
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Memory in Deep Learning

Bc. Tomáš Paleček

Supervisor: Ing. Jaromír Janisch
Field of study: Open Informatics
Subfield: Artificial Intelligence
August 2020

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

457070Personal ID number:Paleček TomášStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Artificial IntelligenceSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Memory in Deep Learning

Master’s thesis title in Czech:

Paměť v hlubokém učení

Guidelines:
Memory is a crucial component of models based on neural networks, if they are to
succeed in complicated tasks, such as meta-learning. Meta-learning is a method of
machine learning, in which an agent *learns to learn*. Feed forward neural networks
can be used to solve many contemporary and important tasks, such as classification,
playing chess or driving a car. However, they cannot solve problems which require a
memory. A simplest problem is to repeat a given sequence. For the model to succeed
in this task, it has to *learn to memorize* the input and then repeat it. A different
problem can be to navigate a maze, topology of which changes between lifetimes of
the agent.
Memory in neural networks can take many different forms: external memory,
recurrency in the network, neural plasticity or their combination. However, little is
known about what these mechanics actually encode and what tasks are they suitable
for.
The goals of the thesis are:
- Review the state-of-the-art of different types of memory in neural networks (external
memory, recurrent neural networks and neural plasticity).
- Implement two existing problems (from meta-learning) requiring memory to be
solved.
- Benchmark different memory types (and their combinations) on the problems.
- Combine different memory types (e.g., RNN + plasticity) and evaluate their relative
contribution to solving the tasks.
- Based on the knowledge obtained from the experiments, explain the merits of the
various memory types and the tasks they are suitable to.

Bibliography / sources:
Thomas Miconi, Jeff Clune, and Kenneth O Stanley. Differentiable plasticity: training
plastic neural networks with backpropagation. arXiv preprint arXiv:1804.02464, 2018.
Thomas Miconi, Aditya Rawal, Jeff Clune, and Kenneth O. Stanley. Backpropamine:
train-
ing self-modifying neural networks with differentiable neuromodulated plasticity. In
Inter-
national Conference on Learning Representations, 2019.
Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka
Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago
Ramalho,
John Agapiou, et al. Hybrid computing using a neural network with dynamic external
memory. Nature, 538(7626):471, 2016.
Florentin Hennecker. Meta reinforcement learning. https://github.com/fhennecker/
meta-reinforcement-learning, 2017.
Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation,

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 3CVUT-CZ-ZDP-2015.1

9(8):1735–1780, 1997.
Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using
gradient
descent. In International Conference on Artificial Neural Networks, pages 87–94.
Springer,
2001.
Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lilli-
crap. Meta-learning with memory-augmented neural networks. In International
conference
on machine learning, pages 1842–1850, 2016.
Jane X. Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo, Rémi
Munos, Charles Blundell, Dharshan Kumaran, and Matthew Botvinick. Learning to
rein-
forcement learn. CoRR, abs/1611.05763, 2016.

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 2 from 3CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Ing. Jaromír Janisch, Artificial Intelligence Center, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 14.08.2020Date of master’s thesis assignment: 04.02.2020

Assignment valid until: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signatureIng. Jaromír Janisch

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 3 from 3CVUT-CZ-ZDP-2015.1

vi

Acknowledgements

I thank my supervisor for the topic he had
chosen for me and for the consultations,
during which he had helped me with prob-
lems I had encountered during my work
on the project.
Computational resources were supplied
by the project "e-Infrastruktura CZ" (e-
INFRA LM2018140) provided within the
program Projects of Large Research, De-
velopment and Innovations Infrastruc-
tures.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, date
signature

vii

Abstract

In our work, we study neural networks
utilizing memory, more specifically, plas-
tic neural networks, recurrent neural net-
works, and their combinations. The net-
works are used in the meta-learning and
meta-reinforcement learning domains. In
the Binary Sequences environment, the
task of the algorithm is to remember bi-
nary patterns and reconstruct them upon
a presentation of their degraded versions.
The goal of the algorithm in the Maze en-
vironment is to maximize the reward ob-
tained from finding a reward in the maze,
where the position of the reward differs
for each episode. In the Binary Sequences
environment, the plastic neural networks
outperformed the recurrent neural net-
works. In the Maze environment, the
networks achieved similar performance.
For the Maze environment, we devised
two tests, which show that the plastic
neural networks are capable of better ex-
ploring the maze, while recurrent neural
networks better adapt to the environment
during the episode. The combination of
plastic and recurrent networks decreases
the performance in the Binary Sequences
environment, while increasing the perfor-
mance in the Maze environment. In the
last experiment, we investigated the dif-
ferent modifications for the plastic neural
networks, and shown their added value to
the network.

Keywords: Memory, Plastic neural
networks, Recurrent neural networks,
Meta-learning,
Meta-reinforcement-learning

Supervisor: Ing. Jaromír Janisch

Abstrakt

V předkládané práci zkoumáme neu-
ronové sítě využívající pamět, konkrétněji
rekurentní neuronové sítě, plastické
neuronové sítě a jejich kombinace. Výše
zmíněné sítě testujeme v doménách meta-
learning a meta-reinforcement learning.
V prostředí Binary Sequences, které jsme
použili pro testování, je cílem algoritmu
zapamatovat si binární vzory, které jsou
mu ukázany a následně si je vybavit
po tom co je mu ukázána degradovaná
verze jednoho z nich. Cílem algoritmu
v prostředí Maze je maximalizovat
odměnu získanou v bludišti, kde se pozice
odměny nachází na jiném míste v každé
testované epizodě. V prostředí Binary
Sequences dosahovaly plastické neuronové
sítě lepších výsledků, než rekurentní
neuronové sítě. V prostředí Maze měly
oba přístupy srovnatelné výsledky. Pro
prostředí Maze, jsme navrhli dva testy,
které ukázaly, že plastické sítě zvládají
lépe prozkoumávat bludiště, zatímco
rekurentní sítě se dokáží lépe přizpůsobit
prostředí během jedné epizody. Po
kombinaci rekurentní a plastické sítě,
výsledná neuronová síť dosahovala horších
výsledků v prostředí Binary Sequences
a lepších výsledků v prostředí Maze. V
posledním experimentu, jsem zkoumali
různé modifikace plastických sítí a ukázali
jsme jejich přidanou hodnotu.

Klíčová slova: Pamět, Plastické
neuronové sítě, Rekurentní neuronové
sítě, Meta-učení, Posilované-meta-učení

Překlad názvu: Paměť v hlubokém
učení

viii

Contents

1 Introduction 1

2 Theoretical background for our
work 3

2.1 Memory in neural networks 3

2.2 Recurrent neural networks 4

2.2.1 Long Short Term Memory
network . 5

2.3 Neural Plasticity 7

2.3.1 Differentiable Plasticity 7

2.3.2 Backpropamine 9

2.3.3 Hebbian learning recent work 10

2.4 External Memory 12

2.5 Meta-learning 13

2.6 Reinforcement learning 14

2.6.1 Introduction 14

2.6.2 A2C . 16

2.6.3 Meta-reinforcement learning . 16

3 Binary Sequences 19

3.1 Environment overview 19

3.1.1 Environment specification . . . 19

3.1.2 Neural networks used 21

3.1.3 Environment analysis 22

3.1.4 Experiments performed 24

3.2 General comparison 24

3.3 Memory systems contributions . 27

3.4 Plasticity analysis 31

3.4.1 Plasticity components
comparison 31

3.4.2 Plasticity visualization 34

3.5 Summary . 35

4 Maze 37

4.1 Environment overview 37

4.1.1 Environment specification . . . 37

4.1.2 Neural networks used 38

4.1.3 Environment analysis 39

ix

4.2 General comparison 41

4.3 Memory systems contributions . 42

4.4 Plasticity analysis 45

4.4.1 Visualizing plasticity 47

4.5 Exploration capabilities 48

4.6 Adaptation capabilities 49

4.7 Summary . 50

5 Conclusions and future work 53

A Bibliography 57

B User guide 61

x

Chapter 1

Introduction

In the following work, we aim to obtain useful insights into how plastic
neural networks and recurrent neural networks work and use the obtained
knowledge to explain the merits of individual approaches, compare them,
and possibly increase their performance based on the insights obtained.
To obtain knowledge, we visualize the inner workings of the network and
create environment-specific experiments to test the algorithms’ properties.
The primary motivation is to provide new knowledge regarding the recently
introduced plastic neural networks [29], [30]. Both plastic neural networks and
recurrent neural networks utilize memory mechanisms. Introducing memory to
neural networks is a powerful tool that allows them to use information acquired
earlier during an episode for current and future decisions. Memory has been
used in the domains of meta-learning ([29],[37]), language modeling ([30],
[35]), reinforcement learning ([43]) and multiple other domains. In our work,
we focus on the domain of meta-learning (Section 2.5) and meta-reinforcement
learning (Section 2.6.3). The goal of meta-learning is to train a model capable
of quickly adapting to new environments not seen during training and learn
new concepts only after minimal interaction with the environment. The
question that arises is how memory is used in meta-learning. To answer this
question, we will briefly introduce the Maze environment used in our work.
In the following environment, the agent’s goal is to maximize its total reward
over 200 steps (one episode). For each episode, a new random position for
the reward tile is chosen, and after finding the reward, the agent is teleported
to a new location. By using memory, the agent can remember the reward’s
position after it finds it and uses the acquired knowledge to reach the reward
faster in subsequent runs and thus obtain a higher final reward.

A general introduction to memory in neural networks is presented in Section

1

1. Introduction
2.1. There exist various ways how to provide neural networks with memory:
recurrent neural networks (Section 2.2), plastic neural networks (Section
2.3) and external memory(Section 2.4). The focus of this work is solely on
the plastic and recurrent neural networks and their combinations. For the
plastic networks, we had decided to use the differentiable plasticity framework
introduced in [29], provided in Section 2.3. The recurrent neural networks
used are LSTM [15] and vanilla RNN [8]. There are two main goals that our
experiments aim to achieve. The first goal is to provide a comparison of the
two memory approaches and explain their merits. This goal is achieved by first
testing the algorithms’ overall performance and then creating environment-
specific experiments to understand their properties better. The second goal
is to investigate the properties of the plastic neural network. The plastic
neural networks were only recently introduced and had not been well studied
in literature yet. Hence we see this as an opportunity to provide new insights
into this promising framework. We do so by first measuring the relative
contribution of plastic and recurrent neural layer, in plastic neural network.
In the next experiment, we divide the plasticity framework into individual
parts and measure their contribution to the final result.

In the Binary Sequences environment, introduced in [17], the goal of the
agent is to remember binary patterns uniquely generated for each episode
and reconstruct them upon a presentation of their degraded versions. The
following problem is an instance of supervised learning problems and tests the
capabilities of the algorithms to store information to memory and associate the
stored information with new inputs. The main findings from the experiments
are that plastic neural networks outperformed the recurrent neural networks
(Section 3.2). The recurrent layer in plastic neural networks is decreasing the
performance (Section 3.3). The plasticity learning rate is the most important
parameter of plastic neural networks (Section 3.4), for the Binary Sequences
environment.

In the Maze environment, introduced in [29], the goal of the algorithm is
to maximize the reward obtained from finding a reward in a maze, where
the position of the reward differs in each episode. The following problem
is an instance of reinforcement learning problems and tests the algorithms’
capabilities to adapt to the changes in the environment rapidly. The main
findings from the experiments are that recurrent neural networks and plastic
neural networks achieve similar performance (Section 4.2). The recurrent layer
in plastic neural networks is increasing the performance (Section 4.3). The
full plasticity is the most important component of the plasticity framework
(Section 4.4), for the Maze environment. We found out that the plastic neural
networks exhibited better exploration capabilities, while the recurrent neural
network (LSTM) had been able to better adapt their policy after finding
the reward (Sections 4.5, 4.6). The conclusions of our thesis are provided in
Section 5.

2

Chapter 2

Theoretical background for our work

2.1 Memory in neural networks

Memory is a mechanism in neural networks that allows the network to store
and actively use the information obtained earlier during observations. This is
used in tasks where sequential data are present. Examples of such domains
are time-series prediction [40] or language modeling [35]. By introducing
the memory, the network can model nontrivial relationships between the
observations. This allows the network to perform well in these environments
compared to the simple feedforward network that does not benefit from past
observations. Our focus in this work is the domain of meta-learning and meta-
reinforcement learning thoroughly described in Section 2.5. In this domain,
the memory is used to derive a complex learning algorithm within the network,
which can quickly adjust to the changes in the environment([16], [43]). In the
following three paragraphs, different approaches to implementing memory
are described, with links to sections where each approach is introduced.

In the recurrent layer, in addition to standard output, outputs a hidden
state which encapsulates information from previously seen observations, to
be used for future decisions. The hidden state is created by multiplying
the previous output by weights unique to the recurrent layer. In the next
observation, the network has available the augmented data from previous
observations in the form of a hidden state in addition to the standard input. A
useful way to visualize this is that the hidden states are variables that change
during the episode, and the standard weights are then programs that act
upon them. A detailed introduction to recurrent neural networks is provided

3

2. Theoretical background for our work...........................
in Section 2.2.

Another option to introduce memory is using plasticity, which is inspired
by the working of the human brain. Plasticity is based on Hebb’s rule [14]. In
plasticity, the weights of the connections weaken or strengthen over time in
response to the activity in them. The changing of weights during the episode
allows the network to use them to store information in them and use it later.
Neural plasticity is described in Section 2.3.

The next alternative is providing the network with external memory. This
approach provides the network with an array used by the algorithm to
store and retrieve information from past observations. In order to do so, the
algorithm needs to have a hardcoded mechanism for information manipulation.
Information manipulation can be done using multiple approaches they are
summarized in Section 2.4.

2.2 Recurrent neural networks

Recurrent neural network solves the problem of retaining information regard-
ing previous events to reason about the current events. The workings of
the network are best presented in sequential tasks where we need to make
predictions in multiple steps. In the first step, the network outputs its decision
solely on the inputs it receives. However, in addition to this, it sends encoded
information from the current step as an additional input to the network for
step t+1. Then, in the next step, the network’s decision is based on the
current input and the encoded information retained by the network from
step t-1. The information is sent through a connection between the recurrent
layers. This connection has weights that are used to encode the information.
The encoded information is usually called hidden state. The equations used
to define vanilla RNN are provided in Equation 2.1. Where ht is the hidden
state at time t, xt is the input at time t, and h(t−1) is the hidden state of
the previous layer at time t − 1 or the initial hidden state at time 0. Wih

are the weights and bih are the biases for the connections between the input
and hidden state. Whh are the weights and bhh are the biases for connections
between the hidden states.

ht = tanh(Wihxt + bih +Whhh(t−1) + bhh) (2.1)

One way to get a better grasp of this concept is to imagine the network

4

............................... 2.2. Recurrent neural networks

A A A A=A

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .
Figure 2.1: The following figure shows a vanilla recurrent network. On the left
side we can see the network in it’s "unrolled state" with a loop within itself. On
the right side we can see a visualization of unrolling the network for t steps.

as multiple copies of the same network(for each step one copy), which are
connected through episodes. The visualization of this process, referred to
as unrolling, is provided in Figure 2.1. The recurrent neural networks are
trained using backpropagation through time(BPTT [36], [44]). This method
trains the weights of the neural network by unfolding the network for N
time steps, thus creating a classic feedforward network and applying gradient
descent. The problem of this approach are exploding\vanishing gradients ([3],
[34]). A explanation of this problem is that when we apply the BPTT, we
create a network with many layers with the same parameters. The problem is
that the networks are duplicates(they have identical parameters). Because of
this, when we apply the gradient descent, the resulting product will contain
many instances of the same term. This can result in an unstable gradient
which is either very large (exploding gradient) or a very small (vanishing
gradient). One way to address this problem is by using LSTM (Long Short-
Term Memory) [15], described in the next section. Another useful way to
visualize the RNN is that the hidden states are variables that change during
the episode, and the standard weights are then programs that act upon them.

2.2.1 Long Short Term Memory network

The Long Short Term Memory networks(LSTM) [15] address the problem of
vanishing gradients and are designed to learn long-term dependencies. They
achieve this by transferring a cell state between episodes in addition to the
hidden state. The objective of the cell state is to store information for long
periods of time. Gates manage the information that flows through the cell
state. These mechanisms can manipulate the information inside the cell state.
The LSTM consist of three gates forget gate, input gate, and output gate.
The forget gate ft decides what information to keep form ht−1 and xt. Then
follows the input gate it, which decides which values to update. Then the
new values for storing are created using ct. The values created using ct are

5

2. Theoretical background for our work...........................
then combined with it together using multiplication and are added to the
information that went through the forget gate. The final gate is the output
gate ot, which decides the network’s output based on the cell state that went
through the forget and update gate. The exact equations for all the gates
are provided in equation 2.2. For more detailed explanation on LSTM we
recommend the following two resources [19], [33].

σ σ Tanh σ

× +

× ×

Tanh

ct-1

Cell

ht-1

Hidden

xtInput

ct

Cell

ht

Hidden

htOutput

Figure 2.2: The following figure shows the LSTM network module.

it = σ(Wiixt + bii +Whih(t−1) + bhi)
ft = σ(Wifxt + bif +Whfh(t−1) + bhf)
gt = tanh(Wigxt + big +Whgh(t−1) + bhg)
ot = σ(Wioxt + bio +Whoh(t−1) + bho)
ct = ft ∗ c(t−1) + it ∗ gt
ht = ot ∗ tanh(ct)

(2.2)

Another popular approach for handling long term dependencies is the Gated
Recurrent Unit(GRU) [4]. The GRU uses the gating mechanisms proposed in
the LSTM, but their specifications are different. In our work, we will only work
with LSTM. A comparison of LSTM and GRU and other architectures using
the gating mechanism is provided in [13]. In this article, the authors tested
multiple papers providing alternations to the gating mechanism including
GRU and found that there are no significant improvements in using other
versions that the original LSTM. Another interesting study regarding the
recurrent neural networks is [5]. This study found that the results in RNN

6

................................... 2.3. Neural Plasticity

architectures are driven primarily by differences in training effectiveness,
rather than differences in capacity.

2.3 Neural Plasticity

Neural plasticity is a biologically inspired method for training the weights
of connections in a neural network. From a biological perspective, neural
plasticity is the ability of synapses to strengthen or weaken over time, in
response to increases or decreases in their activity [18]. The ability of the
synapses to self-modify their weights is one of the essential foundations of
learning and memory in the brain. The neural plasticity is actively researched
in the field of neurosciences, which aim to understand the neural system.

The findings from neuroscience led to creating new machine learning algo-
rithms based on them. The currently most used algorithms utilizing plasticity
are inspired by Hebb’s rule [14]. Hebb states the definition as follows "Let
us assume that the persistence of repetition of a reverberatory activity (or
"trace") tends to induce lasting cellular changes that add to its stability.
When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells firing
B, is increased" [14]. The idea of Hebb can be extended to the mathematical
formulation, as expressed in the following equation: wi,j = xixj . Where wi,j
is the weight of the connection between neurons i and j, xi is the output of
the neuron i, and xj is the output of the neuron j.

In our work, we will focus on plasticity defined in the following works
differentiable plasticity [29] and its extension backpropamine [30], described
in the next sections. The idea of combining standard neural network with
plastic (Hebbian) parts had been used in several papers published during
recent years. The general overview of these papers alongside with a comparison
of their approaches and a summary of their results is provided in Section
2.3.3.

2.3.1 Differentiable Plasticity

The following work [29] proposes a new framework in which each connection in
the neural network consists of plastic and non-plastic component. The plastic

7

2. Theoretical background for our work...........................
component is done using Hebbian plastic connections and the non-plastic
component consists of a recurrent neural network (vanilla RNN). In the work
the components are also referred to as fixed and plastic parts. This term
comes from the fact that the recurrent (fixed) part does not change weights
during the episode, while the plastic part actively changes its weights. The
plastic component consists of a Hebbian trace Hebbi,j which value varies
during each episode based on the activations of neurons in the neural network.
The final weight of the connection is determined as a sum of a fixed component
and a portion of the plastic component. The exact formulation of the network
is provided in Equation 2.3. The plasticity coefficient of α is a learnable
parameter that is used by the network to determine the amount of plasticity
used in a given connection. By introducing the plasticity coefficients, the
network can determine during learning whether the connection should be
fully plastic (set the value of wi,j to zero), or fully recurrent (set the value of
α to zero) or a combination of both approaches. The plasticity coefficient can
be either specified for each connection in the layer, in this case, we talk about
Full plasticity. Or it can be specified as one value for each connection, and in
that case we talk about Homogenous plasticity. The learning rate of plasticity
η is a single scalar parameter for the entire network, which is learned using
gradient descent. In the equation, σ denotes nonlinear activation function
(tanh in our case).

xj(t) = σ{
∑

i∈inputs
[wi,jxi(t− 1) + αi,jHebbi,j(t)xi(t− 1)]} (2.3)

Hebbi,j(t+ 1) = ηxi(t− 1)xj(t) + (1− η)Hebbi,j(t) (2.4)

The unique contribution of this paper is training the plasticity coefficients
using gradient descent, hence the Differentiable Plasticity name. In the
paper, authors have shown that using their algorithms can optimize the
plasticity coefficient for large neural recurrent neural networks (millions of
parameters). Furthermore, they show that by introducing full plasticity
connections to the network (each connection having its unique plasticity
coefficient), they show that they can achieve better results in several domains,
including Pattern memorization of binary sequences and natural images,
one-shot pattern classification and reinforcement learning. In each of these
domains, the plasticity improved the performance of the neural network. The
performance was further improved when full plasticity was used (Not a single
shared plasticity coefficient for all connections). The exact working of the
differentiable plasticity is still not fully discovered, and the authors propose
several possible directions to expand the research. One of them is using
plasticity in sequential domains. Another one is to introduce plasticity into
LSTM. The final one and probably the most interesting from a biological
perspective is to introduce neuromodulation into the network.

8

................................... 2.3. Neural Plasticity

2.3.2 Backpropamine

After releasing the paper Differentiable plasticity [29], the authors extended
their work and released the paper Backpropamine [30], which extends the
differentiable plasticity framework with neuromodulation. Neuromodulation
is a mechanism that allows the algorithm to modify its own plasticity based
on its output. It can be seen as a function of its inputs and computations.
By allowing the algorithm to modify its own plasticity based on its computa-
tions, it can combat catastrophic forgetting of previously acquired knowledge,
by filtering out irrelevant events while selecting which new information to
incorporate. Furthermore, this mechanism can also be used to implement a
self-contained reinforcement learning algorithm. Neuromodulation is present
in our brain and is vital for our brain to work properly. This algorithm tries
to imitate a very simplified version of neuromodulation occurring in the brain.

The paper introduced two exact ways on how to introduce neuromodulation.
The first way is replacing the learning rate of plasticity η with network-
computed, time-varying neuromodulatory signal M(t). By doing so, we
allow the network to devise its own algorithm for controlling forgetting and
memorizing. From the implementation perspective, the neuromodulatory
signal is achieved by introducing a new single neuron to the network’s output
layer and connecting it with the previous layers using a linear layer.

In neuromodulated networks the equation for the output of the network
is identical to the differentiable plasticity’s equation (Equation 2.3). The
difference is in the equation for calculating the Hebbian trace (Equation 2.4 in
differentiable plasticity). The changes are that the learning rate of plasticity
η is replaced by the time-varying neuromodulatory signal M(t). And the
resulting Hebbian trace is hard clipped to output values in specific a range,
in our case [-1,1].

Hebbi,j(t+ 1) = Clip(Hebbi,j(t) +M(t)xi(t− 1)xj(t)) (2.5)

The second more sophisticated way to introduce neuromodulation is using
retroactive neuromodulation and eligibility traces. This method is inspired by
the short-term retroactive effects of neuromodulatory dopamine on Hebbian
plasticity in animal brains [45]. This equation is a modification of Equation
2.4:

Hebbi,j(t+ 1) = Clip(Hebbi,j(t) +M(t)Ei,j(t)) (2.6)

Ei,j(t+ 1) = (1− η)Ei,j(t) + ηxi(t− 1)xj(t)) (2.7)

9

2. Theoretical background for our work...........................
Where eligibility trace Ei,j at connection i,j, is an exponential average of
the Hebbian product of pre- and post-synaptic activity, with trainable decay
factor η.

The performance of the following algorithm had been measured in three
environments. The first environment is the Cue-Reward association. This
environment is very similar to the Binary Sequences environment used in our
work, the main difference is that it is a reinforcement learning problem. In
the environment, the agent is first shown four binary patterns, and one of
them is chosen as the target cue. The agent is then shown two patterns and
must decide whether the target pattern is present or not. In this environment
performance of modulated plasticity drastically outperforms non-modulated
plasticity and non-plastic networks. The authors hypothesize that neuromod-
ulation helps in memorizing reward associations with high-dimensional stimuli.
The second environment is the maze environment, introduced in differentiable
plasticity. Here the neuromodulated plasticity yields better results than the
non-modulated plasticity. In the last environment, the authors use plasticity
for language modeling. For this environment, they augmented LSTM with
plasticity. This is the first time a differentiable plasticity framework had been
used on a natural language processing task. In the results, they had managed
to beat the performance obtained by [46].

The authors of the paper state that this is the first work introducing a
neuromodulated plastic network that can be trained with gradient descent.
They had taken inspiration from the field of evolutionary computation where
the neuromodulated plasticity had been used. An overview of findings on
neuromodulated plasticity from the view of evolutionary computation is
provided in [41].

2.3.3 Hebbian learning recent work

In our work, we had decided to focus on the differentiable plasticity work
described in Sections 2.3.1, 2.3.2. However, there are multiple other papers
utilizing plasticity to increase the performance of the models. The goal of
this section is not only to show a different way to implement plasticity, but
also to provide the reader with a better understanding of the possible benefits
of introducing plasticity, as shown by other works. In the paragraphs below
we provide a summary of each paper and their reported findings.

The work that shares the most similarities with differentiable plasticity
framework is Using Fast Weights to Attend to the Recent Past [1]. In the

10

................................... 2.3. Neural Plasticity

following work, authors propose using "fast weights" that are used to store
temporary memories. The definition of "fast weights" is practically similar to
the definition of simple plasticity. The main difference, when compared to
differentiable plasticity is, that there is only a single plasticity coefficient used
in this work, and it is not trained using backpropagation. Both methods are
applied to recurrent neural networks. The following method had been tested
in the following four environments: associative retrieval, visual attention,
facial recognition, and reinforcement learning. In all the environments, the
"fast weights" augmentation yielded better results than the LSTM. In the
associative retrieval, the weights enabled the RNN to work more effectively
with the recurrent units. They also outperformed LSTM with associative
memory [6]. The increase in performance was most visible when the neural
network had a low number of recurrent units. In the glimpses environment,
the "fast weights" were able to store information about object parts. In the
facial recognition domain, it helped with the score and outperformed LSTM.
However, ConvNet architecture was still better. In reinforcement learning, the
network played a partially observable variant of the game "Catch" described
in [32]. There "fast weights" helped the agent to learn faster. A useful finding
was that the improvements obtained by fast weights were more significant on
larger versions of the game.

In the work Hebbian descent [27], the authors propose a learning rule,
which is a combination of gradient descent and Hebbian learning. They claim
that their algorithm can be used as a replacement for gradient descent as
well as Hebbian learning, especially in the domain of online learning and
one-shot learning. They provide arguments for why they think the algorithm
will succeed, and then they empirically test them. This paper provides a
detailed comparison and also contains a debate and remarks regarding each
experiment. Each learning method (Hebb’s rule, gradient descent, covariance
rule, and Hebbian descent) is tested in multiple environments, including
hetero-associative learning, classification, auto-associative learning. This
paper helps in understanding the properties of each learning algorithm.

Another use of plasticity is in the Fast Parametric Learning with Activation
Memorization [35]. In the work, the authors address the problem of identifying
underrepresented classes. This problem is, for example, prevalent in language
modeling, which is the main focus of the following work. The authors propose
a combination of plasticity and gradient descent called Hebbian Softmax,
which is a modification of softmax, with a new learning rule. In the new
learning rule weights are first learned using Hebb’s rule for a given class.
Moreover, after a certain number of class occurrences, the learning algorithm
switches to gradient descent completely. The findings are that the following
method can retain information over longer time intervals than traditional
memory and does not require additional space or compute. The environments
used for testing were: Omniglot image curriculum task, language models

11

2. Theoretical background for our work...........................
on news reports (Giga-Word), books (Project Gutenberg), and Wikipedia
articles (WikiText-103).

2.4 External Memory

Neural networks can be extended with external memory to help them with
retaining larger amounts of information and increase their performance in
domains including NLP [10], Meta-Learning [37] and multiple other domains
where memory is used. External memory can be incorporated into a neural
network using multiple approaches.

The first approach we will focus on is improving neural language models
with a continuous cache [10]. In this work, the authors introduce a memory
augmented network, which stores past hidden activations as memory and
accesses them through a dot product with the current hidden activation.
They had tested their approach on language modeling tasks the Penn Tree
Bank [25] and the wikitext2 [28] datasets. This paper is mentioned for
two reasons. Firstly it provides a simple approach to augment the neural
network with memory while having competitive results. The second reason
is that it had been used in the same environments that were used in papers
using plasticity. The first comparison is with backpropamine [30], one of
the approaches utilizing plasticity studied in our work. Both papers use the
Penn Tree Bank training dataset. Unfortunately, the approaches use different
underlying LSTM models. However, we can measure the relative increase in
performance gained from introducing the memory mechanisms to the LSTM.
In this comparison, the cache model yields better results than backpropamine.
Another comparison of the external memory approach with plasticity is
provided in the paper [35] they compare the results on dataset WikiText-103,
where plasticity achieves better results. What is more interesting is that they
show that the two approaches can be combined together to obtain better
performance than if used individually.

The second approach discussed here is neural turing machines(NTM) [11]
and their improvement differentiable neural computer [12]. The neural turing
machines consist of two parts: the neural network controller and a memory
bank. "Like most neural networks, the controller interacts with the external
world via input and output vectors. Unlike a standard network, it also
interacts with a memory matrix using selective read and write operations."
These networks had been used in the domain of meta-learning in the following
article [37]. This work provides us with a comparison between the approach of
using external memory and plasticity. The following work and differentiable

12

.................................... 2.5. Meta-learning

plasticity 2.3 had been both tested in the Omiglot environment [22]. For
the 5-way, 1-shot omniglot tasks, differentiable plasticity had been able to
obtain a 98.3% score while neural turing machines obtained a score of 82.8%.
This difference is quite significant. However, it should be noted that the
performance of NTM increases with the number of "shots"(episodes) given.
For 5-shots, the reported score is 94.9%.

2.5 Meta-learning

Meta-learning algorithms can quickly adapt to new environments not seen
during training and learn new concepts only after minimal interaction with the
new environment. One of the inspirations for creating this class of algorithms
is from observing how fast humans can of learn and adapt to new unseen
events. For example, when we know how to play one shooting game, we can
rapidly learn another shooting game by looking at it and realizing that we
already know how to play something similar. This ability to quickly learn
new concepts by utilizing previous training experiences is one of the aims
of this technique. Furthermore, it is the reason why meta-learning is also
sometimes called "learning to learn." The ability of "learning to learn" is quite
different from the direction the current research in AI is heading towards.
The current AI algorithms usually focus on mastering a single skill such as
Go [39]. Nevertheless, they are unable to learn another similar game quickly.
Another technique trying to address the problems above is transfer learning
[2]. The main difference between the two methods is that transfer learning
aims to reuse parts of an already trained model on a new similar problem,
while meta-learning aims to optimize the model to learn new concepts from
the initial training.

To train a meta-learning algorithm, we need to create a dataset D containing
multiple different tasks which share high-level similarities. We then choose
the parameters θ of the network in such a way to minimize the loss L across
the dataset. This is captured in Equation 2.8. The difference between the
meta-learning approach and standard approach for training is that in the case
of standard learning, we train to minimalize on samples from one dataset.
While in meta-learning, we minimize across different datasets and each dataset
is counted as a sample [37].

θ∗ = argmin
θ

ED∼p(D)[Lθ(D)] (2.8)

There are countless approaches to meta-learning, which vary greatly in
the way they perform meta-learning. The approaches can be loosely divided

13

2. Theoretical background for our work...........................
into three groups: Model-based, Metric-based, and Optimization-based, as is
reported in [9]. The focus of this work will be on the model-based approaches
utilizing memory.

In the model-based approaches, where the model is created with mechanisms
that are capable of fast adaptation. It had been shown that the LSTM, with
a specific setup, is capable of devising its own learning algorithm from scratch
[16]. This paper introduces a setup for supervised learning in the domain of
non-stationary time series prediction. The above-mentioned work had been
further improved by using memory augmented neural networks in the work
[37]. The setup can be extended to the domain of reinforcement learning ([43],
[7]). Another approach capable of meta-learning is introducing plasticity into
neural networks [29]. In this case, the plastic weights are working as a fast
memory capable of quickly adapting to the current environment.

The next group of meta-learning algorithms is referred to as metric-based.
These algorithms learn a metric which is then used to rank similarity between
inputs. After learning a proper metric, the metric is used by the network
to generalize across datasets and act even on never before seen data. An
example of using this method in one shot-classification is [21].

The last group of meta-learning algorithms is referred to as optimization-
based. These algorithms perform meta-learning by optimizing the backpropa-
gation of gradients. An example of a paper using this approach is [9]. In this
work, the authors propose an algorithm that tries to find optimal θ∗ for that
network that can be then rapidly fine-tuned using a few steps of gradient
descent to perform optimally in a given task.

2.6 Reinforcement learning

2.6.1 Introduction

Reinforcement learning is a method used for solving problems that are defined
as finite Markov decision processes(MDPs). Markov decision processes are
used to formalize the problem of sequential decision making, where the future
states of the process depend only on the current state. This property of
MDPs is known as the Markov property. Because the future states of the
Markov decision process are affected by the current state, a delayed reward
needs to be taken into consideration in order to solve MDPs optimally. MPDs

14

................................ 2.6. Reinforcement learning

are defined as a 5-tuple (S,A,P,R,γ), where S is a finite set of states, A is a
finite set of actions, P is the probability of taking action a in state st and
ending in state st+1. R is the reward obtained after transitioning from state
s to state s′. γ is the discount factor used for defining the trade-off between
immediate and delayed rewards.

The purpose of reinforcement learning is to maximize the cumulative reward
obtained by the agent. This is done by controlling the agent’s actions based on
inputs received from the environment. The term agent refers to the part of the
algorithm interacting with the environment. The agent receives information
from the environment about the state St ∈ S it is currently in, and based on
the information received, selects an appropriate action At ∈ A(s) to perform.
After performing the action, the agent receives a numerical reward, Rt+1 ∈ R
and information regarding the state St+1 it is in after performing the action.
The agent chooses which action to perform based on his current policy π.
Agents policy defines what action the agent will perform in each state. The
optimal policy tries to get the agent into states with the highest expected,
accumulative, discounted reward. The state value function Vπ(s), represents
the value of the accumulative sum of rewards the agent will obtain if it is
in the state s and follows the policy π thereafter. We will also define the
Q function Qπ(a, s), which represents the value of the accumulative sum
of rewards of taking action a in state s and thereafter following policy π.
Another important definition used later in the text is the Advantage function
A(s, a), which is used to measure how much better is taking action a in
comparison to other actions available in state s. The advantage function is
obtained using the following equation 2.9. The transition function t, defined
in equation 2.10 records the probability of transitioning from state s to s′
after taking action a while obtaining reward r.

A(s, a) = Q(s, a)− V (s) (2.9)

Figure 2.3: Interaction of the agent with the environment, from [42]

15

2. Theoretical background for our work...........................
t(s′, r|s, a) = P[St+1 = s′, Rt+1 = r|St = s,At = a] (2.10)

2.6.2 A2C

Deep reinforcement learning is a combination of reinforcement learning and
deep learning. The neural networks from deep learning are used to approxi-
mate the value of a state based on the input provided. Function approximation
using neural networks enables reinforcement learning to be used in domains
with large state spaces and continuous values. There are multiple approaches
currently used to perform reinforcement learning. We recommend the follow-
ing overview of deep reinforcement learning techniques [24]. In our work, we
focus on the Advantage Actor-Critic (A2C) algorithm a synchronous version
of A3C [31]. The reason for using this algorithm is that it is used in the
meta-reinforcement-learning method we will use [43]. The following algorithm
belongs to the policy gradient methods optimizing the policy π of the agent,
in respect to the parameters of the neural network θ. These methods use
the policy gradient theorem 2.11, proof provided in [42]. In the equation, t
refers to the transition function shown in equation 2.10. The policy gradient
theorem is used to estimate the gradient for the policy π outputted by the
neural network. The neural networks outputs in addition to the policy π also
the Value function V , which is used to calculate the Advantage function A,
shown in formula 2.12. To train the Value function V the MSE loss function
is used on the difference between the output of the network for V and the
actual value for the state. The Advantage function A is used to evaluate the
resulting policy. The A2C algorithm is an on-policy learning algorithm, which
means that it is able to learn only from data produced by its own policy.

∇θJ = E
s,a∼πθ,t

[
A(s, a) · ∇θ log πθ(a|s)

]
(2.11)

A(s, a) = r + γV (s′)− V (s) (2.12)

2.6.3 Meta-reinforcement learning

There are multiple definitions of meta-reinforcement learning. In our work
we will use the specification provided in papers ([43], [7]). The goal of

16

................................ 2.6. Reinforcement learning

meta-reinforcement learning is to address problems of reinforcement learning
mentioned in [23]. The two most important deficiencies of reinforcement
learning, the meta-reinforcement learning addresses are the massive volume
of training data required to train a reinforcement learning algorithm and
the ability to adapt to changes in the environment conditions [43]. These
problems can be seen in the Maze environment, the environment changes
after each episode because the reward in the maze is located to a new random
position. The agent then must locate the reward to remember its new position
and adapt its model to incorporate the new knowledge. By doing so, the
agent will maximize the number of times the reward is reached within an
episode. In comparison, a non meta-learned A2C algorithm would fail because
it would not be able to adapt to the change in the environment fast enough.
In the paper [7], the authors state that classic RL algorithms fail because
they lack a good prior, which results in deep RL agents needing to rebuild
their knowledge about the world from scratch.

This brings up the question of how specifically the meta-rl algorithm can
cope with this problem. "In meta-reinforcement learning, the dynamics of the
recurrent network come to implement a learning algorithm entirely separate
from the one used to train the network weights. Once again, after sufficient
training, learning can occur within each task, even if the weights are held
constant. The algorithm is a full-fledged reinforcement learning algorithm
that negotiates the exploration-exploitation trade-off and improves the agent’s
policy based on reward outcomes" [43].

The meta-rl maximizes the reward over a distribution D over Markov
Decision Processes (MDPs). And in each step the action at is executed as
a function of the whole history Ht = x0, a0, r0, ..., xt−1, at−1, rt−1, xt. This is
achieved by using a network with memory and providing the network with
additional input in addition to the standard input st (state of the environment
in time t). The additional input includes the action at the previous step at−1
and the reward at previous step rt−1. The final step required to implement
meta-reinforcement learning is to reset the memory when new MDP is sampled.
The A2C algorithm is used for training the network, introduced in Section
2.6.2. However, other algorithms can be used, for example, Trust Region
Policy Optimization (TRPO) [38] as used in [7].

17

18

Chapter 3

Binary Sequences

3.1 Environment overview

3.1.1 Environment specification

In the Binary Sequences environment, our goal is to test how well the al-
gorithms can remember binary patterns and reconstruct them after being
presented with their degraded versions. The main challenge in this task is the
random generation of patterns for each episode, which requires the algorithm
to be capable of rapidly storing them instead of remembering them from
previous episodes. Another obstacle is that although each pattern is unique,
they can share a high level of similarity, this can be challenging because the
algorithm needs to remember each bit precisely to correctly reconstruct the
pattern. In each episode the algorithm is presented with five patterns, after
showing the patterns once they are presented the second time in a different
order. After the two presentation cycles, a degraded version of one of the
previously seen patterns is provided to the algorithm, and its goal is to output
its full version. Each pattern has a size of 50 bits and is shown for six steps
followed with six steps of empty input. The role of the empty input is to test
whether the algorithm can retain the information even in the absence of input.
The degraded pattern is created by degrading 50% of the bits. An example
of one episode is provided in Figure 3.1. The Binary Sequences environment
is specified using multiple parameters, their exact values are specified in the
Table 3.1.

19

3. Binary Sequences...................................

0 20 40 60 80 100 120
0

10

20

30

40

Steps

B
its

 p
os

iti
on

s

Figure 3.1: The figure shows one episode of the Binary Sequences environment.
The episode contains five binary patterns. The patterns are shown in 2 pre-
sentation cycles. Each presentation cycle has a different order of the patterns.
The size of a pattern is 50 bits. Each pattern is displayed for six steps after
presenting a pattern, a phase of six steps where an empty pattern is shown. At
the end of the presentation cycles, a degraded pattern is shown, in our case, 50%
of bits of the test pattern are degraded.

. pattern size - determines the number of bits the pattern is composed of. number of patterns - defines the number of patterns that will be shown
during an episode. probability of degradation - sets the probability of a bit to be set as
unknown in the final pattern.. presentation time - each pattern is shown for x steps in succession.. presentation time degraded target pattern - how many times is the
degraded target pattern shown. delay between presentations - after showing an binary pattern x steps of
empty output are shown.. number of presentation cycles - each presentation cycle consists of showing
all the patterns once. Each presentation cycle has a random order of
patterns.. episode length - total length of the episode.

20

.................................3.1. Environment overview

pattern size 50
number of patterns 5
probability of degradation 0.5
presentation time 6
prestime degraded target pattern 6
delay between presentations 6
number of presentation cycles 2
episode length 126

Table 3.1: The exact values of parameters for the Binary Sequences environment

3.1.2 Neural networks used

In the Maze environment, we test the following recurrent neural networks
vanilla RNN (Section 2.2), LSTM (Section 2.2.1). For the plastic neural
networks we test the combination of plasticity with multiple different layers.
The first combination is with the recurrent layer proposed in the original
work [29] (RNN + PLAST). The second combination is with the feed forward
layer (FF + PLAST). The last combination is unmodified input (PLAST).
The specification for the recurrent layer is provided equation 2.3. To get
the equation for FF we replace the recurrent layer wi,jxi(t − 1), with a
feedforward layer wi,jxi(t) and for PLAST we replace the recurrent layer with
xi(t). Note that the feedforward layer can be trained to output unmodified
input and thus can work as PLAST. For every combination of plasticity
we also test different plasticity modifications and in comparisons take the
best performing modification. More specifically homogenous plasticity (one
plasticity coefficient for the whole network), full plasticity (each connection
has its plasticity coefficient), and neuromodulated plasticity.

Each neural network architecture is tested with the number of neurons for
each layer corresponding to the binary pattern size and two layers, except
the PLAST network which has only its specific layer. The reason for PLAST
having only one layers is that we wanted to test solely the Hebbian Learning.
The first layer of each architecture is a unique layer for the given architecture.
The second layer is a feed forward layer. Adding more layers to the network
did not improve the performance. Setting the same number of neurons
and layers is unfair to some architectures, which are less computationally
demanding or has fewer parameters. For example, if we consider RNN and
LSTM, LSTM has four times more parameters. Another option would be
to calculate the number of neurons for each architecture so both networks
would have the same number of parameters. The third option would be to
compare the networks based on computational time.

21

3. Binary Sequences...................................
The activation for all architectures is hyperbolic tangent(tanh). Each

network is trained using the mean square error loss function(MSE). The MSE
is calculated from the difference between the network output and the target
pattern. The backpropagation is optimized using Adam optimizer [20]. All
the hyperparameters are summarized in Table 3.2.

Net types FF, RNN, LSTM, FF+PLAST, RNN+PLAST, PLAST
Plast types Homogenous, Fully plastic, Neuromodulated
Learning rate 0.001, 0.00055, 0.0001
Loss function Mean Squared Error
Batch size 32
Optimizer ADAM
Activation function TANH
First Layer Net type specific
Second Layer Linear
Layers sizes 50, 50
Start eta 0.01
Start alpha 0.01

Table 3.2: Hyperparameters of the neural network used for the Binary Sequences
environment

3.1.3 Environment analysis

The Binary Sequences environment has several properties that can make it
challenging for the algorithm. In the following section, we provide an analysis
of the environment. Our goal here is to specify the obstacles the algorithm
needs to overcome in order to succeed in this environment. By doing so,
we also showcase properties of different approaches for using memory. This
environment had been proposed in the work of [17], where it had been shown
that hand-designed recurrent neural network with homogenous plasticity can
solve this problem.

Probably the most significant obstacle is that in the default definition of the
environment, each episode contains different patterns with a different order
and is shown only once. The algorithm needs to be able to do one-shot learning
to solve this environment successfully. In order to do so, the method should
be able to learn new patterns quickly. In the case of plasticity, this mechanism
is present in the form of plastic connections, where it had been shown that the
connections are capable of storing information rapidly. For recurrent neural
networks, the network needs to encode the information from previous steps
into a hidden state using recurrent connections. It could be challenging for
the recurrent neural networks to learn useful weights from scratch, because
there are almost none general concepts to learn between episodes to encode

22

.................................3.1. Environment overview

information more efficiently. In fact trying to learn concepts between episodes
could hurt the performance. For example, if the algorithm observed in one
episode, that first pattern is always one and then learned it and used it in
another episode, where this was not true.

The next challenging aspect of the Binary Sequences environment is that
the binary patterns can have a large number of identical bits. Thus the
algorithm needs to be able to store into memory each bit perfectly to be able
to distinguish between the individual patterns.

Another problem with the size of the pattern is that the network needs to
store all the patterns and recall them at the end of the episode. This can be
done by storing all patterns or creating an encoding and decoding mechanism
which can retrieve them. To store all the patterns in an unchanged way, we
need a memory of the size equal to number of patterns ∗ pattern size. This
could pose a problem for a standalone recurrent network, which only has a
hidden state (memory size) equal to the number of neurons. The environment
is also suitable for finding how memory works. We can measure how long it
can retain information by extending the length of the episode. The task of
the empty patterns is to see how the memory behaves in the absence of input.

One of the reasons for choosing this environment is that the algorithms’
memory and output can be clearly visualized and interpreted. When de-
termining the final output of the network, we look at each neuron’s value
and set the final pattern to 1 if the value is positive and -1 if it is negative.
This means we can intuitively measure how confident the network is about
its decision based on the value. If the value is close to zero, the network
is not that certain about it, and the higher it gets, the more confident the
network is about it. We can also measure the role of memory based on this.
For example, if plasticity always has a higher value of the output. It is the
dominant memory used.

Favorable property of the environment is the low computational cost. In
order to simulate an episode of the environment, we only need to generate
random binary patterns. In contrast, for example, if we had tried to solve a
problem in the reinforcement learning domain, we would also need to simulate
the environment. Along with the low computational cost, the environment
offers a wide variety of parameters that can be used to test the memory
properties. For example, if we increased the number of patterns shown during
each episode, the neural network would need to retain more information in
the memory.

23

3. Binary Sequences...................................
3.1.4 Experiments performed

Our first steps were conducting a general comparison of the performance of
different approaches. The goal of this experiment is to get an overview of how
well each approach performs in the environment. Our findings are described
in Section 3.2.

The experiment’s results are that the solutions using plasticity dominated
the non-plastic solutions. In the next experiments, we try to show why plastic-
ity is so efficient in this domain and the reasons behind the low performance
of non-plastic solutions. For understanding previous results, we use several
methods. The first method is looking into what is present in the network’s
memory during the episode by analyzing the hidden state of the recurrent
network and the weights of plastic connections. Our findings are shown in
Section 3.4.2. Another way to dive deeper into the problem is by measuring
the contribution of different types of memory (plasticity, recurrency). In
this environment, this can be done by analyzing the output strength of each
system. We researched this approach in Section 3.3.

Afterward, we looked more closely into the separate methods. In plastic
networks, we had looked into how different parts and definitions of plasticity
compare. For example, we measured how making the network fully plastic
instead of homogenous improves the performance. Plasticity specific experi-
ments are located in Section 3.4. A summary of the most important findings
is provided in Section 3.5.

3.2 General comparison

In the following section, we compare the final performance and learning
speed of the algorithms. To achieve the best performance for each algorithm,
we had searched for the optimal learning rate. When searching for hyper-
parameters of algorithms, there are usually more of them searched. Those
hyper-parameters include layer size, number of layers, activation functions, or
batch size. In our case, we did not search the optimal number of layers and
their respective sizes. The number of neurons was set to the size of binary
patterns, which is 50. The full specification for neural networks used in this
experiment is provided in Section 3.1.2. Each neural network configuration
was executed three times with different seeds. The average of the rewards had
been taken as a result. We found this setting sufficient because the difference
between individual runs was low.

24

..................................3.2. General comparison

0 2k 4k 6k 8k 10k

0.5

0.6

0.7

0.8

0.9

1

PLAST
FF + PLAST
RNN + PLAST
RNN
LSTM

Episodes

R
ew

ar
d

Figure 3.2: The following figure shows the best performance obtained by each
architecture in the Binary Sequences environment. The reward measures how
many percent of the wanted pattern the network successfully remembered. The
reward of one signifies 100 percent correct answers. The results of each architec-
ture are taken as the mean from 3 independent runs. The rewards were collected
for each episode and then smoothed using a moving average from 10 episodes.
The blue horizontal line represents the baseline performance.

Figure 3.2 shows the results of the experiments. The baseline for the
algorithms is 75% percent of correctly remembered bits of the target pattern.
This baseline corresponds to outputting the non-degraded bits of the degraded
target pattern and randomly filling in the remaining bits. The baseline for
50% stands for outputting a random pattern without utilizing any information
from the degraded target pattern. We will start with the commentary of the
best performing method to the worst-performing.

The experiment shows that the standalone differentiable plasticity was
able to outperform the other solutions. It achieved a performance of 98%
correctly remembered bits during the first episode without any training
(updating the coefficients of plasticity through gradient descent). After the
first episode, there is a decrease in performance. This is the effect of training
the plasticity coefficients using gradient descent. After 500 episodes, we can

25

3. Binary Sequences...................................
Net type Mean reward Max reward

PLAST 99.3 ± 0.04 100.0
FF + PLAST 97.3 ± 0.08 98.8
RNN + PLAST 97.3 ± 0.11 99.3
RNN 77.4 ± 0.10 80.6
LSTM 76.9 ± 0.11 79.9

Table 3.3: The table contains information regarding the rewards obtained by
each approach. The mean reward is calculated from the last 100 episodes. The ±
shows the 95 % confidence interval over the last 100 episodes. The max reward
is the maximal reward obtained in any episode.

see that the gradient descent finds sufficient coefficients, and the performance
of plasticity starts to increase again and outperform the initial performance.
The increase in plasticity performance compared to the initial setting shows
that introducing differentiable plasticity improves its performance.

The second-best performance was achieved by a feedforward neural network
combined with plasticity. Its performance is very similar to the one obtained
by vanilla RNN combined with plasticity. Both networks were able to obtain
solid results in this environment. The faster speed of training for feedforward
networks was expected because it is a much simpler architecture and does
not need to train to encode information from previous states. However,
it is surprising that the recurrent neural network did not obtain better
performance after sufficient training. We can see that after 4000 episodes,
the increase in the reward obtained by the network is minimal. In theory,
the recurrent neural networks should work better because they can use the
hidden state for storing information through observations. Another important
observation is that although combining plasticity with layers trained using
gradient descent obtained good results compared to standalone plasticity, it
seems that combining these two methods is not helpful for this problem. This
is a useful finding because we can see that combining these two architectures is
not always beneficial. It will be interesting to explore in which environments
these two approaches complement each other. The first reason behind the
decrease in performance could be that plasticity is enough for solving this
environment. Another explanation is that the recurrent neural networks are
insufficient for solving this environment, as can be seen from their respective
results. Testing only feedforward network does not make any sense, because
there are no mechanisms for storing history.

The last group of experiments consisted of recurrent neural networks. This
mechanism for memory has not performed very well in this environment. It
had been able to achieve an average reward of 77.4 for RNN and 76.9 for
LSTM. These scores are only slightly better than repeating the degraded

26

............................. 3.3. Memory systems contributions

Learning rate 0.00010 0.00055 0.00100
Net type

PLAST 98.8 99.2 99.3
FF + PLAST 92.8 97.3 97.3
RNN + PLAST 90.9 97.3 97.1
RNN 76.7 77.3 77.4
LSTM 76.1 76.9 76.9

Table 3.4: The table shows the average reward obtained from the last 100
episodes for each network and learning rate. We can observe that the optimal
learning rate is not influencing the resulting performance significantly.

pattern. In our experiments, we had tried to increase the training duration
ten times to 100000 episodes. Nevertheless, the final reward practically did
not improve. In the analysis of the environment, we had provided several
reasons why this environment can be challenging for the recurrency.

3.3 Memory systems contributions

In order to investigate how the combination of non-plastic and plastic layers
works, we had visualized the outputs of each component during the episode.
Our aim in this experiment is to show how these two approaches work together.
First, we had visualized the final output of the network, provided in Figure
3.3.

We will start examining the experiment by discussing what happens when
the degraded pattern is shown in step 120 to step 126. It can be seen that the
network had learned to repeat the non-degraded parts of the pattern and is
significantly more confident in them then in the degraded parts. When filling
in the degraded parts, it is visible that the network starts with low confidence,
but as the pattern is repeatedly shown, network output confidence starts to
increase. This effect is most visible in the case of neuron in position 12. Here
we can see that the neuron first outputs the wrong bit but gradually changes
its decision to the correct one. We can see that this event only occurs when
the previous bit in the same position has the opposite value to our bit. This
raises a question of which exact role the gradual weakening of the inputs
occurring during the presentation of empty patterns play. Another thing to
notice is that the network benefits from seeing one pattern multiple times in
succession. This can be observed when the network is shown a new pattern.
In the first output, the network is less confident than in the successive outputs.
Also, note how the outputs of the network behave in the absence of input

27

3. Binary Sequences...................................
(presentation of an empty pattern). We can see that the network still outputs
the pattern previously seen but in much lower intensity. When observing the
output of the network when an empty pattern is shown, we can see that the
output is higher during the second presentation cycle.

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

steps

bi
ts

 p
os

iti
on

s

Figure 3.3: The following figure captures the outputs of the neural network
during the episode. Note that the last two steps (127, 128) are not actual outputs
but represent the degraded pattern shown to the network and its non-degraded
version. We had added these to the figure to improve the interpretability of results.
Another augmentation for better readability was that we only show the first 16
neurons. In the figure, the blue color corresponds to positive values and the red
color to negative. The more intense the color is, the more positive/negative the
value is. This can also be interpreted as the neural network is more sure about
the value for neuron. The degraded pattern is shown to the algorithm in steps
120 to 126.

After the initial analysis, we had visualized the contribution of each ap-
proach separately. A distinct separation of the two approaches can be done
for interference. If we look at the equation for implementing differentiable
plasticity 2.3, we can see that the output is done by adding the plastic and
fixed parts of the network together. Combine this with the interpretability
of binary sequences environment where the output directly corresponds to
the confidence, and we can clearly decide the individual contributions. For
measuring the contributions, we take the values before applying the tanh

28

............................. 3.3. Memory systems contributions

function. A visual comparison of the contributions is shown in Figure 3.4.

From the visualization, it seems that the recurrent part’s contribution is to
repeat the observed pattern during each turn. However, this can be achieved
simply by utilizing a feedforward network. By looking closer at the behavior
of the recurrent neural network during filling in the degraded pattern, we
can see that it can negatively impact the outcome. This is visible when
observing how the layer behaved when the bit in the pattern shown before the
degraded target pattern had a different bit. In this case, the recurrent layer
first outputs the incorrect solution, while the plastic layer outputs the correct
answer. If we look at the plasticity, we can see that it has a significantly
smaller impact on the output during the presentation phase. However, when
the algorithm starts to decide the missing bits in the degraded pattern. It
has a higher value than the recurrent layer in all bits. This means that the
decision regarding the missing bits is influenced solely by the plastic part.

The following experiment’s main result was that the recurrent neural layers
in this environment function as a simple feedforward layer. In cases when
the pattern before the target pattern had an opposite bit value, they even
decreased the performance. The choice of filling in the missing patterns is
made purely by the plastic part.

29

3. Binary Sequences...................................

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

steps

bi
ts

 p
os

iti
on

s

(a) : Plastic part

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

steps

bi
ts

 p
os

iti
on

s

(b) : Reccurent part

Figure 3.4: The figure shows the contribution of plasticity and recurrency
to the output of the neural network. The intensity of color represents the
network certainty with the bit value, the higher, the better. When measuring
the contribution, look at the intensity of the bits in the same position and step
in the two different layers. The presentation of the degraded pattern is from
steps 120 to 126. The steps 127 and 128 are the degraded pattern and its full
version. 30

...................................3.4. Plasticity analysis

3.4 Plasticity analysis

The experimental results and the analysis of the inner working of the neural
network showed that plasticity is the best performing approach for this
problem, shown in Section 3.3. It had been able almost entirely to remember
and associate the binary patterns, but it still did not manage to learn to
remember every pattern without an error. The plasticity framework can
be dissected into multiple parts. For example we can use full plasticity or
homogenous plasticity, use differentiable plasticity coefficients α or not and
multiple other augmentations. In Subsection 3.4.1, our goal is to get insight
into how different plasticity parts affect the performance and what do they
achieve. In the other part of this Section, we will take a closer look into the
trained plasticity in plastic neural network 3.4.2. The experiments will be
done on the PLAST neural network introduced in Section 3.1.2.

3.4.1 Plasticity components comparison

The plastic neural network is composed of several components which are
added together and form the resulting layer. In this section, we will conduct
a comparison of the attribution of the components to the overall performance
of the algorithm. The most simplified formula for plasticity is using just
the hebb rule specified in Section 2.3 (HEBB). The next four architectures
will all use the plasticity defined in Section 2.3.1. The first architecture will
have static plasticity coefficients α and static plasticity learning rate η (Hebb
Static Eta), where alpha is set to 1 (one plasticity coefficient for the whole
network), eta was found using grid search to 0.01. The second architecture
have the same α as the previous one, but the parameter η is optimized using
gradient descend (Hebb Differentiable Eta). The third architecture optimizes
both the α and η using gradient descent and has one α for the whole network
(Homogenous Plasticity). The fourth architecture optimizes both the α and
η using gradient descent and has α for each connection instead of only one
for the whole network, as was the case in the previous architecture (Full
Plasticity). The last architecture is specified in Section 2.3.2, which extends
the architecture defined in Section 2.3.1 with neuromodulation (Modulated
Plasticity).

The full plastic network has obtained the best final performance. The
network has lower performance in the initial episodes because it contains
more parameters to learn than other methods. It takes approximately 5000
episodes to learn the parameters to a sufficient degree, and afterward, it
performs better than the others. This proves that adding full plasticity

31

3. Binary Sequences...................................
helps the network perform better at the cost of slightly slower learning. The
training speed of homogenous plasticity is almost similar to the speed of
full plasticity. This is interesting when taken into consideration the overall
number of parameters for each approach. The modulated plasticity is the most
sophisticated form of plasticity in this experiment. So the slower learning
speed was expected. However, we also expected that the additional complexity
of adding neuromodulation would increase the final score, which did not hold.

Probably the most significant finding that came out of this experiment is
how crucial is the η parameter for solving this task. This is most visible in the
case of differentiable η. We can see that the following solution is able to obtain
almost perfect scores even in the first episodes, and its final performance is
on par with more complicated solutions. This suggests that the η parameter
contributes more to the performance than the plasticity coefficients. This
claim is further supported if we look at the performance of static eta and
hebb without eta. Here we can see that by introducing the plasticity learning
rate into the equations, we obtain a 98% score in comparison to the score of
75% without them.

0 2k 4k 6k 8k

0.75

0.8

0.85

0.9

0.95

1

Full Plasticity
Homogenous Plasticity
Hebb Differentiable Eta
Modulated Plasticity
Hebb Static Eta
Hebb

Episodes

R
ew

ar
d

Figure 3.5: The following figure depicts the results of comparing the relative
contribution of different plasticity components and augmentations. The reward
corresponds to the percentage of correctly recalled bits of the degraded pattern.
Where 1 signifies 100% correctly recalled bits. The reward is calculated as a
moving average from 10 episodes. For magnified version, please refer to Figure
3.6

32

...................................3.4. Plasticity analysis

2k 4k 6k 8k
0.975

0.98

0.985

0.99

0.995

Full Plasticity
Homogenous Plasticity
Hebb Differentiable Eta
Modulated Plasticity
Hebb Static Eta
Hebb

Episodes

R
ew

ar
d

Figure 3.6: The figure is a magnified version of Figure 3.5, focused on better
capturing the differences between the best performing plasticity augmentations.
The x-axis starts at step 1000 and ends at 10000.

Plasticity type Mean reward Max reward

Full Plasticity 99.34 ± 0.04 100.0
Homogenous Plasticity 99.24 ± 0.04 100.0
Hebb Differentiable Eta 99.23 ± 0.04 100.0
Modulated Plasticity 99.20 ± 0.05 100.0
Hebb Static Eta 97.90 ± 0.08 99.94
Hebb 75.09 ± 0.13 77.44

Table 3.5: The table contains information regarding the rewards obtained by
plasticity modifications. The average reward is calculated from the last 100
episodes. The ± shows the 95 % confidence interval over the last 100 episodes.
The max reward is the maximal reward obtained during one episode.

33

3. Binary Sequences...................................
3.4.2 Plasticity visualization

The main improvement of the differentiable plasticity framework is the intro-
duction of differentiable plasticity rates for each connection. In the following
experiment, our goal was to observe the final values of plasticity coefficients
after training. The visualization is provided in Figure 3.7. As can be seen
from the visualization, the plasticity coefficients share similar values except
for the coefficients on the diagonal. The diagonal plasticity coefficients are
the coefficients for connections between the same neuron but in different
episodes. This means that for determining the output of a plastic neuron in
the problem of binary sequences, the previous value of the neuron is most
important. We could hypothesize that the following rule was created to copy
the non-degraded patterns when the degraded pattern is shown. Another
useful insight gained from this experiment is that we see that the resulting
plasticity coefficients do not differ significantly from the uniform fully plastic
parameters, except for the diagonal. We believe that the larger plasticity
coefficients in the diagonal are the reason behind the better performance of
differentiable plasticity in comparison to standard plasticity (Section 3.4.1).

0 10 20 30 40
0

10

20

30

40

1

1.5

2

2.5

j

i

Figure 3.7: The Figure shows the final values for plasticity coefficients α. We
can observe a clear pattern in the plasticity coefficients, at the diagonal.

34

...................................... 3.5. Summary

3.5 Summary

In the Binary Sequences environment, the neural networks using plasticity
had outperformed the recurrent neural networks in a significant manner. The
plastic neural networks had almost correctly recalled the degraded pattern
with an accuracy of 99.3%. In comparison, the standalone recurrent neural
networks obtained an accuracy of 77.4%. Afterward, we had further analyzed
what contributes most to the performance of plastic neural networks. When
analyzing the performance, we found out that the combination of recurrent
layers and plastic layers is not required in the Binary Sequences environment.
The combination of these two layers results in slower learning and decreases
the accuracy to 97.3%. The following fact was found by calculating each
layer’s contribution to the output of the network. We had found that the
final output is only affected by the plastic layer. This is an interesting finding
because using only differentiable plasticity with a feedforward network was
not considered for the Binary Sequences in work [29]. Moreover, it brings out
the question of how well the combination mentioned above performs in other
environments.

The plasticity framework consists of multiple components and parameters.
Our next line of research was to determine which component affects the
performance of plasticity the most. From our experiments came out, that
the most influential parameter for plasticity performance is the η plasticity
learning rate. When the parameter η was set to its optimal value, the plastic
network without any differentiable part had reached an accuracy of 97.9%.
By introducing differentiable plasticity coefficients α and differentiable η,
the accuracy improved to 99.3%. Adding neuromodulation to the network
decreased the accuracy to 99.2%. Furthermore, we investigated the final α
coefficients of the network. Moreover, after training them using gradient
descent, we found out that the resulting values are for most connections
identical, except for the connections between the neurons at the same positions
but in different layers. The relatively simple structure of the pattern in the
resulting α coefficients could signify that the Binary Sequences environment
is not challenging enough to bring out the full potential of introducing
differentiable plasticity.

From the findings above, we conclude that the plastic neural networks were
able to outperform the recurrent neural networks in this environment due to
algorithm predispositions and not because of the differentiable plasticity. We
hypothesize that the weak performance of the recurrent neural networks is
caused by the size of their hidden state and the incapability of learning useful
weights for connections in this environment due to the randomness in it.

35

36

Chapter 4

Maze

4.1 Environment overview

4.1.1 Environment specification

In the following environment, the agent’s goal is to explore a maze and find
the reward within it. After finding the reward, the agent is transported to a
new location. The reward remains at its original position during the episode.
The goal of the agent is to maximize the reward obtained during an episode.
After each episode, the reward’s position is changed to a random empty space
in the maze. The structure of the maze remains unchanged thorough episodes.
An episode of the environment is provided in Figure 4.1. In each step, the
agent obtains an input containing its current view, previous action(encoded
in binary), reward obtained in the previous step, current timestep and a bias
neuron. Resulting in the total input size of 17. The view contains the 3× 3
neighborhood of the agent, with the agent being in the center. The walls are
represented by 1 and empty tiles by 0. The reward is not visible to the agent.
A list of the environment parameters is provided below. Their exact values
are provided in Table 4.1.

. reward - the reward obtained from collecting the reward. wall penalty - penalty introduced for moving into the wall

37

4. Maze ..
.maze size - the size of the maze including the outer walls. episode length - the length of one episode. view range - the area the agent can see around itself. reward visible - if the reward is visible to the agent when it is in its view

range. agent respawn position - if the agent always respawns on a fixed/random
position.

Figure 4.1: The figure shows the maze environment. The environment consists
of the 9× 9 grid occupied with walls on the sides. The green tile represents the
agent. The reward is depicted as the yellow tile. The goal of the agent is to
maximize the reward. After reaching the reward, the agent is transported to a
random empty tile in the maze. The reward stays at the same location. Each
episode has a duration of 200 steps.

Reward 10
Wall penalty 0
Maze size 11
Episode length 200
View range 3
Reward visible False
Agent respawn position Random
Number of actions 4
Input size 17

Table 4.1: The table contains the exact values for the Maze environment
parameters.

4.1.2 Neural networks used

For the following task, we use a three-layer neural network trained using the
A2C algorithm described in Section 2.6.2. The first layer of each network is

38

.................................4.1. Environment overview

realized using a linear layer, followed by the activation function. The second
layer of the network is unique for each network. The final layer is a linear
layer. Each network outputs 4 values for each action and 1 value for the state
value function. The agent takes action based on the probabilities obtained by
applying softmax to the outputted values for actions. The networks using
neuromodulated plasticity have 1 additional output used for neuromodulation.
The neural network architectures are described in Section 3.1.2.

Net types FF, RNN, LSTM, FF+PLAST, RNN+PLAST
Plast types Homogenous plasticity, Fully plasticity, Neuromodulated
Learning rate 0.0001
Batch size 16
Optimizer ADAM
Activation function TANH
First Layer Linear
Second Layer Net type specific
Third Layer Linear
Second Layer size 100
Output size 5
Start eta 0.01
Start alpha 0.01
RL algorithm A2C
Bent 0.03
Blossv 0.1
Discount factor 0.9
Gradient norm clipping 4.0
L2 norm 0.000003

Table 4.2: The table contains hyperparameters of the neural network used for
the Maze environment

4.1.3 Environment analysis

Reward analysis

To establish the algorithm’s performance, we need a way to measure the
maximal possible reward that the agent can obtain. To do so, we had
implemented an agent that always uses the optimal path to the reward. We
achieved this by providing the agent with a view of the whole maze and
planning his movements using breadth-first search (BFS). Although this
solution gives us a better understanding of the maximal possible reward, it is
not precise. There are two reasons why the solution is imprecise. The first is
that the agent must first locate the reward by exploring. The second is the

39

4. Maze ..
teleportation after finding the reward. To make the estimated maximal reward
more accurate, we need to consider the cost of exploring the environment.
The environment consists of 65 empty tiles, and the reward is not visible to
the agent. In the worst case, the agent must visit all the 65 tiles to find the
location of the reward. Also, note that visiting 65 tiles cannot be done in 65
steps, because of the walls. The cost of teleportation is harder to approximate,
because first of all it is impossible to determine exact location after teleporting,
because most states share representation (detailed explanation provided in
Section 4.5). Secondly, the agent can be teleported to a location that was not
explored during the exploration occuring before finding the reward. Because
of these obstacles, we will subtract a reward of 50 from the performance
obtained by the BFS agent. To account for the randomness in the maze, we
had run the BFS agent for 1000 episodes and took the mean reward. The
final averaged reward of the agent was 294. This means the approximated
optimal reward is 244.

Another baseline that we tested was a random agent. The random agent
obtained a mean reward of 2.3 from 1000 runs. Another interpretation for
this value is that the agent collected the reward in 1 out of 5 episodes. In the
default setting of the maze, environment reward is only obtained for collecting
the reward. This result is useful for two reasons. The first one is that we
can see that all the networks can beat random policy after a few episodes.
The second is that we can determine the initial difficulty of the environment.
This environment is an instance of reinforcement learning (RL) problems.
This means that in order for the network to learn a well-performing policy, it
needs to receive a reward to evaluate the utility of its actions. When a neural
network is untrained, its first policy is usually very similar to a random one.
Thus, we can conclude that this environment provides enough feedback in
terms of rewards for the algorithm to learn in its default settings without any
alterations.

The last baseline used for interpreting the results was the baseline of
following the wall in the Maze. The following baseline achieved a reward of
62 and was used by a trained feed-forward network.

40

..................................4.2. General comparison

4.2 General comparison

The following section contains a comparison of performances for individual
approaches specified in Section 4.1.2. To compare the performance, we
had taken the average performance of each algorithm executed with three
different seeds. The plot capturing the experiment is shown in Figure 4.2. A
comparison of results is provided in Table 4.3. For plasticity, we only used the
best performing variants for the comparison. A full overview of performance
for different plasticity variants is given in Section 4.4.

In the experiment, the approaches: LSTM and RNN with modulated
plasticity were able to obtain the best performance. Their resulting rewards
were 199 and 200, respectively. This suggests that the following algorithms
are suitable for this environment. However, they are not able to solve the
environment optimally. We approximated that the maximal reward achievable
in the Maze environment is 244 (Section 4.1.3). When comparing the two
methods, we can observe that the approach utilizing RNN with plasticity
exhibits faster learning speed in the earlier episodes. This could support the
claim that plasticity is able to learn faster in the following environment. The
evidence further supporting the claim can be gained by observing the learning
speed of RNN in comparison to FF with Plasticity, where the approach
utilizing plasticity learns significantly faster. The RNN with plasticity is a
combination of these two approaches.

The next approach tested was a feed-forward network with plasticity. The
following approach obtained a reward of 189, and during the first 40 000
episodes, it learned significantly faster than all the other approaches. This
result shows that plasticity without any recurrency can cope well with this
problem and even bring competitive results in a more complex environment
than the Binary Sequences. In other environments, the benefit of fast learning
speed could outweigh the lower final performance.

The vanilla RNN network obtained the worst results from all networks
utilizing memory, with a reward of 118. When comparing the performance to
the performance of LSTM, the lower reward could be expected, as LSTM had
been shown to be better suited for meta-learning in [16]. The performance
of vanilla RNN is also useful for measuring the benefits of adding plasticity
(the recurrent neural network used with plasticity is vanilla RNN). From
the results, we can see that combining these two approaches increases their
overall performance. The last tested network was a feed-forward network.
This network was added to show how networks without memory mechanisms
perform in the Maze environment and to show how much adding plasticity to

41

4. Maze ..
this network improves the performance.

0 20k 40k 60k 80k
0

50

100

150

200

RNN + PLAST MODULATED LSTM
FF + PLAST MODULATED RNN
FF

Episodes

R
ew

ar
d

Figure 4.2: The Figure shows the reward of algorithms obtained in the Maze
environment. The reward is calculated as a moving average from 1000 episodes
from the mean of three independent runs. The mean reward is provided alongside
the value of 1 standard deviation added to both sides.
Net type Mean reward Max reward Min reward

RNN + PLAST MODULATED 200.2± 0.7 254 140
LSTM 199.1± 0.6 254 132
FF + PLAST MODULATED 187.1± 0.6 249 126
RNN 118.4± 1.8 226 45
FF 61.6± 0.6 150 13

Table 4.3: The Table contains information regarding the rewards obtained during
the last 1000 episodes by each algorithm. The ± shows the 95 % confidence
interval over the last 1000 episodes.

4.3 Memory systems contributions

To get a better insight into each memory system’s role when they are combined,
we visualized their neural activity and detected to what stimuli each system

42

............................. 4.3. Memory systems contributions

reacts. It is more complicated to measure the contribution of the memory
system in Maze than in Binary Sequences. The problem is that the network
outputs values for the agent’s four possible actions, which are then transitioned
into probabilities using the softmax algorithm. The softmax of values is
problematic because applying softmax on the outputs produced by each
memory system separately is not the same as when applying softmax on
the combined outputs of the systems. We had solved this problem by using
the values before softmax. This alteration should have no impact on the
experiment because we only consider the action that is the agent most likely
to take. This action corresponds to the action with the largest value before
softmax. Although we only show the memory system contribution from one
run of the episode for each architecture, we had checked that the presented
findings hold true for other runs with the same configurations.

The neural activity is provided in Figure 4.3. From the figure, we can
observe that the memory systems work together; there are only two steps
where one system has almost 100% control over the decision. However, there
are steps during episodes where one system is more important. Through
the agent’s analysis during the episode, we found out that the spikes in
neural activity of plasticity (better visibility in the case of RNN + PLAST
MODULATED) corresponds to the agent finding the reward. The steps
when a reward is reached are displayed using a red dotted line. From the
observations, it seems that the role of plasticity in the system increases before
reaching the reward and decreases after finding it. On the other hand, the
contribution of recurrent neural network or feed-forward neural network is
higher when the agent moves towards the reward. One possible explanation
could be that the plasticity is capable of remembering states before reaching
the reward and reacts in response to them. This should be possible because the
reward location remains the same during the episode. The next observation
supporting this claim is that the plastic network activity is significantly lower
before the first time the reward is found than after it. The resulting role of
the RNN then would be to guide the agent through the maze until a state
remembered using plastic memory is encountered.

When observing the results of the combination of FF and plasticity, we
can notice that the plasticity is the more dominant memory in most episodes.
On the other hand, when combining RNN with plasticity, plasticity is the
less dominant memory in most episodes. Also, the relative contribution of
plasticity is higher in the case of combination with FF. This difference can be
attributed to the fact that the FF network does not have any memory, while
in the case of RNN, both approaches are capable of utilizing memory.

43

4. Maze ..

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Agent Step

C
on

tri
bu

tio
n

(a) : FF + PLAST MODULATED

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Agent Step

O
ut

pu
t S

tre
ng

th

(b) : RNN + PLAST MODULATED

Figure 4.3: The figure represents the relative contribution of plasticity in
comparison to the recurrent or the feed-forward layer. The contribution is
measured by calculating the contribution of the individual systems to the agent’s
most valued action. The y-axis represents the relative contribution where 1
stands for 100% and 0 stand for 0 %. The black dotted line represents 50 %.
When the plot is above the black line it means the plasticity is the dominant
memory system. The red dotted line represents the episodes when the agent
reached the goal.

44

...................................4.4. Plasticity analysis

4.4 Plasticity analysis

The plastic network that we use for testing the performance in Section
4.2 consists of multiple improvements to the plain plastic network. These
improvements include a differentiable η parameter, full plastic connections
and neuromodulation. In this section, we analyze their contribution to the
performance by gradually adding them to the basic plastic neural network.
The exact specifications for each improvement are provided in Section 3.4.1.
We test the added value of improvements on a plastic network combined
either with a recurrent neural network (RNN + PLAST) or with a standalone
plastic network (FF + PLAST). The results for the standalone plastic network
are provided in Figure 4.4 and Table 4.4. The results for the recurrent neural
network combined with the plastic network are provided in Figure 4.5 and
Table 4.5.

When we look at the results, we can observe that each improvement added to
the plasticity increases the final performance. What is more interesting is that
the learning speed of more complex algorithms (more trainable parameters) is
faster than the simpler ones. Next important finding is that the FF network
combined with plasticity has more stable training than the combination of
RNN with a plastic neural network. The FF network with plasticity obtained
better final performance for homogenous plasticity and differentiable eta.
This finding suggests that the full plasticity has at least two roles in the
network. The first one is that it allows the plastic layer to model more
complex relationships. The other is that it promotes the combination of
plasticity with other types of layers, by allowing each neuron to define its own
combination of the layers. The layers used in the combination does not need
to be recurrent. We can see that when plasticity is combined with a more
powerful network (RNN compared to FF), the relative increase in performance
is much higher. In the case of combination with RNN, the reward increased
from 103 to 180, which is a relative increase of 77. While in the combination
of FF, the reward increased from 138 to 169, which is a relative increase
of 31. When observing the results of homogenous plasticity, we can see a
decrease in performance when combined with the recurrent layer. Standalone
RNN obtained a reward of 118.4 (Section 4.2), while when combined with
homogenous plasticity, it obtained a reward of 103.1. These results suggest
that full plasticity is required for combining the networks properly.

From the experiments, we found out that the neuromodulated full plasticity
achieves the best performance. One of the reasons for the better performance
of neuromodulated plasticity is the ability to explore the environment better
(Section 4.5).

45

4. Maze ..

0 20k 40k 60k 80k
0

50

100

150

200

FF + PLAST MODULATED
FF + PLAST
FF + PLAST HOMOGENOUS
FF + Differentiable Eta

Episodes

R
ew

ar
d

Figure 4.4: The figure provides a comparison of performance for different
plasticity modifications in a standalone plastic network. The reward is calculated
as a moving average from 1000 episodes from the mean of three independent
runs. The mean reward is provided alongside the value of 1 standard deviation.

0 20k 40k 60k 80k
0

50

100

150

200

RNN + PLAST MODULATED RNN + PLAST
RNN + PLAST HOMOGENOUS RNN + Diff Eta

Episodes

R
ew

ar
d

Figure 4.5: The figure provides a comparison of performance for different
plasticity modifications in a recurrent + plastic network. The reward is calculated
as a moving average from 1000 episodes from the mean of three independent
runs. The mean reward is provided alongside the value of 1 standard deviation.

46

...................................4.4. Plasticity analysis

Net type mean max min

FF + PLAST MODULATED 187.1± 0.6 249 126
FF + PLAST 169.8± 0.7 239 108
FF + PLAST HOMOGENOUS 138.7± 0.8 211 72
FF + Differentiable Eta 105.2± 0.7 182 46

Table 4.4: The table contains the mean, max, and min rewards obtained by
different plasticity modifications from the last 1000 episodes. The ± shows the
95 % confidence interval over the last 1000 episodes.

Net type mean max min

RNN + PLAST MODULATED 200.2± 0.7 254 140
RNN + PLAST 180.6± 0.7 243 103
RNN + PLAST HOMOGENOUS 103.1± 1.5 218 14
RNN + Differentiable Eta 59.3± 1.5 119 12

Table 4.5: The table contains the mean, max, and min rewards obtained by
different plasticity modifications from the last 1000 episodes. The ± shows the
95 % confidence interval over the last 1000 episodes.

4.4.1 Visualizing plasticity

In order to better understand plasticity, we had visualized the final plasticity
coefficients α in Figure 4.6. Our goal was to observe if there is any visible
structure after displaying the values, as was the case in the Binary Sequences
environment 3.4.2. In the case of the Maze environment, we had not been
able to observe any visible structure. We believe that a more complex analysis
of the plasticity coefficients could bring useful insight into plasticity’s inner
working. An example of such analysis would be, to sum up all the plasticity
coefficients for one neuron and compare it to sums of other neurons.

47

4. Maze ..

0 20 40 60 80
0

20

40

60

80

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

j

i

Figure 4.6: The figure shows the final plasticity coefficients α. There is no
visible pattern in the coefficients.

4.5 Exploration capabilities

To better compare the individual approaches, we had devised a test where we
did not put any reward into the maze. The goal of this test is to measure the
exploring capabilities of each solution. In order for the algorithm to succeed,
it needs to be able to perform state aliasing [26]. State aliasing is a problem
that occurs when two or more different states share the same representation
in models representation space. The algorithm must use memory to succeed
in the problem of state aliasing. Although our maze consists of 65 cells that
the agent can visit, there are only 14 observations the agent can get from
the 3 × 3 view the agent receives. The four corners of the maze have unique
observations. Then the agent can distinguish if he is at the tile next to the
outer wall. In this case, the observation also is unique for each wall so the
agent can better localize itself. These observations make for the next eight
unique observations (4 walls and agent can be next to the inner wall in the
maze or not). Notice that in this case, the agent cannot know without memory
on which tile he is next to the outer wall. The last two unique observations
are from the 33 maze cells, which creates the whole "inner maze." The results
are shown in Table 4.6. From the results, we can observe that the approaches
utilizing plasticity explore the maze better. Also, when comparing the results

48

................................ 4.6. Adaptation capabilities

of modulated and non-modulated plasticity, we can conclude that modulated
plasticity improves the algorithm’s exploration capabilities. We can further
observe that there is a significant difference in the exploration capabilities of
a vanilla RNN 78.8% and LSTM 96.6%.

Net type Explored

RNN + PLAST MODULATED 98.9± 0.2%
FF + PLAST MODULATED 98.5± 0.2%
FF+PLAST 97.0± 0.4%
RNN+PLAST 96.8± 0.3%
LSTM 96.6± 0.4%
RNN 78.8± 1.7%
FF 62.0± 0.7%

Table 4.6: The table describe how well each algorithm performs in the exploration
of the Maze. The ± shows the 95 % confidence interval over the 300 runs.

4.6 Adaptation capabilities

This experiment’s goal is to test how well and fast the algorithm can incor-
porate knowledge of the reward position. The experiment is based on the
premise that to get a high reward, the agent must use the shortest possible
path to the reward. To calculate the shortest path, the agent must be aware
of its current position and the reward position. In the experiment, we measure
how often the agent reached the final reward in a specific range. Our finding
are provided in Table 4.7 and Figure 4.7. The most crucial finding from this
test is that the LSTM achieves a reward of 300-450 in the most percentage
of runs compared to other methods. This means that the LSTM can better
adjust its algorithm after finding the reward than the other approaches.

Net type 0 10-100 100-200 200-300 300-450

RNN + PLAST MOD 1.53 4.40 30.90 61.47 1.70
FF + PLAST MOD 1.90 11.57 32.33 52.67 1.53
LSTM 3.87 3.53 29.97 60.07 2.57
RNN 23.40 20.47 20.83 34.60 0.70
FF 49.73 25.73 17.13 7.23 0.17

Table 4.7: The table contains information regarding the percentage of runs the
agent ended within a defined reward range. The data had been calculated from
3000 episodes for each algorithm, obtained from 3 independent runs. Plast mod
stands for modulated plasticity.

49

4. Maze ..

0 10-100 100-200 200-300 300-450
0

10

20

30

40

50

60 FF
RNN
LSTM
RNN + MOD
FF + MOD

Rewards obtained

P
er

ce
nt

ag
e

of
 to

ta
l r

un
s

Figure 4.7: The figure provides a histogram of the percentage of runs the agent
ended in a defined reward range. The data from Table 4.7 are used.

4.7 Summary

For the Maze problem, we first started with comparing the overall performance
of each algorithm (Section 4.2). In the following experiment, both approaches
utilizing memory (plasticity and recurrency) achieved similar performance.
The best plastic neural network (RNN + PLAST MODULATED), had
achieved a reward of 200.2. The best recurrent neural network (LSTM) had
achieved a reward of 199.1. The experiment also showed that a feed forward
network combined with modulated plasticity (FF + PLAST MODULATED),
obtained a reward of 187.1. Furthermore, when comparing the learning speed
of the approaches, we can see that the approaches utilizing plasticity learn
faster compared to approaches using recurrency. To better understand the
agents’ performance, we had done a theoretical analysis of the environment
and approximated that the optimal reward achievable is around 244 (Section
4.1.3).

To establish the differences between the algorithms, we had devised two new
tests. The first test measures the exploration capabilities (Section 4.5), by
placing the agent into the Maze with no reward and checking if the agent visits
all tiles. From the following test, we had found that none of the approaches
explores 100% of the Maze. Our Maze is challenging to explore because most
states share the same representation (Section 4.5). The RNN + PLAST
MODULATED explored 98.9% of the Maze, while LSTM explored 96.6% of
the Maze. This result suggests that plasticity can explore this environment

50

...................................... 4.7. Summary

more efficiently (State aliasing, Agents position). The second test conducted
measured how well the agent learns within an episode (Section 4.6). More
specifically, we looked at the distribution of the rewards obtained after each
episode from 3000 runs. The LSTM had achieved reward in the range from
300 to 450, in 2.57% of the runs, while plasticity only in 1.70% of runs. The
second experiment results suggest that the recurrency is able to better learn
within the episode (utilize the knowledge regarding the reward position).

In our next experiment, our goal was to measure and determine the role of
each memory type (plasticity, recurrency), when they are combined (Section
4.3). We measured the contribution of each memory by its impact on the
network’s output. More specifically, we measured the relative contribution to
the agents’ most probable action. In the experiment, we found out that the
two systems work together, rather than each of them having a specific role.
Work together means that the relative contribution of memory was withing
a range of 30% - 70%, which means it played a significant role in the final
output. We had found out that the contribution of plasticity starts to increase
the closer the agent is to the reward (up to 70% of relative contribution)
and decreases after finding it. In comparison, the importance of recurrent
memory starts to gradually increase to 70% after finding the reward and then
begins to decrease after the agent is close enough to the reward. One possible
explanation for this finding is that the plasticity’s role is to remember the
states near the reward, and the role of the recurrent layer is to navigate the
agent until a state remembered using plasticity is encountered.

The last experiment’s goal was to measure the importance of different
plasticity improvements (Section 4.4). From the results, it came out that
each improvement to the plasticity increased the final performance and the
learning speed. The increase in learning speed was not expected, because each
improvement increases the total number of trainable parameters. Another
result that came out of this experiment is that introducing full plasticity into
the network not only increases the performance of the plastic layer but also
improves the cooperation between the plastic layer and other layers.

51

52

Chapter 5

Conclusions and future work

The goal of the thesis was to get a better insight into the neural networks
utilizing memory and compare plastic and recurrent neural networks. After
reviewing the state of the art for using memory in neural networks, we became
interested in the plastic neural networks. More specifically, in the recent
work of differentiable plasticity [29] and its extension backpropamine [30]. In
the mentioned works, the authors combine recurrent networks with Hebbian
plastic connections and achieve competitive results in the meta-learning and
meta-reinforcement learning domains. When examining the experiments
provided in the paper, we wanted to learn more about how plasticity works,
what contributes most to its performance, and how the recurrent network
works together with plastic connections. To do so, we had devised our own
experiments and obtained valuable insights into the plasticity framework,
which are provided in the next paragraphs. In addition to getting better insight
into the plasticity, we wanted to know how well the plasticity neural networks
compared to other methods. We decided to test them against recurrent neural
networks, more specifically vanilla RNN and LSTM. In the theoretical part,
we introduced all the concepts required for understanding our work. More
specifically vanilla recurrent neural network, long short term memory network,
differentiable plasticity framework, backpropamine (modulated plasticity),
reinforcement-learning, meta-learning and meta-reinforcement learning. For
plasticity (Hebbian learning), we provided a more detailed overview of the
recent work, including domains it is used in.

In the Binary Sequences environment, we first compared the plastic net-
works, defined in [29], against vanilla RNN and LSTM. The plastic networks
achieved success rate of 97.3%, while the vanilla RNN and LSTM achieved
a success rates of 77.4% and 76.9% respectively, in recalling the degraded

53

5. Conclusions and future work
pattern correctly. We established that the baseline for this environment could
achieve a score of 75%. After the high success rate of plasticity, we wanted
to investigate more how it works. We started by separating its recurrent
layer from the plastic layer and measuring each layer’s contribution to the
final decision. We found out that the final output is decided by the plasticity
only. Based on this finding we implemented a plastic network combined with
feed forward network (97.3%) and plastic network without any other layer
(99.3%). This result suggest that only plastic neural networks are required
for solving Binary Sequences environment. Providing them with recurrent
neural layer, only decreases the performance. In our next experiment, we
investigated which parts and parameters of plasticity contributes most to the
result. We found out that the plasticity learning rate η is the most important
plasticity parameter for the Binary Sequences environment. The performance
of plasticity with differentiable η and static α plasticity achieves a success
rate of (99.23%). Adding full plasticity (differentiable α for each connec-
tion) improves the final score only slighty to (99.34%). The neuromodulated
plasticity (99.2%) even sligthly decreased performance. From the results of
this experiment, we concluded that plasticity learning rate η is the most
important parameter. The plasiticity coefficient α which is the main addition
of the work Differentiable Plasticity, where the plastic neural networks been
introduced is not well utilized in the Binary Sequences environment. For
future work we, plan to show how the total number of shown patterns affects
the algorithm’s performance. We believe it will help establish the limits of
storing capabilities for each network architecture, especially the plastic neural
networks.

In the Maze environment, we made contribution by showing that the LSTM
recurrent neural network is capable of solving the environment comparably
to the best plastic neural network. The two mentioned approaches obtained
rewards of 199.1 and 200.2 respectively after 100000 episodes of training. To
get a better understanding of the rewards obtained by the algorithms, we
approximated the optimal solution for the Maze environment to be around 244.
The results obtained from the comparison of the two methods suggest that the
plastic neural networks exhibit faster learning speed than the recurrent neural
networks. The fastest learning architecture by a huge margin in the first 40
000 episodes was the combination of feed forward network with plasticity.
This network achieved a final reward of 187.1, which is only slightly worse
than the best performing architectures. The combination of feed forward
network with plasticity provides an interesting tradeoff between learning
speed and performance, which could be used in other environments. From the
experiment measuring the contribution of individual layers, when combined,
we found out that the recurrent and plastic layer work together, rather than
each of them having a specific role. When observing the individual layer
contributions we noticed that the plastic layer contribution rises in the steps
when the agent is closer to the reward and afterward decreases, while the
influence of the recurrent layer rises after finding the reward and teleportation

54

...............................5. Conclusions and future work

to the random location. The following observation suggests that the main
role of the plasticity is to remember how to navigate the agent in the states
near the reward, while the main role of the recurrent neural network is to
navigate the agent until a state remembered using plasticity is encountered.
Our next goal was to devise new tests that would help us better understand
the advantages and disadvantages of different memory types. The first metric
devised measured the exploration capabilities of the agent. In this, test
the agent was put in a Maze with no reward, and we calculated how many
percent of the Maze the agent explored. The plastic neural networks explored
98.9% of the Maze, while LSTM explored 96.6%. With the second metric we
tested how well the agent can learn within an episode. The experiment results
showed that the LSTM can obtain the reward in the range of 300-450 in 2.57%
of runs, while the plasticity only in 1.70% of runs. This suggests that the
LSTM is capable of better adapting to the algorithm. In our final experiment,
we tested which parts and parameters of plasticity contribute most to its
performance. In the Maze experiment, both differentiable plasticity and
neuromodulaton increased the final performance significantly. Furthermore
we found out that introducing full plasticity into plastic network that is
combined with recurrency increased the performance by 80, while in the case
of combination with feed forward network the performance only increased by
30. This finding could suggests that full plasticity improves the cooperation
of the recurrent and plastic layer.

From our experiments, we obtained significant knowledge regarding the
properties of the algorithms in the tested environments. We will leverage
the obtained knowledge to provide insights into applying the algorithms in
other environments. When using plastic neural networks, it is important to
assess whether the network used in combination with the plasticity provides
the network with additional utility. This finding is based on the results from
the Binary Sequences environment, where we found out that by replacing the
recurrent layer with the feed forward layer, we increase the performance of
the network. When combining networks, use full plasticity, which allows the
network to choose for each neuron the contribution of different layers (Maze
Section 4.4). Lastly, when considering which algorithm to use for a given
environment, think about the plasticity also as an extension to another neural
network architecture. This brings us to the question of what is gained by
introducing plasticity to the network. From our experiments, we recommend
using plasticity when working with binary patterns. This recommendation
is based on the finding from Binary Sequences, where plasticity alone was
capable of working with binary patterns effectively after minimal training. For
reinforcement learning, our results suggest that plasticity can help with the
state aliasing problem, this recommendation is based on the results provided
in Section 4.5.

We believe that our experiments provided the reader with useful insights

55

5. Conclusions and future work
into the workings of plasticity and showcased its properties. In our future
work, we plan to extend our research by including the neural networks with
external memory into our experiments

56

Appendix A

Bibliography

[1] Ba, J., Hinton, G. E., Mnih, V., Leibo, J. Z., and Ionescu, C.
Using fast weights to attend to the recent past. ArXiv abs/1610.06258
(2016).

[2] Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira,
F., and Vaughan, J. A theory of learning from different domains.
Machine Learning 79 (2010), 151–175.

[3] Bengio, Y., Simard, P., and Frasconi, P. Learning long-term
dependencies with gradient descent is difficult. IEEE Transactions on
Neural Networks 5, 2 (1994), 157–166.

[4] Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F.,
Schwenk, H., and Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. CoRR
abs/1406.1078 (2014).

[5] Collins, J., Sohl-Dickstein, J., and Sussillo, D. Capacity and
trainability in recurrent neural networks, 2016.

[6] Danihelka, I., Wayne, G., Uria, B., Kalchbrenner, N., and
Graves, A. Associative long short-term memory. CoRR abs/1602.03032
(2016).

[7] Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. Rl$ˆ2$: Fast reinforcement learning via slow
reinforcement learning. CoRR abs/1611.02779 (2016).

[8] Elman, J. L. Finding structure in time. Cognitive Science 14, 2 (1990),
179–211.

57

A. Bibliography.....................................
[9] Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning

for fast adaptation of deep networks. CoRR abs/1703.03400 (2017).

[10] Grave, E., Joulin, A., and Usunier, N. Improving neural language
models with a continuous cache. ArXiv abs/1612.04426 (2017).

[11] Graves, A., Wayne, G., and Danihelka, I. Neural turing machines.
ArXiv abs/1410.5401 (2014).

[12] Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka,
I., Grabska-Barwinska, A., Colmenarejo, S. G., Grefenstette,
E., Ramalho, T., Agapiou, J., Badia, A. P., Hermann, K. M.,
Zwols, Y., Ostrovski, G., Cain, A., King, H., Summerfield,
C., Blunsom, P., Kavukcuoglu, K., and Hassabis, D. Hybrid
computing using a neural network with dynamic external memory. Nature
538 (2016), 471–476.

[13] Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R.,
and Schmidhuber, J. Lstm: A search space odyssey. IEEE Trans-
actions on Neural Networks and Learning Systems 28, 10 (Oct 2017),
2222–2232.

[14] Hebb, D. O. The organization of behavior: a neuropsychological theory.
J. Wiley; Chapman & Hall, 1949.

[15] Hochreiter, S., and Schmidhuber, J. Long short-term memory.
Neural computation 9 (12 1997), 1735–80.

[16] Hochreiter, S., Younger, A. S., and Conwell, P. R. Learning
to learn using gradient descent. 87–94.

[17] Hopfield, J. J. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy
of Sciences 79, 8 (1982), 2554–2558.

[18] Hughes, J. R. Post-tetanic potentiation. Physiological Reviews 38, 1
(1958), 91–113. PMID: 13505117.

[19] Karpathy, A., Johnson, J., and Li, F. Visualizing and understanding
recurrent networks. CoRR abs/1506.02078 (2015).

[20] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimiza-
tion. CoRR abs/1412.6980 (2015).

[21] Koch, G. R. Siamese neural networks for one-shot image recognition.

[22] Lake, B., Salakhutdinov, R., and Tenenbaum, J. Human-level
concept learning through probabilistic program induction. Science 350
(12 2015), 1332–1338.

58

..................................... A. Bibliography

[23] Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman,
S. J. Building machines that learn and think like people. CoRR
abs/1604.00289 (2016).

[24] Li, Y. Deep reinforcement learning: An overview. CoRR abs/1701.07274
(2017).

[25] Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. Build-
ing a large annotated corpus of English: The Penn Treebank. Computa-
tional Linguistics 19, 2 (1993), 313–330.

[26] Mccallum, A. K., and Ballard, D. Reinforcement Learning with
Selective Perception and Hidden State. PhD thesis, 1996. AAI9618237.

[27] Melchior, J., and Wiskott, L. Hebbian-descent. CoRR
abs/1905.10585 (2019).

[28] Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. ArXiv abs/1609.07843 (2017).

[29] Miconi, T., Clune, J., and Stanley, K. O. Differentiable plasticity:
training plastic neural networks with backpropagation. In ICML (2018).

[30] Miconi, T., Rawal, A., Clune, J., and Stanley, K. O. Back-
propamine: training self-modifying neural networks with differentiable
neuromodulated plasticity. ArXiv abs/2002.10585 (2019).

[31] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P.,
Harley, T., Silver, D., and Kavukcuoglu, K. Asynchronous
methods for deep reinforcement learning. CoRR abs/1602.01783 (2016).

[32] Mnih, V., Heess, N., Graves, A., and Kavukcuoglu, K. Recurrent
models of visual attention. CoRR abs/1406.6247 (2014).

[33] Olah, C. Understanding lstm networks, 2015.

[34] Pascanu, R., Mikolov, T., and Bengio, Y. Understanding the
exploding gradient problem. CoRR abs/1211.5063 (2012).

[35] Rae, J. W., Dyer, C., Dayan, P., and Lillicrap, T. P. Fast
parametric learning with activation memorization. CoRR abs/1803.10049
(2018).

[36] Robinson, A. J., and Fallside, F. The utility driven dynamic error
propagation network. Tech. Rep. CUED/F-INFENG/TR.1, Engineering
Department, Cambridge University, Cambridge, UK, 1987.

[37] Santoro, A., Bartunov, S., Botvinick, M. M., Wierstra, D.,
and Lillicrap, T. P. One-shot learning with memory-augmented
neural networks. ArXiv abs/1605.06065 (2016).

59

A. Bibliography.....................................
[38] Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and Abbeel,

P. Trust region policy optimization. CoRR abs/1502.05477 (2015).

[39] Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L.,
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneer-
shelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham,
J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., and Hassabis, D. Mastering the
game of go with deep neural networks and tree search. Nature 529 (01
2016), 484–489.

[40] Smyl, S. A hybrid method of exponential smoothing and recurrent
neural networks for time series forecasting. International Journal of
Forecasting 36, 1 (2020), 75–85.

[41] Soltoggio, A., Stanley, K. O., and Risi, S. Born to learn: the inspi-
ration, progress, and future of evolved plastic artificial neural networks.
CoRR abs/1703.10371 (2017).

[42] Sutton, R., and Barto. Reinforcement learning: An introduction.
(Second Edition). Cambridge: MIT press, 2018.

[43] Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo,
J. Z., Munos, R., Blundell, C., Kumaran, D., and Botvinick,
M. Learning to reinforcement learn. CoRR abs/1611.05763 (2016).

[44] Werbos, P. J. Generalization of backpropagation with application to
a recurrent gas market model.

[45] Yagishita, S., Hayashi-Takagi, A., Ellis-Davies, G. C., Urakubo,
H., Ishii, S., and Kasai, H. A critical time window for dopamine
actions on the structural plasticity of dendritic spines. Science 345, 6204
(2014), 1616–1620.

[46] Zaremba, W., Sutskever, I., and Vinyals, O. Recurrent neural
network regularization. ArXiv abs/1409.2329 (2014).

60

Appendix B

User guide

The project is implemented using Python 3.7. For training the neural networks,
we use the PyTorch library. The resulting data from training and testing is
visualized using Plotly. The visualizations are shown using Jupyter Notebooks.

The code for the project can be divided into three groups based on its
functionality. The first group contains the scripts used for executing training,
testing, and obtaining visualization data, located in the rnn directory. These
scripts can be launched either locally or on a dedicated server. We used
the services of MetaCentrum to calculate the computationally demanding
tasks. The second group is the actual code implementing the neural networks
and the environment, located in the code directory. The last group contains
the visualization functions and functions for manipulating the data from
experiments, located in the rnn_visualise directory. Results from training
and testing are located in the rnn_results folder. We had provided one
trained neural network for each environment. If needed, we can provide all
our trained networks and data files. The rnn_vis_data is used for storing
visualization data, such as the data for displaying the agent during an episode
of the Maze environment. For creating the python environment, the list of
requirements is provided in requirements.txt.

We had created a basic guide containing basic commands to run the scripts
and a general overview of the code provided. If you have any questions
regarding the project, contact us and we will gladly answer them.

The project contains some modifications of the code provided with the dif-
ferentiable plasticity paper (https://github.com/uber-research/differentiable-

61

B. User guide......................................
plasticity) and the backpropamine paper (https://github.com/uber-research/backpropamine).

The structure of attached files is provided below.

folder
rnn

code
rnn_results
rnn_vis_data
rnn_visualise
thesis.pdf
requirements.txt
user_guide.pdf
executed_jupyter_notebook_example.html

62

	Introduction
	Theoretical background for our work
	Memory in neural networks
	Recurrent neural networks
	Long Short Term Memory network

	Neural Plasticity
	Differentiable Plasticity
	Backpropamine
	Hebbian learning recent work

	External Memory
	Meta-learning
	Reinforcement learning
	Introduction
	A2C
	Meta-reinforcement learning

	Binary Sequences
	Environment overview
	Environment specification
	Neural networks used
	Environment analysis
	Experiments performed

	General comparison
	Memory systems contributions
	Plasticity analysis
	Plasticity components comparison
	Plasticity visualization

	Summary

	Maze
	Environment overview
	Environment specification
	Neural networks used
	Environment analysis

	General comparison
	Memory systems contributions
	Plasticity analysis
	Visualizing plasticity

	Exploration capabilities
	Adaptation capabilities
	Summary

	Conclusions and future work
	Bibliography
	User guide

