory of a VTVL vehicle to minimize propellant use while enabling a
successful touchdown.[32]

1.2 Project goals

The aim of this project is to define a space of system states for a launch
vehicle (displacement, velocity, orientation), that will enable the vehicle to
reach a desired end state upon landing. A model of the system dynamics and
launch vehicle properties must be created to propagate the trajectory of the
vehicle, which can be verified against existing re-entry software.

.Get familiar with typical launch vehicles and missions.Develop mathematical model of system dynamics and verify model
against existing software. Define the space of landable states (flight envelope definition). Verify flight envelope based on simulations

2



.................................... 1.3. Methodology

1.3 Methodology

The space of landable states is defined as the combination of vehicle velocities,
orientations, and starting positions that allow it to reach a desired end state.
The most important qualities of this end state are the landing site’s downrange
distance, an altitude of close to zero, and an appropriate velocity and flight
path angles. To constrain the number of states required for the envelope
definition and to simplify the problem, the vehicle will be constrained to planar
motion re-entry instead of the full range of three dimensional motion. In this
sense, there will be only one flight path angle, γ, and only one aerodynamic
angle, the angle of attack α.

For this problem the flight envelope can essentially be framed as being the
landing footprint, so long as those additional end requirements for altitude,
velocity, and flight path angle are also imposed. To define the landing
footprint, the maximum and minimum possible downrange distances must be
calculated. If, at the beginning of its re-entry, the vehicle is no further from
the site than the maximum possible range and no closer to the site than the
minimum possible range it is a state within the flight envelope.

Additionally, by assuming that the vehicle is only controlled in the atmosphere,
below an altitude of 80km, and knowing that all re-entry vehicles must begin
their descent at an altitude of above 80km, the problem can be further
simplified. While the flight envelope will depend on the vehicle’s initial
altitude, in this case that initial altitude will always be 80km. If the vehicle
flight were to be considered starting at a lower or higher altitude, this would
also need to be considered. Additionally, as the flight trajectory will be the
same irrespective of starting latitude, the footprint of the vehicle will also be
the same. This means that the flight envelope must be generated only for a
range of velocities and flight path angles.

The question of finding the maximum and minimum downrange distance is
an optimization problem. To this end, an open source pseudo-spectral solver
developed by Daniel R. Herber[19] will be used within MATLAB to find the
maximum and minimum ranges for each velocity and flight path angle state
combination. This problem will be solved for two vehicle types. The first
is a vehicle analogous to the Shuttle Orbiter, which will land on a shallow
glide path slope with a comparatively high final velocity. The second is
analogous to the Ariane V liquid fly back booster (LFBB) concept developed
by DLR, but which is modified to land vertically, touching down with a small
velocity.[12]

A model of the system dynamics must be created to provide the dynamic
constraint for the solver and to make the problem physically meaningful.
Models of the Earth, atmosphere, and vehicle aerodynamics have been de-
veloped by implementing existing theory. In particular for the aerodynamic

3



1. Introduction .....................................
model, the aerodynamic coefficients have been computed as a function of
the Mach number, angle of attack, and control surface deflection by using
semi-empirical relationships and experimental data valid across subsonic,
supersonic, and hypersonic flight regimes and a full range of rotation. For
much of the elaboration of this theory, the textbook Rocket Aerodynamics by
Krasnov[23] alongside the 1978 revision of the DATCOM (United States Air
Force Stability and Control Digital Data Compendium) manual have been
used to provide the most relevant models to apply in this investigation.[20]

4



Chapter 2

Equations of motion

2.1 Reference frames

In order to describe the motion of a re-entry vehicle, it is useful to consider
different coordinate systems in particular frames that are referenced to the
direction of the different forces acting on the vehicle. This will simplify the
process of resolving the component of force acting in the key reference frame
used for the analysis, as rotation matrices can be used to simply transfer the
force into a different coordinate system.

Coordinate systems of interest include:

. Body-fixed: Moves with the rotation of the vehicle. X towards vehicle
nose, Z down, Y right..Wind-fixed: Moves with the trajectory of the vehicle. X in direction of
velocity, Z down, Y right.. Local horizon: Z from vehicle CG to Earth CG, X ⊥ Z in plane of
motion.. ECF: Z towards north pole, X towards prime meridian, Y towards 90o E
longitude.. ECI: Earth centered like ECF but rotating with the Earth and referenced
to the standard Epoch J2000, the orientation of the Earth at 12hr on
Jan 1 2000.

Several methods of coordinate transformation exist, such as the direction
cosine matrix, quaternions and Euler angles. Euler angles have the drawback
of potentially introducing singularities into the system and involve non-linear
equations although they have the advantage of requiring only three equations.

5



2. Equations of motion..................................

Figure 2.1: 2D representations of body, wind, local, and inertial coordinate
systems.[33]

While quaternions do not introduce this singularity, they require a unity
norm for pure rotation and this complicates the problem when attitude
parameters, such as the angle of attack or flight path angle, are required to
be optimised.[11] For this reason, the following Euler angle transformations
can be used to convert between each coordinate system.

Body to local Wind to local
about pitch angle Θ about flight path angle γ

Cbl =

cos Θ 0 − sin Θ
0 1 0

sin Θ 0 cos Θ

 Cvl =

cos γ 0 − sin γ
0 1 0

sin γ 0 cos γ


Inertial to local Body to wind
about latitude θ about angle of attack α

CIl =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 Cbv =

cosα 0 − sinα
0 1 0

sinα 0 cosα



Derivative matrices Ωv
l/I =

 0 0 γ̇
0 0 0
−γ̇ 0 0

 Ωv
v/l =

0 0 −θ̇
0 0 0
θ̇ 0 0


It is conventional for orbital vehicles to be described by their Keplarian
elements. In this case, these parameters must be converted into a re-entry
coordinate system for use in the ensuing trajectory analysis. Additionally
important context for the problem is gained through reference to the latitude
and longitude of the vehicle as it travels over the Earth’s surface. These

6



................................. 2.2. Equations of motion

coordinates depend on the location of the vehicle in the reference plane
but also the orientation of the plane relative to the ECI reference system.
Transformations between these coordinate systems have been substantiated
and then programmed into the problem solving environment.

To convert from ECF to ECI, the angular displacement with time from the
vernal equinox is found as a relationship of the standard Epoch and angular
velocity of the Earth.

Ω = ωE(t− tJ2000)

. ωE = 7.29× 10−5 rad
s. tJ2000 is the standard Epoch time

2.2 Equations of motion

For the purpose of simplifying this investigation, it will be assumed that
the re-entry vehicle is confined to two dimensional motion within the plane
prescribed by its initial suborbital trajectory. In this case, no sideforce can
be experienced by the vehicle, and it must be assumed that the vehicle does
not develop a sideslip with respect to the incoming wind. For this to be true,
the vehicle must have the appropriate lateral control needed to attenuate
any disturbances acting in this direction and must have be oriented with no
sideslip at the beginning of any simulation.

The trajectory of a vehicle will be affected by gravitational, aerodynamic, and
thrust force. The equation describing this interaction can be found through
applying Newton’s third law in the wind-fixed reference frame.

F va
m + Cvl

F lg
m + Cvb

F bt
m = V̇ v + Ωv

v/IV
v

F lg
m =

[
0 0 g

]

F va
m =

[
−D
m 0 − L

m

]

F bt
m =

[
T
m 0 0

]
7



2. Equations of motion..................................
By applying the coordinate transformation matrices, a standard form for the
equations of motion will emerge.[33]

V̇0
0

+

 0 0 γ̇ − θ̇
0 0 0

−(γ̇ − θ̇) 0 0


V0

0

 = 1
m

−D + T cosα
0

−L− T sinα

+

−g sin γ
0

g cos γ



The states of altitude and angular position can be found by considering the
kinematic relationship between position and velocity.

V I = dRI

dt = d
dt(C

I
l R

l) = CIl

(
dRl

dt + Ωl
l/IR

l
)

C lIV
I = C lvV

v = dRl

dt + Ωl
l/IR

l

 cos γ 0 sin γ
0 1 0

− sin γ 0 cos γ


V0

0

 =

 0
0
−ḣ

+

0 0 −λ̇
0 0 0
λ̇ 0 0


 0

0
−(Re + h)



The resulting equations that describe the trajectory of the vehicle are a series
of four first-order, nonlinear differential equations.[33] It should be noted that
a singularity is indeed present for V = 0.

dV
dt = −D

m + T
m cosα− g sin γ

dγ
dt = L

Vm + T
V m sinα− g

V cos γ + V cos γ
Re+h

dh
dt = −V sin γ

dθ
dt = V cos γ

Re+h

For planar motion, the vehicle will only be able to rotate about the axis
perpendicular to the plane. Rotation will be experienced primarily due to
the presence primarily of aerodynamic moments. A gravitational moment
will also exist if the vehicle experiences a large gravity field gradient.[33]
Also, a thrust moment can arise when the thrust force is unbalanced or offset
from the center of mass of the vehicle. These secondary contributions will be
assumed to be negligible in this case.

dq
dt = My

Iyy

8



................................. 2.3. Forces and moments

One of the benefits of planar analysis is that, with no sideslip and wings-level,
a simple relationship between the pitch angle and angle of attack holds.[5]

Θ = α+ γ

ωbb/l =
[
0 Θ̇ 0

]
ωbl/I =

[
0 −θ̇ 0

]
ωbv/l =

[
0 γ̇ 0

]
ωbb/v =

[
0 α̇ 0

]

ωbb/I =
[
0 q 0

]
ωbb/I = ωbb/l + ωbl/I = Θ̇− θ̇ = α̇+ γ̇ − θ̇ = q

dα
dt = q + dθ

dt −
dγ
dt

2.3 Forces and moments

Now that the motion of the vehicle has been related to the forces that it will
experience, work must be done to resolve the calculation of those forces.

The aerodynamic forces are estimated through the use of non-dimensional
aerodynamic coefficients, which are intrinsic to the object under flow and
its properties such as shape, orientation, compressibility effects, surface
roughness, and more. This parameter is used to scale the product of dynamic
pressure of the flow field and the area under pressure, resulting in a force
magnitude. The lift is by convention perpendicular to the local wind and the
drag in the direction of the local wind.

L = 1
2ρV

2CLSref
D = 1

2ρV
2CDSref

M = 1
2ρV

2CMSref lref

As the shape of the vehicle is constant through its simulated flight, then a
functional dependence between the aerodynamic coefficient data and angle of
attack, Mach number, and control surface deflection can be established.

CL, CD, CM = f(α,M, δ)

Such a model does not account for Reynolds number effects from variations
in flow turbulence, assuming that the flow is fully developed and turbulent

9



2. Equations of motion..................................
(Re = 106 > Recr) along the entire length of the vehicle for the entire
simulation. It also does not account for the effect of temperature changes,
which affect the boundary layer and pressure distribution of the flow.

Aerodynamic data has been tabulated for use for a range of experimental and
prototype vehicles, such as the Lockheed Martin X-33, which was a precursor
for the Shuttle Orbiter. For custom vehicles however, such as an Ariane 5
LFBB, experimental data has not been tabulated and CFD simulations are
prohibitive. In this case, a precedent exists in the form of semi-empirical
relationships and generalised aerodynamic models can be programmed and
employed to find the aerodynamic data for a range of vehicles across a grid
of M , α, and δ values.

The vehicles will thrust by combusting and then ejecting the accelerated
propellant, imparting a reactive force to the vehicle that in the opposite
direction. Additionally, the flow of propellant out of the vehicle creates a
pressurised region that further pushes the vehicle forward. At lower stages
of the atmosphere where atmospheric pressure is greater, this effect is less
noticeable.

T = ṁVe + (Pe − P0)Sbase

The exhaust velocity can be found as the product of gravity at sea level and
the specific impulse, a generalised factor that can compare how effectively
fuel is converted into propulsive force. Additionally, in real conditions the
thrust force may affect the centre of gravity of the vehicle and the jet exhaust
will likely affect the base drag however these effects will not be considered.

Ve = Ispg0
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Chapter 3

The physical model

3.1 Atmospheric model

The most comprehensive atmospheric model to data is the 1976 US Standard
Atmosphere, which improves upon the 1962 model of the atmosphere in
especially in the thermosphere (80 - 700km) and fringes of the exosphere
up to 1000km.[3] In the lower atmosphere the atmosphere is treated as
a homogeneous gas where barometric equations, linear and exponentially
decreasing, can be used to model the density and pressure. At higher altitudes
however, although gas molecules are present, the calculation of density is
complicated by dissociation and diffusion, which result in altitude dependent
bands of different molecular species. While a MATLAB program does exist
to approximately calculate this standard atmosphere at each altitude, the
integration techniques used especially in the high altitude regions are non-
linear and computationally expensive.[25]

Instead a simple approximation of the atmosphere shall be applied, using the
barometric approximations for density and pressure as a function of altitude,
h.

ρ = ρ0e

(
−g0Mh

RT0

)

P = P0e

(
−g0Mh

RT0

)

For the standard atmosphere:

. P0 = 101325Pa. T0 = 288.15K

11



3. The physical model ..................................
. rho0 = 1.225kgm. g0 = 9.80665m

s2

The universal gas constant, R, and molar mass of air are also constant with
altitude.

. R = 8.3144 Nm
molK.M = 0.02896 kg
mol

3.2 Earth model

The conventional model for the Earth is based on the 1984 World Geodetic
System (WGS-84), which defines the Earth as an ellipsoid.[9] This has impli-
cations for positional data, especially in a longitude, latitude, altitude model
as the shape of the ellipsoid will affect the reference lines of latitude and
altitude for the same point in inertial space. It will also have implications
on the gravity model of the Earth due to the non-uniform distribution of
mass. Indeed other effects, such as differing regions of composition within
the Earth, will also affect the gravity field. To account for this the 1996
Earth Gravitational Model (EGM96) has been developed, which relates the
gravitational force to zonal harmonic terms and latitude position.[24] The
field resolution for this model is proportional to the degree of the harmonic
equation. For 55km resolution of the Earth’s gravitational field, over 360
coefficients are necessary.[24]

To simplify this problem, a lower fidelity spherical Earth approximation will
be considered, with a mean radius of 6360 km. In this case, the gravitational
force is simply the inverse square of the distance of the spacecraft to the
Earth’s centre.

The Earth’s rotation will not affect the location of the landing site, as it
moves from under the vehicle. While this would be critical for trajectory
optimization particularly for vehicles starting in orbit at high altitudes, this
consideration has not been modelled by the equations of motion and should
be included in future work.

F = GMem
r2

The resulting gravitational acceleration referenced to altitude is therefore
simple and computationally inexpensive.

g = GMe
(Re+h)2
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.................................... 3.3. Vehicle model

3.3 Vehicle model

Two types of vehicles will be considered for this study, to account for the two
main re-entry scenarios for reusable space vehicles. The first is the space-
plane concept, which represented the design philosophy towards reusability
in the 1970s as realised in vehicles such as the Shuttle Orbiter and Buran.
These space-planes featured large wings to introduce significant lift forces and
enable an unpowered gliding descent, where the vehicle would be controlled
by aerodynamic surfaces in the atmosphere, much like an ordinary aircraft.

A simplified model of the Shuttle Orbiter will be used to examine this case.
The vehicle will be modelled as a cylindrical body with a spherically blunted
nose, and a swept wing with flaps on both side. The Orbiter also has a vertical
tail and horizontal stabilizer, but as the lateral dynamics are not considered,
this will not be included in the model. Likewise, to simplify the process of
obtaining aerodynamic coefficients, the wing glove and more complicated
geometrical features such as the pods and canopy will not be included.

Figure 3.1: Detailed space shuttle schematic[30]

The other type of vehicle will be a VTVL concept similar to the Falcon 9

13



3. The physical model ..................................
boosters, where a combination of propulsive maneuvers and aerodynamic
surfaces are used to control and land the vehicle. The European Space
Agency, as part of its Future Launchers Preparatory Programme, has been
investigating several reusable launch vehicle concepts. The Ariane 5 liquid
fly-back booster (LFBB) concept[35] from this program will therefore be the
second candidate vehicle to be tested. This vehicle is controlled through thrust
vectoring and aerodynamic surfaces, but like all others in the programme,
concludes with a horizontal landing on a runway. The vehicle will therefore
assumed to be a modified form that is also fitted with vertical landing
capabilities, so that the vertical landing case also can be considered.

Figure 3.2: Ariane V LFBB schematic [35]
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Chapter 4

Aerodynamic Model

4.1 Friction drag

The magnitude of skin friction drag is affected by turbulent effects and
compressiblity effects. The point at which the flow will transition from laminar
to turbulent is difficult to determine and depends on the critical Reynolds
number, which varies from object to object, and the surface roughness.
Generally for missiles in low atmosphere, this transition occurs on the nose
cone. A simple estimation the critical transition length L can be considered
with the general assumption that flow over elliptic bodies of revolution have
a critical Reynolds number of 106.

Re = V L
ν

The total friction drag can be resolved into the laminar CDf,l and turbulent
CDf,tur drag before and after the critical point:

CDf = CDf,lam(x) Sx
Sref

+ CDf,tur(L) SL
Sref
− CDf,tur(x) Sx

Sref

For laminar flow: CDf,lam,0 = 1.328√
Re

(Blasius)[23]
For turbulent flow:

√
CDf,tur,0 log10(CDf,tur,0Re) = 0.242 (Schoenherr)[23]

Compressibility effects:

For laminar flow: CDf,lam = CDf,lam,0
(
1 + 0.17M2)−0.1295

For turbulent flow: CDf,tur = CDf,tur,0

(
1 + γ−1

2 M2
)−0.467

(extended Frankl-
Voishel)[16]

This approach to estimating the friction drag will be used for the wing and
body in all flight regimes.
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4. Aerodynamic Model..................................
4.1.1 Body Aerodynamics

Lift and moment

When treating slender bodies at an angle of attack, results can be obtained
from the Allen-Perkins viscous cross-flow theory.[2] The premise of this theory
is that the cross flow downstream is influenced only by the flow components
perpendicular to the disturbing body, as was verified for laminar and turbulent
experiments on yawed cylinders.

The potential flow has the following contribution.[2]

CL = (k2 − k1) Sb
Sref

sin 2α cos α2
CmCG = (k2 − k1)V−Sb(l−xcp)

SrefLref
sin 2α cos α2

k1 and k2 represent the degree of axial and transverse mass moving as the
angle of attack changes. For a sufficiently large fineness ratio it can be
assumed that k2 − k1 = 1. [29]

When accounting for viscous effects, the circular cylinder at α will experience
a force that must also be modelled. The coefficient of force CDc is dependent
on the cross-flow Reynolds number and the cross-flow Mach number according
to the following tables. It can be approximated as 1.1 for Re = 104 to 105 at
α = 90o. The data given for CDc assumes an infinite 2D cylinder instead of
a finite cylinder, and so this too must be corrected by the scaling factor η.
Note that for the case of α = 0o the body curvature is symmetric across the
central streamline, an ellipsoid followed by a rectangle. The case of α = 90o
is approximated as potential flow around a circular cylinder. The resulting
normal force in both cases is therefore zero.

Figure 4.1: Cross flow drag coefficient
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.....................................4.1. Friction drag

Figure 4.2: 3D cross flow drag correction factor

The viscous flow has the following contribution.[2]

CL = ηCDc
Sp
Sref

sin2 α

CmCG = ηCDc
Sp
Sref

xm−xp
Lref

sin2 α

Now the effect of angle of attack on a slender inclined body can be considered
by combining the potential cross-flow contribution yielded through slender
body theory at small angles of attack combined with the vicious contribution
as a result of larger angles of attack. [2]

CL = (k2 − k1) Sb
V

2
3
b

2α+ ηCDc
Sp

V
2
3
b

α2

CmCG = (k2 − k1)V−Sb(l−xCG)
SrefLref

2α+ ηCDc
Sp
Sref

xCG−xP
Lref

α2

Sp is the planform area. For a cylinder, Sp = 2
∫ l
0 r(x)dx = 2rl. Sb is the

base area. For a cylinder, Ab = πr2.

This principle towards finding the lift and pitching moment of the vehicle in
the supersonic regime is the same, however to better fit experimental data in
this region a simplified equation is suggested. In the transonic region a simple
interpolation can be applied between the subsonic and supersonic values.[22]

CL = 2α+ CDc
Sp
Sref

α2

CmCG = 2α( Vb
Sblb
− (1− xCG

lb
)) + CDc

Sp
Sb

xCG−xP
lb

α2

This relationship however breaks down in hypersonic flow. In this case,
experimental test results as per figure 4.1, 4.2, and 4.3 can instead be used.
The net moment is found by relating the center of pressure data to the center
of gravity.[20]
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4. Aerodynamic Model..................................
CmCG =

(
Xcg
lb
− Xcp

lb

)
CLb

Figure 4.3: Lift and moment for conical nose[20]

Figure 4.4: Lift and moment for ogive nose[20]

Figure 4.5: Lift and moment for spherical nose[20]

Pressure drag. Pressure drag is created due to the normally resolved com-
ponent of flow field pressure acting on the surface of a body. It is calculated
by integrating these gradients in the direction of the relative wind. The shape
of the object has a large effect on the degree of pressure drag experienced.
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.....................................4.1. Friction drag

As the boundary layer flow develops along a surface, the shape of that sur-
face will affect the velocity profile normal to the surface, leading to adverse
pressure gradients and hence flow reversal. The subsonic pressure drag can
be estimated as a ratio of the friction drag affected of course by the shape of
the body. In the supersonic region this drag component is negligible.

CDp = CDfB ( 60
f3
B

+ 0.0025fB) [20]

In the hypersonic regime pressure drag becomes dominant again, although
the mechanism causing this is Newtonian impact theory. The coefficient in
this regime can be calculated by interpolating experimental data.[20]

Figure 4.6: Hypersonic impact drag coefficient for a conical and blunted nose.[20]

Base drag. Base drag is caused by the separation when the flow meets the
abrupt change of shape at the abruptly squared off base of the object. The
resulting region of dead air aft of the base is then effectively pumped away
by the incoming upstream flow, resulting in a region of lower pressure. For
subsonic and low supersonic regimes, the base drag can contribute up to half
of the total drag on the vehicle and so cannot be neglected. With higher Mach
number, the proportional effect of base drag reduces. The limiting pressure
at the base is one atmosphere, whereas the wave pressure can become much
higher than one atmosphere due to the mechanics of the shock.

In the subsonic regime the base drag is a function of the friction and pressure
drag. In the transonic, supersonic, and hypersonic regime, experimental data
can be used to calculate the drag.

CDb = 0.029√
CDf+CDp

[?]
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4. Aerodynamic Model..................................

[20]

Figure 4.7: Base drag calculation in the subsonic (left) and transonic (right)
regime.

Wave drag. At transonic and supersonic speeds shock-waves are produced
leading to a pressure difference across the shock. This difference is charac-
terised as the wave drag. In the range 1 < M < 3 for bodies with moderate
boattailing and slender noses, the wave drag is typically one-tenth to one-
fourth of the total drag. The approach to estimating this drag involves
calculating pressure distributions and shock geometries around particular
bodies, and then integrating the distribution to find the total drag.

Conical nose

For a cone in supersonic flow, typically the flow-field has been evaluated
through what is now known as the Taylor-Maccoll analysis. The assumption
in this method is to approximate the flow as being potential to numerically
integrate the flow properties along each axisymmetric conical ray. The result
was tabulated data valid for 5 to 50 degree semi-vertex cone angles and
all Mach numbers. When the flow viscosity is non-negligible or the gas
non-ideal, then the data must be modified accordingly. The effect of the
cylinderical afterbody on the downstream pressure distribution was examined
by Clippinger, Giese, and Carter[8], who found that the pressure is restored
to the freestream value, more gradually with increasing Mach number. The
treatment for this downstream flow regime is typically to consider the flow as
Prandtl-Meyer and conduct the analysis resultantly. The following empirical
equation models this data, where σ is the semivertex cone angle in degrees,
with 5% accuracy for σ < 50o.

CDp,cone =
(
0.083 + 0.096

M2

) (
σ
10
)1.69

Ogival nose
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.....................................4.1. Friction drag

Ehret, Rossow, and Steven[13] have developed analogously a table of pressure
distributions for a ogive shaped nose with cylindrical afterbody. In this case,
the method of characteristics and hypersonic similarity parameter were used
to determine the results, with a later correction to account for the effects of
flow rotation. A semi-empirical expression provided by EC Miles[27] links the
drag on an ogive nose to that of a conical nose for an equivalent semi-vertex
angle. Likewise Zienkewicz has developed a similar semi-empirical equation
which is valid for the range c

d ≤ 2,M ≥ 1.6, Md
c ≤ 1[38]

CDp,ogv = CDp,cone

(
1− 2(196(λf )2−16)

28(M+18)(λf )2

)
CDp,ogv = CDp,cone

(
0.326 + 0.674

(
1− l

c

)1.8
)

σ = tan−1
(

1
2λf

)

λf = l
d is the fineness ratio of the nosecone.

Bluntness drag. A blunt nose is a common nose shape for re-entering bodies
(including the Shuttle), but calculating the drag at supersonic Mach numbers
is complicated by the fact that the shape of the nose violates the small pertur-
bation assumption which is fundamental in much of the study of supersonic
nose cones. As theoretical approaches are more complicated, especially when
the shape of shocks on the nose are unknown, the typical approach is to use
experimentally derived pressure distributions and semi-empirical relationships.
The bluntness drag will be estimated using experimental data.[20]

Figure 4.8: Bluntness drag for a spherically blunted ogive nosecone.[20]
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4. Aerodynamic Model..................................
4.2 Wing Aerodynamics

4.2.1 Subsonic

Wing lift. For a wing experiencing compressible flow, the lift coefficient as
a function of angle of attack is a modification of the thin airfoil theory to
introduce dependency on the Mach number.

CL = CLα (α−α0)
√

1−M2+
CLα
ARπ

(1+τ)

. AR: the wing aspect ratio.. τ : parameter accounting for wing planform shape and taper, λ.

τ = 5.88τ1(m)τ2(λ) where for compressible flow m = AR
√

1−M2

CLα
[23]

Figure 4.9: Tabulated correction factors for wing[23]

The lift slope curve CLα describes the change of lift with angle of attack as
a function of angle of attack. For a thin airfoil this can be assumed to be
a constant, 2π. The zero-lift angle of attack α0 is the angle of attack when
no lift is being generated. For a symmetrical aerofoil this can be assumed
to be at 0o. In general, both CLα and α0 depend on the shape of the airfoil,
its camber and thickness. These values can be extracted for particular 2D
airfoil shapes using simulation software such as Javafoil.[18] Javafoil is only
useful in the subsonic regime and only uses a simple potential flow theory to
yield results, not accounting for inviscid effects like turbulent separation. In
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................................. 4.2. Wing Aerodynamics

this sense Javafoil is also not very useful beyond the stall angle for an airfoil,
although approximations are provided.[18]

Figure 4.10: Shape of symmetrical airfoil to be used for both vehicles.

Figure 4.11: Polar for this airfoil.

When considering a wing with sweep, χ, the equation can be further modified,
where τχ is evaluated with mχ = AR

CLα cosχ .[23]

CL = πAR(α−α0)

1+τχ+
√

(1+τχ)2+π2AR2
C3
Lα

(1+tan2 χ−M3)

Wing drag. The subsonic wing drag is a combination of profile and induced
drag. The profile drag is a function scales with the friction drag, increasing
for thicker airfoils.[20]

CDp = CDf (t̄+ 100t̄4)

The induced drag is a function of the lift coefficient.[23]

CDi = C2
L

πAR
√

1−M2 (1 + δ)

δ = 20.41δ1(mχ)δ2(λ) where mχ = AR
CLα cosχ and δ is calculated in the same

way as τ .
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4. Aerodynamic Model..................................
Wing pitch. In the subsonic regime, Javafoil can be used to estimate the
wing pitching moment about the aerodynamic centre, a point on the wing
that does not change with increasing angle of attack below stall. It also
provides the location of the aerodynamic centre for the airfoil.

This can then be corrected for sweep effects by applying the following equation,
and for compressibility effects by applying a compressibility factor.[20]

CmAC = CmAC,0
AR cos2 χ25
AR+2 cosχ25

Figure 4.12: Wing moment compressiblity correction factor.[20]

This wing moment will be considered to be the same also in the transonic
and supersonic regime. This can be converted to the moment at the centre of
gravity of the vehicle.

CmCG = CmAC + L(xCG − xAC)

4.2.2 Transonic

In the transonic region, the use of transonic similarity rules can be applied
to calculate the lift and drag. For the lift, the wing thickness similarity
parameter must first be calculated and then from this, the ratio of subsonic
lift at the critical Mach number to the supersonic lift. [23]

¯tcr
t̄

= M2
cr

√
1−M2

3
2

M2
√

1−M2
cr

3
2

CLw
CLw,sub

= ¯tcr
t̄

(√
1−M2

cr√
1−M2

)

The drag in this regime is a combination of wave drag and induced drag.
For wave drag, the result will be interpolated between 0 at the critical Mach
number and the supersonic result at the supersonic Mach number.
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................................. 4.2. Wing Aerodynamics

The aerodynamic centre location can be found from experimental data in
the transonic region, as a function of wing taper, aspect ratio, sweep, and
Mach number. The moment at the aerodynamic centre is the same as per
the subsonic case.

Figure 4.13: Aerodynamic centre location in transonic flow.

4.2.3 Supersonic

To find the general pressure distribution of a generalised wing section, we
can assume it is a sharp object and use the method of characteristics and the
Prandtl-Meyer equations.[23] For this analysis the wing must be treated as
2D with no separation of boundary layer of shock, limiting α to below 10o.
Corrections for finite span wings will be introduced later in the section, and
a very simplified treatment of high angle of attack aerodynamics will also
be considered later. The resulting pressure distribution is a series expansion
of the shock angle (and so the slope of the upper and lower wing contours),
altered by Mach dependent Busemann constants, C1, C2.

The Mach cone semi-vertex angle is a function of only free-stream Mach
number. µM = sin−1( 1

M )

Infinite span wing.
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4. Aerodynamic Model..................................
C1 = 1√

M2 cos2 χ−1

C2 = (M2 cos2 χ−2)2+kM4 cos4 χ
4(M2 cos2 χ−1)2

For second order (non-linear) flow for a thin but not flat airfoil, the aerody-
namics are as follows. The drag term consists of the effect of thickness and
angle of attack on the wave drag, and in this sense it is lift dependent like
induced drag. It does not account for flow circulation at the end of the wing
tips that primarily causes the induced drag effect. [36]

CL = 4C1α− 4C1α0
CD = αCL − 8C2αA2 + 2C1B2 − 2C2A3

The terms A2, A3, B2 account for the airfoil profile.

A2 =
∫ 1

0 (dtldc )2 − (dtudc )2dx

B2 =
∫ 1

0 (dtldc )2 + (dtudc )2dx

A3 =
∫ 1

0 (dtldc )3 + (dtudc )3dx

Correcting for finite span. With a finite span wing in three dimensional
flow, the aerodynamics must be modified to compensate for the effect of the
Mach cone formation. To correct for these effects, the wing is treated as a flat
plate with sources and sinks introduced to model the three dimensionality
of the flow. Tip flow and the resulting loss of lift will occur for the part of
the wing not submerged within the Mach cone, which depends on the wing
span. It will be assumed that always either the flow over the wing is entirely
supersonic or that λwg > 1√

M2−1 to prevent Mach cones forming over each
tip or to prevent them overlapping, which would further complicate the flow.

Results from Evvard’s analysis will be used to correct the aerodynamic
properties in the case of a finite span rectangular wing.[15] This is relevant
only when the wing tips are not in the region contained by the Mach cone.
Otherwise the flow field conforms to the two-dimensional flow substantiated
in the above section.

CL = 4C1α− 4C1α

2λwg
√
M2 cos2 χ−1

CD = αCL

For the simple delta wing, however an analogous correction can be derived
accounting for the different geometry. This follows methods outlined by
Puckett and Stewart and assumes the wing has a low aspect ratio such that
µ >> ε where ε is the sweep angle of the delta wing.[7]
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................................. 4.2. Wing Aerodynamics

The parameter E(k), a function of Mach cone angle and sweep angle, is useful
for determining the limiting cases.

E(k) =
√

1− tan ε
tanµ

CL =
2π tan ε

tanµ

E(k)
√
M2 cos2 χ−1

CD = αCL −
C2
L

πλwg

√
1− α′t2o

When the wing leading edge is sonic α′t2o = 1 and so E(k)→ π
2

CD = C2
L

λwg

When the wing leading edge is supersonic α′t2o → 0 and so E(k)→ 1

CD = C2
L

πλwg

The aerodynamic centre location can be found from experimental data in
the supersonic region, as a function of wing taper, aspect ratio, sweep, and
Mach number. The moment at the aerodynamic centre is the same as per
the subsonic case.[20]

27



4. Aerodynamic Model..................................

Figure 4.14: Aerodynamic centre location in supersonic flow.[20]

4.2.4 Hypersonic

In the hypersonic regime corrections must be made to account for the thermo-
dynamic effects of the gas. The first consideration must be whether the flow
can still be treated as an ideal gas. If it is, there must also be a consideration
of the mean free path of the particles relative to the boundary layer of the flow.
When the mean free path is greater than the boundary layer, the gas must be
treated as many discrete particles instead of a continuum flow. Newtonian
impact theory shall be applied in this case.

At higher temperatures, and certainly above 2700K, molecules dissociate,
ionise, and become more chemically active. In this case the fluid must be
treated as a real gas. The ratio of specific heats will depend on the chemical
interactions which can be modelled, and analysis methods must be non-
isentropic to account for changes in entropy. The method of characteristics is
one such method and is often applied to this problem.

In cases when the vehicle is at very high Mach numbers (M →∞), a likely
scenario for the orbital speed at initial phases of re-entry. In this case, the lift
and drag are caused by individual particles in the atmosphere colliding with
the vehicle rather than a continuous flow, with momentum transferred as
the particle rebounds from the surface. This is known as Newtonian impact
theory. This theory only applies for the positive sloped contour of the wing,
so the wing profile downstream of the surface point tangential to the flow
will not be considered. Here the pressure is considered to be zero.

The angle β is measured between the tangent to the surface and the chord.
The angle βp is likewise but taken at the nose.

β = tan−1( dydx)
βp = tan−1(dy(x=0)

dx )

The pressure on each surface is then calculated assuming a shock for a flat
plate.[23]
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................................ 4.3. Wing-body interactions

p̄u = (k + 1)(βu − α)2

p̄l = (k + 1)(βl − α)2

The lift and wave drag can then be found.

CL =
∫ xl

0 p̄ldx−
∫ xu

0 p̄udx
CDP = αCL −

∫ xl
0

¯plβldx−
∫ xu
0

¯puβudx

The moment coefficient at the leading edge can also be found and used to
find the moment coefficient at the centre of gravity. [23]

CmLE = −
∫ xl

0 ¯plxldx+
∫ xu

0 ¯puxudx

4.3 Wing-body interactions

For many aircraft, and especially those with wingspans small compared to the
body diameter, (the low aspect ratio shuttle, fins on a missile) there will be
an interference effect between the lifting surfaces and the body. This means
that a simple sum of the lift and drag from each component will not be equal
to the total vehicle lift and drag. A tilting cylinder will have an upwash effect
on the wing, as the generation of fluid motion normal to the body increases
the local wing angle of attack. Wing vortices, caused by interaction of the
flow with the wing tips, will result in an upwash forward of the lifting surface
and a downwash aft of the surface. This will affect primarily the pitching
moment of the cylindrical body. In cases where there are multiple lifting
surfaces with the same orientation to the flow, an interference effect will also
occur on the more aft surfaces (wing-wing interactions). For this study it is
assumed surfaces at different positions on the length of the rocket body will
also be in different planes of orientation. In other words, no vehicle will have
an aft horizontal stabilizer to be effected by downwash effects. The space
shuttle does however have a aft vertical stabilizer oriented at 90o to the wing
surface. Induced aerodynamic forces will arise on this surface due to the wing,
but as a vertical stabilizer does not produce lift or pitching moment this is
not relevant in a discussion about the vehicle’s longitudinal dynamics.

Lift. For a wing at low angle of attack with zero incidence, KWB is the
effect of the body on the wing, KBW is the effect of the wing on the body
and can be determined from experimental data.[20]

CLWB
= (KN +KWB +KBW )CLαα
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4. Aerodynamic Model..................................

Figure 4.15: KW B and KBW standard data.[20]

For a delta wing in supersonic flight, if AR
√
M2 − 1 ≤ 1 the data is the

same as the subsonic case. For non-triangular wings this occurs when
AR
√
M2 − 1(1 + λ)

(
tanχ√
M2−1 + 1

)
≤ 4. Otherwise, experimental data that

has modified the parameter KBW to model the supersonic effect must be
used instead of the subsonic data.

Figure 4.16: KBW supersonic modified data.[20]

The interference parameter for the nose can be found from the following
semi-empirical relationship, where SN is the nose reference area, typically
πr2 and CLα,N is the nose lift curve slope, typically 2 per radian.

KN =
CLα,N SN

CLαSW

Drag. The total drag on the vehicle is the simple summation of each
component, by scaled as to be referred to a common reference area.

CDo,wb =
(CDf,wg+CDp,wg+CDw,wg+CDi,wg ) Sw

Sref
+(CDf,b+CDp,b+CDw,b) Ss

Sref
+CDb,b

Sb
Sref
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................................ 4.3. Wing-body interactions

Pitching moment. While the pitching moment at the aerodynamic centre
is not affected by wing-body interference, the location of the aerodynamic
centre on the body will be.[20] This is significant, as this location is required
to find the total pitching moment at the centre of gravity.

The total aerodynamic centre is the weighted average of the aerodynamic
centre of the wing adjusted for body interference, the body adjusted for wing
interference, and the interference lift created on the nose.

xac
cr

=
(
xac
cr

)
n
CLα,n+

(
xac
cr

)
wb
CLα,wb+

(
xac
cr

)
bw
CLα,bw

CLα,n+CLα,wb+CLα,bw

Where the lift curve slope accounting for each interference effect is found
from the interference parameters.[20]

CLα,wb = KWBCLα,wg
CLα,bw = KBWCLα,wg
CLα,n = CLα,b

πd2

4Sw

The effect of lift carryover from the body onto the wing does not shift the
wing aerodynamic centre considerably and so the following assumption can
be made.[20]

(
xac
cr

)
wb

=
(
xac
cr

)
wg

A wing is considered to have a low aspect ratio under the following conditions:[20]

Subsonic: AR
√

1−M2 > 4
Supersonic: AR

√
M2 − 1(1 + λ)

(
1 + 1

cot(χLE)
√
M2−1

)
> 4

For high aspect ratio wings the lift carryover from the wing onto the body
affects the vehicle aerodynamic centre as follows in the subsonic regime and
from experimental data in the supersonic regime, where k = d

b .

(
xac
cr

)
bw

= 1
4 + b−d

2cr tanχ c
4

(
− k

1−k +
√

1−2k ln( 1−k
k

+ 1
k

√
1−2k)−(1−k)+π

2 k
k(1−k)√

1−2k ln( 1−k
k

+ 1
k

√
1−2k)+ (1−k)2

k
−π2 (1−k)

)

For low aspect ratio wings experimental data is used and then interpolated
against the high aspect ratio case.

The effect of nose upwash on vehicle aerodynamic centre is found from
experimental data depending on the nose type.
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4. Aerodynamic Model..................................

Figure 4.17: Xbw for supersonic high aspect ratio wings.[20]

Figure 4.18: Xbw for low aspect ratio wings.[20]

Figure 4.19: Subsonic nose centre of pressure location.[20]

4.4 Control surfaces

For the longitudinal dynamics, the role of elevators in extending the lift (and
hence lift slope CLα) of a wing surface must be considered. This additional lift
will also shift the location of the wing aerodynamic centre and will affect the
degree of induced drag. The nature of control surface effectiveness depends
on the speed regime in which the vehicle is flying.

The effect on lift will depend on the type and shape of flap as well as the
degree that it is extended. It is assumed for the sake of simplicity that all
vehicle flaps will be symmetrical, plain, trailing edge flaps. They will be
deflected only between 0o and 15o. The hinge moment need not be considered,
as it is assumed that the all vehicles are designed to have enough power to
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................................... 4.4. Control surfaces

Figure 4.20: Supersonic nose centre of pressure location.[20]

deflect the fins in all flight regimes.

The contribution to the total body lift and moment due to the flaps will be
elaborated for the subsonic and supersonic regime. In the transonic regime,
an interpolation will occur between the subsonic and supersonic results. In
the hypersonic regime the flaps will be assumed to operate the same as in
the supersonic regime due to a lack of appropriate data.

Subsonic lift. A semi-empirical equation can be used to obtain the section
based wing lift coefficient based on the flap lift effectiveness and several
correction factors. [20]

clδ = δf

(
clδ

clδ,theory

)
clδ,theoryK

′

. clδ,theory is the theoretical flap effectiveness.. clδ
clδ,theory

is an empirical correction factor.

.K ′ is a correction factor for non-linear effects at high deflections.
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4. Aerodynamic Model..................................

Figure 4.21: Flap lift effectiveness[20]

Figure 4.22: Empirical flap section correction factor.[20]

Figure 4.23: High deflection flap section correction factor[20]
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................................... 4.4. Control surfaces

The section lift effectiveness can be converted to the wing lift effectiveness by
considering 3D wing effects.

∆CL = ∆clδ
(
CLα,wg
clα,wg

)( (αδ)CL
(αδ)cl

)
Kb

. CLα,wg is the wing lift curve slope. clα,wg is the section lift curve slope

. ( (αδ)CL
(αδ)cl

)
is a correction factor accounting for a finite wing span..Kb is a correction factor accounting for flap span location.

Figure 4.24: Correction factor accounting for wing finite span.[20]

Subsonic moment. The subsonic flap moment contribution is found from
the following:[20]

CmCG,F = Kp
∆Cm
∆CL CLF +Kχ

AR
1.5CLF tan(χ25)

.Kp is a correction factor for wing taper and flap inboard location..Kχ is a correction factor for wing sweep.. ∆Cm
∆CL is the ratio of lift force increment to moment increment.
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4. Aerodynamic Model..................................

Figure 4.25: Correction factor accounting for flap inboard and outboard span
location, (η).[20]

Figure 4.26: Flap moment correction factor accounting for taper and wing span
location[20]

Supersonic lift. The supersonic lift can be found by considering the Buse-
mann coefficients C1, C2 and the angle of the wing trailing edge φTE .[20]
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................................... 4.4. Control surfaces

Figure 4.27: Flap moment correction factor accounting for sweep.[20]

Figure 4.28: Flap moment increment to lift increment ratio.[20]

∆CL =
(
1− C2

C1
φTE

)
C ′Lδ

Sf
Sw

C1 = 2√
M2−1

C2 = (γ+1)M4−4(M2−1)
2(M2−1)2

The uncorrected supersonic lift effectiveness is found from experimental data.

Supersonic moment. The supersonic moment can be found in a similar
fashion to the lift as the Busemann coefficients are likewise significant.[20]

K1 =
(
1− C2

C1
φTE

)
(3)
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4. Aerodynamic Model..................................

Figure 4.29: Supersonic lift effectiveness.[20]

K2 =
(
1− C2

C1
φTE

)
(tanχTE)

K3 =
(
1− C2

C1
φTE

)

Cmδ = K1
1
3

bf
cMAC

cf
Sw
Cmδ,0 −K1

1
2

bf
cMAC

cf
Sw
Crollδ −K3

Xf
cMAC

Sf
Sw
CLδ

. Cmδ,0 is the flap pitching moment effectiveness. CLδ is the flap lift effectiveness, as calculated in the supersonic lift section. Crollδ is the flap roll effectiveness

The flap roll effectiveness is calculated from a semi-empirical relationship,
which in turn is a function of the uncorrected flap roll effectiveness, Crollδ,0 ,
that is found from experimental data.

Crollδ =
(
1− C2

C1
φTE

)
CLδ

Sf
Sw

1
2
ηi
bw

+ bf
2bw

Crollδ,0
CLδ
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........................... 4.5. High angle of attack aerodynamics

Figure 4.30: Supersonic roll effectiveness.[20]

4.5 High angle of attack aerodynamics

When considering the vehicle at high angles of attack, the small angle ap-
proximation used to justify the linear theory for the lift and moment is no
longer valid. Additionally, the wing will experience stall and viscous flow
separation changing the nature of the drag to being more like a flat plate
against crossflow.

The body lift, drag, and moment are as presented for the low angle of attack,
but with a trigonometric relationship instead to account for the breakdown
in the low angle approximation. This also scales the aerodynamic force to
account for the behaviour as the body becomes more perpendicular to the
flow and lift approaches zero.[34]

CLB = (k2 − k1) Sb
Sref

sin 2α cos α2 + ηCDc
Sp
Sref

sin2 α− CDB,0 cos2 α sinα

CmB,CG = (k2 − k1)V−Sb(l−xcg)
Sref lref

sin 2α cos α2 + ηCDc
Sp
Sref

xcg−xp
lref

sin2 α

CDB = (k2 − k1) Sb
Sref

sin2 α+ ηCDc
Sp
Sref

sin3 α

The non-linear lift is modelled as a flat plate and scales the cross flow coefficient
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4. Aerodynamic Model..................................
of lift and drag with the angle of attack. Additionally, there are contributions
to lift from the wing-body interaction and deflections of the flap.[34]

CLW = CDc,W
Sw
Sref

sin2 α cosα

CLα,WB
= KWB

Sw
Sb
CLα sinα cosα

CLα,BW = KBW
Sw
Sb
CLα sinα cosα

CLδ,WB
= KWB′

Sw
Sb
CLα sin δ cos(α+ δ)

CLδ,BW = KBW ′
Sw
Sb
CLα sin δ cos(α+ δ)

For the viscous separation effect on drag force, the wing is treated as a flat
plate tilting in cross flow.[34]

CDW = CDfp
Sw
Sref

sinα

The total lift and drag force on the body can therefore be calculated.

CLV = CLW + CLB + CLα,WB
+ CLα,BW + CLδ,WB

+ CLδ,BW
CDV = CDW + CDB

Figure 4.31: Wing drag coefficient when acting as a flat plate, CDfp
[34]

The pitching moment and the centre of pressure of the wing are found from
the contribution of wing lift and drag forces and wing-body interaction effects.
The location of the wing centre of pressure due to interaction effects, Xcp,WB

and Xcp,BW are found from experimental data.[34]

CmW = ((CLα,WB
+CLW ) cosα+CDW sinα)(Xcp,WB

lb
)+(CLα,WB

cosα+CLδ,BW )XcpBWlb

Xcp,W = CmW lb
(CLα,WB

+CLα,BW +CLW ) cosα+(CLδ,WB
+CLδ,BW +CDW ) sinα
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........................... 4.5. High angle of attack aerodynamics

The vehicle moment is the sum of the contribution from each part.

CmCG = CmB + CmW
Xcg−Xcp,W
Xcp,W
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Chapter 5

Curve fitting aerodynamic data

The theory from Chapter 4 has been compiled and programmed into a
MATLAB code, alongside the relevant data sets used in calculation of the
aerodynamic properties, and vehicle parameters. This code is then used to
calculate the total lift, drag, and moment coefficients of a vehicle depending
upon its geometric parameters, and for a user defined range of Mach numbers
and angles of attack.

The Mach range to be considered is from zero to ten, to encapsulate the
behaviour in all speed regimes. Beyond this Mach number the vehicle has
converged towards the hypersonic limit for its aerodynamic coefficients, and
further increases in speed negligibly affect these properties. The Mach
resolution of the data grid [0:0.05:1.5], to encapsulate higher precision in the
transonic regime where the data is more sensitive to changes in Mach number,
then [2:0.5:6] for the supersonic and [7:1:10] for the hypersonic regime.

The range of angle of attack will be from −90o to 90o, representing the vehicle
tilting entirely upwards and entirely downwards. Allowing the vehicle to
enter these very high angles of attack is certainly necessary, for the vehicle to
be able to perform its final thrust boost opposite the direction of motion to
bring the terminal velocity down to an acceptable landing value. A resolution
of one degree between points is used to generate the data.

With this data, aerodynamic coefficient is represented with a function of only
two variables, Mach number and angle of attack.

CL, CD, CM = f(α,M)

The aerodynamic coefficients varies with angle of attack in a sinusoidal fashion,
due to the theoretical contribution from Allen and Perkins crossflow theory.
The drag coefficient has a period of 2π, and the lift and moment coefficients
of π. This is an intuitive result, as a streamlined aerodynamic body parallel
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5. Curve fitting aerodynamic data .............................
to crossflow should experience very low drag compared to that same vehicle
perpendicular to crossflow, where much more of its surface will be buffeted by
wind. When the vehicle is directly parallel or perpendicular to the crossflow,
the vehicle will not experience (non-negligible) lift, due to the symmetry of
the body. It is important to note that this is largely due to the fact that the
airfoils selected are also symmetric, if they had a camber there would indeed
be lift at zero angle of attack. The moment data is similarly characterised
as being close to zero at 0o and ±90o and maximised near 5o and minimised
near −5o.

Along the Mach number axis, the data is characterised by peaks in the
transonic regime. This transonic peak, arising due to high wave drag as well
as skin friction drag, is a common aerodynamic feature and has been found
many times in experimental data.

The most obvious discontinuity in this data is the jump from the low angle
of attack region to the high angle of attack region. This is because two
significantly different treatments of the aerodynamic properties are used in
both, with the low angle of attack methods significantly underestimating the
high angle of attack properties and the high angle of attack data methods
overestimating the data.

Indeed, the discontinuity for the moment coefficient is particularly prominent,
with different trends occurring in both regions. This is due to the nature of
aerodynamic stall. In the low angle of attack region the contribution due to
the wing is to act like a conventional airfoil. The neutral point is aft of the
centre of gravity, resulting in static stability whereby increasing the angle
of attack results in a negative restoring moment and vice versa. In the high
angle of attack range, however, the flow over the airfoil is disturbed by stall
and flow separation, and so the wing acts more like a plate. Additionally,
more of the mass of the body contributes to the total vehicle moment as it
lifts up and experiences crossflow. Increasing the angle of attack in this case
results in a greater moment, as the vehicle neutral point has moved to an
unstable location. This explains the discrepancy in the moment data.

Data must also be modelled to account for how the vehicle’s aerodynamic
properties change with the deflection of the control surface. To account for
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Figure 5.1: Drag, lift and moment coefficients for the Ariane V LFBB and
Shuttle Orbiter

this, it will be assumed that there is a linear relationship between the change
in coefficient due to the control surface and the control surface deflection
angle. In this sense, by calculating the control derivatives for the aerodynamic
coefficients, and multiplying those values by the magnitude of deflection, the
total contribution of the control surface can be found. The same grid of α
and Mach values is used in finding these derivatives.

CL = CL0 + δCLδ
Cm = Cm0 + δCmδ

5.1 Curve fitting

As the aerodynamic data is highly discontinuous, especially when transitioning
from one flight regime to another, this poses problems with simulating and
optimising the differential equations of motion. Runge-Kutta solvers in
MATLAB, as they use the Euler method and hence function derivatives for
numerically solving and projecting forward states of the differential equation
set. Likewise problems can arise when attempting to optimise a non-smooth
problem with the MATLAB solver FMINCON.
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5. Curve fitting aerodynamic data .............................

Figure 5.2: Lift and moment control derivatives for the Ariane V LFBB and
Shuttle Orbiter

In order to avoid these problems, a continuous and smooth surface function
will be calculated with the aerodynamic data for both vehicles. TableCurve
3D from SYSTAT Software will be used to generate this function, as the
software can automatically fit over 3000 function types over data and rank
them in order of a goodness of fit value.[1] This process was carried out for
both vehicles, and the functions used for the five aerodynamic coefficients for
each vehicle can be contrasted with the original data.

The equations used to fit the data consist variously of Chebyshev rational
order polynomials and Sigmoid, Fourier, and cosine series bivariates. The
description of these functions, as well as the fitted coefficients, are provided
in Appendix 1.

The fits capture many of the important aerodynamic features of the two vehi-
cles, including the peaks in the transonic region and the general relationship
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.....................................5.1. Curve fitting

Figure 5.3: Ariane coefficient data (left) compared to approximate fits (right)

with angle of attack. Less accurately captured are regions characterised by
sudden changes in behaviour, such as the introduction of stall at moderate
angles of attack, and the breakdown of attached flow theory in the hypersonic
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5. Curve fitting aerodynamic data .............................

Figure 5.4: Shuttle coefficient data (left) compared to approximate fits (right)

region. The validity of the fit compared to the supplied data can be numeri-
cally estimated through a coefficient of determination r2, where a value closer
to 1 is a better correlation. This parameter depends on the sum of residuals
squared SSE, which is a measure of the difference between the estimated
and actual data point, as well as the sum of squares about the mean, SSM ,
which compares the estimated data to the mean value of the actual data. The
fitted equations have good correlation, with r2 > 0.95 for all data except for
the Shuttle drag coefficient, where r2 = 0.85.

r2 = 1− SSE
SSM

Another important correction that must be made is to scale the equations for
drag to ensure that no local minimum yields a negative coefficient, a physically
nonsensical result that is introduced due to the imperfect modelling of the
fits.

It is also important to note that for especially high order polynomials, the
curve fit is often only as good as the range of data it was fitted on.[1] Moving
increasingly far away from the range of data, in this case a Mach number
from 0 to 10 and an angle of attack from −90o to 90o can result in wildly
divergent behaviour. To avoid this, bounds will be imposed on the constraints
in simulations and optimisation to ensure that the functions are not required
to calculate outside of the appropriate range for use. Also high order fits
tend to result in the generation of many local maxima and minima as it tries
to fit the global trends of the data better. This is particularly apparent for
the curve fits for the Shuttle drag and moment. This can be a problem for
optimization solvers that may become stuck within the region of one of these
local minima, further emphasising the importance of providing a good initial
guess for this problem in particular.
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Chapter 6

Flight simulation

6.1 Simulation results

Now that the aerodynamic functions, vehicle properties, and surrounding
environment have been described, the states can be propagated forward
according to the fully described equations of motion to see how the modelled
vehicle actually behaves dynamically when experiencing re-entry.

To simulate the model, MATLAB’s ODE45 function will be used. ODE45 is
a problem solver suited to solving initial value differential equations of form
y′ = f(y, t), which is suitable for the re-entry differential equations. The
solver works by using the classical Runge-Kutta algorithm, using variable
step sizes that are selected to improve the speed of program execution. It
is also possible to incorporate events into the solver, such as when states or
the time variable take on a particular value. In this case, the solver has been
programmed to terminate once the altitude state reaches zero.

Using this solver, some test scenarios can be performed using the equations
of motion. For the first case, purely gravitational force can be considered
by treating the aerodynamic coefficients as being zero. Modeling a circular
orbit case, elliptical orbit case, as well as a suborbital parabolic trajectory
will confirm that the equations of motion are behaving as expected. For
these tests, the Ariane V LFBB model will be considered at full mass and
uncontrolled flight.

Circular orbit. For a circular orbit, the vehicle should be travelling always
tangential to the Earth’s radial vector, with a constant velocity and altitude.
The orbital plane of motion is arbitrary, however the vehicle should complete
a full rotation in the plane indicated by the true anomaly which should vary
periodically from 0 to 2π.
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6. Flight simulation ...................................
At an altitude of h = 400km, the speed required to maintain a circular orbit
is

V =
√

µE
rE+h =

√
3.963×1014

6.357×106+400000 = 7658ms

By considering and then plotting the states in the orbital plane as [(h +
rE) sin(θ), (h+ rE) cos(θ)] the trajectory of the vehicle in the plane can be
plotted. The result is circular motion as is expected, with velocity and flight
path angle constant.

Figure 6.1: Trajectory for circular orbit starting condition

Elliptical orbit. An elliptical orbit can be defined with an perigee altitude
of 10km and an apogee twice the Earth’s radius. To reach this apogee, the
perigee velocity must be 9107ms with a flight path angle of 0o. We can further
test the re-entry equations of motion by integrating these states forward
for this scenario. Figure 6.2 demonstrates that the trajectory is in fact
circular, however the apogee altitude is 10km lower than expected, a small
number when dealing with distances of multiple Earth radii and likely due to
imprecision in the solver and the output time step.

Re-entry simulations. There are several typical flight profiles depending on
the vehicle and the nature of the mission. For Falcon 9 flights, the first stage
can land far downrange of the launch site by continuing on its suborbital
parabolic trajectory after separation, followed by a reverse boost to reduce
speed. It can also land near to the launch site by performing a boost-back
burn, changing the trajectory of the vehicle from its original suborbital
trajectory to a new one directed back towards the site.
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.................................. 6.1. Simulation results

Figure 6.2: Trajectory for elliptical orbit starting condition

Figure 6.3: Cycling nature of potential and kinetic energy

This first case will be considered for testing a re-entry scenario for the Ariane
V LFBB. Specifically, the conditions for the flight profile will be based on
the Starlink v1.0 L4 flight of the Falcon 9, with estimations of its flight state
provided by the online simulation software Space Club. At 390s into the
mission, the vehicle re-enters the atmosphere at 80km, with a velocity of
2150ms and flight path angle of −27o. As this vehicle is moving very quickly
and with a large mass, it will experience the atmosphere essentially as a
discontinuity. Aerodynamic forces will be comparatively negligible. Instead, a
shallower flight path angle of 1o will be considered, so that the vehicle spends
more time in the denser parts of the atmosphere where the aerodynamics
will have more effect. This will serve as the initial condition for the state
propagator and will be used to test the aerodynamic loads experienced by
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6. Flight simulation ...................................
the vehicle.

Figure 6.4: Profile for ballistic, drag only, and lifting re-entries

As can be seen from figure 6.4, the vehicle aerodynamics are behaving in an
intuitive sense. When drag is present, the vehicle loses speed as it descends
through the atmosphere instead of gaining speed. Eventually it reaches a
terminal velocity at around 150s, although this terminal velocity continues to
change slightly as the atmospheric density decreases and the aerodynamic
coefficients vary. This terminal velocity seems also to be of a reasonable order
of magnitude.

The effect of lift is to further increase the time of flight and downrange
distance, with a much more pronounced effect than the increase from the
drag alone case. Critically, the flight path angle expresses markedly different
behaviour. The vehicle experiences a gliding descent with a shallow re-entry
angle of about 17o, unlike the drag only case where the reduction in forward
speed means the vehicle is the downwards acceleration of gravity becomes
relatively more noticeable, until the vehicle is eventually falling directly
downwards.
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6.2 Comparison with HyperSMS

Re-entry simulation software exists in the form of HyperSMS, which is
more involved with the effects of communication blackout and thermal loads
in hypersonic, high-altitude flight but which does include a rudimentary
trajectory propagator.[14] In this toolbox, the same equations of motion are
used however the calculation of the aerodynamic properties varies, with less
emphasis on the effect of the vehicle features and more emphasis on the effect
of the hypersonic ionized flow.

By comparing the starting condition of 700ms at a 1o flight angle and 80km
altitude, the aerodynamic model used in this report can be validated. Again,
the vehicle properties of the Ariane V LFBB are to be used.

Figure 6.5: Comparison of flight profile for aerodynamic model with HyperSMS
model.

The aerodynamic model used in this investigation shows good agreement with
that used in the HyperSMS simulation package. It is worth noting that the
time of flight is greater when compared to the same conditions for HyperSMS
and the velocity lower. This means that the drag and lift coefficients are
estimated as being higher compared to the HyperSMS model. While this may
be a modelling error that merits further investigation, by modelling the effect
of angle of attack and the wing shape, higher lift coefficients should occur.
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Chapter 7

Trajectory optimization

The central question of this investigation is whether a system under arbitrary
but bounded control can be moved successfully from one starting state to
a desired end state, which characterises an acceptable ’landing’ condition.
The set of starting states that can accomplish this is the space of the flight
envelope, which we seek to find. This can be framed as an optimal control
problem. Although there are possibly many pathways to get to the end state,
one could seek to minimise the control response, time of flight, aerodynamic
load, or any other such factor to further constrain the system.

7.1 Optimal control

Optimal control involves using the principles of calculus to find local minima
or maxima for a function J = f(x). Typically this function is constrained by
the relationship ẋ = f(x, u, t), which describes the dynamics of the system,
and a control vector u is found that minimises J = f(u) subject to this.

Re-entry trajectory dynamics are non-linear in nature and as such a solution
methodology suitable for non-linear optimal control problems must be con-
sidered. The non-linear optimal control problem is posed in Bolza form as
follows, where M is the Mayer term which quantifies the terminal cost and L
is the Lagrange term that quantifies the running cost.

minuJ(x, u, t0, tf ) = M(x(t0), x(tf ), t0, tf ) +
∫ tf
t0 L(x(t), u(t), t)dt

Subject to:

ẋ = f(x, u, t)
C(x, u, t) ≤ 0

φ(t0, x(t0), tf , x(tf )) ≤ 0

55



7. Trajectory optimization ................................
7.2 Solution methodology

The two main methods used to solve optimal control problems are the direct
and indirect methods. Indirect methods solve the necessary conditions of
optimality using calculus of variations. Direct methods discretize the problem
and then computationally iterate towards the minimum point. Direct solutions
are of course more approximate as the accuracy is restricted to the domain
that results from discretization. The more nodes used in the discretization, the
more accurate the optimal solution will be but the greater the computational
time. Direct methods, however, are more robust for initial guesses, are
easier to implement for complicated and non-linear dynamics, and have
better convergence properties. Although indirect methods have been used to
solve trajectory optimization problems (more commonly in space and not for
atmospheric re-entry, however), direct methods instead will be used.

Direct methods consist of shooting and collocation. In direct shooting meth-
ods, the cost is calculated as the states are integrated forwards from their
starting position. For the more robust multiple shooting case, a trajectory is
broken into many smaller intervals, with simulations beginning at the start
point of each interval, eventually calculating paths in which the trajectories
are able to line up.[28] Direct collocation however, involves fitting piecewise
polynomial functions onto the solution trajectory, with considerations of the
system dynamics and constraints occuring at the collocation points. Again,
a defect representing the difference between the actual trajectory and the
fitted trajectory can be parameterized. Controls are then selected so that the
defect tends towards zero.[28]

An open source multiple interval pseudospectral solver for MATLAB has
been published by Daniel R. Herber that makes use of these direct collo-
cation methods with the possibility to use either Chebyshev or Lagrange
polynomials.[19] This solver is set up so that once the constraint functions
and Lagrange and Meyer functions have been described, the system is auto-
matically discretized and fed into MATLAB’s FMINCON solver, allowing for
an easy implementation. The solver has been demonstrated to yield optimal
solutions for test cases such as the Bryson-Denham double integrator optimal
and the Brachistochrone problem.

7.3 Problem set up

The aim is to find an envelope of starting states, a particular speed, flight path
angle, altitude, angular distance from a launch site, to see what combination
of these variables will enable the vehicle to reach that launch site and land
correctly. To simplify this problem, trajectories can be considered for a vehicle
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entering the atmosphere at 80km and for a range of different velocities and
flight path angles. As the desired landing point is on the Earth’s surface, all
trajectories from space must pass through this altitude state and it is non
meaningful for the scenario of this problem to consider vehicles that begin
"re-entry" below this altitude.

By considering the maximum and minimum downrange distances for a vehicle
starting at 80km with a full range of possible re-entry velocities and flight
path angles, we can find how far away a vehicle must be from a landing site to
be able to land. The initial latitude and longitude of the vehicle is also made
irrelevant, as the maximum and minimum possible traversable distance (ie,
whether or not the vehicle is in range) will be the same regardless of starting
position. This is predicated upon the assumption that the atmosphere and
gravity vary spatially only with altitude. If a higher fidelity gravitational and
atmospheric model were used, then this methodology would not necessarily
apply.

7.3.1 Trajectory constraints

Recall that the general non-linear control problem is defined as follows.

minuJ(x, u, t0, tf ) = M(x(t0), x(tf ), t0, tf ) +
∫ tf
t0 L(x(t), u(t), t)dt

Subject to:

ẋ = f(x, u, t)
C(x, u, t) ≤ 0

φ(t0, x(t0), tf , x(tf )) ≤ 0

ẋ = f(x, u, t) is the dynamic constraint, and defined by the equations of
motion.

dV
dt = −D

m + T
m cosα− g sin γ

dγ
dt = L(δ)

V m + T
V m sinα− g

V cos γ + V cos γ
Re+h

dh
dt = −V sin γ

dθ
dt = V cos γ

Re+h

Where lift and pitching moment are a function of the control surface deflection
inputs, L(u),M(u).
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7. Trajectory optimization ................................
As the vehicle consumes fuel to increase the thrust, the vehicle mass changes
also and should additionally be modelled as a state. Additionally, the rota-
tional motion of the vehicle should be modelled too.

For the Shuttle’s unpowered descent, the control inputs are the deflections of
the flaps (δ1, δ2) that affect the lift and moment coefficients respectively.

For the Ariane V LFBB, the fuel mass flow rate (ṁ) will be controlled as will
angle of attack (directly) (α), and the deflection of the flap (δ) to change the
lift coefficient.

The dynamic constraints can therefore be provided for both vehicles as follows.

Ariane LFBB dynamics expressed in terms of states and controls:

Ẋ1 = − D
X5

+ T
X5

cosU2 − g sinX2

Ẋ2 = L
X1X5

+ T
X1X5

sinU2 − g
X1

cosX2 + X1 cosX2
Re+X3

Ẋ3 = −X1 sinX2
Ẋ4 = X1 cosX2

Re+X3

Ẋ5 = −U1

T = U1Ispg + (Pex − Patm)Sb
D = 1

2SrefCDρX
2
1

L = 1
2SrefCLρX

2
1

CL = CL0 + CLδU3

g = g0
rE

(rE+X3)2

ρ = ρ0exp
(
−g0MairX3
RgasT0

)
Patm = P0exp

(
−g0MairX3
RgasT0

)
Shuttle Orbiter dynamics expressed in terms of states and controls:

Ẋ1 = − D
X5
− g sinX2

Ẋ2 = L
X1X5

− g
X1

cosX2 + X1 cosX2
Re+X3

Ẋ3 = −X1 sinX2
Ẋ4 = X1 cosX2

Re+X3

Ẋ5 = M
Iyy

Ẋ6 = X5 + Ẋ2 + Ẋ4

D = 1
2SrefCDρX

2
1

L = 1
2SrefCLρX

2
1

M = 1
2Sref lrefCLρX

2
1
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CL = CL0 + CLδ1
U1

CM = CM0 + CMδ2
U2

g = g0
rE

(rE+X3)2

ρ = ρ0exp
(
−g0MairX3
RgasT0

)

The state to be optimised is the downrange position at the end time, so
J = M = −X4 to maximise the downrange distance and J = M = X4 to
minimise the downrange distance.

7.3.2 Initial guess

For a pseudo-spectral solver, a good initial guess is needed to benefit conver-
gence properties. While this is not as important as with indirect methods,
the data being modelled is bumpy with the possibility for many local minima
and maxima, at least across the aerodynamic surfaces.

For each state, the initial guess is provided by the solver as calculated as
follows.

Xguess = X(tf )−X(t0)
tf−t0 +X(ti)

7.3.3 Bounds

Bounds will be imposed on the control variables and states to limit them to
physically reasonable behaviour and to further constrain the system. The
velocity is reduced to below 7000ms to prevent cases where the vehicle would
obtain escape velocity and have effectively infinite downrange distance. The
velocity is also constrained to being above 1ms to account for the singularity
in the system dynamics when V = 0. The flight path angle is between just
above 90o and below −90o to constrain the vehicle to forward motion. The
altitude is limited to 90 km to prevent skip re-entry which would drastically
increase the vehicle range. This is an important consideration but beyond the
scope of this investigation. The mass can decrease no further than the value
of the structural mass, and the angle of attack is allowed to vary across all
angles, as the thrust will be required to be oriented 180o against the direction
of motion for a powered descent.

For the states:

1 < V < 7000ms
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7. Trajectory optimization ................................
−90.1o < γ < 90.1o
−5 < h < 90000m
− inf < θ < inf

ms < m < ms +mf

− inf < q < inf
−180o < α < 180o

For the controls:

−90o < δ1 < 90o
−90o < δ2 < 90o
−180o < α < 180o
0 < ṁf < 235kgs

7.3.4 Boundary constraints

The boundary constraints at t = 0 define the initial system state and the
boundary constraints at t = tf must define an acceptable landing state. As
the two vehicles are designed for different landing conditions, with the LFBB
thrusting against its motion to gentle descend on the pad and the Shuttle
buffering speed at a high angle of attack and flying along a glide slope to
a slow runway approach. This is a time free problem as what matters is
whether the vehicle can get to the end location with the appropriate speed,
not how long it takes.

The start constraints for each vehicle are therefore

Ariane LFBB Shuttle Orbiter
V (0) = Vi V (0) = Vi
γ(0) = γi γ(0) = γi
h(0) = 80000 h(0) = 80000
θ(0) = 0 θ(0) = 0
m(0) = ms +mf q(0) = 0
. α(0) = 0

V (tf ) = 5 V (tf ) = 200
h(tf ) = 0 h(tf ) = 0
γ(tf ) = 90o
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Chapter 8

The flight envelope

8.1 Results

8.1.1 Ariane V LFBB

The optimal control pseudospectral solver was executed with the constraints
and Meyer function as elaborated upon in Chapter 7. After a number of
iterations, results were obtained for the maximum and minimum possible
downrange distance for initial velocities V = [10,100,1000,5000] ms and initial
flight path angles of γ = [0, 30, 60, 90] degrees. The results of those values
are tabulated below.

Minimum downrange distance θ(tf ) (deg)
10 m

s 100 m
s 1000 m

s 5000 m
s

0o 0.0628 0.0334 0.3612 0.6398
30o 0.0284 0.1163 0.02393 0.2429
60o 0.0299 0.0256 0.1978 0.1669
90o 0.2120 0.1128 0.0502 -*

Table 8.1: Minimum downrange distance θ(tf ) (deg)

∗5000ms case for 90o did not converge

The general trend of the minimum downrange results is that as the velocity
increases, in particular for shallow flight path angles, the minimum possible
downrange distance increases. As the vehicle is moving quickly it overshoots
landing sites near to its starting point before it reaches the ground, and seems
to be unable to be controlled down to those sites. This behaviour is not
exhibited in the case of the vehicle entering directed straight down however
where the opposite trend is observed. This is likely due to the fact that a
vehicle moving very quickly without a shallow flight path angle to experience
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8. The flight envelope ..................................
more drag experiences the atmosphere essentially as a discontinuity and so
the lifting force that would compel it further downrange as it dives is not
experienced to the same extent.

The final velocity for each sample case is the prescribed 5ms , the final altitude
is the prescribed 0m, and the flight path angle is 90o, indicating that the
solver has obeyed the constraints for each test. The final time of flight and
number of solutions before solver convergence are also provided.

Minimum downrange time of flight t(s)
10 m

s 100 m
s 1000 m

s 5000 m
s

0o 251 167 255 265
30o 193 334 217 150
60o 180 171 244 149
90o 327 220 182 -

Table 8.2: Minimum downrange time of flight t(s)

Minimum downrange solver iterations
10 m

s 100 m
s 1000 m

s 5000 m
s

0o 494 376 131 225
30o 427 336 268 440
60o 312 480 162 152
90o 280 127 187 -

Table 8.3: Minimum downrange solver iterations

An example of the control surface deflections and state output for the solver
is provided for the test case of V0 = 100ms , γo = 30o

The results for the maximum downrange distance are now provided. As
expected, the maximum downrange distance is greater than the minimum for
each test case. As can be seen there is a general trend where increasing the
starting velocity increases the final downrange distance and increasing the
flight path angle decreases it, which is intuitive. The results are less compliant
to this trend in this case, particularly noticeable for the 100ms tests. ,

As can be seen from the results, while some general trends are present, there is
a lot of variation from test to test. Because a limited number of nodes was used
in this solver to drastically reduce the computation time it is suggested that
the accuracy and optimality of the results is lower than ideal. For comparison,
the number of nodes used in a similar study of optimal re-entry trajectories
was 20 for a low fidelity solution and 80 for a high fidelity solution.[5] The
number of nodes in this test should be increased to 20 and then compared to
the present results to note any discrepancies. The control signal and state
evolution for the same case as the minimum downrange distance is provided
again.
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Control signal for min downrange case: V0 = 100ms , γ0 = 30o
t (s) ṁm

s α (rad) δ (rad)
0 62.452 3.142 -1.000
11 8.473 -2.058 -0.165
42 53.970 -1.571 0.097
83 176.498 -2.842 -0.165
125 18.090 2.729 0.292
156 35.815 -2.981 -0.053
167 235.000 -0.185 0.190
167 235.000 3.142 0.243
178 194.572 0.228 -0.088
208 235.000 -0.293 0.255
250 220.541 2.901 0.225
293 35.760 -0.097 0.308
323 0.000 -3.022 1.000
334 53.706 0.888 -1.000

Table 8.4: Control signal for min downrange case: V0 = 100 m
s , γ0 = 30o

State evolution for min downrange case: V0 = 100ms , γ0 = 30o
t (s) V m

s γ (rad) h (m) θ (rad) m (kg)
0 100.0 0.52 80000.0 1.20E-16 237700
11 159.5 0.91 78999.3 1.67E-04 237195
42 335.8 1.49 72117.0 4.85E-04 237621
83 639.8 1.59 51207.5 4.65E-04 236524
125 513.7 1.54 24958.9 4.89E-04 232023
156 182.8 1.59 14491.2 5.22E-04 224123
167 150.3 1.59 12728.6 5.14E-04 222536
167 150.3 1.59 12728.6 5.14E-04 222536
178 175.6 0.64 11339.4 6.67E-04 220616
208 113.1 1.59 8243.9 1.11E-03 214831
250 114.5 1.44 3096.4 8.61E-04 212669
293 161.3 0.15 139.3 1.63E-03 211847
323 3.6 -1.43 -1.0 2.05E-03 211910
334 5.0 1.57 0.0 2.03E-03 211619

Table 8.5: State evolution for min downrange case: V0 = 100 m
s , γ0 = 30o

8.1.2 Shuttle Orbiter

The results for the Shuttle Orbiter had difficultly converging and so have not
been able to be provided in time.

It is suggested that scaling the state variables to between 0 and 1 will
likely significantly improve convergence properties, especially for a re-entry
scenario like the Shuttle Orbiter with fast moving rotational modes from
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8. The flight envelope ..................................
Maximum downrange distance θ(tf ) (deg)

10 m
s 100 m

s 1000 m
s 5000 m

s

0o 0.362 0.186 1.402 1.004
30o 0.333 0.225 0.643 0.559
60o 0.181 0.591 0.260 0.305
90o -* 0.262 0.275 -*

Table 8.6: Maximum downrange distance θ(tf ) (deg)

Maximum downrange iteration count
10 m

s 100 m
s 1000 m

s 5000 m
s

0o 195 228 383 487
30o 186 91 428 371
60o 66 499 195 235
90o -* 157 181 -*

Table 8.7: Maximum downrange solver iterations

Control signal for max downrange case: V0 = 100ms , γ0 = 30o
t (s) ṁm

s α (rad) δ (rad)
0 85 0.06 0.97
11 31 -2.32 1.00
40 190 -3.14 1.00
80 233 -3.13 1.00
121 107 -2.68 0.42
150 192 -1.57 0.29
161 233 1.24 -0.40
161 2 2.54 0.85
172 221 -3.14 0.17
201 0 -2.87 -0.16
241 14 -3.14 0.07
282 233 0.02 0.09
311 13 -1.47 0.99
322 26 0.20 -1.00

Table 8.8: Control signal for max downrange case: V0 = 100 m
s , γ0 = 30o

the flap induced moment and much slower dynamical modes from the kine-
matics and change of altitude.[5] For re-entry problems, it is common to
non-dimensionalise the problem using the modified Chapman equations.[37]
Alternatively, scale factors for mass, time, length can be introduced and
used to non-dimensionalise the problem. This scaling should in future be
introduced into the equations of motion.
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State evolution for max downrange case: V0 = 100ms , γ0 = 30o
t (s) V m

s γ (deg) h (m) θ (deg) m (kg)
0 100 0.524 80000 1.51E-20 237700
11 181 1.129 78796 1.39E-04 237184
40 313 1.494 71450 3.78E-04 234314
80 436 1.542 56265 4.17E-04 224430
121 450 1.253 38120 8.56E-04 218044
150 326 1.063 27489 1.63E-03 214017
161 253 1.243 24684 1.84E-03 211707
161 253 1.243 24684 1.84E-03 211707
172 232 0.795 22593 2.07E-03 210207
201 241 1.555 17035 2.51E-03 205857
241 253 1.341 6122 2.45E-03 208363
282 194 0.234 247 3.43E-03 201631
311 14 -0.325 -1 3.93E-03 197767
322 5 1.571 0 3.93E-03 197700

Table 8.9: State evolution for max downrange case: V0 = 100 m
s , γ0 = 30o

Figure 8.1: Flight envelopes for γ0 = 0o, 30o

Figure 8.2: Flight envelopes for γ0 = 60o, 90o
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Chapter 9

Validation of results

To validate the results a feasibility analysis will be conducted to ensure that
the dynamics can actually reach the states suggested by the optimal solution
path, and an optimality test will be conducted to check if the suggested
optimum path is actually optimum.

To test the feasibility the control signal can be fed into the ODE45 state
propagator for the model to be tested with the same start conditions. If the
trajectories are approximately the same, then the result is feasible.[5]

For the optimality, Bellman’s Principle of Optimality will be employed. The
suggestion of this principle is that if one point on the optimum trajectory is
selected as the new initial condition, the the resulting trajectory to the final
boundary should be the same as with the earlier initial condition.[5]

The trajectory to be tested will be the control inputs from the optimal
trajectory for the maximum downrange case, for V = 100ms , γ = 30o.

9.1 Feasibility analysis

The optimal and actual propagated trajectories are plotted below for a number
of important states.

As can be seen, while the general form of the trajectory is followed there is
quite a bit of error between the optimal and actual trajectories. The low node
code used in generating the optimal trajectory may contribute to the very
approximate nature of the optimal trajectory. This feasibility test should be
repeated for an optimal trajectory generated with a higher resolution.
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9. Validation of results..................................

Figure 9.1: Feasible vs optimal trajectory for altitude, velocity, latitude, flight
path angle.

9.2 Bellman test of optimality

The initial conditions for the test case are:

[V, γ, h, θ,m] = [100, 0.524, 80000, 0, 237700]

This generates a point in the trajectory at t = 80.5 with the states:

[V, γ, h, θ,m] = [436, 1.542, 56265, 4.16e− 04, 224430]

that will be used as the new initial condition.

As for the previous test, the general trends are followed however there is quite a
bit of variability. In particular, the final calculated downrange distance varies
notably. This suggests that the optimality of the trajectories generated in this
report may not be high. Again, a higher node experiment is recommended.
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Figure 9.2: Both the original and new optimal trajectory for altitude, velocity,
latitude, flight path angle.
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Chapter 10

Conclusion

A set of landable states has been generated for the Ariane V LFFB concept
using Daniel Herber’s pseudo-spectral optimization routine. The Shuttle
Orbiter was found to have poor convergence properties and so cannot be
included in this report. Models were established of the atmosphere, vehicle
properties, Earth, and the aerodynamics which were investigated in detail.
The aerodynamic model was fitted to curves using TableCurve3D to avoid
discontinuities in the data and so that it could be used in the state propagator
ODE45 and the optimization routine. The aerodynamic model was validated
against the re-entry trajectory software HyperSMS and conformed well to
the expected behaviour.

There is a general trend that increasing the re-entry velocity and making the
flight path more shallow should increase the maximum possible downrange
distance and decrease the minimum possible distance, which is an intuitive
result. There seems to be a high degree of variability over this trend however,
calling into question the validity of the results. Indeed due to poor similarity of
the trajectories when using the feasibility and optimality test this assumption
seems to be founded. It is suggested that the number of nodes used in
executing the optimization problem should be increased, although this will
greatly increase the computational resources required. Scaling of the problem
should improve the convergence properties, and so this should be included in
future work.
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Chapter 11

Appendix - Curve fits

Figure 11.1: Ariane drag coefficients for Eqn1408 Chebyshev fit.
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Figure 11.2: Ariane lift coefficients for Eqn1408 Chebyshev fit.
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Figure 11.3: Ariane moment coefficients for Eqn608 Sigmoid fit.
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Figure 11.4: Shuttle drag coefficients for Eqn524 Fourier fit.
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Figure 11.5: Shuttle lift coefficients for Eqn1408 Chebyshev fit.
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Figure 11.6: Shuttle moment coefficients for Eqn539 cosine fit.

Figure 11.7: Chebyshev Eqn1408.
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Figure 11.8: Fourier Eqn524.

Figure 11.9: Cosine Eqn539

Figure 11.10: Sigmoid Eqn608.
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