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A graph G is a sum graph if there exists a labeling f of its vertices, i.e., a function assigning a positive integer
to every vertex, such that there is an edge {u,v} if and only if there exists a vertex w with f(u)+f(v)=f(w).
Clearly, no connected graph is sum graph. Thus, for connected graph G we study the least number of
isolated vertices one has to add to G so that the new graph is a sum graph. Furthermore, the same applies
to graph classes, that is, we ask what is the least number of vertices one as to add to a graph coming from a
particular graph class so that it is a sum graph; this is know as the sum number. This question has been
answered for very simple graph classes such as paths, cycles, wheels, or trees.
  The aim of the thesis is to survey the known results on this topic and to obtain new results by e.g. showing
a new (preferably simpler) labeling scheme for graph classes with known sum number or to find sum
number of other graph classes.
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Abstrakt

Neorientovaný graf G = (V,E) nazveme součtovým grafem, pokud existuje injektivńı
funkce σ : V → N přǐrazuj́ıćı vrchol̊um kladná celá č́ısla tak, že pro každé dva vr-
choly u, v ∈ V plat́ı, že jsou v grafu G spojeny hranou právě tehdy, když existuje třet́ı
vrchol w ∈ V takový, že σ(w) = σ(u) + σ(v).

Neńı těžké nahlédnout, že žádný souvislý graf nemůže být součtovým grafem, jelikož
vrchol s největš́ım přǐrazeným č́ıslem nemůže mı́t žádného souseda. Proto se snaž́ıme
naj́ıt součtové č́ıslo grafu G, což je minimálńı počet izolovaných vrchol̊u, které je třeba
ke grafu G připojit, abychom z něj součtový graf udělali.

Zmı́něný problém studujeme v celé jeho š́ı̌ri. Nejdř́ıve se věnujeme formálńımu za-
vedeńı všech pojmů a studiu vlastnost́ı součtových graf̊u. Pro vybrané tř́ıdy graf̊u pak
uvád́ıme deterministické algoritmy, které z grafu G vytvoř́ı součtový graf za použit́ı mi-
nimálńıho možného počtu přidaných vrchol̊u. V posledńı části práce prezentujeme náš
exaktńı exponenciálńı algoritmus, který dokáže naj́ıt součtové č́ıslo libovolného grafu.

Kĺıčová slova teorie graf̊u, značkováńı graf̊u, součtové grafy, součtové č́ıslo
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Abstract

A simple undirected graph G = (V,E) is said to be a sum graph if there is an injective
function σ : V → N such that for every u, v ∈ V there is an edge {u, v} in E if and only
if there exists a vertex w ∈ V such that σ(w) = σ(u) + σ(v).

It is easy to see that none connected graph is a sum graph since the vertex v with
the largest label is not adjacent to any other vertex. Therefore, we investigate the sum
number of a graph G, which is the minimum number of isolated vertices we must add
to G to obtain a sum graph.

We study this problem in its entirety. We provide complete definitions of sum graphs
and their properties. For some graph families, we investigate their sum numbers and
provide exact labeling algorithms to find an optimal labeling. In the last part of this
thesis, we present exact exponential algorithms that find a sum number for an arbitrary
graph.

Keywords graph theory, graph labeling, sum graphs, sum number
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Introduction

Graphs and graph theory have become in the last century one of the main fields of study
for not only mathematicians and computer scientists but play a significant role even in
chemistry, physics, biology, social sciences, economics, and other traditional fields. A
graph, as a natural model is closely related to many real-life situations, such as finding
a shortest path, designing computer chips, telecommunications, scheduling, and many
others.

In this thesis, we deal with the idea of sum graphs. The sum graph is a concept
linking together subsets of positive integers and graphs associated with this subset.
Frank Harary introduced the idea in his talk at the Nineteenth Southeastern Conference
on Combinatorics at Baton Rouge in 1988 [1].

Let S be a finite subset of the set {1, 2, . . .} of positive integers. Harary [2] defined the
sum graph of the set S as G+(S) = (V,E), where V = S and E = {{x, y} | x+ y ∈ S}.
Such graphs have very beneficial property because they do not have to be stored in
computer’s memory as both sets of vertices and edges, but it is sufficient to store only
the set of vertices, since the edges are implicitly encoded in vertex labels and presence
of an edge {x, y} in E(G+(S)) can be easily calculated. In 2006 Slamet, Sugeng, and
Miller [3] presented yet another application of sum graphs in the distribution of secret
information among a group of participants.

The attempt at various alternative representations of graphs has been part of graph
theory since its inception. Let us recall at this point at least a few of them. One of
the oldest ways of graph representation are interval graphs [4, 5]. “A graph is called
an interval graph if each of its vertices can be associated with an interval on a real line
such that two vertices are adjacent if and only if the associated intervals have non-empty
intersection” [6, Definition 6.3.4]. Another example are string graphs. A graph G is a
string graph if there exists a set of curves (called strings) drawn in the plane such that
no three strings intersect at a single point, each vertex is associated with a different
string, and there is an edge for each intersection of strings [7].

From Harary’s introduction to the problem, researches do not make too much progress.
In these days, we know sum labeling algorithms for not so many graph families. More-
over, Harary’s original question about the complete characterization of sum graphs is,
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Introduction

as well as a general algorithm that extends arbitrary graph G to become a sum graph
using the minimum number of isolates, still unanswered and challenges the researchers
for more than 30 years.

One of the main goals for a theoretical computer scientist is to determine whether
a given problem is “easy” to solve, or there is no “feasible” decision procedure. Even
such characterization in terms of computational complexity classes, which Harary [2]
introduced as an open problem in his original article, remains unsolved.

Goals

The main goal of this thesis is to summarize all known results about sum graphs. Based
on this survey we would like to (a) generalize and/or simplify known algorithms which
produce sum labeling for some graph families, (b) come up with formal proofs of state-
ments and algorithms related to sum graphs, which are in many cases hidden in the per-
sonal correspondence of the authors, (c) introduce sum labeling algorithms for graphs
families for which the optimal sum labeling schema is still not known and (d) try to
present the sum labeling algorithm for an arbitrary graph and investigate the problem
from a computational complexity perspective.

Our contribution

The first part of this thesis brings the reader formal definitions of all the concepts related
to sum graphs. Besides that, we introduce some well-known sum graphs properties for
which there were only fragments of proofs or no proofs at all, in literature.

In the second third of our work, we introduce labeling algorithms for the sum labeling
of both already known graph families and entirely new ones. Many already known
algorithms were generalized, and possibly new proofs of them are introduced.

In the last chapter, we introduce the first generally applicable algorithm for sum
labeling arbitrary graph while using an optimal number of extra isolates. Despite that
the running time of our algorithm is far from optimal, we believe that this algorithm
can be significantly useful in further research on the presented problem.

Thesis organization

We have organized the remainder of this thesis in the following way. In Chapter 1, we
introduce general notation necessary for understanding the rest of our work.

Chapter 2 contains formal definitions of all concepts related to sum graphs, and we
introduce here some basic properties of sum graphs, which are mostly used in Chapter 3.
In Section 2.1, we give a brief overview of related problems, and especially in Section 2.2,
we describe the natural motivation for studying this area of graph theory.
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Thesis organization

In Chapter 3, we present algorithms for sum labeling of selected graph families, and
the last chapter contains several ideas about the general-purpose algorithm, which finds
the sum labeling of an arbitrary graph G using an optimal number of isolated vertices.
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Chapter 1
Definitions and notation

In this chapter, we introduce the notation used in the thesis. We mainly follow the basic
notation of number and graph theory by Diestel [8]. The notation of Fibonacci numbers
and sequence is by Vorobiev [9], and asymptotic analysis is from the book of Graham,
Knuth, and Patashnik [10]. In complexity theory notation, we follow the monograph of
Arora and Barak [11]. We introduce other necessary definitions in the relevant chapters.

1.1 Number theory

By N we denote the set of natural numbers, excluding zero. N0 denotes the set of
all non-negative integers including zero. For any integer n ≥ 1 we abbreviate the set
{1, 2, . . . , n− 1, n} with [n].

Let S be a set. By [S]k we denote1 the set of all k-element subsets of set S. Note
that since [S]k is a set of k-element subsets, there are no two elements X,Y ∈ [S]k such
that X = Y up to permutation. Moreover, all elements of X ∈ [S]k are distinct elements
of set S.

We write logarithms as logb x, where b is its base. If the base is omitted, logarithms
are taken at base 2. We denote natural logarithm by ln.

1.1.1 Asymptotics

In many situations, such as when examining our algorithms’ running time, it is useful
to have a tool that allows us to compare the growth of given functions and decide which
algorithm scales well with large data.

Let n denote the size of the input of our algorithm. There is not much sense in com-
parison for small inputs, since the small instances are processed very fast even with a slow
algorithm; thus, we are interested in behavior in terms of running-time for considerably
large inputs.

1In related publications (e.g., [12]), it is relatively common to denote this set as
(

S
k

)
.
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1. Definitions and notation

We are usually also not very interested in multiplicative and additive constants, as
they usually depend on implementation details and concrete hardware architecture. All
the preceding leads to the following definitions of the asymptotic behavior of functions.

For the rest of this section, we denote by f and g two given function f : N0 → N0

and g : N0 → N0.
If there exists a constant c ∈ R+ and n0 ∈ N such that for every n ∈ N with n ≥ n0

it holds that
f(n) ≤ c · g(n),

we say that f(n) is at most of order g(n) and we write f(n) ∈ O(g(n)). In other words,
by O-notation, we express an upper bound for a function growth up to multiplicative
and additive constants.

In opposite, sometimes we would like to express a lower bound for function growth.
It is defined similarly to an upper bound but with usage of the Ω-notation. If there is a
constant c ∈ R+ and n0 ∈ N such that for every n ∈ N with n ≥ n0 it holds that

f(n) ≥ c · g(n),

we say that f(n) is at least of order g(n) and we write f(n) ∈ Ω(g(n)).
These two concepts given together directly make a definition of an asymptotically

tight bound for function growth. We say that f is of the same order as g if there exist
constants c1, c2 ∈ R+, and n0 ∈ N such that for every n ∈ N, n ≥ n0, it holds that

c1 · g(n) ≤ f(n) ≤ c2 · g(n).

We denote this tight bound by f(n) ∈ Θ(g(n)).

1.1.2 Fibonacci numbers

Many of our labeling schemas use heavily the Fibonacci numbers, which can be formally
defined as follows:

Definition 1 (Fibonacci numbers). For a non-negative integer n ≥ 0, the value of n-th
Fibonacci number, denoted Fn, is defined as

Fn =


0 n = 0,
1 n = 1,
Fn−1 + Fn−2 n ≥ 2.

Example. First 15 members of Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .

For the proofs of our hardness results following well-known lemma will be appropri-
ate. We include the proof for self-containment of the thesis.

Lemma 1. There is a constant c < 1 such that Fn ≤ 2cn for all n ≥ 0.
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1.2. Graph theory

Proof. The lemma obviously holds for F0 and F1 for every c > 0. Let us now suppose
that the lemma holds for every value until Fn−1.

By definition the n-th Fibonacci number is

Fn = Fn−1 + Fn−2.

We can now rewrite the equation using induction hypothesis as

2cn ≥ 2c(n−1) + 2c(n−2),

which gives us

2cn ≥ 2cn · 2−c + 2cn · 2−2c

2cn ≥ 2cn · (2−c + 2−2c)
1 ≥ 2−c + 2−2c

22c ≥ 2c + 1

c ≥ ln(1 +
√

5)− ln(2)
ln(2)

c ' 0.694242.

Together with the condition from Lemma 1, we showed that any c from interval
(0.6943, 1) works and the proof is complete.

It follows that Fibonacci numbers grow at worst exponentially. This fact is signifi-
cant because exponentially large numbers can be encoded using O(log 2n) = O(n) bits.
Thus, the certificate of existence of an appropriate sum labeling has polynomial-size,
and algorithms that use Fibonacci numbers belong to P or NP complexity class (for
formal definition, please see Section 1.3).

1.2 Graph theory

A graph is a pair (V,E), where V is a nonempty set of vertices, and E ⊆ [V ]2 is a set
of edges. For any graph G, we denote by V (G) the set of vertices of a graph G and
similarly by E(G) the set of all edges of G. We say that a graph G is finite if and only
if the size of the set of vertices V (G) is finite. Unless otherwise stated, all our graphs
are finite.

For a vertex v ∈ V (G), we say that v is incident to an edge e ∈ E(G), and v
is an endpoint of e if v ∈ e. Two vertices u, v ∈ V (G) are neighbors, or adjacent, if
{u, v} ∈ E(G). By NG(v), we denote the set of all neighbors of a vertex v ∈ V (G) in a
graph G.

Our definition of graphs directly forbid loops, which are the edges with both endpoints
equal to the same vertex v ∈ V (G). By our definition of the graph, there is also at most
one edge between two distinct vertices. Hence, we assume only simple graphs.
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1. Definitions and notation

For a vertex v ∈ V (G) we define its degree deg(v) as the number of neighbors of v
in G. Vertices with degree 0 are called isolates. By δ(G) := min{deg(v)|v ∈ V (G)} we
denote the minimum degree of G and by ∆(G) := max{deg(v)|v ∈ V (G)} we denote the
maximum degree of a graph G. If for every vertex v ∈ V (G) it holds that deg(v) = k,
we say that G is k-regular graph.

A graph G = (V,E) is connected if for any two vertices u, v ∈ V (G) there is a path
connecting u and v in G. When G is not connected, we say that G is disconnected.

For a graph G its complement graph G has V (G) = V (G) and E(G) = [V ]2 \E(G).
Let G and H be two graphs. We say that G∪H := (V (G)∪V (H), E(G)∪E(H)) is a

(disjoint) union of graphs G and H. If there is a bijection f : V (G)→ V (H) such that for
every pair u, v ∈ V (G) it holds that {u, v} ∈ E(G) if and only if {f(u), f(v)} ∈ E(H), we
say that graphs G and H are isomorphic, we write G ' H, and f is their isomorphism.

1.3 Computational complexity

In addition to examining the asymptotic complexity of proposed algorithms, we have
also, closely related, theory for classification of concrete computational problems2 (such
as sorting, Maximum flow, Hamiltonian cycle, 3-coloring, and many others) into
categories called complexity classes.

Computational problems are investigated from the point of view of different com-
putational models, which simplify their analysis. There are many of them, such as the
RAM model [13]. We construct our complexity theory based on Turing machines [14].

Definition 2 (Turing machine [11]). A deterministic Turing machine M is a tuple
(Σ, Q, δ), where

• Σ is a finite set of symbols M works with. We assume that Σ contains unique
“blank” symbol B, “start” symbol B, and the numbers 0 and 1. We call Σ the
alphabet of M.

• Q is a finite set of states of the machine M. We assume that Q contains a start
state, denoted qstart, and a halting state denoted qstop.

• δ : Q× Σk → Q× Σk × {←, •,→}k is a transition function describing the rule M
uses in performing each step.

One can imagine a Turing machine as a machine containing k ∈ N infinite one-
directional tapes divided into cells, each of which holds a symbol from Γ, and k tape
heads that read or write symbols to the tape. At each step of computation, each tape
head reads the symbol on the current head position, and according to the transition
function, replace the current symbol, change the current state and change the head

2We would like to highlight the difference between the asymptotics and computational complexity.
As the first investigate the complexity of a concrete algorithm for a given problem, the second examines
the complexity of the given computational problem regardless of a particular algorithm.
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1.3. Computational complexity

position one cell left or right. For an exhaustive overview of Turing machines and their
properties, we refer the reader to [11].

We can finally define our first complexity class. It is called NP and contains the vast
majority of well-known computational problems.

Definition 3. (NP complexity class [11]) A language L ⊆ {0, 1}∗ is in complexity class
NP if there exists a polynomial p : N0 → N0 and a polynomial-time Turing machine M
such that for every x ∈ {0, 1}∗, x ∈ L if and only if there exists u ∈ {0, 1}p(|x|) such that
M(x, u) = 1. If x ∈ L and M(x, u) = 1, then we call u a certificate for x.

In other words, class NP contains all the problems, for which we can easily verify
the solution. Nevertheless, it follows that this class contains both classes of problems,
that are easy to solve, such as sorting, and the notoriously hard problems, such as
Clique. Therefore, for a more exceptional division of problems, we define the following
complexity class.

Definition 4 (P complexity class [11]). Let T : N0 → N0 be some computable function.
We let DTIME(T (n)) be the set of all Boolean functions that are computable in c·T (n)-
time for some constant c > 0. Complexity class P is equal to ⋃c≥1 DTIME(nc).

“The class P is felt to capture the notion of decision problems with ‘feasible’ decision
procedures” [11]. It is easy to see that P ⊂ NP, but it remains one of the most critical
problems of computer science, whether P = NP. To capture the difference between
classes P and NP, we classify problems using the property called NP-hardness.

Definition 5 (Karp reduction, NP-hardness, and NP-completeness [11]). We say that
a language A ⊆ {0, 1}∗ is polynomial-time Karp reducible to a language B ⊆ {0, 1}∗
denoted by A ≤p B if there is a polynomial-time computable function f : {0, 1}∗ →
{0, 1}∗ such that for every x ∈ {0, 1}∗, x ∈ A if and only if f(x) ∈ B. We say that B is
NP-hard if A ≤p B for every A ∈ NP. We say that B is NP-complete if B is NP-hard
and B ∈ NP.

The first NP-complete problem is 3-SAT due to the work of Cook [15]. Later
Karp [16] showed NP-completeness of many other computational problems. Showing
that some problem is NP-hard is taken as evidence that the problem is not polynomial-
time solvable, since most researchers believe that P 6= NP.
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Chapter 2
Sum graphs and their properties

Harary, in his talk [1] and the follow-up pioneer paper [2], defined sum graphs as follows.

Definition 6 (Sum graph [2]). Let S ⊂ N be a finite set of positive integers. We say
that the graph G+(S) = (V,E) is a sum graph compatible with the set S if V = S and
E = {{x, y} | x+ y ∈ S}. By extension, a general graph G is called sum graph if there
exists S ⊂ N such that G+(S) ' G.

Example. For an example, the sum graph compatible with the set S = {1, 2, 3} is the
graph G+(S) = (V,E), where V = S = {1, 2, 3} and E = {{1, 2}}, since from all
combinations of pairs of elements from S only the sum of x = 1 and y = 2 belongs to
S. Based on the form of sets of vertices and edges of G+(S) we can say that the graph
P 1 ∪K1 is a sum graph.

Similarly, for the set S = {5, 7, 8, 10, 12, 15, 18} the compatible graph G+(S) has
vertices V (G+(S)) = S and edges E(G+(S)) = {{5, 7}, {5, 10}, {7, 8}, {8, 10}}. The re-
sulting graph is isomorphic with the graph C4 ∪K3, i.e., C4 ∪K3 is, as well as P 1 ∪K1,
a sum graph.

In Figure 2.1, we offer the reader a few more examples of different sum graphs and
their compatible sets.

2

5 7

9

(a) A sum graph asociated
with set S = {2, 5, 7, 9}

1

3 4

7

5

(b) A sum graph associated
with set S = {1, 3, 4, 5, 7}

1

5 9

13 6

10

14

18

22

(c) A sum graph as-
sociated with set S =
{1, 5, 6, 9, 10, 13, 14, 18, 22}

Figure 2.1: Examples of three sum graphs
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2. Sum graphs and their properties

It is not hard to see that not every graph G = (V,E) is a sum graph. As an example
of such a graph, we can take the cycle graph C3. This graph has three vertices and
three edges. Suppose that there is a set S = {a, b, c} of positive integers such that
G+(S) ' C3. Without loss of generality, we can assume that a < b < c. But we can see
that from the numbers a, b, and c, we are able to construct at most one edge, which is
strictly less than three edges of C3.

The following lemma shows why Definition 6 discards so many common graph classes
from the subject of interest.

Lemma 2. Every sum graph G = (V,E) contains an isolated vertex.

Proof. Suppose that v is the vertex with the largest label in G, i.e.,

∀u ∈ V (G) \ {v} : σ(u) < σ(v).

Furthermore, suppose for a contradiction that there is a vertex w ∈ V (G) such that
{v, w} ∈ E(G). Since G is a sum graph, it holds that for every edge {x, y} ∈ E(G),
there is at least one vertex z such that σ(z) = σ(x) + σ(y). Nevertheless, we selected v
as the vertex with the largest label, so there cannot be a vertex w connected with v. It
follows that v is an isolated vertex in G.

By Lemma 2, it holds that every sum graph with at least two vertices is disconnected.
Harary stated [2] that “Trivially, almost no graphs are sum graphs, since it is known
[17] that almost all graphs are connected”.

That is also the reason why the following alternative, but equivalent, definition has
been adopted by the community.

Definition 7 (Sum labeling). Let G = (V,E) be a graph and let σ : V → N+ be an
injective function. We say that σ is a sum labeling of the graph G if for any two distinct
vertices u, v ∈ V (G), {u, v} is an edge of G if and only if σ(u) + σ(v) = σ(w) for some
other vertex w ∈ V (G).

If the above definition holds not only for two distinct vertices u and v but even for
possibly equals vertices u = v, then the sum labeling is called strong sum labeling. With
Definition 7, we can finally give the promised second definition of sum graphs.

Definition 8 (Sum graph). A graph G = (V,E) is called a sum graph if and only if
there exists a sum labeling σ of G.

As stated in Lemma 2, there is no connected graph G with |V (G)| ≥ 2 such that G
is a sum graph. So it becomes an interesting question of how many isolated vertices we
must add to a general graph G to obtain a sum graph.

Definition 9 (Sum number). The sum number σ(G) of a graph G = (V,E) is the least
integer, such that G′ = (V (G)∪{v0, . . . , vσ(G)−1}, E(G)), where ∀i ∈ {0, σ(G)−1} : vi /∈
V (G), is a sum graph.

12



It is clear that the sum number of sum graphs is 0, since there is no need to tackle
any isolates to the graph because it is already a sum graph. Another particular class of
graphs is a class of graphs with a sum number equal to 1.

Definition 10 (Unit graph [18]). A graph G is called unit graph if σ(G) = 1.

Smyth [18] proposed constructive method to prove that there is no unit graph such
that its number of edges is greater than b|V (G)|2/4c, and for each p, |V (G)| − 1 ≤ p ≤
b|V (G)|2/4c, there is at least one unit graph with p edges.

For graphs that are not sum graphs by itself, we have the following folklore trivial
lower bound mentioned by many authors without a formal proof.

Lemma 3 (Trivial lower bound). For every graph G it holds that σ(G) ≥ δ(G).

Proof. Let G = (V,E) be a graph, G+ = G ∪Kσ(G) corresponding sum graph, and let
σ : V (G+) → N be a sum labeling function according to Definition 7. By definition we
know, that for every u, v ∈ V (G+) : σ(u) = σ(v) ⇐⇒ u = v. Let w ∈ V (G) be a vertex
with the largest label over all vertices in V (G). Since w has the largest label in V (G), it
is clear that the added isolated vertices must cover all edges incident with w, i.e., there
must be at least deg(w) isolates.

So the previous paragraph claims that every labeling scheme must use at least as
many isolated vertices as is the degree of the vertex with the largest label inG. Therefore,
there cannot be a graph with σ(G) < δ(G).

This lower bound on the sum number of an arbitrary graph gives us a straightforward
characterization of graphs, which can be, from a certain point of view, optimally sum
labeled.

Definition 11 (k-optimum summable graph [19]). We say that a nontrivial connected
graph G is k-optimum summable, where k ≥ 1, if and only if σ(G) = δ(G) = k.

For examples of k-optimally summable graphs, we can return to Figure 2.1. If we
imagine the graph from Figure 2.1a as Ga = ({2, 5, 7}, {{2, 5}, {2, 7}}) we can see, that
δ(Ga) = 1. Moreover, there is only one added isolated vertex with label 9, i.e., σ(Ga) is
equal to the minimum degree, and Ga is 1-optimum summable. Similarly with the graph
C3 from Figure 2.1b. On the other hand, the graph K4 in Figure 2.1c is not 3-optimum
summable because there are 5 added isolates, which is, as we prove later in Section 3.5,
an optimal number of added isolates.

From practical point-of-view, it is also interesting to question what is the upper
bound on sum number, i.e., what is the number of isolates which we must add to an
arbitrary graph to be sure that obtained graph is a sum graph. We can find claims about
trivial upper bound in the work of Harary [2] and Hao [20], but the rigorous proof is
missing.

Lemma 4 (Trivial upper bound). Every connected graph G = (V,E) can be transformed
into the sum graph G+ by adding |E(G)| isolated vertices.

13



2. Sum graphs and their properties

Proof. Let G = (V,E) be a graph with vertices v1, . . . , vn. We assign to every vertex
vi ∈ V (G) label σ(vi) = 10i and for each edge {vi, vj} ∈ E(G) we introduce in the
corresponding sum graph G+ single isolate vi,j with label σ(vi,j) = 10i + 10j .

It is clear from the definition of our labeling schema that for each edge {vi, vj} ∈ E(G)
there exists a vertex z such that σ(z) = σ(vi) + σ(vj). It is the added isolate vi,j .
We must only verify that for every {u, v} /∈ E(G+) there is no vertex z such that
σ(z) = σ(u) + σ(v).

We can imagine each label as an n-digit number of base 10. For every v ∈ V (G),
the label contains a single 1, and on the rest of the positions are 0. On the other hand,
vertices z ∈ V (G+) \ V (G), i.e., the added isolates, have 1 on two positions.

With such imagination it is easy to see that for vi, vj ∈ V (G) such that {vi, vj} 6∈
E(G) there will be no vertex w ∈ V (G+) such that σ(w) = σ(vi) + σ(vj) since w must
contain two 1 in its label, but there is no such vertex in V (G), and we did not add an
isolate with such label.

Also, the case when we have v ∈ V (G) and z ∈ V (G+) \ V (G) is clear. A witness
of edge {v, z} contains either three 1 in its label, or single 1 and single 2, but such a
vertex does not exist in V (G+). The same arguments hold when both v, z are added
isolates. In this case, the potential witness contains either four 1 in its label or at least
a single 2.

Note that the base of the labeling schema in the proof of Lemma 4 must not be
specifically number 10. Hao [20] proposed base 3, but any labeling with base strictly
greater than 2 works.

We conclude this brief introduction of sum graphs properties with the lemma of
Harary [2] about the multiplication of labels and our lemma about added isolate. Note
that in the original paper, the proof of the Harary’s lemma is omitted.

Lemma 5. Let G+(S), where S = {x1, x2, . . . , xn}, be a sum graph and let k ∈ N be a
constant. Then graph G+(S′), S′ = {k · x1, k · x2, . . . , k · xn}, is isomorphic with G+(S).

Proof. The proof directly follows from the distributive property of a multiplication over
addition in natural numbers.

Lemma 6. Let G = (V,E) be a graph, k ∈ N0 be a constant and G+(S), where S =
{x1, x2, . . . , x|V (G)|, . . . , x|V (G)|+k} be a sum graph such that G ∪ Kk ' G+(S). Then
there is a sum graph G+(S′), S = {x1, x2, . . . , x|V (G)|, . . . , x|V (G)|+k, x|V (G)|+k} such that
G ∪Kk+1 ' G+(S′).

Proof. Let S = {x1, . . . , xn} be an ordered set such that G+(S) is a sum graph and
G+(S) ' G ∪Kk. If we create set S′ = S ∪ {γ}, where γ ∈ N and γ > xn−1 + xn, then
the added number γ is the new largest label in S′ and it follows from Lemma 2 that γ
corresponds to an isolated vertex z in G+(S′).

Moreover, the graph G+(S′) remains a sum graph, because the isolated vertex z
cannot be a witness of an edge, since its label is bigger than the sum of the second and
the third largest labels in S′. The label of z is just too high, so the lemma holds.
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2.1. Related work

2.1 Related work

The concept of sum graphs was introduced by Harary [2] in 1990. Harary investigated
the relationship between graphs and subsets of the set of positive integers {1, 2, . . .}.

Since the problem of decision, whether a given graph G is a sum graph challenges
researchers for decades, some less restrictive variants of sum graphs were introduced.
In 1994 Harary [21] introduced the integral sum graphs where S is not restricted to be
a subset of positive integers, but it is permitted to be a subset of all integers. Even
earlier, in 1990, Boland, Laskar, Turner, and Domke [22] proposed generalization of sum
graphs called modular sum graphs, where a graph G is called modular sum graph if there
exists a positive integer Z such that V (G) ⊆ {1, . . . ,Z − 1} and E(G) = {{x, y}|((x +
y)(mod Z)) ∈ V (G)}. Harary, Hentzel, and Jacobs [23] also defined real sum graphs by
allowing S to be a finite set of real numbers and proved that every real sum graph is a
sum graph.

Similar concepts were investigated even for various mathematical operations. Bloom
et al. [24, 25] and Harary [2] independently discovered difference graphs G−(S) defined
analogously to sum graphs as V (G−) = S but with {x, y} ∈ E(G−) if and only if
|x − y| ∈ S. Bergstrand et al. [26] proposed, in 1992, product graphs by excluding
number 1 from the set S and defining that {x, y} ∈ E(G∗) if and only if x · y ∈ V (G∗).
Moreover, in the same paper, the authors proved “that every product graph is a sum
graph and vice versa” [27].

For a comprehensive overview of research and papers related to sum graphs and
similar concepts, we refer the reader to the survey of Gallian [27, pp. 230–238].

2.2 Motivation

The genuine motivation of the first research on sum graphs was a pure fascination of
problem-solving. The practical usage of this theory was found years later in the work of
T. Hao [20] and expressly in several papers of Mirka Miller [28, 29, 3].

2.2.1 Graph compression

The problem of finding sum labeling has straightforward utilization in graph compression
when we store them digitally, i.e., in computer. A graph is, by definition, a pair of
sets of vertices and edges. It also leads to two traditional ways of their representation
in computer memory, where both vertices and edges are stored in different ways, but
explicitly.

Adjacency matrix The first option of graph storage is using its adjacency matrix.
Let G = (V,E), where V = {v1, . . . , vn}, be a graph. The adjacency matrix AG =
(ai,j)|V (G)|×|V (G)| of graph G is a square matrix such that

ai,j =
{

1 if {vi, vj} ∈ E(G),
0 otherwise.
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2. Sum graphs and their properties

It is easy to see that such representation has space complexity O(|V (G)|2), since the
overall matrix is stored. On the other hand, if we want to check whether {vi, vj} is an
edge of the graph G, it can be done in constant time by looking at the proper element
of adjacency matrix AG. For an example of a graph and its adjacency matrix, please
see Figure 2.2.

v0 v1

v2v3

v4

v5 0 1 0 1 1 1
1 0 1 1 0 1
0 1 0 1 1 1
1 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 0




Figure 2.2: Graph and the corresponding adjacency matrix

Adjacency list The second most common option for storing graphs is with the usage
of adjacency lists. This representation uses an array of length |V (G)| where on index i
is the first element of a linked list containing, possibly in sorted order, all neighbors of
vertex vi. Linked list representation of a simple graph is shown in Figure 2.3.

v0

v1 v2

v3 v4

v5v6

1 2

0 2 6

0 1 3

2 4 5

3 5

3 4

1

0

1

2

3

4

5

6

Figure 2.3: Graph and the corresponding adjacency list representation

In contrast with the adjacency matrix, linked lists representation has space complex-
ity only O(|V (G)| + |E(G)|). However, if we decide to check whether there exists an
edge between two vertices vi and vj , we must traverse the whole linked list containing
neighbors of vertex vi (or vj), which leads to time complexity O(∆(G)) = O(|V (G)|).

Based on previous paragraphs, we can say that graph representation using the adjacency
matrix is optimal for dense graphs, wheres adjacency list representation is more suitable
for problems over sparse graphs.

At first glance, it might seem that sum graphs can be stored only as a set of vertices,
since all the edges are encoded explicitly in vertex labels. However, as stated before,
very few graphs are sum graphs, so there is the need to introduce some isolated vertices
to make some graph a sum graph — this number of isolates is known as the sum number
(see Definition 9).
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2.2. Motivation

A natural question is about the upper bound on this number for a general graph. In
Chapter 3, we introduce sum numbers for selected graphs families, for which it always
applies that σ(G) ∈ O(|E(G)|). Nevertheless, Gould and Rödl [30] proved that there
exists a class of graphs such that σ(G) ∈ Θ(|V (G)|2). It is worth pointing out that
their proof is not constructive — it uses probabilistic arguments — and it remains a
challenging open problem to find such a graph class explicitly3. Even so, we can say
that compression graphs using corresponding sum graphs can be, in some cases, contra-
productive and is useful only for specific graph classes.

2.2.2 Secret sharing scheme

Slamet, Sugeng, and Miller [3] found another compelling motivation to study sum graphs
in cryptography.

There are many situations where we need to, due to security reasons, make something
inaccessible to a single person. For example, in the Czech Republic, we have Crown
Jewels of Bohemia, which are stored in the secured and hardly-accessible chapel in St.
Vitus cathedral. The door to the Crown Jewels chamber has seven locks, and each key
is entrusted to a different person. All the key-holders must be convened to facilitate the
opening of the door. [31]

The original motivation for the secret sharing scheme comes from Liu [32], who
proposed the following problem: “Eleven scientists are working on a secret project.
They wish to lock up the documents in a cabinet so that the cabinet can be opened if
and only if six or more of the scientists are present. What is the smallest number of locks
needed? What is the smallest number of keys to the locks each scientist must carry?”

The theory of secret sharing was invented independently by Shamir [33] and Blak-
ley [34]. The concept is defined as follows. Let D be a piece of information (e.g., cryp-
tographic key, password, safe combination). A secret (n, t)-sharing scheme is a method
to distribute D to a set P of n participants such that

• every subset Q ⊆ P of participants of size at least t is able to reconstruct original
information and

• every subset Q ⊆ P of size t − 1 or less gain no information about the original
secret.

As Slamet, Sugeng, and Miller [3] pointed out

Many mathematical structures are used to create secret sharing schemes.
For example, Brickell and Davenport [35] generated an ideal secret sharing
scheme based on matroid theory.

Later Stinson [36] proposed a secret sharing scheme based on graph access structures.
Inspired by Stinson’s work, Slamet, Sugang, and Miller [3] proved that sum graphs can

3Paper of Gould and Rödl [30] also disproved the conjecture of P. Erdös mentioned by Harary [2]
whether “2p - 3 is the maximum value of σ(G) for graph G with p vertices.”
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2. Sum graphs and their properties

be used as access structure for a secret (n, 2)-sharing scheme with possible extension to
arbitrary t using sum hypergraphs [37].
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Chapter 3
Sum numbers of selected graph

families

At the beginning of our study of sum labeling, we investigated the properties of some
basic graphs families. Let us first formally define what graph family denotes.

Definition 12 (Graph family). Let G be the class of all simple graphs and let υ : G → {0, 1}
be a function indicating the presence of some graph property Υ. A subclass GΥ ⊆ G is
called a graph family with respect to the property Υ if and only if

∀G ∈ G : G ∈ GΥ ⇐⇒ υ(G) = 1.

Exact labeling schemas for many graph families were hidden in the authors’ private
communication, so there was the need to reinvent the labeling algorithms and come with
proofs of them again.

3.1 Paths

The first family of graphs we were studied was path graphs, ordinarily referred to as Pn.
These graphs consist of n + 1 vertices v0, . . . , vn and n edges {vi, vi + 1} for every i ∈
{0, . . . , n− 1}.

The basic case of path graphs is P 0. This simple graph contains only single vertex
and no edges at all, so there is no need for any isolates — P 0 is a sum graph. To a single
vertex v0, we can assign any positive natural number α ∈ N. Based on this observation,
we can say that σ(P 0) = 0.

For any nontrivial case, a little bit sophisticated labeling schema must be found.
Hao proposed [20] labeling paths with Fibonacci numbers, but the proof of correctness
of such labeling is not given in [20]. Based on that, we come with the following more
general algorithm.

Algorithm 1 (Sum labeling of paths). Let Pn, where n ≥ 1, be a path graph. Make
union of graph Pn with graph K1 consisting out of a single vertex named vn+1 and assign
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v0

3

v1

7

v2

10

v3

17

v4

27

Figure 3.1: Sum labeling of path graph P 3 with vertex set V (P 3) = {v0, v1, v2, v3} and
edges E(P 3) = {{v0, v1}, {v1, v2}, {v2, v3}}. We select minimum label α = 3 and proceed
Algorithm 1. According to definition of the algorithm each vertex vi ∈ V (P 3) obtains
label Fi+2 · α+ Fi and the added isolate v4 obtains label F6 · α+ F4 = 8 · 3 + 3 = 27.

to each vertex vi of newly created graph label σ(vi) = Fi+2 · α + Fi, where α ∈ N is any
selected minimal label.

For an example of the resulting sum graph generated by the preceding algorithm on
a path graph with four vertices, we refer the reader to Figure 3.1. Let us now introduce
the following lemma to prove the correctness of Algorithm 1.

Lemma 7. Let Pn, n ≥ 1, be a path graph and α ∈ N be a minimum required label.
Then for the given graph Pn and minimum required label α Algorithm 1 produces sum
graph G+ such that G+ ' Pn ∪K1 and

∀u, v ∈ V (G+) : {u, v} ∈ E(G+) ⇐⇒ ∃w ∈ V (G+) : σ(u) + σ(v) = σ(w).
Proof.

(⇒) To proof the correctness of Lemma 7 we must at first show that for each edge
{vi, vi+1}, where 0 ≤ i ≤ n − 1, there exists a vertex vk with label σ(vi) + σ(vi+1).
As below equation shows, this condition is fulfilled by vertex vi+2, which always exists,
thanks to the added isolate vn.

σ(vi) + σ(vi+1) = F (i+ 2) · α+ F (i) + F (i+ 3) · α+ F (i+ 1)
= (F (i+ 2) + F (i+ 3)) · α+ (F (i) + F (i+ 1))
= F (i+ 4) · α+ F (i+ 2) = σ(vi+2).

(⇐) To complete the proof, we must also show that for any two selected ver-
tices vi and vj which are not adjacent, i.e., |i − j| ≥ 2, there is no vertex vk such
that σ(vi) + σ(vj) = σ(vk). Without loss of generality, we can assume that 1 ≤ i+ 1 <
j < k ≤ n.

Suppose for contradiction that the Algorithm 1 produced labeling such that for two
vertices vi, vj not connected by edge there exists third vertex vk with label equal to σ(vi)+
σ(vj). When we write down the equation, we get the following result:

σ(vi) + σ(vj) = σ(vk)
F (i+ 2) · α+ F (i) + F (j + 2) · α+ F (j) = F (k + 2) · α+ F (k)

(F (i+ 2) + F (j + 2)− F (k + 2)) · α = F (k)− F (j)− F (i)

α = F (k)− F (j)− F (i)
F (i+ 2) + F (j + 2)− F (k + 2)
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3.2. Cycles

Because of assumed boundaries for i, j and k it follows that the used initial label α
was a negative number. But that is a contradiction with the algorithm definition. Thus,
the algorithm never assigns sum of labels of not connected vertices to the third vertex
in a graph.

We have successfully proved that the proposed algorithm works and gives us a proper
sum labeling of path graphs.

We note that Algorithm 1 always terminates, since it visits every vertex of Pn exactly
once. The correctness of the generated result follows from Lemma 7. We also note that
Algorithm 1 has time complexity O(n2), since it, according to Lemma 1, assigns to every
vertex at most exponentially big number. By Definition 4 it follows that sum labeling
of paths is in complexity class P.

With the completed proof of an algorithm for the sum labeling of paths, we can state
the final theorem about the sum number of path graphs.

Theorem 8. Let n ∈ N0 and Pn be a path graph. It holds that

σ(Pn) =
{

0 if n = 0,
1 otherwise.

Proof. The first case when n = 0 is obvious. For the latter case, we recall Lemma 3,
which shows that the sum number is lower bounded by a minimal degree of a graph.
We introduced a deterministic algorithm that found the sum labeling of any path graph
while using single isolated vertex, so the theorem holds.

The above theorem directly implies that path graphs are 1-optimal summable, and
all path graphs with at least a single edge are unit graphs. Moreover, it is easy to see
that Algorithm 1 produces a strong sum labeling of path graphs.

3.2 Cycles

Let P denote an arbitrary path graph with at least three vertices {v0, v1, v2, . . . , vn−1}.
Then graph C := (V (P ), E(P )∪{{vn−1, v0}}) is called a cycle graph (or simply a cycle).
We ordinarily denote cycles by Cn, where n is the number of edges (or vertices).

For every vertex v of a cycle graph it holds that deg(v) = 2, consequently all cycle
graphs are 2-regular.

The smallest representative of cycle graphs is C3. From Lemma 3 it is clear that
we must add at least 2 isolates to make C3 a sum graph. Let {v0, v1, v2} be the set of
vertices and {{v0, v1}, {v1, v2}, {v0, v2}} the set of edges of C3 with the following labels
assignment

v0 = 1, v1 = 3, v2 = 4.

It is easy to see, that the edge {v0, v1} is covered by vertex v2, since σ(v0) + σ(v1) =
1 + 3 = 4 = σ(v2). It remains to cover edges {v1, v2} and {v0, v2}. To cover the first,
we must add an isolate v3 with label 7. For the least edge, we introduce another isolate
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3. Sum numbers of selected graph families

v4 with corresponding label 5. There is no doubt about the correctness of such labeling,
and we obtained a sum graph from graph C3 while using 2 added isolates, which is, by
Lemma 3, optimal.

A fascinating fact is that for the graph C4 we must add at least 3 isolated vertices
to obtain a sum graph.

Lemma 9. For a cycle graph C4, it holds that σ(C4) ≥ 3.

Proof. By Lemma 3, we know that σ(C4) is at least 2, so we are supposed to prove only
that σ(C4) 6= 2.

Suppose for contradiction that σ(C4) = 2. We denote the vertices of C4 by {v0, v1, v2, v3}
and the added isolates by v4 and v5. Moreover, we can assume that E(C4) = {{v0, v1}, {v1, v2}, {v2, v3}, {v0, v3}}.

Without loss of generality, we can assume that the vertex v3 has the largest label d
out of all vertices of C4 in sum labeling σ of the graph C4 ∪ K2. We know that v3 is
adjacent to two vertices v0 and v2 with labels σ(v0) = a and σ(v2) = c. Since v3 has the
largest label, it follows that a < d and c < d. Moreover, it also follows that σ(v4) = a+d
and σ(v5) = c+ d.

Let b denote the label corresponding to vertex v1 in the sum labeling σ. At this time,
we have covered two edges out of four. The remaining edges are those incident with the
vertex v1.

We take, for example, the edge {v0, v1}. From the definition, there must be a vertex
with label a+ b. It is clear, since all the labels must be greater than 0, that the witness
can be neither the vertex v0 nor the vertex v1. The vertex v4 is also out of the question,
since its label is a+ d, which implies b = d.

The remaining possible witnesses are vertices v3 and v5. Let us assume that the
required witness is the vertex v3. In such case we have d = σ(v3) = σ(v0)+σ(v1) = a+b
and if we substitute for d in all labels, then we obtain

σ(v0) = a, σ(v1) = b, σ(v2) = c, σ(v3) = a+ b, σ(v4) = 2a+ b, σ(v5) = a+ b+ c.

Now we must find a witness for the edge {v1, v2}. For an obvious reason, the vertices
v1, v2 are forbidden. Also, the vertex v3 cannot be a witness, since it implies a = c, and
we do not have to think of the vertex v5 because its label is too high.

If we take as the witness the vertex v0, then after the substitution we get σ(v4) =
3b + 2c = b + 2b + 2c = σ(v1) + σ(v5), but this edge is forbidden. It follows that v0
cannot be a witness.

Let us take as the witness the vertex v4. In this case we obtain that 2a+b = b+c =⇒
c = 2a and after substitution we get σ(v5) = 3a+ b = a+ (2a+ b) = σ(v0) + σ(v4), but
this edge is also forbidden.

All the previous paragraphs imply that the vertex v3 cannot be the witness for the
edge {v0, v1}. To complete the proof we must exclude the label v5 from the list of possible
witnesses.

With the label v5 as the witness we obtain, after substitution, following labels

σ(v0) = a, σ(v1) = b, σ(v2) = c, σ(v3) = d, σ(v4) = a+ d, σ(v5) = c+ d = a+ b.
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Figure 3.2: Sum labeling of cycle graph C4. One can easily verify, that resulting graph
is a sum graph.

Now, we need to find the witness for the last remaining edge {v1, v2}. Vertices v1, v2, v5
are all forbidden due to a similar argument as with the witness v3. We must check only
for v0 and v4.

From the least case, we obtain after substitution that c = a and the case when the
witness is v0 induces forbidden edge {v1, v5}.

We have examined all possible cases of labels assignments and we proved that there
is no sum labeling of C4 with 2 added isolates. It follows that at least 3 isolated vertices
are required, i.e., σ(C4) ≥ 3, and the proof is complete.

To prove that σ(C4) = 3, we refer the reader to Figure 3.2, which displays one
possible proper sum labeling of a graph C4 ∪K3.

For cycles with at least 5 vertices, we can, as we prove later in this section, again use
an algorithm similar to our example of labeling C3, i.e., we will suffice with 2 isolates.

Algorithm 2 (Sum labeling of cycles). Let Cn, where n ≥ 3 and n 6= 4, be a cycle graph
with vertices {v0, . . . , vn−1} and edges {{vi, vi+1} | i ∈ {0, . . . , n− 2}}}} ∪ {{vn−1, v0}}
and α ∈ N be a minimal required label. We create sum graph G+ with V (G+) = V (Cn)∪
{vn, vn+1} and E(G+) = E(Cn). Then we assign to each vertex of V (G+) a label
according to the following rule

σ(vi) =
{
Fi+2 · α+ Fi if i ∈ {0, . . . , n},
σ(v0) + σ(vn−1) if i = n+ 1.
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v0

2

v1

5

v2

7

v3

12

v4

19

v5

31

v6

21

Figure 3.3: Sum labeling of cycle graph C5 with vertex set V (C5) = {v0, v1, v2, v3, v4}.
We select minimum label α = 2 and simulated Algorithm 2. According to the definition
of the algorithm each vertex vi ∈ V (C5) obtains label Fi+2 ·α+Fi, first added isolate v5
obtains label F7 · α + F5 = 13 · 2 + 5 = 31 and second added isolate v6 obtains a label
σ(v0) + σ(v4) = 2 + 19 = 21

For an example of the output of Algorithm 2 executed with graph C5 and initial
label α = 2 we refer the reader to Figure 3.3. Let us now prove an auxiliary lemma
which help us to prove the correctness of the preceding algorithm.

Lemma 10. Let Cn, n ≥ 3, n 6= 4, be a cycle graph and α ∈ N be a required initial
label. Then for a given graph Cn and initial label α Algorithm 2 produces a sum graph
G+ such that G+ ' Cn ∪K2 and

∀u, v ∈ V (G+) : {u, v} ∈ E(G+) ⇐⇒ ∃w ∈ V (G+) : σ(u) + σ(v) = σ(w).

Proof.
(⇒) Let i ∈ N0, 0 ≤ i < n− 1. For each edge {vi, vi+1} there must exists vertex vk,

k ∈ {1, . . . , n} such that σ(vi)+σ(vi+1) = σ(vk). We can rewrite the preceding equation
according to labels definition and we obtain

σ(vi) + σ(vi+1) = σ(vk)
Fi+2 · α+ Fi + Fi+3 · α+ Fi+1 = Fk+2 · α+ Fk

Fi+4 · α+ Fi+2 = Fk+2 · α+ Fk. (3.1)

Equation (3.1) has clearly a solution k = i + 2 which corresponds to assigned labels.
Last not yet checked edge is {v0, vn−1}. For this edge we introduced special isolated
node vn+1, so the edge has witness. The implication therefore apply.

(⇐) Now, we must show that for all vertices u, v ∈ V (G+) such that {u, v} /∈ E(G+)
there is no witness for the edge. We can be sure, thanks to Lemma 2, that vertex vn is
not adjacent to any v ∈ V (G+) since it has the largest label.

Let i ∈ {0, . . . , n}. We know that vertex vn+1 cannot be adjacent to any other
v ∈ V (G+). Let us now verify this fact. For a contradiction we assume that there is
vertex vi, i ∈ {0, . . . , n−2} and vertex vk, i < k ≤ n−1 such that σ(vi)+σ(vn+1) = σ(vk).
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3.2. Cycles

We rewrite the equation according to defined labeling schema and we get

σ(vi) + σ(vn+1) = σ(vk)
Fi+2 · α+ Fi + F2 · α+ F0 + Fn+1 · α+ Fn−1 = Fk+2 · α+ Fk

α · (Fi+2 + F2 + Fn+1 − Fk+2) = Fk − Fi − F0 − Fn−1

α = Fk − Fi − F0 − Fn−1
Fi+2 + F2 + Fn+1 − Fk+2

α = Fk − Fi − Fn−1
1 + Fi+2 + Fn+1 − Fk+2

. (3.2)

We recall that 0 ≤ i < k ≤ n−1. According to this boundaries we can say that dividend
on the right side of Equation (3.2) will be always negative or 0, since Fk is at most Fn−1.
On the other hand, the divisor is always, by the same argument, positive. It implies
that initial label α is negative number or zero, which is contradiction, i.e., there is no
edge incident with vn+1.

Edges between {vi, vj}, i+1 6= j are also forbidden. We now assume that 1 ≤ i+1 <
j < k < n. As in the previous case, we rewrite the labels according to Algorithm 2

σ(vi) + σ(vj) = σ(v − k)
Fi+2 · α+ Fi + Fj+2 · α+ Fj = Fk+2 · α+ Fk

α · (Fi+2 + Fj+2 − Fk+2) = Fk − Fi − Fj

α = Fk − Fi − Fj
Fi+2 + Fj+2 − Fk+2

. (3.3)

If we think about values, which can α acquire, we get that that dividend on the right side
of Equation (3.3) is always positive, since at the worst case Fj = Fk−1, but the largest
possible value for Fi is Fk−3. When we subtract this extremal values we always get a
positive reminder. For the divisor, exactly the opposite is true. It implies that the divisor
is always lower than zero, i.e., the initial α must be negative, which is contradiction.

Last not yet discussed case is for edges {vi, vk}, 1 ≤ i + 1 < j < n − 1, with
exception of edge {v0, vn−1}, and possible witness in a vertex vn+1. If we rewrite the
equation σ(vi) +σ(vj) = σ(vn+1) under the preceding condition, then we again obtain a
contradiction on value of α.

We discuss all possible cases and it follows, that our labeling is valid. So the lemma
holds.

To complete the proof of the correctness of Algorithm 2 we note that the algorithm
always terminates, since it perform constant amount of operations for finite number of
vertices. Our algorithm, with the same argumentation as in case of Algorithm 1, has
time complexity O(n2), since it uses exponentially big numbers. It follows that sum
labeling of cycles belongs to complexity class P.

Theorem 11. Let n ∈ N, n ≥ 3, and Cn be a cycle graph. It holds that

σ(Cn) =
{

3 if n = 4,
2 otherwise.
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3. Sum numbers of selected graph families

Proof. The first case follows from Lemma 9 and Figure 3.2. For the latter case we
introduce deterministic that find the sum labeling of any given cycle graph with two
added isolates. According to Lemma 3 there cannot be a sum labeling with less added
isolates, i.e., the theorem holds.

The preceding theorem implies that cycle graphs except the case of C4 are all 2-
optimum summable.

3.3 Flowers

The case of 4-cycle from Section 3.2 is quite curious. It is intellectually provocative to
accept that it is impossible to label C4 using 2 isolates. This leads to an article of Fernau,
Ryan, and Sugeng [38], who investigated a sum number of flower graphs or generalized
friendship graphs.

A flower f q,p is a collection of p, p ≥ 2, q-cycles, q ≥ 3, with a common vertex called
the center. The q-cycles are called petals. We follow the notation of Fernau, Ryan, and
Sugeng [38], and denote the central vertex by c, and for i-th, 1 ≤ i ≤ p, q-cycle we
denote its vertices as vij , where 1 ≤ j ≤ q and viq = c. For examples of flowers, please
see Figure 3.4.

As stated before, the main motivation for study of flower graphs was the strange
property of graph C4 with respect to sum numbers. Based on that, Fernau, Ryan, and
Sugeng [38, Lemma 2] proved that flower graphs f4,p, i.e., p 4-cycles with single common
vertex, are, in contrast with C4, 2-optimal summable. They also proposed exact sum
labeling schema for such graphs. An example of a graph f4,p with its sum labeling is in
the Figure 3.4b.

In addition, Fernau, Ryan, and Sugeng [38] showed a complete characterization of
all flower graphs in terms of sum numbers. We present an algorithm for labeling flower
graphs with petals of size 3. Other cases can be found in the original article [38].
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(a) The flower f3,8 and its labeling (b) The flower f4,5 and its labeling [38]

Figure 3.4: Flowers and its labeling
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3.4. Stars

Algorithm 3. Let f3,q, q ≥ 3 be a flower graph and α ∈ N, α ≥ 2p sufficiently large
constant. We assign to vertices labels according to the following rule

σ(vij) =


α+ (i− 1) if j = 1,
α+ (2p− i) if j = 2
1 vij = vi3 = c.

With such assignment we need to add a single isolate z1 with label α+ (2p− 1) to cover
all the edges of the form {vi1, vi2}, and an isolate z2 with label α + 2p to cover the edge
incident with center and vertex with the largest label.

It follows that the central vertex c obtains label 1. Moreover, the labels of vi1 vertices
increase with i from α to α + (p− 1) and labels of vertices vi2, on the other hand, with
increasing i decrease from α + (2p − 1) down to α + p. It is also not hard to see that
the proposed labeling does not induce any further edges. The sum of the lowest and
the second lowest labels on petals is grater than the label of the isolate z2. Since all the
labels are distinct positive integers, the isolate z1 cannot induce edges other than those
on petals. For example of the algorithm result, please see Figure 3.4a.

Theorem 12 (Fernau, Ryan, and Sugeng [38]). The flower graph fp,q, where p ≥ 2 and
q ≥ 3, has sum number 2.

For the complete proof, we refer the reader to the original article [38]. Theorem 12
implies that all flower graphs are 2-optimum summable.

3.4 Stars

Another graph family we study is known as star graphs. A star graph, denoted by Sn,
where n ∈ N, is a graph with a vertex set {c, v1, . . . , vn−1} and edges {{c, vi} | i ∈ [n−1]}.
A vertex c is denoted as the center, and remaining vertices all called beams. It follows
that the central vertex has degree n− 1, and all other vertices have degree 1. The star
graphs find their usage in computer networks design and distributed computing.

A star S1 is a graph with one isolated vertex. Such a graph is isomorphic with P 0,
and it follows that it is a sum graph. Likewise, a star graph S2 is isomorphic with P 1,
and S3 is isomorphic with P 2, i.e., all these graphs have sum number 1.

The first little bit complicated case is a star graph S4. We provide the following sum
labeling. To the center c, we assign a label 1. Each vertex vi ∈ v1, v2, v3 than obtain a
label 2+ i. For each edge {c, vi}, excluding the edge {c, v3}, the sum is located on vertex
vi+1. The edge {c, v3} forces us to add isolate z with label 6. It is easy to see that no
new edge is induced by the added isolate. The center c is adjacent to all other vertices in
V (S4) and cannot be incident with the isolate, since z has the largest label. Moreover,
the sum of the two smallest labels between all beams is 3 + 4 = 7, which is greater than
σ(z). Thus there is no induced edge and σ(S4) = 1. According to Lemma 3, this number
of isolates is optimal.
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3. Sum numbers of selected graph families

We use a similar approach inspired by the work of Ellingham [39] even for a star
graph with more than 4 vertices.

Algorithm 4. Let Sn, n ≥ 2, be a star graph, and α ∈ N a given constant. We assign to
the central vertex c label α and add a single isolate vn. Each vertex vi, i ∈ [n], including
the isolate vn, then obtain a label σ(vi) = nα+ iα.

An alternative approach is proposed by Hao [20]. He assigns a label 1 to vertex v1,
and the center c obtains label 2. The vertex v3 obtain a label σ(c) + σ(v1) and all the
remaining vertices, including an added isolate, vi obtain label σ(vi−1) + σ(c). We leave
this algorithm without a proof.

However, what we formally prove is the correctness of Algorithm 4. Let us now prove
the following auxiliary lemma.

Lemma 13. Let Sn, n ≥ 4, be a star graph and α, β ∈ N, β > 2αn, be given constants.
Then for a given graph Sn Algorithm 4 produces a sum graph G+ and corresponding sum
labeling σ such that G+ ' Sn ∪K1 and

∀u, v ∈ V (G+) : {u, v} ∈ E(G+) ⇐⇒ ∃w ∈ V (G+) : σ(u) + σ(v) = σ(w).

Proof.
(⇒) At first, we must show that for each edge {c, vi}, i ∈ [n−1], there exists a vertex

vk ∈ V (G+) such that σ(c) + σ(vi) = σ(vk). If we rewrite the equation, then we obtain

σ(vk) = σ(c) + σ(vi)
σ(vk) = α+ nα+ iα

σ(vk) = nα+ (i+ 1)α. (3.4)

Equation (3.4) has always a solution k = i+1. It is easy to see that thanks to the added
isolate, all the edges have the corresponding witness.

(⇐) We now prove that for two vertices u, v ∈ V (Sn) such that {u, v} 6∈ E(Sn),
there is no induced edge with given labeling.

The added isolate vn has the largest label, and according to Lemma 2, it is adjacent
to any vertex v ∈ V (Sn). Moreover, the center is connected with all vertices in V (Sn).
The only case we need to check is whether there is no induced edge by the added isolate.

If we sum labels of the beams with the lowest labels, we obtain σ(v1) + σ(v2) =
nα + α + nα + 2α = 2nα + 2α. Since the largest label is σ(vn) = nα + nα = 2nα, we
proved that there is no edge induced by this labeling. Thus the lemma holds.

Since the validity of the produced output of Algorithm 4 directly implies from
Lemma 13, we only note that the algorithm always terminates. It performs a con-
stant number of operations for every vertex of Sn, and the same procedure is executed
even for the added isolate. Hence, the algorithm has running time σ(n), and the sum
labeling of stars belongs to complexity class P.
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Theorem 14. Let Sn, where n ∈ N, be a star graph. It holds that

σ(Sn) =
{

0 if n = 1,
1 otherwise.

Proof. The first case follows from our discussion that S1 ' P 0. For the latter case,
we introduced a deterministic polynomial-time algorithm and proved its correctness.
Moreover, according to Lemma 3, there cannot be labeling with less added isolate, i.e.,
the theorem holds.

From Theorem 14 follows, that star graphs Sn with at least two vertices are 1-
optimum summable and are unit graphs. Moreover, the produced sum labeling is obliv-
iously strong sum labeling.

3.5 Complete graphs

A complete graph (or a clique) is a graph, where every vertex v is adjacent with all
other vertices w ∈ V (G) \ {v}. More formally, graph G = (V,E) is complete graph on n
vertices if and only if E(G) = [V (G)]2. We ordinarily denote complete graphs as Kn.

Many notoriously difficult graph problems are easy on complete graphs thanks to
their symmetry. As an example, let us mention for example the graph coloring
problem, clique problem, and vertex cover.

High symmetry is advantageous even in the case of sum labeling. We are not forced
to invent highly sophisticated schema because there is no need to worry about unwanted
connections in the graph.

Sum labeling of complete graphs was first studied by Bergstrand et al. [40]. They
introduced polynomial time algorithm which uses 2n − 3 isolated vertices. Moreover,
they proved that such number of isolates is optimal for complete graphs, i.e., σ(Kn) =
2n− 3 for n ≥ 4. Let us now formulate little bit generalized algorithm inspired by their
approach.

Algorithm 5. Let Kn, n ≥ 4, be a complete graph with vertices {v1, . . . , vn}. We assign
to each vertex vi label 1 + 4 · (i− 1) and we add 2n− 3 isolates zj, 1 ≤ j ≤ 2n− 3, with
corresponding labels equal to 2 + 4j.

Lemma 15. Let Kn, n ≥ 4, be a complete graph. Then Algorithm 5 produces a sum
graph G+ and a labeling σ : V (G+)→ N such that G+ ' Kn ∪K2n−3 and

∀u, v ∈ V (G+) : {u, v} ∈ E(G+) ⇐⇒ ∃w ∈ V (G+) : σ(u) + σ(v) = σ(w).

Proof.
(⇒) Let vi, vj , 1 ≤ i < j ≤ n, be two vertices. We claim that there exists an isolated

vertex zk, 1 ≤ k ≤ 2n− 3, such that σ(zk) = σ(vi) + σ(vj). We can substitute into the
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equation and we obtain

σ(zk) = 1 + 4(i− 1) + 1 + 4(j − 1)
2 + 4k = 2 + 4(i+ j − 2)

k = i+ j − 2 (3.5)

The minimum value on the right-hand of Equation (3.5) is i + j − 2 = 1 + 2 − 2 = 1
and the maximum value is (n− 1) + n− 2 = 2n− 3. All other possible combinations of
i and j, with respect to assumed boundaries, fall into this interval and all of them are
integers. This implies that the witness always exists.

(⇐) We must check that there is no edge induced by added isolates. Suppose that
there is a vertex v ∈ V (G+) such that σ(v) = σ(vi) + σ(zj), where vi ∈ V (Kn) and
zj ∈ V (G+)\V (Kn). If we rewrite the equation, we obtain σ(v) = 1+4(i−1)+2+4j =
3 + 4(i+ j − 1). But there is no vertex in V (G+) with label congruent to 3 (mod 4).

What remains, is to prove that there is no induced edge between two isolates. Let
us suppose that there is a vertex v ∈ V (G+) such that for two distinct vertices zi, zj ∈
V (G+)\V (Kn) it holds that σ(v) = σ(zi)+σ(zj). It is easy to see that 2+4i+2+4j =
4(1 + i+ j), but we do not assign label congruent to 0 (mod 4) to any vertex in v. Thus,
a vertex v does not exist.

Theorem 16. Let n ∈ N, n ≥ 1, and Kn be a complete graph. It holds that

σ(Kn) =


0 if n = 1,
1 if n = 2,
2 if n = 3,
2n− 3 otherwise.

Proof. A complete graph with a single vertex is isomorphic to P 0 and K2 is isomorphic
to path on two vertices. By Theorem 8, σ(P 0) = 0 and σ(P 1) = 1. Moreover, a graph
K3 is isomorphic to C3 and we show in Theorem 11 that σ(C3) = 2. So the theorem
holds for the first three cases.

For the latter case we proved deterministic polynomial-time algorithm which find
proper sum labeling using 2n−3 isolates. It follows that σ(Kn), n ≥ 4, is at most 2n−3.
We must now show that at least 2n− 3 isolates are necessary, i.e., σ(Kn) ≥ 2n− 3. To
complete the proof we need the following auxiliary lemma of Bergstrand et al. [26].

Lemma 17. Using the above labeling of G+ = Kn ∪K2n−3 there is no i, j, k ≤ n such
that σ(vi) + σ(vj) = σ(vk).

We now consider two sets A = {σ(v1) + σ(vi) | i ∈ {2, . . . , n}} and B = {σ(vn) +
σ(vn) | i ∈ {2, . . . , n− 2}}. The size of a set A is n− 1 and the size of a set B is n− 2.
It is easy to see that A ∩ B = ∅. Thus, by Lemma 17 we obtain σ(Kn) ≥ |A| + |B| =
n− 1 + n− 2 = 2n− 3 and the proof is complete.
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3.6 Other graph families

There are further graph families, for which the exact sum number is known. We do not
study these families in full detail here, since they are not as significant as those examined
above. Therefore, we present only summary of known results without formal proofs or
algorithms.

Trees Let G be a graph. If G contains no cycle and is connected, then G is called a
tree graph, ordinarily denoted by Tn, where n = |V (G)|. A single selected vertex of Tn
is called root and all other vertices with degree 1 are called leaves.

The study of a sum number of trees was initiated by Harary [2], who proposed a
sum labeling of a caterpillar graphs — a caterpillar is a tree with the property that the
removal of its leaves creates a path graph [27] — and formed following conjecture.

Conjecture 1 (True Conjecture [2]). Every nontrivial tree graph Tn has σ(Tn) = 1,
i.e., Tn ∪K1 is a sum graph.

Efforts to confirm or disprove the conjecture were completed by Ellingham [39] in
1993. He proposed an exact labeling algorithm for any nontrivial tree and proved the
Harary’s conjecture.

Complete bipartite graphs We say that a graph G is complete bipartite graph if
and only if the set of vertices can be divided into two disjoint sets A and B such that
vertices from one set are adjacent to every vertex from the second set, and there is no
edge between two vertices from the same set.

The first upper bound is due to Bergstrand [40] who showed that σ(km,n) ≤ m+n−1,
for m,n ≥ 2. In 1992, Hartsfield and Smyth [41] proved that σ(Km,n) = d3m + n −
3e, m ≥ n, but Yan and Liu [42] found a flaw in the proof. In multiple consecutive
articles [43, 44, 45, 46] the following theorem was established.

Theorem 18 ([27]). For a complete bipartite graph Km,n, where 2 ≤ m ≤ n, it holds
that

σ(Km,n) =
⌈
n

p
+ (p+ 1)(m− 1)

2

⌉
,

where p =
⌈√

2n
m−1 + 1

4 −
1
2

⌉
.

Wheels A wheel graph, ordinarily denoted as Wn, is a graph with at least three ver-
tices {c, v1, . . . , vn} and a set of edges {{c, vi}, {vi, vi+1} | i ∈ [n−1]}∪{{c, vn}, {v1, vn}}.

The study of wheels and their sum numbers was initiated by Hartsfield and Smyth [47].
They proved that for wheels it holds σ(Wn) ∈ Θ(|E(Wn)|) which was significant re-
sult, since all the graph families for which the construction have been found, it was
σ(G) ∈ o(|E(G)|). Harstfield and Smyth also conjectured some exact sum numbers for
wheels, but they were later disproved.
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Later Miller et al. [48, 49] in two consecutive articles proposed an optimal labeling
procedures with respect to sum number and provided complete proofs of them. We
conclude this section with their theorem about sum numbers of wheel graphs.

Theorem 19 (Miller et al. [48, 49]). The sum number of a wheel graph Wn is

σ(Wn) =



2 if n = 2
5 if n = 3
4 if n = 4
n if n ≥ 5, n odd
n
2 + 2 if n ≥ 6, n even

Fans A fan graph, ordinarily denoted as Fn, where n ≥ 1, is a graph with a vertex
set {c, v1, . . . , vn} and an edge set {{c, vi} | i ∈ [n]} ∪ {{vi, vi+1} | i ∈ [n − 1]}. Fan
graphs were studied by Dou and Gao [50] from all perspectives of sum labeling. They
provided not only a complete characterization of fans and their sum numbers, but they
also investigated the variant of integral and mod sum numbers. For us the significant
result of they work is the following theorem.

Theorem 20 (Dou and Gao [50]). The sum number of a fan graph Fn is

σ(Fn) =


1 n = 1,
2 n = 2 or n = 4,
3 n = 3 or n ≥ 6 and n even,
4 n ≥ 5 and n odd.

3.7 Summary of known sum numbers

In the last section of this chapter, we would like to provide to the reader a clear summary
of the sum numbers for studied graph families. In addition to the individual sum numbers
we provide also references to original articles.
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3.7. Summary of known sum numbers

Table 3.1: Summary of known sum numbers

Graph family σ(G) References

path Pn σ(Pn) =
{

0 n = 0,
1 n ≥ 1.

[2, 20]

cycle Cn σ(Cn) =
{

3 n = 4,
2 n ≥ 3, n 6= 4.

[2]

flower fp,q σ(fp,q) = 2, p ≥ 3, q ≥ 2. [38]

star Sn σ(Sn) =
{

0 n = 1,
1 n ≥ 2.

[39, 20]

clique Kn σ(Kn) =


0 n = 1,
1 n = 2,
2 n = 3,
2n− 3 n ≥ 4.

[40]

tree Tn σ(Tn) =
{

0 n = 1
1 n ≥ 2.

[39]

bipartite Km,n σ(Km,n) =
⌈
n
p + (p+1)(m−1)

2

⌉
, p =

⌈√
2n
m−1 + 1

4 −
1
2

⌉
. [46]

wheel Wn σ(Wn) =



2 n = 2,
5 n = 3,
4 n = 4,
n n ≥ 5, n odd,
n
2 + 2 n ≥ 6, n even.

[47, 48, 49]

fan Fn σ(Fn) =


1 n = 1,
2 n = 2 or n = 4,
3 n = 3 or n ≥ 6 and n even,
4 n ≥ 5 and n odd.

[50]
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Chapter 4
General algorithm

One of the main goals in the field of sum labeling theory is to invent an algorithm that
finds proper sum labeling schema for any given general graph while using the minimal
number of isolated vertices. Let us now formally define this problem.

Input: A graph G = (V,E).
Output: The value of σ(G).

Sum number

None of the researchers with publications in this area made any significant break-
through so far. Only algorithms for a few graph classes, introduced in the previous
chapter, are known. Moreover, these algorithms have not many common properties, so
while developing a general algorithm, it is not the best idea to start with them.

Based on this observation, we investigated different approaches during our effort to
develop such a generally applicable algorithm.

At first, we investigate the computational complexity of the problem of finding sum
number of a general graph G. One of the most important result on the field of com-
putational complexity for sum number problem is the following theorem of Kratochv́ıl,
Miller, and Nguyen [51] which upper bounds the maximum required label.

Theorem 21 (Kratochv́ıl, Miller, and Nguyen [51]). Let G = (V,E) be a graph. There
is a labeling σ : V (G) → N of graph G+ = G ∪ Kσ(G) such that the largest label has a
value at most 4n.

Theorem 21 directly implies that the problem of the sum number a determination for
general graph belongs to complexity class NP, since the certificate has polynomial-size
— it consists out of an explicit set of at most n2 numbers of size at most 4n, i.e., the
certificate has the length at most n3, where n is a number of vertices of the given graph.

Before we introduce our generally applicable algorithms, let us now define the fol-
lowing auxiliary problem.
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4. General algorithm

Input: A graph G = (V,E) and a positive integer k ∈ N0.
Output: A graph G+ = G ∪Kk and a function σ : V (G+) → N such that σ is

sum labeling of G+. If no such function exists, then an empty graph
is returned.

k-sum labeling

It is clear that if we are able to solve the k-sum labeling problem, then the solution
of the Sum number problem is easily obtained as the minimum k such that the algorithm
for k-sum labeling returned non-empty graph. Moreover, as Gould and Rödl [30]
proved, and as we show in Lemma 4, we must check only the k ∈ {0, . . . , |E(G)|}. This
number of different executions of the algorithm for k-sum labeling can be, thanks to
Lemma 6, actually decreased to O(log(|V (G)|2)) = O(log(|V (G)|)) if we use a binary
search algorithm to find lowest applicable k.

Based on the previous paragraph, we research only algorithms for solving k-sum
labeling, since the algorithm for sum number problem is obvious.

4.1 Brute-force algorithm

Brute-force algorithms are typically not the most effective algorithms for solving prob-
lems. On the other hand, they are always simple, check whole state space, and can be
easily modified.

Since the brute-force algorithms always relatively straightforwardly follow the defini-
tion of the problem, without exception in our case, we would like to prepare some more
theoretical background.

At first, the definition of the k-sum labeling problem has heavy use of the graph
isomorphism problem, i.e., deciding whether two finite graphs are isomorphic. It is
easy to see that this problem belongs to the NP complexity class. On the other hand,
it is still unknown whether the problem belongs to P or is NP-complete. However,
it is known [52] that the graph isomorphism problem is in the low hierarchy of class
NP, which implies that this problem is not NP-complete unless the polynomial-time
hierarchy collapses to some finite level. [52]

Currently, the best-known and a widely accepted algorithm is due to Luks [53] with
running time 2O(

√
n logn). In 2017, Babai [54] published an algorithm for graph isomor-

phism with running time 2O((logn)O(1)), but the results are not entirely peer-reviewed at
the time of writing this thesis.

With the necessary auxiliary procedures, we can finally introduce our brute-force
algorithm for k-sum labeling of general graph G.

Algorithm 6. Let G be a graph, k ∈ N0 be an integer, and by n, we denote the sum of
|V (G)| and k. For every n-subset S of a set [4n] we check whether obtained sum graph
G+(S) is isomorphic with graph G∪Kk. If no subset S satisfies the previous condition,
then return an empty graph. Otherwise, the solution is any matching subset S.
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4.2. Integer linear programming approach

Lemma 22. Algorithm 6 is correct and has a running time

((
4n
n

)
· 2O(√n logn)

)
,

where n = |V (G)|+ k.

Proof. Our algorithm always terminates, since every subset is checked exactly once.
Moreover, the result given by the algorithm is correct because we investigate all possible
subsets of a set [4n]. By Theorem 21, we can be sure that if the sum labeling of graph
G with k added isolates exist, then it is induced by at least a single n-subset in [4n].

Let us now discuss the running time of algorithm 6. As stated before, the algorithm
tries every n-subset of the set [4n] exactly once. For each n-subset S, the algorithm
constructs the sum graph G+(S), which can be clearly done in polynomial time, and
calls algorithm of Luks [53], which decides whether G+(S) is isomorphic to G ∪Kk in
time 2O(

√
n logn). Since we check at most

(4n

n

)
different n-subsets, the overall running

time is O
((4n

n

)
· 2O(√n logn)), and the lemma holds.

4.2 Integer linear programming approach

The second algorithm we study is based on Integer linear programming (ILP).
Integer linear programming is a method of mathematical optimization. A large number
of optimization problems can be modeled using ILP, despite that Karp proved [16] that
solving integer linear program is NP-complete.

Usually, the ILP program is given by a set X of variables xi, . . . , xn, and by a list
of linear inequalities over X called constraints. The goal is to maximize (or minimize)
the sum of the values substituted for variables without violating constraints. For an
exhaustive reference, we refer the reader to the monograph of Conforti, Cornuéjols, and
Zambelli [55].

We propose the following integer linear program, which solves the k-Sum labeling
problem for an arbitrary graph.

Algorithm 7. The input of the algorithm is a graph G and a positive integer k ∈ N0.
The goal is to determine whether there exists any sum labeling of graph G+ = G ∪Kk.

We propose the following integer linear program. By n we denote the sum |V (G)|+k.
The program contains a variable for each combination of a vertex v ∈ V (G+) and possible
label ` ∈ [4n]. If the following program have no feasible solution, we output an empty
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4. General algorithm

graph. Otherwise, the required label for vertex v is the ` such that xv,` is 1.

variables ∀v ∈ V (G+) : ∀` ∈ [4n] : xv,`

minimize
4n∑
`=1

xv,` · `

subject to ∀v ∈ V (G+) :
∑
`∈[4n]

xv,` = 1

∀{u, v} ∈ E(G) : ∀a ∈ [4n] :
∑

{`,`′}∈[a]2

[
xu,` + xv,`′ = 2

]
=

∑
w∈V (G+)

xw,a

and ∀v ∈ V (G+) : ∀` ∈ [4n] : xv,` ∈ N

We stated that ILP ∈ NP-complete, which implies that our program runs at best
in exponential time, i.e., there is no significant improvement against the algorithm from
Section 4.1. In contrast to the above brute-force algorithm, there are a large number of
high-performance solvers for ILP [56], which are able to solve many instances of integer
linear programs very efficiently.
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Conclusion

In this thesis, we provided an almost complete overview of known results on the field of
sum graphs and sum numbers. We rigorously proved many sum graphs properties that
repeatedly appear in different articles on the topic of study as claims only.

In the second part of this thesis, we investigate sum numbers of different graph
families. We provided many possibly new or generalized labeling algorithms for many
of them. All the algorithms are thoroughly proved. Thus we get rid of the addiction
on the personal correspondence of the original authors, which probably no longer exists
today.

The last part is devoted to general algorithms that find the sum number for an
arbitrary graph G. We proposed two algorithms. The first is the brute-force approach,
wheres the second one is based on Integer linear programming, which is a very
useful approach in practice with a lot of very powerful solvers. Although the running
time of our algorithms is not optimal, we believe that they can be a good basis for future
research on the field of sum graphs.

Future work

There remain many open problems. We showed that the sum number problem belongs
to complexity class NP, but the complete characterization in terms of NP-completeness
is still missing. Resolving this characterization could open up new challenges in the area
of parameterized complexity and multivariate analysis.

Besides that, there are many graph families for which the exact sum number is still
not known. As stated before, Gould and Rödl [30] proved that there is an infinite graph
family such that σ(G) = Θ(|V (G)|2). Their proof, however, uses probabilistic arguments
and no representative of this family is known so far.

Besides that, we already said that the running time of the general algorithm is far
from optimal, so there is a wide space for improvement.
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[12] Matoušek, J.; Nešetřil, J. Invitation to Discrete Mathematics. Oxford University
Press, second edition, Jan. 2009, ISBN 978-0-19-857042-4.

[13] Cook, S. A.; Reckhow, R. A. Time-Bounded Random Access Machines. In Pro-
ceedings of the Fourth Annual ACM Symposium on Theory of Computing, STOC
’72, New York, NY, USA: Association for Computing Machinery, 1972, ISBN
9781450374576, p. 73–80, doi:10.1145/800152.804898. Available from: https://
doi.org/10.1145/800152.804898

[14] Turing, A. M. On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, vol-
ume s2-42, no. 1, 01 1937: pp. 230–265, ISSN 0024-6115, doi:10.1112/
plms/s2-42.1.230, https://academic.oup.com/plms/article-pdf/s2-42/1/230/
4317544/s2-42-1-230.pdf. Available from: https://doi.org/10.1112/plms/s2-
42.1.230

[15] Cook, S. A. The Complexity of Theorem-Proving Procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC ’71, New York, NY,
USA: Association for Computing Machinery, 1971, ISBN 978-1-4503-7464-4, pp.
151–158, doi:10.1145/800157.805047. Available from: https://doi.org/10.1145/
800157.805047

[16] Karp, R. M. Reducibility among Combinatorial Problems. In Complexity of Com-
puter Computations: Proceedings of a symposium on the Complexity of Computer
Computations, edited by R. E. Miller; J. W. Thatcher; J. D. Bohlinger, Boston,
MA: Springer, Mar. 1972, ISBN 978-1-4684-2001-2, pp. 85–103, doi:10.1007/978-1-
4684-2001-2 9. Available from: https://doi.org/10.1007/978-1-4684-2001-2_9

[17] Harary, F.; Palmer, E. M. Graphical Enumeration. Academic Press, May 1973,
ISBN 978-0-12-324245-7, doi:10.1016/C2013-0-10826-4.

[18] Smyth, W. F. Sum graphs of small sum number. Colloquia Mathematica Societatis
Janos Bolyai, volume 60, 1991: pp. 669–678.

[19] Koh, K. M.; Miller, M.; et al. On optimum summable graphs. AKCE International
Journal of Graphs and Combinatorics, volume 3, no. 1, 2006: pp. 45–57.

[20] Hao, T. On Sum Graphs. Mathematical Preprint, volume 7, 1988.

42

https://doi.org/10.1145/800152.804898
https://doi.org/10.1145/800152.804898
https://academic.oup.com/plms/article-pdf/s2-42/1/230/4317544/s2-42-1-230.pdf
https://academic.oup.com/plms/article-pdf/s2-42/1/230/4317544/s2-42-1-230.pdf
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-1-4684-2001-2_9


Bibliography

[21] Harary, F. Sum graphs over all the integers. Discrete Mathematics, vol-
ume 124, no. 1, Jan. 1994: pp. 99–105, ISSN 0012-365X, doi:10.1016/0012-
365X(92)00054-U. Available from: http://www.sciencedirect.com/science/
article/pii/0012365X9200054U

[22] Boland, J.; Laskar, R.; et al. On mod sum graphs. Congressus Numerantium, vol-
ume 70, 1990: pp. 131–135.

[23] Harary, F.; Hentzel, I.; et al. Digitizing Sum Graphs Over the Reals. Caribbean
Journal of Mathematical and Computing Sciences, volume 1, Jan. 1991: pp. 1–4.

[24] Bloom, G. S.; Hell, P.; et al. Collecting autographs: n-node graphs that have n-
integer signatures. Annals of the New York Academy of Sciences, volume 319, 1979:
pp. 93 – 102.

[25] Bloom, G. S.; Burr, S. A. On autographs which are complements of graphs of
low degree. Caribbean Journal of Mathematical and Computing Sciences, volume 3,
1984: pp. 17 – 28.

[26] Bergstrand, D.; Hodges, K.; et al. Product Graphs Are Sum Graphs. Mathematics
Magazine, volume 65, no. 4, 1992: pp. 262–264, ISSN 0025570X, 19300980.

[27] Gallian, J. A Dynamic Survey of Graph Labeling. The Electronic Journal of Com-
binatorics, volume 22, Dec. 2019.

[28] Nagamochi, H.; Miller, M.; et al. Bounds on the number of isolates in sum graph
labeling. Discrete Mathematics, volume 240, no. 1, 2001: pp. 175 – 185, ISSN 0012-
365X, doi:https://doi.org/10.1016/S0012-365X(00)00390-3. Available from: http:
//www.sciencedirect.com/science/article/pii/S0012365X00003903

[29] Miller, M.; Patel, D.; et al. Exclusive sum labeling of graphs. Journal of Combi-
natorial Mathematics and Combinatorial Computing, volume 55, Jan. 2005: pp.
137–148.
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Appendix A
Contents of enclosed CD

readme.txt................................. the file with CD contents description
src

thesis..................... the source codes for the thesis in the LATEX format
text.............................................................the thesis text

thesis.pdf............................the compiled thesis in the PDF format
thesis.ps...............................the compiled thesis in the PS format
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