
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 5, 2020

ASSIGNMENT OF MASTER’S THESIS
 Title: Generating Ethereum Smart Contracts from DasContract Language

 Student: Bc. Jan Frait

 Supervisor: Ing. Marek Skotnica

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

Blockchain smart contracts (SC) are an emerging technology that aspires to change the way people conduct
contracts. However, the language of smart contracts is a domain-specific programming language Solidity
that is hard to understand by humans and is prone to errors. Based on preliminary research, DasContract
models seem to provide a better way to define smart contracts. A goal of this thesis is to propose a way
how to generate Ethereum smart contracts from DasContract models.

Steps to take:
1. Explore the state-of-the-art Ethereum blockchain technology and assess its strengths and weaknesses.
2. Analyze ways to generate Ethereum smart contracts from DasContract models.
3. In .NET Core implement and test an algorithm that generates Ethereum smart contracts from
DasContract models.

References

Will be provided by the supervisor.

Master’s thesis

Generating Ethereum Smart Contracts
from DasContract Language

Bc. Jan Frait

Department of Software Engineering
Supervisor: Ing. Marek Skotnica

July 30, 2020

Acknowledgements

Rád bych předevš́ım poděkoval vedoućımu této práce, Ing. Markovi Skotni-
covi, za př́ıkladné vedeńı, cenné rady, konzultace a trpělivost. Dále děkuji své
rodině za podporu, které se mi dostávalo po celou dobu mého studia.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work for non-profit purposes only, in any way that does not detract from
its value. This authorization is not limited in terms of time, location and
quantity.

In Prague on July 30, 2020 .

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Jan Frait. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Frait, Jan. Generating Ethereum Smart Contracts from DasContract Lan-
guage. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2020.

Abstrakt

V současné době jsou smlouvy mezi lidmi nebo jinými subjekty složitě vyma-
hatelné před soudem a nebo neúměrně komplikované, složité na pochopeńı a
s r̊uznými poplatky v pr̊uběhu.

Tato práce diskutuje možné použit́ı vizuálńıho jazyka DasContract spolu s
blockchain technologíı k vytvořeńı smluv mezi dvěmi nebo v́ıce stranami, které
jsou jednoduché na implementaci, decentralizované a bezpečné. V praktické
části je pak navržen a implementován generátor mezi DasContract a Solidity
jazyky.

Kĺıčová slova DasContract, smart kontrakt, blockchain, hypotéka, Ethereum,
Solidity, smlouva

vii

Abstract

Currently, the contracts between people or other subjects are either hardly en-
forced in front of court, or disproportionately complicated, hard to understand
and with various expenses along the way.

This thesis discusses the possible usage of DasContract visual language
combined with blockchain technology to create easy to implement, decentral-
ized and secure contracts between two or more parties. In the practical part,
DasContract to Solidity generator is being designed and implemented.

Keywords DasContract, smart contract, blockchain, mortgage, Ethereum,
Solidity, contract

viii

Contents

Introduction 1

1 Theoretical background 3
1.1 Blockchain . 3
1.2 Ethereum . 9
1.3 DasContract . 14
1.4 Chapter summary . 18

2 Evaluation of Ethereum strengths and weaknesses 21
2.1 Three generations of blockchain 21
2.2 Ethereum’s strengths . 22
2.3 Ethereum’s weaknesses . 23
2.4 Chapter summary . 24

3 Analysis and design 27
3.1 Design . 27
3.2 Code generating from DasContract to Solidity 29
3.3 Chapter summary . 39

4 Implementation 41
4.1 Used technologies . 41
4.2 Code generating flow . 41
4.3 Mortgage Proof-of-Concept . 43
4.4 Testing . 48
4.5 Chapter summary . 48

Conclusion 51

Bibliography 53

ix

A Acronyms 57

B Contents of enclosed CD 59

x

List of Figures

1.1 Blockchain blocks visualization[1] 5
1.2 Bitcoin nodes distribution[2] . 6
1.3 Solidity and Vyper comparison[3] 11
1.4 Proof-of-Stake visualization[4] . 14
1.5 A contract maturity model[5] . 15
1.6 A proposed concept architecture used by DasContract[5] 16
1.7 Example process model of DasContract using DasContract designer 17

3.1 Class diagram of the program . 28

4.1 Contract Diagram[6] . 42
4.2 Mortgage process changed using smart contract[7] 43
4.3 Mortgage diagram in DasContract editor[8] 45

xi

List of Tables

2.1 Ethereum strengths and weaknesses 25

xiii

Introduction

Contracts between people or other subjects may take on different forms. From
the most simple one – the verbal contract – to the currently most developed
one legally binding contract represented by legal text. All of those approaches
have one in common – they are not ideal.

Verbal contracts, while legally binding in most of countries, have some
serious limitations to them, described in the law in specific country or state.
There is also no written record of the contract, which makes it usually very
hard to enforce in front of court.

Legally binding contracts are surely better and safer option, although even
they have some flaws. There are expenses for lawyer drafting the contract,
in some cases even a notary is needed to certify the contract. This process
is not only expensive, but also time consuming and lot of people will try to
avoid this kind of contract if not necessary. Other problems with legal texts
include possible errors made by lawyer drafting the text and legal framework
that contains ambiguities[5].

The thesis proposes using different approach with the goal of decentralized
ambiguity control of contracts, making them easier to understand and cheaper
to draft. Drafting part can be achieved using DasContract visual language
specifically designed for this use case, while the ambiguity would be controlled
using smart contracts on decentralized blockchain network like Ethereum.

Structure of the thesis

Structure of this thesis is as follows:

• In Chapter 1 we will take a look at history and current state of
blockchain technology and dive deeper into the Ethereum blockchain
network, talk about its security, future and and consensus algorithm.
We will also explain what is DasContract and what parts it consists of.

1

Introduction

• Chapter 2 compares different generations of blockchain, and advan-
tages and disadvantages of choosing the Ethereum blockchain-

• Chapter 3 is about analysis of program from practical part of thesis,
how it works and how it generates Solidity code from DasContract.

• Chapter 4 discusses the Solidity code generating flow and implemen-
tation of Proof-of-Concept example of mortgage contract.

• The objective of practical part of the thesis is to develop program
in .NET Core that will convert any DasContract file to corresponding
Solidity smart contract code.

2

Chapter 1
Theoretical background

This chapter discusses the theoretical background of blockchain, Ethereum
and DasContract. We will take a look at history of blockchain, its first ap-
plication as Bitcoin and how it works from cryptographic perspective. How
Ethereum changed the view on usage of blockchain, what other projects are
trying to surpass Ethereum and why they might (not) succeed. Finally we
will discuss DasContract – the model used for generating smart contracts –
and its structure.

1.1 Blockchain

The idea behind Blockchain was first introduced by Satoshi Nakamoto in
Bitcoin white paper in 2008. Satoshi’s identity is still unknown – he commu-
nicated with the community around Bitcoin only through forums and other
written online forms and he could be either one individual person or a group
of people working on the blockchain idea.

The key features of blockchain – security, transparency, decentralization,
immutability, and programmability, are combined in a platform, which doesn’t
need any central authority in order to process transactions, value, and infor-
mation transfers.

1.1.1 Bitcoin

The best definition of Bitcoin and its use case is by the author Satoshi
Nakamoto himself as he wrote in Bitcoin whitepaper:

What is needed is an electronic payment system based on cryptographic
proof instead of trust, allowing any two willing parties to transact directly
with each other without the need for a trusted third party. Transactions that
are computationally impractical to reverse would protect sellers from fraud,
and routine escrow mechanisms could easily be implemented to protect buy-

3

1. Theoretical background

ers.[9]

First and the most publicly recognized implementation of blockchain tech-
nology is Bitcoin. Bitcoin’s main purpose is processing payments in secure
way with no need for trusted third party or any kind of escrow service. It
is not only first but also one of the simplest implementation of blockchain –
even though Bitcoin does technically support smart contracts, they aren’t as
widely used as e.g. Ethereum’s smart contrats. That is because of usage of
very primitive OP codes and also high transaction costs.

Bitcoin is a decentralized peer-to-peer network. There isn’t any central
entity responsible for managing the system. It is a truly democratic platform,
open to everyone to participate and contribute. As Satoshi Nakamoto sug-
gests, the main idea is to have a system without intermediaries that prevents
double-spending with the sole involvement of peers on the network.[10]

1.1.2 Proof-of-Work

Proof-of-Work algorithm is best described from the Bitcoin whitepaper:

A purely peer-to-peer version of electronic cash would allow online pay-
ments to be sent directly from one party to another without going through a
financial institution. Digital signatures provide part of the solution, but the
main benefits are lost if a trusted third party is still required to prevent double-
spending. We propose a solution to the double-spending problem using a peer-
to-peer network. The network timestamps transactions by hashing them into
an ongoing chain of hash-based Proof-of-Work, forming a record that cannot
be changed without redoing the Proof-of-Work.[9]

Proof-of-Work (PoW) is the original consensus algorithm in a blockchain
network used by Bitcoin. Consensus algorithm is how the blockchain network
communicates between nodes which transactions to put into new blocks write
them irreversibly into the blockchain. With PoW, miners compete against
each other to complete mathematical puzzles and first of them with correct
solution is awarded by fraction of Bitcoin.

The main working principles are a complicated mathematical puzzle and a
possibility to easily prove the solution. These puzzles varies between blockchains
and can include, but are not limited to, hash function or integer factorization.
As the network is growing, it is facing more and more difficulties.[1] The al-
gorithms difficulty is linearly dependent on number of nodes in blockchain.

How complex a puzzle is depends on the number of users, the current
power and the network load. The hash of each block contains the hash of the
previous block, which increases security and prevents any block violation as
can be seen in Figure 1.1

4

1.1. Blockchain

Figure 1.1: Blockchain blocks visualization[1]

1.1.3 Cryptographic techniques used in blockchain

Once again, we will use citation from Bitcoin whitepaper to define electronic
coin and cryptography behind them:

”We define an electronic coin as a chain of digital signatures. Each owner
transfers the coin to the next by digitally signing a hash of the previous trans-
action and the public key of the next owner and adding these to the end of
the coin. A payee can verify the signatures to verify the chain of ownership.” [9]

There are several cryptographic techniques used in blockchain to secure
decentralization and privacy. In most of blockchains this includes public and
private keys, hash functions and digital signatures.

The private key is used by the sender to sign the transaction, which proves
the ownership of the private key without having to reveal it. The public ad-
dress, which acts like an account, can send or receive funds as well as transact
smart contracts. Both funds sending and smart contracts calls have to be
signed by user’s private key to confirm intention of the transaction. Public
address is derived from the public key and can be shared openly without any
security exposure. The private key must be stored securely, ideally in offline
storage, e.g. hand written on paper in vault, and never disclosed with anyone
who isn’t the owner of the account since it can’t be changed. Only the private
key gives access to the user’s funds and ability to sign transactions on the
blockchain in the name of this account. If the private key is lost, access to the
funds is lost permanently as it can’t be recovered.

What are blocks and how they are stored in blockchain describes following
citation:

Transactions in blockchain ledger are grouped into blocks. These blocks
can be different in size, ranging from single transaction to hundreds of them
in single block. Transactions themselves also typically vary in the size of the
information they contain, smart contract transactions are usually bigger than
simple currency transfer. Hence, a blockchain can benefit from some standard-

5

1. Theoretical background

ization and rationalization of the data it stores. A mechanism that allows us
to address that are cryptographic hash functions, which are an efficient way to
secure data integrity and reduce file size. Hash functions are used to convert
input data of any length into a compressed unique fixed length string of charac-
ters (also known as a bit string). This output data serves as a unique reference
code or digital fingerprint to verify the authenticity of some underlying dataset
without the need to actually check the entire dataset.[10]

1.1.4 Peer-to-Peer Network

The Bitcoin Peer-to-Peer (P2P) network consists of thousands of nodes all
over the world and throughout all continents as can be seen on Figure 1.2.
As of July 2020 there are 10428 full nodes[2], most of them are running in
Europe and USA, although even still developing countries like Cambodia or
Suriname make appearance.

Figure 1.2: Bitcoin nodes distribution[2]

In Bitcoin blockchain, several different types of nodes exist: full nodes,
mining nodes, masternodes and lightweight (SPV) nodes. Mining node and
masternode are subtypes of full node.

Full nodes are copies of the whole blockchain ledger and can verify trans-
actions without any need of external reference. Since full nodes have every
transaction stored, they have information of every asset of every blockchain
user and can track history of every coin from the moment of its creation. Ev-
ery block consists of several transactions and info of its successor. This way
the chain of blocks is created and full nodes can go up the chain all the way

6

1.1. Blockchain

from genesis block (the first block in the blockchain) to get the history of every
account in the blockchain. On the downside, full nodes are inherently very
demanding on storage and bandwidth. Currently, full Bitcoin blockchain has
almost 300GB and is rapidly growing in size.

Mining node is subtype of full node. On top of full node’s responsibilities,
it is also trying to ”mine” new blocks. This means solving mathematical
puzzles as mentioned in section 1.1.3. The solution is then sent to other full
nodes which check correctness and if at least 51% of nodes deem the solution
correct, miner can push the block into ledger and receive reward.

The size and bandwidth requirements of full nodes can sometimes be a
problem, usually for people using it only as a wallet. This is why lightweight
solution exists. Lightweight nodes (also known as SPV – Simple Payment
Verification – nodes) don’t store the copy of the blockchain. They instead
rely on full nodes to provide them all necessary information. Since they don’t
have full ledger stored locally, they can’t verify transactions like full nodes
can, going all the way to genesis block. They instead find the block with
transaction they need to verify and then check if there are more blocks on
top of this one. If there are 6 or more blocks on top, it is generally accepted
as verified and irreversible transaction. This way, lightweight nodes are many
times less demanding on hardware, however they are relying on full nodes to
provide them with all information and therefore sacrificing some security.

1.1.5 Other blockchains and their use cases

Up until now we were talking about Bitcoin’s implementation of blockchain.
And although the main idea stays more or less the same, the speed of transac-
tions, security, privacy and consensus algorithms may vary between blockchains.
We will be talking more about Ethereum in section 1.2, but there are some
other blockchain examples and differences between them.

1.1.5.1 Cardano

Cardano’s development started back in 2015 and is still yet to be finished to
the fully functioning state, mainly because The Cardano Foundation demands
multiple code reviews and has no tolerance for any kinds of security bugs after
release. The essential elements of blockchain Cardano aims to improve are
scalability, interoperability and sustainability. Disadvantage of this approach
is huge competition Cardano has in all other blockchains, users and companies
might opt to using not optimal solution now rather than optimal one in several
years. Cardano is also very popular in academic community.

Cardano uses its own Proof-of-Stake (PoS) consensus algorithm called
Ouroboros.[11] Instead of mining blocks like in Bitcoin blockchain, holders
of Cardano currency (ADA) can stake their tokens either directly by run-
ning node, or indirectly by staking their tokens to stake pool. PoS algorithm

7

1. Theoretical background

then chooses node based on number of staked ADA tokens who produces the
next block and is rewarded by ADA tokens. This makes Cardano much more
environment-friendly than Bitcoin’s PoW algorithm while still assures decent
level of decentralization.

1.1.5.2 EOSIO

EOSIO, usually referred simply as EOS, is blockchain developed by Block.one
company, however the EOS blockchain recognized as ”mainnet” is run com-
pletely by community and Block.one has no authority over it other than voting
power of their tokens. With this background, EOS is very controversial project
in blockchain community. Concerns of opponents of EOS include:

• Funding of project via ICO (Initial Coin Offering) and EOS token dis-
tribution.

• Use of Delegated Proof-of-Stake (DPoS) consensus algorithm with only
21 nodes that have all power over network where most of them are (as
of this writing) located in China.[12]

• Written constitution of EOS blockchain that is not implemented in the
blockchain itself. That means, it should be honored, however the final
decision and action taking is up to those 21 nodes which can (on purpose
or not) break it.

Nevertheless if we look away from these issues, EOS is very powerful
blockchain with no transaction costs. Instead users ”buy” the blockchain’s
CPU time, RAM memory and storage by staking EOS tokens. Every user
can also vote for up to 30 nodes to represent them in decisions same way as
people in house of representatives in country’s government. However only 21
of those nodes are producing blocks as mentioned above, therefore the level
of decentralization is much lower than in Bitcoin network.

1.1.5.3 VeChain

VeChain is the least known blockchain from these three examples, however
is currently one of the very few ones that are used commercially. There are
already a lot of companies using or testing VeChain to track food or other
goods. Solution co-developed by risk management and quality assurance com-
pany DNV GL called My Story™is probably the most developed one and is
actually in use by some of DNV GL’s clients. Companies like BMW, PwC or
Walmart[13] ale also testing VeChain as blockchain for tracking their prod-
ucts and providing customers with its history, including origin of the products,
tracking history or temperature during transportation.

From technical perspective, VeChain uses dual-token system. The main
token determining the market capitalization of VeChain blockchain is VET

8

1.2. Ethereum

which is not mineable meaning you can’t get them any other way than pur-
chasing with money. By holding VET in your VeChain wallet, you automati-
cally generate the secondary token called VTHO. This token is used primarily
to pay for the transactions on the blockchain, including currency transfers and
smart contract fees.

VeChain blockchain uses Proof-of-Authority (PoA) consensus for validat-
ing transactions. There are 101 authority nodes which secure stability and
to some extent decentralization of network. Authority nodes are selected by
VeChain Foundation and need to prove their identity, own at least 25 million
VET tokens and actively use or help to develop the blockchain. This means
although VeChain isn’t as decentralized as Bitcoin or Ethereum, it is much
faster to verify transactions and arguably better for supply chain use case.

1.2 Ethereum

Ethereum is a blockchain and decentralized computing platform that allows
the execution of smart contracts.

Unlike Bitcoin, Ethereum’s purpose is not primarily to be a digital cur-
rency payment network. While the digital currency ether is both integral
to and necessary for the operation of Ethereum, ether is intended as a util-
ity currency to pay for use of the Ethereum platform as the world computer.
The Ethereum platform enables developers to build decentralized applications
with built-in economic functions. While providing high availability, auditabil-
ity, transparency, and neutrality, it also reduces or eliminates censorship and
reduces certain counterparty risks.[14]

1.2.1 Ether and ERC tokens

Ethereum blockchain has in its core only one token called ether (ETH), for
small fractions of ETH is however used term gwei - 1 gwei equals to 0.000000001
of ether. Transaction require gas – which refers to the amount of gwei needed
– to successfully complete given transaction. Transaction costs differ based on
blockchain load and also type of transaction. Sending ETH form one address
to another is usually very cheap, on the other hand deploying smart contract
to blockchain can be several times more expensive.

There are also other tokens than ETH on Ethereum blockchain. These
are called ERC (Ethereum Request for Comment) tokens and while some
implementations of them are popular almost as much as Ethereum itself, they
aren’t native for Ethereum blockchain. ERC tokens are just smart contracts
and standards for those tokens were agreed on by the community. The need
to achieve consensus on basic blockchain function as having a custom token is
considered as one of the disadvantages of Ethereum.

Currently most used standard of ERC token is ERC20. ERC20 tokens are
fungible – each token is the same and don’t have any specific characteristic

9

1. Theoretical background

– and they are also divisible up to 18 decimals. These two features make
ERC20 tokens ideal for payments. ERC20 smart contracts consists of 6 basic
functions[15]:

• totalSupply() returns number of tokens in circulation.

• transfer() is used to initial distribution of tokens from its smart con-
tract address to the destination address.

• transferFrom() enables holders to send token to another address.

• balanceOf() returns the number of tokens in specific user’s wallet.

• approve() function ensures that nobody can create additional tokens.

• allowance() checks whether or not has sender as many tokens as he
wants to send when using transferFrom() function.

The second most used standard is ERC721 and those tokens are non-
fungible and non-divisible. While ERC20 is ideal for payments, ERC721 is
designed to represent unique individual objects ranging from virtual pets as
shown by CryptoKitties project all the way to real houses if implemented by
authorities responsible for real estate evidence. Each token may then have
very different value than another one.

1.2.2 Smart Contracts

Basic definition of smart contract as cited in [4]:

A smart contract is programming code that is stored and executed on the
blockchain. Ethereum now has a Turing-complete language, Solidity, which en-
ables developers to develop and deploy smart contracts. In addition to moving
ether, the cryptocurrency in Ethereum network, between accounts, Ethereum
smart contract code can support more modern program language constructs
such as loops and perform much more complex computations, including data
access, cryptographic algorithms, and function calls.[4]

A smart contract is like a scripted agreement between two or more inter-
acting parties. The code built into the contract is stored on the Ethereum
blockchain and once deployed, it cannot be changed or removed. This assures
the credibility of the smart contract.

Typically, DApp developers write smart contracts for Ethereum blockchain
in some high-level programming language and then compile them into the
bytecode. The Ethereum bytecode is then deployed on the blockchain and is
executed within the Ethereum Virtual Machine (EVM). The two most used
languages used for Ethereum smart contract development are:

10

1.2. Ethereum

• Solidity is currently most commonly used object-oriented programming
language for Ethereum smart contracts. It is influenced by C++ and
Javascript and thanks to its extensive documentation is great for be-
ginners. Solidity was created as a language explicitly for writing smart
contracts with features to directly support execution in the decentralized
environment of the Ethereum world computer.[14]

• Vyper is newer and more simple Python-like language that is however
less developed, less documented than Solidity and is still considered ex-
perimental. Vyper code is compiled to the Application Binary Interface
(ABI) and bytecode by Vyper compiler the same way Solidity does with
Solidity compiler.[3]

As shown on example code in Figure 1.3, in terms of code length or read-
ability, there is no clear winner as smart contracts don’t usually contain highly
complex algorithms.

Figure 1.3: Solidity and Vyper comparison[3]

11

1. Theoretical background

1.2.3 Oracles

Oracles definition as defined in [14]:

Oracles are systems that can provide external data sources to Ethereum
smart contracts. In the context of blockchains, an oracle is a system that can
answer questions that are external to Ethereum. Ideally oracles are systems
that are trustless, meaning that they do not need to be trusted because they
operate on decentralized principles.[14]

Oracles provide a way of getting off-chain information, such as the results
of football games, the price of gold, or information about real estate, onto the
Ethereum platform for smart contracts to use. They can also be used to relay
data securely to DApp frontends directly.[14] Oracles can therefore be thought
of as a mechanism for bridging the gap between the off-chain world and smart
contracts. Allowing smart contracts to enforce contractual relationships based
on real-world events and data broadens their scope dramatically.

1.2.4 Transactions and messages

In Ethereum, the term transaction represents the signed data package of a
message that is sent from an Externally Owned Account (EOA) to another
account. The message itself instructs what action to take on the blockchain.
They all require the initiator of the transaction to digitally sign the messages,
and transactions will be recorded into the blockchain.[4] Three types of trans-
actions can happen:

• Contract Account (CA) creation: In this case, an EOA acts as the
initiator or creator of the new contract account.

• A transaction between two EOAs: In this case, one EOA initiates
an ether movement transaction by sending a message to the receiving
EOA.

• A transaction between EOA and CA: In this case, the EOA initiates
a message call transaction, and the CA will react with the referenced
smart contract code execution.

The CA can send messages to other CAs or EOAs. Unlike the transaction,
messages are virtual objects during the execution and will not be recorded into
the blockchain.[4] If an EOA is the recipient, the recipient’s account state will
be updated and recorded in the world state. If a CA is the message recipient,
they are accepted as function calls and the associated contract code will be
executed.

12

1.2. Ethereum

1.2.5 Ethereum 2.0

The Ethereum that exists today is slow and expensive. The entire Ethereum
network is throttled at 15 transactions per second and if complex processes
are involved, the cost becomes astronomical[16]. One of the main reasons why
Ethereum lacks in so many aspects comes down to one point: the high cost of
decentralization.

These are some of the problems that Ethereum 2.0 aims to solve. Ethereum
2.0 will be able to process tens of thousands of transactions per second com-
pared to the first iteration’s 15[16]. Ethereum 2.0 also uses the Proof-of-
Stake mechanism rather than the Proof-of-Work mechanism used by current
Ethereum blockchain and Bitcoin.

1.2.6 Proof-of-Stake

View on Proof-of-Stake consensus as opposed to the Proof-of-Work one is de-
scribed as follows:

As opposed to PoW consensus, where miners are rewarded for solving cryp-
tographic puzzles, in the Proof-of-Stake (PoS) consensus algorithm, a pool of
selected validators take turns proposing new blocks. The validator is chosen in
a deterministic way, depending on its wealth, also defined as a stake. Anyone
who deposits their coins as a stake can become a validator. The chance to
participate may be proportional to the stakes they put in.[4]

As demonstrated in the Figure 1.4, the blockchain keeps track of a set
of validators, sometimes also called block creators or forgers. At any time,
whenever new blocks need to be created, the blockchain randomly selects a
validator. The selected validator verifies the transactions and proposes new
blocks for all validators to agree on. New blocks are then voted on by all
current validators. Voting power is based on the stake the validator puts in.
Whoever proposes invalid transactions or blocks or votes maliciously, which
means they intentionally compromise the integrity of the chain, may lose their
stakes[4]. Upon the new blocks being accepted, the block creator can collect
the transaction fee as the reward for the work of creating new blocks.

Overall, PoS is much more energy-efficient and environment-friendly com-
pared with the PoW mechanism. It is also perceived as more secure too. [4] It
essentially reduces the threat of a 51% attack since malicious validators would
need to accumulate more than 50% of the total stakes in order to take over
the blockchain network whereas in Bitcoin case attacker needs more than 50%
of hash power which – while still very difficult – is easier to achieve.

13

1. Theoretical background

Figure 1.4: Proof-of-Stake visualization[4]

1.3 DasContract

DasContract[5] is a working concept of model used for generating smart con-
tracts for different blockchains. It is currently still in development and was
introduced by Ing. Marek Skotnica and doc. Ing. Robert Pergl, Ph.D. from
CTU in Prague.

The DasContract is trying to solve problems with agreements, mainly legal
texts, which may contain errors and cause ambiguous interpretation. With
this type of ontological contract, rules are forced to be obeyed and ambiguity
is controlled as opposed to other currently commonly used types of agreements
shown by contract maturity model on Figure 1.5.

14

1.3. DasContract

Figure 1.5: A contract maturity model[5]

As said in the paper and shown on Figure 1.6, DasContract’s proposed
approach consists of three parts:

Human Understanding part defines a contract between multiple parties
that they need to agree on. Such a contract is a combination of legal text
and formal ontological models. The legal text in some form specifies the legal
validity of the formal model. The formal models need to be unambiguous, so
only one possible interpretation is allowed.

Technical Implementation part specifies how formal models from the
contract are transformed into a software executable code and uploaded into a
blockchain as a smart contract.

Digital Interaction is a part where people, companies and legal author-
ities can interact with the agreed upon contracts. Since the contract is in a
blockchain, the interaction is fully digital, and thanks to cryptography can also
be legally binding. Blockchain by design also provides an audit trail of all ac-
tions performed by the parties and ensures that the agreed upon contract is
executed correctly.[5]

1.3.1 DasContract structure

DasContract consists of two main parts:

• Process Model models the flow and states of the contract. Process
model defines activities which are providing logic to the states used in
process model .

• Data Model defines entities and their properties used in the contract.

15

1. Theoretical background

Figure 1.6: A proposed concept architecture used by DasContract[5]

1.3.1.1 DasContract file structure

Generated file with .dascontract extension is XML file consisting of contract’s
ID, name and processes. Each process is further divided into:

• Diagram for saving the original process model, commonly but not lim-
ited to as BPMN format. Other example could be XML generated from
Blockly graphical language https://developers.google.com/blockly.

• Sequence flows connecting activities and gateways with source and
destination attributes.

• Process elements including activities and gateways.

• Entities with properties as representation of contract’s data model.

1.3.2 DasContract designer

DasContract can be – as of writing this paper – generated by DasContract
Editor[17] found on https://dascontracteditor.azurewebsites.net/. This editor
uses BPMN diagram for its process model part of contract, currently imple-
menting start and end events, sequence flows, three types of tasks and two
types of gateways:

• User task converts into smart contract’s public function that can be
executed either by designated or any user of the blockchain, depending
on contract’s design. At the time of writing the user task can’t have
any other executable code than proceeding to next object in sequence
flow and mapping its parameters to data model, however custom smart
contract code part is planned by DasContract developers as one of the
next features.

• Script task is used for the code that is specific for the contract and can’t
be automatically generated. This may include transferring specific sum
of money to some account or making custom logic inside smart contract.

16

1.3. DasContract

Script task converts into private functions that can’t be executed by
anyone and it’s execution depends completely on sequence flow.

• Business task is using decision table to transform input to output.

• Exclusive gateway inherits its functionality from BPMN model and
chooses the path based on conditions of sequence flows going out from
the gateway.

• Parallel gateway allows executing multiple tasks independently on
each other. As opposed to its BPMN implementation, in DasContract
parallel gateways work a little bit differently and don’t need to be joined
into one thread.

Example of primitive contract using user task, script task and parallel gate-
way is shown on Figrue 1.7. It is very simplified example for demonstrative
purposes only and by no means should be used in production solution since
it has some security flaws. This scenario works as escrow service for selling
items that are represented by non-fungible token on blockchain. Right after
start event follows parallel gateway which splits program to two subprocesses
which both have to completely execute to continue with the program after
joining in the second gateway. There are two user tasks where seller sends
the token to escrow (to the contract address) and buyer pays for the item and
sends given amount of money (e.g. tokens backed up by USD like Tether) also
to the escrow. Finally, when both of these events are completed, the last task
is processed and since it is script task, it automatically execute given code
and sends money to seller and the item to buyer.

Figure 1.7: Example process model of DasContract using DasContract de-
signer

17

1. Theoretical background

1.3.2.1 BPMN

Slightly modified BPMN notation is heavily used in the DasContract edi-
tor and is currently one of the main process modelling notations used by
DasContract itself. The following paragraph describes the BPMN language:
The Business Process Modeling Notation (BPMN) is visual modeling language
for business analysis applications and specifying enterprise process workflows,
which is an open standard notation for graphical flowcharts that is used to de-
fine business process workflows. It is popular and intuitive graphic that can be
easily understand by all business stakeholders, including business users, busi-
ness analysts, software developers, and data architects.[18]

1.3.3 Comparison with Caterpillar

There aren’t many competitors, however project called Caterpillar is very simi-
lar and can be found on https://github.com/orlenyslp/Caterpillar. Caterpillar
uses TypeScript as programming language opposed to DasContract’s smart
contract generator that is written in C#.

Caterpillar doesn’t share complexity DasContract’s solution and is avail-
able only for BPMN to Ethereum smart contract conversion instead of multiple
choice of input graphical language and multiple choice of output blockchain
solutions for smart contract. It is however much more developed and with its
features exceeds DasContract in the current form.

Caterpillar’s advantages are: REST API, currently better support for
BPMN-to-Solidity conversion and better documentation.[19]

Disadvantages include single choice of BPMN-to-Solidity conversion while
DasContract supports multiple choices on both sides and non-active develop-
ment – at the time of writing the last major update was 14 months ago and
last commit 7 months ago, while DasContract is still being actively developed.

1.4 Chapter summary

This chapter consisted of some theoretical background that is good to know
for understanding this paper and implementation of practical part of thesis.

First part was dedicated to blockchain as a whole, the history, idea behind
it, cryptographic techniques, principle and consensus algorithms. Bitcoin as
the first blockchain implementation and important part of the history was also
more discussed as were other popular blockchains and their use cases.

The second section was about Ethereum, the blockchain which this thesis
uses as basis for its practical part, where Solidity code – the Ethereum’s
smart contract language – is generated. Other topics discussed include tokens
in Ethereum, Oracles as source of off-chain information or the soon coming
Ethereum 2.0.

18

1.4. Chapter summary

Last part described DasContract from which are the smart contracts in
practical part generated. We were looking to idea behind it, structure and
components as well as similar project Caterpillar which we have compared
DasContract to.

19

Chapter 2
Evaluation of Ethereum

strengths and weaknesses

In Chapter 2 we will look to different generations of blockchain projects, what
is defining for each one and which is currently the best for use case of this
thesis. Next we assess strengths and weaknesses of Ethereum blockchain and
make conclusion out of them.

2.1 Three generations of blockchain

As said in Chapter 1, large amounts of different implementations of blockchain
were developed since Bitcoin whitepaper was released. The community distin-
guish between three generations and before we get into evaluation of Ethereum
itself, let’s compare differences between generations and decide why the second
one is in the current situation the best option for writing semi-production-
ready smart contracts:

• First generation allows simple transactions like token transfer that
brought to the general public practical example of how blockchain works.
Examples are Bitcoin or Litecoin and its tokens (also known as cryp-
tocurrencies) should have been used mainly for payment as decentral-
ized and unregulated currency. The first generation is here for more
than a decade and is currently very stable and with minimum of bugs
and security threats.

• Second generation is where blockchains started to orientate more to
the way of smart contracts that should (among other use cases) support
current monetary systems around the world, making them better, faster
and more secure, instead of replacing it. The tokens are now more often
representing real life objects and money as opposed to trying to replace

21

2. Evaluation of Ethereum strengths and weaknesses

them. The most known representative of second generation is Ethereum,
released to the public in 2015.

• The main features of the third generation are wider functionality and
better design that allows avoiding such problems as poor scalability.
Another feature common for the third generation of blockchains is the
ability to process crosschain transactions. The rest notable features are
inbuilt compliance and governance and improved mechanism of smart
contracts (inbuilt formal software verification). The Proof-of-Work is
usually replaced by other consensus mechanisms (e.g. Proof-of-Stake or
Proof-of-Authority).[20] Most known examples of the third generation
are Cardano, EOS or VeChain, all mentioned in section 1.1.5.

Overall the third generation looks very promising and definitely as an im-
provement to the second one. However blockchains included in this generation
are very young and immature, large portion of them aren’t even completed
and production ready and even those that are in use still have very recent
security breaches, e.g. VeChain’s lost of tokens worth $6.6M in December
2019.[21]

On the other hand Ethereum is years without major breaches. And while
still not completely ideal because of relatively high fees for transactions and
Proof-of-Work consensus, it is currently the best compromise between security
and functionality. That being said, in Ethereum 2.0 update, Ethereum will
switch to Proof-of-Stake consensus algorithm making it more secure, cheaper
and faster while – hopefully – keeping its reliability.

2.2 Ethereum’s strengths

Majority of blockchains allow the smart contracts which is all we need for
DasContract’s output. There are however few features and qualities that
make Ethereum the better option. These include:

• Reliability - Ethereum is running on production version for 5 years
and at time of writing is 2nd most valued cryptocurrency (behind Bit-
coin) with $29.5B. High value of blockchain of course isn’t necessarily
benefit, although it represents the trust of reliability and stability of the
blockchain that other people and companies have in Ethereum.

• Security - As stated in section 2.1, Ethereum is in its current state
very secure with no breaches in last years. Of course Ethereum still
uses Proof-of-Work consensus algorithm that is vulnerable to 51% at-
tack, where single person or co-working group of people own more than
50% of hashing power on the blockchain and may then authorize fake
transactions. This type of attack is currently still possible in Ethereum,
however with great difficulty. According to https://www.crypto51.app/

22

2.3. Ethereum’s weaknesses

1 hour of attack would theoretically cost almost $200,000.[22] This may
not sound like a large sum of money for the ability to attack $29.5B
blockchain and it indeed isn’t. There is second problem - on the largest
platform for buying hash power, there is currently only 4% of required
power available for renting and buying dedicated hardware would cost
tens of millions of dollars.

• Decentralization - one of the advantages of Proof-of-Work algorithm
is high decentralization – if the blockchain is popular and rewards are
attractive for people mining new blocks. This is the case of Ethereum
and because of that, nodes are located all over the world. Majority of
them are in Europe and North America, on the other hand some may
be found in countries like Kenya, Mauritius or Ghana [23]. The decen-
tralization is important to ensure no political decision, natural disaster
or other disturbtion in one part of world would not make blockchain
unusable.

• Solidity, developer base, documentation - Even the flawless, best
possible blockchain would be no good for real world usage without smart
apps, their developers and users using them. This is where Ethereum
has the edge over any other blockchain. Even though is slower than
newer third generation ones with Proof-of-Stake consensus, Ethereum
runs much more decentralized apps than any other public blockchain.
Users of the apps don’t even have to know on which blockchain is the
app running or how it is implemented. This decision is on developers
and they usually tend to go easier and proven way of well documented
platform such as Ethereum/Solidity tandem, especially when the app
should be used in production.

• Ethereum 2.0 - With 2.0 update comes significant change from old
Proof-of-Work consensus algorithm to the newer and universally ac-
claimed as better one Proof-of-Stake. Thanks to this change, Ethereum
will dramatically increase network bandwidth and reduce gas cost per
transaction meaning transactions will become faster and cheaper. On
top of this user benefit, security of the Ethereum will increase. The
51% attack on Proof-of-Stake blockchain would require holding more
than 50% of all ether tokens, which would be with current prices around
$14.75B. In essence, 2.0 update will upgrade Ethereum to the third gen-
eration of blockchains.

2.3 Ethereum’s weaknesses

• Proof-of-Work - Although Proof-of-Work consensus will be abandoned
by Ethereum soon, there might be delays caused by failures in test-
ing networks and we need to still count with Proof-of-Work as current

23

2. Evaluation of Ethereum strengths and weaknesses

consensus algorithm with its weaknesses that were already mentioned
including bad scalability, high transaction fees or easily achieved 51%
attack as opposed to Proof-of-Stake.

• High transaction fees - With every transaction either to transfer to-
kens or to execute smart contract, gas has to be sent along with the
transaction. The fees go to block creators as reward for being part of
the network and producing new blocks. With Proof-of-Work algorithm,
Ethereum achieves around 15 transactions per second (TPS), however
Ethereum 2.0 Proof-of-Stake on testing network achieves around 7 000
TPS with vision of 100 000 TPS in 2-year horizon.[24] Rewards will on
the other hand remain very similar and transaction fees will then be up
to 5000 times lower. Currently the fees are around $0.36 per transaction
when the network isn’t saturated.[25] In peaks, fees may exceed $1 and
while for some large currency transfers this fee is completely fine, for
smart applications using smart contracts the fee is not acceptable and
would not be profitable in production.

• Ethereum 2.0 - The new update will be definitely advantage, if every-
thing goes well. Developers of Ethereum are deploying public testing
networks and they are making sure everything goes smoothly. If it for
any reason does not however, they will have big problem. And that
counts not only for the transition itself, but even for some security er-
rors that might be in code of update. Current version is stable and
secure, but what if the 2.0 after launch won’t be? Then a lot of users
and developers might be searching for alternative and it could be very
hard obstacle to overcome for Ethereum.

• Other blockchains - This isn’t directly Ethereum’s fault, however as
time goes by, new, more powerful blockchains are released and commu-
nity around them is making them better and more secure. They all
have one major advantage – don’t have to assure backwards compatibil-
ity and smooth transition from one version to another like Ethereum has
to. This means the development of such blockchains is faster, cheaper
and they can come with some revolutionary ideas, e.g. connection of AI
and blockchain. Such blockchain would have great competitive advan-
tage over Ethereum and developer might transfer over to the newer and
better one.

2.4 Chapter summary

Ethereum is one of the most mature public blockchains out there. It has a
lot of advantages over competitors, mostly coming from the popularity. There
are however some functionalities that could be improved and Ethereum de-
velopers are addressing them and will try to improve them in the next major

24

2.4. Chapter summary

update Ethereum 2.0 coming later in 2020.

To sum up and for clarity follows Table 2.1 with strengths and weaknesses
of Ethereum blockchain:

Strengths Weaknesses
Reliability Proof-of-Work consensus
Security High transaction fees

Decentralization Ethereum 2.0 (possible errors)
Documentation Other competitive blockchains

Ethereum 2.0 (PoS consensus)

Table 2.1: Ethereum strengths and weaknesses

25

Chapter 3
Analysis and design

In this chapter we will look deeper into Solidity code, explain some specific
parts of the language. We will explain how exactly the DasContract code is
converted to them using .NET Core platform and C# language. Those parts
include different variable types, global variables, modifiers, functions, their
visibility and linking them together with sequence flows in Ethereum smart
contract code.

3.1 Design

3.1.1 Implementation requirements

In .NET Core framework implement program that will convert given DasCon-
tract file to Solidity smart contract code. The solution should include unit
tests as separate project and the Solidity output should be be manually tested
and debugged in Remix[26] IDE.

3.1.2 Class diagram

Proposed class diagram shown on Figure 3.1 consists of three parts. The
ProcessElement class is already implemented as an abstraction of the Das-
Contract. This thesis therefore develops the other two abstract classes and
their subclasses. SolidityComponent classes solve transformation of the ini-
tialized class objects to Solidity code. ElementConverter classes are con-
verting objects from DasContract abstraction by taking ProcessElement as
constructor parameter and returning initialized SolidityComponent with all
parameters from the DasContract object.

27

3. Analysis and design

Figure
3.1:

C
lass

diagram
ofthe

program

28

3.2. Code generating from DasContract to Solidity

3.2 Code generating from DasContract to Solidity

We will now explain the logic of program in the practical part and how it
converts simple DasContract file to the Solidity code of smart contract.

Each part of Solidity language generation will be demonstrated on a snip-
pet of code from our testing DasContract file which diagram is shown at Figure
1.7. The DasContract code is generated by DasContract Editor[17].

3.2.1 Solidity file structure

3.2.1.1 Pragmas

Every Solidity file starts with with one or more pragma keywords[27] that are
used to enable certain compiler features or checks.

The first and most important pragma keyword is the one declaring ver-
sion of Solidity language that should be used and is mandatory. The version
pragma is used as follows: pragma solidity ˆ0.6.6;. This statement means
the code will only be compiled with any Solidity compiler version lower than
0.6.6. However the ˆ symbol allows to use higher compiler version 0.6.x
where x >= 6 since these are only minor language changes and shouldn’t break
code compilation. This won’t however enable versions 0.7.0 upwards.

In DasContract, there isn’t currently implementation of Solidity version
directly in model and has to be defined directly in code generator program or
changed in generated Solidity code.

Experimental pragmas are still in the experimental stage and aren’t cur-
rently supported by DasContract, although they may be implemented at later
time so we will list them to be complete:

• pragma experimental ABIEncoderV2 is used for decoding nested struc-
tures in Solidity [27]. This also allows usage of structure as parameter
of non-public functions.

• pragma experimental SMTChecker can find safety warnings in code as
protection from attackers, e.g. when using inappropriate variable types,
and list them as warnings.

3.2.1.2 Imports

Importing source code from another files is standard across vast majority
of programming languages and Solidity is no exception. Same as pragmas,
imports are not handled by DasContract model and they need to be directly
defined in the generator program or added afterwards in the generated Solidity
code.

Imports are available for both local offline importing (import filename)
and online storage, mostly used for importing ERC token definitions, e.g.

29

3. Analysis and design

for using ERC-721 token interface import "https://github.com/OpenZepp-
elin/openzeppelin-contracts/blob/release-v3.1.0/contracts/token/-
ERC721/IERC721.sol";.

3.2.2 Variables

Solidity variables are in the program generated from different parts of DasCon-
tract code. Most of them are generated from user defined data model directly
into structures. Then there are internal variables which users don’t directly
interact with, instead they are helping to remember the contract state. These
include integer counters for parallel gateways and arrays for storing active
states and address mappings from user’s names to their addresses.

3.2.2.1 Global variables

Solidity defines large number of global variables and properties that can be
used without declaration in any part of smart contract. We won’t be listing
all of them, only the ones important for current DasContract state and the
Solidity code generator implementation.

Message variable msg refers to the current transaction that is being pro-
cessed by smart contract and defines several properties:

• msg.value defines the amount of ether sent with the transaction. This
property is especially useful with payable methods, allowing claim some
or all of the sent amount to the smart contract.

• msg.sender stores the address of the transaction sender. This address
is stored in the generated smart contract to the mapping of user names
that are optionally defined in DasContract’s activities.

The gasleft() method returns amount of gas remaining for transaction
execution. When the gas reaches 0, the transaction is automatically reverted
and not stored in blockchain without needed to use the function. It can
be however used for transactions that we know in advance to require large
amount of gas and we don’t want the sender to spend all the gas when the
transaction would be reverted. We can then use require() statement and
stop the transaction right away. E.g. if we know that the transaction will
consume more than 300 000 gas, we can use require (gasleft() >= 300
000) statement. This way the transactor will lose only the gas needed to
process this one function instead of all of 300 000 gas.

3.2.2.2 Variable types

There are different types of variables, mostly the same as in other languages.
In this section, we will take a look at atypical variables that are present only
in Solidity and other smart contract languages or at the ones that are similar

30

3.2. Code generating from DasContract to Solidity

to typical variables, however used differently.

Address as the name suggests holds 20 byte value, exactly the size of
Ethereum address[27]. The address variable implements three functions, the
only important one for our purposes is address.balance(). It is public func-
tion, allowing anyone on the blockchain check addresses balances of both ether
and ERC tokens.

Address payable is extension of the simple address variable. The only
difference is implementation of another two functions – address.send() and
address.transfer(). Both functions are used to send ether from one Ethereum
address to another. The only difference is address.send() returning false
on failure and the address.transfer() reverts the whole transaction. Both
are perfectly usable and depends on use case of the contract function.

The address (payable) variables are both included in DasContract code
as shown in this code snippet:

<Primit iveContractProperty>
<Name>Sender</Name>
<Type>AddressPayable</Type>

</ Pr imit iveContractProperty>

This code transfers to address payable Sender = address(0x0); in the fi-
nal Solidity code generated by the program.

Structures are supported by Solidity language and heavily used in gen-
erated Solidity code. They have however some limitations in contrast to other
languages. Structures in Solidity:

• can’t contain a member of its own type because Solidity code has to
ensure limited size of the structure and it isn’t possible with possibility
of infinite structure nesting.

• can’t be used as parameters in functions by default. They may be used
as parameters with usage of experimental pragma ABIEncoderV2, even
then there are limitations such as the structure can’t contain mapping
datatype.

• can’t contain any methods or method references.

Now let’s take a look at example of one entity from our example. This will
be the Item entity with primitive properties ItemPrice, Name, ItemTokenID
and reference property Payment which is another entity in our DasContract.
The Item entity follows:

<ContractEnt ity>
<Id>c59258cb−1147−4c8f−8951−d162e31e4ade</ Id>

31

3. Analysis and design

<Name>Item</Name>
<P r i m i t i v e P r o p e r t i e s>

<Primit iveContractProperty>
<Id>28b4b696−b6db−45ea−afb2−9f 0 3 6 f 9 5 f 3 e 3</ Id>
<Name>ItemTokenID</Name>
<IsMandatory>t rue</ IsMandatory>
<Type>Number</Type>

</ Pr imit iveContractProperty>
<Primit iveContractProperty>

<Id>3 aad96f6−123e−417 f −8081−56122d27264a</ Id>
<Name>I temPrice</Name>
<IsMandatory>t rue</ IsMandatory>
<Type>Number</Type>

</ Pr imit iveContractProperty>
<Primit iveContractProperty>

<Id>8bce912a−0052−4445−8a48−a2d7448df742</ Id>
<Name>Name</Name>
<IsMandatory>t rue</ IsMandatory>
<Type>Text</Type>

</ Pr imit iveContractProperty>
</ P r i m i t i v e P r o p e r t i e s>
<Re f e r encePrope r t i e s>

<ReferenceContractProperty>
<Id>0740074a−c8a3−4394−ad18−a7ba812c5b57</ Id>
<Name>Payment</Name>
<IsMandatory>t rue</ IsMandatory>
<Ent i tyId>213 b58fa−1c84−4343−9250−70050 f6a972b
</ Ent i tyId>
<Type>S ing l eRe f e r ence</Type>

</ ReferenceContractProperty>
</ Re f e r encePrope r t i e s>

</ ContractEntity>

Each entity begins with ContractEntity XML element followed by Id
which is used in the transformation program as internal identifier that is how-
ever not transferred to the Solidity code, where is the structure’s name is
defined by Name element’s value.

Next follows PrimitiveProperties and ReferenceProperties elements
each containing one or more PrimitiveContractProperty and ReferenceCo-
ntractProperty, respectively. Each of them contain elements Id for identi-
fication, Name used as variable name and IsMandatory which isn’t used by
converter and will be used for another parts of the whole DasContract project.

The differences between primitive and reference properties are in types.
While primitive property defines standard variable types like Text (string

32

3.2. Code generating from DasContract to Solidity

in Solidity code) or Number (uint256 in Solidity code), reference property
defines type by combining Type and EntityId elements. Type can be either
SingleReference for simple variable or CollectionOfReferences for array.
The EntityId then defines which structure should be used as the variable
type. In this example value of EntityId refers to Id of Payment entity.

After defining the structure members we need to initialize variable of the
given structure. The name of generated structure in Solidity code always
begins with capital letter and the variable has the same name except the first
letter is small. To initialize structure, we need to know the default values
– default values of primitive data types are defined in our generator. For
reference variable we have to initialize the reference structure Payment inside
our defined structure Item.
Finally, the generated code looks like this:

s t r u c t Item{
uint256 itemTokenID ;
uint256 i temPr ice ;
s t r i n g name ;
Payment payment ;

}
Item item = Item ({ itemTokenID : 0 , i t emPr ice : 0 , name : ”” ,
payment : Payment ({ sender : address (0 x0) , amount : 0})}) ;

Mapping types are declared as mapping(KeyType => ValueType)[27].
KeyType can be any primitive data type, while ValueType may also include

another mapping or structure. Mappings are basically hash tables where ev-
ery possible key exist and are virtually initialized to the default value of the
ValueType.

Mappings don’t have any iterator or way to get all initialized keys. That
means that for most use cases it is needed to remember keys vector. This way
can be implemented automatically expanding arrays with the mapping itself
being array and helper integer that stores last index of array as implemented
in the Solidity code generator.

When generating smart contract from DasContract file, there are always
at least two mappings shown below. The addressMapping is used for stor-
ing specific address to address identifier from user tasks in DasContract. The
activeStates mapping stores states and their status (true or false) whether
they can be executed or not.

Mappings example from generated Solidity code:

mapping (s t r i n g => address) pub l i c addressMapping ;
mapping (s t r i n g => bool) pub l i c a c t i v e S t a t e s ;

33

3. Analysis and design

3.2.3 Functions

The majority of generated code from DasContract to Solidity are functions
and modifiers. Firstly we will go through functions.

There are several parts of DasContract code from which are functions
generated. First of them is constructor function:

<ContractProcessElement x s i : t y p e=” ContractStartEvent ”>
<Id>StartEvent 1nygn6s</ Id>
<Incoming />
<Outgoing>

<s t r i n g>Flow 0854rbi</ s t r i n g>
</Outgoing>
<StartForm>

<Id>19 e60caf −638e−4cc4−9a5c−49931 ac26397</ Id>
<F i e l d s />

</StartForm>
</ ContractProcessElement>

As seen from this example, start events are the only ones without in-
coming sequence flows and are defined by xsi:type="ContractStartEvent"
attribute. DasContract is currently limited to only one start event and the
function generated from start event is constructor function. This constructor
executes when the smart contract is deployed to the Ethereum blockchain and
does only one thing – activates the next element in the flow.

Generated Solidity example from code above:

c on s t ruc to r () pub l i c payable {
Gateway 1mcm5twLogic () ;

}

The next type of generated functions are gateway functions. In DasCon-
tract, there are two types of gateways, exclusive and parallel. In the example
contract, the parallel gateway is implemented as follows:

<ContractProcessElement
x s i : t y p e=” ContractParal le lGateway ”>

<Id>Gateway 17ps7az</ Id>
<Incoming>

<s t r i n g>Flow 146x4ic</ s t r i n g>
<s t r i n g>Flow 05upkfb</ s t r i n g>

</ Incoming>
<Outgoing>

<s t r i n g>Flow 09gz9ue</ s t r i n g>
</Outgoing>

</ ContractProcessElement>

34

3.2. Code generating from DasContract to Solidity

The converter logic looks to the number of elements inside Incoming and
Outgoing. The generated function of parallel gateway logic activates all
Outgoing flows. If there are multiple Incoming flows, the counter for the
gateway is generated to the Solidity code, in this example the counter is de-
fined at the top of smart contract as int Gateway 17ps7azIncoming = 0;
and it increases every time the flow reaches the gateway. When the counter
value is equal to the number of flows incoming to the gateway, only then the
gateway logic is executed.

The parallel gateway Solidity code from the example (”SendItemToBuyerand-
MoneyToSeller” activity name is replaced by ”SITBAMTS” for the document
formatting reasons):
f unc t i on Gateway 17ps7azLogic () i n t e r n a l {

i f (Gateway 17ps7azIncoming==2){
Act iveSta te s [”SITBAMTS”] = true ;
SendItemToBuyerandMoneyToSeller () ;
Gateway 17ps7azIncoming = 0 ;

}
}

The exclusive gateway isn’t represented in the example contract. Con-
verter program takes the outgoing flows and based on conditions – stored as
outgoing flows names – makes decision which of the next element’s functions
to activate. Thanks to its exclusivity, there is no need for counter like in the
parallel gateway and the function of gateway logic will execute immediately
first time it activates.

Last implementations of functions in the DasContract are activities. User
activities can accept parameters and save them to contract data model us-
ing property binding logic. The XML code snippet of PayForTheItem user
activity (PropertyIds shortened):
<ContractProcessElement x s i : t y p e=” ContractUserAct iv i ty ”>

<Id>Act iv i ty 07vsk5o</ Id>
<Name> [Buyer] Pay For The Item</Name>
<Incoming>

<s t r i n g>Flow 0 lo sk j c</ s t r i n g>
</ Incoming>
<Outgoing>

<s t r i n g>Flow 05upkfb</ s t r i n g>
</Outgoing>
<Form>

<Id>7664 f788−9fda−426a−a806−40cf7a974d03</ Id>
<F i e l d s>

<ContractFormField>

35

3. Analysis and design

<Id>143233d4−5190−4aa3−9645−d4ba2b7f1916</ Id>
<Name>Sender</Name>
<Label>Sender</ Label>
<ReadOnly> f a l s e</ReadOnly>
<PropertyBinding>

<PropertyId>ecae65e5−70e0−4803</ PropertyId>
</ PropertyBinding>

</ ContractFormField>
<ContractFormField>

<Id>d338872c−e65e−4a0c−a6bd−bcb47882f6c9</ Id>
<Name>Amount</Name>
<Label>Amount</ Label>
<ReadOnly> f a l s e</ReadOnly>
<PropertyBinding>

<PropertyId>512 cc04a−c282−4759</ PropertyId>
</ PropertyBinding>

</ ContractFormField>
</ F i e l d s>

</Form>
</ ContractProcessElement>

Same way as gateway functions, activity functions have incoming and out-
going sequence flows, only this time there must be exactly one incoming and
one outgoing flow.

The ContractFormField elements contain information about function pa-
rameters and their binding to the string instances created from data model.
The important elements include the Name element defining parameter name
and PropertyBinding which defines parameter type and variable where to
save the parameter value. This is done in the generator logic using PropertyId
which is matched with the actual variable.

Another important feature of the activity is its name prefix in parenthesis,
in this example [Buyer]. This is optional feature enabling function execution
to only one address. The first time in the flow, any address can execute such
function, however next time some function has the same prefix name, only the
address used to transact the first function with that prefix can be used.

The Solidity generated code of the example PayForTheItem function (for-
matting slightly changed):

f unc t i on PayForTheItem
(address payable Sender , u int256 Amount)
isPayForTheItemState isPayForTheItemAuthorized pub l i c {

Act iveSta te s [” PayForTheItem ”] = f a l s e ;
payment . sender = Sender ;
payment . amount = Amount ;

36

3.2. Code generating from DasContract to Solidity

Gateway 17ps7azIncoming += 1 ;
Gateway 17ps7azLogic () ;

}

The script activities are always internal or private, hence non-transactable
directly by blockchain users. Activities are instead run when the sequence
flow reaches them, usually after user transact the user activity.

Each script activity is empty by default, only with changing active states
in the activeStates mapping. The actual logic has to be added manually in
the DasContract editor. When generating the Solidity code, script is added
to the body of function generated from the activity.

We will now look at the DasContract XML snippet (slightly formatted):

<ContractProcessElement
x s i : t y p e=” Cont rac tSc r ip tAct i v i ty ”>

<Id>Act iv i t y 16 s r07p</ Id>
<Name>Send Item To Buyer and Money To S e l l e r</Name>
<Incoming>

<s t r i n g>Flow 09gz9ue</ s t r i n g>
</ Incoming>
<Outgoing>

<s t r i n g>Flow 1un501e</ s t r i n g>
</Outgoing>
<S c r i p t>transferItemAndMoney () ;</ S c r i p t>

</ ContractProcessElement>

The code is the same as in user activity case with two exceptions. Script
function doesn’t accept any parameters and it has Script element containing
the script that will execute with the function. In this example it is only one
line function, it can however be as long as needed.

This XML will translate to the Solidity code below (slightly formatted):

f unc t i on SendItemToBuyerandMoneyToSeller ()
isSendItemToBuyerandMoneyToSellerState i n t e r n a l {

Act iveSta te s [”SITBAMTS”] = f a l s e ;
transferItemAndMoney () ;
Act iveSta te s [” Event 1nfb3wk ”] = true ;

}

3.2.3.1 Visibility

Solidity distinguishes between four types of visibility: external, public,
internal and private. The Solidity code generator although uses only the

37

3. Analysis and design

public and internal ones.
Internal functions may be transacted only internally and by contracts

deriving from the one which is implementing them.
Public functions can be transacted by any other smart contract as well

as by messages sent by users (addresses). It theoretically creates issue where
users can skip functions in the flow. Every function – even internal – is
however guarded by modifier allowing only active functions to be executed
and the other ones are automatically reverted.

3.2.3.2 Modifiers

Function modifiers in Solidity can be used to change the behaviour of functions
in a declarative way [27]. They can add functionality to the function or restrict
access to them by checking condition and if not fulfilled, the function will
revert to the previous state. In the generated code, three different modifiers
are being used.

The first one is payable modifier that allows the function to accept pay-
ments in ether. The ether amount is sent together with message and differs
from the gas sent. Receiver will always receive the full amount of sent ether,
fees are paid from the gas and if there isn’t enough gas, the transaction will
revert instead of paying rest of the fee from ether sent with transaction. Ev-
ery payable function has to be public since addresses have to be able to send
ether to the smart contract via these functions.

The other two modifiers used in generated Solidity codes are defined in
the code and are also generated.

One of them is responsible for checking whether the state is active by look-
ing up the function name in ActiveStates mapping. Thanks to this modifier
the sequence flow can’t be hacked and only the state(s) next in the flow may
be executed. Name of such modifier is derived from function name with prefix
is- and suffix -State.

Example of generated is-State modifier:

mod i f i e r isPayForTheItemState{
r e q u i r e (i s S t a t e A c t i v e (” PayForTheItem”)==true) ;

;
}

The second of custom modifiers checks whether the transacting address is
authorized to transact the function. It checks whether some address is already
mapped to the alias used in square brackets of the activity name and if so,
only this address can transact given function. If on the other hand no address
is assigned (marked as default address value 0x0), the currently transacting
address is mapped to the alias name. Name of this modifier is also derived
from function name with prefix is- and suffix -Authorized.

38

3.3. Chapter summary

Example of generated is-Authorized modifier:

mod i f i e r isPayForTheItemAuthorized{
i f (addressMapping [” Buyer”]== address (0 x0)){

addressMapping [” Buyer ”] = msg . sender ;
}
r e q u i r e (msg . sender==addressMapping [” Buyer ”]) ;

;
}

3.2.4 Error handling

Solidity provides two basic functions for error handling – assert and require.
Both functions accept boolean expression as parameter and throw exception
when the expression evaluates as false. The generator uses only require
function as it is recommended to use for user input errors and state checks[27].
The assert function should be only used to test for internal errors.

The generator is only using require function in modifiers bodies as demon-
strated on example codes above in is-State and is-Authorized modifiers.
Error checking functions are however not limited to usage only in modifier
and can be also used in function body, e.g. in script of script activity.

3.3 Chapter summary

This chapter described process of transformation code from DasContract file
format to Solidity smart contract code.

Chapter also consisted of some of the Solidity language similarities and dif-
ferences from standard programming languages and described the challenges
that come with it and how it is solved by the program that was developed as
part of this thesis.

Finally, we went through both XML and Solidity code of the item escrow
example project and discussed the conversion process.

39

Chapter 4
Implementation

Chapter 4 will discuss the implementation of program from practical part
starting from used technologies and code generating flow, to the Proof-of-
Concept implementation, the example usage of DasContract solution with
mortgage use case included with the program. We will take a look at selected
specific activities as well as flow of the contract as a whole. Last topic included
in this chapter are two different approaches to testing that were used, unit
testing and manual testing of the generated Solidity code.

4.1 Used technologies

Essential technologies and tools used for the practical part of this thesis in-
clude:

• .NET Core, a free cross platform framework, successor to .NET Frame-
work. The entire code generator from DasContract to Solidity was writ-
ten in C# language using the .NET Core 3.1 framework.

• Remix found on https://remix.ethereum.org/ is a tool for running
and testing smart contracts outside of blockchain. It was very helpful
when testing generated smart contracts as it doesn’t require any setup of
own blockchain and runs locally in web browser[26]. Remix also outputs
compilation errors and warnings as well as implements decent debugger
while the smart contract is deployed.

4.2 Code generating flow

So far we have discussed how the individual parts of code are generated from
the DasContract file. In this section we will take a look at how exactly the
program flow proceeds.

41

4. Implementation

The program structure respects contract diagram as shown on Figure 4.1
and starts with Contract class which is filled with all entities, flows and their
attributes by XML parsing of the DasContract file.

Figure 4.1: Contract Diagram[6]

Afterwards, generating of Solidity code from the Contract class begins.
New SolidityContract class is initialized consistsing of list of SolidityCom-
ponents that is further appended. Firstly the two mappings mentioned in
section 3.2.2.2 are added to the contract outside of algorithm as well as
isStateActive function. At this time, the data model is also added – in
form of structures.

Next, the main algorithm begins. The IterateProcess method uses BFS
algorithm to go through every element and add it to the SolidityContract
object, starting from the unique StartEvent (Solidity contract constructor).

When this process is completed, output Solidity contract string can be
generated by GenerateSolidity method. SolidityContract and all compo-
nents are using LiquidString as templates.

42

4.3. Mortgage Proof-of-Concept

4.3 Mortgage Proof-of-Concept

The current state of mortgage acceptance process is described in paper by Ing.
Barbora Hornáčková [7] as follows:

The mortgage contract is a complex process involving several parties, depen-
dent processes, level of trust between parties and a lot of documents proving
results of auxiliary processes; Notarization is involved for all parts. These
aspects all contribute to overall complexity and costs of the process. Thus
it appears as a good use case, where modeling by DEMO would capture the
essence of the process and a smart contract could offer an automated nota-
rization, data sharing between parties and payment processing, thus reducing
the need of manual processes, as illustrated in Figure 4.2.

Figure 4.2: Mortgage process changed using smart contract[7]

As stated in the citation, mortgage contracts are complex currently very
expensive and time consuming processes while also prone to human mistakes.
This is where the modern technologies, specifically blockchain and smart con-
tracts, could help.

Writing the smart contract with all loopholes in mind can be however as
difficult as the current process. This is where DasContract helps, providing
easy to understand interface of graphical modelling, while the production of
smart contract code is taken care of by background processes. This same or
slightly changed model can be further reused in multiple similar cases, e.g. in
our use case example the same smart contract code can be used for as many
mortgage contracts as needed with no changes at all, or only minor ones like
indemnity terms or minimal down payment.

43

4. Implementation

4.3.1 Mortgage Proof-of-Concept diagram

For the mentioned mortgage contract use case, the DasContract diagram was
designed[6]. The slightly modified of this contract is shown on Figure 4.3.
This model, while detailed, is still not in production ready state and should
not be used in real world circumstances.

44

4.3. Mortgage Proof-of-Concept

Fi
gu

re
4.

3:
M

or
tg

ag
e

di
ag

ra
m

in
D

as
C

on
tr

ac
t

ed
ito

r[8
]

45

4. Implementation

As seen on the diagram, four parties are involved, marked as Borrower,
Insurer, Property Owner and Lender. The Borrower starts the contract by
transacting the first activity and filling details about the mortgage contract
as parameters.

Next, two parallel gateways follow. The first one gives Borrower choice to
cancel application up to the point where the contract is validated. The second
parallel gateway opens the states for other parties to accept or decline their
involvement in the contract with its parameters as filled by Borrower. If one
or more parties don’t agree to the terms, contract will not validate, ends and
returns any escrow money or property tokens to the original owners.

After the contract’s successful validation the Property Owner is paid the
money for his property and is out of scope for the rest of contract. Then
another parallel region begins.

On one side of the parallel region is the regular payment logic, where
Borrower pays for the mortgage in monthly payments. Monthly payments
are however in this simplified use case replaced by the predefined total value
of mortgage and is considered being behind payment schedule if the sum of
payments is lower than monthly payment multiplied by number of payments
made. If this is the case, Insurer will check whether or not were indemnity
terms met. If so, Insurer will pay the required amount for this month instead
of Borrower. With each payment, most of the money goes to Lender, while
a small percentage is claimed by Insurer. After the mortgage is paid in its
entirety, the property is automatically transferred to Borrower.

Second parallel region is for the Lender to use in case he isn’t receiving
money which means that Borrower is not paying his monthly fee and neither
is Insurer because the indemnity terms are not met. In that case Lender will
request for Borrower’s default and the terms are verified. If the verification
process passes, Lender will pay proportion of money (defined in terms) to
Borrower and the property is transferred to Lender.

4.3.2 Code example

Both DasContract and Solidity code examples were already explained in Chap-
ter 3. Here we will however show and explain the important logic of our
example mortgage use case contract – the generated Mortgage structure and
Solidity code provided in script activities. The code was generated by program
developed in practical part of this thesis and is publicly available under MIT
Licence on https://github.com/CCMiResearch/DasContract and included
as attachment with this thesis.

First we will look at the Solidity Mortgage structure code generated from
DasContract data model:
s t r u c t Mortgage{

uint256 propertyTokenID ;
uint256 proper tyPr i c e ;

46

4.3. Mortgage Proof-of-Concept

uint256 ra t e ;
u int256 downPaymentValue ;
u int256 mortgageDurationMonths ;
u int256 to ta lPa id ;
Escrow escrow ;
mapping (u int => Payment) payments ;
u int paymentsLength ;

}

Mortgage is the base structure of whole contract. It contains information
about mortgage and its state, containing all payments in the payments map-
ping and helper variable paymentsLength for keeping track of the number of
payments since mappings in Solidity don’t implement the length() function.
The first five variables are filled out by borrower in function parameters when
applying for mortgage.

Interesting variable in the Mortgage structure is propertyTokenID. It con-
tains the ID of ERC721 token implementation representing the house owner-
ship. This kind of ownership representation would have to be implemented on
national level before the mortgage contract could exist inside blockchain.

Another important part of the example mortgage contracts are script ac-
tivities. As discussed in section 3.2.3, scripts itself aren’t automatically gen-
erated and have to be manually created for each script activity. Generated
part of smart contract secure the flow, transaction security and to some extent
data logic, especially saving parameters of functions to given structures and
variables. The script activity part is main logic of contract in this example
the function responsible for validating mortgage contract (formatting slightly
modified):

f unc t i on Val idateContract () i sVa l idateConState i n t e r n a l
{

Act iveSta te s [” Val idateContract ”] = f a l s e ;
i f (payable (address (t h i s)) . ba lance

>=
mortgage . p roper tyPr i c e
&&
insurance . i sEnsured)
{

c o n t r a c t v a l i d a t i o n . v a l i d = true ;
c o n t r a c t v a l i d a t i o n . c a n c e l a b l e = f a l s e ;

}
e l s e
{

c o n t r a c t v a l i d a t i o n . v a l i d = f a l s e ;
}

47

4. Implementation

Gateway 1s86rvzLogic () ;
}

In this example code, the whole function body except first and last line
had to be manually written since there currently is no universal model for
this kind of deeper, very contract specific, logic implemented in DasContract.
The function ValidateContract() checks whether all requirements have been
met. Specifically if contract has enough money from the lender to pay property
owner for the property and also if the borrower is insured. Check for property
ownership is defined in previous state Escrow Property because of Solidity
requirements.

4.4 Testing

For testing, two approaches were selected. For testing code generator itself,
unit tests are included as separated project in DasContract .NET Core solu-
tion. Second type of testing is manual one using the Remix platform.

4.4.1 Unit testing in .NET Core

The unit tests are testing the component part of project. Mainly the string
generated from components are being tested, including structures, functions,
modifiers or if-else blocks. There are totally 22 unit tests included testing 8
component classes, all of them passing.

4.4.2 Manual testing using Remix

Testing generated Solidity code itself was made by manual testing and debug-
ging while developing the program. The testing was made in Remix IDE and
detailed debugging functions were used.

This isn’t very scientific testing and Solidity does have support for unit
tests, manual testing is however the better testing solution for this project as
the unit tests would be different for each generated contract.

4.5 Chapter summary

In the last chapter, we took a look at used technologies that were used in
process of development and described the flow by which is the Solidity code
generated.

The problem of current state of mortgage contracts were explained and
the possible solution using blockchain technology combined with DasContract
designing was introduced. While both blockchain and DasContract still have
its flaws, and aren’t quite ready yet for real world usage, they represent the
concept that may be used for all kinds of contracts in near future.

48

4.5. Chapter summary

Further, the flow and activities of said mortgage DasContract example
was explained with Solidity code examples of Mortgage structure and the
ValidateContract() script function. The representation of property using
ERC721 tokens was also explained.

The last part of this chapter was dedicated to two approaches to testing
that were used while programming this project and mortgage contract. It was
also explained why in our case the manual testing of generated Solidity code
is better than the unit testing.

49

Conclusion

Thesis demonstrated usage of Ethereum blockchain as decentralized storage
and computer for smart contracts generated from DasContract files. This
solution is very cost effective with controlled ambiguity by the code in decen-
tralized storage. Using blockchain for these purposes might be possible in the
future, however currently it works only on Proof-of-Concept level. No public
blockchain is yet on the required level of security, scalability and decentraliza-
tion to be able to trust them with our property and commitments.

Both DasContract and the Solidity generator implemented as part of this
thesis are great starting points, but have long way before being production
ready. They need proper testing and bug fixing as well as new features. For
DasContract, the ability to include parts of scripts inside the user tasks would
be good for diagram clarity as it might reduce the number of script tasks.

More important concept needed that DasContract already assumes, but
was not implemented in either DasContract Editor[17] or this thesis are oraclas
discussed in section 1.2.3. They could be then used as source of information
from outside of blockchain, e.g. in our mortgage example for confirmation
of borrower’s identity and his liabilities. Another concept that is now being
added to DasContract is decentralized identity, which could remove the need
of aliases for each and every contract and increase the overall contract security
and trust.

For future research, this thesis submits and makes a proposal to increase
the amount of generated code by introduction new features to all DasContract,
DasContract editor and Solidity converter. One of those features could be
payment needed to transact function as payments have proven very often
used in mortgage example and while testing Solidity smart contracts. There
is also opportunity to generate code from DasContract files to other languages
than Solidity, e.g. Vyper or any other new language for Ethereum, Ethereum
2.0 or even for some other blockchain that would be globally recognized by
community and hopefully one day by governments.

51

Bibliography

[1] Tar, A. Proof-of-Work, Explained. January 2018, [cit. 2020-02-14]. Avail-
able from: https://cointelegraph.com/explained/proof-of-work-
explained

[2] Yeaow, A. Global Bitcoin Nodes Distribution. July 2020, [cit. 2020-07-12].
Available from: https://bitnodes.io

[3] Tam, K. First Attempt on Vyper. January 2019, [cit. 2020-07-15].
Available from: https://medium.com/coinmonks/first-attempt-on-
vyper-eb1d1ccea6ed

[4] Song, X. W. Z. Z. D. Learn Ethereum. Packt Publishing Ltd., first edition,
ISBN 978-1-78995-411-1.

[5] Skotnica, M.; Pergl, R. Das Contract - A Visual Domain Specific Lan-
guage for Modeling Blockchain Smart Contracts. 01 2020, ISBN 978-3-
030-37932-2, pp. 149–166, doi:10.1007/978-3-030-37933-9 10.

[6] Skotnica, M. CCMiResearch/DasContract on Github [online]. [cit.
2020-07-29]. Available from: https://github.com/CCMiResearch/
DasContract/

[7] Hornáčková, B.; Skotnica, M.; et al. Exploring a role of blockchain smart
contracts in enterprise engineering. In Enterprise Engineering Working
Conference, Springer, 2018, pp. 113–127.

[8] Skotnica, M. CCMiResearch/DasContract on Github [online]. [cit.
2020-07-30]. Available from: https://github.com/CCMiResearch/
DEMOCaseStudies/tree/master/Blockchain/Mortgage

[9] Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008, [cit.
2020-02-14]. Available from: https://www.bitcoin.com/bitcoin.pdf

53

https://cointelegraph.com/explained/proof-of-work-explained
https://cointelegraph.com/explained/proof-of-work-explained
https://bitnodes.io
https://medium.com/coinmonks/first-attempt-on-vyper-eb1d1ccea6ed
https://medium.com/coinmonks/first-attempt-on-vyper-eb1d1ccea6ed
https://github.com/CCMiResearch/DasContract/
https://github.com/CCMiResearch/DasContract/
https://github.com/CCMiResearch/DEMOCaseStudies/tree/master/Blockchain/Mortgage
https://github.com/CCMiResearch/DEMOCaseStudies/tree/master/Blockchain/Mortgage
https://www.bitcoin.com/bitcoin.pdf

Bibliography

[10] Lipovyanov, P. Blockchain for Business 2019. Packt Publishing Ltd., first
edition, ISBN 978-1-78995-602-3.

[11] Rosic, A. What is Cardano Blockchain? 2018, [cit. 2020-07-13]. Available
from: https://blockgeeks.com/guides/what-is-cardano/

[12] Dale, B. Everyone’s Worst Fears About EOS Are Proving True. Septem-
ber 2019, [cit. 2020-07-13]. Available from: https://www.coindesk.com/
everyones-worst-fears-about-eos-are-proving-true

[13] A complete list of VeChain partnerships. July 2020, [cit. 2020-07-
15]. Available from: https://vechaininsider.com/partnerships/a-
complete-list-of-vechain-partnerships/

[14] Wood, A. M. A. D. G. Mastering Ethereum. O’Reilly Media, Inc., first
edition, ISBN 978-1-491-97194-9.

[15] Frumkin, D. What Are Ethereum Tokens? ERC-20, ERC-223,
ERC-721, And ERC-777 Tokens Explained. July 2018, [cit. 2020-07-
13]. Available from: https://www.investinblockchain.com/what-are-
ethereum-tokens/

[16] Dixit, K. Ethereum 2.0 Wants To Save Its Predecessor Its Blushes;
Here’s How Its Planning To Do It. January 2020, [cit. 2020-02-15].
Available from: https://www.tronweekly.com/news-eth-ethereum-2-
0-wants-to-save-its-predecessor-its-blushes-heres-how-its-
planning-to-do-it/

[17] Drozd́ık, M. Open-Source Legal Process Designer in .NET Blazor. May
2020. Available from: https://dspace.cvut.cz/bitstream/handle/
10467/88271/F8-BP-2020-Drozdik-Martin-thesis.pdf

[18] What is BPMN? [online]. [cit. 2020-07-15]. Available from: https://
www.visual-paradigm.com/guide/bpmn/what-is-bpmn

[19] López-Pintado, O.; Garćıa-Bañuelos, L.; et al. Caterpillar: A business
process execution engine on the Ethereum blockchain. Software: Prac-
tice and Experience, May 2019, ISSN 1097-024X, doi:10.1002/spe.2702.
Available from: http://dx.doi.org/10.1002/spe.2702

[20] Cummings, S. The Four Blockchain Generations. February 2019, [cit.
2020-07-22]. Available from: https://medium.com/the-capital/the-
four-blockchain-generations-5627ef666f3b

[21] Partz, H. VeChain Loses $6.6M in VET Tokens to Hacker in At-
tack on Buyback Wallet. December 2019, [cit. 2020-07-22]. Avail-
able from: https://cointelegraph.com/news/vechain-loses-11b-
vet-tokens-to-hacker-in-attack-on-buyback-wallet

54

https://blockgeeks.com/guides/what-is-cardano/
https://www.coindesk.com/everyones-worst-fears-about-eos-are-proving-true
https://www.coindesk.com/everyones-worst-fears-about-eos-are-proving-true
https://vechaininsider.com/partnerships/a-complete-list-of-vechain-partnerships/
https://vechaininsider.com/partnerships/a-complete-list-of-vechain-partnerships/
https://www.investinblockchain.com/what-are-ethereum-tokens/
https://www.investinblockchain.com/what-are-ethereum-tokens/
https://www.tronweekly.com/news-eth-ethereum-2-0-wants-to-save-its-predecessor-its-blushes-heres-how-its-planning-to-do-it/
https://www.tronweekly.com/news-eth-ethereum-2-0-wants-to-save-its-predecessor-its-blushes-heres-how-its-planning-to-do-it/
https://www.tronweekly.com/news-eth-ethereum-2-0-wants-to-save-its-predecessor-its-blushes-heres-how-its-planning-to-do-it/
https://dspace.cvut.cz/bitstream/handle/10467/88271/F8-BP-2020-Drozdik-Martin-thesis.pdf
https://dspace.cvut.cz/bitstream/handle/10467/88271/F8-BP-2020-Drozdik-Martin-thesis.pdf
https://www.visual-paradigm.com/guide/bpmn/what-is-bpmn
https://www.visual-paradigm.com/guide/bpmn/what-is-bpmn
http://dx.doi.org/10.1002/spe.2702
https://medium.com/the-capital/the-four-blockchain-generations-5627ef666f3b
https://medium.com/the-capital/the-four-blockchain-generations-5627ef666f3b
https://cointelegraph.com/news/vechain-loses-11b-vet-tokens-to-hacker-in-attack-on-buyback-wallet
https://cointelegraph.com/news/vechain-loses-11b-vet-tokens-to-hacker-in-attack-on-buyback-wallet

Bibliography

[22] PoW 51% Attack Cost [online]. [cit. 2020-07-23]. Available from: https:
//www.crypto51.app/

[23] Ethereum Nodes Map [online]. [cit. 2020-07-23]. Available from:
https://matallo.carto.com/builder/e70677d5-1111-40a8-9e19-
f27da227a55c/embed

[24] Pirus, B. ETH Scalability Isn’t Going to Be an Issue Soon,
Suggests Vitalik Buterin. June 2020, [cit. 2020-07-23]. Available
from: https://cointelegraph.com/news/eth-scalability-isn-t-
going-to-be-an-issue-soon-vitalik-buterin-posits

[25] ETH Gas Station [online]. [cit. 2020-07-23]. Available from: https://
ethgasstation.info/

[26] Remix - Ethereum IDE [online]. [cit. 2020-07-30]. Available from: https:
//remix-ide.readthedocs.io/en/latest/index.html

[27] Solidity Documentation [online]. [cit. 2020-07-25]. Available from: https:
//solidity.readthedocs.io/

55

https://www.crypto51.app/
https://www.crypto51.app/
https://matallo.carto.com/builder/e70677d5-1111-40a8-9e19-f27da227a55c/embed
https://matallo.carto.com/builder/e70677d5-1111-40a8-9e19-f27da227a55c/embed
https://cointelegraph.com/news/eth-scalability-isn-t-going-to-be-an-issue-soon-vitalik-buterin-posits
https://cointelegraph.com/news/eth-scalability-isn-t-going-to-be-an-issue-soon-vitalik-buterin-posits
https://ethgasstation.info/
https://ethgasstation.info/
https://remix-ide.readthedocs.io/en/latest/index.html
https://remix-ide.readthedocs.io/en/latest/index.html
https://solidity.readthedocs.io/
https://solidity.readthedocs.io/

Appendix A
Acronyms

XML Extensible markup language

BMPN Business Process Model and Notation

PoS Proof-of-Stake

PoW Proof-of-Work

PoA Proof-of-Authority

USD United States dollar

57

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

DasContract................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

59

	Introduction
	Theoretical background
	Blockchain
	Ethereum
	DasContract
	Chapter summary

	Evaluation of Ethereum strengths and weaknesses
	Three generations of blockchain
	Ethereum's strengths
	Ethereum's weaknesses
	Chapter summary

	Analysis and design
	Design
	Code generating from DasContract to Solidity
	Chapter summary

	Implementation
	Used technologies
	Code generating flow
	Mortgage Proof-of-Concept
	Testing
	Chapter summary

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

