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Abstrakt

Viditelnost do śıt’ového provozu je nezbytnou součást́ı śıt’ové bezpečnosti a bez-
pečnostńı analýzy. Současné stávaj́ıćı nástroje však obvykle poskytuj́ı pouze
všeobecné informace o komunikaci jednotlivých zař́ızeńı. Tato diplomová práce
se zabývá možnostmi využit́ı v́ıcero informačńıch zdroj̊u v lokálńıch śıt́ıch
k identifikaci významu a účelu daného śıt’ového připojeńı, které jsou srozu-
mitelné pro většinu uživatel̊u. Tato práce se konkrétně zaměřuje na kombi-
nováńı informaćı z “service discovery” protokol̊u s tradičńımi daty z IP tok̊u.
Výsledkem je vyvinutý softwarový prototyp analyzátoru — modul ACID,
který zpracovává několik informačńıch zdroj̊u a přǐrazuje śıt’ovým spojeńım
št́ıtky, tj. pozorované aktivity. Tento př́ıstup je mnohem slibněǰśı než v součas-
nosti použ́ıvané nástroje založené na dobře známých portech a protokolech.

Kĺıčová slova pasivńı monitorovańı, analýza śıt’ového provozu, klasifikace
aktivit, NEMEA, CESNET, Python
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Abstract

Visibility into network traffic is an essential part of network security and se-
curity analysis. However, current existing tools usually provide only low-level
technical information about the communication of devices. This diploma’s
thesis explores the possibilities of using several information sources on local
networks to deliver high-level meaning and purpose of a network connection
that is more understandable by the majority of users. Specifically, this work
focuses on combining information from service discovery protocols with tradi-
tional IP flow data. As a result, the developed software prototype of the ACID
analyzer module processes several information sources and assigns labels, i.e.,
activities to the network connections. This approach is much more promising
than the currently used tools based on just well-known ports and protocols.

Keywords passive monitoring, network traffic analysis, activity classifica-
tion, NEMEA, CESNET, Python
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Introduction

The analysis of network communication is one of the essential components
of any more extensive computer network. Without proper monitoring tools,
network operators are blind to what is happening in the networks they manage.
Connected users are also at risk as this state creates an ideal playground for
attackers that can perform a malicious activity without being detected or
leaving a trace. Various tools have been invented and developed to prevent
these attacks and gain valuable insights into what is happening in the network.

Active and passive network monitoring and subsequent traffic security
analysis are means of minimizing risks and threats. In the ideal world, compa-
nies, institutions, and individuals are highly motivated to prevent any security
breach, outage, or disruption of any services. Unfortunately, this is almost an
impossible task as attackers will always have an advantage over the defenders.
Defenders never know when and what type of attack to expect, thus they have
to be prepared for everything. Many companies and institutions are still un-
derestimating the role of their network security until they are breached. Net-
work monitoring tools can give the defenders useful information who was seen
on the network if network policies are working and mainly the traffic which
was exchanged. The crucial element of any monitoring tool is the automation
of reporting any event and if the gathered information can be read quickly
and efficiently. Additionally, these tools can act based on the gathered input
and implement various network policies in case of a network incident. These
policies can include denial of access to the reported device, redirecting traffic,
changing levels of authorization, and many more. Having this capability can
be a crucial element for any institution in the field of network security.

The gathered information about the device that sends or receives network
traffic can be read through communication in the local-area network (LAN).
Local-area networks are the first point of access, and many networking proto-
cols do not leave this area. We leverage these protocols and individual packets
to get information about the device hardware and running software. The anal-
ysis of this information can also decide on the role of devices in the network.
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Introduction

It can also create a map of dependencies among other devices. We can see
what devices are connected, how they are behaving, and what services they
are using or offering. Such information is vital for network administrators or
managers. Based on this information, changes can be made to the network to
improve communication capabilities or increase security. As many LAN pro-
tocols are exploitable, device and service recognition can also be used to find
potential attack vectors and prepare the network operator to create relevant
countermeasures to prevent these attacks from happening.

Contrary, it is almost impossible to process every packet in the wide-area
networks (WAN) or Internet service provider (ISP) environments. As the
computer networks gradually accelerate and grow, so does the volume of data
that monitoring systems must process. In order to address this problem,
network flow records were introduced. A flow is a network stream contains
aggregated information from packet headers, reducing the amount of data to
be processed. Besides, many protocols work within a single broadcast do-
main, so we do not observe this type of traffic beyond a default gateway, such
as a router. For these reasons, our work focuses on service discovery proto-
cols within LAN, which do not appear in the service provider’s environments
where the monitoring tools mainly concentrates on traffic signatures, com-
munication dependencies mapping, and accessed services to gather valuable
insights. Without these techniques and algorithms over network flows, many
of the attacks would not be discovered.

There is a variety of monitoring tools in the industry often divided be
their functions complementing each other. One category is the tools that
look for security threats, breaches, attacks, and incidents. Another significant
category is the ones that monitor the network to classify the network traffic.
Based on the results, network operators can determine relevant actions. In
our thesis, we will be focusing on this second mentioned category as our goal
is to detect and classify various activities in networks just from monitoring
network traffic. In the following section, we highlight the goals of this master’s
thesis and give a brief overview of its chapters.

Goals of this Work

This work deals with network service discovery protocols, which leaks valu-
able information about available service in the unencrypted payload of network
packets. This master’s thesis aims to design and implement the activity identi-
fication module, which improves the overall network situational awareness of a
network operator. The module should be part of the distributed NEMEA [1]
system, where it passes the information in the standard data structure for
further analysis in the system.
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Text Structure of the Thesis

Text Structure of the Thesis

This master’s thesis is divided into four chapters:

Chapter 1 - Analysis
This chapter gives a brief overview of the service discovery protocols and
their usage in today’s networks. It analyzes and describes protocol char-
acteristics and the information we can obtain. This includes the details
of the information exchange and current frameworks and monitoring
tools in the industry.

Chapter 2 - Design
This chapter portrays the overall architecture of the implemented mod-
ule for activity identification. To understand the whole concept, we
briefly describe the NEMEA system architecture and existing modules,
which are essential to our work. Then we formally define the chosen ter-
minology related to our module and introduce a chosen set of activities
for classification.

Chapter 3 - Realization
This chapter specifies the realization of the module. It defines its struc-
tures and functions, describes all its parameters and configuration, and
shows the overall module architecture and workflow. Then we intro-
duce our methods of activity identification for our developed module
and introduce the label requirements for the classified network flow.

Chapter 4 - Testing and Evaluation
This chapter explicates the testing methods we have used during the
module’s development and evaluates our identification methods for ac-
tivity classification. It introduces the used environment and dataset for
the module evaluation. It also shows the module’s output for the given
set of activities and compares the result of detection on the simulated
network traffic data. Lastly, it summarizes all findings during develop-
ment.
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Chapter 1
Analysis

In this chapter, we will describe the related work and existing monitoring
solutions.

1.1 Related Work

During the research phase of the thesis, we have not found many publications
for the given topic in general. Modern tools rely on the active probing of
the network to find potential vulnerabilities and open services that can be
exploited. We have also found articles focusing on a small set of informa-
tion gathered from passive network monitoring as OS fingerprinting, TCP/IP
fingerprinting, etc. In the industry, there are many proprietary tools where
the classification is the company’s intellectual property; hence, we have little
knowledge about their detection methods. To narrow down the set of possible
methods, we have chosen to leverage the service discovery protocols in the
LAN networks, which leak valuable information about the running services
and host itself immediately after connecting to the network. In the following
sections, we will highlight both existing open source and proprietary solutions
and the functionality of the service discovery protocols.

1.1.1 Edge Computing

Edge computing is an extension of cloud computing where the computational
power is expanded to the network edge. With this concept, traditional net-
work devices like routers and switches provide computing resources besides
networking capabilities. These resources can be used for various applications
that can leverage distributed architecture [2]. Edge computing is a natural
evolution of the Internet of Things (IoT) networks because we can process
data faster with lower latency and higher flexibility. The comparison between
traditional and edge computing architecture is depicted in Figure 1.1.
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Cloud Layer

Edge Computing
Layer

Cloud Layer

Figure 1.1: Comparison of classic and edge computing architecture

Also, this is a massive benefit for network security because we can have
much better insight. Therefore, we can easily solve challenges with visibility
behind Network Address Translation (NAT) and central network perimeter.
Event detection modules can be presented everywhere and create a more ro-
bust network security solution.

This module is designed to operate at the network edge. It leverages in-
formation from local service discovery protocols to classify network activities.
The first main benefit of this approach is helping network operators to iden-
tify better network traffic with human-based description. Currently, this is
a crucial area because network traffic is still more and more heterogeneous,
which complicates network analysis. The second benefit is the classification of
user behavior. Our module can provide preprocessed, and annotated network
flows to upper layers in edge computing architecture. This upper layer can
leverage more computing resources to do more advanced analysis.

1.2 Existing Monitoring Tools

In this section, we discuss existing solutions to the problem of finding devices
on the network, gathering information about them, and finding dependencies
among them. Each solution briefly describes its functionality and compares
it with our developed module for the NEMEA system. We divide this section
into two categories, open-source and proprietary solutions. We list the most
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1.2. Existing Monitoring Tools

common and known solutions. Due to the high industry cost, comparing our
module’s results with the proprietary solutions was not performed, and it is
beyond this master thesis.

1.2.1 Proprietary Solutions

The first category lists a selection of proprietary solutions where their output
is comparable to our work. All of them are from the most prominent players
in the industry.

Cisco DNA Assurance

Cisco DNA (Digital Network Architecture) [3] is a concept and vision of
software-defined networking (SDN) developed by Cisco. It was introduced
in 2017 along with platforms for various network environments like campus,
data center, WAN and ISP networks. In the campus environments, where our
work focuses, Cisco DNA Center (DNAC) platform is the critical component
of the entire solution. It controls and manages the entire network from a single
pane of glass graphical user interface (GUI). The controller is also a modular
platform running various services in the containers. There are two primary
components of DNAC. The network controller platform (NCP) automates the
configuration and deployment of the network, and the network data platform
(NDP) runs the analytics engine for the data. In the following paragraph, we
highlight the basic functionality of the NDP component.

DNA Assurance is the built-in application within DNAC leveraging the
NDP analytics engine to process big data gathered from various sources of the
network. The sources can be streaming telemetry, NetFlow [4], and various
contextual data captured from the devices on the network elements in the
network such as switches, routers, etc. It uses mathematical algorithms and
statistical models to present meaningful information to the network operator.
The engine process the data in the (near) real-time future and delivers end-
to-end network visibility, actionable insights to proactively respond to various
events, guided remediation, the ability to troubleshoot the network for past
incidents and visualize real-time application traffic flow.

Compared to our implemented module being developed, Cisco DNA As-
surance is a much more complex solution serving mainly to troubleshoot and
configure the network based on the occurred events captured by the network
devices.

It provides contextual data about the device such as:

• user name,

• IP and MAC address,

• device hostname,
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• device type,

• operating system and

• connection statistics on the wired or wireless network.

Our module focuses mainly on service discovery protocols. They announce a
list of services and information about connected devices. We correlate this in-
formation with network flows to improve situational awareness of the network
operators about observed activities.

Aruba Mobile First

Aruba Mobile First (AMF) [5] is a networking architecture for SDN cam-
pus networks designed by HP Enterprise. It was published in 2018 as an
open, secure, and autonomous solution. This concept is composed of several
components, such as underlay, overlay, and management. The management
component contains various platforms to allow users to do all the required
tasks. One of the major platforms is Aruba Airwave [6] that is responsible for
the management and basic visibility operations. To allow network monitoring,
Aruba uses a combination of passive and active methods in the Aruba Airwave
ecosystem. The data source is NetFlow, contextual data from network devices
and identity service, or metadata about the network from dedicated sensors.

The whole solution from Aruba is very complex and composed of many ex-
ternal tools. Our solution leverages information from service discovery proto-
cols and uses it for human-based annotation of network flows. In comparison,
Aruba does not track this type of information. The next differentiator is sim-
plicity. The developed module focuses on network service identification and
independent on network vendor. Similarly, like DNAC from Cisco, Aruba is
an enterprise-grade and paid product. Our module is open-source and allows
additional extension or customization with no additional cost.

1.2.2 Open Source Solutions

The second category gives a brief overview of existing free tools for network
monitoring. We describe their functions and compare them to our work.

NEMEA

Network Measurements Analysis (NEMEA) [1] system is a stream-wise, flow-
based, and modular detection system for network traffic analysis. In the
stream-wise concept, data is analyzed in RAM with minimal writing to persis-
tent storage. NEMEA can run both online and offline. In online mode, data is
processed and analyzed either from the IP flow information export (IPFIX) [7]
collector or directly from the network interface card (NIC). In the offline mode,
the system analyzes saved network flows with the independence of the current
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1.3. Service Discovery Protocols

network traffic. It enables the modular deployment of network monitoring
tools and the parallel processing of large amounts of network data. It is devel-
oped as an open-source project publicly available for world-wide networking
community designed for experimental or production deployments. The system
is available as an open-source project developed by CESNET [8] organization,
the operator of Czech national research and education network (NREN), in
cooperation of Czech universities. Since our developed module is part of this
system, we briefly introduce its architecture in the Section 2.1.1.

Zenmap

Zenmap [9] is the official GUI scanner for Nmap. Nmap is an open-source
program developed by Gordon Lyon, known as Fyodor. Nmap actively probes
the network to find devices and gather information about them, especially
open ports on the transport layer of the TCP/IP model. From the informa-
tion about open ports, Nmap deducts the services which are provided in the
network by the devices. The user initiates the scan, and the results about all
active devices in the network are presented in a human-readable format.

Nmap can finds the following information about the devices:

• operating system,

• IP and MAC address,

• open ports and

• last boot of the device.

Zenmap is a one-time active network analyzer that finds all currently active
devices in the specified network subnet and analyzes them for open services
based on the open ports. Our module does not generate any traffic to discover
services and information about the devices. Besides, Nmap does not offer any
dependency mapping among the devices; however, it is an excellent entry tool
to collect much information about the active devices in the local network.

1.3 Service Discovery Protocols

In this section, we describe the most common service discovery protocols we
have chosen to leverage for our module. Collecting information from network
passive monitoring can be a challenge, as we have described in the introduc-
tion. For that reason, we have narrow down the options, and we have chosen
a set of service discovery protocols that periodically announce their available
services in the network using mainly multicast addresses. In the following
subsections, we will describe the implementation of a multicast domain name
system (mDNS) and simple service discovery protocol as they are leveraged
by most of the operating systems.
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1. Analysis

1.3.1 Multicast DNS

Multicast DNS was defined in RFC 6762 [10] along with its companion tech-
nology DNS-Based Service Discovery defined in RFC 6763 [11] to map Ap-
pleTalk’s Name Binding Protocol (NBP) into IP networking and to provide
easy autoconfiguration with the concepts of Zeroconf and link-local address-
ing. Multicast DNS leverages the existing structure, syntax, and record types
of the DNS protocol syntax.

AppleTalk and Zeroconf

In the times where various networking protocols co-existed with today’s stan-
dard Internet Protocol (IP), Apple Inc. [12] has developed their suite of net-
working protocols. On of the AppleTalk’s [13] attributes it that it can operate
without any manual or automatic configuration. We can easily connect two
devices with an Ethernet cable or wirelessly to establish a connection without
configuring any addresses. Contrary, TCP/IP networking required manual
configuration by the user or automated configuration received from a DHCP
server. Both IPv4 and IPv6 now have self-assigned link-local addresses de-
fined in [14, 15], which allow the communication among devices in the same
network without the configuration.

mDNS Protocol

The mDNS protocol was defined in the RFC 6762 [10]. In this section, we look
at its definition and capabilities. Multicast DNS takes functionality advan-
tages of the standard domain name system (DNS) on the local link without
any conventional DNS server. Multicast DNS also leverages the DNS names-
paces to be used freely by the local services. The primary benefits of mDNS
include infrastructure independence, resiliency during infrastructure failures,
and need of no or little configuration. Majority of devices in the LAN net-
works such as computers, mobile phone, tablets, etc. are not authorized to
create names which leave the devices anonymous for various purposes. In
order to solve this problem, the mDNS protocol enables devices to elect a
unique link-local hostname in the form ”unique-host-name.local.”. In case of
a sporadic hostname conflict, mDNS provides a mechanism to deal with it.
If a device queries for the name ending with ”.local.”, the DNS query must
be sent to the mDNS IPv4 link-local multicast IPv4 address 224.0.0.251 or
its IPv6 equivalent FF02::FB on a UDP port 5353. This mechanism also
applies for link-local reverse mapping, e.g. ”254.169.in-addr.arpa.” for IPv4
or ”8.e.f.ip6.arpa.” for IPv6. These reverse lookups also must be sent to the
mDNS multicast address. Multicast DNS creates the underlying framework
for DNS-based service discovery.
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DNS-Based Service Discovery

The mDNS protocol is the underlying framework for DNS-based service dis-
covery (DNS-SD) defined in RFC 6763 [11]. DNS-SD allow devices to dis-
cover the list of named instances of services in the local network. The in-
formation about the service instance is obtainable via DNS SRV [16] and
DNS TXT [17] record. The SRV record contains the information about the
port and target name where the service is reachable in the form of “<In-
stance>.<Service>.<Domain>”. The DNS TXT gives additional information
in the structured form of ( “key=value”) pairs. In order to find all services
being advertised in the network, special meta-query service type enumera-
tion “ services. dns-sd. udp.<Domain>” was defined. It is a PTR [17] record
which returns the set of PTR records in the form of “<Service>.<Domain>”
in the rdata. This set of service and domain pair can be used to get additional
information using subsequent PTR query. The responder to that query should
include SRV record(s), TXT record(s) in the PTR rdata and all address A and
AAAA records named in the SRV rdata.

A typical DNS-SD workflow we have observed when a device connects to
the network is the following, and we illustrate it in Figure 1.2:

1. The device sends a service type enumeration query on mDNS multicast
address using UDP and destination port 5353.

2. All other listening hosts in the same multicast DNS group respond with
a set of PTR answer records, e.g., airplay. tcp.local.

3. After receiving the set of available services, the device prepares the set
of PTR queries for target hosts and services.

4. The device queries the prepared set to the multicast group, e.g., my-
tv. airplay. tcp.local, airplay. tcp.local.

5. The host with the queried service responds with the unicast answer to
our device with associated SRV, TXT, and A/AAAA record about the
service.

6. The device knows that the host offers the SSH server on port 22 and
knows the IP address for my-tv.local.

One of the significant implementations is the Bonjour [18] service, which
comes built-in with Apple’s [12] macOS and iOS operating systems. It can also
be installed on Windows [19] operating systems. Bonjour works only within
a single broadcast domain. In our test environment, we were using devices
running Bonjour, and in the design of our module, we leverage the valuable
information from SRV and TXT reply records. Another implementation for
Linux and BSD distribution is the Avahi [20] software.
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Apple iPhone
192.168.0.100

mDNS group
224.0.0.251

I would like to know all available services
PTR query: _service._dns-sd._udp.local.
multicast UDP with destination port 5353

A device (TV) running supporting AirPlay responds
PTR query: _service._dns-sd._udp.local

PTR answers: _airplay_tcp.local
 unicast UDP with destination port 5353

Device connects
to the network

iPhone queries for more information
PTR query: _airplay._tcp.local

 multicast UDP with destination port 5353

Advertising TV example response
PTR query/response: _airplay._tcp.local, ...
PTR SRV: instance: my-tv.local, port: 7000
PTR TXT: my-tv: model=oled55, os=tvos

PTR A: my-tv.local at 192.168.0.50
 unicast UDP with destination port 5353

Figure 1.2: DNS-SD workflow example

1.3.2 Simple Service Discovery Protocol

The Simple Service Discovery Protocol [21] (SSDP) has a similar concept
comparing to mDNS but leverages the HTTP over UDP (HTTPU) structures
rather than DNS. It also enables the devices to advertise and discover available
services without any configuration when connected to the network. It was
defined as an Internet Engineering Task Force (IETF) Internet draft in 1999
by Microsoft [19] and Hewlett-Packard [22]. Even though this proposal expired
in April 2000, The SSDP creates the building block for Universal Plug and
Play (UPnP) protocol stack and architecture [23, 24] similar to mDNS for
DNS-SD.

SSDP is a text-based protocol based on HTTP with the usage of UDP as
the underlying transport protocol. The host announces the available services
using IPv4 multicast address 239.255.255.250 or its link-local IPv6 equivalent
FF02::C on a UDP port 1900. SSDP has a hybrid approach to do both discov-
ery and announcements. Once a new device connects to the network, it sends
the announcement to the SSDP multicast group about its presence. From
this point, no other announcement is needed, unless the device changes state
or goes offline. The whole mechanism is event-driven to maintain protocol
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1.4. Requirements Analysis

efficiency and not flood the network stream with periodic announcements.
If a device wants to discover available services, it leverages the M-SEARCH

method of the HTTP suite. To announce or withdraw service from the net-
work, SSDP uses the NOTIFY method. The search queries’ responses are
sent via unicast back to the originator on the UDP port 1900. Every SSDP
discover request must contain a search target (ST) header with a single URI
where the requested service is specified. Only the hosts with the matching ser-
vice sent in the ST header may respond in the SSDP multicast group with the
corresponding URL location in the HTTP response. The URL itself contains
the port on which is the service accessible.

SSDP also has a vulnerability that can be exploitable for distributed denial
of service (DDoS) attacks; this weakness is described in [25]. For that reason,
many network administrators police SSDP multicast traffic in their networks.
In our module, we leverage the SSDP layer to extract the available service
and retrieve the information about what type of service has been used.

Universal Plug and Play

Universal Plug and Play (UPnP) is a suite of networking protocols leveraging
the SSDP infrastructure. The UPnP Forum [24] published the UPnP technol-
ogy, a consortium of computer industry vendors to enable simple connectivity
among various devices from personal computers to small consumer electron-
ics. The forum no longer exists, and it was replaced by Open Connectivity
Foundation (OCF) [26] in 2016.

1.4 Requirements Analysis

An essential part of the final solution’s design is the precise determination
of requirements. We divide them into functional and non-functional. Func-
tional requirements represent the module’s significant functionalities, while
non-functional ones instead determine the limitations of system properties
and design architecture. In the following subsections, we describe the mod-
ule’s requirements, which are based on the content of the assignment of this
work and the performed analysis.

1.4.1 Functional Requirements

Classification

The module’s primary goal is to classify which type of activity was observed
and present this contextual information to a network operator in a human-
readable format or another module in a specified data structure.

13



1. Analysis

Data processing

One of the goals of the module is to process relevant data from service dis-
covery protocols. The module should use an existing framework for network
monitoring and expect the input within a selected data structure. The pro-
cessed data should be stored in memory and passed or stored if requested.

Flow analysis

The module should analyze the given information about announced services
and look for patterns revealing a particular activity from the network flows.

Configurability

Program parameters and configuration files should ensure the configurability
of the module. The configuration should allow loading saved configuration,
and the command-line parameters should allow to extend or overwrite the
values from the configuration file.

1.4.2 Non-functional Requirements

Scalability

The module should allow scalability to add more service discovery protocols
and their characteristics in the future. It should also allow extending by ob-
servable activities in the network. We should implement the resulting module
in a modular nature with the concept of object-oriented programming (OOP)
to allow future expansion.

Compatibility and development

The module should use an existing framework NEMEA, enabling the inter-
connection of individual modules to maintain compatibility. It also provides
critical components and data structures for receiving predefined network flows.
Using the existing framework should ease the implementation and divert focus
on the primary goal.

Portability

The deployment of the module should be independent of the host operating
system. The source code of the module should use a programming language
to fulfill this requirement.
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1.5 Selected Solution

This section’s content is a description of the selected solution, which was
based on the analysis intended for the implementation of the resulting tool.
The developed module will focus on service discovery protocols, especially on
mDNS and SSDP, to improve situational awareness about captured network
traffic. During our analysis, we have not found any existing solution with
the same functionality. The module will be part of the distributed system
NEMEA from which we leverage existing modules and structures. It will be
configurable using a configuration file or parameters. At the same time, it will
remain scalable for future expansion of more protocols or a set of activities.
Python will be used as the programming language due to its portability and
flexibility of deployment. Finally, the module will present results to a network
operator in a human-readable format or send the results in a standard data
format to other modules for further processing.
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Chapter 2
Design

In this chapter, we describe the overall architecture of the implemented module
for activity identification, which should improve an overall situational aware-
ness for a network operator. We also define the terminology related to our
module and a set of activities that we want to classify. In order to understand
the whole concept, we briefly illustrate the NEMEA system architecture and
existing modules, which are essential to our work.

2.1 Building Blocks

As mentioned before, our work is a part of the broader modular NEMEA
framework; hence we could use many functions from the existing implementa-
tions. These functions are essential to our module as we take these prepared
building blocks like data structures, packet parsing, and flow processing. In
this section, we take a look at the existing NEMEA framework and useful
modules.

2.1.1 NEMEA Architecture

In Figure 2.1, we can observe the architecture of the NEMEA system. The
basic building blocks are the modules (highlighted in yellow), which run as sep-
arate system processes and process the data (export, storage, filter, aggregate,
merge, etc.). A particular subset of the modules is detectors (highlighted in
red), which detect malicious traffic and traffic anomalies based on the various
algorithms. Modules receive various stream of data on their input interfaces,
process it, and send to their output interfaces in the specified format. The
format is defined by the NEMEA framework, which implements features and
data structures for all modules. First of them is the specific type of Traffic
Analysis Platform (TRAP) interface (highlighted in blue), which implements
functions for sending and receiving messages between interfaces. Types of the
messages vary from flow records, alerts, statistics to preprocessed data. The
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2. Design

Figure 2.1: NEMEA architecture (source: https://github.com/cesnet/nemea)

second structure is the Unified Record (UniRec), which implements an effi-
cient binary data format for the messages (highlighted in orange). The third
is the common library (highlighted in purple), which implements common al-
gorithms and headers used in system modules. The last component of the
NEMEA architecture is the supervisor (highlighted in green), which has the
role of the central management and monitoring tool of the entire system.

2.1.2 Important Existing Modules

In this section, we highlight the existing modules which preprocess data for our
work from network packets captures and flow analysis. We use these auxiliary
modules for every iteration over the given data input.

Flow meter

Flow meter [27] is the module from the NEMEA framework which converts IP
packets from the NIC interface or network packet capture file to bi-directional
network flows. The output flows can be either in a standard IPFIX format
or in the NEMEA specific format UniRec. The flow meter also supports
plugins for extracting specific information from the packet’s application layer.
When running more than one plugin, multiple output interfaces have to be
specified. During the writing of this thesis, mDNS and SSDP plugins are
being developed to optimize the module’s data processing. For this reason,
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we need a temporary preprocessing module for extracting mDNS and SSDP
information from packet captures.

Merger

Merger is another auxiliary module from the NEMEA framework use with
conjunction to the flow meter. Since the flow meter does not support one
output for multiple plugins, we need to merge these outputs from individual
plugins into one record to avoid duplicity. Merger helps us to consolidate all
network flows to an extended UniRec format enriched with the plugin fields.

Service discovery

The service discovery module [28] is a temporary prototype written in Python
to extract application layer information from mDNS and SSDP packets. In
the future, it will be replaced by the flow meter plugins for service discovery
protocols. It serves as a template for the flow meter plugins to determine
the most relevant information for our module. During our research, we have
observed the mDNS and SSDP communication to determine the most relevant
information for extracting. As we can see in the sample output in Figure 2.2,
the module parses all packets based on the source MAC address and add all
additional information if the packet from a source device is already in its
database.

Based on the observed network traffic, we have defined which information
should the module extract. To pass the information to our module, we have
chosen the standard JSON structure.. From a device perspective, it parses all
IPv4 and IPv6 addresses observed for the given MAC address, all hostnames,
and operating systems. It populates the vendor filed by using an external
library to map the MAC address to a specific vendor. We do not leverage the
key label for the time being as we reserve it for future implementations.

In mDNS packets, we look at the information from all queries and response
records, which we store in the JSON list format. If the record is already
present, we omit it. The most vital information is stored within the PTR
response with additional SRV and TXT records. From the SRV record, we
extract the port and available service with an instance name and domain. The
TXT record contains additional information, e.g., device model and OS, and
we save it in the list. To optimize subsequent searching of services, we create
an auxiliary list of ports.

We have also observed the behavior for the SSDP traffic. We store the
list of searches and user agents from the M-SEARCH headers and check for
the duplicity of values. The user agent field can leak us the operating system
of the observed device. However, the most crucial information we parse from
the HTTP NOTIFY method, which announces the available service with a
given port within the location header. We also store the server header for
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{
” dev i ce ” : {

”mac” : ” 2 0 : 1 7 : 4 2 : e9 : f 1 : c4 ” ,
” ipv4 ” : [ ” 1 9 2 . 1 6 8 . 1 0 . 2 5 ” ] ,
” ipv6 ” : [ ” f e80 : : 2 2 1 7 : 4 2 f f : f e f 9 : 1 df5 ” ] ,
”hostname” : [ ”LGwebOSTV. l o c a l ” ] ,
” l a b e l ” : [ ] ,
” os ” : [ ”WebOS 4 . 0 . 0 ” ] ,
” vendor ” : ”LG E l e c t r o n i c s ”
} ,
” s e r v i c e s ” : {

”mdns” : {
” por t s ” : [ ”7000” , ”39891” ] ,
” s e r v i c e s ” : {

” 7000 ” : [ ” jn−l g tv55 . a i r p l a y . t cp . l o c a l ” ]
” 39891 ” : [ ”LGwebOSTV. hap . t cp . l o c a l ” ]
} ,
” q u e r i e s ” : [ ” a i r p l a y . t cp . l o c a l ” , . . . ] ,
” r e sponse ” : [ ”LGwebOS. hap . t cp . l o c a l ” , . . . ] ,
” txt ” : [ ” d e v i c e i d=AA:BB:CC: ” , ”model=OLED55E9PLA” ]
} ,
” ssdp ” : {

” por t s ” : [ ” 1 4 4 6 ” ] ,
” n o t i f i e s ” : {

” 1446 ” : {
”urn” : [ ” d ia l−mult i sc reen−org : s e r v i c e : d i a l : 1 ” ] ,
” s e r v e r ” : ”WebOS/1 .5 UPnP/1 .0 webOSTV/1 .0”
}
} ,
” s ea r che s ” : [ ] ,
” u se ragent s ” : [ ” Linux /4.4 .84−169. g ld4tv . 4 UPnP” ]
}
}

}

Figure 2.2: Service discovery module sample output

future usage. Similar to mDNS packets, we also create an auxiliary list of
ports within the JSON structure.
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PassiveAutodiscovery

The PassiveAutodiscovery [29] module is the antecedent work for device dis-
covery from passive monitoring. The goal of this module is to classify devices
and assign type labels to them in order to create a dependency mapping. It
uses the list of well-known ports and registered services for that given port and
a database of vendor’s MAC addresses to identify a device in the network. As
a result, we receive the information in JSON format about devices and their
matching labels, which we use for further analysis.

2.2 Definition of Terms

In this section, we introduce definitions to be consistent within the following
sections.

ACID

ACID is the chosen name for our developed module, which comes from the
abbreviation of “ACtivity IDentification”. We have defined this name to de-
scribe the module’s principal purpose best. From this part, we refer to ACID
as our module developed for the NEMEA system.

Activity

The activity can be any motion of a user or device in the real world observed in
network traffic. In Section 2.4, we have defined the type of use cases/scenarios
we want to monitor and classify based on the given environment. When we
mention an activity, we refer to these defined use cases/scenarios.

Identification

Identification, in the context of this thesis, means the identification/classifica-
tion of the given activity. If we detect the network traffic matching our defined
activity, we refer to this action as an identification. We revisit the details of
classification methods in Section 3.4.

Signature

We can identify each activity by matching a particular behavioral pattern.
The patterns can vary, from unambiguously series of packet lengths, TCP
flags, transferred bytes, specific HTTP headers, or its combination. For each
activity, we have defined a specific pattern to be matched. Based on the
signature, we define an activity label.
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Activity Label

The label is the crucial output of our module. After we unequivocally identify
an activity, we assign it to an identified activity for the given flow. The label
classifies the flow and enriches the information. This information helps to
improve the situational awareness about specific flows observed in the network.

2.3 Overall Module Design

In Figure 2.3, we can see the overall architecture of our resulting module.
First, it receives network packet capture either from NIC using TRAP or
takes a packet capture file. These captured packets are then sent to the flow
meter and merger module (highlighted in red) to create network flows in the
UniRec format (highlighted in orange). The intermediate step with the mod-
ule is important as the flow meter supports different plugins, and we want
to consolidate information into one flow. The flow records are stored as a
temporary file to be used by the PassiveAutodiscovery (PAD) module (high-
lighted in pink) for basic dependency, and by ACID to correlate these flow
records with information gathered from auxiliary modules. Since processing
flows by the PassiveAutodiscovery module might be time-consuming, running
this module is optional. We mostly rely on the data from the service discovery
module (highlighted in yellow), which we run in a parallel process. This pro-
totype module, written in Python, uses Tshark [30], which parses only mDNS
and SSDP packets and serialize them in the JSON format. The example was
referenced in Figure 2.2. As discussed in Section 2.1.2, in the future, we will
receive the only network flows in the UniRec format containing application
layer information about mDNS, SSDP, and other discovery protocols using
the flow meter plugins. ACID (highlighted in white) loads information from
the service discovery and PassiveAutodiscovery module in the memory struc-
tures described in Section 3.1 and after it analyzes this information over the
flows from the flow meter module. In the end, the results are presented to
a network operator in a human-readable report or serialized into JSON for
further processing by other modules.

2.4 Defined Activities

The goal of our module is to identify activities from passive network pas-
sive monitoring. However, countless scenarios exist with a set of activities
initiated by a user, spontaneously by different devices, varying in protocol
specifications, and many more variables to observe in the real network traffic.
For this reason, we have defined and simulated a set of activities that can be
observed and tested in our limited environment from packet captures. The
chosen approach was a good start for the realization of the ACID module.
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Figure 2.3: Module architecture of the ACID module consists of packet pre-
processing, existing NEMEA framework, and its modules.

These defined activities can be seen and identified using several different
information sources in the network traffic, including service discovery pro-
tocols. We have created a dataset to test our module by simulating these
activities. Due to our implementation’s modular nature as one of the non-
functional requirements, we plan to expand the current set of activities in the
future. The following activities are the examples that our work can detect
and classify from the data captured by passive monitoring.

Screen mirroring and multimedia streaming

With the expansion of smart televisions and screens capable of connecting
to the network via Ethernet [31] cable or Wi-Fi [32], now we can seamlessly
stream media and mirror screens from various type of devices like laptops,
phones, tablets and many more. The streaming can be done using Bluetooth
technology or direct ad-hoc wireless network at proximity level, or remotely
using network infrastructure. Apple AirPlay [33] is one of the service allowing
multimedia streaming and screen mirroring via network infrastructure. Air-
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Play leverages Bonjour to announce the service to the mDNS multicast group.
After the connection request is initiated, the device pairing uses TCP over the
announced port via HTTP. The data stream itself is encrypted and uses TCP
at a random port. We have observed a signature of specific TCP flags and
packet lengths when devices form a connection. We can also approximate the
type of activity based on the transferred bytes in the given time frame, e.g.,
the user was mirroring a screen or user was streaming media over AirPlay.

Remote session and file transfer

One of the ubiquitous advertised services via mDNS is the Secure Shell (SSH)
and SSH File Transfer Protocol (SFTP). They both operate at the same port
22, but in some cases, the chosen port might differ. As the name of the proto-
cols reveals, the data transfer is encrypted; hence we do not see in the payload.
To accurately distinguish between a file transfer and a remote session, is a
discussion for another thesis. In [34], they use statistical traffic analysis tech-
niques to classify the SSH traffic. In our approach, we use simple techniques
based on the simulated traffic from our datasets, like transferred bytes per
second. From that estimate, we can approximate with a certain probability
whether the user was transferring data or was connected to a remote host via
SSH. This rough estimate might be vital for a network operator as he can
detect suspicious sessions or data exfiltration from an unknown device.

Printing and scanning over IPP

Another activity we can normally observe in the traffic is whether a user was
using the connected network printer, and what type of action was requested.
Most standard network printers use the Internet Printing Protocol (IPP) to
perform the desired action. IPP was defined as an experimental protocol in
RFC 2910 [35] and became a worldwide standard short after. It uses HTTP
structure over TCP on a port 631. We can extract information about the doc-
ument, size, and desired printer action from the application layer. However,
this approach can not be used within its secure version called IPP over HTTPS
(IPPS) (defined in RFC 7472 [35]) where the information is encrypted. From
a security perspective, new devices use IPPS as a default option; nonetheless,
many printers still do not support this functionality. For our module, we want
to classify the printing or scanning activity.

Smart remote control

Nowadays, we connect smart fridges, air-conditioning, thermostats, doors,
boilers, bulbs, and many more into the home or enterprise network within
buildings. In most cases, no segmentation of these devices is configured, which
leaves the possibility of entry for an attacker who can exploit any vulnerabili-
ties to gain access in the network. Besides, many IoT protocols are not secure
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or left without any encryption. In our environment, we have a connect IoT
gateway to control various accessories via Apple HomeKit integration. Similar
to AirPlay, the gateway announces its availability in the network using the
Bonjour protocol. Users with a capable smartphone can afterward remotely
control the lights, the sunblinds, or power outlets. We wanted to observe and
identify these activities. We have captured and analyzed the traffic.

2.4.1 Discussion

In the beginning, we have defined a set of activities that we had observed in
our lab environment. Still, the activity was not captured in the traffic. These
findings are due to various implementations of services where some of them
might use service discovery protocols to announce the availability of a ser-
vice, but the actual data traffic is using different technology or network. For
example, we have observed that the smart television can be controlled from
Apple iPhone using Apple HomeKit technology and the television did an-
nounce hap. tcp.local, hence the smartphone sees the television either turned
on or off. If we decide to turn the television on or off remotely, the smart-
phone uses Bluetooth to execute this action. However, if the smartphone is
not connected wirelessly in the network, the television remote is not available
as it was not discovered using mDNS.

Another example is the Apple AirDrop technology, which is also announced
using the Bonjour service in the local network. It enables quick sharing of doc-
uments and multimedia among Apple devices. The data transfer is via Apple
Wireless Direct Link (AWDL), a special interface using the same hardware
Wi-Fi chip for low latency and high speed wireless peer-to-peer connection.
The real benefit is the independence over the network infrastructure. The first
implementations of AWDL in Apple products used Bonjour over the AWDL
which significantly degraded the wireless performance as the generated mDNS
traffic interfered with regular Wi-Fi traffic [36]. For these reasons, Apple prod-
ucts announce their services using Bonjour in local networks. The design of
our work is modular; hence we plan to define and add more activities to dis-
cover in the future.

Lastly, many services announce their services using service discovery pro-
tocols with a specific port, but the stream of communication occurs on a
different port or interface. During our observation, many services were us-
ing encrypted communication to exchange crucial information about the next
steps. Regardless of this obstacle, some services follow a specific pattern like
the same packet length. There are methods for detection avoidance, even
within encrypted communication. Padding, which dynamically changes the
packet length, could be one of them.

25



2. Design

2.5 Module Configuration

In this section, we design the options for ACID from the non-functional re-
quirements of the module analysis. We highlight the most crucial options for
the realization and show configurable parameters from the configuration file
and command line. All input from the CLI or configuration file should be
thoroughly checked for validity, permissions, and authorization rights.

2.5.1 ACID Parameters

One of the functional requirements of the work should be the integration
into the existing system NEMEA. As described in Section 2.1.1, the NEMEA
system is a CLI-based framework where the supervisor module manages the
running of individual components. The supervisor depends on a configurable
set of parameters for each module. For that reason, our work should take
similar options for corresponding auxiliary structures. Thus, the supervisor
can create subsequent functional blocks of individual modules for analysis and
detection.

• -c/--config: a path to a configuration file

• -C/--clean: a flag whether to delete auxiliary files

• -d/--pcap dir: a path to a directory with packet captures files to be
analyzed

• -h/--help: prints a help message about usage of the module

• -i/--ifc: a specification of the input and output interfaces for the NE-
MEA

• -j/--json: an option to serialize results into JSON data format

• -f/--file: a path to an individual file(s), delimited by ”:”

• -o/--output: a path to a file for storing results, otherwise standard
output is used

• -p/--print: an optional argument to present the result in a human-
readable format, the results are printed to standard output

• -P/--run pad: an optional argument to analyze flows with the Pas-
siveAutodiscovery module which assigns additional labels to devices and
creates dependency mapping

• -v/--verbose: an optional argument to print current progress
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2.5.2 Configuration File

As the only required argument for running the module should be the path
to a configuration file, we determine the mandatory arguments to analyze the
given data successfully. In the following list, we define the necessary key/value
pairs:

• pcap dir: a path to a directory or directories with packet captures, can
be overwritten from the CLI with respective parameter

• sdp dir: a path to a directory with service discovery module prototype

• pad dir: an optional path to the PassiveAutodiscovery module, if spec-
ified the module will be used

• tmp dir: a path to a directory for storing temporary auxiliary results

• nfm input spec: a required header format for UniRec messages in-
cluding the flow meter plugins
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Chapter 3
Realization

In this chapter, we explain the module’s functionality and realization of the
most vital parts. To ensure easy portability as one of the non-functional re-
quirements, we have chosen Python version 3.7 as the programming language.
As the module does not require to process and analyze real-time traffic, and
we work with JSON data structures, Python was an ideal candidate for the
implementation. As mentioned in the previous chapter, our module depends
on the NEMEA framework and its existing modules.

3.1 Module Structure

The source code of the module consists of nine files. This section will briefly
explains the structure and classes used in source code files. More information
about classes will follow in Section 3.2.

• acid.py: The file contains the principal class ACID, which holds all con-
figuration attributes, information about communications and devices. It
is the main file of the entire solution.

• device.py: The file contains the class Device, which stores all informa-
tion about individual devices observed in the network, their communi-
cations, and advertised services.

• service.py: The file contains the class Service, which is the consolida-
tion of information from service discovery protocols. It holds pointers
to class MDNS and SSDP. The protocol classes are loaded from the
information received from the service discovery module.

• activity.py: This file contains the most interesting classes. Class Com-
munication helps to store unidirectional information about exchanged
communication between a pair of devices. Class Activity is attached to
the communication flow when a particular activity from the defined list
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is identified. Class Flow is used as a key to a Python dictionary, and
class UNIREC is an auxiliary class to store UniRec binary data into an
object.

• identification.py: The file contains the class Identification for detec-
tion of a defined activity. Based on our measurements, we have im-
plemented specific algorithms to identify the given activity, which are
described later in this chapter. In this file, we have also implemented the
auxiliary class Label, which assigns the label to the identified activity.

• config.py: The file contains the class Config, which verify and check all
configuration parameters, and stores them in its attributes for further
usage.

• helper.py: The file contains the auxiliary class Messages, which stores
all messages and formatting for the output. It also defines tables of
various services for the human-readable output.

3.2 Class Diagram

As we have described the module source code structure above, we look now
in detail for each class and its purpose. In Figure 3.1, we can observe the
class dependencies, their attributes, and methods. In the following pages,
we take a look at each of the classes and explain their function in the final
implementation.

Class Config

The first class, which is initialized. It takes the program parameters and
configuration file as the input. The configuration file is in the standard INI
format, where key/value string is parsed and loaded. Then it thoroughly
verifies all parameters and the permissions for all specified files and directories.
The exception class ConfigError is raised if any of the parameters are incorrect
or user does not have sufficient permissions to read or write in specified paths.

Class Acid

The main class of the module which contains all information and references
in its attributes. We initialize it after we successfully parse and verify all
parameters. It serves as our internal database of all devices and communica-
tions stored in the class attributes. These attributes are dictionaries, where its
MAC address uniquely identifies a device, and a pair of source and destination
IP address identifies a communication. These structures help us to find an
existing record quickly in our database. In case of a runtime error, the class
raises exception class ACIDEror with the corresponding message.
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Activity
label: Label
unirec: Unirec
time_diff: timedelta
comm: Communication
identification: Identification

json_serialize(): dict
print_activity(int): str
find_activity()
find_service(): bool

ACID
config: Config
nemea: NEMEA
messages: Messages
devices: dict
communications: dict

ACIDError
message: Message
ret_code: int

Config
files: list
arguments: argparse.Name
config: ConfigParser
messages: Messages
default: dict

parse()
validate_config_file()
validate_tools()
validate_files()

ConfigError
message: Message
ret_code: int

Messages
strings for output

Unirec
NEMEA modules configuration

Flow
src_ip: str
dst_ip: str

Label
label: str
description: str

Unirec
flow informations

Identification
unirec: Unirec

identify_mdns(str)
identify_ssdp(str)
signature_check_airplay(): tuple
signature_check_hap(): tuple
signature_check_ipp(): tuple
signature_check_ssh(): tuple

MDNS
ports: set
services: dict
queries: set
response: set
txt: set

json_serialize(): dict
extract_values(dict, list): dic
parse_record(str): list
union(MDNS)
get_information(): dict

SSDP
ports: set
notifies: dict
searches: set
user_agents: set

json_serialize(): dict
union(SSDP)

Device
mac: str
vendor: str
last_comm: datetime
hostname: set
os: set
src_ipv4: set
src_ipv6: set
label: set
communications: dict
services: Service

json_serialize(): dict
union() 
add_info(): Device
get_information()
register_activity(Activity)

Communication
dst_dev: Device
src_dev: Device
flow: Flow
activities: list

json_serialize(): dict
print_communication(int): str

Service
services: dict
ssdp: SSDP
mdns: MDNS

json_serialize():dict
json_serialize_details(): dict
union(dict):
consolidate_services()

Figure 3.1: Module class diagram

Class Device

This class contains information about a single device. It loads the information
from the service discovery module, and additionally from the PassiveAutodis-
covery module if requested. Afterward, it consolidates all the services in one
structure regardless of the source. In the case of an existing record, the class
has builtin functions to merge the information. It contains the following list
of attributes:

• mac: a string containing MAC address which identifies the device

• vendor: a string containing vendor determined from first three bytes of
the MAC address

• last comm: a time of a last seen communication from or to the device

• model: a string containing the model of a device

• hostname: a set of observed hostnames for a device

• os: a set of observed operating systems for a device

• src ipv4: a set of observed IPv4 addresses for a device
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• src ipv6: a set of observed IPv6 addresses for a device

• label: a set of labels obtained from the PassiveAutodiscovery module

• protocols: a pointer to the auxiliary class containing information from
service discovery protocols

• services: a pointer to consolidated observed services for effective pro-
cessing

• communications: a dictionary of all communications from the device
underlying identified activities

Some of the class attributes are updated with the information from the
service discovery protocol. For example, it is not very accurate to specify the
vendor from the MAC address as the device usually has a NIC from a third-
party vendor. We also update a model type from the mDNS TXT record. The
reason for having multiple IP addresses, hostnames, and operating systems are
that we assume that the device can run multiple instances (e.g., a server with
running virtual machines or containers) or obtain a different IP address from
a DHCP server.

Class Communication

This class holds information about all unidirectional communication from a
single device to another device. It holds the pointer to a source and destination
device if a device exists in the database. The class Flow is its attribute and
uniquely identifies the given communication. The most important attribute
is the list of activities for the given pair of devices.

Class Activity

This class takes a given UniRec message and, based on the information, tries
to identify the activity from our set of defined activities. It uses auxiliary
methods to decide how to process the flow’s information. It holds these es-
sential attributes:

• label: a label of identified activity, e.g., AirPlay screen mirroring

• description: a description of the given activity in a human-readable
format

• time diff : a calculated time difference of the given communication

• unirec: a pointer to an instance of the UniRec message

• communication: a pointer to the communication class of the device
pair
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• identification: a pointer to a class for an activity identification algo-
rithms

Class Identification

This class is bound to the class Activity and helps to identify the type of activ-
ity based on the input UniRec message. It uses decision tree-like algorithms to
determine the observed activity successfully. The identification might include
the traffic patterns in terms of packet lengths, transferred bytes, or parsing
the HTTP headers. These classification algorithms are later described in Sec-
tion 3.4.

Class Label

We have implemented this auxiliary class to assign the label for an identified
activity, and it is bound to the class Identification. It holds descriptions and
defined labels for the activities. We assign the label only after the successful
classification of the flow.

Class Service

This auxiliary class was made for future expansion to accomplish the scalabil-
ity as one of the non-function requirements. At the moment, it holds pointers
to protocol classes MDNS and SSDP. The main purpose of this class is to
consolidate information from service discovery protocols into one structure to
optimize searching and code scalability.

Class MDNS

This class holds the essential information received from the service discovery
module. The class loads the JSON into predefined structures. The sample of
the received JSON is displayed in Figure 2.2. The attributes are the following:

• ports: a set of ports on which a device announces services using mDNS

• services: a dictionary of observed SRV records for the given port used
as the key

• queries: a set of observed mDNS queries from a device

• response: a set of observed mDNS responses from a device

• txt: a set of observed mDNS TXT records with additional information
about a device
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Class SSDP

Similar to the class MDNS, this class holds attributes specific to SSDP and is
loaded from the service discovery module. The attributes are the following:

• ports: a set of ports on which a device announces services using SSDP

• notifies: a dictionary of observed HTTP headers for the given port used
as the key

• searches: a set of observed SSDP queries using HTTP M-SEARCH

• user agents: a set of observed user agents with additional information
about an OS

Class NEMEA

This class holds information specific to the NEMEA system. It initialize the
auxiliary functions used for receiving the network traffic and prepares the
UniRec template with information fields specified in the configuration file.

Class Flow

This auxiliary class serves as the key for a dictionary of communications,
whether in class ACID or class Device. This is achieved by the Python data
class attribute frozen, which generates a hash () method for the class. We
use this hash to find the requested communication.

Class UNIREC

This class loads the flow from the binary format into the Python structure.
Each instance of this object is assigned to the class Activity. This instance is
used in the activity analysis, and later in the output.

Class Messages

This auxiliary class is a set of output messages containing various predefined
text lines. We use it when the verbosity level is set to be true.

3.3 Module Workflow

Now, as we understand the module structure and its classes, we can highlight
the module workflow, which is portrayed in Figure 3.2. After starting the
acid.py module with Python 3.7 interpreter and mandatory configuration file
argument, the program parses arguments and configuration file parameters.
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Figure 3.2: Module flow chart
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If the module detects any missing parameter or insufficient rights in the host’s
file system, it ends with an error.

If all initial checks are successful, the module creates two independent
threads to process input data with the auxiliary modules. The first thread
runs the service discovery module for each specified file. If a directory is
specified, it processes every file within that directory. If a file in a directory is
not a packet capture, the module ends with an error. In the future, we plan
to check and add only PCAP files in a directory.

The second thread processes the packet captures with the flow meter mod-
ule with selected plugins and stores the binary UniRec messages into a tem-
porary file where its path is specified in the configuration. If analysis with
PassiveAutodiscovery is requested, this thread loads the flow in this module
and process the flows. The output is stored in the temporary file using a JSON
format. The module loads the obtained information in the local database af-
ter the first thread finishes as we want to avoid any concurrent writing in the
data structures.

If both threads successfully finish their operations, the module loads the
temporary file with UniRec data prepared by the flow meter. For each bi-
directional flow, we look at the destination device and determine if the des-
tination port was announced using the service discovery protocols. If the
destination port matches an announced service, we analyze the flow informa-
tion. Based on known traffic different signatures, transferred bytes, or HTTP
header information, we are able to determine the defined activity. If the flow
does not match any defined activity, we store information about the usage of
this service. All other records are skipped. Once we process every flow, the
module outputs the results in a human-readable format to a network operator
or pass the information in JSON to other modules of the NEMEA system.

3.4 Identification Methods

This section describes the used detection methods for identifying our defined
set of activities in the ACID. As described in Section 2.4, we were focusing
on a small subset of activities to demonstrate its functionality and maintain
the space for future expansion due to the module’s scalable nature. We were
using decision-tree algorithms based on observed behavior we have simulated
in our environment. Currently, the chosen thresholds are set manually, but
we plan to automate the decisions using machine learning techniques. Our
testing environment and devices we have used for the simulation will be more
described in Section 4.1. For each following activity, we will describe its
behavior used for the identification by our module.
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Table 3.1: AirPlay RTSP Pairing

# Source Size TCP flags RTSP header
1 client 82 SYN —
2 server 78 SYN, ACK —
3 client 70 ACK —
4 client 346 PSH, ACK GET /info RTSP/1.0
5 server 70 ACK —
6 server 1518 ACK RTSP/1.0 200 OK
7 server 426 PSH, ACK —
8 client 70 ACK —
9 client 357 PSH, ACK POST /pair-verify RTSP/1.0
10 server 327 PSH, ACK RTSP/1.0 200 OK
11 client 70 ACK —

Apple AirPlay activities identification

One of the first activities we wanted to observe and analyze is media streaming
and screen sharing using the Apple Airplay service. It uses the Bonjour service
to announce its presence in the network on a TCP port 7000. The service
discovery module captures this announcement, and our module stores this
information within the Service class for later.

When we process the network flows and match the AirPlay’s destination
port, we check for a known device pairing signature. In the pairing process,
the devices agree on the random port to stream the screen or media. Unfor-
tunately, this information is encrypted, and we see only the headers of the
pairing exchange. Both for pairing and data exchange, the AirPlay leverages
the stateful real-time streaming protocol (RTSP) [37], where its structure is
very similar to HTTP.

If we detect this kind of pairing, we can expect another flow between these
devices within a specified time range. When we observe this flow, the TCP
handshake matches the packet lengths of the TCP handshake of respective
device pairing. Even though this communication is fully encrypted, we can
approximate based on the time of the connection and transferred bytes and
packets, whether a user was sharing a screen or streaming media.

As discussed at the beginning of this section, we set this threshold manu-
ally, which works in our environment with various devices, but needs further
testing and tweaking. For illustration, we list the RTSP exchange pairing
with obtained information in Table 3.1. The client is the device that wants
to stream data, and the server is the receiving screen. The size of the larger
packets will depend on the maximum transmission unit (MTU). For example,
the encrypted communication from the server in the sixth and seventh packet
might fit within one packet if the MTU is larger than standard 1500 bytes.
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SSH activities identification

In the beginning, determining the SSH activity seemed like a quite straight-
forward job. However, this problem is much more complex, and the topic for
another article. There are so many variables that can influence the proper
classification. As we do not process every packet of communication, but we
use the aggregate flow information, we can not use any statistical methods.
The most vital information for us, in this case, is the packets count transferred
from and to the server, total transferred bytes from client or server, and time
of the communication. Thus, we have manually set the threshold based on the
annotated simulated dataset from the observation. We will revisit the other
possibilities and methods of detection in the future.

IPP activities identification

As we mentioned earlier, IPP or IPPS operates on a TCP port 631. Whenever
we see the flow matching this TCP port, we subject it for further inspection.
The flow meter module can enrich the flow information for HTTP headers
such as HTTP request method, request host, request URL, request agent,
request referer, response code, and response content-type. We leverage these
fields, especially the request method, with a specified URL to determine the
printer’s job. We also look at the sent or received packets to see the direction
of the communication. We can assume that if the printer sends a large amount
of data towards the client, we classify this job as scanning, where the copy is
sent to the client.

Similarly, if the client sends a significant amount of bytes to the printer,
we observe a printing job. To determine whether the device is a printer or
not, we use the PassiveAutodiscovery module, which assigns label types for
observed devices. We would see more information in the unencrypted payload;
however, any content parsing plugin has not yet been implemented in the flow
meter module.

Apple HomeKit activities identification

Similar to Apple AirPlay, Apple HomeKit leverages the Bonjour service to
announce its presence in the network. It uses the stateless HTTP for device
pairing over TCP on a port 80, and then a random port for communication
exchanged during the pairing. However, we can not see the encrypted payload,
which would tell us more information. To classify the flow as the HomeKit
activity, we are leveraging a similar successful pairing signature with Apple
Airplay. In Table 3.2, we exhibit the observed communication signature. Our
module determines the pairing signature and classifies the flow as the HomeKit
pairing. Based on this information, we expect a subsequent flow from the same
source device to the destination controller. Since the payload is encrypted, we
cannot determine the desired activity, only its execution.
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Table 3.2: HomeKit HTTP Pairing

# Source Size TCP flags HTTP header
1 client 102 SYN —
2 server 86 SYN, ACK —
3 client 78 ACK —
4 client 247 PSH, ACK POST /pair-verify HTTP/1.1
5 server 298 PSH, ACK HTTP/1.1 200 OK
6 client 78 ACK —
7 client 336 PSH, ACK POST /pair-verify HTTP/1.1
8 server 78 ACK —
9 server 159 PSH, ACK HTTP/1.1 200 OK
10 client 78 ACK —

3.5 Label Requirements

Once we identify an activity based on the selected identification method, the
main requirement is to assign a corresponding label with a human-readable
description. This information is vital for further processing by a sequential
module or a network operator. We have implemented the auxiliary class Label,
which gives the contextual information to the given flow. If both devices are
present in the database, we classify the flow for both directions. Thus, the
server will have a different label than a client. For example, if a device A shared
the screen to the device B, we assign a label “A user (with more information
from the flow and the database) was mirroring a screen using AirPlay towards
the television B” to the device A. On the contrary, the device B will receive
a label with the information “I was projecting the device A’s screen for 10
minutes”. This contextual information is the main output of our module and
can be used to be further processed within the NEMEA system.
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Chapter 4
Testing and Evaluation

This chapter describes the testing environment and procedures for the created
module. In the beginning, we introduce a testing environment we have created
to study behaviour in the real network traffic. Furthermore, individual activ-
ities from Section 2.4 are verified. We also check other defined functionalities.
Finally, the behavior of individual items from the profile is measured.

4.1 Testing Environment

Before we started implementing the final solution, we have simulated sev-
eral scenarios in our home environment. We could easily control and capture
the network traffic without any network administrator’s restrictions. We have
observed the network traffic, thoroughly analyzed the packet captures in Wire-
Shark [30], and compare our findings with the learned theory. We have tried
to connect as many devices with different operating systems as we could to
observe service discovery announcements. In Figure 4.1, we show all devices
connected during our research.

Our network infrastructure consist of a small router for home environment,
eight port switch with Power over Ethernet (PoE) [38] and wireless access
point. All components are from the cloud-managed Cisco Meraki [39] family.
Connected devices for observation were following:

Apple MacBook Pro

A first device is an Apple laptop with macOS 10.15, which we have used to
capture all the network traffic. We set up a port mirroring on the Cisco Meraki
switch to send us all packets from all ports, including the Cisco Meraki access
point. The only caveat of this approach is that if two devices communicate
wirelessly, the traffic is only processed on the access point. For this reason,
we have connected most of the devices via an Ethernet cable. This scenario
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Figure 4.1: Testing environment

is specific to a small home network environment. In large campuses, network
access points send all network traffic to the central wireless controller(s).

Apple iPhone 11 Pro

Mobility and working from anywhere become essential in our daily lives.
Smartphones and tablets are more and more replacing standard computers.
To represent this category of devices, we chosen an Apple smartphone with
iOS 13.6 to monitor and capture various activities. We have also connected
smartphones with Android [40] operating systems, but we have not observed
any announced services using service discovery protocols fitting our scenarios.

Television LG OLED55E9

To simulate and capture the traffic from screen monitoring and screen shar-
ing, we have connected an LG [41] smart television, which enables the media
streaming and screen mirroring, among other protocols, using Apple AirPlay.
From the network observations, this device is the most talkative in the network
announcing its services using mDNS and SSDP. It also continually queries for
other services in the network.

IKEA Tr̊adfri

To represent the family of IoT devices, we decided to monitor the smart gate-
way from IKEA [42]. This gateway can control various products from IKEA
portfolios such as light bulbs, sunblinds, power plugs, etc. using Zigbee [43]
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technology. The gateway announces Apple HomeKit technology in the net-
work, and with a compatible device like Apple iPhone, we can control various
things. In our environment, we were using smart bulbs to identify what actions
are sent to the gateway.

HP ProBook 6550b

An older laptop from HP [22] to observe the behavior of Microsoft Windows
10. From the observations, unless Bonjour is installed, which is not by default,
the device is not very talkative about running services.

File server

A simple network-attached storage (NAS) system which provides NFS, FTP,
and SFTP services in the network. It runs Ubuntu [44] Linux Server 20.04. It
runs Avahi daemon to announce its file services using mDNS. In this thesis,
we were mainly focusing on SFTP file transfer. In future work, we want to
discover and observe other protocols for file services.

Generic network printer

When we were defining our set of activities, we thought about the network
printers, which are, in most cases, left without any proper security configured
in the computer networks. We have chosen the standard IPP without which
sends all the information in a plain text. However, we did not have this printer
in our environment. For this reason, we have simulated all printer’s jobs using
the common UNIX printing system (CUPS) software to observe the exchanged
communication. This observation provided us essential information on how to
identify the printing jobs for the activity classification.

Other devices

As shown in Figure 4.1, we have connected and observed traffic from other
sources as specified above, like a sports smartwatch or gaming console. How-
ever, we have not captured any particular traffic using service discovery proto-
cols leading to activity identification. Many modern devices are synchronized
via a central server in the cloud where the payload is encrypted. This observed
synchronization for various services is now beyond our work.

4.2 Activity Evaluation

An essential part of the testing was the verification of defined activities from
captured packets. We have simulated all defined scenarios in our environment
while we were capturing the network traffic. Our initial observation’s findings
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Figure 4.2: AirPlay screen sharing and multimedia streaming using Apple
iPhone (source: Wireshark [30])

were critical to determining which information we need to obtain either from
the auxiliary modules or the UniRec flows. This section describes the tests
and simulations for each defined set of activities.

Apple AirPlay activities evaluation

We have already described how Apple AirPlay works, how the service is discov-
ered, how the devices pair, and how the data stream is transferred. Now, we
take a look, how to distinguish a specific type of activity, e.g., a media stream
or screen mirroring. We have simulated these activities while capturing the
traffic. For simulation, we have used devices capable of AirPlay streaming.
In these tests, we have used the Apple iPhone and the Apple MacBook as
the clients, and the LG television as the receiving server. We have performed
several measurements to determine the type of activity from the encrypted
data stream.

For illustration, we can take a look at Figure 4.2. We have connected the
smartphone to the television at the mark of 10 seconds and shared the screen
for 30 seconds. At the one minute mark, we have started to stream the high-
resolution from the Internet for another 30 seconds. In the graph, we can see
the high volume of traffic with screen sharing, but not with the high-resolution
video. This is probably due to the RTSP Content-Location [45] header which
contains the URL for the target server. This functionality is embedded within
the smartphone’s video player. We have confirmed this theory as the video
traffic was not streamed from the smartphone, but the television connected to
the video’s location. The smartphone was then only controlling the playback
of the video; thus, we can see the constant stream of traffic.

In Figure 4.3, we have tried to simulate a similar activity using the laptop.
At the mark of 10 seconds, we have again started to share the screen for 30
seconds. In the first 20 seconds, we remained idle, and then we were changing
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Figure 4.3: AirPlay screen mirroring with Apple MacBook (source: Wire-
shark [30])

screens and generating display changes. At the mark of one minute, we have
started to share the screen and playing video in the full-screen mode for 30
seconds. In the beginning, the graph shows us the pairing and initial screen
packets are sent to the television, creating a small spike. Then the traffic
remains constant when we were idle, and for the last 10 seconds, we observe
traffic spikes as the changes are sent to the screen. Lastly, playing the video
generates a high peak of traffic, as we did not use any AirPlay supportive video
player; hence, all the screen changes have to be continuously streamed to the
television. Due to latency and delay, this might be a significant challenge for
the user experience.

In these examples, we have described the identification of a specific ac-
tivity. In our implementation, we rely on the aggregate flow information.
Even though the UniRec record supports individual packet lengths statistics,
this field is limited. In our module, we identify the activity based on the
transferred bytes per second. We have established the threshold based on our
simulations; hence we can only approximate whether a user was sharing a
screen or streamed media.

SSH activities evaluation

In our environment, we have used a file server with SFTP capabilities running
Ubuntu Linux. We could easily simulate the remote connection to the server
or initiate a file transfer. Similar to Airplay, we have simulated both activities
in one packet capture. In Figure 4.4, we can observe two different network
flows to the SSH/SFTP server. At the mark of 10 seconds, we have initiated a
remote session to the server for 40 seconds. In the beginning, we were mostly
idle, listing directories, manual pages, and executing basic shell commands.
After 20 seconds, we were outputting large log files, which generated the
second peak illustrated in the graph. After one minute, we have initiated
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Figure 4.4: SSH session and SCP file transfer (source: Wireshark [30]

a file transfer of a large file for 20 seconds towards the server. The most
towering peak shown in the graph is the representation of this file transfer. In
this simple way, we can quickly determine the desired activity. Our module
assigns the correct label based on the transferred bytes, direction, and packet
count. As we have mentioned in Section 3.4, we are aware that this approach
might not be accurate, and it would require more tuning.

IPP activities evaluation

As we mentioned in the previous section, we have simulated the network
printer over IPP in our environment. We configured a pretended printer on
the Apple MacBook laptop using built-in CUPS software. With the second
laptop, we have added this network printer in the OS as the default printer.
It was announced using the DNS-SD service; hence, we did not need to add
its address manually. Within the observed communication, we have seen that
simple network management protocol (SNMP) [46] is used to get information
about the printer, its functions, and its capabilities. After, we have requested
a print job of a sample document. From that information, we could deter-
mine the behavior of the IPP traffic. With a combination of the IPP docu-
mentation, we have implemented signatures for printing and scanning traffic
patterns. We have successfully tested this activity identification within the
simulated dataset.

Apple HomeKit activities evaluation

We wanted to leverage all available types of devices we have set up in our
environment. One of them was the IoT gateway from IKEA, enabling the
smart home remote control of various accessories via Zigbee like light bulbs via
a smartphone application. The gateway can be integrated with modern home
voice assistants and Apple HomeKit technology. For our module testing, we
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wanted to capture and classify the control of the lights. We have successfully
identified the pairing from the smartphone and the subsequent action. As the
service was designed with security as one of its main requirements, we can not
classify the relevant action from the network flow information. We evaluate
this finding as a very positive step in the IoT security domain. As the next
step, we want to discover and evaluate other similar services that do not put
security first.

4.3 ACID Output

After the module processes all the captured flows and identifies the given
activities, it outputs the results in the desired format in the standard output
or in a specified file. The results’ format can be either human-readable or
in a JSON data structure for further analysis. In Figure 4.5, we display the
most interesting excerpt from the output. We have modified the values to
ensure anonymity and we have omitted certain records for better readability.
The output tells a network operator or to a subsequent analysis module that
device with IP address 192.168.10.10 was communicating with two devices
where with the first one the user was sharing screen for 30 seconds at a given
time (omitted), and with the second, the device

4.4 Discussion

Our work aims to successfully identify a specific set of activities, which we can
classify and assign corresponding labels for further analysis. Given the waste
majority of options to detect, we focused on the small subset of these activities
we can simulate in our environment. We have defined these sets of activities
announcing their presence using service discovery protocols. Based on our
initial observations, we considered them to be easily identifiable. However, we
stumbled over more complex problems and decision making. Even though we
cannot ensure the perfect accuracy, this module is the functional prototype of
the future subsequent work. We have not seen any similar-like tool analyzing
the network flows during our research, which outputs and presents the high-
level description of the observed activity.
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” dev i ce ” : {
”mac” : ” f 0 : 1 8 : 9 8 : db : ca : f e ” ,
” vendor ” : ”Apple , Inc . ” ,
”model” : ”MacBookPro15 , 1 ” ,
”hostname” : [ ” macbook . l o c a l ” ] ,
” os ” : [ ”MacOS 19 ” ] ,
” ipv4 ” : [ ” 1 9 2 . 1 6 8 . 1 0 . 1 0 ” ] ,
” ipv6 ” : [ ” f e80 : : 1 0 cb : f e14 : 4 0 9 : 3 3 6 1 ” ] ,
” l a b e l ” : [ ” End Device ” ,”MacOS” ] ,
” last comm ” : ”2020−06−28 10 : 20 : 11 . 388000”} ,

” s e r v i c e s ” : {
”22” : {

” s e r v i c e ” : [ ” macbook . s s h . t cp . l o c a l ” ] ,
” source ” : ”mdns”
} ,

} ,
” communications ” : [{

” s r c i p ” : ” 1 9 2 . 1 6 8 . 1 0 . 1 0 ” ,
” d s t i p ” : ” 1 9 2 . 1 6 8 . 1 0 . 2 5 ” ,
” a c t i v i t i e s ” : [
{” time ” : ” 0 : 0 0 : 0 0 . 0 1 5 0 0 0 ” ,

” l a b e l ” : ” a i r p l a y p a i r i n g ” ,
” d e s c r i p t i o n ” : ”The dev i ce has pa i red us ing Ai . . . ” } ,
{” time ” : ”0 : 00 : 29 . 8175600” ,

” l a b e l ” : ” a i r p l a y s c r e e n m i r r o r i n g ” ,
” d e s c r i p t i o n ” : ” User was shar ing s c r e en f o r 3 . . . ” } ,

} ,
{
” s r c i p ” : ” 1 9 2 . 1 6 8 . 1 0 . 1 0 ” ,
” d s t i p ” : ” 1 9 2 . 1 6 8 . 1 0 . 1 1 ” ,
” a c t i v i t i e s ” : [
{” time ” : ” 0 : 0 0 : 0 6 . 8 1 7 0 0 0 ” ,

” l a b e l ” : ” i p p p r i n t i n g ” ,
” d e s c r i p t i o n ” : ”The user has reques ted a p r i . . . ” } ,
{” time ” : ” 0 : 0 0 : 2 0 . 9 1 3 0 0 0 ” ,

” l a b e l ” : ” s s h r e m o t e s e s s i o n ” ,
” d e s c r i p t i o n ” : ” C l i en t i n i t i a t e d an SSH remot . . . ” } ,

} ]

Figure 4.5: ACID output

48



Conclusion

One of the main pillars of network security is network monitoring that plays an
essential role in getting visibility into network traffic. However, the currently
existing tools provided rather low-level information about active devices and
sent/received network packets, which are usually aggregated into network IP
flows. This information is beneficial for experienced network operators and
security analysts, who can identify security threats based on their knowledge
about legitimate network behavior of their operated devices. Unfortunately,
this professional manner of information is not easily understandable for the
majority of users.

For the maximal comfort of users in the application scope, many net-
work services run on background and exchange messages for automatic “self-
discovery”. In this way, the incorporation of new devices or discovering existing
services on the local network is done automatically and independently from
a user. As a result, it is much more straightforward for users to find their
devices and use them. However, we studied such protocols, and we discovered
how much useful information the devices leak in local networks.

This work aims to analyze the network traffic in combination with infor-
mation from the service discovery protocol (SDP) messages to estimate the
real purpose of the communication. Contrary to the existing monitoring ap-
proaches, this work goes beyond the current interpretation of network flows
based on IP addresses, protocols, and ports, which are useful information for
experienced network experts. This work focuses on the identification of high-
level events, i.e., activities from the users’ perspective. The main goal is to
utilize announced information by devices and services to assign the meaning
of the IP flows.

This thesis listed some example activities of real network devices that
interacted directly with a user or via another device. The main contribution
is higher reliability of the assigned labels to the communication than can be
reached by straightforward checking port numbers of well-known services.

During this work, we have developed a software prototype of an ana-
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lyzer called ACID. This module receives information from several information
sources, such as SDP messages (of 2 main protocols) and IP flow data. The
ACID software implements the described scenarios and estimates the labels
for the traffic, where the labels represent user activities. As a result, the mod-
ule provides information about “shared screen from a laptop on a smart TV”
instead of low-level information about communication protocol and port. We
believe this kind of information is much more helpful for both network opera-
tors and security analysts who try hard to understand the traffic and achieve
situational awareness.

To evaluate the functionality of the developed software module, we have
created and set up a new laboratory environment. This environment consists
of various types of real devices that can be used by a user. IP flow tools
simultaneously monitored the whole network infrastructure, and we have cap-
tured some traffic samples of SDP traffic in the form of packets. This effort
focused on comprehensive testing of the designed and developed ACID mod-
ule. Also, we used the created infrastructure to create datasets to evaluate
the developed methods for identification. In this thesis, we have evaluated
the achieved results of the tests and the required hardware resources for the
module’s deployment.

Future work

Nowadays, there are countless types of devices with different services connect-
ing to a network. Hence, it is hard to keep track of all different vendors and
specific services. For the future work, we would like to automate the discov-
ery of new services and their related activities by leveraging machine learning
techniques.

Another possible improvement is a simplification of the entire workflow,
thus reducing the module’s run time. As the module depends on the prepro-
cessed information from mDNS and SSDP packets, the per-packet analysis
slows down the entire workflow. Plugins for the flow meter module are being
developed based on the prototype created in this thesis. In the future, both
mDNS and SSDP application layer information will be exported in UniRec
format directly, so our module will not require to run the service discovery
module.
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Appendix A
Acronyms

ACID Activity Identification

AMF Aruba Mobile First

AWDL Apple Wireless Direct Link

BSD Berkeley Software Distribution

CLI Command-Line Interface

CTU Czech Technical University

CUPS Common UNIX Printing System

DDoS Distributed Denial of Service

DHCP Dynamic Host Resolution Protocol

DNA Digital Network Architecture

DNAC DNA Center

DNS Domain Name System

DNS-SD DNS-Based Service Discovery

FTP File Transfer Protocol

GUI Graphical User Interface

HP Hewlett-Packard

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IFC Interface
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A. Acronyms

IP Internet Protocol

IPFIX IP Flow Information Export

ISE Identity Services Engine

ISP Internet Service Provider

JSON JavaScript Object Notation

LAN Local-Area Network

MAC Media Access Control

mDNS Multicast Domain Name System

NAS Network Attached Storage

NAT Network Address Translation

NBD Name Binding Protocol

NCP Network Controller Platform

NDP Network Data Platform

NEMEA Network Measurement Analysis

NFS Network File System

NREN National Research and Education Network

OOP Object-Oriented Programming

OS Operating System

PAD PassiveAutodiscovery

PoE Power over Ethernet

RAM Random Access Memory

RFC Request for Comments

RTSP Real Time Streaming Protocol

SDA Software-Defined Access

SDN Software-Defined Networking

SDP Service Discovery Protocols

SFTP SSH File Transfer Protocol
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SNMP Simple Network Management Protocol

SSDP Simple Service Discovery Protocol

SSH Secure Shell

ST Search Target

TCP Transport Control Protocol

TRAP Traffic Analysis Platform

UDP User Datagram Protocol

UniRec Unified Record

URI Uniform Resource Identifier

URL Uniform Resource Locator

UPnP Universal Plug and Play

WAN Wide-Area Network

Wi-Fi Wireless Fidelity
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Appendix B
Installation Manual

B.1 NEMEA System Installation

We have tested and developed our module on the Debian Linux distribution
system. To successfully run and verify our module, we need to download and
install package dependencies to compile and install the NEMEA system.

GIT installation:
apt install git

NEMEA recursive cloning from GitHub:

git clone --recursive https://github.com/CESNET/nemea

NEMEA dependencies installation:

apt install -y bc bison autoconf automake gcc gcc-c++ flex \
libidn11-dev libpcap-dev libtool libxml2-dev \
make pkg-config python3-devel python3-pip

Python installation:

apt install python3
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B. Installation Manual

NEMEA installation:
cd nemea/
./bootstrap.sh
./configure --enable-repobuild --prefix=/usr \

--bindir=/usr/bin/nemea --sysconfdir=/etc/nemea \
--libdir=/usr/lib64

make
make install

NEMEA-Framework installation:
cd nemea-framework
./bootstrap.sh
./configure
make
make install
mkdir -p /usr/local/lib64/python3.6/site-packages/
cd pytrap
python3 setup.py install
mkdir -p /usr/local/lib/python3.6/site-packages/
cd ../pycommon
python3 setup.py install

B.2 ACID Installation

After we successfully install the NEMEA system, we need to install specific
Python package dependencies. We use the Python builtin pip package system.
The required packages are listed in the requirements.txt file.

NEMEA installation:
cd acid
pip3 install -r requirements.txt
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Appendix C
Module Usage

C.1 Module Usage

Running the ACID module is straightforward, we go in the source code direc-
tory and runs the module with the configuration file. In the configuration file
we set the directories for auxiliary modules and a path to the directory with
packet captures.

cd acid
python3 acid.py -c ../acid.ini
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C. Module Usage

C.2 Module Help

The ACID is a standard a command-line tool with configurable arguments to
run the program. In the following example, we can see the help output for
module usage.

Help
usage: acid.py [-h] -c CONFIG [-d PCAP_DIR] [-f FILE] [-j]

[-o OUTPUT] [-p] [-P PAD_DIR] [-S SDP_DIR]
[-T TMP_DIR] [-v] [-vv]

Analyze flows from service discovery protocols
and identify activities from communications.

optional arguments:
-h, --help show this help message and exit
-c CONFIG, --config CONFIG

Configuration file.
-C, --clean Clean temporary files.
-d PCAP_DIR, --pcap_dir PCAP_DIR

Path to a directory with PCAP files
to be analyzed. Multiple directories
allowed delimited by ’:’.

-f FILE, --file FILE Specification of the input file(s)
in PCAP format. Multiple files
allowed delimited by ’:’.

-j, --json Stores results in JSON format.
-o OUTPUT, --output OUTPUT

Output file to store results.
-p, --print Print results in the standard output.
-P PAD_DIR, --pad_dir PAD_DIR

A path for the passive
auto-discovery module.

-S SDP_DIR, --sdp_dir SDP_DIR
A path for the service discovery module.

-T TMP_DIR, --tmp_dir TMP_DIR
A path for a temporary directory
to store auxiliary files.

-v, --verbose Be verbose.
-vv Be more verbose.
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Appendix D
Contents of Enclosed CD

acid................................main module source code directory
acid..................................Python source code directory

init .py....................................................
acid.py .......................................................
activity.py...................................................
config.py.....................................................
device.py.....................................................
helper.py.....................................................
identification.py............................................
service.py....................................................

acid.ini............................configuration file of the module
README.md .......................... module description and manual
LICENSE....................................used source code license
requirements.txt..........archive with the module implementation

thesis .................................... thesis source code directory
thesis.tar.gz.........archive with LATEX source codes of the thesis

Figure D.1: Contents of enclosed CD
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