CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F 3 Faculty of Electrical Engineering
Department of computer science

Master's Thesis

Reducing Variance in Monte Carlo
Counterfactual Regret
Minimization

Pavel Kuchar

Aug 2020
Supervisor: Mgr. Viliam Lisy, MSc., Ph.D.

Acknowledgement / Declaration

I would like to thank my supervisor
Viliam Lisy for patience and helpful
guidance. I would like to kindly thank
my family and close friends for their
patience, support and tolerance.

Author statement for undergrad-
uate thesis:

I declare that the presented work
was developed independently and
that I have listed all sources of infor-
mation used within it in accordance
with the methodical instructions for
observing the ethical principles in the
preparation of university theses.

In Prague, 14 Aug 2020

Abstrakt

Prace se zaméruje na redukci vari-
ance Monte Carlo CFR algoritmech
v hrach s netplnou informaci. Po
predstaveni zakladniho nazvoslovi a
zakladnich koncepti z teorie her jsou
rozebrany nedavné tuspéchy v redukci
variance v MCCFR algoritmech jako
je AIVAT, Generalized Sampling a
VR-MCCFR. V ramci prace je na-
vrhnut novy algoritmus pro redukci
variance MCCFR za pouziti base-
lines a control variates zalozeny na
VR-MCCFR pristupu. Na konec je
experimentalné ovérena funkcénost
navrzeného algoritmu.

Kli€ova slova: Teorie her, Counter-
factual regret, Monte Carlo Conter-
factual Regret, MCCFR, CFR

/ Abstract

Vi

This thesis focused on variance
reduction of Monte Carlo CFR al-
gorithm in game with incomplete
information. After introduction ba-
sic game theoretic terminology and
theoretical concepts there are ana-
lyzed recent achievement in variance
reduction of MCCFR algorithms like
AIVAT, Generalized Sampling and
VR-MCCFR. Within this work is
proposed mnovel algorithm for vari-
ance reduction with usage of base-
lines and control variates based on
VR-MCCFR approach. Finally the
functionality of proposed algorithm
is experimentally verified.

Keywords: Game theory, Counter-
factual regret, Monte Carlo Conter-
factual Regret, MCCFR, CFR

/ Contents

1 Introduction 1
1.1 Problem statement 3
2 Background 4
2.1 Extensive form representa-
tion of sequential game 4
2.2 Strategy.........coiiiiiii. 5
2.3 Expected utility 5
2.4 Best response 6
2.5 Nash equilibrium 6
2.6 Counterfactual value 6
2.7 Control variate 6
2.8 Regret Matching 7
2.9 CFR algorithm 7
2.10 MCCFR algorithm 9
2.11 Variance in MCCFR 9
3 Variance reduction in Monte
Carlo............................. 11
3.1 AIVAT ... 11
3.2 Generalized sampling 11
3.3 VR-MCCFR 12
3.4 MCCFRDb 12
4 Implementation 15
4.1 Game tree representation
and data structures 15
4.2 Domains 16
4.3 Algorithms.................... 17
4.4 Experimets 17
5 Evaluation and Experimen-
talresults 18
5.1 Goofspiel...................... 18
5.2 Leduc Hold’em 19
5.3 Experimental results 19

5.3.1 Goofspiel(4) Direct
average, FExponential-
ly decaying average,
No Updates 20
5.3.2 Goofspiel(5) Direct
average, No Updates ...22
5.3.3 Leduc Holdem Direct
average, No Updates ...25

6 Discussion and Conclusion. 27
References 28
A EnclosedCD..................... 31

Vii

Tables /

4.1. GTlib2 16
5.1. Expl ... 22
5.2. Exp2 ... 24
5.3. Exp3 ..o 26

viii

Chapter 1

Introduction

The game according to the Encyclopedia Brittanica is a "universal form of recre-
ation generally including any activity engaged in for diversion or amusement and
often establishing a situation that involves a contest or rivalry”. For our purposes
more accurate definition is provided by Oxford dictionary. A game is form of
competitive activity or sport played according to rules.

The game theory is formal framework which makes possible to accurately rep-
resent games and subsequently define optimal strategy to play the game. The
game is approached as decision making problem where participating players are
deciding between multiple actions and are getting payoffs based on actions played.
Also some sort of randomness can be involved in interaction between players and
in the rules of the game. The randomness in the rules of the game can be modeled
by adding one more player called nature with his own set of actions impacting the
state of the game.

In this theses I will be focusing solely on non-cooperative games of two players.
For such games John Forbes Nash Jr. defined Nash Equilibrium. The Nash
equilibrium is defined as a set of strategies such that no player has the incentive to
deviate from his strategy unilaterally, because unilateral deviation from strategy
in the equilibrium will lead to less outcome for deviating player.

One of the hardest games to solve are games that involves "bluffing” phenomena.
These games inherently contains dynamics, where some information is hidden to
some of participants. First attempt to conceptually describe bluffing is ascribed
to von Neumann in [1]. ” ... Not only do his minimaz solutions of Poker variants
prescribe Bluffing as a rational activity, rather than a psychic one, but they also
specify, in general, definite probabilities with which Bluffing should be employed at
each opportunity.” as is written in [2].

In game theory these games are called imperfect information games and were
unsolvable for a long time. But recent progress enabled major breakthroughs. In
2000 was introduced new regret matching algorithm [3], which laid foundations
for new self play counterfactual regret matching algorithm (CFR) [4]. Improved
version CFR+ [5] taking advantage of counterfactual values was able to solve
Two-Player Limit Texas Holdem Poker in 2015 [6].

Both CFR and CFR+ algorithms require to iteratively visit each possible state
in the game to find Nash equilibrium. Whereas visiting each possible state and
then storing particular optimal decision for each player in each state of the game
is good way to approach some smaller games it is costly or unrealistic for bigger
games. Also the CFR based algorithms are not able evaluate any strategy before
full game is passed trough, so they are impractical for variety of applications.

Next big breakthrough was taken when in 2016 the Deepstack program as the
first managed to beat professional human players at Two-Player No-Limit Texas
Holdem [7]. Deepstact uses CFR reasoning recursively to handle information
asymmetry but evaluates the explicit strategy on the fly rather than compute and
store it prior to play. Deepstack is taking advantage of deep learning to learn
estimator for the payoffs of the particular state of the game, which can be viewed
as intuition - estimate of the value of holding particular cards in particular poker
situation. Deepstack than uses this intuition to estimate payoffs beyond some
time horizon to speed up reasoning about the game.

Method to find good strategy and do not have to traverse whole game can be
achieved with use of Monte Carlo Tree Search techniques [8] in particular with
combination of CFR reasoning [9]. This approach performs only some of possible
gameplays each iteration and improve the strategy on the fly by iterative self play.
Monte Carlo conterfactual regret minimization algorithm (MCCFR) made good
results in various games [10].

Most recently big achievement was made also in field of multiplayer no-limit
poker. The Pluribus, bot learned to play 6-Player No-Limit Texas Holdem poker,
has beaten decisively professional human players in 2019 [11]. Even though
Pluribus uses MCCFR based algorithms designed for two-player zero-sum games
Pluribus applies it to multiplayer game. Nevertheless these algorithms guarantees
successfully converge to optimal strategy only in Two-Player game, the Pluribus
managed to empirically defeat human opponents and proved that the algorithms
are able to compute good strategies in more general games than two-player zero-
sum games.

1.1 Problem statement

I 1.1 Problem statement

High variance has strong negative impact on the speed of convergence of the
family of MCCFR algorithms. This work focuses on reduction variance in family
of Monte Carlo CFR algorithms using control variates.

We review CFR algorithm and Monte Carlo variants of CFR algorithm which
can be considered as state of the art algorithms for solving imperfect information
games. Then we will propose algorithm based on recent research in variance
reduction of MCCFR algorithms. The algorithm will introduce baselines as control
variates for conterfactual values. Finally the performance of proposed algorithm
will be experimentally evaluated and confronted with Monte Carlo CFR algorithm
as reference.

Chapter 2
Background

This chapter makes basic theoretical foundation for this work. First game theo-
retic framework setting boundaries of this work is defined, then related terminol-
ogy is summed up and finally theoretical concepts used in current state of the art
algorithms are introduced. Content respects common notation and is based on
these works with related topics [12], [9] and [8].

I 2.1 Extensive form representation of sequential
game

One of the most general representations of the game is called Extensive form game.
It is often used to represent finite sequential games with imperfect information. It
formalizes the game as a tree of nodes, where every node represents one game state
and each edge represents action that leads from one state to another state. The
state contains whole information about the game — e.g. concrete values of game
properties, which player is on the move, actions that player can take, probability
distribution of outcomes for every action. The nodes are grouped into Information
sets, which contains game states indistinguishable for current player. Formally
speaking, an extensive form game G is a tuple (N, A, H, Z,x, P, ¢, L, u;)

m N finite set of players including nature player ¢
m A finite set of actions

m 7 finite set of states, each represents one possible history h - sequence of all
actions performed by players to get from root to the particular state

m Z finite set of terminal states
m \ : H — A function representing available actions in state

m P : H — N player function determining for each non-terminal history a member
of cal N who takes an action

mp:HxA— A{H U Z} stochastic successor function transitioning game to
another state

m 7 set of all information set classes Z;. Z; is set of all information sets I of player
i

T ={hlh € H,VW €1 :P(h) =P(K) =1i,x(h) = x(h')}

m u: {N\c} xZ — R utility function, u;(z) denotes utility of player ¢ in terminal
state z € Z

In this work the h can be used instead of Z meaning the information set that
contains state h € H. Also following notation is used for simplicity.

m A(I) denotes set of actions available in information set I € Z

m h-a or ha is state b’ which is achieved after legal action a was taken in state h
m i/ C h means A’ is a prefix sequence or equals to h

m by player —i is meant the second player other than ¢

I 2.2 Strategy

Pure strategy o; : I — A(I) of player i is a function that maps each information set
I to a single action admissible in that information set. If a player plays according
to the pure strategy he always chooses action mapped to particular information
set.

Mixed strategy or generally strategy without specification we call similar func-
tion o; : I — AA(I) that maps each information set I to a probability distribution
over available actions AA(I) rather than to single action. Player playing accord-
ing the strategy may chooses any action with non-zero probability, in repeated
game the player behaves according to the probability distribution.

A strategy profile profile o = [0, ..., o)) is vector of strategies, one for each
player.

d(a, I) denotes probability of playing action @ in information set I.

B 2.3 Expected utility

The probability of reaching particular history A can be expressed as

w7(h) = [] 6(¥'.a)

h'aCh

Expected utility is the expected payoff of the player ¢ playing according to
the strategy o; whereas opponent plays according to the strategy o_;. Expected

2. Background

utility is formally defined as the

ui(oy,0-;) = Z 72 (h)w? (2[h)up(2)

SES,s'CSy;

I 2.4 Bestresponse

Best response BR; of player i to a strategy profile o is a strategy that maximizes
expected value of player 7 if the other players play according to o. Best response
can be also used as the name of this expected utility value.

B 2.5 Nash equilibrium

A Nash equilibrium is a strategy profile such that no player has the incentive to
deviate from his strategy unilaterally. Formally strategy profile o = [0, ..., o]
is a Nash equilibrium if Vi € N, s; € BR;(s_;).

I 2.6 Counterfactual value

Counterfactual value is expected value that does not consider the player’s own
probability of reaching the state. Counterfactual value for player ¢ in state h is

(D)= Y 7%(M)n(zh)up(z)

z€EZ,hCz

Counterfactual regret of not taking action a at information set represented with
history h is
T(Ia (l) = vi<07 ha) - Ui(av h)

I 2.7 Control variate

Control variate is a random variable Y with known mean py and positive correla-
tion with random variable X which we want to estimate. By sampling (X, Y’) and
introduction new random variable Z; = X; 4+ ¢(Y; — puy) we can use an estimator
of Z in place of estimator of X.

Because mean value of Z is same as mean value of X the variance can be written
as Var(Z;) = Var(X;) +c*Var(Y;) +2cCov(X;, ;) and effectively be reduced with
this method when Cov(X,Y) > < Var(Y).

2.8 Regret Matching

I 2.8 Regret Matching

Regret matching is algorithm where new strategy distribution o in particular
information set I is obtained by normalizing the positive portions of regret vectors
r or using uniform distribution if all regrets are non-positive.

RYm = Z max(r; (a), 0)
a €A(])
for va € A(I) do
if R}, > 0theno(l,a) =
1
141

max (r;(a),0)
R+
sum

elseog(l,a) =

end for

Figure 2.1. Regret matching algorithm

I 2.9 CFRalgorithm

Counterfactual regret minimization introduced in [4] is self-play algorithm that
uses regret matching to find Nash equilibrium in two player zero sum games.

The algorithm starts with uniform strategy profile o¥ and iteratively passes by
depth-first search trough tree of extensive form game. In each iteration the regret
matching is used to compute strategy profile ¢! from cumulative counterfactual
regrets of all previous iterations. The o! is then played and cumulative regret of
every action in each information set is updated using new counterfactual values.

rla] = rrla] + 7 - (Vo . [a] = vo)

Average strategy profile o (a|I) of player i is accumulated from immediate strat-
egy profile o every iteration.

ool = iz el
Ztlz()

The accumulated average strategy converges to the optimal strategy sy(a).

Initialize regret tables: VI,Va € A(I):r;(a) =0

Initialize cumulative strategy tables: VI,Va € A(I): s;(a) =0
1

Initialize initial profile: ¢*(I, @) = i
function CFR(h, i, t, Ty, TT,):

if h is terminal then return u; (h)

I is information set containing h

R;—um = Z max(?}(a), 0)
a EA(I)
fora € A(I) do

if R, > Othencg'(l,A) =

max(r;(a),0)

R;—um
t -t
else o' (1,A) = i
end for
v, =0
Va € A(I):v,,_ (a) =0

fora € A(I) do
formt,h' € h-ado
if p(h) = 1thenv,,__(a) = v, (a) + CFR(I,i,t,6'(I,a) - my, 7~ 1)
if p(h) = 2then v, _(a) = v, (a) + CFR(I,i,t,m - my, o', a) - ;)
end for
v, = v, +0'(I,a) v, (a)
end for
ifp(h) =1andi=1
fora € A(I) do
b (a) = Lo (a) + Uy (va;_,a (a) — vc')
si(@) = s;(a) + ;- 01,)
end for
end if

return v,

function Solve():
fort€{1,2,..,T}do
fori € {1,2} do
CFR(root, i, t, 1, 1)
end for
end for

Figure 2.2. Vanilla CFR algorithm

B 2.10 MccFralgorithm

For large games full traversal of the game tree with CFR may be very expensive.
This problem solves Monte Carlo CFR, family of algorithms that rather than
visiting entire tree to obtain counterfactual values samples only portion of the
tree at each iteration. In [9] it is shown that estimated counterfactual regrets
computed from sampled subtree approaches true values with high probability if
"care is taken in how to sample these subtrees”.

MCCEFR algorithms can incorporate various sampling schemata. For example
outcome sampling [9] traverses only one terminal history and regrets along are
updated. High level view of MCCFR algorithm is listed below.

Initialize regret tables: VI,Va € A(l):r;(a) =0
Initialize cumulative strategy tables: VI,Va € A(l):s;(a) =0
Initialize initial profile: a'(1,a) = %
fort€{l1,2,..,T}do
fori e {1,2} do
Sample block of terminal histories Q using S
for each prefix z[I] of each terminal history z € Q with p(z[/]) =i do

R;,Lm =]'I’la.)((i’”lr(a)J 0)
a eA(l)

fora € A(l) do
i 0
if RS, > 0thenct(l,A) = %

sum

elsec'(1,A) = ﬁ

7 = 7(l, a) the sampled regret for not taking a

rlal = r;[a] + 7

sila]l = sila] + AverageStrategylncrement (s, t,o;,1,a)
end for

Figure 2.3. High level view of MCCFR algorithm

B 2.11 variance in MCCFR

Generally variance measures the spread of values around average value of mea-
surement. Variance var(X) of random variable X with mean pux is defined as

var(X) = E[(X — px)’]

The variance is consequence of sampling game tree with Monte Carlo algo-
rithms. The effect of the variance was thoroughly examined in [13]. When action
with large value is not sampled a lot of variance is introduced in the MCCFR,
because every action that is not sampled is assumed to provide zero counterfactual
value to the strategy. Similarly the less the values are sampled in particular node
the more sampled counterfactual regret is inaccurate.

In [13] was presented general upper bound on the average regret RY

maXeqes,; ZtT:1<Uz‘(UI> Ut—z’) - Ui(afa Ut—i))

T :
(5,)
T VP) VT
Var = max Var[r(I,a) — 7i(I,a)]

teT,I€T;,ac A(I)

This upper bound relates the variance of the estimator directly with average
regret and therefore there is direct relation between variance of the estimator and

convergence rate of the MCCFR algorithm.

10

Chapter 3
Variance reduction in Monte Carlo

Variance reduction in Monte Carlo estimators has been approached in various
angles. For example numerical integration is one field where applications of Monte
Carlo estimators leads to great results [14].

From the random nature of Monte Carlo methods some variance of random
samples is always present and unfortunately has significant impact on the final
result of the integration. There are three main directions to reduce the variance
in field of Monte Carlo Integration [15]

m partial integration - lowers variance by replacing parts of integrals by their
averages

m systematic sampling - multiple sampling scheme e.g. stratified sampling [14]

m control variates

In game theory perspective various types of systematic sampling found usage.
Notably importance sampling [16] and its extensions [9]. Recently also variance
reduction were introduced in [17] and [18].

B 3.1 Aawar

Action-informed value assessment tool (AIVAT) [17] is low variance unbiased esti-
mator that uses arbitrary heuristic estimate of state value and explicit strategy of
a subset of the agents. AIVAT is an extension of previous MIVAT [19] which used
control variates with heuristic value estimates to reduce the variance caused by
chance events. AIVAT combines MIVAT with importance sampling over imagi-
nary observations [16] into one estimator. The AIVAT was designed for computer
poker research where was able to reduce number of hands needed to statistically
significant conclusions in no-limit poker by factor of 10.

I 3.2 Generalized sampling

In [13] based on the analysis of relation between variance of the estimator and
convergence rate was introduced bounded and unbiased estimator with empirically

11

lower variance than MCCFR. The algorithm extends MCCFR with the estimator
which replaces counterfactual values of non-sampled nodes with estimates of true
counterfactual values. The estimator probes with single Monte Carlo roll-out
according to current strategy to get unbiased estimate of counterfactual value of
non-sampled action. The algorithm shows 10%-30% improvement over MCCFR
in dependence on the domain.

B 33 VR-MccFR

During work on this thesis new article was published [18], which thoroughly de-
scribes usage of control variates in combination with outcome sampling [9]. The
VR-MCCFR served as foundation for new MCCFR algorithm with baselines.

The article [18] inspect analogies between MCCFR algorithms and reiforce-
ment learning. Viewing imperfect information game as partially-observable MDP
without any cycles enables redefines MCCFR as off-policy Monte Carlo analog.

Because incorporating baselines in reinforcement learning gradient methods is
successful the VR-MCCFR article introduced the idea to add baselines to the MC-
CFR algorithm as counterfactual values estimate. This technique leads to shrink
variance and speeding up the convergence of MCCFR by an order of magnitude.

B 3.4 Mccrrb

Monte Carlo counterfactual regret matching algorithm with baselines (MCCFRb)
enhances standard MCCFR algorithm described in previous chapter with baselines
which serves as control variates. As baselines we use iteratively updated values
that converges to the expected value of playing particular action in an information
set by player 1.

12

3.4 MCCFRb

Initialize regret tables: VI,Va € A(I):r;(a) =0

Initialize cumulative strategy tables: VI,Va € A(I):s;(a) =0
Initialize baselines: Vi,VI,Va € A; (I): b;(I,a) =0

Initialize visit counters: Vi, VI: k;(I) =0

Initialize information set counters: VI: ¢; = 0
1

Initialize initial profile: 61 (I, @) = m
function MCCFRb(h, i, t, r;, T_;, S5):

if h is terminal then return u; (h)

if h is chance then sample d and return MCCFRb(ha, i, t,m;, T_;,S)

I is information set containing h

Rip = max((a),0)

a €eA(l)
forVa € A(I) do

iR}, > 0then o’ (l,q) = "L

elsect(l,a) = ﬁ
end for
if P(h) =i:

sample action @ € A(I) with probability &(h, @) with € on-policy o* (I) sampling
else

sample action @ € A(I) with probability & (h, a) with on-policy 6*(I) sampling
end if

u = MCCFRb(ha, i,t,m; - o (I, a),m_;, s - ¢(h, a))
w—b,(1,&)

u=oct(l,a) (bi(f,é\) + ha)) at(l,a)b;(I1,a)
! a €{A(1)\a}
if P(h) = i:
B m_i(u—Db(l,a) T_; N
ri(a) = r(a) + — (W — u) E{AU)\A}? (b;I,a) — 1)
else

forVa € A(I) do
si(a@) = s;(@) + (t — ¢n_jo" (I, a)
cp=1
end for
end if
b1, &) - k(D) + b1, &) + L2)

~ §(ha)
bil,@) = T (1) + 1

k(1) = k;(D) + 1

function Solve():
fort €{1,2,..,T}do
fori € {1,2} do
MCCFRb(root, i, t, 1, 1, 1)
end for
end for

Figure 3.1. Monte Carlo counterfactual regret matching with baselines (MCCFRDb)

13

The algorithm uses outcome sampling, optimistic averaging for computing op-
timal strategy [9] and e on-policy exploration. In bellow listed algorithm direct
average is used rather than in [18] proposed exponentially-decaying average for
the baseline updates.

On the beginning the algorithm initiates all structures with reasonable values:

m regret tables - initiate immediate counterfactual regret of playing any action for
any information set to 0

m cummulative strategy tables - initiate accumulated probability of playing any
action in any information set to 0

m baselines - initiate value of baseline for any action in any information set for
both players to 0

m visit counters - initiate value of counters tracking how many times an informa-
tion set was visited to 0

m information set counters - for each information set initiate counter tracking
last iteration in which particular information set was visited and cumulative
strategy was updated

m initial strategy profile - initiate starting immediate strategy profile to uniform
strategy

In each of the iterations ¢ one terminal history is € on-policy sampled for each
player according to the immediate strategy o' of the players. During sampling
immediate strategy is computed on the fly with regret matching algorithm normal-
izing positive regrets or using uniform distribution if all regrets are non-positive.

The sampled history is backtracked propagating counterfactual value u of the
child node to the parent. During backtracking the new variable @ is introduced
as baseline-enhanced version of counterfactual value u and is used to accumulate
immediate regret ry(a) with current new regret value in nodes belonging to the
player under simulation. If the node belongs to the opponent cumulative strategy
sy is accumulated with immediate strategy weighted with iteration-information
set counter difference and current iteration number is assigned to the information
set counter c¢;. Finally baseline value of the sampled action a is updated as average
over all baseline values of the action @ in current information set visited so far.

At the end whole cumulative strategy profile should be updated one more time
to accumulate each strategy value to the same level according to the last iteration
number. Final strategy profile can be obtained as normalization of the cumulative
strategy tables. This approach of computing average strategy is called optimistic
averaging [9].

14

Chapter q
Implementation

MCCFR and MCCFRb algorithms were implemented as part of GTlib2, Game
Theoretic library written in C++ 14. The library is developed internally by
Al Center in Department of Computer Science at Faculty of Electrical engi-
neering CTU in Prague. The implementation of the algorithms can be found
in \algorithms\mccfr.cpp and \algorithms\mccfr.h files.

The library is successor to the free Java written GTlib available on GitHub [20]
and aims to provide framework to evaluate algorithms operating over extensive
form games. GTIlib2 contains various domains used commonly in game theoretic
articles and good support for experiment evaluation.

GTlib2 supports development of domain-independent algorithms for solving
the extensive form games. The library provides implementation of game tree with
information sets, basic operations over the game tree and information sets, data
structures for strategy representation. GTlib2 also contains support for modelling
extensive form games and various domains for evaluation of algorithms.

I 4.1 Game tree representation and data structures

GT1ib2 contains extensively inherited collection of classes for representation of all
aspects of game trees and strategy. This collection serves as interface for domain-
independent work with the game tree.

New structures were implemented to store MCCFRDb algorithm dependent in-
formation, namely RegretTable, CummulativeStrategyTable, Baselines and
BaselineVisits. Structures used in implementation of MCCFR and MCCFRb
are listed in the table 4.1.

15

Structure Description

Action class representing an action

AQH class representing action-observation history
describing information set

Baselines structure pairing each permutation

of InformationSet and Action with decimal

number to represent baseline value
BaselineVisits structure pairing each InformationSet

with integer to represent number of visits

of the InformationSet
BehavioralStrategy structure pairing each permutation

of InformationSet and Action with decimal

number to represent strategy
CummulativeStrategyTable structure pairing each permutation

of InformationSet and Action with decimal

number to represent cummulative strategy

Domain class representing general domain supporting
domain independent extensive form game tree
traversal

EFGNode class representing a node in extensive game
tree

InformationSet class representing an information set

RegretTable structure pairing each permutation

of InformationSet and Action with decimal
number to represent conterfactual regret

Table4.1. GTIib2 structures used in implementation of MCCFR and MCCFRD algorithms.

I 4.2 Domains

GTlib2 provides various domains for evaluating algorithms. Domain classes are
responsible for extensive form game tree generation. They provide methods to
obtain available actions for any node in the tree, methods for traversing the tree
by applying actions and prescribes player’s outcomes in terminal nodes.

Extensive form game approach of modelling the game can be applied on any
game domain and supports uniform interface which makes easy to design domain-
independent algorithms. GTIlib2 fully utilizes this advantage.

MCCFR and MCCFRb algorithms implemented in this work were evaluated
primarily on the IIGoofSpielDomain which represents Goofspiel game with given
number of cards and seed value. The order in whitch hidden cards are played by
the nature is dependent on the seed. Same seed always generates same card
order. Besides evaluation on Goofspiel domain also matching pennies and other
more trivial domains were tested.

16

4.3 Algorithms

B 43 Aigorithms

Algorithms provided in GTI1ib2 apart of finding optimal strategy also supports
experiment evaluation and debugging. MCCFR and MCCFRb algorithms were
added to the algorithms namespace as one of the options to solve any domain
provided by the library. Other algorithms used for experiments in this work are
listed below.

m bestResponseTo - algorithm which takes strategy for some given domain and
computes best response strategy to the given strategy and expected value of
playing best response strategy against given strategy.

m treeWalk - algorithm which takes function traverses whole extensive game tree
of given domain and calls given function on every node.

I 4.4 Experimets

Evaluation of the algorithms requires invasive intervention to the code of the
function introducing inexcusable time complexity. Therefore C4++ macros are
used to enable or disable parts of the code required in particular build of the
project. The defines switches over modes of execution, enables debugging options
or configurates hyper-parameters. The defines can be found in the very beginning
of the mccfr.h header file.

17

Chapter 5

Evaluation and Experimental results

The MCCFR with outcome sampling and control variates was evaluated on mul-
tiple instances of goofspiel game and compared to the MCCFR with outcome
sampling without use of control variates as reference state of the art algorithm.

To measure quality of the algorithm the "optimal” strategy of current iteration
must be computed from cumulative strategies for both players and then based on
this strategy exploitability can be computed as

BRl(O') + BRQ(O’)

The BR;(0) is expected reward of the opponent playing against player i best
response to his strategy o.

Tracked parameter is convergence rate of the exploitability in dependence on
number of iterations ran so far. The quality of convergence of various algorithms
can be easily confronted on the exploitability-iteration charts.

I 5.1 Goofspiel

Goofspiel(N) is two player card game which is played with three sets of cards with
values from 1 to N. Every player has one private set of bid cards. The last set of
cards is randomly shuffled and placed face up on the pile.

Players then simultaneously bid on the topmost card on the pile by discarding
exactly one bid card. It is crucial to reveal bid card simultaneously to prevent
information leak to other player. The player who bids a card with higher value
takes the top card of the pile as reward. If the bids are same the reward card
is discarded and the game continues with new bidding until there are no face-up
cards on the pile and players have no bid cards.

When the bidding is ended players tot up gathered reward cards and the player
with higher score wins with utility equals the difference in the scores. Whereas
the player with lower score loses with negative utility equals to the difference in
the scores.

18

Goofspiel(N) is zero sum imperfect information game with generally multiple
mixed Nash equilibria. For N > 3 optimal strategies are always mixed because
every pure strategy has pure counter-strategy, which guarantees win. Trivially
to construct counter-strategy bid the lowest card when opponent bids his highest
card and then each other turn bid one point higher card than opponent.

B 5.2 LeducHoldem

Poker games generally are good examples of zero-sum imperfect information
games. There are hundreds of poker variants some even played on professional
level for a lot of money and some not played at all but designed solely for purpose
of game theoretic research (e.i. Khun poker, Leduc Hold’em).

Leduc Hold’em is simplified poker variant for two players. The game is played
with six cards deck containing Js, Jh, Qs, Qh, Ks and Kh and one stack of chips
belonging to each player. At the beginning one random card that is dealt to each
player and each player put 1 chip to the pot. Then first betting round takes place
and afterwards one community card is dealt face up. There is another betting
round and if both players are still in the game after second betting round, they
reveal their private cards. If one player’s private card is the same rank as the
board card, he wins the game otherwise the player with higher rank private card
wins.

This poker variant was first introduced in [21] and it’s corresponding game tree
contains 61336 different states.

I 5.3 Experimental results

To compare convergence rate of proposed MCCFRb algorithm with directly av-
eraged baselines the exploitability of both MCCFR (no baseline updates) and
MCCFRb was computed for 20 different games of Goofspiel(4), Goofspiel(5) and
Leduc Holdem. Different games were instantiated by different random seeds (ob-
tained via random.org service [22]).

The exploitability was computed every order of magnitude number iteration -
that means on the first, 10th, 1000th, ..., 1 000 000th iteration. Standard deviation
and confidence intervals were computed with NumPy nad SciPy python library
[23] and always plotted with logaritmic iteration axis.

19

5. Evaluation and Experimental results

Bl 5.3.1 Goofspiel(4) Direct average, Exponentially decaying
average, No Updates

The comparison of exploitability MCCFRb with baselines updated via direct and
exponentially decaying average with MCCFR (no updates) algorithm on goof-
spiel(4) game computed every one order of magnitude of the number of iterations
to inspect convergence rate on far horizon is depicted below. Experimental results
with computed mean and standard deviation from 20 runs on different games are
contained in following table.

Goofspiel 4
—— Direct Average
—— Exponentialy Decaying Average
—— No Updates
0.35
0.30 4
0.25 A
oy
3 0.20
=
=)
=
b
0.15 4
0.10
0.05 1
0.00
10° 10! 102 10° 104 10° 10%

iterations

Figure 5.1. Exploitability comparison of MCCFR (No Updates) with outcome sampling
and MCCFRb with outcome sampling and direct and exponentially decaying baseline
averaging with confidence interval over 20 different Goofspiel(4) games.

20

5.3 Experimental results

Goofspiel 4
—
10-1 4
2
Z 10721
=
=]
=y
b
10-3 4
—— Direct Average
—— Exponentialy Decaying Average
—— No Updates
107 T T T T T T T
10° 10? 10? 103 10% 10° 108
iterations

Figure 5.2. Logaritmically scaled exploitability comparison of MCCFR (No Updates) with
outcome sampling and MCCFRb with outcome sampling and direct and exponentially
decaying baseline averaging with confidence interval over 20 different Goofspiel(4) games.

21

5. Evaluation and Experimental results

Variant Iteration Mean Standard deviation
Direct average 1 0.34 0.06
10 0.35 0.07
100 0.28 0.07
1000 0.07 0.02
10000 0.011 0.004

100000 0.0013 0.0004
1000000 0.00018 0.00007

Exponentially decaying average 1 0.34 0.06
10 0.32 0.07
100 0.30 0.05
1000 0.22 0.03
10000 0.20 0.02
100000 0.24 0.03
1000000 0.25 0.04

No updates 1 0.34 0.06
10 0.30 0.07
100 0.17 0.07
1000 0.06 0.02
10000 0.012 0.004
100000 0.0020 0.0006

1000000 0.00022 0.00011

Table 5.1. Goofspiel(4) experimental results from 20 runs on different games.

Hl 5.3.2 Goofspiel(5) Direct average, No Updates

The comparison of exploitability MCCFRb with baselines updated via direct av-
erage with MCCFR (no updates) algorithm on goofspiel(5) game computed every
one order of magnitude of the number of iterations is depicted below. Experimen-
tal results with computed mean and standard deviation from 20 runs on different
games are contained in following table.

22

5.3 Experimental results

Goofspiel 5
—— Direct Average
No Updates
0.35 4 ———
0.30 A
0.25
)
E 0.20 -
=l
=
&
0.15
0.10
0.05
0.00 -
10 10! 10? 103 10* 10° 108
iterations

Figure 5.3. Exploitability comparison of MCCFR (No Updates) with outcome sampling
and MCCFRb with outcome sampling and direct and exponentially decaying baseline
averaging with confidence interval over 20 different Goofspiel(5) games.

23

Goofspiel 5

10-1

exploitability

102

—— Direct Average
No Updates

T T T T
100 10! 102 107

terations

T T T
104 10% 106

Figure 5.4. Logaritmically scaled exploitability comparison of MCCFR (No Updates) with
outcome sampling and MCCFRb with outcome sampling and direct and exponentially
decaying baseline averaging with confidence interval over 20 different Goofspiel(5) games.

Variant Iteration Mean Standard deviation
Direct average 1 0.35 0.05
10 0.34 0.03
100 0.36 0.05
1000 0.22 0.05
10000 0.08 0.02
100000 0.02 0.01
1000000 0.006 0.002
No updates 1 0.35 0.05
10 0.35 0.05
100 0.28 0.05
1000 0.16 0.02
10000 0.07 0.01
100000 0.026 0.004
1000000 0.008 0.001

Table 5.2. Goofspiel(5) experimental results from 20 runs on different games.

24

5.3 Experimental results

l 5.3.3 Leduc Holdem Direct average, No Updates

The comparison of exploitability MCCFRb with baselines updated via direct av-
erage with MCCFR (no updates) algorithm on Leduc Holdem domain computed
every one order of magnitude of the number of iterations is depicted below. Ex-
perimental results with computed mean and standard deviation from 20 runs on
different games are contained in following table.

Leduc Holdem

—— Direct Average

0.16 1 —— No Updates

0.14

0.12

o
=
o

exploitability
o
[=]
(=]

0.06

0.04

0.02 A

0.00 -

T T T T T T T
10° 10t 102 10° 10* 10° 10°
iterations

Figure 5.5. Exploitability comparison of MCCFR (No Updates) with outcome sampling
and MCCFRb with outcome sampling and direct and exponentially decaying baseline
averaging with confidence interval over 20 different Leduc Holdem games.

25

Leduc Holdem

—— Direct Average
 s— — No Updates
107] 4
o
g
el
5
s
by
1072 1
100 10! 10? 10? 104 10° 108

iterations

Figure 5.6. Logaritmically scaled exploitability comparison of MCCFR (No Updates) with
outcome sampling and MCCFRb with outcome sampling and direct and exponentially
decaying baseline averaging with confidence interval over 20 different Leduc Holdem games.

Variant Iteration Mean Standard deviation
Direct average 1 0.125 0.002
10 0.13 0.01
100 0.14 0.01
1000 0.16 0.01
10000 0.13 0.02
100000 0.046 0.006
1000000 0.009 0.002
No updates 1 0.125 0.002
10 0.134 0.007
100 0.14 0.01
1000 0.16 0.02
10000 0.08 0.01
100000 0.030 0.004

1000000 0.008 0.002

Table 5.3. Leduc Holdem experimental results from 20 runs on different games.

26

Chapter 6
Discussion and Conclusion

The main goal of this theses was to introduce Monte Carlo counterfactual re-
gret minimization algorithm using baselines as control variates for playing general
two-player zero-sum games and achieve variance reduction over Monte Carlo coun-
terfactual regret minimization algorithm without baselines.

The proposed MCCFR algorithm with baselines was evaluated on multiple in-
stances of game and achieved variance reduction over reference MCCFR algo-
rithm with outcome sampling without baselines. MCCFRb with with directly
averaged baselines takes roughly half time (in sense of iterations) to achieve sim-
ilar exploitability as MCCFR in most significant iterations when the measured
exploitability is radically reducing with each iteration.

From experiments it is clear that in the beginning of computation when the
number of iterations is low and the strategy is not realiably converging in sense
of exploitability the MCCFRD is not significantly worse than MCCFR. When the
exploitability is minimal the number of iterations to reduce it is quickly ramping
up and the MCCFRb advantage over MCCFR is almost mitigated due to the
magnitude of exploitability differences.

MCCFRbDb with exponentially decaying average was inferior to the MCCFRb
with direct average and even to the MCCFR.

Fresh new article [24] covering MCCFR algorithms with baselines was published
right before submission of the theses and therefore have to be mentioned here. The
article is introducing a general framework for baseline construction in extensive
form games. In scope of this article our proposed algorithm utilizes learned infoset
baseline function. Experimental results presented in the article [24] correspond
with the results presented in this theses.

27

References

[1] J. Von Neumann, and O. Morgenstern. Theory of games and economic be-
havior. Princeton University Press, 1953.

2] A. W. Tucker H. W. Kunh. John von Neumann’s work in the theory of games
and mathematical economics. Bulletin (New Series) of the American Mathe-
matical Society. 1958, 64 100-122.

[3] Sergiu Hart, and Andreu Mas-Colell. A Simple Adaptive Procedure
Leading to Correlated Equilibrium. FEconometrica. 68 (5), 1127-1150.
DOI 10.1111/1468-0262.00153.

[4] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione.
Regret Minimization in Games with Incomplete Information. In: Proceedings
of the 20th International Conference on Neural Information Processing Sys-
tems. USA: Curran Associates Inc., 2007. 1729-1736. ISBN 978-1-60560-352-
0.

[5] Oskari Tammelin. Solving Large Imperfect Information Games Using CFR+.
2014,
[6] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Com-

puter science. Heads-up limit hold’em poker is solved. Science (New York,
N.Y.). 2015, 347 145-9. DOI 10.1126/science.1259433.

[7] Matej Moravéik, Martin Schmid, Neil Burch, Viliam Lisy, Dustin Morrill,
Nolan Bard, Trevor Davis, Kevin Waugh, Michael Johanson, and Michael
Bowling. DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker.
Science. 2017, 356 DOT 10.1126/science.aam6960.

[8] Viliam Lisy. Monte Carlo Tree Search in Imperfect-Information Games.
Ph.D. Thesis, Czech Technical University in Prague. 2014.
http://cyber.felk.cvut.cz/teaching/radaUlB/disertace_Lisy’20Viliam.pdf.

[9] Marc Lanctot. Monte Carlo Sampling and Regret Minimization for Equilib-
rium Computation and Decision-Making in Large Extensive Form Games.
Ph.D. Thesis, University of Alberta. 2013.
http://mlanctot.info/files/papers/PhD_Thesis_MarcLanctot.pdf.

[10] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. Monte
Carlo Sampling for Regret Minimization in Extensive Games. 2009.
http://papers.nips.cc/paper/3713-monte-carlo-sampling-for-regret-minimization-Jj

in-extensive-games.pdf.

28

http://dx.doi.org/10.1111/1468-0262.00153
http://dx.doi.org/10.1126/science.1259433
http://dx.doi.org/10.1126/science.aam6960
http://cyber.felk.cvut.cz/teaching/radaUIB/disertace_Lisy%20Viliam.pdf
http://mlanctot.info/files/papers/PhD_Thesis_MarcLanctot.pdf
http://papers.nips.cc/paper/3713-monte-carlo-sampling-for-regret-minimization-in-extensive-games.pdf
http://papers.nips.cc/paper/3713-monte-carlo-sampling-for-regret-minimization-in-extensive-games.pdf

[11] Noam Brown, and Tuomas Sandholm. Superhuman AT for multiplayer poker.
Science. 2019, eaay2400. DOI 10.1126/science.aay2400.

[12] Neil Burch. Time and Space: Why Imperfect Information Games are Hard.
Ph.D. Thesis, Department of Computing Science, University of Alberta. 2017.
https://poker.cs.ualberta.ca/publications/Burch_Neil E_201712_PhD.pdf.

[13] Richard Gibson, Marc Lanctot, Neil Burch, Duane Szafron, and Michael
Bowling. Generalized Sampling and Variance in Counterfactual Regret Mini-
mization. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence. AAAT Press, 2012. 1355-1361.

[14] G. Peter Lepage. A New Algorithm for Adaptive Multidimensional Integra-
tion. J. Comput. Phys.. 1978, 27 192. DOI 10.1016/0021-9991(78)90004-9.

[15] J. Goodman. Monte Carlo methods. In: Monte Carlo methods, Goodman, Fall

2007. 2007.
https://www.math.nyu.edu/faculty/goodman/teaching/MonteCarlo07/.

[16] Michael H. Bowling, Michael Johanson, Neil Burch, and Duane Szafron. Strat-
eqy evaluation in extensive games with importance sampling. In: 2008. 72-79.

[17] Neil Burch, Martin Schmid, Matej Moravcik, and Michael H. Bowling. Al-
VAT: A New Variance Reduction Technique for Agent Evaluation in Imper-
fect Information Games. CoRR. 2016, abs/1612.06915

[18] Martin Schmid, Neil Burch, Marc Lanctot, Matej Moravcik, Rudolf Kadlec,
and Michael Bowling. Variance Reduction in Monte Carlo Counterfactual Re-
gret Minimization (VR-MCCFR) for Extensive Form Games using Baselines.
CoRR. 2018, abs/1809.03057

[19] Martha White, and Michael Bowling. Learning a Value Analysis Tool For
Agent Ewvaluation. In: Proceedings of the Twenty-First International Joint
Conference on Artificial Intelligence (IJCAI). 2009. 1976-1981.

[20] AI Center. gtlibrary-java.
https://github.com/aicenter/gtlibrary-java. 2014.

[21] Finnegan Southey, Michael Bowling, Bryce Larson, Carmelo Piccione, Neil
Burch, Darse Billings, and D. Chris Rayner. Bayes’ Bluff: Opponent Mod-
elling in Poker. CoRR. 2012, abs/1207.1411

[22] Mads Haahr. RANDOM.ORG: True Random Number Service.
https://www.random.org. 1998-2018. Accessed: 2018-06-01.

[23] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, CJ Carey, .Ilhan Polat, Yu Feng, Eric W.
Moore, Jake Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman,
Ian Henriksen, E. A. Quintero, Charles R Harris, Anne M. Archibald, Antonio
H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1. 0 Contribu-
tors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods. 2020, 17 261-272. DOI https://doi.org/10.1038 /s41592-019-
0686-2.

29

http://dx.doi.org/10.1126/science.aay2400
https://poker.cs.ualberta.ca/publications/Burch_Neil_E_201712_PhD.pdf
http://dx.doi.org/10.1016/0021-9991(78)90004-9
https://www.math.nyu.edu/faculty/goodman/teaching/MonteCarlo07/
https://github.com/aicenter/gtlibrary-java
https://www.random.org
http://dx.doi.org/https://doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/https://doi.org/10.1038/s41592-019-0686-2

[24] Trevor Davis, Martin Schmid, and Michael Bowling. Low-Variance and Zero-
Variance Baselines for Extensive-Form Games. CoRR. 2019, abs/1907.09633

30

Appendix A
Enclosed CD

m experiments - folder containing experimental data
m text - folder containing Tex sources of the thesis
m GT1ib2 - folder containing source codes of GTIlib2

= algorithms\mccfr.cpp - source file containig implementation of MCCFR
and MCCFRD algorithms

= experiments\dp - folder containing experimental data allowing the rerun of
experiments

31

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/
	Introduction
	Problem statement

	Background
	Extensive form representation of sequential game
	Strategy
	Expected utility
	Best response
	Nash equilibrium
	Counterfactual value
	Control variate
	Regret Matching
	CFR algorithm
	MCCFR algorithm
	Variance in MCCFR

	Variance reduction in Monte Carlo
	AIVAT
	Generalized sampling
	VR-MCCFR
	MCCFRb

	Implementation
	Game tree representation and data structures
	Domains
	Algorithms
	Experimets

	Evaluation and Experimental results
	Goofspiel
	Leduc Hold'em
	Experimental results
	Goofspiel(4) Direct average, Exponentially decaying average, No Updates
	Goofspiel(5) Direct average, No Updates
	Leduc Holdem Direct average, No Updates

	Discussion and Conclusion
	References
	Enclosed CD

