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Abstract

In this thesis, we explore the idea of
modeling graphons with neural networks.
Graphons are functions representing the
structure of a large graph, and thus we
try to approximate them with neural net-
works. To that end, we developed a
gradient-based learning algorithm which
we test on synthetic data. Lastly, we
analyze the convergence of learning pro-
cesses of our algorithm and the resulting
graphons they produce.
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Abstrakt

V této praci se zabyvame reprezentaci gra-
fontt pomoci neuronovych siti. Grafony
jsou funkce zachycujici strukturu velkych
grafi. Neuronové sité jsou v nékterych
pripadech dobrymi aproximacemi funkei,
proto se pokousime je aplikovat na aproxi-
maci grafonti. Za timto cilem jsme v ramci
prace vyvinuli uc¢ici algoritmus zalozeny
na spadovych metodach, které nasledné
testujeme na umeéle vytvorenych datech.
Nakonec analyzujeme konvergenci naseho
algoritmu a grafony, které algoritmus pro-
dukuje.

Klicova slova:
velky, graf, sit

grafon, neuronova sit,

Preklad nazvu:
neuronovych siti
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Chapter 1

Introduction

Network science is a field of study that analyzes networks such as social
networks, traffic networks, biological networks, and computer networks to
name a few. To study these networks, network science is in some sense a
combination of multiple fields such as mathematics (graph theory), computer
science (graph algorithms), data mining/statistics (inferential modeling),
sociology (social structure), biology (biological systems).

The underlying theory for all network sciences is graph theory, in which
mathematical advancements have been made recently in the form of developed
theories namely graphons defined in [Lov12]. Graphons are mathematical
objects representing the structure of enormous graphs, for example an atomic
grid of a crystal. Modeling large graphs is challenging due to their sheer size.
Sometimes we might not want to model on a vertex or edge level but rather
we would like to capture higher-level yet intricate structural patterns. To
that end, using graphons is an interesting direction to take.

Mathematically, graphons are just functions. In recent years, neural net-
works have proven to be powerful function approximators in some use cases
so it is natural for us to explore if we can represent graphons with them. This
is the aim of this thesis - to model graphons using neural networks.






Chapter 2
Graph(on) Theory

This chapter describes graph theory and graphon theory that is needed in
order to get a grasp of graphons - the mathematical object representing the
structure of a large graph. Here, we will also define homomorphism densities
that are the backbone quantities with which we will train our neural network
to represent a graphon. We suggest the reader to have a look at Lovasz’s
book [Lov12|, from which the theory in this chapter was drawn, for a more
in-depth treatment of the study of graphons.

B 21 Graph Theory

This section does not introduce any complicated efficient algorithms on graphs
or state theorems about them but rather defines some basic terms and graph
properties so that the reader understands them when they appear in later
sections.

B 2.1.1 Basic Terminology

Definition 2.1.1. A simple graph G of size n is a pair (V, E), where V is a
finite set of n vertices (also nodes) and E C {{a,b}|a € V,b e V,a # b} is a
set of edges (also links).

We will use Vx and Ex to denote the set of vertices and the set of edges
of a graph X respectively. Unless stated otherwise, we will assume that the
vertices of a graph X are labeled by integers {1,2,...,|Vx|}.

Notice that in the definition of edges, an edge is a two-element set of
vertices which are unordered and have no direction. We call this graph an
undirected graph.

Since two-element sets with the same elements are treated the same, mul-
tiple edges between the same two nodes are considered one and the same
edge.

In this definition of a simple graph, a loop (an edge on the same vertex) is
not allowed. However in our application and usage of graphs, loops do not
really matter.

We will refer to simple graphs as finite graphs or just as graphs and
primarily only work with them unless stated otherwise from now on.

3



2. Graph(on) Theory

Definition 2.1.2. An induced subgraph H = (Vy,Ep) of a graph G =
(Va, Eq) is a graph such that Vg C Vi and Ey = {{a,b}|la € Vy,b €
VHa {CL, b} € EG}

Definition 2.1.3. A complete graph K = (Vik,Fk) is a graph such that
Ex ={{a,b}|a € Vkg,b € Vik,a # b}, i.e. it contains all possible edges.
Definition 2.1.4. An independent set I = (Vi, Ey) is a graph such that
E;r=0.

Definition 2.1.5. An edge weighted graph G = (Vi, Eq, w¢) has an additional
weight function wg : Eg — R that maps a real value to each edge.

Definition 2.1.6. In a directed graph G = (Vg, E¢) the edges are ordered
pairs of vertices Eg C {(a,b)|a € Vi, b € Vg} thus the edges have a direction.

Definition 2.1.7. A cliqgue C of a graph G is its induced subgraph such that
C is a complete graph.

Definition 2.1.8. A degree of a vertex v denoted by deg(v) in a simple graph
G is the number of its direct neighbors, or more formally deg(v) = |{e|v €
e,e € Eg}l.

B 2.1.2 Properties of a Graph

Definition 2.1.9. A graph H = (Vy, Eg) is said to be isomorphic with a
graph G = (Vg, Eg), if there exists a bijective mapping i : Viz — Vi such that
(Va,b € Vig)({a,b} € Eg < {i(a),i(b)} € Eg). We call such a mapping an
isomorphism.

In other words, the graphs are the same up to a relabeling of the vertices.
A non-edge has to map to a non-edge and an edge has to map to an edge.

Note that because i is a bijection, the isomorphism relation between graphs
is symmetric.

As seen in figure 2.1 below, graphs H and G are the same up to a relabeling
of vertices. An example of an isomorphism for those graphs is

)

=

I
SA~SSCRR R
Q@ e e <
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)

Definition 2.1.10. A graph H is homomorphic with a graph G, if there
exists a mapping h : Vg — Vg such that (Va,b € Vg)({a,b} € EFyg —
{h(a),h(b)} € Eg). We call such a mapping a homomorphism.

Let us denote H — G if a homomorphism of H into G exists.

B In contrast to an isomoprhism, a homomorphism can map a non-edge to
an edge, a non-edge, or even a single vertex. An edge must still map to
an edge though.



2.1. Graph Theory

G

Figure 2.1: An example of isomorphic graphs

® An isomorphism is edge and non-edge preserving, while a homomorphism
only preserves edges.

® Homoprhisms between graphs are not necessarily symmetric relations.

Sy o

G

Figure 2.2: An example of H being homomorphic with G

An example of a homomorphism of H into G for the example [2.2 above
would be

h(v) = (2.1)

9
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The existence of a homomorphism can encode surprisingly non-trivial
information. For example, K,, — G means that G contains a clique of size
n because K, doesn’t have non-edges thus the mapping is definitely injective
and since edges have to map to edges then there must be an edge between
every pair of the image nodes in G. G — K,, means that G is n-colorable

5



2. Graph(on) Theory

because if two vertices in H are adjacent, then they must map to two different
vertices in GG, so we can use the vertex images in GG as colors of vertices in H.

Homomorphisms are important because we will build on top of them by
defining homomorphism densities in section 2.2}

Definition 2.1.11. We call a sequence of graphs G, (growing with the number
of vertices n) dense, if the number of edges grows asymptotically quadratically
with the number of vertices O(n?), or informally that the number of edges
stays proportionate to the maximum number of all possible edges. A sequence
of graphs that is not dense is called sparse.

From now on, we will only work with dense graphs unless stated otherwise.
The motivation behind this is that we model large graphs by sampling induced
subgraphs from them and if the graphs were sparse, then we would almost
surely get an independent set. Many real world networks are sparse graphs,
for example social networks. As of today (the time of writing this thesis),
modeling sparse graphs is still an active research topic and the theory is not
yet as well developed as the theory for dense graphs. However some real
world networks are dense, for example protein-protein interaction graphs.

| ) Graphon Theory

This section provides the definition of graphons, the object we want to model,
as well as homomorphism densities, the quantities that in fact differentiate
graphons from each other.

The main idea of using graphons is that when we sample induced subgraphs
from a large network that we want to model, the structure of the subgraphs
becomes increasingly similar to the structure of the large network itself as we
increase the size of the sample. The structure then converges in some sense
to a limit structure and that limit is the graphon. The convergence is defined
via the convergence of homomorphism densities calculated on the subgraph
samples.

B 2.2.1 Homomorphism Numbers and Densities

Definition 2.2.1. Let hom(H, G) denote the set of homomorphisms of graph
H into graph G and let |hom(H, G)| be the homomorphism number of H into
G (the cardinality of the set).

Homomorphism numbers depend on the sizes of the input graphs so we
will have to define normalized versions of them:

Definition 2.2.2. Let us define the homomorphism density between graphs

H and G as | ( )
hom(H, G
HH,G) = —ovar

One can think of this number as the probability that a random mapping
of vertices from H to G is a homomorphism.

6



2.2. Graphon Theory

Homomorphism densities would not make much sense if G was a sparse
graph or a bounded degree graph since the number of all possible mappings
between the vertices would quickly outgrow the number homomorphisms and
t(H,G) would tend to 0.

To that end, Lovasz [Lov12] defined a different way of normalizing homo-
moprhism numbers:

Definition 2.2.3. A homomorphism frequency between graph H and a sparse
graph G is
lhom(H, G)|

e

Working with sparse graphs and representing them with graphons would
be out of the intended scope of this thesis, especially when trying to represent
them with neural networks and coming up with an algorithm that does this.
So for the sake of simplicity, let us assume that we are working with dense
graphs, but of course many real life graphs/networks do not fit the dense
setting.

Definition 2.2.4. We further define injective homomorphism density and
induced homomorphism density as

inj(H, G
tins (H, G) = \\|/G|( )l ‘
Ihi=ive) - v 17
and o
tona(H, G) = lind(H, G)|

Vel .
Hicive - v 41t
respectively, where inj(H, ) is the set of injective homomorphisms of H into

G and ind(H, G) is the set of injective homomorphisms of H into G that are
also non-edge-preserving.

B 2.2.2 Modeling and Sampling Large Graphs Versus
Homomorphism Densities

As noted by Lovéasz, studying large networks that cannot be even stored in
working memory, can be done by sampling smaller subgraphs. This kind of
statistical inference on objects (such as graphs) other than numbers was first
established by Goldreich et al. in 1998 [GGROS].

One could sample a large graph by uniformly sampling vertices of that
graph and by determining the edges of the vertex sample, get an induced
subgraph. Note that this method would not make sense for sparse graphs
as one would almost surely get an independent set. This sample contains
enough information to infer a lot of properties about the large graph with an
error caused by the random sampling that can be pushed arbitrarily low with
the growing size of the sample (in number of vertices). Also, sampling many
smaller subgraphs yields less information than sampling a larger subgraph
once.



2. Graph(on) Theory

It turns out that sampling (ordered, without repetition) of induced sub-
graphs from large graphs carries the same information as homomorphism
densities. When sampling an induced subgraph of size n from a large graph
G, the graph G creates a probability distribution over all graphs H of size
n: 0gn(H). In the dense case, this probability distribution exactly matches
tina(H,G), which is the probability that a random injective map from H to
G is edge and non-edge preserving, or in other words that the random map
corresponds to an induced subgraph of GG that happens to be H.

Now that it is established that there is a one to one correspondence of
subgraph sampling with ¢;,4, [Lov12] also introduces a relationship between
tind and tinj:

tind(H; G) — Z (_1)‘EH/|_‘EH| 'tinj(H/,G), (22)
H'DH

where H' ranges over all graphs of the same size as H that are obtained by
adding edges to H. In short, the induced homomorphism density (or subgraph
density) can be expressed as a linear combination of injective homomorphism
densities.

If we fix H, the distance between t(H, G) and t;,;(H, G) tends to 0 as the
size of G grows [Lov12]:

t(H,G) — tin;(H,G)| < |V1G ("QH’) (2.3)

Ultimately, the relationship between ¢, ¢;,4 and ¢;,,; is tight for large graphs
and the error between them becomes negligible and so t carries the same
information as subgraph sampling.

B 2.2.3 Graphons

In this subsection, we finally describe how Lovasz [Lov12] defined graphons,
the central objects in graphon theory, and explain how they relate to graphs.

Definition 2.2.5. A graphon (short for graph function) is a symmetric mea-
surable function W : (0,1)2 — (0,1).

A graphon can be interpreted in multiple different ways that will be
described in more detail in the following subsections:

® A continuous analogue to a weighted adjacency matrix.
® A random graph model, or a distribution of random graphs of any size.

® A limit object for a sequence of graphs that have "the same structure".

B Graphons as "continuous adjacency matrices"

A graphon W can be viewed as an infinite weighted adjacency matrix, where
each real number in the unit interval (0,1) represents a vertex and the

8



2.2. Graphon Theory

graphon value W(z,y) of a particular pair of vertices z,y € (0, 1) represents
the normalized edge weight or edge probability between them.

To show the relationship between a graphon and an unweighted simple
graph, we can construct a graphon W from a simple graph G by equidistantly
partitioning (0, 1) into |V| intervals of length IVilcl’ each corresponding to a
vertex of G and finally defining the values of W according to the presence
of edges in G:

. . 1 . o
17 x€<|ZVG1|7ﬁ>7 y€<|]V7G|’|V]7G‘>’ {Zaj}EEG

Wa(z,y) 0, otherwise (24)
as illustrated in figure 2.3
]
0 ° 0 01 00
00100
° e 11011 e
0 01 00
e ° 00100
0
0 1

G We

Figure 2.3: Construction of a graphon from a simple graph

B Graphons as random graph distributions

A graphon can also be viewed as a distribution of random graphs from which
a graph of any size can be sampled. See figure 2.4

Let’s say that we want to sample a simple graph G of size n from graphon
W. We can do that by uniformly sampling n numbers S,, from (0, 1) that
will represent the vertices of (G, then determine the edges by including an
edge {z,y} into Eg with probability W (z,y), where x € S,y € S,,. Then,
the numbers 5,,, present in V7 and E¢g, are mapped by an arbitrary bijection
to integers {1,...,n}. Let us denote such a graph G of size n sampled from a
graphon W as a W-random graph G, w and the distribution of such graphs
as Gy w.

- ----0

T
+
3
t

Figure 2.4: Sampling a simple graph of size 4 from a graphon



2. Graph(on) Theory

B Graphons as limit objects for random subgraph sequences

The interpretation of graphons as limits of graph sequences will be more
thoroughly explored in section but below are two examples that bring a
little bit of intuition to random graph sequences, their structural difference
and their relationship to graphons.

Assume a setting where we want to model a large graph and our only only
option is to sample induced subgraphs from it. As we increase the size of
the sampled subgraphs, their structure becomes increasingly similar to the
actual large graph and as we will see later, the object that the subgraphs will
"converge to", will be a graphon. In figures and [2.6, you can see graph
sequences sampled from large graphs and then converted to graphons via
equation [2.4. The large graphs’ structures, from which the sequences were
created, correspond to the constant graphon W(z,y) = % and a so called
growing uniform attachment graphon U(z,y) = 1 — max(z,y) respectively
[GIal6]. A sequence of random graphs for W is defined trivially, just create n
vertices and randomly add edges between pairs of vertices with probability %
A sequence of random graphs for U is defined inductively, the first graph is
just a vertex and graphs of size n > 2 are created by adding a vertex to the
previous graph of size n — 1 and connecting the new vertex with the other
ones with probability %

Graphons constructed from a simple graph with are step functions,
but a sequence of such graphons may converge to a graphon that is not a
step function but a continuous function on (0,1)2. We can view it as a local
averaging process that aggregates Os and 1s. The sequence limit object does
not have to belong to the same class of objects as the sequence elements.
An example for comparison would be that a limit of a sequence of rational

numbers might not be a rational number.
10
. 0
. 06
. 0
: 02
0.0 0.2 0.4 0.6 0.8 1.0 oo

Figure 2.5: Sequence of random graphs with edge probability %

Figure 2.6: Sequence of growing uniform attachment graphs

10



2.2. Graphon Theory

B 2.2.4 Homomorphism Densities Generalization

We will later define convergence of graph sequences and how they tend to
graphons but first, we will need to extend homomorphism densities, another
one of the key ideas in the theory of graphons.

Definition 2.2.6. The homomoprhism density of a graph F' into a graphon
W is defined as

HE,W) = / I W) [[ do

<071>|VF| {i,j}EEF keVg

This definition of a probability that a mapping of vertices of the graph F
into a graphon W is a homomorphism may be a little bit intimidating. Let us
have look at a particular example in an analogous discrete setting, where we
set F' to be a cycle graph Cy and assume a large graph G instead of W just
to get an intuition. One of the possible ways of calculating the density is:

1 Vel Vel Vel Vel . . G G
t(C4,G) - W Z Z Z Z AULUQ 'Av27’U3 'A1137”4 .AU4’”1’

vi=1ve=1v3=1v4=1

where A% is the binary adjacency matrix of G. An intuitive way of interpreting
this is that each of the sums represent a for loop for each of the vertices in
C4 and these iterate over all possible mappings of the four vertices in Cy to
vertices in G. The body of the sums, Ale’vz : A%vg . A%,m . Agwl, represent
the condition that all of the edges E¢, = {{1,2},{2,3},{3,4},{4,1}} map
to edges {{v1,va}, {ve,vs},{vs,va}, {vs,v1}} C Eg, or in other words that
the mapping is a homomorphism. That condition is satisfied if and only if
AUGW2 . Ag,% . A%m -AUGM)1 = 1. The normalization constant W is there
to turn the homomorphism mappings count (homomorphism number) to a
density.

Coming back to the continuous version, we get

1 111
t(C4,W) = ////W(Ul,vg)'W(vg,vg)-W(vg,v4)~W(v4,vl)-dvldvgdvgdm,
00 00O

which is, in a sense, a continuous analogy to the discrete case above. The

four integrals "iterate" or integrate over the variables vy, vo, v, v4 respectively,

which represent the mapping of the four vertices of Cy into four real numbers

(vertices) from (0,1). The product in the body then represents the homomor-

phism condition on a weighted graph because the graphon values don’t have

to necessarily be step function values of 0 or 1, but also anything in between.
We can also extend the notion of subgraph inducing density:

Definition 2.2.7. The induced homomorphism density in the graphon case is
defined as

11
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tima(F, V) = / I Weoz) [ O-Way) [] dex.

o, 0ylvel {11}EER {i.}¢Er i€V kEVE

We do not have to define the injective density because a random mapping
of vertices of F' into (0, 1) is injective with probability 1, therefore

P(tini(F,W) = t(F,W)) =1, (VF)(VW).

There is a linear relationship between injective and subgraph inducing
densities for the continuous case similarly to 2.2/ [Lov12]:

tina(F,W) = Y (=1)IEe =Bl (7 W), (2.5)
F'DF

Bl 225 Weak Isomorphism

Using graphons comes with a complication - they’re distinguishable up to an
equivalence class.

Definition 2.2.8. We call two graphons U, W weakly isomorphic if there exist
measure preserving maps ¢, : (0,1) — (0,1) such that U(p(x),¢(y)) =
W ((z),v(y)) almost everywhere.

This equivalence of graphons can be thought of as isomorphism between
finite graphs or the relabeling/reshuffling of vertices. Take for example the
graph in figure [2.7]

m

e We
(1) (+) | O
() () .

e W

Figure 2.7: Two isomorphic graphs corresponding to two very different graphons

12
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The two graphs G, G’ are essentially the same but they have completely
different corresponding graphons. Notice that this does not affect the homo-
morphism densities. Weakly isomorphic graphons produce the same densities
for all finite graphs F' and that is how Lovész first defined weak isomorphism
- two graphons are weakly isomorphic if their homomorphism densities are
equal for all finite graphs F'.

B 2.2.6 Distance Between two Graphons

When we model large graphs with graphons, we would like to express and
measure the similarity between two graphons based on properties that matter
to us. For example, we would want two graphons U and W to be "close" to
each other in a distance metric or even equivalent if the structure of graphs
sampled from them is very similar.

Due to weak isomorphism, we can’t simply measure the distance between
graphons U and W with, for example, the LL1 norm

=Wl = [ U@y - W yldsdy
(0,1)

since the distance between graphons Wg and W in figure [2.7] would be
NON-Zero.

One of the distance metrics that is invariant to weak isomorphisms defined
in |[Lov12] is the sampling distance.

Definition 2.2.9. The variation distance dq, between two distributions «, 8
defined on the same set X is defined as

dvm‘(aa 6) = S;P |04(X,) - B(X,)L

where X’ goes over measurable subsets of X.

Definition 2.2.10. The sampling distance dsqmp between graphons U, W is
defined as

> 1
5samp U W Z 27 va'r nUyGn,W)a

where G,y is the distribution of size n graphs sampled from graphon W
defined in [2.2.3.

Lovéasz notes that the coefficient s is an arbitrary choice that just ensures
convergence of the sum but it also puts more weight on the distribution
similarity of smaller graphs. This becomes important for our purposes later
when we model graphons with neural networks just based on homomorphism
densities. It turns out that the densities of smaller graphs F' are indeed the
more important ones (at least from a theoretical upper bound standpoint) as
it is stated by [2.2.1.

The sampling distance can also be expressed as

1
5samp(Ua W) = Z W‘tind(}?ﬂ U) - tmd(R W)| (26)
F

13
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The second distance metric, invariant to weak isomorphisms, is the cut
distance.

Definition 2.2.11. The cut distance g between graphons U, W is defined as

oUW =intsup| [ Ulp(@). o)) — W (). 0()) dody.
’ xT

where , 1) are measure preserving mappings and S, T are measurable subsets

of (0,1).

We can understand the distance as calculating a difference graphon U — W
and taking subsets S,T C (0,1) (which are not necessarily disjoint) to find
the maximum cut of the edge discrepancy graphon between the vertex sets
S and T by integrating over "boxes" S x T. The infimum minimizes this
maximum cut value over relabelings ¢ and 1 to handle weak isomorphism.

The cut metric can be defined for finite graphs F, G via the construction
of their respective graphons Wgr, W by using 2.4. That is

5D(F7 G) = 6D(WF7 WG)

B 2.2.7 Convergence of Dense Graph Sequences

In this section, we finally define what it means for a sequence of dense graphs
to converge and that the object they converge to is a graphon.

Definition 2.2.12. A sequence of dense graphs (Gy)>2; converges if the
induced subgraph densities ti,g(F, Gy) converge as n — oo for every finite
graph F'.

Notice that this definition of convergence fits well with our framework of
sampling increasingly larger induced subgraphs from a large network. The
densities tinq (F, Gy,) are equivalent to distributions over finite graphs sampled
from G,. When these densities converge, they directly reflect convergence in
the structure of the sampled graphs G,,.

It was previously established that induced subgraph densities can be ex-
pressed as linear combinations of homomorphism densities in from 2.2, thus
tina converges if and only if ¢;,; does. From 2.3 we get that ti,; converges if
and only if ¢t converges as n — oo, therefore the following statements about
(Gn)y, are equivalent:

® ti0q(F, Gy) converges for all finite graphs F,
® {;(F, G,) converges for all finite graphs F,

® {(F,G,) converges for all finite graphs F.

14
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Theorem 2.2.1 (Theorem 11.21. in [Lov12]). For every convergent sequence
(Gn)52 of dense graphs there exists a graphon W such that for every finite
graph F

Tim ¢(F, Gr) = t(F,W).

Let us define the limit of a convergent graph sequence (G,)52; as the
graphon W and write that as (G,,)22; — W.

Theorem 2.2.2 (11.22. in [Lov12]). For a graph sequence (G,)22; and a
graphon W, (G,,)>2; — W if and only if nhﬁnolo n(Weg,,, W) =0, where W,
is a graphon constructed from G,, via [2.4.

Theorem 2.2.3 (11.3. in [Lov12]). A graph sequence (Gp)52, converges if
and only if it forms a Cauchy sequence in the metric .

Given the cut metric space on graphs (G, o), a Cauchy sequence of graphs
is a sequence (G1,G2,Gs, ... ) such that

(Ve e R,e > 0)(Fk € N)(Vi,j € N)(i,j >=k = 0(Gi,G)) < ¢).

In other words, for any small number ¢, all but a finite number of graphs
from the sequence are no more far away from each other than ¢ in the cut
metric.

Proposition 2.2.1. From [2.6| together with the definition of convergence and
2.2.7, we get that if two graph sequences converge to the same densities then
the sampling distance dsamp between the graphons they converge to goes to 0.

Lemma 2.2.1 (Inverse Counting Lemma from [Lov12] based on [BCL™08]).
Let k& be a natural number, and let U, W be graphons. If for every simple
graph F of size k

1
HE,U) — (F W) <

then

This lemma states that there is a theoretical upper bound on the cut dis-
tance that decreases with diminishing returns as we match the homomorphism
densities between graphons U and W with and increasing size k of the graphs
F. In other words, the upper bound on similarity of two graphons is most
influenced by matching homomorphism densities of smaller graphs F'.

15
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60 — 50/sqrt(log(k))
—— Possible true cut distance
50

40

30

20

10

0 20 40 60 80 100
k

Figure 2.8: Inverse Counting Lemma upper bound on cut distance og(U, W) as
k— oo

Unfortunately, the lemma does not directly say that homomorphism densi-
ties for smaller graphs F' are more important for two graphons to be close to
each other in the cut distance because it is an upper bound that decreases
very slowly for high k’s which does not entail that the true convergence of
0o is quickest for small k’s, see figure for a counter-example for that -
the upper bound still holds, but the cut distance still decreases linearly as
k — oo.
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Chapter 3

Neural Networks

This chapter focuses on the introduction of neural networks and the description
of some of the areas of this study that are key to this thesis. The research
that has been done in this field is vast and some of the areas are not really
relevant to what we are trying to achieve in this thesis (for example recurrent
network architectures for sequence modeling), so we will go more in-depth
only in the neural network architectures that we will use. Additionally, we are
going to list some of the community-verified techniques that aim to mitigate
some of the problems with deep learning which we unsurprisingly encounter
when modeling graphons.

. 3.1 Introduction

Artificial neural networks (ANNs) were originally intended to be computa-
tional models of biological learning - to mimic intelligent behavior of a real
neural network, the brain. Today, ANNs are viewed rather as biology-inspired
computational models that follow a more general principle of learning - com-
posing simpler concepts into more complex ones [GBC16]. ANNs essentially
map a set of inputs to a set of outputs which is exactly what we need from a
graphon and that is to map the probability of an edge occurrence to a set of
two vertices represented by two real numbers.

B 3.2 Deep Feed-Forward Neural Networks

The architectures that we are going to use in our modeling are deep feed-
forward neural networks (DFFNNs), also called multi-layer perceptrons
(MLPs), or just feed-forward networks. As opposed to recurrent neural
networks, these networks do not use their outputs as their inputs (a feedback
loop).

A DFFNN can be represented as a directed acyclic graph (DAG), where
each vertex represents a function applied on the output of its preceding
vertices, see figure These functions are also referred to as wunits or
neurons. Vertices with no predecessor are called sources and in that case they
are the input that we pass into the network. If a unit has no successor then
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3. Neural Networks

it is called a sink and it produces the output of the network. The output of
a DFFNN is essentially a composition of simpler functions and the largest
number of chained function applications, or the longest path between a source
and a sink determines its depth, hence the word deep in DFFNN. Units are
organized in layers based on their distance to a source. Sources are in the
input layer, sinks are in the output layer and units in-between are considered

to be in hidden layers.
Output layer
m f3(f2(fi(z)))
'

ge‘)\‘“

Hidden layer

(" Input layer

90

: 2
L4
13
®

Figure 3.1: A deep feed-forward neural network as a directed acyclic graph

The complexity of a DFFNN; or its capacity to represent complex functions
depends on several things: the complexity of the units themselves, e.g. whether
they use linear or non-linear functions, the depth of the model, the width of
the model (number of units in a layer), and the connections between units.

The motivation behind using hidden layers is that they perform a mapping
of the input space into a representation space where the problem at hand
is easier to solve, linearly separable for example. We can view classical
machine learning algorithms like linear regression, decision trees, k-nearest-
neighbours as neural networks that do not have hidden layers and instead
they perform the entire classification or regression task in the output layer
only while accepting raw inputs from the input layer. Another advantage of
hidden layers in a DFFNN is that the mapping from the input space into
the representation space is learned automatically with little to no help from
humans by assuming priors about the data. See for a more involved
example of a so called feature map of the input space on the XOR problem.

B 3.2.1 Functions of MLP Units or Neurons

As we’ve seen in section the units, also called neurons, are the basic
building blocks of an MLP. The first architecture of a neural network unit,
as we know it today, was the Perceptron which was introduced by Frank
Rosenblatt in 1960 [Ros60]. The perceptron performs a linear combination
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3.2. Deep Feed-Forward Neural Networks

on the input values, adds a bias and thresholds the output to 0 or 1 as seen
in figure The dot operator between w and x is a dot product. The
definition of the perceptron loosely mimics the biological neuron which sends
(activates, hence activation function) electrical signals down its axon (output)
if enough signals were received on dendrites (input).

f(x) =

I, w-x+b>0
0, otherwise

activation
function

Figure 3.2: Rosenblatt’s perceptron

The general function of a neuron in an MLP can be seen below in equation

5.1 D
f(x) =a(w-x+b) :a(Zwi'xi—i—b), (3.1)

i=1
where D is the number elements in the input vector x, a is an activation
function, and w are the weights or parameters of the neuron. Without loss of
generality, we add an extra dimension xp4; = 1 to the input vector so that

we can add the bias b into the weights vector, i.e. wpy1 = b, so that we can
D+1
write w-x = Y. w; - x; to be more succinct.
i=1
This function forms the basis for almost all of the neurons that we are going
to use and the only part that we are going to change is in fact the activation
function. Bellow, we are going to list some of the activation functions that are
or have been widely used at some point in time along with their advantages

and disadvantages.

® No activation function f(x) = z, figure

-1.00 =075 -0.50 =-0.25 0.00 0.25 0.50 0.75 1.00
X

Figure 3.3: Identity activation function
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3. Neural Networks

Sometimes it might be useful to use and identity activation function in
the output layer, for example when the output is an unbounded real
vector. Using this function however does not bring any non-linearity to
our neuron which makes it essentially a linear regressor.

® Sigmoid activation function f(z) = Hﬁ’ figure 3.4

-10.0 =75 -5.0 =25 0.0 25 5.0 7.5 10.0
X

Figure 3.4: Sigmoid activation function

The sigmoid function is useful when we want to ensure that the output of
our neuron stays between 0 and 1 which can represent some probability
for example. We will use this activation in the output layer of our models
since we require the values of a graphon to be between 0 and 1. The
sigmoid also behaves near linearly with input values near zero, however
when input values are very positive or negative then the sigmoid quickly
approaches 0 or 1 respectively. This is called saturation and contributes
to the problem of a so called vanishing gradient that we will return to in
section [3.7L

® Hyperbolic tangent activation function f(x) = zz;z:i, figure 3.5

-100 =75 =5.0 =25 0.0 25 5.0 7.5 10.0
X

Figure 3.5: Tanh activation function

The hyperbolic tangent has similar properties to the sigmoid function
but instead it ranges from -1 to 1.
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3.2. Deep Feed-Forward Neural Networks

® Rectifier or hinge activation function f(z) = max(0,z), figure |3.6

-1.00 -0.75 -0.50 =-0.25 0.00 0.25 0.50 0.75 1.00
X

Figure 3.6: Rectifier activation function

The rectifier function is faster to compute compared to the sigmoid and
hyperbolic tangent functions. The gradient is 1 for z > 0 which helps
with the vanishing gradient problem, however it comes with another
numerical instability problem because it is unbounded.

Another one of the main features of the rectifier is that it collapses all
negative input values to a 0 output. This causes interesting effects that
can be seen as positive or negative. For one, it leads to so called sparse
network representations, x < 0 turns the neuron completely off since it
outputs only 0 and the gradient w.r.t its parameters is also 0, thus its
weights won’t be changed by back-propagation. So an entire network
might only end up with a few functioning neurons. This might be a
good thing as Glorot et. al. suggest, because it separates (disantangles)
factors that differentiate the data, it is more likely that the data are
linearly separable in the representation space, different patterns in the
data can be efficiently modeled by different pathways in the network,
and a sparse network can be condensed or its outputs may be efficiently
computed by just ignoring dead neurons while maintaining the same or
nearly the same performance. See [GBBI1I] for the full comparison of
activation functions.

The effect where neurons turn off (they die) may be undesirable when a
large number of them dies and causes the network to lose the flexibility to
learn complex functions. LeakyReLU [MHNT13]|, a special case of PReLU
[HZRS15], is a fix that somewhat retains the sparsity while preventing
neurons from completely dying. LeakyReLU has a small non-zero slope
for negative inputs so the gradient is never truly zero.

>=0
LeakyReLU (z) = {x, v
a-z, <0

where a is a small constant.
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3. Neural Networks

N 33 Back-Propagation and Gradient-Based
Learning

The goal of training a neural network f(x; 6) is to find its parameters or weights
0 such that f(x;0) = f*(x), where f* is the desired function that performs
perfect inference in our problem. The way we evaluate the performance of
our model f is via a cost or loss function L(fp). Training a neural network
becomes an optimization problem of finding 6*, where we minimize the
objective L(fp), i.e. 0* = argmin L(fp).

0

See table below for frequently used, maximum likelihood based losses for
different tasks.

Task Loss Function Assumptions
Binary classification —% f) y;log f(x4;0) + | y ~ Bernoulli(y|p)
(1~ 90 log (1 — f(x::6))
ch\i/lolilltinomial classifica- —% 227::1 CKl Yic log f(x4;6) y ~ Multinoulli(y|p)
Regression % f:l(yz — f(xi;6))? y ~ N(f(xi;0),07)
i=

Table 3.1: Frequently used loss functions, taken from [Drc]

Bl 3.3.1 Back-Propagation

When a network is composed of many non-linear functions, the optimization
objective is non-convex w.r.t. the parameters w. Gradient-based learning
methods provide a computationally efficient way of optimizing an objective
in place of efficient algorithms that rely on convexity. These methods iter-
atively move the parameters in the steepest descent direction to minimize
the loss function. Today’s gradient-based methods have a common way of
actually computing the gradients of the loss function w.r.t. w and that is
back-propagation or just backprop introduced by Rumelhart et.al. [RHWS6].

To compute the gradients, modern libraries, that perform backprop, con-
struct a computational graph, which is a DAG where each node represents a
differentiable operation on a variable that is passed in from preceding nodes.
Source nodes are, again, the input data nodes. Variables are usually tensors
of various dimensions (scalars, vectors, matrices, D-dimensional tensors).
Data flow from sources to sinks is called the forward pass. The forward pass
produces the network’s outputs which is then used to calculate the value of
the loss function L£(f,). After the loss function has been computed, back-
prop then calculates the gradient of the loss function w.r.t. the inputs and
parameters for each node starting from the sinks, usually the loss function,
this is called the backward pass.

Please refer to figure [3.7| for a visual example of back-propagation. In the
figure, a series of operations is performed on the input variable x and the
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3.3. Back-Propagation and Gradient-Based Learning

graph ends with the value of the loss function £. Intermediate outputs of the
operations, or the forward messages, are denoted by ;. The gradients of £
w.r.t. the output of each operation, or the backward messages, are denoted
by B; and are recursively computed from the sink and passed to preceding
nodes. Notice that the chain rule of calculus is applied in each node in order
to accumulate the gradients of succeeding nodes into the backward message [3;
by multiplication, thus each node only has to compute the partial derivative
of its output w.r.t. its input in order to produce (;’s and this is depicted by
the orange color in the figure. These partial derivatives usually have closed
form solutions for standard differentiable operations. The 3;’s represent the
sensitivity of the loss with respect to the operation outputs. To calculate the
gradient of the loss function w.r.t. parameters w, the example shows that
it is only necessary to calculate the partial derivative of the operation f;
output w.r.t. w while utilizing the backward message passed from succeeding
nodes. To see that it is just repeated application of the chain rule, it might
be helpful for the reader to iteratively substitute 5;’s from the higher indexes
down, colored by the indigo color in the last row of the figure.

L(f3(f(fi(z,w) _ 0L(ps) D1

ow R w b
Forward T fi(z,w) fa(filz,w)) fs(fo(fi(z,w))) L(f3(fo(f1(z,w))))
Pass ©o Y1 ) 3 4
& b
Backward Bo B Ba Bs Ba
Pass
OL(f3(f2(fi(z,w)))) OL(f3(fa(fi(z,w)))) L(fs(falfi(e,w)))) OL(fs(fa(fi(x,w)))) OL(f3(fa(fi(z,w)))
oz Ofi(z,w) 0fa(fi(z,w)) 0fs(f2(fi(z,w)))  OL(fs(fo(fr(m,w)))
] Il Il Il Il
OL(p4) OL(p4) OL(p4) OL(¢p4) OL(p4)
Oy 01 0pa 03 SN
I I I I I
0L(ps) 01 0L(ps) Op2 OL(ps) Ops OL(ps) Ops ;
dp1 Oy dpy Oy Ops Oy Ops Oy
Il Il I I
Br- Ba- Bs - Ba-

Figure 3.7: Backprop example

Now that the inner workings of backprop are clear, a problem may come
to ones mind where if the longest path from a source to a sink in the
computational DAG is very long and if the partial derivatives in each node
are smaller than 1 then the backward messages become near-zero the closer
they got to sources. This is caused by the recursive multiplication of the chain
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rule. A derivative of an operation may be small for example with the output
of a sigmoid activation becomes saturated (approaching 0 or 1) because the
function is very flat at those regions. This is called the vanishing gradient
problem.

B 3.3.2 Gradient Descent

The simplest form of gradient descent accepts a training data set 7" =
{(xi,yi) | i €{1,...,m}}, where x; is the i-th input data point (or features)
and y; is the desired output that we want our network to produce for the
data x; ) (or label/target). The algorithm moves a model f’s parameters
w in the direction of steepest descent in terms of the loss function value
and it does so iteratively. In each iteration, it subtracts the gradient of the
loss function w.r.t. the network’s parameters V,,£(f) from the parameters
themselves with a learning rate a. The gradient to descend with, can and is
usually computed by using back-propagation. The loss is a function of points
from the training set - the data that we pass in. The algorithm stops when a
stopping criterion is met which could be a low enough loss value, a certain
number of iterations or epochs, or convergence of the loss value to name a
few examples. See algorithm |1l

Algorithm 1: Gradient Descent
Input: training data 7™ = {(x;,y:) | i € {1,...,m}}
Input: neural network f,, with parameters w
Output: neural network f; with updated parameters w with a low

L(fw)

W 4w

k<1

while stopping criterion not met do
Vo L(fw) < backprop on L(fu(T™))
W W — - Vﬁ,/:,(fuj)
k< Fk+1

end

It is important to set the learning rate « right. If we set the learning rate
too low, then the algorithm would take many iterations to converge into a
local minimum, on the other hand if we set the learning rate too high, then
the loss would skip over the local minimum. See figure (3.8 for a visualization
of learning rate.

L(fw) L(fw) L(fw)

d AN
w w w

Learning rate Learning rate Learning rate
« too low « just right « too high

Figure 3.8: Learning rate settings
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B 3.3.3 Stochastic Gradient Descent

Since many loss functions are losses averaged over all training samples 7™
and the gradient is a linear operation, the overall gradient of the loss function
is the average gradient over all training samples, i.e.

We can treat the gradient computed on the entire training set as the true
mean or expected value which we can approximate using an average of a
smaller subset of 7™ called a minibatch. This has several advantages and
possible disadvantages:

m If we only use a subset of 7™, then the computation of the gradient will
be quicker, because we would be using less samples.

8 The average gradient is still a good approximation of the true gradient
with a relatively small number of samples. Remember from probability
theory that the distribution of the average converges to a normal dis-
tribution, assuming the gradient has a finite expected value and finite
variance. When constructing a confidence interval for the expected value,
the probabilistic error of the average is a factor of <=, where o is the
standard deviation of the gradient distribution and n is the number of
samples used to calculate the average gradient. We can see that the error
shrinks with diminishing returns as we increase the number of samples n
(n increases linearly, the error shrinks with a rate of \/n). [GBCI6]

® The randomness of a minibatch also regularizes the network (makes it
more accurate on unseen data, this is called generalization) [WMO3]
- random perturbations in the steps cause the learning algorithm to
explore the parameter space more and is less likely to get stuck in local
minima and saddle points. However, this leads to longer convergence
times because SGD has to make more steps to converge. SGD never
truly stabilizes due to the randomness, therefore it is important to tune
the learning rate accordingly.

In practice, it is common to linearly decay the learning rate with the
number of iterations [GBCI6] starting from a fixed learning rate ctart
at iteration 1 and ending with a fixed learning rate aenq at iteration K,
i.e.

. k .
aj = (1 —min(1, ?)) - Qiggart + min(1, ?) “ Cond-
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Algorithm 2: Stochastic Gradient Descent
Input: training data 7™ = {(x;,v;) | i € {1,...,m}}
Input: neural network f,, with parameters w
Input: learning rates oy
Output: neural network f; with updated parameters w with a low

L(fa)

W — w
k+1

while stopping criterion not met do
for minibatch p € randomized near-equal-sized

partitioning of T™ do
VaL(fy) + backprop on L(fs(p))
W4 W — ay, - Vﬁ,ﬁ(fug)

end

k+—k+1
end

return fy

In algorithm |2, we can see that SGD is quite similar to gradient descent
with the difference that in each iteration, the true gradient is estimated with
a minibatch of 7™ and then the weights are updated with that estimated
gradient. The minibatch is small random subset of 7" sampled without
replacement, disjoint from other minibatches, or in other words a random
partition of uniform size.

The size of the minibatches can range anywhere from 1 to |7™|. If it is 1,
the algorithm is then called Stochastic Gradient Descent, if it is |[T™| then
it is simply gradient descent or Batch Gradient Descent, if it is anything
in-between then it is referred to as Minibatch Gradient Descent. The size of
the minibatch is usually set to a power of 2 because today’s tensor operations
are done on GPUs which work well for power of 2 sized structures.

B 3.3.4 Momentum

The momentum method [Pol64], among other things, aims to reduce the
number of steps needed to descend in the parameter space quickly in situations,
where the gradient jumps from "cliff' to "cliff" in a "valley" configuration
depicted in figure 3.9. The method simulates inertia of a moving object by
accumulating velocity with an exponentially weighted average of previous
gradients. The update portion of SGD with momentum has the form of

V4 UV + - V@ﬁ(fA)

W W —V,

where p € (0, 1) is the exponentially weighted average or momentum parame-
ter.
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Parameter space

W.ri. loss Without momentum With momentum

Figure 3.9: Valley situation and momentum

The momentum also somewhat mitigates the randomness of SGD by
stabilizing the gradient with the exponentially averaged gradient.

B 335 Adam

Adam (adaptive moments) [KB14] is a widely used minibatch gradient descent
method that re-scales (adapts) gradients during the course of training by
dividing them by their second moment (element-wise squared values of the
gradient). The motivation behind adaptive methods is that partial derivatives
of different parameters may have different magnitudes so the re-scaling
equalizes their importance. The magnitude of each element of a gradient is
closely related to its learning rate, thus the learning rate of each parameter
is automatically tuned in a sense during training. A parameter update in
Adam is done like this

my < pimi + (1 — p1)L(fa)

A

my « poma + (1 — p2)L(fa) - L(fa)

mi
my < T
I—p7

2
mo < T
L= p3
mi

wewe a\/m_g + small constant’
where my and ms are the first and second moment of the gradient respectively,
p1 and p; are their respective exponential moving average parameters, k
is the iteration number, and the small constant is added for numerical
stability. Notice that the moments are calculated using historical values so
the momentum is built in.
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Chapter 4

Modeling Graphons with Neural Networks
Using Gradient-Based Learning

10 10
08 08
r—

06 06

—_— — W(z,y)
04 04
0z 02 Yy—
00 00
00 o0z 04 06 08 10

Figure 4.1: A neural network representing a graphon

In this chapter, we connect graphon theory with neural networks. Since
graphons are just bounded functions on the unit square and neural networks
are good function approximators, it is natural for us to try to represent
graphons using neural networks.

The chapter begins with our proposed algorithm that learns the represen-
tation of a graphon using gradient descent, motivated by graphon theory.
Then an analysis of the performance of our training algorithm and the neural
network follows, that shows potential pitfalls of our approach. Lastly, several
experiments, that aim improve our approach using various modifications and
parameter tuning, are shown.

B 41 Gradient-Based Learning Algorithm
Construction and Definition

This section introduces our learning algorithm for representing a graphon,
the part original to this thesis.

B 4.1.1 Theoretical Motivation

Before we get into the algorithm itself, let us lay the theoretical motivations
down first. In section we’ve seen that homomorphism densities in fact
identify graphons up to weak isomorphism. That is why we will require
our neural network W to produce the same homomorphism densities as the
homomorphism densities of the large graph G that we want to model, therefore
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4. Modeling Graphons with Neural Networks Using Gradient-Based Learning

we wish to minimize the discrepancy between ground truth homomorphism
densities t(F, G) and the densities produced by our network ¢(F, W) for all
finite graphs F'. That gives rise to a loss function based on squared errors
between the densities

LW)=Y" S (HE G) = t(F, W))2.

The factor ﬁ is there for convergence reasons to make the loss finite.

Of course, it is intractable to compute the densities for all finite graphs of
which there is an infinite number. We will restrict ourselves to a few graphs
of small size, say up to 6. A question whether that will compromise our
learning somehow may arise. In the definition of sampling distance [2.2.10], the
variation distances are weighted so that smaller graphs are more important
which goes in our favor, however those weights are there just for convergence
of the distance. Without computing all possible homomorphism densities, we
cannot say that the resulting graphon that our network learns corresponds
to the graphon representing the large graph G, but is it close enough? The
Inverse Counting Lemma kind of hints at the importance of homomorphism
densities for smaller graphs but not directly, see the counter example for
that sort of use of the lemma [2.2.1. What it means for us is that we cannot
rely solely on the density matching of smaller graphs. The question then
remains open and it is to be answered by further experiments which utilize
the graphon in various use cases like graph clustering, edge completion, graph
anomalies etc. and whether the learned graphon actually provides useful and
accurate information in those use cases.

B 4.1.2 Algorithm Construction

There are several problems that need to be solved in order to model graphons
with a neural network:

1. A graphon is a real function on the unit square and our neural network
has to conform to that format which means that the network has to
accept two real inputs from (0,1)? and produce a single output in the
range (0, 1). However, we are trying to match homomorphism densities
which are not a direct output of the network, so it is not the classical
setting of matching network output with ground truth via a training set
of features and corresponding targets.

2. A graphon for an undirected large graph is supposed to be a symmetric
function. How do we make the output of our network symmetric?

3. How do we obtain ground truth homomorphism densities?
4. How do we obtain homomorphism densities of our network?

Problem 2| is the easiest to solve. We can always sort the input pair of
numbers (z,y) in ascending order, i.e. <y, and model only on the upper
triangle of the unit square (0, 1).
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4.1. Gradient-Based Learning Algorithm Construction and Definition

Let us address problems [3| and 4] of calculating homomorphism densities. To
obtain ground truth homomorphism densities, we can for example compute
them from an input induced subgraph Giain of the large graph G that we
want to model if we get one, or we can compute them from the graph G
itself if we are allowed to sample small induced subgraphs from it at least.
There exist polynomial algorithms that count homomorphisms from graph
F to a graph G for special types of graphs, for example we can just count
the number of edges if F' = K5, however there is no polynomial algorithm
for a general simple graph F' to our knowledge [HN90], unless P = NP. To
make the computation fast for general graphs, we relax on the exactness of
the density value and approximate it via Monte Carlo Methods.

B Homomorphism Density Approximation with Monte Carlo Methods

A homomorphism density ¢(F, G) for finite graphs F' and G can be expressed
as the sum

1 Vel Vel Vel

Ve |Vl Z Z Z H I({vi,vj} € Eq),

v1=1wv9=1 V| = 1{17]}€EF

tHF,G) =

where I(condition) is an indicator function returning 1 if the condition in
its argument is met, otherwise it returns 0. See [2.2.4| for the intuition.
The indicator function I can be replaced by an adjacency matrix AUG“UJ
of graph GG. We can view this sum as an expected value of a discrete
distribution of a random variable X which is a function h of random variables
Vi, Va,... ,V‘VF| e Ve =11,2,...,|Vg|}, that is

X =hWVi,Ve,.. .. V)= [I I({Vi,V)} € Eq).
{i,j}GEF

The general form of the expected value of the variable X is
X)=) =z -P(X =

and we can match that to the homomorphism density

x

Vel Vel Vel

Z Z Z h(U17U27...,U‘VF|)'

vi=1wvo=1 U\VF\:l

Vel Vel Vel

Y>> 2 Il I(wiv} e Ee)

v1=1v2=1 ’U|VF|=1 {i,j}GEF‘
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4. Modeling Graphons with Neural Networks Using Gradient-Based Learning

By assuming that the probability P(V1 = vi,Va = va,..., Vjy,| = vjiy) 18
uniform, which essentially means that all mappings are equally likely, we can

set P(V1 = v1,Va = va, ..., Vv = Ypup|) = W, thus we get

Vel Vel Vel

IEunif()() = Z Z Z H I({UZ‘,”UJ'} € EG)

v1=1v2=1 U\VF\:l {7J}EEF

Now that we know that ¢(F, Q) is an expected value, we can approximate
it with an unbiased and consistent estimator - the average of the summand
with repeatedly sampling a realization (vq,va, ..., V|v;|) of the random vector
V1, V2, ..., Vi), where Vi, ~ unif(1, [Vg|) for all k& € Vp, thus creating a set
Sy, of n random vector realizations:

Fo)=- Y I (w0} € Ee).

(v1,02,..,0| v, )ESn {4, }EEF

Each of the n samples is a random assignment of vertex numbers of G to
variables V1,Va, ..., Vjy;, or in other words a random mapping of vertices
from F to (G. This probabilistic approximation method is called Monte
Carlo Integration. See [Kat09] for more advanced approximation techniques.
This way of estimating the homomorphism density might have been intuitive
all along, because the product in it is just a check whether the mapping
is a homomorphism from F to G with a binary outcome. In short, the
homomorphism density is the probability of a random mapping of vertices
from F' to G being a homomorphism and we can estimate that probability by
simply sampling a random mapping, checking if it is a homomorphism or not
and average the results. This gives us a solution to obtaining ground truth
homomorphism densities with two possible options:

® Either we get a subgraph Gipain of G and approximate t(F, Gipain) for a
number finite graphs F' of small size,

® or approximate ¢(F, G) directly by randomly mapping vertices of F' to
random vertices of G, checking if it is a homomorphism, repeat average.

Regarding the approximation of the continuous version of the densities
w.r.t. a graphon or neural network W, the procedure is very much analogous
to the discrete one. The densities take the form of

(0,1)IVF! {i.j}€EFR keVe

Now we factorize the integrand into a function of a random vector

h(z1, 22, ..., 2)y,)) = H W (24, ),

and its probability density function (PDF)
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4.1. Gradient-Based Learning Algorithm Construction and Definition

thus getting an expectation integral

Ep(z1, 22, ., 2)1)) = / h(z1,m2,. .. Ty,))- H dxy,,
<071>‘VF| keVy

Again, assuming that we sample from the unit hypercube (0, 1)/V#l uniformly,
we can set the PDF to p(z1,72,...,7y,) = 1. Note that this uniform
sampling is also in line with the way we sample graphs from a graphon.
Altogether we get

T
<0,1>|VF| {L71}€E1 kEVF

which can be approximated by the average

mwy =1 Y [ W),

(x1,22, @)V )ES {11 }EEF

where S, is a set of n realizations of (z1, 72, ...,2|y,) distributed accoring
to p.

B Accuracy of Homomorphism Density Approximations

We would like to put at least a probabilistic bound on the error of our ap-
proximations given the number samples. From the consistency of averages,
we know that they converge to the true expected value and from the central
limit theorem, we know that their distributions converge to a normal dis-
tribution, therefore we could construct a confidence interval for our density
approximations, however that requires the knowledge of the variance of the
summands or integrands of  which we don’t have.

We can utilize Hoeffding’s inequality which does not require the variance.
Theorem 4.1.1 (Hoeffding [Hoel4]). If X, Xs,..., X, are independent and
have the same expected value p and 0 < X; < 1 for ¢ = 0,...,n then for
O<e<l—yp

2

erX bz e) < e

Given an error bound €, we can express the probability that our approxi-
mation will stay within a margin of € from the true densities

P(lt, —t| <€)

and using Hoeffding’s inequality, we can put a lower bound to this probability
Pty —t|<e)=1-P(ltn—t|>e)>1—e 2.

Additionally given a particular lower bound ¢ =1 — e~2n* and solving for n,

we get a minimum number of samples needed for our approximation to be

within the error margin € around the true value with probability at least c

> (—1“(;5;0)1.
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4. Modeling Graphons with Neural Networks Using Gradient-Based Learning

B Density Discrepancy Back-Propagation

The Monte Carlo sampling approximation of homomorphism densities in
gives us a hint at how to deal with problem

As shown in figure to compute £(F, W), where F is a small graph and
W is our neural network, we can generate n random assignments s; of vertices
Vr to (0,1) and create inputs for our neural network by listing edges EF as
pairs of real numbers {(s;(u), s;(v)) | {u,v} € Er} while sorting s;(u) and
s;(v) to only train on the upper triangle of the graphon making it symmetric.
After computing £(F, W) and evaluating the loss function with it, we can
back-propagate the gradient of the loss function w.r.t. to the approximated
density which was in turn produced by the network W and some differentiable
operations. Ultimately we can calculate the gradient w.r.t. the network’s
output which allows us to follow up with backprop as in the classical setting
for each input sample, therefore we can compute the gradient of the loss w.r.t.
W’s parameters and update them with gradient descent.

Random vertex
assignment

!

S1 S2 Sn
(0.86, 0.50) 1(0.87,0.12) 1(0.48, 0.41)
S; (EF) 1(0.50,0.10) | (0.12,0.99) ® ® ® (0.41,0.75) | n samples
1(0.10,0.86) | 99, 0.87) 1(0.75,0.48) |
oL
We— —
ow
""" 010 | o021  oae
0.42 0.22 [ X N ] 0.77
0.76 0.08 : 0.88
! multiplication oLC
II  within each s; o1l
0.03 0.00 ‘ [ N X ] 0.23 X
f(p ) average oL
(F, W) across S; ot (F,W)
loss £
v
backprop

Figure 4.2: Back-propagation of homomorphism density discrepancies
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4.1. Gradient-Based Learning Algorithm Construction and Definition

B Algorithm Outline

See algorithm [3], for the pseudo code that follows from the algorithm con-
struction.

Algorithm 3: Gradient Descent for Graphons
Input: small finite graphs F to compute homomorphism densities
with
Input: ground truth homomorphism densities ¢(F, G), for each
FeF
Input: ¢ approximation error bound e
Input: ¢ approximation confidence probability ¢
Input: neural network Wy with parameters 6
Input: learning rates oy
Input: loss function £
Input: stopping criterion T'
Output: neural network W, with updated parameters 0 with a low £
100
2 n e [0
3 k1
4 while T not met do
5 for F € F do

6 Sp 0
7 forie{1,...,n} do
8 s; + generate random vertex mapping Vp — (0,1)
9 Sy <— S, Us;
end
10 HF,Wy) +0
11 for s; € S, do
12 ‘ W) «— tF W)+ T Wylsi(u), si(v))
{uw}eER
end
13 HF,Wy) t(F’nwé)

end
14 | t «{t(F,G) | FeF}
15 tw < {f(F,Wé) ’ FEJ:}
16 loss < L(t,tw)
17 Véloss <~ backprop on loss
18 0+ 0— ag - Vidloss
19 k+—k+1
end
20 return W,

The algorithm [3| above is technically SGD. Notice however that there are
no minibatches. That is because the computation of £ is already stochastic,
thus we can control the "minibatch size" by different settings of n.
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4. Modeling Graphons with Neural Networks Using Gradient-Based Learning

4.2 Implementation and Experiments Setup

This section serves as an overview of the specifics that went into the graphon
modeling experiments which produced the results that we are going to discuss
later in this chapter.

Hardware

The experiments were run on Google Colababoratory!| GPU runtime in
JupyteIE| notebooks which provide 2 single-threaded 2.3 GHz CPU cores,
25 GB of RAM and an NVIDIA Tesla K80 GPU with 12 GB of VRAM.
In our experiments, VRAM amount plays an important role because
our experiments were GPU accelerated and GPU memory places direct
constraints on n when approximating ¢, see It depends on neural
network architecture and size but we set n to utilize the GPU memory
to the maximum which was around n = 10000.

Software

The implementation was written in Python 3.fﬂ The optimized matrix
manipulation NumPyﬁ library was heavily used in conjunction with the
PyTorchE| library. The PyTorch library is perfect for our experiments
because it manipulates tensors (basically multidimensional arrays) and
tracks operations on them, thus building the computational graph of our
neural network dynamically. With the computational graph built, we
can simply call loss.backward() and the gradients w.r.t. our networks
parameters are automatically computed based on the graph and stored.
The Matplotlilﬂ library used for visualizations. The Networka library
was used for auxiliary graph algorithms like isomorphism checking.

Source code All of the source code can be found on GitHub®!

Learning Details

We used synthetic data in our experiments, i.e. graphs sampled from
graphons we defined ourselves. FExamples of these graphons include
complete bipartite graphon, constant graphon and growing uniform
attachment graphon, see figure 4.3

1

https://colab.research.google.com/

https://jupyter.org//

https://www.python.org/downloads/release/python—3604

https://numpy.org/

https://pytorch.orgA

https://matplotlib.org/|

https://networkx.github.io/

https://github.com/honzahoang/nngraphons
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4.3. Results and Analysis
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Figure 4.3: Complete bipartite graphon (left), constant graphon (middle),
growing uniform attachment graphon (right)
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We modeled each synthetic graphon separately by sampling a big training
graph Girain of size |V, aim| = 10000 from it. The sampling procedure is
described in . Note that the vertices (and edge endpoints) of Girain
were mapped randomly to integers so there is no way for the positional
information of vertices to leak to the neural network. This was done to
ensure that we are learning graphons only based on structure.

To calculate the ground truth homomorphism densities f(F , Girain) and
densities w.r.t. the network #(F, W), we approximated them with the
method described in for all possible isomorphism-unique finite
graphs of size at most 6: F' € F = {simple graph F' | |Vp| < 6}. We
used an error ¢ of 0.001 and confidence ¢ of 0.95 for the approximation
accuracy of the ground truth densities. Setting the value for € is vague
here without too much room for interpretation but generally the lower
the better. We picked these values as a trade-off between accuracy and
real time consumption. Tuning this parameter is advised for different use
cases. We did not use Hoeffding’s inequality to probabilistically assure
an accuracy £(F, W) because our PyTorch implementation and hardware
limited the number of samples n since it stores the computational graph
on the GPU VRAM. However, beyond a certain threshold, n did not
affect convergence of the loss function too much from our observations.

The neural network architectures used in the experiments will be men-
tioned and discussed in each experiment in section

B 4.3 Results and Analysis

In this section, we go over the graphons that our neural networks managed
to learn and analyze the learning convergence process.

Bl 4.3.1 Complete Bipartite Graphon

For this experiment we used a moderately deep network with 10 hidden layers
with 64 neurons in each hidden layer. The input layer also consisted of 64
neurons accepting two real inputs. The output layer consisted of one neuron
with a sigmoid activation function to ensure an output in (0,1). All of the
neurons except the output one had a LeakyReLU activation function. All
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4. Modeling Graphons with Neural Networks Using Gradient-Based Learning

of the layers were fully connected. Weights of the network were initialized
with Xavier-Glorot uniform initialization introduced in [GB10]. The mean
squared error of homomorphism densities was used as the loss function -

»CMSE(W) = ’;__| Z (tA(Fa Gtrain) - tA(Fa W))2
FeF

For the approximation of f(F , W), n. = 10000 was used. The Adam optimizer
from PyTorch was used as the gradient descent algorithm with a learning
rate of 0.001. The stopping criterion was a loss value under 0.00001 that was
chosen solely based on visual similarity to the ground truth graphon. The
results of one particular run (Run 1) are visualized in figures 4.4, |4.5 and /4.6!

1.0 1.0 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Ground Learned
truth graphon

Figure 4.4: Run 1, Ground truth graphon and learned graphon

Ep 1 Ep2 Ep3 Epd Ep6 Epo Ep12 Eplg €p28 Epa3 Ep65 Ep99 Ep 151 £p 230 Ep 350

Figure 4.5: Run 1, Neural network development over the course of learning
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Figure 4.6: Run 1, Loss convergence with gradient norms
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The network learned the complete bipartite graphon quite well and con-
verged after around 350 epochs. The loss and gradient norm peaks shortly
after the 100th epoch indicate a high learning rate problem, see figure
But the network converged nonetheless. We would like to note that this
particular run was one of the lucky initialization ones, where the network con-
verged quite quickly to demonstrate that it is capable of learning the graphon,
however in some other runs the network encountered plateaus frequently or
did not converge at all. See figure to get an idea of the loss convergence
distribution across multiple runs.

Let us have a look at squared errors of individual graphs F' in figure 4.7
from the first run.

0.006

0.005

0.004 ==

w
8 0.003
-

0.002

(0] e |

0.000

10°

log(epoch)

Figure 4.7: Run 1, Squared errors for individual graphs F

There are about 200 isomorphism-unique graphs up to size 6 (|F| = 200). As
you can see from the figure 4.7, only errors of few graphs F' drag the entire
average error up during training. That is why we tried to change loss function
for a different run (Run 2) to

[:maxSE(W) = I}lea}((f(F, Gtrain) - 7?(}77 W))2

in order to push the maximum error down. That modification gave us a
hint to another problem that occurred during training where the learning
algorithm decreased the error for one graph and increased the error for other
graphs since the gradient propagated only for the graph with the largest error,
see figure A similar effect can be seen in the individual discrepancies for
Lysk in lesser extent.
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0.10

0.08

Loss

10°
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Figure 4.8: Run 2, Squared errors for individual graphs F' when training with
LimaxSE, learning rate = 0.001

In some runs like (Run 3), the errors do not seem to converge for L,.xsp
even though the gradient norm is nowhere near zero, see figure This rules
out the cases where the learning algorithm would get stuck in local minima
or saddle points (configurations with small gradient norms).

0.05
—— Gradient L2 norm [ 10

Loss
o
Gradient L2 norm

IS

log(epoch)

Figure 4.9: Run 3, Oscillating individual graphs F' errors when training with
EmaxSE

This might still be a case of a high learning rate but we lowered it for Run 3
and when we visually inspect the network graphon in figure it does not
really change that much which leads us to believe that the learning rate is
fine.
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Figure 4.10: Run 3, Non-converging network visualization during training

||||| 5

This tug-of-war problem between density discrepancies of different F’s was
also somewhat observed in another run (Run 4) for Lysg, seen in figure |4.11.
This run also displays a long plateau which was finally overcome at the end
of the training. During the plateau, a small gradient norm can be seen which
indicates either of local minimum, saddle point, or a vanishing gradient.
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Figure 4.11: Run 4, Squared error of some graphs F' plateau
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Figure 4.12: Run 4, Neural network development over the course of learning

B 4.3.2 Growing Uniform Attachment Graphon

In this experiment, we used the same architecture as in [4.3.1] for Run 1.

The results can be seen in figures [4.13], [4.14], and [4.15|
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Figure 4.13: Run 1, Ground truth and learned graphon
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Figure 4.14: Run 1, MSE loss convergence
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Figure 4.15: Run 1, Neural network development over the course of learning

One thing to note here is that the resulting graphon does not really look like
the ground truth one, however the loss is still small so this might be a case of
weak isomorphism.

Interestingly, when in Run 2 we adjusted the architecture to be much
simpler to 2 hidden layers with 32 neurons each, the resulting graphon
converged even quicker and resembled the ground truth more from the visual

perspective. See the results of the second run 4.17, and 4.18|
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Figure 4.16: Run 2, Ground truth and learned graphon
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Figure 4.17: Run 2, MSE loss convergence

Epl Ep2 3 3 s Ep7 Eps Ep12 Ep18 €p26 €p37 Ep 54 €p77 €p 111 €p 160

Figure 4.18: Run 2, Neural network development over the course of learning

B 4.3.3 Constant 0.5 Graphon

This graphon is the simplest in terms of function complexity, although
modeling it might reveal if homomorphism densities for small graphs F
overfit on basically a noise graph and if they model the unwanted noise.
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Figure 4.19: Ground truth and learned graphon
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Figure 4.20: MSE loss convergence
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Figure 4.21: Neural network development over the course of learning
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The convergence plot tells us that there were no major problems with
learning. The resulting learned graphon in is a little bit suspicious
because it does contain quite a big clique or almost a clique in there. This,
again, might be due to weak isomorphism but it should be very unlikely for
a random graph to contain such a big clique. We hoped to try to use our
learned graphons for clustering based on subset connectedness and cluster
notions for graphons introduced in [EBW16]. However, looking at our learned
graphon, the subset (0.3,0.5) would definitely be in one cluster at around
level 0.9 which means that that set of "vertices" is highly connected. Such
connectedness for a random graph with edge probability 0.5 should be very
unlikely which is why we didn’t delve into clustering yet.
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. 4.4 Improvement Experiments

This section briefly describes improvement attempts to our base algorithm
together with their results.

B 4.4.1 Multiple-Gradient Descent Algorithm

To try to mitigate the oscillations of L.xsg and to some extent of Lysg,
we have applied the Multiple-Gradient Descent Algorithm (MGDA) [Dés12]
which is an algorithm that, given gradients V.£;(W) w.r.t. multiple different
objectives L;, finds a common steepest direction of descent that optimizes at
least one objective without worsening the others. This is exactly what we need
when we set £; = (£(F;, Girain) — t(F;, W))2. The algorithm works by finding
the minimum norm element w* in a convex hull of the gradients V.L;(W) and
then using it to update the weights 0« 06— oy -w*. We approximately solved
the optimization task

w* = argmin ||w|2
k

w = Zﬂi VL, (W)
i=1

Bi>0vie{l,...,k} > Bi=1

with a basic genetic algorithm. The network parameters then converge to a
so called Pareto-stationary point which means that w* = 0. Unfortunately,
this descent algorithm almost always plateaus with a high £,,.xsg by finding
an w* = 0 or very close to the zero vector. That suggests that the network is
usually already in a Pareto-stationary configuration when it plateaus.

B 4.4.2 Skip Connections and Batch Normalization

Skip connections, popularized by residual networks or ResNets [HZRS16], are
connections in a deep network that connect the output of a layer to an input
of another while skipping one or more layers in between, see figure [4.22

Skip connection

- J s «J  J

Figure 4.22: Skip connection adding an output of a layer to the output of another
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Inspired by skip connections, we modified the hidden layers of our architec-
ture from to become residual blocks, i.e. the input to hidden layer x
was added to its output h(z):

hresidual(x) = h(-%') + x.

It is called a residual block because it adds an output of a function to the input
x, thereby modeling what is left in & to model - the residual. Skip connections
help with the vanishing gradient problem by introducing shortcuts along
which the gradient can flow back to even distant layers from the output of
the network.

After this modification, an issue arose where the sigmoid activation at the
end of our network became saturated very quickly and the graphon put out
either 0 almost everywhere or 1 almost everywhere. This was most probably
caused by better gradient propagation which caused the distribution of hidden
layer outputs to shift drastically. To correct for this problem, we added a
batch normalization [[S15] layer after the last hidden layer which normalizes
its output to have a mean of 0 and a variance of 1. This keeps the majority
of the input into the sigmoid centered around 0, thus preventing saturation.
Otherwise, the architecture stayed the same - 10 hidden layers 64 neurons
each, LeakyReLU activations.

We trained this modified network on the complete bipartite graphon for
several runs with different random seeds and it does seem to be more robust
against plateaus. See figures and for an example run.
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Figure 4.23: MSE loss convergence
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Figure 4.24: Neural network development over the course of learning

Figure shows the Lysg distribution statistics across 50 random training
runs on the complete bipartite graphon (random in the sense of different seeds
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for weight initialization, # approximation etc.). As seen in the figure, the skip
connections together with batch normalization improved not only the initial
loss, but also the loss convergence in the average case without plateauing.

0.012 —— MSE Avg: MLP
—— MSE Avg: MLP + SkipCon + BatchNorm
MSE Stdev: MLP
MSE Stdev: MLP + SkipCon + BatchNorm
0.010
0.008
@
S 0.006
0.004
0.002
0.000 e
10° 10t 102 103
log(epoch)

Figure 4.25: L\sg average and standard deviation over 50 different runs with
different seeds improvement

B a5 Auxiliary Results

In this section, we compare the learned graphons to the ground truth graphons
by comparing parameters that were not explicitly learned.

We sampled two graphs of size 5000 vertices each, from the ground truth
graphon and the best learned graphon respectively and compared the vertex
degree distribution of the sampled graphs.

Bl 4.5.1 Complete Bipartite Graphon

As seen in figure [4.26, the ground truth degrees are concentrated in two
values - the two vertex partitions. Each node in each partition is connected
to every node in the other partition. Due to the randomness of sampling, the
partitions are not equally sized which is why the degrees concentrate around
two values instead of one. The values correspond to the sizes of the two
partitions. The vertex degrees of the learned graphon concentrate around the
value 2500 which is the size of one of the partitions they were equally sized.
We conclude that the degree distribution was learned quite well in this case.
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Figure 4.26: Degree Distribution Comparison

B 45.2 Growing Uniform Attachment Graphon

Figure [4.27 shows that the degree distribution of the growing uniform attach-
ment graphon was learned decently. The network didn’t quite capture low
degree vertices. The graphon was learned by an MLP with skip connections
and batch normalization with 1 hidden layer with 8 neurons.
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Figure 4.27: Degree Distribution Comparison

B 4.5.3 Constant 0.5 Graphon

In figure [4.28| the ground truth distribution looks like a normal distribution
with a mean of 2500, a vertex is on average connected with about half of
the other ones. The learned graphon distribution has the highest mode also
around 2500 but it is roughly bi-modal with a heavy left tail and with a
concentration around 2800 which is probably the clique mentioned in 4.3.3]
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The degree distribution was not learned well in this case. This would be fine
if the loss for this graphon was somewhat high but it was very low (2-1075)
which may be due to the homomorphism densities for the few graphs F not
being enough to identify the ground truth graphon.

350
Ground Truth Graphon B Learned Graphon

300
200

N
u
o

150

N
o
o

Ground Truth Frequency

=

o

o
-
u
o

Learned Graphon Frequency

-
o
o

50
50

2400 2600 2800 3000
Vertex Degree

Figure 4.28: Degree Distribution Comparison
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Chapter 5

Conclusion

To conclude the thesis, let us wrap up what we have done first. We went
over graphon theory that introduces the graphon, an object representing
the limit of graph sequences that converge structurally. Convergence in
structure is encoded in homomorphism densities with which we train a neural
network to represent a graphon. To that end, we defined a gradient-based
learning algorithm, that minimizes the squared errors between the ground
truth homomorphism densities and densities produced by the trained neural
network. We then analyzed the resulting representations and convergence of
the training process.

Now let’s summarize the results. While some of the representations were
promising, the results as a whole are far from perfect. The complete bipartite
graphon was learned well visually and in terms of vertex degree distribution
which is impressive that this was done only based on homomorphism densities.
The same thing cannot be said about the constant graphon that had a big
mismatch in degree distribution.

The high-level goal of this thesis was to explore this direction of trying to
utilize the learning capability neural networks to model large graphs structure
with graphons. The overall conclusion is that it is definitely possible, at least
for some types of graphons, but the modeling process requires some tuning
for different graphons.

We would like to mention potential future directions to take to improve on
this kick-off. The code could definitely be optimized so that homomorphism
densities could be iteratively computed without the GPU VRAM bottleneck.
Different network architectures from computer vision like convolutional layers
could be modified and adapted to fit this problem. The learning process and
network architecture should be revisited to make them more robust against
plateaus. A learning process based on homomorphism frequencies could be
looked at to model sparse graphs.
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Appendix A
List of Used Abbreviations

ANN Artificial Neural Network

CPU Central Processing Unit

DAG Directed Acyclic Graph

DFFNN Deep Feed-Forward Neural Network
GHz Giga Hertz

GPU Graphic Processing Unit

LeakyReLU Leaky Rectified Linear Unit
MGDA Multiple-Gradient Descent Algorithm
MLP Multi-Layer Perceptron

MSE Mean Squared Error

PDF Portable Document Format

PReLU Parametric Rectified Linear Unit
RAM Random Access Memory

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

VRAM Video Random Access Memory
XOR Exclusive OR

maxSE Maximum Squared Error
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Appendix B
Contents of the Attached Memory Card

/

readme.txt ..... Text file describing contents of the files

src

tnngraphons ........ Python package with all learning code
notebooks .............. Experiments in Jupyter notebooks

thesis
vuhuyhoa_thesis.pdf ................... This thesis in PDF
= o o BX source code of this thesis
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