
Ing. Karel Klouda, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 5, 2020

ASSIGNMENT OF MASTER’S THESIS
 Title: Developing an automatic speech recognition system based on Czech spoken language

 Student: Bc. Richard Werner

 Supervisor: Mgr. Alexander Kovalenko, Ph.D.

 Study Programme: Informatics

 Study Branch: Knowledge Engineering

 Department: Department of Applied Mathematics

 Validity: Until the end of summer semester 2020/21

Instructions

Description:
The task is to create an efficient speech-to-text model trained on the Czech language dataset.

For task implementation:
- Review and analyze the latest state-of-the-art approaches for automatic speech recognition (ASR), mainly
speech to text by using deep neural networks, including signal preprocessing, neural network type and
architecture.
- Define general and specific obstacles, constraints and recommendations in the field of sound recognition.
- Based on this review, find an appropriate solution and train the model on any Czech open-source voice
dataset.
- Design a voice dataset extending system for ASR which would use the trained neural network model, use
unlicensed or open voice media like audiobooks, series, movies, etc.
- Optimize and train a model using above-mentioned dataset.

The result of the thesis will be the system and the open-source dataset of Czech annotated spoken
language.

References

Will be provided by the supervisor.

Master’s thesis

Developing an automatic speech
recognition system based on Czech spoken
language

Bc. Richard Werner

Department of Applied Mathematics
Supervisor: Mgr. Alexander Kovalenko, Ph.D.

July 30, 2020

Acknowledgements

I want to thank my supervisor Mgr. Alexander Kovalenko, Ph.D., for imme-
diate consultations, whenever I was in need. I also thank Ing. Marek Sušický
and Profinit/OpenDataLab for allowing me to work on this exciting project.

A big thanks to my friends and family for being not only mental support
in dire times during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on July 30, 2020

Czech Technical University in Prague
Faculty of Information Technology
c© 2020 Richard Werner. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Werner, Richard. Developing an automatic speech recognition system based
on Czech spoken language. Master’s thesis. Czech Technical University in
Prague, Faculty of Information Technology, 2020.

Abstrakt

Tato práce se zabývá automatickým rozpoznáváńım řeči (ASR) za použit́ı
rekurentńıch neuronových śıt́ı (RNN). Ćılem je analyzovat state-of-the-art v
těchto vědńıch odvětv́ıch a naj́ıt vhodný český otevřený dataset společně s
RNN modelem. Daľśım krokem je natrénovat vybraný model na zvoleném da-
tasetu a naj́ıt druhý zdroj hlasových dat, ke kterému bude možné následně vy-
tvořit anotace. Výstupem práce bude natrénovaný model, open-source dataset
a systém dovoluj́ıćı snadné předzpracováńı dat a daľśı rozšǐrováńı dataset̊u.

Zvoleným datasetem jsou připravená hlasová data z Poslanecké sněmovny
a použitým modelem je DeepSpeech open-source projekt. Druhým zdrojem
hlasových dat jsou zbylé nahrávky z PS, dostupné z jejich webových stránek.
Součást́ı procesu př́ıpravy těchto dat bylo použit́ı detektoru hlasové aktivity
(VAD), jehož výstup posloužil jako reference při segmentaci audio nahrávek.

Natrénovaný model dosáhl úspěšnosti 12.66 % WER (chybovost v rámci
slov) a 4.63 % CER (chybovost v rámci znak̊u), což byly dostatečně ńızké
hodnoty k vytvořeńı anotaćı nových dat. Nový dataset po předzpracováńı
obsahoval přes 580000 hlasových nahrávek s proměnnou délkou zhruba od
1 do 70 sekund. Projekt je navržen jako Docker image s předpřipravenými
nástroji ke zpracováńı dataset̊u a jejich použit́ı k učeńı RNN.

Výstupem je tedy natrénovaný model rekurentńı neuronové śıtě, otevřený
český dataset s anotacemi a připravené Docker prostřed́ı ke zpracováńı dat.

Kĺıčová slova automatické rozpoznáváńı řeči, rekurentńı neurové śıtě, long
short-term memory śıtě, DeepSpeech, Tensorflow, vlnková transformace, roz-
klad vlnkových paket̊u

vii

Abstract

This thesis deals with automatic speech recognition (ASR) using recurrent
neural networks (RNN). The goal is to analyze the state-of-the-art in those
fields and propose a suitable Czech open-source voice dataset and an RNN
model. Next, train the model on the dataset and use to trained model to
transcribe another appropriate source of speech data. The output is a trained
speech-to-text model, a new open-source dataset, and a system allowing ac-
cessible data preprocessing and further extension of datasets.

The dataset of choice is the Czech Parliament meetings (CPM) transcribed
recordings, and the model used is the DeepSpeech open-source project. The
secondary source of speech data is the rest of the recording gathered from
the CPM website. Part of the preprocessing relied on the usage of a voice
activity detection (VAD) model, which was used as a reference for the audio
segmentation.

The trained model achieved 12.66 % WER (Word Error Rate) and 4.63 %
CER (Character Error Rate), which were sufficient values for the final dataset
transcription. After preprocessing, the final dataset consisted of over 580000
speech utterances of ranging length roughly from 1 up to 70 seconds. The
project is designed as a Docker image with prepared custom tools and other
means to preprocess datasets and feed them to an RNN.

Therefore, the output is a trained RNN model, an open-source dataset con-
sisting of labeled recordings, and a ready-to-use Docker image with a toolkit
for data preprocessing.

Keywords automatic speech recognition, recurrent neural networks, long
short-term memory networks, DeepSpeech, Tensorflow, wavelet transform,
wavelet packet decomposition

viii

Contents

Introduction 1

1 Neural Networks 3
1.1 Basic Concept – Rosenblatt’s Perceptron 4
1.2 Multilayer Perceptron . 6

1.2.1 Backpropagation . 6
1.2.2 The Vanishing Gradient Problem 11

1.3 Recurrent Neural Networks . 13
1.3.1 Long Short-Term Memory Networks 14
1.3.2 Gated Recurrent Units 15
1.3.3 LSTM vs. GRU Performance 16

2 Automatic Speech Recognition 17
2.1 Introduction . 19
2.2 Feature Extraction . 22

2.2.1 Wavelet vs. Fourier Transform 22
2.2.2 MFCC Features . 28
2.2.3 Wavelets in Feature Extraction 33

2.3 Connectionist Temporal Classification 37
2.3.1 Blank Symbol Importance 37
2.3.2 Loss Calculation . 37
2.3.3 Decoding . 38

3 Experiments 41
3.1 Model – The DeepSpeech Project 42
3.2 Datasets . 43

3.2.1 Czech Parliament Meetings Dataset 43
3.2.2 Free Spoken Digit Dataset 45

3.3 Data Preprocessing . 45
3.3.1 CPM Dataset . 45

ix

3.3.2 FSDD . 47
3.4 Implementation . 47
3.5 Results . 48
3.6 Evaluation . 49

4 Realization 51
4.1 Docker Image . 52

4.1.1 Makefile . 52
4.2 Training Prerequisites . 54

4.2.1 Creating a Language Model 54
4.3 Training a Model . 56

4.3.1 The Best Model for the CPM 56
4.4 Transcribing a New Dataset . 58

Conclusion 61

Bibliography 63

A Acronyms 69

B Contents of the enclosed medium 71

x

List of Figures

1.1 Perceptron schema . 4
1.2 Multilayer NN schema . 6
1.3 Sigmoid function and its derivative 11
1.4 RNN unfolding . 13
1.5 An LSTM cell . 14
1.6 A GRU cell . 15

2.1 Text-to-Speech synthesis system 19
2.2 Generic pattern matching system 20
2.3 Haar wavelet . 24
2.4 Haar wavelet with different parameters 25
2.5 Two-stage two-band analysis tree 26
2.6 Transform comparisons . 27
2.7 Digital signal before and after the preemphasis 28
2.8 A frame before and after the Hamming window function application 29
2.9 Window functions . 30
2.10 A frame spectrum computed with DFT 31
2.11 Spectrogram of the original signal 31
2.12 Cepstrum features of the original signal 32
2.13 Wavelet packet decomposition tree 35
2.14 NN output matrix with character probabilities 38

3.1 DeepSpeech RNN schema . 43
3.2 XML annotation example . 44

4.1 Final dataset sample . 59

xi

List of Tables

2.1 MFCC features summary . 33

3.1 Experiment results . 48

xiii

Introduction

Speech recognition, which is often referred to as automatic speech recognition
(ASR), is the ability of a machine to transform natural spoken language to a
machine-readable format. ASR algorithms work through two types of model-
ing: acoustic modeling and language modeling. Acoustic modeling deals with
the relationship between linguistic units of speech (e.g., phonemes) and audio
signals. Language modeling is looking for patterns in sequences of words and
therefore helps to distinguish between different words with the same sound.
There are many uses for such systems. They are varying from self-servicing
call centers and self-ordering machines to mobile devices operated by voice
commands.

This thesis deals with automatic speech recognition using artificial neural
networks (ANN), or commonly neural networks (NN). Inspired by nature,
neural networks indeed remotely resemble those found in the animal (and
human) biology. They are computational systems that learn, or more precisely
are trained, to perform a wide variety of classification and regression tasks.
Neural networks are taught by considering examples without implicitly having
any task-specific constraints or rules. In the image classification task, a NN
would be introduced to a set of manually labeled images containing the labels
”car” and ”motorcycle,” for example.

A vital part of the NN learning process is the feature extraction approach
when it comes to speech recognition. There are several ways to extract infor-
mation from a sound, and they all have different properties. Some of them
are better suited noisy signal; others have better information compression. It
often depends on the specific problem, when it gets to this choice.

The subsequent chapter will introduce neural networks and their early be-
ginnings, followed by modern and more complex NN architectures used these
days along with a mathematical background. This chapter puts a high em-
phasis on recurrent neural networks (RNN), namely long short-term memory
(LSTM) and gated recurrent unit (GRU) networks.

The next chapter contains an introduction to automatic speech recognition

1

Introduction

systems, their types, and typical uses. With ASR introduced, this work then
explores various feature extraction methods for speech signal, focusing on the
Mel-frequency spectral coefficients (MFCC) and several wavelet approaches
based on the discrete wavelet transform (DWT). Lastly, an essential part
of speech recognition is the classification and performance metric. That is
managed by the so-called connectionist temporal classification (CTC) loss
function.

The experiment section of this work is testing the performance of the
wavelet packet decomposition (WPD) approach against the MFCC method.

The final chapter of this thesis describes the realization process of the
tasks, showcases the results, and discusses obstacles, improvements, and the
possibility of future work. The applicational nature of this work makes the
contents of the Realization chapter its essential constituent.

2

Chapter 1
Neural Networks

Inspiration to create artificial neural networks (ANN), commonly referred to
as neural networks (NN), was taken from the entirely different way in which
human brain processes and computes information, compared to conventional
digital computers. The human brain is a highly complex, nonlinear, and
parallel information-processing system with the capability to organize it is
structural components, known as neurons, to perform several different kinds
of computation (e.g., perception, pattern recognition or motor functions). [1]

In its most general form, a neural network is a machine that tries to model
how the human brain performs a particular task or function of interest. The
network is usually implemented by using electronic components or is simulated
by software on a digital computer. With this in mind, let us define neural
networks as follows:

A neural network is a massively parallel distributed processor made
up of simple processing units that has a natural propensity for stor-
ing experiential knowledge and making it available for use. It re-
sembles the brain in two respects:

1. Knowledge is acquired by the network from its environment
through a learning process.

2. Inter-neuron connection strengths, known as synaptic weights,
are used to store the acquired knowledge. [1]

The mentioned learning process is performed by a learning algorithm,
which is a function that modifies the synaptic weights of the network to fit it
to a specific problem or objective. Apart from modifying the internal weights,
some networks are capable of even modifying their topology to suit themselves
to a problem better.

In the following sections, I will go through the first concepts and history
of neural networks, their learning algorithms, and advanced types of NN.

3

1. Neural Networks

1.1 Basic Concept – Rosenblatt’s Perceptron

Rosenblatt’s perceptron was the first algorithmically described neural network.
It was invented by psychologist Rosenblatt who inspired engineers, physicists,
and mathematicians alike to devote their research effort to different aspects
of neural networks in the 60s and 70s of the 19th century. Moreover, the
concept of perceptron in its basic form is as valid today as it was in 1958
when Rosenblatt’s paper on the perceptron was first published. [1]

An artificial neural network, in general, can be viewed as an oriented graph,
where nodes are neurons, and edges are the inter-neuron connections. Each
neuron consists of three basic components [2]:

1. weight vector, which stores the weights of the connections between
neurons,

2. summation function, which computes weighted sum of all inputs, and

3. activation function that maps the result of sum function to a number
based on the specific type of the activation function.

Figure 1.1: Perceptron schema

There is a general schema of a perceptron cell in figure 1.1. Each of the
inputs xi has a corresponding weight wi. The weighted sum of the inputs a
would then be computed as:

a =
n∑
i=0

wixi + b, (1.1.0.1)

where b is externally applied bias.
The activation function of the original perceptron was implemented as the

signum function. That means the perceptron was able to classify an input
vector X = (x1, ..., xn) into one of two classes, because the range of this

4

1.1. Basic Concept – Rosenblatt’s Perceptron

function is a two-value set {−1, 1}. In the purest form of the perceptron,
there are two decision regions separated by a hyperplane, which is defined by:

n∑
i=0

wixi + b = 0 (1.1.0.2)

which would for example mean a simple line in a 2D space:

w1x1 + x2x2 + b = 0 (1.1.0.3)

Since the basic perceptron is only able to generate a hyperplane as a deci-
sion boundary, a perceptron model is limited to linearly separable problems,
thus is unable to classify any more complex tasks correctly. This leads us to
a conclusion, that something more robust is needed. [1]

5

1. Neural Networks

1.2 Multilayer Perceptron

The multilayer perceptron (MLP) consists of multiple layers of neurons that
interact using weighted connections. After the first input layer, there are
usually several more hidden layers, followed by the last output layer. There
are no connections between neurons in one layer, while all neurons in one layer
are fully connected to neurons in adjacent layers. While this statement tends
to create an impression that all the information from one layer is copied to all
the neurons of the adjacent layer, it is not necessarily so. Since the connection
weights are usually real numbers, some of the connections may effectively be
rendered insignificant. [3, 1] There is an example of a multilayer NN in figure
1.2.

Figure 1.2: Multilayer NN schema

Another difference over the simple perceptron is the activation function.
Each model of neuron includes a nonlinear activation function that is differ-
entiable.

Those characteristics, however, are responsible for the deficiencies in our
understanding of the behavior of the network. The distributed non-linearity
and high connectivity of the network make the analysis of the network quite
hard to undertake. Moreover, the use of hidden layers makes the learning
process harder to visualize.

1.2.1 Backpropagation

Backpropagation, short for “backward propagation of errors”, is an algorithm
for supervised learning of ANNs, which is using the gradient descend. In this

6

1.2. Multilayer Perceptron

section, especially in the formal definition, I’ve drawn from [4]. It proceeds in
two phases:

1. In the forward phase, the connection weights of the network are fixed,
and the input is propagated through the network, layer by layer, until
it reaches the output. In other words, the network performs inference.

2. In the backward phase, the error is computed by comparing the net-
work output with the desired output. The resulting error is then propa-
gated through the network, but this time from the output layer to the in-
put. In this phase, appropriate adjustments are made to the connection
weights based on the amount of error introduced by the corresponding
connection. [1]

Formal Definition

If we were to define the backpropagation formally, there would be three things
required:

1. A dataset consisting of input-output pairs (#„xi,
#„yi), where #„xi is the input

and #„yi is the corresponding desired output. The dataset of size N is
denoted X = {(# „x1,

#„y1), ..., (# „xN ,
„yN)}.

2. A feedforward NN, e.g. our MLP, whose parameters are collectively
denoted θ. Parameters of primary interest are wkij , which is the connec-
tion weight between node j in layer lk and node i in layer lk−1, and bki ,
the bias for node i in layer lk.

3. An error function E(X, θ), which defines the error between the desired
output #„yi and the calculated (inferred) output #̂„yi of the NN on input #„xi
for a dataset X and parameters θ.

Training a NN with gradient descent requires the calculation of the gra-
dient of the error function E(X, θ) with respect to the network parameters.
Then, according to the learning rate α, each iteration of gradient descend
updates the weights and biases θ as:

θt+1 = θt − α∂E(X, θt)
∂θ

, (1.2.1.1)

where θt denotes the parameters of the network at iteration t in gradient
descend.

The following formulation is for a neural network with one output. The
algorithm can be applied to a network with any number of outputs by consis-
tent application of the chain rule and power rule. Thus, for all the examples
below, input-output pair will be of the form (#„x , y), i.e. the target variable is
a number, not a vector.

7

1. Neural Networks

Preliminaries

Let us use the mean squared error as our error function:

E(X, θ) = 1
2N

N∑
i=1

(ŷi − yi)2, (1.2.1.2)

where yi is the target output value and ŷi is the computed output value for the
input #„xi. This function is used for numeric (not a vector) output. If we were
to predict vectors, the use of a vector similarity function would be necessary.

Lets us lay down a few preliminaries:

• the sum of weighted inputs for the i-th node in the k-th layer aki is:

aki = bki +
rk−1∑
j=1

wkijo
k−1
j =

rk−1∑
j=0

wkijo
k−1
j (1.2.1.3)

where bki is bias for node i in layer k, rk is number of nodes in layer lk,
wkij is weight for node j in layer lk from incoming node i and okj is output
for node i in layer lk. After the standard version with the explicit bias
follows the one with the bias incorporated into the weights:

wki0 = bki . (1.2.1.4)

• Backpropagation attempts to minimize the error function with respect
to the NN weights by calculating the value of ∂E

∂wkij
for each weight wkij .

We can decompose the derivative with respect to each input-output pair
as follows:

∂E(X, θ)
∂wkij

= 1
N

N∑
d=1

∂

∂wkij

(1
2(ŷd − yd)2

)
= 1
N

N∑
d=1

∂Ed
∂wkij

. (1.2.1.5)

Error Function Derivatives

The derivation of the backpropagation algorithm begins by applying the chain
rule to the error function partial derivative:

∂E

∂wkij
= ∂E

∂akj

∂akj
∂wkij

, (1.2.1.6)

where akj is the weighted sum (activation) of node j in layer k before it is
passed to the nonlinear activation function. This decomposition simply says
the change in the error function due to a weight is a product of the change in

8

1.2. Multilayer Perceptron

the error function E due to the sum akj times the change in the sum akj due
to the weight wkij .

Mostly, the whole equation is simplified by calling the first term the error
and denoting it

δkj = ∂E

∂akj
. (1.2.1.7)

The second term is calculated from the equation (1.2.1.3) for aki above:

∂akj
∂wkij

= ∂

∂wkij

(rk−1∑
l=0

wkljo
k−1
l

)
= ok−1

i . (1.2.1.8)

And finally the partial derivative of the error function E with respect to
a weight wkij is

∂E

∂wkij
= δkj o

k−1
i . (1.2.1.9)

This is quite intuitive, since the weight wkij connects the output of node i
in layer k − 1 to the input of node j in layer k in the computation graph.

The Output Layer

Backpropagation starts from the final layer, thus it attempts to define the
value δm1 , where m is the index of the final layer and the subscript is constant 1,
because we are concerned with only one-output NN. We are able to express the
output value by a neuron from the weighted sum from the previous layer and
the activation function of the current neuron. Therefore, the error function
can be expressed as

E = 1
2(ŷ − y)2 = 1

2(g0(am1 − y)2, (1.2.1.10)

where g0(x) is the activation function for the single neuron in the output layer.
Applying the partial derivative and using the chain rule gives

δm1 = (g0(am1)− y)g′0(am1) = (ŷ − y)g′0(am1). (1.2.1.11)

Putting this together with the partial derivative of the error function E with
respect to a weight in the final layer wmi1 gives

∂E

∂wmi1
= δm1 o

m−1
i = (ŷ − y)g′o(am1)om−1

i . (1.2.1.12)

The Hidden Layers

Firstly, we need an equation for the error term δkj for layers 1 ≤ k < m. Again,
with the help from the chain rule, we get:

δkj = ∂E

∂akj
=

rk+1∑
l=1

∂E

∂ak+1
l

∂ak+1
l

∂akj
, (1.2.1.13)

9

1. Neural Networks

where l ranges from 1 to rk+1. l does not take the value of zero because the
bias input ok0 corresponding to wk+1

0j is fixed, and its value is not dependent on
the outputs of previous layers. Using the error term δk+1

l gives the following
equation:

δkj =
rk+1∑
l=1

δk+1
l

∂ak+1
l

∂akj
. (1.2.1.14)

With definition of ak+1
l as

ak+1
l =

rk∑
j=1

wk+1
jl g(akj), (1.2.1.15)

where g(x) is the activation function for the hidden layers, we get:

∂ak+1
l

∂akj
= wk+1

jl g′(akj). (1.2.1.16)

Using this in the above equation yields a final equation for the error term δkj
for the hidden layers called the backpropagation formula:

δkj =
rk+1∑
l=1

δk+1
l wk+1

jl g′(akj) = g′(akj)
rk+1∑
l=1

wk+1
jl δk+1

l . (1.2.1.17)

And finally, the partial derivative of the error function E with respect to a
weight in the hidden layers wkij for 1 ≤ k < m is

∂E

∂wkij
= δkj o

k−1
i = g′(akj)ok−1

i

rk+1∑
l=1

wk+1
jl δk+1

l . (1.2.1.18)

The Algorithm Itself

Assuming a suitable value for learning rate α and a random initialization of
the parameters wkij , the backpropagation algorithm proceeds in four steps:

1. Calculate the forward phase for each input-output pair (# „xd, yd) and
store the results and store the NN output ŷd and inner neuron outputs
akj , and okj for each node j in layer k by proceeding from layer 0, the
input layer, to layer m, the output layer.

2. Calculate the backward phase for each input-output pair and store
the results ∂Ed

∂wkij
for each weight wkij connecting node i in layer k − 1 to

node j in layer k by proceeding from layer m to layer 1. There are three
steps to compute the partial derivatives:

a) Evaluate the error term for the output layer δm1 .

10

1.2. Multilayer Perceptron

b) Backpropagate the error terms to the hidden layers δkj , working
from the final hidden layer.

c) Evaluate the partial derivatives of the individual error Ed with
respect to wkij .

3. Combine the individual gradients ∂Ed
∂wkij

for each pair to get the total

gradient ∂E(X,θ)
∂wkij

for the entire set of pairs X = (# „x1, y1), ..., (# „xN , yM) by
using the above mentioned (section 1.2.1) simple average of the individ-
ual gradients.

4. Update the weights according to the learning rate α and the total
gradient by using

∆wkij = −α∂E(X, θ)
∂wkij

, (1.2.1.19)

which is moving the weights in the direction of the negative gradient –
gradient descend.

1.2.2 The Vanishing Gradient Problem

The problem lies in many layers using certain activation functions, a sigmoid
function, for example, which squishes a large input space into a small input
space between 0 and 1. That means a significant change in the input leads to
a small change on the output; hence its derivative becomes small.

10 5 0 5 10
0.00

0.25

0.50

0.75

1.00 Sigmoid
Derivative

Figure 1.3: Sigmoid function and its derivative

There is an example in figure 1.3 with the sigmoid function and its deriva-
tive. When the input of the sigmoid becomes either too large or too small, its
derivative comes very close to the zero. This problem does not really affect

11

1. Neural Networks

shallow networks – networks with only a small number of layers. However,
when more layers are added, it can cause the gradient to be too small to have
any significant impact on the learning process.

This is caused by the chain rule used in the backpropagation, which is
described for feedforward networks in section 1.2.1. It computes the gradi-
ents by moving layer by layer from the final one to the initial one. By the
chain rule, each subsequent derivative is multiplied by the already computed
value. Therefore, when there are n hidden layers using sigmoid-like activation
function, n small derivatives are multiplied together. Thus, the gradient value
decreases exponentially as the backpropagation algorithm advances to the ini-
tial layers. More on this topic and the problems mathematical background is
explained in [5].

There are a few well-known solutions [6]:

• Probably the simplest solution is to use a different activation function,
such as ReLU (Rectified Linear Unit), which does not cause a small
derivative.

• Another solution is residual networks (ResNets). They provide residual
connections (without weight parameters) straight to the next layers, ef-
fectively skipping the activation functions. That results in overall higher
derivatives, and therefore the ability to train much deeper networks. [7]

• The last one is batch normalization layers. As mentioned before, the
problem appears when a large input is mapped to small output, causing
the derivatives to disappear. The batch normalization method normal-
izes the input on a predefined scale, where the sigmoid derivative is not
that small.

12

1.3. Recurrent Neural Networks

1.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) is a group of neural networks quite sim-
ilar to conventional NNs. They implement backward connections - cycles in
the computational graph, which let the network keep some information from
previous steps. [1] They can work with both variable and extensive input
sequence lengths, and they use the so-called parameter sharing. Parameter
sharing allows the RNN model to generalize across the inputs with different
lengths (or generally forms) and use the same parameters (weights) across
multiple time-steps. If we were to use a standard NN to read sentences and
try to predict the next word or syllable, the model would need to learn all
the word combinations possible for a sentence. An RNN model makes such a
prediction much easier for itself.

h

x

Unfold

h(t-1)

x(t-1)

h(...) h(t)

x(t)

h(t+1)

x(t+1)

h(...)

Figure 1.4: RNN unfolding

There are two ways to visualize the backward connections: [8]:

1. The more straightforward one is to illustrate the dependency as a circuit
on one of the RNN component - neuron. This way, it operates in real-
time, and the current state of the neuron influences its future states.
The left side of figure 1.4 illustrates this approach.

2. The other way is to unfold the diagram into time-steps as on the right
side of figure 1.4. It has separate variables for each time-step, yet each
section (time-step) represents the same structure with different variables.
The size of the unfolded graph depends on the size of the input sequence
length.

From the figure and the description, it is evident that we need to feed the
model with sequential data. That can be a next-word prediction based on an
unfinished sentence, speech recognition with human speech wave signal as in-
put, or weather prediction based on sequential environmental measurements—
generally, any time-step based data.

Update equations for a standard RNN (illustrated on figure 1.4) can be
defined as [8]:

aaa(t) = bbb+WhWhWh(t−1) +UxUxUx(t), (1.3.0.1)

13

1. Neural Networks

hhh(t) = h(aaa(t)), (1.3.0.2)

ooo(t) = ccc+ V hV hV h(t), (1.3.0.3)

ŷ̂ŷy(t) = g(ooo(t)), (1.3.0.4)

where bbb and ccc are the bias vectors, and UUU/VVV /WWW are the weight matrices
for input-to-hidden/hidden-to-output/hidden-to-hidden connections, respec-
tively. Activation function h is usually a hyperbolic tangent, g is a sigmoid
and vectors hhh and ŷ̂ŷy are the output vectors.

RNNs, similarly as the standard deep neural networks, suffer from the
vanishing and exploding gradient problems. The unfolding of neurons causes
the same effect as the high amount of hidden layers in deep NNs. The solution
to these problems is a more complex structure of recurrent neurons, namely,
LSTM or GRU cells.

1.3.1 Long Short-Term Memory Networks

σ(Wf) σ(Wi) tanh(Wc) σ(Wo)

tanh

•

•
•
+

tanh

σ(Wo)tanh(Wc)

Figure 1.5: An LSTM cell. The dot in a circle sign means a component-wise
product, while the plus sign is standard vector addition.

Long short-term memory networks (LSTMs) is an extension of standard
RNNs where one LSTM neuron acts like several NN layers. These types of cells
add the so-called gates. These gates manage access to the neural cell’s internal
state, and they help eliminate the vanishing/exploding gradient problem. [9]

Figure 1.5 illustrates an LSTM cell. There are two hidden states in the
unit – a standard cellular state hhh(t) and a cellular state ccc(t), which helps to
maintain long-term dependencies. The first of the gates is the forget gate fff t.
Its activation function, a sigmoid with values in (0, 1), helps to decide which
information from the cellular state ccc(t−1) is to be kept as [10]:

fff (t) = σ
(
Wf

[
hhh(t−1),xxx(t)

]
+ bbbf

)
, (1.3.1.1)

14

1.3. Recurrent Neural Networks

where W is the weight matrix for the forget gate. The input gate iii(t) manages
the addition of new information to the state ccc(t−1):

iii(t) = σ
(
Wi

[
hhh(t−1),xxx(t)

]
+ bbbi

)
. (1.3.1.2)

The third gate, the output gate, takes care of which part of the state ccc(t) leaves
the cell as the hidden state output hhh(t):

ooo(t) = σ
(
Wo

[
hhh(t−1),xxx(t)

]
+ bbbo

)
. (1.3.1.3)

The current internal state ccc(t) is computed by calculating the component-wise
product of the result of the input gate and the cellular state candidate c̃̃c̃c(t):

ccc(t) = fff (t) � ccc(t−1) + iii(t) � c̃̃c̃c(t), (1.3.1.4)

where
c̃̃c̃c(t) = tanh

(
Wc

[
hhh(t−1),xxx(t)

]
+ bbbc

)
. (1.3.1.5)

The output hhh(t) is then computed as

hhh(t) = ooo(t) � tanh(ccc(t)). (1.3.1.6)

1.3.2 Gated Recurrent Units

σ(Wr)

•

• •

+

tanh(Wh)

σ(Wz) 1-

Figure 1.6: A GRU cell. The dot in a circle sign means a component-wise
product, while the plus sign is standard vector addition.

Gated recurrent unit (GRU) is a simplification of LSTM-like units. It
contains only two gates [10]:

• an update gate zt, whose role is similar to the LSTM forget gate, and

• a reset gate rt , whose role is somewhat similar to the input gate.

15

1. Neural Networks

Other than removing the output gate from LSTM, GRU also removed the
cellular state Ct. The whole cell structure is shown in figure 1.6. To represent
the data flow through the GRU unit mathematically, we will start with the
update gate:

zzz(t) = σ
(
Wz

[
hhh(t−1),xxx(t)

]
+ bz

)
. (1.3.2.1)

The reset gate is quite similar:

rrr(t) = σ
(
Wr

[
hhh(t−1),xxx(t)

]
+ br

)
. (1.3.2.2)

As for the computation of the preliminary output h̃t:

h̃̃h̃h(t) = tanh
(
Wh

[
rrr(t) � hhh(t−1),xxx(t)

]
+ bh

)
. (1.3.2.3)

Finally, the output:

hhh(t) =
(
1− zzz(t)

)
� hhh(t−1) + zzz(t) � h̃̃h̃h(t). (1.3.2.4)

1.3.3 LSTM vs. GRU Performance

Experiment results of LSTM and GRU comparisons are usually inconclusive
- the performances of both types of RNNs are mostly very similar, and the
better choice is up to the specific task and its dataset.

For example, experiments in [11] were unable to conclusively declare the
better recurrent unit when it comes to speech signal modeling.

Publication [12] tested several variations of LSTMs networks and a GRU
network on several tasks (XML modeling, arithmetic modeling and filtering,
word-level language modeling, and music) where GRU models slightly out-
performed all other models on all tasks except for the language modeling.
Nevertheless, the results were not strong enough to make a solid conclusion.

Paper [13] studies only various LSTM modifications, of which none of them
has shown any significant performance improvements. On the other hand,
some of the LSTM architecture simplifications did not necessarily worsen the
prediction performance while (slightly) reducing the computational complex-
ity.

There are other studies of the two network type comparisons [14, 15] which
conclude either the LSTM or the GRU architectures being better the other
(respectively to the citation order). However, the results are, again, quite
similar as in the publications above. It always depends on the specific task,
and the data the experiments are going to be conducted upon.

16

Chapter 2
Automatic Speech Recognition

Automatic speech recognition (ASR) has been undergoing active research for
more than fifty years. It is an essential milestone in both human-human and
human-machine communication. Due to the insufficient performance of tech-
nologies in the past, ASR has not become a desirable part of human-machine
communication. It was because the lack of computing power did not allow
passing the usability bar for real users, and other means of communication,
such as keyboard and mouse, significantly outperformed speech in most as-
pects of communication efficiency with computers. [16]

This all changed in recent years. Speech technologies started to change
how we live and work and, for some devices, became the primary means of
interaction with them. By [16], there are several key areas of which progress
allowed this trend:

• the first area is Moore’s law. The law states that approximately every
two years, the number of transistors in a dense integrated circuit doubles
roughly every two years. [17] That leads to the computational capabil-
ities of CPU/GPU clusters also being doubled every two years. That
makes training of more complex and powerful models possible, and thus
the error rates of ASR systems lower.

• The second area is the access to more data due to the continued advance
of the Internet and cloud computing. By using and training models
on big data collections, it is possible to build much more robust and
assumption-less models than before.

• The third is that mobile, wearable, and intelligent living room devices
and in-vehicle infotainment [18] became quite popular. Since the use of
alternative interaction means, such as keyboard and mouse, is mostly
not possible in these cases, speech communication, which is natural for
humans, becomes more convenient.

17

2. Automatic Speech Recognition

There are several approaches to the ASR with different models, such as
Gaussian mixture models or hidden Markov models. Since this thesis deals
with neural networks, we are going to go through deep neural network (DNN)
models in ASR.

Aside from diverse models, there are several ways to preprocess the raw
audio sound. In the following sections, I am going to introduce some of the
methods of preprocessing.

18

2.1. Introduction

2.1 Introduction

Both in human and electronic communication, the speech information is en-
coded in the form of a continuously varying (analog) waveform that can be
transmitted, recorded, manipulated, and ultimately decoded by a human lis-
tener. The primary analog form of the message is an acoustic waveform, which
we call the speech signal. Those can be converted to an electrical waveform
by a microphone, further manipulated by analog and digital signal process-
ing, and then converted back to acoustic form by a loudspeaker or another
electronic device.

Before we can apply any (digital) processing techniques, we must convert
to the acoustic waveform, analog signal, to a sequence of numbers – digital
signal. System or tool able to do such converting is called A-to-D converter,
which creates digital representation by sampling the waveform in a very high
rate, applies filters to preserve a prescribed bandwidth, and then reduces the
sampling rate to the desired sampling rate. This discrete-time representation
is the starting point for most digital signal processing applications.

Several areas that work with the digital representation of the speech signal
follow. [19]

Speech coding

Perhaps the most widespread applications of digital speech are the A-to-D
and D-to-A converting mentioned briefly above. It is commonly referred to
as speech coding or speech compression, and its goal is to compress the digital
waveform representation of speech into a lower bit-rate representation. The
D-to-A decoder part of the system is often called the synthesizer because it
must reconstruct the speech waveform from the discrete digital data.

Text-to-Speech

A Text-to-Speech analysis is another area that uses the digital signal. The
goal of these systems is to start with text and automatically produce speech.
The input is an ordinary text such as a newspaper article or an e-mail message.
The system is depicted in figure 2.1. The first block named Linguistic Rules

Synthesis
Algorithm

D-to-A
Converter

Linguistic
Rules

speechtext

Figure 2.1: Text-to-Speech synthesis system inspired by [19]

has the job of converting the ordinary text into a set of sounds, which must
be synthesized afterward. The system should include a set of linguistic rules
that must determine appropriate sounds such as emphasis, pauses, or rates

19

2. Automatic Speech Recognition

of speaking. Moreover, pronounce acronyms and ambiguous words like read,
bass, or object, how to pronounce abbreviations like St. (street or Saint?), Dr.
(Doctor or drive?), and adequately pronounce specialized terms, and names.
After the system builds the pronunciation set of sounds, it is time to synthesize
the speech – to create the appropriate sound sequence to represent the text
message in the form of speech.

Text-to-Speech synthesis systems are used to do things like to provide
voice output from GPS systems, handle call center help desks, or providing
information from handheld devices such as foreign language phrasebooks and
dictionaries. They are also being used in announcement machines that provide
information – stock quotes and airline schedules. Finally, perhaps the most
important application is in reading machines for the blind, where an optical
character recognition system provides the text input.

Speech Recognition

Quite the opposite of the Text-to-Speech problem described above is the speech
recognition or Speech-to-Text problem. It is concerned with the extraction of
information from the speech signal. Figure 2.2 shows a diagram of a generic ap-

Feature
Analysis

Pattern
Matching

A-to-D
Converter

textspeech

Figure 2.2: Generic pattern matching system inspired by [19]

proach to pattern matching problems in ASR. There are several sub-problems
in this class, such as

• speech recognition, where the goal is to extract the message from the
speech signal,

• speaker recognition, where the goal is to identify the speaker,

• speaker verification, which verifies a speakers claimed identity from
analysis of their speech signal,

• word spotting, which involves monitoring a speech signal for the oc-
currence of a specified word or phrase, and

• automatic indexing of speech recordings based on the recognition of
spoken keywords.

The first block in the pattern matching system diagram 2.2 converts the analog
speech waveform to the digital signal using an A-to-D converter. The feature
analysis module, the second block, converts the sampled speech signal to a

20

2.1. Introduction

set of feature vectors. The third and final block in the system called pattern
matching block dynamically time aligns the set of feature vectors representing
the speech signal with a concatenated set of stored patterns. Then it chooses
the identity associated with the pattern, which is the closest match to the
time-aligned set of feature vectors of the speech signal. The symbolic output
consists of a set of recognized words in the case of speech recognition. In
the case of speaker recognition, it would be the identity of the best matching
talker.

Probably the most common use of speech recognition is in portable com-
munication devices. Spoken name speech recognition in cell phones enables
voice dialing, and today basically every smart phone has its own voice assistant
that is capable of multitude functions including speech-to-text when writing
messages, the device options management, or information retrieval from the
internet. [20]

The long-time dream of speech researchers are automatic language trans-
lation systems. The goal of such systems is to convert spoken words in one
language to spoken words in another language to facilitate natural language
voice dialogues between people speaking different languages.

21

2. Automatic Speech Recognition

2.2 Feature Extraction

In this section, we are going to introduce two popular methods of speech signal
feature extraction – namely, the Mel Frequency Cepstral Coefficients (MFCC)
and the Wavelet approach.

The MFCC approach is computing the short-term power spectrum, which is
based on an inverse Fourier transform of a log power spectrum on a nonlinear
mel scale of frequency (first formulated in [21], well explained, for example,
in [19]). There are several definitions of the cepstrum, and they, sometimes,
deviate from the steps used in this thesis.

The wavelet approach uses the wavelet transform in the process of fea-
ture extraction. This transform does not expect a stationary signal and is
well localized both in time and frequency using a multiresolution approach.
The following section introduces both Fourier and wavelet transforms, their
differences, and their advantages.

2.2.1 Wavelet vs. Fourier Transform

Let us start by stating that the Fourier transform can be viewed as a particular
case of wavelet transforms. They are both expanding the input signal onto a
set of basis functions and transforms that will give an efficient and informative
description of the signal.

We are going to start by defining generic transforms and pinpointing the
main differences between wavelet and Fourier transforms. After that, we will
build an intuitive idea around the transforms to better understands what is
hiding behind the mathematics. This section draws from [22, 23, 24].

A generic discrete linear decomposition of a signal f(t) can be expressed
as:

f(t) =
∑
l

alψl(t), (2.2.1.1)

where al are the real-valued expansion coefficients, and ψl(t) is a set of real-
valued functions of t called the expansion set. If the expansion set is unique,
it is called a basis for the class of functions that can be so expressed.

This is how a discrete Fourier transform looks like:

f̂n =
N−1∑
k=0

fke
− 2πink

N , (2.2.1.2)

with its inverse counterpart defined as:

fk = 1
N

N−1∑
n=0

f̂ne
2πink
N . (2.2.1.3)

For a Fourier transform, the basis functions are sine and cosine functions –
generally the complex exponential, which we can see in the definitions above.

22

2.2. Feature Extraction

The problem with the Fourier transform is that it expects a stationary
signal in time. This presumption of a stationary signal comes from the basis
this transform uses – sine and cosine. Those are periodic, infinite functions,
and any linear combination of such functions creates, again, a periodic, in-
finite one. In other words, this transformation discards all the information
about time but greatly captures the frequency information. We can say that
the Fourier transform has great frequency localization and weak (none) time
localization. That, however, does not go along with the properties of human
speech.

Human speech is very far from being stationary. To be able to recognize
words, syllables, and phonemes, we need to have both time and frequency
localization. The first approach to tackle this problem is the Gabor transform
named after Dennis Gabor.

The Gabor Transform

Gabor transform is a special case of short-time Fourier transform (STFT).
STFT splits the signal into short segments of equal length and computes the
Fourier transform for each segment separately. Gabor transform is addition-
ally using a Gaussian window function to separate the desired part of the
signal from the rest, squishing undesired parts of the signal (close) to zero.

MFCC approach to the feature extraction is using a very similar process
with the signal splitting and windowing. The whole process is described in
section 2.2.2.

As hinted above, the Gabor transform is still not ideal. Increasing the win-
dow size lowers the time resolution for better frequency information. Smaller
window, on the other hand, increases the time resolution, but we lose the
low-frequency content available in longer time intervals. How to avoid such
trade-off and keep both frequency and time resolution as high as possible? Let
us first introduce mother wavelets.

A Mother Wavelet

A mother wavelet is a fundamental parametric function defined as:

ψa,b(t) = 1√
a
ψ

(
t− b
a

)
(2.2.1.4)

This is a generic description of a wavelet, without a specific wavelet function
given. It has two real parameters:

• parameter a, which is a non-zero scaling parameter, and

• parameter b – a translation parameter.

Now, we have a function that is both scalable and translatable in time. In
other words, we have got a sliding window that has a dynamic size. Now,

23

2. Automatic Speech Recognition

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
time(t)

1

0

1

1, 0

Figure 2.3: Haar wavelet

the only thing that remains is to define the wavelet function itself. There is a
wide variety of wavelet functions that can be defined. Depending on the type
of problem, we choose the one with the best properties for us. In the end, the
wavelet is simply another expansion basis for the signal representation.

The Haar Wavelet

The first recognized wavelet function was the Haar wavelet in 1910, meaning
the idea of wavelets is more than a century old. It can be described as:

ψ(t) =

1 0 ≤ t < 1

2
−1 1

2 ≤ t < 1
0 else

(2.2.1.5)

Figure 2.3 shows the Haar wavelet step function. It is an ideal wavelet
for describing localized functions because is has compact support. Compact
support means that a function returns values on a defined interval and returns
zero outside the interval. That leads to Haar function having a strong time
localization. However, its frequency localization is weak, because it decays
like a sine function in powers of 1

ω in the frequency domain (Fourier transform
of the wavelet). This wavelet has two more properties, that are important for
us. The sum of the “area under the curve” equals zero:∫ ∞

−∞
ψ(t)dt = 0, (2.2.1.6)

and the area of the squared absolute value of the curve equals one:∫ ∞
−∞
|ψ(t)|2 dt = 1. (2.2.1.7)

24

2.2. Feature Extraction

0.2 0.0 0.2 0.4 0.6
time(t)

2

0

2

0.5, 0

(a) Compressed

1 0 1 2 3 4 5
time(t)

0.5

0.0

0.5

2, 2

(b) Dilated and translated

Figure 2.4: Haar wavelet with different parameters

The Wavelet Transform

To be precise, figure 2.3, and the wavelet description (2.2.1.5) are both the
wavelet ψ1,0(t). Meaning its translation is zero, and its scaling is unity. Figure
2.4 shows other parameter configurations for Haar wavelets. Plot 2.4a depicts
wavelet ψ 1

2 ,0
, which is a compressed function without translation, and plot

2.4b depicts ψ2,2, which is a dilated wavelet with positive translation.
That allows for large scale structures in time in the signal to be captured

by wide time-domain Haar wavelets. On this broad scale, the time resolution
is pretty bad. However, by rescaling the wavelet in time, we get a more
delicate time resolution along with high-frequency information. Therefore
all the information at both low and high scales is preserved. That allows a
complete reconstruction of the original signal. In the end, the only limit in this
process is the number of rescaling levels. That is also where the multiresolution
term comes from. The wavelet transform captures the information on multiple
time-frequency resolutions.

The wavelet basis is computed as

(Tf)(ω) =
∫
t
K(t, ω)f(t)dt, (2.2.1.8)

where K(t, ω) is the kernel of the transform. The same applies to the Fourier
transform, where the kernel is the oscillations given by K(t, ω) = exp(−iωt) =
e−iωt. Now, we need to define a transform that incorporates the mother
wavelet as the kernel. The following equation is the definition of the continuous
wavelet transform (CWT):

Wψ[f](a, b) = (f, ψa,b) =
∫ ∞
−∞

f(t)ψ̄a,b(t)dt. (2.2.1.9)

CWT is a functions of the dilatation parameter a and the translation pa-
rameter b. A more simple yet equivalent formulation of the CWT by [22] is:

F (a, b) =
∫
t
f(t)ψ

(
t− a
b

)
dt. (2.2.1.10)

25

2. Automatic Speech Recognition

Since the discrete wavelet transform is somewhat complicated to define,
we will first define the inverse wavelet transform. It is even a more intuitive
idea – it says how the signal is reconstructed from the set of wavelets. It goes
as:

f(t) =
∑
k

∑
j

ca,bψa,b(t), (2.2.1.11)

where the set of expansion coefficients aj,k is called the discrete wavelet trans-
form.

The result of a DWT are coefficients of a so-called two-band analysis tree.
It is a binary tree, where only one of the branches is expanded into the next
stages. Figure 2.5 depicts such a tree, which visualizes two stages of the DWT
algorithm.

h(-n)

g(-n)

↓2

↓2

h(-n)

g(-n)

cj+1

dj

dj-1

cj-1

cj

↓2

↓2

Figure 2.5: Two-stage two-band analysis tree

Each stage implements two digital filters, and two down-samplers (some-
times also called decimators). One of the filters, denoted as h(...), is a high-
pass filter, which is letting only higher frequencies of a signal through. The
other one, denoted as g(...), is a low-pass filter doing the opposite. The filters
are where the wavelets play their role, and the filtering is achieved by con-
volving the signal sequence with the filter (wavelet) coefficients. The down-
samplers discard half of the data that come through them; in this case, taking
every other (even) value as y(n) = x(2n). This decimation causes rougher res-
olution with every stage of the algorithm because we apply the same filter to
fewer data. Also, it causes that the output from the tree has, on average, the
same length as the input, meaning that there is a possibility of no information
loss, and therefore complete signal recovery.

The outputs from high-pass filters di are called detail coefficients, and the
outputs from low-pass filters ci are called approximation coefficients.

One stage of the tree in figure 2.5 is implemented by two recursive equa-
tions. The equation for the high-pass filter coefficients:

da(b) =
∑
m

h(m− 2b)ca+1(m), (2.2.1.12)

and the one for the low-pass filter coefficients:

ca(b) =
∑
m

g(m− 2b)ca+1(m), (2.2.1.13)

26

2.2. Feature Extraction

where n = m− 2b to correspond with the figure 2.5. Also note, that the tree
uses time-reversed recursion coefficients h(−n), and g(−n).

Summary

We have explained differences and (dis)advantages of Fourier, Gabor, and
wavelet transforms. Figure 2.6 is quite a famous picture to visualize these dif-
ferences. Understanding this cartoon is critical for understanding the wavelets
and the wavelet transform.

Fr
eq

ue
nc

y
(ω

)
Fr

eq
ue

nc
y

(ω
)

Time (t) Time (t)

Time series Fourier transform

Gabor transform Wavelet transform

Figure 2.6: Transform comparisons

It shows us that a time series, the top left box, has all the time information
we can get. We know what exactly happens in every point of time in the
signal, but it tells us nothing about the magnitude of the signal at different
frequencies.

The second box, the top right one, visualizes the Fourier transform of
the time series. We cast the signal from the time domain into the frequency
domain and therefore lose all the time information. So, as described above,
we have perfect frequency resolution, but no way to say or reconstruct when
any event in the signal happened. That is why Fourier transform expects a
stationary signal in time.

The third box, the bottom left one, is the Gabor transform. We are
splitting the signal into windows and applying Fourier onto those windows.

27

2. Automatic Speech Recognition

We trade some time resolution for frequency resolution. It is a trade-off, a
compromise where the window length parameter says, how much of each we
want to trade.

The last box, the bottom right one, is the wavelet transform. It starts
at the bottom of the box. The first thing the algorithm does is to take the
whole signal and (to some extent) perform a transform on it (with the mother
wavelet scaled to the entire signal). Now, we take the mother wavelet, scale
it to half its size and slide it across the time series. Repeat this until we have
enough granular time resolution for the analysis we need to perform. After
this, we have high frequency (bottom of the box) resolution and also the time
(top of the box) resolution.

2.2.2 MFCC Features

The goal of this section is to describe the transformation process of the dig-
ital signal into a sequence of acoustic feature vectors. Each of the vectors
represents the information in a small time window of the signal. This section
draws from [25]. Most of the figures in this section are my own, created with
help from [26]. The original wave file, which is the whole process of feature
extraction demonstrated on, is my recording saying “yellow dandelion.”

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time (s)

3000

2000

1000

0

1000

2000

3000

Am
pl

itu
de

./yellow_dandelion.wav

(a) Before

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time (s)

1000

500

0

500

Am
pl

itu
de

Pre-emphasized signal

(b) After

Figure 2.7: Digital signal before and after the preemphasis

Preemphasis

The first step in this process is to boost the amount of energy in the high
frequencies. If we look at the frequency spectrum of voiced segments like vow-
els, there is more energy at the lower frequencies than the higher frequencies.
This drop of energy is called the spectral tilt.

This preemphasis is done by applying a filter which goes as

yn = xn − αxn−1, (2.2.2.1)

28

2.2. Feature Extraction

where signal x and parameter 0.9 ≤ α ≤ 1.0 are the inputs and y is the
signal after preemphasis. Figure 2.7 shows a digital signal before and after
the preemphasis is applied, where the value of α is set to 0.97.

Windowing

Since the goal of this feature extraction is to get spectral features that help
us build a phone or sub-phone classifier, we do not want to extract our fea-
tures from an entire recording of a sentence or whole conversation. In such
long pieces, the spectrum changes very quickly. Technically, speech in a
non-stationary signal, meaning that its statistical properties are not constant
across time. Therefore, we need to extract spectral features from a small
window of speech that characterizes a single sub-phone. For this window, we
can make a rough assumption that the signal is stationary (i.e., its statistical
properties are constant within the window).

The windowing process takes three parameters:

• the width of the window (in milliseconds),

• the offset between successive windows, and

• the shape of the window.

0.000 0.005 0.010 0.015 0.020 0.025
Time (s)

1500

1000

500

0

500

1000

1500

Am
pl

itu
de

40th frame

(a) Before

0.000 0.005 0.010 0.015 0.020 0.025
Time (s)

1000

500

0

500

1000

Am
pl

itu
de

40th Hamming window

(b) After

Figure 2.8: A frame before and after the Hamming window function
application

Each piece of speech extracted by the window function is called a frame,
and its length in milliseconds the frame size. A number of milliseconds between
the left edges of two consecutive frames (their overlap) is frame shift. Figure
2.8 shows the 40th frame of the original signal before and after the application
of the Hamming function. We can see that the length of each frame is 25 ms.

The third parameter, the shape of the window, can provide additional
transformation to the frame. The most basic type of window is the rectangu-
lar window, which keeps the signal as is. That can cause problems, however,

29

2. Automatic Speech Recognition

0.0 0.005 0.01 0.015 0.02 0.025
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

(a) Rectangular window

0.0 0.005 0.01 0.015 0.02 0.025
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

(b) Hamming window

Figure 2.9: Window functions

because it abruptly cuts the signal at the window edges. Such discontinu-
ities create issues when we use the Fourier transform. That is the reason a
more typical window used in MFCC extraction is the Hamming window. It
shrinks the values of the signal near the boundaries toward zero, avoiding
discontinuities. Figure 2.9 shows both the rectangular window function and
the Hamming window function. We can see how are the left and right edges
being squished close to the zero when the function is applied in the case of
the Hamming window.

Discrete Fourier Transform

The next step is extracting the spectral information from our windowed signal
– we need to know the magnitude of energy the signal contains at different
frequency bands. The tool used to extract spectral information for discrete
frequency bands for a discrete-time (sampled) signal is the Discrete Fourier
Transform (DFT).

The input for the DFT is signal xm...xn, and the output is a complex
number Xk which represents the magnitude of that frequency in the original
signal (frame). Plotting the magnitude against the frequency visualizes the
spectrum. Figure 2.10 shows such spectrum computed for the same frame, on
which was the hamming window function demonstrated.

The definition and the intuitive idea of the discrete Fourier transform is
introduced in section 2.2.1. Popular algorithm for the computation of the DFT
is the Fast Fourier Transform (FFT). This implementation is very efficient with
on constraint – N must equal to values which are powers of two.

Mel Filter Banks

This part of the extraction process tries to simulate the human hearing, which
is not equally sensitive at all frequencies. It is, in fact, less sensitive at higher
frequencies. Modeling this property of human hearing in the feature extraction

30

2.2. Feature Extraction

0 5000 10000 15000 20000 25000
Frequency (Hz)

0

10000

20000

30000

40000

50000

M
ag

ni
tu

de

DFT

Figure 2.10: A frame spectrum computed with DFT

process turned out to improve the speech recognition performance. It is done
by warping the output from DFT onto the mel scale. A mel is a unit of
pitch defined so that an equal number of mels separates a pair of sounds that
are perceptually equidistant in tone. In essence, two pairs of adjacent notes in
different octaves would have different distances in hertz, yet the same distance
in mels. Mels can be computed from raw frequency as follows:

mel(f) = 1127 ln
(

1 + f

700

)
, (2.2.2.2)

and therefore computing frequency from mels:

f(m) = 700
(
e

m
1127 − 1

)
. (2.2.2.3)

There are ten filters spaced linearly below 1000 Hz, and the remaining
filters logarithmically above 1000 Hz – usually 16 more, giving 26 filters in
total.

In figure 2.11, there is visualized a spectrogram of the original signal.
It is 152 feature vectors (one vector for each frame) of length 26 (number
of triangular filters in the bank). The spectrogram is normalized by mean
normalization to make the image clearer.

0 20 40 60 80 100 120 140
0

10

20

Spectrogram normalized

Figure 2.11: Spectrogram of the original signal

31

2. Automatic Speech Recognition

Cepstrum

It would be possible to use the mel spectrum by itself as a feature representa-
tion for phone detection. Yet, there is still a lot of unimportant information
in the so-far extracted features. One way to further refine the features is the
computation of the so-called cepstrum.

The cepstrum can be thought of as a spectrum of the log spectrum. We
take the computed spectrum and apply a logarithmic function to it. Now, we
visualize the logarithmic spectrum as if it were an ordinary waveform – its
domain is still frequency, but we pretend the domain is time. And the last
step is computing the spectrum of this pseudo-waveform we have just created.
Generally, we only take the first 12 cepstral features, that solely represent
the information of the human vocal tract without unnecessary information.
Figure 2.12 visualizes the extracted cepstral features from the original signal.

0 20 40 60 80 100 120 140
0

10
Lifted MFCC normalized

Figure 2.12: Cepstrum features of the original signal

The formal definition for the cepstrum is inverse DFT of the log magnitude
of the DFT of a signal. Mathematically:

cn =
N−1∑
n=0

log
(∣∣∣∣∣

N−1∑
n=0

xne
− i2π

N
kn

∣∣∣∣∣
)
e
i2π
N
kn. (2.2.2.4)

It turns out that cepstral coefficients have the handy property that the
variance of the different coefficients at different frequency tends to be uncor-
related. That is not true for the spectrum. Spectral coefficients at various
frequency bands are correlated. That significantly eases the job for the acous-
tic model.

Deltas and Energy

We have got 12 features extracted from each frame. Now, we next add the
thirteenth feature: the energy from the frame. The energy correlates with
phone identity and therefore is useful for phone detection (vowels and sibilants
have more energy than stops, etc.). It is the power sum over time in the frame.
Thus, for a signal x in a window from time t1 to time t2:

E =
t2∑
t=t1

x2
t . (2.2.2.5)

In the next step, since the speech signal is not constant from frame to
frame, we are adding features related to the change in cepstral features over

32

2.2. Feature Extraction

time. We do this by adding for each of the current 13 features a delta or
velocity feature, and a double delta or acceleration feature.

Each of the 13 delta features represents the change between frames in the
corresponding cepstral/energy feature. Each of the 13 double delta features
represents the change between frames in the corresponding delta features. A
simple way to compute the deltas is by calculating the difference between
frames. Thus, the delta value dt for a particular cepstral value ct at time t is:

dt = ct+1 − ct−1
2 . (2.2.2.6)

Usually, a much more sophisticated estimate of the slope, which uses a
broader context of frames, is used.

Summary

Now, when we have all the features computed, we are at 39 MFCC features
for each frame. In table 2.1, we can see the summary of the features with
counts for each category.

Table 2.1: MFCC features summary

12 cepstral coefficients
12 delta cepstral coefficients
12 double delta cepstral coefficients
1 energy coefficient
1 delta energy coefficient
1 double delta energy coefficient
39 MFCC features

Again, the most useful fact about MFCC features is that the features are
uncorrelated, which turns out to make the acoustic model much simpler.

2.2.3 Wavelets in Feature Extraction

Since the usage of wavelets in feature extraction is still considered relatively
new, and most of the models still use MFCC vectors in practice, we are going to
introduce a few of those approaches in this section superficially. Some research
papers propose to substitute the inverse Fourier transform (or the discrete co-
sine transform) in MFCC vectors with the discrete wavelet transform (DWT)
[27]. Those features are called MFDWC vectors. Another research suggests
first applying the DWT to the signal to extract the approximation coefficients
and then computing MFCCs from those coefficients [28]. The third extraction
method is the wavelet packet decomposition (WPD), or sometimes called the
wavelet packet transform (WPT), which is one of the implementations for the
DWT [29, 30].

33

2. Automatic Speech Recognition

MFDWC Features

MFDWC stands for mel-frequency discrete wavelet coefficients, and it was
proposed by [27]. Those features are obtained by applying the DWT to the
mel-scaled log filterbank energies of a speech frame, thus not using the discrete
cosine transform (DCT) as in MFCCs. Using the DWT has the benefit of its
localization properties, which are described in section 2.2.1. This approach
is trying to deal with two drawbacks of the DCT. Again, this has already
been described above, and we will only recap the main points. These are the
drawbacks:

1. the DCT basis covers all frequency bands. That means that a corruption
of the speech signal on one band affects all the MFCCs. However, if we
use a localized transform instead of DCT, corruption could be reduced
to only a few coefficients.

2. One frame of speech may (and very probably will) contain information
about two adjacent phonemes. If one of them is voiced and the other is
not, then the voiced phoneme might dominate the low-frequency spec-
trum and vice versa. Since MFCCs assumes a stationary signal in one
frame, it also assumes there can only be one phoneme present in one
frame.

MFDWCs consist of fifteen static feature coefficients for each frame. There
are eight coefficients at scale four, four coefficients at scale eight, two at scale
sixteen, and one at scale thirty-two. The feature vector also includes delta
coefficients and delta energy to include dynamic features. The delta extraction
is described in section 2.2.2 for the MFCCs.

These proposed features performed better than other speech features tested
in the paper. Those included SUB (subband-based), MULT (multi-resolution),
and MFCC features. MFDWCs had relatively better performance on a noisy
signal, and the difference from other approaches on a clean signal was lower.
The experiments were conducted on the TIMIT database on a phoneme recog-
nition task.

DWT-Based MFCCs

This approach, proposed in [28], computes the MFCC feature vectors from the
approximation coefficients of the DWT of a speech signal. Again, the reason
to use the wavelet transform is to reduce the impact of noise in a signal.

The extraction consists of three phases:

1. Use a voice activity detection (VAD) model to separate speech and non-
speech (utterances and silence between words) segments,

2. compute the discrete wavelet transform of the speech signal, and get the
approximation coefficients, and finally

34

2.2. Feature Extraction

3. compute the MFCCs from the approximation coefficients.

This model was tested on the PIEAS speech database. It contains 2000
short samples of both telephonic (noisy) and non-telephonic (clean) speech
of both males and females. Its goal was speaker recognition, and these DWT
based MFCCs outperformed LPC (linear predictive coding), especially in noisy
speech. Comparison with standard MFCCs was unfortunately not present.

Wavelet Packet Decomposition

Wavelet packet decomposition (WPD) is an implementation of the DWT,
which decomposes both sides of approximation and detail coefficients. There-
fore, it is creating a whole binary tree as opposed to the classic DWT, which
decomposes only one branch in each stage. Such a tree is depicted in figure
2.13.

Signal

L1 H1

LL2 LH2 HL2 HH2

LLL3 LLH3 LHL3 LHH3 HLL3 HLH3 HHL3 HHH3

Figure 2.13: Wavelet packet decomposition tree, inspired by [31]

The WPD produces 2n sets of coefficients (for each leaf node) as opposed
to the standard DWT, where n is the level of decomposition. The standard
DWT provides only n+ 1 coefficients – one for each level from the high-pass
filters, and +1 from the last level as the output from the low-pass filter. That
lets us choose from a wider variety of coefficients and experiment with different
combinations.

Research [30] experiments with the recognition rate of Indonesian sylla-
bles, and uses three datasets: a training syllable dataset DLSK, a testing
syllable dataset DUSK, and a testing word dataset DUK. It compares MFCC
feature vectors and WPD (with DB3 and DB7 wavelets) as a feature extrac-
tion method on a hidden Markov model (HMM) with Euclidean distance as a
classifier. The best results for the MFCC method are 75/38/47 % for the DL-
SK/DUSK/DUK datasets, respectively. As for the WPD approach, the best
results are 70.8/37.5/53.1 %. Therefore, it depends on a specific problem,
which one of the strategies to use.

35

2. Automatic Speech Recognition

Research [29] deals with speaker recognition over two datasets. The first
one is a custom dataset created in laboratory conditions, and it consists of
783 recorded samples of both male and female speech. These samples are
several minutes long, and there are ten speakers. The second dataset consists
of human dialogues of fifty speakers created for Czech Railways.

There are four conventional methods compared with the WPD method:
MFCCs, perceptual linear prediction coefficients (PLPC), linear prediction re-
flection coefficients (LPREFC), and linear prediction cepstral coefficients (LP-
CEPSTRA). All of these were tested on two models: a Gaussian mixture model
(GMM) and a multilayer perceptron (MLP).

The WPD, in this case, uses three discrete wavelets: Daubechies, Symlets,
and Coiflets. It computes the fifth level of decomposition, which therefore
outputs 25 sub-signals. Those sub-signals are then used to calculate the final
feature vectors as follows:

fi = log10

 1
Ni

Ni−1∑
k=1

∣∣∣(wi(k))2 − wi(k − 1) · wi(k + 1)
∣∣∣
 , (2.2.3.1)

where fi are values of the feature vector (one value for each leaf node, thus
25 = 32 values), wi(k) is the k-th coefficient in leaf node i, and Ni is the
number of coefficients in leaf node i.

The results are:

• MLP requires less training data per speaker than GMM to classify speak-
ers correctly. In this case, it needed two times fewer data.

• The minimal utterance duration for correct classification is two seconds
for both models and all feature extraction methods.

• The accuracy results are dependent on the model:

– GMM: all three wavelet families had very similar results (with the
Symlets in the lead), and they were all slightly outperformed by
other conventional methods.

– MLP: all methods were clustered together with LPREFC and LP-
CEPSTRA in the lead. The only exception were MFCCs, which
were far behind every other approach.

The choice of feature extraction method again seems to be dependent on
the task we want to perform, and on the dataset the model needs to work
with. All of the presented approaches had very similar results, except for the
significant negative deviation of MFCC features in the MLP model.

36

2.3. Connectionist Temporal Classification

2.3 Connectionist Temporal Classification

When we think about training a neural network on a speech dataset, we
expect it to output a sentence after we feed it with a speech utterance. The
first problem that pops up is that our dataset consists only of several seconds
long utterances and labels. There is no information about where each of the
letters or phonemes exactly is “located” in the sound wave. We could slice
the audio into tiny time-frames, annotate each slice with a letter from an
alphabet (plus a space symbol), and teach the neural network on this new
dataset. However, that would be very time-consuming and boring. Apart
from the time inefficiency, the other problem is that some people speak more
slowly than others and some phonemes take longer to pronounce. Thus, some
letters would take several time-frames in the dataset for themselves. The word
“dog” could be therefore labeled as “dooogg.”

Moreover, there are many words with duplicate characters, and some of
them differ only in that property (to vs. too). The network would then be
either outputting non-existent words or needing a sophisticated processing
algorithm to decode the text. That is where the CTC plays its role. [32, 33]

The CTC loss function only needs to know the text that occurs in the audio
(the ground truth) without the position context or phoneme width and the
predicted network output. The algorithm does not know where the characters
are located; instead, it tries all possible alignments of the reference label to
the predicted text and sums the scores.

2.3.1 Blank Symbol Importance

The introduction of a blank character aims to solve the duplicate character
problem. It is denoted as “-” has nothing to do with the standard space
character. The algorithm can insert arbitrary many blank symbols at any
position as well as repeat any characters as it likes. There is only one rule: a
blank symbol must be inserted between duplicate characters (e.g., in the word
“fully”). The decoding then goes as:

1. remove repeated characters,

2. remove blank symbols.

If F were such a decoding function, the decoding process would look like this:
F(−aa−−abb) = F(−a−−ab) = aab. That gives the CTC power to differ-
entiate between duplicated characters and long pronunciation of phonemes.

2.3.2 Loss Calculation

As mentioned above, the loss is calculated by summing up scores of all possible
alignments (or paths [32]). The neural network outputs a character probability
matrix. Figure 2.14 depicts a tiny example of such a matrix. [33]

37

2. Automatic Speech Recognition

a0.4 a0.5

b0.0 b0.0

blank0.6 blank0.5

t0 t1

Figure 2.14: NN output matrix with character probabilities

The score for one path is computed by multiplying the corresponding char-
acter scores together. If we were to compute the score for the path “aa”, we
would get 0.4 · 0.5 = 0.2. In the same way, the score for the “-a” path is
0.6 ·0.5 = 0.3, and 0.4 ·0.5 = 0.2 for the “a-”. To get the score for a prediction
given a ground truth, we would compute scores for all paths corresponding to
the ground truth after decoding. With this in mind, if the ground truth were
“a”, the corresponding paths would, therefore, be “aa”, “-a”, and “a-” (only
paths of length two because the matrix has two time-steps). Those paths are
highlighted with blue color in figure 2.14. A red color highlights a path cor-
responding to an empty string. There are no paths containing character “b”
since the character has zero probability in both time steps. We have already
computed the three correct path scores, so their sum gives 0.2+0.3+0.2 = 0.7.
The CTC loss is then a negative logarithm from the probability. Mathemati-
cally:

L(x, z) = − ln p(z|x), (2.3.2.1)

where L is the CTC loss function, x is a speech utterance, z is the ground
truth label, and p(z|x) is a probability of predicting z given x. The loss for
the whole dataset S is then:

L(S) = −
∑

(x,z)∈S
ln p(z|x). (2.3.2.2)

2.3.3 Decoding

Once the network is trained, we want to label an unknown input x. Ideally,
label the input with the most probable labeling l∗:

l∗ = arg max
l
p(l|x). (2.3.3.1)

38

2.3. Connectionist Temporal Classification

However, there is no general method of choosing the most probable path,
in other words decoding, for CTC. We are going to go through two popular
methods that work in practice.

Best Path Decoding

The first, and the most straightforward method, is called the best path decod-
ing. It assumes that the most probable path is the most probable labeling:

l∗ ≈ F(π∗), (2.3.3.2)

where π is a path, and π∗ = arg maxπ p(π|x). Therefore, the best path is easy
to compute, since π∗ is just a concatenation of the most probable characters
from each time-step. However, this method can lead to error, especially if a
label is predicted poorly for several consecutive steps.

Prefix Search Decoding

The second method, prefix search decoding, utilizes the fact that we can effi-
ciently calculate the probabilities of successive extensions of labeling prefixes.

Meaning we have a tree, where nodes are labels. Children nodes are labels
that have their parent as a prefix (e.g., “aaab” and “aaac” would be children
nodes of node “aaa”). In such a tree, we can efficiently calculate the cumulative
probabilities of all labels with a particular prefix. It is solved with a dynamic-
programming algorithm – see [32] for more details.

The search itself is then a best-first search, which in each step expands the
node with the highest score. The score is, in this case, the total probability
of all labels beginning with that label as a prefix. This search process ends
when a single label is more probable than any other remaining prefix.

With enough time, prefix search decoding always finds the most probable
label. However, the search space grows exponentially with increasing sequence
length. Thus, for many tasks, a heuristic is required to make the search
applicable.

Decoding Constraints

When it comes to speech, we often want to constraint the output labeling
to a pre-defined grammar; we want the transcriptions to form sequences of
dictionary words. Also, it is common practice to use a language model to take
probabilities of specific sequences of words into account. Incorporation of the
constraints in the search for the most probable labeling, as in equation 2.3.3.1,
would look like:

l∗ = arg max
l
p(l|x,G). (2.3.3.3)

A language model is usually a tree-like structure holding probability dis-
tribution over sequences of words. In other words, it gives us a probability

39

2. Automatic Speech Recognition

P (w1, w2, ..., wm) of a sequence of words wi. Each node in this tree structure
represents a sequence (actually a word but its parent nodes are the rest of
the sequence) and also gives as probabilities for the following words. Order
of such a tree is the depth of the tree, i.e., the number of words taken as a
context for the next prediction. [34]

One could say that these constraints and additional probabilities contra-
dict the assumption of input sequence independence of the CTC. Neverthe-
less, since the model takes the whole sequence labeling, and only then the
external grammar or constraints are applied, it has enough space to learn the
inter-label transitions from the data. So as long as the constraints focus on
long-term dependencies, it does not interfere with the CTC’s dependencies
modeled internally.

40

Chapter 3
Experiments

Apart from the ASR system realization, this thesis compares the performance
of two feature extraction methods for a speech audio signal. It examines the
Mel-frequency cepstral coefficient (MFCC), and the wavelet packet decompo-
sition (WPD) approaches.

The MFCCs use a standard definition with 26 DCT coefficients. The
feature vectors lack the delta coefficients, which were described in section
2.2.2. It is the default approach used by DeepSpeech (described in section
3.1), and it is implemented using the Tensorflow [35] package. The latter
approach implementation is a part of the practical section of this thesis and
is implemented in Python 3 using the Tensorflow package. It uses a wavelet
proposed by [36], referred to as the Haar classic wavelet function.

The goal is to substitute the original feature extraction method used in
DeepSpeech with the newly proposed one and test its performance.

There are two datasets used for this experiment: the initial CPM dataset,
and the Free Spoken Digit Dataset (FSDD). Initially, the experiments were
meant to be conducted only over the CPM dataset. A different dataset had
to be used after a few attempts to train the network with WPD on this
dataset. The CPM dataset is extensive and contains recordings that are over
ten seconds long. Moreover, it consists of a whole vocabulary of words, so the
classification is not an easy task, whatsoever. Therefore, the FSDD dataset
(section 3.2.2) was introduced. Both of them are described in the following
sections alongside the model used for the testing.

41

3. Experiments

3.1 Model – The DeepSpeech Project

DeepSpeech [37] is an open-source Speech-To-Text project by Mozilla. It
comes with a pre-trained English model and the possibility to train a model in
a different language on custom data. It provides a large variety of tweakable
hyperparameters alongside means of signal augmentation (frequency, pitch,
and speed). The model training can be executed in parallel over multiple
GPUs, which leads to much faster learning. The model uses machine learning
(ML) techniques based on Baidu’s Deep Speech research paper [38] and is
implemented using the TensorFlow [35] libraries/framework by Google.

Currently, the engine differs in many ways from the original design. Its
core is a recurrent neural network, specifically LSTM, which takes speech
spectrograms as input and generates text transcriptions.

The process of converting speech signal into text transcriptions is described
for the English language as [39]:

Let x be an utterance and y its label from a training set

S =
{

(x(1), y(1)), (x(2), y(2)), . . .
}
. (3.1.0.1)

Each utterance x(i) is divided into T (i) time-frames, while each frame is rep-
resented by audio features x(i)

t , where t = 1, . . . , T (i). Since DeepSpeech uses
MFCC vectors by default, the features are denoted x

(i)
t,p, which is the p-th

MFCC feature of the t-th audio frame in utterance x(i). The goal is to convert
a sequence x into a sequence of character probabilities for the transcription
y, with ŷt = P (ct|x) – the conditional probability of ct given x. In English,
ct ∈ {a, b, c, . . . , z, space, apostrophe, blank}.

The RNN model consists of 5 hidden layers. Layers are denoted h(l), where
h(0) is the input layer. The whole schema of the network is depicted in figure
3.1. The recurrent units (LSTMs) are dependent on C = 9 audio frames on
each side as a context for the currently computed result.

The backpropagation algorithm for MLP (non-recurrent) network is de-
scribed in section 1.2.1. The DeepSpeech model uses a clipped rectified linear
unit (ReLU) defined as g(z) = min {max {0, z} , 20}. The LSTMs are de-
scribed in section 1.3.1. For the notation purposes, let us show, how are the
outputs for the first three layers computed:

h
(l)
t = g

(
W (l)h

(l−1)
t + b(l)

)
, (3.1.0.2)

where W (l) and b(l) are the weight matrix and bias parameters.
The output layer uses logits that correspond to the predicted character

probabilities for each time frame t and character k in the alphabet:

h
(6)
t,k = ŷt,k =

(
W (6)h

(5)
t

)
k

+ b
(6)
k . (3.1.0.3)

42

3.2. Datasets

softmax

ReLU

LSTM

ReLU

ReLU

ReLU

Feature Extraction
(MFCC)

softmax

ReLU

LSTM

ReLU

ReLU

ReLU

Feature Extraction
(MFCC)

softmax

ReLU

LSTM

ReLU

ReLU

ReLU

Feature Extraction
(MFCC)

D O G

Figure 3.1: DeepSpeech RNN schema, based on [39]

In Math, Logit is a function that maps probabilities [0, 1] to real values
(−∞,∞), where the probability of 0.5 corresponds to a logit of zero. In
ML, it can be a vector of non-normalized predictions generated by a model.
[40]

Once we have a prediction ŷt,k, we compute the connectionist temporal
classification (CTC) loss L(ŷ, y). CTC loss function is also the reason we
need a blank “symbol” in the character sequence S, as described in section
2.3.

3.2 Datasets

This section describes both datasets used in this thesis. Apart from the Czech
Parliament Meeting (CPM) dataset, the Free Spoken Digit Dataset (FSDD)
is used only for the experiments.

3.2.1 Czech Parliament Meetings Dataset

The Czech Parliament meetings (CPM) dataset [41] are recordings from the
Chamber of Deputies of the Parliament of the Czech Republic. It consists
of 88 hours of annotated speech data. The dataset contains 18 audio files

43

3. Experiments

in 16-bit, 44.1 kHz raw WAV format, and a single-channel sound. For each
of the recordings, there is a corresponding transcription in the XML-based
format. In figure 3.2, there is an example of the XML transcription used in
the dataset.

Figure 3.2: XML annotation example

The transcriptions were created for both acoustic model training for ASR,
and models for speaker recognition or verification. Therefore, they contain a
wide variety of tags and information:

• Every transcription contains a header with the name of the correspond-
ing audio file, version of the transcription, and date.

• After the header, there is a list of speakers present in the transcription
with information like name, ID, dialect, or accent.

• The rest of the file is divided into:

– Episode tag that encapsulates the whole transcription and does
not play any role in this case.

– Section tag that is also only once in each of the files. This time it
contains the type property (e.g., report), start time, and end time.

– Turn tags, which divide the file into speech sections of one speaker.
They contain information about start time, end time, mode (e.g.,
spontaneous), and speaker ID.

– There are also Event tags, which have either a single-line occur-
rence or may occur in pairs. They are characterized by their type
(e.g., noise, or pronounce), description, and extent. If the type

44

3.3. Data Preprocessing

property is “noise,” the extent is instantaneous. If the type is “pro-
nounce,” the tag is paired with and ending one. They then enclose
a word or a phrase, which was pronounced differently than it is
written in the transcription. In the latter case, the description
property of this tag contains the real transcription of the word,
which is captured in the audio file.

– The most crucial elements for this thesis are the Sync tags, which
contain a synchronization timestamp. Together with the “Turn”
tag time properties, it is possible to cut the audio files and assign
corresponding transcriptions to the segmented pieces.

3.2.2 Free Spoken Digit Dataset

The Free spoken digit dataset (FSDD) [42] is an open speech dataset which
consists of English spoken digits. There are 2500 recordings by five speak-
ers where each numeral from zero to nine is pronounced fifty times by each
speaker.

The dataset contains raw WAV mono-channel audio recordings with an
8 kHz sample rate. Recordings are appropriately trimmed, so there remains
only a minimal leading and trailing silence.

The individual files are named as [digitLabel] [speakerName] [index].wav,
meaning the label for each of the recordings is encoded in its name. The
repository also contains tools to either extend the dataset with one’s voice
or preprocess it. Neither of those was necessary for the purposes of this the-
sis. The steps to preprocess this and the CPM datasets are described in the
following section.

3.3 Data Preprocessing

This section describes the data preprocessing for the two datasets before they
can be fed to a neural network. The more complex one, the CPM dataset, is
introduced first, followed by the FSDD dataset. This section also begins the
practical part of this thesis. Meaning, the knowledge presented from now on
is the result of my implementations, unless explicitly stated otherwise.

3.3.1 CPM Dataset

Since the data needs to be fed to a neural network, we have to create relatively
short audio segments with text labels. So the first step of the data prepro-
cessing was to locate the time-synchronization tags. Each subsequent pair of
tags meant one audio segment, and for that segment, a corresponding part of
the transcription had to be isolated.

Each audio segment was then downsampled to 16kHz. That is a high-
enough sample rate for human speech recognition, and yet small file size for

45

3. Experiments

relatively quick manipulation. Each segment was exported as a new wave file
alongside its corresponding transcription text file. With each export, an entry
to a CSV file was generated to be later able to easily locate the files and their
labels for the neural network.

To ease the job for the model, and for it to “focus” on the phoneme side
of the problem, there are a few filters applied:

• all the labels are lower-cased,

• the punctuation is removed,

• labels are stripped of leading and trailing white-spaces,

• segments with labels containing non-alphabetic characters are excluded,
and

• wrongly pronounced words or phrases, which are correctly written in the
transcription, are substituted with their wrongly written equivalents.

Additionally, data with empty labels had to be later excluded because the
chosen model could not work with such data.

DatasetManipulator Class

The “DatasetManipulator” class manages the process above. The main.py
file, located in the root directory, manages the class. It has two options:

• -i/–inputdir, where a user specifies the dataset directory, and

• -n/–njobs, which is the number of parallel threads to execute the task.
Since each of the threads will read one of the files, and load it into RAM,
it is crucial to choose a reasonable value.

The program output is a folder named cpm cut right next to the dataset
directory, which contains the following:

• audio wave files for each segment,

• corresponding text files with transcriptions,

• a CSV file called data.csv with an entry for each transcription/audio
pair with the name of the audio file and a string label, and

• three more CSV files named train.csv, test.csv, and dev.csv. Those
contain audio file paths, audio size, and transcription. Data is ran-
domly distributed between those three CSV files as 70/20/10 according
to train/test/dev.

The CSV file format DeepSpeech expects has three columns: absolute path
to the file, file size in bytes, and the transcription. It also contains a header
line: “wav filename,wav filesize,transcript”.

46

3.4. Implementation

3.3.2 FSDD

This dataset was preprocessed using the spoken digit preprocess.ipynb script.
The process consists of four steps:

1. Translating numeric labels into strings using a dictionary,

2. upsampling the 8 kHz audio files to 16 kHz as required by the Deep-
Speech model,

3. converting the files into the right WAV format type, and

4. generating the CSV files required by the DeepSpeech model. This step
and the CSV file format are described in section 3.3 for the CPM dataset.

The other steps were implemented using the pydub Python library.

3.4 Implementation

The WPD is implemented as a static class called HaarClassicWPD. It follows
the implementation proposed by [36], which defines the low-pass and high-pass
filters as

cj+1,i = xj,2i + xj,2i+1
2 (3.4.0.1)

and
dj+1,i = xj,2i − xj,2i+1

2 (3.4.0.2)

accordingly, where xj,i is the j-th value of a (sub)signal x of the j-th level of
decomposition. The indexing and naming on right sides were changed, so they
would comply with the figure the author included in the source. Names on
the left sides were changed so they would match the coefficient naming used
in section 2.2.1.

The class contains two essential methods:

• get level(signal, level), which computes the WPD using the filters 3.4.0.1
and 3.4.0.2 defined above, and thus returning 2n sub-signals, where n is
the specified level.

• get features level(signal, level) uses the above method and converts its
output into a feature vector of 2n values as fi = ln

(∑N
j=0 e

xi,j
)
. There,

N is the length of a sub-signal xi, and xi,j is the j-th value of the i-th
sub-signal. [29] inspired this process, yet it is not entirely identical.

When integrated into the DeepSpeech project, the input signal is framed
into 512 samples-long segments. The class then processes those segments,
and the output feature vectors are sent further into the computational graph.
The WPD feature vectors have to be shortened to 26 values (the same length

47

3. Experiments

as the MFCCs) to integrate the class seamlessly; therefore, the fifth level of
decomposition (25 = 32 sub-signals) is computed for each frame.

A copy of the DeepSpeech file using the custom class is in the speech2text
repository [43], which is a part of this thesis (more on this later). The file
is called feeding custom.py, and its original counterpart is in “DeepSpeech/u-
til/feeding.py” in the DeepSpeech repository. The function to look for is called
samples to mfccs, and, along with another explicitly added function, is high-
lighted by hash (comment) characters.

3.5 Results

The experiments were performed on a GPU server. Its specifications were:

• CPU: 2x Intel R© Xeon R© Silver 4114

• GPU: 2x Nvidia RTX 2080 Ti GPU

• RAM: 64 GB DDR4

• OS: Ubuntu 18.04

The computations were performed in the Docker container environment de-
scribed in section 4.1.

Table 3.1: Experiment results

dataset features width dropout CER WER loss
CPM MFCC 512 0.25 0.0778 0.1886 50.3236
CPM WPD 512 0.25 0.9277 0.9509 272.0035
FSDD MFCC 512 0.1 0.4663 0.8958 4.756
FSDD MFCC 512 0.25 0.7476 0.9263 148.6702
FSDD WPD 1024 0.1 0.8262 1 8.7274
FSDD WPD 512 0.1 0.85 1 9.8756
FSDD WPD 512 0.25 0.95 1 11.4334

Table 3.1 contains the results of the experiment. This table does not
include the best-achieved model for the CPM dataset, as it is introduced later
in section 4.3.1. The width column specifies the width of dense NN layers. The
column called dropout is the dropout rate in the dense layers. The metrics are
defined as:

• WER = (iw+sw+dw)
nw

, where nw is the number of words in the reference
text, sw is the number of words substituted, dw is the number of words
deleted, and iw is the number of words inserted to transform the output
text into the reference text. The minimal possible transformation is
chosen. Number of correct words cw would be cw = nw − (dw + sw).

48

3.6. Evaluation

• CER = (i+s+d)
n , where the variables are numbers of characters instead

of words.

• Loss is an internal metric for measuring the performance of the neural
network. DeepSpeech uses the CTC loss described in section 2.3.

3.6 Evaluation

The first thing that could be noticed during the experiments is that the WPD
implementation is very slow and memory inefficient when compared to the
Tensorflow MFCCs. The main difference is that the MFCC operations are
very efficiently implemented (for both memory and time) in C++, compiled,
and then executed from Python. This difference leads to high dense layers
reductions in width that had to be made to train the network. Also, the
batch sizes had to be reduced (removed for the CPM dataset), which caused
substantial computation times.

When it comes to performance results, this WPD implementation per-
formed very poorly in representing phoneme information. It tended to under-
fit or end up in local minimums without learning the internal dependencies of
a feature vector and phoneme. MFCC features massively outperformed WPD
in both datasets, no matter the configurations.

The first step that should be taken before further experiments with WPD
and speech recognition are GPU optimized parallel implementations of those
decompositions. There is a non-Tensorflow Python package called PyWavelets
[44], a Tensorflow implementation of CWT called tf-wavelets [45], and a CWT
Tensorflow implementation called cwt-tensorflow [46]. However, none of them
fitted for this problem, nor did it seem like a significant improvement when
it comes to optimization. When there is an efficient implementation, it would
be interesting to try different types of wavelets, or to combine wavelets with
another conventional approach.

49

Chapter 4
Realization

The applicational nature of this thesis makes this chapter the essential com-
ponent. It aims to train an appropriate neural network model on any Czech
spoken language dataset and use this trained model to transcribe different
open speech data. The chosen model used in this work is the DeepSpeech
project, described in section 3.1.

This thesis’s practical side is implemented as a set of tools, scripts, and
custom classes in a docker image environment tailored for the said task. The
source code, scripts, and other outputs are being stored and versioned in a
GitHub repository called speech2text [43]. It will often be referred to as a
“repository.”

The following sections will introduce the custom Docker environment used
for this thesis with its Dockerfile. The reasons to use a Docker image are
explained, followed by the description of the most critical installed packages
and used tools with a few usage or data examples. The last few sections will
describe the process, which leads to generating a new dataset for the Czech
spoken language.

51

4. Realization

4.1 Docker Image

This project is designed to be used as an Nvidia Docker container (Docker [47],
nvidia-docker [48]). Therefore a custom-made Dockerfile defining the image is
located in the repository. Moreover, the repository also contains a step-by-step
tutorial on how to build and run the Docker container successfully.

It is based on an Nvidia CUDA image with Ubuntu 18.04 as its operating
system (OS). The reason for using a Docker image is to avoid complicated,
and generally not recommended, installation of a specific combination of GPU
drivers, a CUDA library, and a CuDNN library. These three components are
dependent on each other and also on the libraries used in a project; Tensorflow
in this case.

There are several packages and programs installed. From essential tools
(e.g., Python 3, Git, nano, . . .) to additional libraries to ensure all depen-
dencies and requirements are met. Besides those system-wise packages, the
image is built with a prepared Python virtual environment, where are other
necessary Python packages, most of which are DeepSpeech related. These
include a Jupyter server package.

Since this project is meant to be run in a remote Docker container, the
Jupyter notebooks are one of the few means of having a user-friendly IDE
(integrated development environment). The speech2text repository contains a
script called start jupyter.sh, which starts the Jupyter server with the neces-
sary options. An essential part of getting the server to work on a local machine
while running in a remote container is explained in section 4.1.1.

One thing, that the Dockerfile counts on, is to have the DeepSpeech reposi-
tory cloned next to the speech2text repository. That is because the DeepSpeech
repository is quite large (around 1.5 GB) and cloning the entire repository each
time a user wants to re-build the image would be very time-consuming. With
this said, we can go to the Makefile.

4.1.1 Makefile

The Makefile is a parametric script using the make program to execute Docker
related commands. There are four main parameters, which are environment-
dependent and are up to the user to configure before executing the commands.
It includes:

• GPU where a user specifies which graphical units are supposed to be
accessible in the container,

• RAM LIMIT to be able to limit the RAM usage by the container,

• I NAME which is the name of the image, and

• C NAME which is the name of the container.

52

4.1. Docker Image

Two additional parameters specify mounted (shared) directories from the host
machine to the container. That is, again, very user-specific, and no folder has
to be necessarily mounted.

The Makefile supports several commands:

• build, which builds the image defined in the Dockerfile, potentially using
cache to skip a few layers if their definition has not changed from the
last time the image was built.

• build-nocache does the same as build except it does not use cache.

• run can be executed after a successful build. It uses the parameters
mentioned above and runs the container using the nvidia-docker toolkit.
It also exposes specific internal container ports to the host machine so
that the user can access both the Jupyter server and Tensorboard from
the local machine. Additionally, it mounts both host directories so they
are accessible from within the container.

• run-cpu does the same as the run command except it does not expose
the GPU units to the container; it uses regular docker command, and
not the nvidia-docker one.

• exec runs a new bash in the running container, and the

• attach option attaches local inputs and outputs to the running container
(useful on connection loss, for example).

• default arguments prints out the values of the parameters.

There is a work-around for the Docker to work with the DeepSpeech repos-
itory during a build. Each time a build is executed, the Dockerfile is copied
outside the repository to the parent directory. Therefore the build context
includes the repository, and after each build (successful or unsuccessful), the
file is removed.

Now, we should be able to build a Docker image and run a container with
all necessary means to train a speech-to-text model.

53

4. Realization

4.2 Training Prerequisites

To start a model training, we need to meet a few prerequisites. The first one
is to have preprocessed data with three CSV files which refer to training, eval-
uation, and test subsets of the data. The process to achieve that is described
in section 3.3.

The second is to have a file containing an alphabet (plus a space character)
for the language the model is going to be trained on. Such a file is located in
the root of the repository and is called alphabet cz.txt.

The third is to create a language model. This step is explained in the
following section.

4.2.1 Creating a Language Model

A brief introduction to language models (LM) is in section 2.3.3. The first step
to generate a language model is to gather data. The data should ideally be
from the same domain as the speech audio we want to transcribe. Therefore,
there is a Jupyter notebook in the repository (cpm lm cralwer.ipynb in the
notebooks directory) containing an implementation of a web crawler for the
Czech Parliament meetings (CPM) website, which downloads all available
transcriptions. The process to gather the CPM data goes as:

1. Download a website with a list of all the Parliament meetings and extract
links to the meetings,

2. from the individual meetings, gather links to all the “repositories” with
compressed archives containing meetings transcriptions,

3. gather links to all the archive files, since each “repository” contains sev-
eral archives, and

4. download and extract the files.

After gathering the data, it is passed to an algorithm that processes the
data. First, it sentence-tokenizes the text a puts one sentence per line. Then
it repeats the process done for the dataset labels, which lower-cases the text,
removes punctuation, and excludes sentences with numeric characters.

With the text file in the described format, we are ready to generate the
language model. We are going to use a program called kenlm to generate
necessary files. First, we have to generate an ARPA file - a text file with a
specific format. It contains so-called n-grams, which are probabilities of word
sequences of length n. Specifying an order of 5 (which is the value used in
this thesis) generates all n-grams up to 5-grams. It can be executed from
“/opt/kenlm/build/bin/” directory as:

./lmplz --text [SENTENCES_FILE] \

54

4.2. Training Prerequisites

--arpa [OUTPUT_PATH] \
--o [ORDER]

The next step is to build an LM binary from the generated ARPA file.
That is done by running:

./build_binary [ARPA_FILE] \
[OUTPUT_PATH]

from the same directory. The last thing required by DeepSpeech is to generate
a trie. Trie is the tree structure described in section 2.3.3, and DeepSpeech
has its own tool to create the trie from the LM binary. It is executed from
“/opt/DeepSpeech/native client prebuilt” directory as:

./generate_trie [ALPHABET] \
[LM_BINARY] \
[TRIE]

With the trie generated, we have got everything required to start the model
training.

55

4. Realization

4.3 Training a Model

For the model training, there is a script which helps with:

• a convenient way of setting training parameters,

• creation of directories for training file outputs – checkpoints, exports,
summary, and logs,

• redirecting terminal output to a file,

• converting a trained model to a mmap-able model for inference, and

• saving training parameters next to the exported model in a text file.

The script train custom.sh is located in the root of the repository. For
the list of available DeepSpeech parameters and their meaning, refer to the
DeepSpeech repository [37] or launch DeepSpeech.py with the helpfull flag as:

./DeepSpeech --helpfull

from the “/opt/DeepSpeech” directory.
To start a training, run the script in the background as:

./train_custom &

and watch the progress of the training by executing:

tail -f [LOG_FILENAME]

with the log filename reported by the script when executed.
Models are exported to a single directory and are named based on their

performance. The name consists of three numbers: word error rate (WER),
character error rate (CER), and the loss value. Those models can later be
sorted, and it can be quickly determined, which model is the best by those
mentioned metrics.

4.3.1 The Best Model for the CPM

So far, the best model trained on the CPM dataset achieved 12.66 % WER
and 4.63 % CER. That can be boldly interpreted as one wrongly transcribed
word in every eight words or one character mistake for every 21 characters.
Those are pretty reasonable values to be used on the transcription of the final
dataset.

The model was trained for 13 epochs, after which it triggered an early stop
– that means the test error reached a point of convergence, and the model
would tend to overfit after more epochs. These were the hyperparameters
used:

56

4.3. Training a Model

• n hidden: 2048

• learning rate: 0.0001

• dropout rate: 0.25

• epochs: 25

• early stop: true

• lm alpha: 0.75

• lm beta: 1.85

Moreover, frequency, pitch, and speed augmentations were taken advantage of
during the training. The training took approximately three and a half hours
with batch sizes 24/48/48 for train/dev/test accordingly.

57

4. Realization

4.4 Transcribing a New Dataset

Now, we have a successfully trained and exported model, therefore, the means
to create transcriptions for new speech audio data.

The Docker environment offers three options to run inference on an audio
segment. The first is to run the pre-installed bash program deepspeech as:

deepspeech --model [MODEL] \
--lm [LM_BINARY] \
--trie [TRIE] \
--audio [AUDIO_FILE]

Another option used for testing purposes is to use a custom script called
inference.sh, which is used for the initial CPM dataset. A user has two options:
to specify a recording ID or run inference on n random files from the CPM
dataset. The script automatically picks the best model available in the model
export directory and runs the inference. It outputs the original transcription
alongside the inferred one for each of the files to compare.

The best way to transcribe multiple files is to use the deepspeech package
programmatically. The package offers a reasonably straightforward API ca-
pable of loading a trained model and performing inference over it. Since the
package has Python bindings, loading multiple directories containing record-
ings, transcribing them, and saving the transcriptions into a file is very com-
fortable.

Data Gathering

After consulting this section with my supervisor, the rest of the CPM record-
ings were decided to form the final dataset. That is around 200 GB of speech
data in over 16 thousand mp3 files. Each one of the files is around 13 minutes
long.

There is a web crawler called audio crawler.ipynb for the task of data
collection. The script goes through all years, months, and days with meetings
on the CPM website and downloads all the individual recordings. Since the
CPM site is limiting download speeds for individual requests, it is implemented
as a parallel algorithm. Other than that, the process is quite similar to the
language model web crawler from section 4.2.1.

Speech Audio Segmentation

The next step is to cut the long recordings into several-seconds-long segments.
Preferably, the segments should be cut so that they do not begin nor end with
speech fragment; i.e., the cuts have to be made when silence occurs in the
recordings. That is where a voice activity detection (VAD) plays its role.

58

4.4. Transcribing a New Dataset

We are going to use inaSpeechSegmenter [49, 50] to differentiate speech
from silence (and music). It is a pre-trained model that outputs CSV-like files
in a pre-defined format, containing labeled time intervals. Labels are speech,
noEnergy (silence), and music. The segmenter is executed from the command
line as follows:

ina_speech_segmenter.py -i INPUT [INPUT ...] \
-o OUTPUT_DIRECTORY \
-g false

This way, the segmenter uses (by default) the better VAD engine and does
not bother with gender recognition. The input flag accepts either a list of
files or a regular expression. Unfortunately, the expanded regular expression
cannot be too long, or the program ends with an error—that led to writing a
short script that repeatedly executed the program on subsets of the recordings.
Another obstacle was that the program crashed when encountering some of
the recordings for unknown reasons. It was always the same files, but there
was, from a user side, nothing wrong with them. Nevertheless, the VAD was
successful in the end.

The last remaining step in the data pre-processing is to cut the speech
file according to the VAD model output. This step is implemented in the
cut audio mp3.ipynb notebook. Its output is a directory with short speech
audio segments ready to be transcribed. After this step, the dataset contained
over 580000 speech segments of ranging length roughly from 1 to 70 seconds.

Final Transcriptions

For the transcription task, there is a notebook called transcriber.ipynb. The
functions there programmatically use the deepspeech package to load the best
model from the specified directory and run inference on a file. The output
is a CSV file in the DeepSpeech format that contains filenames, file sizes,
and the transcriptions. A sub-sample of the final generated dataset is in the
dataset sample directory in the repository. Figure 4.1 shows a few entries from
the dataset CSV file. Apart from the mentioned functions, the notebook also

Figure 4.1: Final dataset sample

59

4. Realization

contains a handy little script that loads the best model from a directory, picks
a random recording from the new dataset, transcribes it, and allows a user
to play the recording. At the same time, he or she can read the transcribed
string and compare the results.

60

Conclusion

This thesis dealt with automatic speech recognition using recurrent neural
networks. It analyzed the current state-of-the-art in the field both for RNN
and ASR and backed up the theory with a mathematical background.

Based on the analysis, an experiment was conducted to compare speech
recognition performance of two distinct feature extraction methods: Mel-
frequency cepstral coefficients (MFCC) and wavelet packet decomposition
(WPD). The results were unequivocally on the side of MFCCs, while the
model with the WPD approach was unable to learn properly.

The goal of this thesis was to train an adequate NN model on a Czech
spoken language dataset. The dataset of choice was the Czech Parliament
meetings (CPM) dataset. DeepSpeech, an open-source speech recognition
project, served as the neural network model.

After preprocessing and transforming the dataset into a suitable form, and
creating a language model, the training and optimization could begin. The
best model achieved 12.66 % WER and 4.63 % CER. Those values were more
than enough to gather different data and perform a transcription over them.
The second dataset is very similar to the initial one because it comes from
the same domain - more Czech Parliament recording. This time, they were
scraped straight from the Parliament web site. After the data was collected, it
was preprocessed using a voice activity detection (VAD) model as a reference.
It consists of over 580000 speech utterances of ranging length roughly from 1
up to 70 seconds. The last step was to transcribe the speech segments, and
the dataset was complete.

As for future work and improvements, the model could always be more
fine-tuned and better generalized by using more sophisticated augmentation
methods. With every small bit of increased performance, the dataset would
get of a much higher quality. When it comes to gathering suitable data for
this or similar tasks, there are a few ideas, such as audiobooks, where the text
version could serve as a reference. Unlicenced movies or series with subtitles
could also be useful.

61

Conclusion

One fascinating project that is rising as of writing these lines is called the
Mozilla Common Voice [51, 52]. It is an open-source project where people
contribute their voice to a freely available dataset. Each recording is vali-
dated and, in the end, added to the speech pool. Right now, the English
dataset consists of over 1400 hours of validated recordings from more than
62000 speakers. Unfortunately, the Czech language got just recently from the
preparation and translation stage and, at the moment, has only 28 hours of
recordings from 272 speakers. Once this project fully launches for us, the ASR
will never be the same for Czech speakers.

62

Bibliography

[1] Haykin, S. Neural Networks and Learning Machines (3rd Edition). Pear-
son Education India, 2010, ISBN 0131471392.

[2] Patel, N. Data Mining – Artificial Neural Networks. Online; accessed
25-February-2020. Available from: https://ocw.mit.edu/courses/
sloan-school-of-management/15-062-data-mining-spring-2003/
lecture-notes/NeuralNet2002.pdf

[3] Pal, S. K.; Mitra, S. Multilayer perceptron, fuzzy sets, classifiaction. 1992,
iEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 5.

[4] Brilliant.org. Backpropagation. Online; accessed 10-March-2020. Avail-
able from: https://brilliant.org/wiki/backpropagation/

[5] Pascanu, R.; Mikolov, T.; et al. On the difficulty of training recurrent
neural networks. In International conference on machine learning, 2013,
pp. 1310–1318.

[6] Wang, C.-F. The Vanishing Gradient Problem. Online; accessed 17-
March-2020. Available from: https://towardsdatascience.com/the-
vanishing-gradient-problem-69bf08b15484

[7] Shorten, C. Introduction to ResNets. Online; accessed 17-March-2020.
Available from: https://towardsdatascience.com/introduction-to-
resnets-c0a830a288a4

[8] Goodfellow, I.; Bengio, Y.; et al. Deep Learning, Part II, Chapter 10.
MIT Press, 2016, http://www.deeplearningbook.org.

[9] Gers, F. A.; Schmidhuber, J.; et al. Learning to forget: Continual pre-
diction with LSTM. 1999.

63

https://ocw.mit.edu/courses/sloan-school-of-management/15-062-data-mining-spring-2003/lecture-notes/NeuralNet2002.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-062-data-mining-spring-2003/lecture-notes/NeuralNet2002.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-062-data-mining-spring-2003/lecture-notes/NeuralNet2002.pdf
https://brilliant.org/wiki/backpropagation/
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://towardsdatascience.com/introduction-to-resnets-c0a830a288a4
https://towardsdatascience.com/introduction-to-resnets-c0a830a288a4
http://www.deeplearningbook.org

Bibliography

[10] Zhou, G.-B.; Wu, J.; et al. Minimal gated unit for recurrent neural net-
works. International Journal of Automation and Computing, volume 13,
no. 3, 2016: pp. 226–234.

[11] Chung, J.; Gulcehre, C.; et al. Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,
2014.

[12] Jozefowicz, R.; Zaremba, W.; et al. An empirical exploration of recurrent
network architectures. In International conference on machine learning,
2015, pp. 2342–2350.

[13] Greff, K.; Srivastava, R. K.; et al. LSTM: A search space odyssey. IEEE
transactions on neural networks and learning systems, volume 28, no. 10,
2016: pp. 2222–2232.

[14] Shewalkar, A.; Nyavanandi, D.; et al. Performance Evaluation of Deep
Neural Networks Applied to Speech Recognition: RNN, LSTM and GRU.
Journal of Artificial Intelligence and Soft Computing Research, volume 9,
10 2019: pp. 235–245, doi:10.2478/jaiscr-2019-0006.

[15] Khandelwal, S.; Lecouteux, B.; et al. Comparing GRU and LSTM
for automatic speech recognition. 2016, available from: https://
hal.archives-ouvertes.fr/hal-01633254/document.

[16] Yu, D.; Deng, L. AUTOMATIC SPEECH RECOGNITION, A Deep
Learning Approach. Springer, 2016, ISBN 978-1-4471-5779-3.

[17] Schaller, R. R. Moore’s law: past, present and future. IEEE spectrum,
volume 34, no. 6, 1997: pp. 52–59.

[18] Dictionary.com. Definition of Infotainment. Online; accessed 25-
March-2020. Available from: https://www.dictionary.com/browse/
infotainment

[19] Rabiner, L. R.; Schafer, R. W.; et al. Introduction to digital speech pro-
cessing. Foundations and Trends R© in Signal Processing, volume 1, no.
1–2, 2007: pp. 1–194.

[20] Hoy, M. B. Alexa, Siri, Cortana, and more: an introduction to voice
assistants. Medical reference services quarterly, volume 37, no. 1, 2018:
pp. 81–88.

[21] Davis, S.; Mermelstein, P. Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences. IEEE
transactions on acoustics, speech, and signal processing, volume 28, no. 4,
1980: pp. 357–366.

64

https://hal.archives-ouvertes.fr/hal-01633254/document
https://hal.archives-ouvertes.fr/hal-01633254/document
https://www.dictionary.com/browse/infotainment
https://www.dictionary.com/browse/infotainment

Bibliography

[22] Burrus, C.; Gopinath, R.; et al. Introduction to Wavelets and Wavelet
Transform—A Primer. Recherche, volume 67, 01 1998.

[23] Kutz, J. N. Data-driven modeling & scientific computation: methods for
complex systems & big data, PART III, 13.: Time-Frequency Analysis:
Fourier Transform and Wavelets. Oxford University Press, 2013, ISBN
978-0199660346.

[24] Kutz, N. Time Frequency Analysis & Wavelets. Available from: https:
//www.youtube.com/watch?v=ViZYXxuxUKA

[25] Pearson Education, Inc. Chapter 9, Automatic Speech
Recognition. Pearson Prentice Hall, 2008, available from:
http://www.cs.columbia.edu/˜julia/courses/CS6998-2019/
[09]AutomaticSpeechRecognition.pdf.

[26] Fayek, H. Speech Processing for Machine Learning: Filter banks,
Mel-Frequency Cepstral Coefficients (MFCCs) and What’s In-
Between. 2016, online; accessed 6-April-2020. Available from:
https://haythamfayek.com/2016/04/21/speech-processing-for-
machine-learning.html

[27] Gowdy, J. N.; Tufekci, Z. Mel-scaled discrete wavelet coefficients for
speech recognition. In 2000 IEEE International Conference on Acous-
tics, Speech, and Signal Processing. Proceedings (Cat. No. 00CH37100),
volume 3, IEEE, 2000, pp. 1351–1354.

[28] Malik, S.; Afsar, F. A. Wavelet transform based automatic speaker recog-
nition. In 2009 IEEE 13th International Multitopic Conference, IEEE,
2009, pp. 1–4.

[29] Král, P. Discrete Wavelet Transform for automatic speaker recognition.
In 2010 3rd International Congress on Image and Signal Processing, vol-
ume 7, IEEE, 2010, pp. 3514–3518.

[30] Hidayat, S. Speech recognition of KV-patterned Indonesian syllable using
MFCC, wavelet and HMM. Kursor, volume 8, no. 2, 2016: pp. 67–78.

[31] Muo, U.; Madamedon, M.; et al. Wavelet packet analysis and empirical
mode decomposition for the fault diagnosis of reciprocating compressors.
09 2017, pp. 1–6, doi:10.23919/IConAC.2017.8082065.

[32] Graves, A. Supervised Sequence Labelling with Recurrent Neural Net-
works [Ph. D. dissertation]. Technical University of Munich, Germany,
2008.

65

https://www.youtube.com/watch?v=ViZYXxuxUKA
https://www.youtube.com/watch?v=ViZYXxuxUKA
http://www.cs.columbia.edu/~julia/courses/CS6998-2019/[09] Automatic Speech Recognition.pdf
http://www.cs.columbia.edu/~julia/courses/CS6998-2019/[09] Automatic Speech Recognition.pdf
https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html

Bibliography

[33] Scheidl, H. An Intuitive Explanation of Connectionist Tempo-
ral Classification. Online; accessed 18-May-2020. Available from:
https://towardsdatascience.com/intuitively-understanding-
connectionist-temporal-classification-3797e43a86c

[34] Bahl, L. R.; Brown, P. F.; et al. A tree-based statistical language model
for natural language speech recognition. IEEE Transactions on Acoustics,
Speech, and Signal Processing, volume 37, no. 7, 1989: pp. 1001–1008.

[35] Abadi, M.; Agarwal, A.; et al. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. 2015. Available from: https://
www.tensorflow.org/

[36] Kaplan, I. The Wavelet Packet Transform. Online; accessed 19-
May-2020. Available from: http://bearcave.com/misl/misl_tech/
wavelets/packet/index.html

[37] Mozilla Corporation. DeepSpeech. https://github.com/mozilla/
DeepSpeech, 2019.

[38] Hannun, A.; Case, C.; et al. Deep Speech: Scaling up end-to-end speech
recognition. 2014, 1412.5567.

[39] Mozilla Corporation. DeepSpeech – Introduction. Available from: https:
//deepspeech.readthedocs.io/en/v0.6.0/DeepSpeech.html

[40] https://stackoverflow.com/users/1090562/salvador-dali, S. D. What is
the meaning of the word logits in TensorFlow? Stack Overflow, url:
https://stackoverflow.com/a/43577384/8281969 (version 2018-10-02).

[41] Pražák, A.; Šmı́dl, L. Czech Parliament Meetings. 2012,
LINDAT/CLARIAH-CZ digital library at the Institute of For-
mal and Applied Linguistics (ÚFAL), Faculty of Mathemat-
ics and Physics, Charles University. Available from: http:
//hdl.handle.net/11858/00-097C-0000-0005-CF9C-4

[42] Zohar Jackson (Jakobovski). free-spoken-digit-dataset. https:
//github.com/Jakobovski/free-spoken-digit-dataset, 2019.

[43] OpenDataLab/Richard Werner. speech2text. https://github.com/
opendatalabcz/speech2text, 2020.

[44] Lee, G.; Gommers, R.; et al. PyWavelets: A Python package for wavelet
analysis. Journal of Open Source Software, volume 4, no. 36, 2019:
p. 1237, doi:10.21105/joss.01237. Available from: https://doi.org/
10.21105/joss.01237

[45] UiO-CS. tf-wavelets. https://uio-cs.github.io/tf-wavelets/, 2018.

66

https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86c
https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86c
https://www.tensorflow.org/
https://www.tensorflow.org/
http://bearcave.com/misl/misl_tech/wavelets/packet/index.html
http://bearcave.com/misl/misl_tech/wavelets/packet/index.html
https://github.com/mozilla/DeepSpeech
https://github.com/mozilla/DeepSpeech
1412.5567
https://deepspeech.readthedocs.io/en/v0.6.0/DeepSpeech.html
https://deepspeech.readthedocs.io/en/v0.6.0/DeepSpeech.html
http://hdl.handle.net/11858/00-097C-0000-0005-CF9C-4
http://hdl.handle.net/11858/00-097C-0000-0005-CF9C-4
https://github.com/Jakobovski/free-spoken-digit-dataset
https://github.com/Jakobovski/free-spoken-digit-dataset
https://github.com/opendatalabcz/speech2text
https://github.com/opendatalabcz/speech2text
https://doi.org/10.21105/joss.01237
https://doi.org/10.21105/joss.01237
https://uio-cs.github.io/tf-wavelets/

Bibliography

[46] Nick Geoca (nickgeoca). cwt-tensorflow. https://github.com/
nickgeoca/cwt-tensorflow, 2018.

[47] Docker Inc. Docker Documentation. Online. Available from: https://
docs.docker.com/

[48] NVIDIA Corporation. nvidia-docker. https://github.com/NVIDIA/
nvidia-docker, 2020.

[49] Doukhan, D.; Carrive, J.; et al. An Open-Source Speaker Gender De-
tection Framework for Monitoring Gender Equality. In Acoustics Speech
and Signal Processing (ICASSP), 2018 IEEE International Conference
on, IEEE, 2018.

[50] Doukhan, D.; Lechapt, E.; et al. INA’S MIREX 2018 MUSIC AND
SPEECH DETECTION SYSTEM. In Music Information Retrieval Eval-
uation eXchange (MIREX 2018), 2018.

[51] Ardila, R.; Branson, M.; et al. Common Voice: A Massively-Multilingual
Speech Corpus. 2019, 1912.06670.

[52] Mozilla. Common Voice. Online. Available from: https:
//voice.mozilla.org/en

67

https://github.com/nickgeoca/cwt-tensorflow
https://github.com/nickgeoca/cwt-tensorflow
https://docs.docker.com/
https://docs.docker.com/
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
1912.06670
https://voice.mozilla.org/en
https://voice.mozilla.org/en

Appendix A
Acronyms

ANN Artificial neural network

ASR Automatic speech recognition

CER Character error rate

CPM Czech Parliament meetings

CPU Central processing unit

CSV Comma-separated values

CTC Connectionist temporal classification

CUDA Compute unified device architecture

CuDNN The NVIDIA CUDA R© Deep Neural Network library

CWT Continuous wavelet transform

DCT Discrete cosine transform

DFT Discrete Fourier transform

DNN Deep neural network

DWT Discrete wavelet transform

FFT Fast Fourier transform

FSDD Free spoken digit dataset

GMM Gaussian mixture model

GPS Global positioning system

GPU Graphics processing unit

69

A. Acronyms

GRU Gated recurrent unit

IDE Integrated development environment

LM Language model

LPC Linear predictive coding

LPCEPSTRA Linear prediction cepstral coefficients

LPREFC Linear prediction reflection coefficients

LSTM Long-short-term memory (network)

ML Machine learning

MLP Multilayer perceptron

MFCC Mel-frequency cepstral coefficients

MFDWC Mel-frequency discrete wavelet coefficients

MULT Multi-resolution (features)

NN Neural network

OS Operating system

PLPC Perceptual linear prediction coefficients

ReLU Rectified linear unit

ResNet Residual network

RNN Recurrent neural network

STFT Short-time Fourier transform

SUB Subband-based (features)

VAD Voice activity detection

WER Word error rate

WPT Wavelet packet transform

XML Extensible markup language

70

Appendix B
Contents of the enclosed

medium

dataset sample.........a directory containing the sample of the dataset
notebooks...............a directory containing data preprocessing tools
thesis .. the thesis directory

DiplomaThesis.pdf..............the exported thesis in a pdf format
DiplomaThesis.zip the thesis source code

tools a directory containing scripts and tools used in the thesis
speech2text.....................a directory containing source codes
model..........................a directory containing the NN model

71

	Introduction
	Neural Networks
	Basic Concept – Rosenblatt's Perceptron
	Multilayer Perceptron
	Backpropagation
	The Vanishing Gradient Problem

	Recurrent Neural Networks
	Long Short-Term Memory Networks
	Gated Recurrent Units
	LSTM vs. GRU Performance

	Automatic Speech Recognition
	Introduction
	Feature Extraction
	Wavelet vs. Fourier Transform
	MFCC Features
	Wavelets in Feature Extraction

	Connectionist Temporal Classification
	Blank Symbol Importance
	Loss Calculation
	Decoding

	Experiments
	Model – The DeepSpeech Project
	Datasets
	Czech Parliament Meetings Dataset
	Free Spoken Digit Dataset

	Data Preprocessing
	CPM Dataset
	FSDD

	Implementation
	Results
	Evaluation

	Realization
	Docker Image
	Makefile

	Training Prerequisites
	Creating a Language Model

	Training a Model
	The Best Model for the CPM

	Transcribing a New Dataset

	Conclusion
	Bibliography
	Acronyms
	Contents of the enclosed medium

