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Abstract: The main focus of this thesis is air pollution, methods of its measur-
ing and statistical models, which can be used to forecast it. The first chapter
is dedicated to the identification of the key pollutants and their effects on the
environment and human health. Further, we present the common air quality
index, which is used to indicate the level of pollution. In the second chapter,
we outline different methods of measuring the concentration of individual pollu-
tants via low-cost sensors as well as in professional measuring stations. The next
chapter describes statistical methods of analysing and forecasting univariate time
series via classical decomposition and the Box-Jenkins method. Additionally, we
present machine learning methods (neural networks and decision trees), which
can be used for modelling of the time series. These methods are then applied
in the fourth chapter to predict the concentration of PM10 for a short horizon
based on data collected from measuring stations in Prague. Next, we evaluate
the accuracy of the predictions and present the best performing approach. The
resulting models can be used in the development of the service, that would warn
residents of cities about potentially dangerous air conditions.

Keywords: air pollution, statistical model, time series, PMx

Abstrakt: Hlavnou témou tejto práce je znečistenie ovzdušia, metódy jeho me-
rania a štatistické modely, ktoré môžu byt’ použité pri jeho predpovedańı. Prvá
kapitola je venovaná identifikácii kl’́učových znečist’ujúcich látok a ich vplyvov
na životné prostredie a l’udské zdravie. Ďalej uvádzame všeobecný index kvality
ovzdušia, ktorý sa použ́ıva na indikovanie miery znečistenia. V druhej kapitole sú
načrtnuté rôzne metódy merania koncentrácie jednotlivých znečist’ujúcich látok
pomocou bežne dostupných senzorov ako aj s použ́ım profesionálnych meraćıch
stańıc. Nasledujúca kapitola opisuje štatistické metódy analýzy a predpovede jed-
norozmerných časových radov pomocou klasickej dekompoźıcie ako aj s využit́ım
Boxovho-Jenkinsovho pŕıstupu. Navyše sa venujeme metódam strojového učenia
(neurálne siete a rozhodovacie stromy), ktoré môžu byt’ použité na modelovania
časového radu. Tieto metódy následne použ́ıvame v štvrtej kapitole na predpo-
vedanie koncentrácie PM10 v krátkom horizonte, na základe dát zozbieraných z
meraćıch stańıc v Prahe. Ďalej vyhodnocujeme presnost’ týchto predpoved́ı a pre-
zentujeme pŕıstupy, ktoré si pri predpovediach viedli najlepšie. Výsledné modely
môžu byt’ použité pri vývoji služby, ktorá by varovala obyvatel’stvo miest pred
potenciálne nebezpečnými stavmi ovzdušia.

Kl’́učové slová: znečistenie ovzdušia, štatistický model, časový rad, PMx
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Introduction
The climate change caused by human activities is currently one of the major
threats to our civilisation. Pollution of air by greenhouse gases and other sub-
stances is the main cause of Earth’s rising temperature which leads to warming
of the oceans, melting of the glaciers and ice caps, and changes of weather. Fur-
thermore, polluted air has adverse effects on human health, causes various respi-
ratory and cardiovascular diseases and generally shortens the life expectancy of
the population. The thorough observation and measurement of air pollution is a
key element in efforts to halt or even reverse these changes.

In this work, we aim to provide basic information about the main air pollu-
tants, their sources and their impact on the environment. Further, we discuss
methods used to detect and measure individual components of air pollution and
describe statistical models, which can be used to model their behaviour. The
main objective is then to use these models to forecast the future evolution of con-
centration of PMx pollutant and evaluate their accuracy. The results of this work
may be used in the development of an information system, which will provide
warnings about worsening pollution in the observed area.
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1. Air pollution
Air pollution represents a major environmental threat to the health of the popu-
lation as it increases the risk of cardiovascular and respiratory diseases and may
lead to premature death [1]. In this chapter, we outline the main pollutants de-
fined by the European Union, their sources and their effects on the environment.
Later we describe the air quality index, which is commonly used to indicate the
level of air pollution in a given area.

1.1 Main categories of air pollutants
The European Union (EU) identifies the following seven main air pollutants,
excluding greenhouse gases [2]:

1. Ammonia (NH3)

2. Carbon monoxide (CO)

3. Nitrogen oxides (NOx)

4. Non-methane volatile organic compounds (NMVOC)

5. Ozone (O3)

6. Sulphur dioxide (SO2)

7. Particulate matter (PMx)
These pollutants affect human health in various ways and high concentrations
of them contribute to climate change. Locally, accumulation of the pollutants
leads to smog situations (mainly in urban areas) and can cause acute respiratory
problems. Due to this, multiple organisations measure their levels and World
Health Organization (WHO) has set safe limits for the exposure to them [1].

Ammonia

Under normal conditions, ammonia is a colourless gas with a distinctively pungent
smell. It is highly corrosive and is soluble in water. The main source of NH3 is the
decomposition of biological waste, mainly from agriculture. It is commonly used
as a fertiliser, as the main reactant in the synthesis of nitric acid and as a cleaning
reagent. It is highly toxic to the water organisms and causes eutrophication of
the aquatic ecosystem, which results in excessive growth of algae. For humans,
exposition to ammonia leads to the irritation of the eyes and mucous membranes,
pulmonary oedema and in high concentrations to death [3].

Carbon monoxide

CO is a colourless and odourless gas that is released when fossil fuels are burned.
In high concentrations it impairs the amount of oxygen transported in the blood-
stream to critical organs which may impact people, who already have problems
with the oxygenation of blood (e.g. people with certain types of heart disease)
[1].
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Nitrogen oxides

Nitrogen oxides are group gases and compounds composed of nitrogen and oxygen
produced mainly during the combustion of fossil fuels in power plants and com-
bustion engines. Out of all the nitrogen oxides, the nitrogen dioxide (NO2) has the
most adverse effect on human health and when present in higher concentrations
it causes inflammation of the airways and increases symptoms of bronchitis and
asthma. Nitrogen oxides contribute to the acidification of soil and water which
causes damage to vegetation and organisms resulting in decreased biodiversity [4].

Non-methane volatile organic compounds

NMVOCs are a collection of various organic compounds that display similar be-
haviour in the atmosphere. They are emitted mainly by processes which use
industrial solvents or burn oxygenated fuels and certain types are hazardous
to human health. These compounds are precursors to PMx and ground level
ozone [5].

Ozone

Ozone at the ground level is a secondary pollutant, which is not emitted directly
but is formed a via photochemical reaction of various precursor pollutants such as
nitrogen oxides and NMVOCs from traffic and industry. Sunlight is required for
this reaction to occur, therefore highest levels of ozone are created during sunny
weather. Prolonged exposure to ozone may cause breathing problems, trigger
asthma and lead to lung disease. Aside from these, ozone is one of the most
important greenhouse gases which impact climate change [1].

Sulphur dioxide

Sulphur dioxide is a colourless gas with a sharp odour which is produced during
the combustion of fossil fuels and smelting of mineral ores that contain sulphur.
Higher levels of SO2 irritate the eyes, cause inflammation of the respiratory tract
and may worsen asthma and chronic bronchitis. When it reacts with water vapour
in air it forms sulphuric acid, which is the main component of acid rain.

Particulate matter

Particulate matter is a mixture of solid and liquid particles of various size sus-
pended in the air, which serves as a common proxy indicator for air pollution.
According to [1], they impact more people than any other pollutant and have
the most serious effects on human health. They originate from both organic and
inorganic substances and usually contain sulfates, nitrates, ammonia, sodium
chloride, black carbon, mineral dust and water. The main emitters of PMx are
combustion engines, solid-fuel burning for energy production, as well as other
industrial activities. We distinguish between two major categories of particulate
matter – PM10, which have a diameter of less than 10 µm and PM2.5, which have
a diameter of less than 2.5 µm. When PM10 is inhaled it penetrates and lodges
deep inside the lungs where it causes irritation and inflammation and leads to
lung diseases and cancer. Even more dangerous are PM2.5 as they are capable of
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passing through the lung barrier thus enters the bloodstream, where they con-
tribute to the development of various cardiovascular diseases. Small particulate
pollution has health impacts even at very low concentrations – no threshold has
been identified below which no damage to health is observed.

1.2 Common air quality index
The EU uses the common air quality index (CAQI) to evaluate the level of pol-
lution in observed area and to compare measurements from different countries
between each other. This system evaluates the average values of five key pollu-
tants and grades their level from very low to very high according to the calculation
grid. The overall CAQI is then the highest grade received across all pollutants.
There are two different calculation grids, one for city background and one for
roadside, which differs slightly in limit values for individual categories as well as
in observed pollutants. The CAQI calculation grid for city background measure-
ments is shown in table 1.1.

Pollution PM10 PM2,5 NO2 SO2 CO O3
1h 24h 1h 24h 1h 1h 8h 1h

Very low 0 0 0 0 0 0 0 0
25 15 15 10 50 50 5000 60

Low 25 15 15 10 50 50 5000 60
50 30 30 20 100 100 7500 120

Medium 50 30 30 20 100 100 7500 120
90 50 55 30 200 350 10000 180

High 90 50 55 30 200 350 10000 180
180 100 110 60 400 500 20000 240

Very high >180 >100 >110 >60 >400 >500 >20000 >240

Table 1.1: The CAQI calculation grid for urban areas. All values are in µm and
are measured as an average value over the stated period [6].
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2. Sensors used in air pollution
detection
In this chapter, we discuss different methods of measuring the concentration of
pollutants in the air. Firstly, we describe various kinds of microsensors, which
are usually used in amateur measurements or as supplementary data sources
for more precise methods. Later we briefly outline methods used in measuring
stations, which provide data for weather services and other government agencies.
In the last section, we mention satellites used for large scope measurement of air
pollution.

2.1 Air quality microsensors
In recent years we have seen increased demand for low-cost air quality microsen-
sors, which can be used for rough measurements either in non-professional settings
or for educational purposes. Due to their small dimensions and low weight, these
sensors are also considered for usage when construction of a larger measuring
station is not viable or for portable measuring devices [7]. Their utilisation for
regulatory purposes is currently not considered by the EU, mainly due to strict
requirements for data quality. However, they can be used in combination with
traditional methods to increase the density of data collection and thus enrich
spatial models of air pollution [8].

Based on the method by which they measure pollutant concentrations, we can
split low-cost microsensors into the following categories [9]:

1. Electrochemical sensors for measuring nitrogen oxides, SO2, O3 and CO.

2. Metal oxide sensors for measuring NO2, O3 and CO.

3. Photo ionization detectors used to measure NMVOCs.

4. Optical particle counters for PMx.

5. Optical sensors for measuring CO and CO2.

Electrochemical sensors

These sensors are based on a chemical reaction between gases in the air and the
electrodes in a liquid electrolyte inside a sensor. Three electrodes (working, ref-
erence and counter) separated by filters are placed in a cell filled with electrolyte.
The working electrode is the site for either reduction or oxidation of the chosen
gas which generates an electric charge on the surface of the electrode. This charge
is balanced by a reaction at the counter electrode, thereby forming a redox pair of
chemical reactions and causing current output directly proportional to the con-
centration of the target gas. The reference electrode is used to maintain potential
on the working electrode constant [10].
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Metal oxide semiconductor sensors

When a heated metal oxide is exposed to the atmosphere, it changes its resis-
tance based on the concentration of the gases present in the sample. This fact is
leveraged by MOS sensors, which are used for measuring the amount of gas in the
air by using materials sensitive to the observed pollutant. The sensor is usually
heated by an internal heating element to a few hundred degrees centigrade and
then it is exposed to a measured sample. At high temperatures, oxygen atoms
bond onto the sensor, extracting electrons in the process from the semiconduc-
tor’s surface. The oxygen then either directly reacts with the ambient gases or
these gases are also bonded to the surface, which results in the change of the
sensor’s resistance [11].

Photo ionization detectors

In a photo ionisation detector, high energy UV photons bombard molecules of the
NMVOCs which results in the ejection of electrons and the formation of positively
charged ions. These ions then produce electric current, which is proportional to
the concentration of the NMVOCs in the measured sample. The main disad-
vantage of this method is its inability to distinguish between different kinds of
NMVOCs – the detector ionises all components that have an lower ionisation
energy than the energy of the UV light used [9].

Optical particle counters

These sensors usually work by illuminating particles passing through them by
high-intensity light (produced by a laser or an LED) and measuring the resulting
scattering. The concentration of the measured particles is proportional to the
scattered light intensity. Optical counters can detect particles in an approximate
size range of 0.4 µm to 10 µm and usually have upper detection limit of 500-
1000 µg/m3 [12].

Optical sensors

Optical sensors are used to measure the concentration of greenhouse gases via
non-dispersive absorption of infrared light. Each greenhouse gas is capable of
absorbing specific frequencies of infrared light – the amount of light absorbed is
directly proportional to the concentration of said gas. Low-cost sensors which use
this method are usually very sensitive to air temperature and humidity therefore
frequent calibration of the device is required [12].

2.2 Measuring stations
For the more precise measurements which are required for regulatory purposes,
countries usually use a network of automatic measuring stations. These stations
are often equipped with larger analysing devices that use advanced methods for
detecting air pollutants. The main disadvantage of these is in their size – they can
not be built everywhere, therefore the spatial mapping of pollution produced by
them is not very detailed. There are 143 measuring stations in the Czech Republic
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operated by the Czech Hydrometeorological Institute located (CHMI) mainly in
large cities. They use the following instruments to measure the concentration of
air pollutants [7]:

• Chemiluminescence NO/NO2/NOx Analyzer to measure concentra-
tion of nitrogen oxides

• UV Absorption O3 Analyzer to measure concentration of ozone

• UV Fluorescence SO2 Analyzer to measure of concentration sulfur diox-
ide

• Automatic & Real-time Particulate Monitor, which uses absorption
of the β radiation to count PMx.

2.3 Satellite measurements
The last methods of measuring the air pollution we mention are the satellite
measurements operated by NASA and ESA. These agencies have several instru-
ments in the Earth’s orbit which observe the distribution of pollution in the
troposphere. The NASA Terra project consists of five instruments, two of which
are measuring air pollution. The Moderate Resolution Imaging Spectroradiome-
ter (MODIS) measures among other things the properties of aerosols that enter
the atmosphere from man-made sources like pollution and biomass burning and
natural sources like dust storms, volcanic eruptions, and forest fires 1. The Mea-
surement of Pollution in the Troposphere (MOPITT) instrument observes the
distribution, transport, sources, and sinks of carbon monoxide in the troposphere
via gas correlation spectroscopy 2.

The EU’s Copernicus Atmospheric Monitoring Services uses several ESA satel-
lites to monitor the environment in Europe. Three of these satellites, Sentinel 4,
5 and 5 precursor, collect information about the air pollution. The Sentinel 4
mission measures the key air pollutants NO2, O3, SO2, formaldehyde, glyoxal,
and other aerosols. Complementarily, the Low Earth Orbiting missions S5 and
S5p provide additional data about CO, CH4, and stratospheric O3

3.

1https://terra.nasa.gov/about/terra-instruments/modis
2https://terra.nasa.gov/about/terra-instruments/mopitt
3https://sentinel.esa.int/web/sentinel/missions/sentinel-4
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3. Statistical models
This chapter is dedicated to the description of statistical models used to forecast
univariate time series. In the first section we provide definitions for basic terms
and methods used in the construction of statistical models as well as definitions
of accuracy measures which evaluate forecast quality. The following section ex-
plains different approaches of time series decomposition, namely classical decom-
position into the trend, seasonal and residual terms and the Box-Jenkins method
of analysing time series. In further sections we discuss selected statistical models,
which were used in modeling PMx pollution.

3.1 Introduction to time series analysis
Our main object of interest in this section will be a time series and the analysis of
its behaviour in order to determine the mechanism, which generates the observed
data. Understanding of this mechanism then enables us to model and forecast
future behaviour of a given process. For purposes of this thesis, let us define a
univariate (with one time-dependent variable) time series as follows.

Definition 1. A time series (TS) of a length n ∈ N, given as

{Xt}t=1...n = {X1, X2, ...Xn} (3.1)

is a set of n equally spaced discrete data points in chronological order. Further
we recognise

• Deterministic time series - is fully described by mathematical formula

• Stochastic time series - contains random elements

In the following text we will consider only stochastic TS.

Generally, each element of a stochastic TS is random variable with its own
expected value µt = E(Xt) and variance σ2

t = var(Xt). We assume standard
definitions of these operators as in [13, 14]. TS is characterised by the covariance
function (CF) of order the k defined as

γk,t = cov(Xt, Xt+k) = E[(Xt − µt)(Xt+k − µt+k)] (3.2)

and the autocorrelation function (ACF) of the order k defined as

ρk,t = cov(Xt, Xt+k)
σtσt+k

. (3.3)

Definition 2. Let {εt}t=1...n be a stochastic TS with

E(εt) = 0, var(εt) = σ2, cov(εt, εt+k) = 0, for k ̸= 0 & ∀t = 1...n

that is a TS with unrelated random variables and limited variance. Then {εt}t=1...n

is called White Noise (WN) [15].
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3.1.1 Weighted least square method
In the following chapters we often face the problem of approximating parameters
of a given TS. For this purpose we generally use a weighted least square method
described bellow.
Consider a regression model F (x, β⃗), where β⃗ = (β1, β2, . . . , βn) is a vector of free
parameters, which approximates a process y = f(x). Let us choose one arbitrary
set of values β⃗, then for the i-th element of a given process we can write

yi = F (xi, β⃗) + ri, (3.4)

where ri is the residual i.e. the difference between the estimated and real values.
Our goal will be to choose such β⃗ = b⃗, that sum of weighted residuals for function
F (x, β⃗),

S(β⃗) =
n∑︂

i=1
r2

i wi =
n∑︂

i=1

[︂
yi − F (xi, β⃗)

]︂2
wi, (3.5)

with weight wi = σ−2
i will be minimal. That gives us a necessary condition

grad S(b⃗) = 0⃗. (3.6)

This equation can be solved analytically only for certain regression models (linear,
polynomial, . . . ) and in most cases numerical methods are used instead.

3.1.2 Measures used to evaluate forecast accuracy
The accuracy of a forecast is determined by its ability to correctly predict new
data, which were not used for the construction of a given model. To this end,
we usually split available data into two portions, training and test data as shown
in figure 3.1. The training data are used as an input for estimation of model
parameters and the resulting forecast is then compared to the test data. To
evaluate forecast accuracy, we use the following error metrics [16]:

a) Mean absolute error (MAE):

MAE = E
(︂⃓⃓⃓

Xt
ˆ − Xt

⃓⃓⃓)︂
, (3.7)

b) Root mean square error (RMSE):

RMSE =
√︃

E
(︂
(Xt

ˆ − Xt)2
)︂
, (3.8)

c) Mean absolute percentage error (MAPE):

MAPE = E

(︄⃓⃓⃓⃓
⃓100% · Xt

ˆ − Xt

Xt

⃓⃓⃓⃓
⃓
)︄

, (3.9)

where Xt
ˆ is the approximated value and Xt is the observed value.
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Figure 3.1: An example of data split into training and test portions. Only training
data are used in model creation.

3.2 Decomposition of time series
In order to analyse a given TS in the time domain, we must decompose it into
its underlying components. According to [15], this can be done in two ways:

1. Classical decomposition - based on regression analysis

2. Box-Jenkins method - based on correlation analysis.

3.2.1 Classical decomposition
Let us assume that a random process which generates our TS is only a function of
time. We can then decompose the TS into a deterministic part and a random
part. The deterministic part consists of a trend term Tt, which reflects long
term behaviour of the TS and a seasonal term St, which describes periodic
changes of the TS [15]. Further non-periodic fluctuations of varying frequency
are included in a cyclic term, which is usually merged with the trend term into
a single trend-cycle component [17]. A random part of the TS is characterised
by a residual term εt given by random inconsistencies of the TS and can generally
be described as white noise. Using these elements we define two models, which
can be used for forecasting future behaviour of a given TS:

Definition 3. Let {Xt}t=1...n be a TS decomposed to its trend term {Tt}t=1...n,
seasonal term {St}t=1...n and residual term {εt}t=1...n. Then additive model of
TS defined as:

Xt = Tt + St + εt for ∀t = 1...n
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and its multiplicative model as:

Xt = Tt · St · εt for ∀t = 1...n.

Examples of decomposed time series using an additive and a multiplicative
model are shown in figures 3.2 and 3.3.

Trend and Cycle

The trend term reflects long term changes in the average behaviour of a TS i.e.
its general tendency in a long time [20]. It is usually caused by factors which
consistently affect the observed process in one way e.g. rising number of cars in
an area causing a rising trend in air pollution measurements. In a broader sense,
a trend may change its character in time and therefore it could contain cyclical
elements with longer periods. Classical decomposition approximates trend term
via regression models, with the most commonly used model being linear model
given by equation

Tt = β1 + β2t + ut, (3.10)

where ut is the uncertainty of the model and parameters β1, β2 are obtained by
the least square method [20].

In reality, the trend is typically not constant over long periods of time and
based on the character of the TS it fluctuates with no fixed frequency. These
irregular changes are described by a cyclic term Ct which is often added to the
trend term. An example of a varying trend is shown in figure 3.2.

Seasonality

Seasonality is a periodic fluctuation of a TS which occurs with a fixed frequency
and causes predictable changes in the TS. This term is usually observed in TS that
are influenced by change of weather during different seasons, is dependent on the
day of the week or changes during day and night. If a TS has a sufficient number
of observations with high density (e.g. hourly data), we can observe multiple
seasonalities (daily, weekly, monthly, . . . ). To account for this behaviour, we can
include trigonometric or other periodic terms to the model. In the case of long
seasonal periods, Fourier terms may be added to estimate seasonality. These
models are then often called harmonic regression [17].

STL decomposition

In further chapters we use STL as a main algorithm for decomposition. The STL,
abbreviation of ”Seasonal and Trend decomposition using Loess”, is a method
of classical decomposition, which uses locally estimated scatterplot smoothing
or ”LOESS” for non-linear regression. This method was developed by Robert
Cleveland et al. [21] in 1990 as a simple way to extract trend-cycle and seasonal
terms from the TS. For the purpose of this thesis, describing the STL algorithm
in detail is not crucial – for further details see the aforementioned article.
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Figure 3.2: An example of the decomposition of additive TS. Data used for this
plot come from an arbitrary data source [18].
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3.2.2 Box-Jenkins method

In contrast to classical decomposition, the Box-Jenkins method assumes a ran-
dom character of each component of the decomposed TS and uses autoregressive
(integrated) moving average models to predict future values. These models are
usually very flexible and quickly adapt to changes in TS behaviour. However,
in comparison with classical decomposition, the forecast produced by the Box-
Jenkins method is harder to interpret.

The Box-Jenkins method is usually executed in the following steps [22]:

1. Data preparation: involves transformations and differencing. Data are
transformed via a suitable function (logarithm, square roots, . . . ) to sta-
bilise variance in the TS. Differencing is used to remove trend and season-
ality from the data in order to make the TS easier to model.

2. Model selection: by using various graphs based on differenced and trans-
formed TS we try to identify a potential model with a good fit to the data.

3. Parameter estimation: fine-tuning values of coefficients used in the se-
lected model to achieve best fit.

4. Model checking: testing the assumptions of a model to find any areas
where it may be inadequate. If the model is not accurate enough, we return
to step 2.

5. Forecasting: the selected model is used to produce future values of the
analysed TS.

In the following sections we will define basic elements used in constructing models
via the Box-Jenkins method. All models built this way assume a stationary TS
– if this condition is not met, we need to difference TS in order to reduce or
eliminate trend and seasonal patterns and thus make it stationary. Next, we can
apply either an autoregressive model, moving averages or their combination to fit
and forecast the transformed TS.

Stationary time series

A time series is considered stationary when its characteristics are not changing
in time (e.g. constant variance and trend). A more precise definition follows.

Definition 4. Let {Xt}t=1...n be a stochastic TS. {Xt}t=1...n is said to be sta-
tionary if its expected value µt and variance σ2

t are constant and its CF and
ACF is dependent only on time distance between two points [20]:

γk,t = cov(Xt, Xt+k) = cov(Xt, Xt−k) = γ−k,t

ρk,t = cov(Xt, Xt+k)
σtσt+k

= cov(Xt, Xt−k)
σtσt−k

= ρ−k,t
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Differencing and integrated model of the order d

To difference TS means to simply subtract its lagged version from the original
TS. This can be easily denoted by using backshift and difference operators.
Definition 5. Let {Xt}t=1...n be a stochastic TS. The backshift operator B is
as [23]:

BXt = Xt−1,

and its j th application as
BjXt = Xt−j.

Definition 6. Let Xt be a stochastic TS. The difference operator ∇ is defined
as:

∇Xt = Xt − Xt−1 = Xt − BXt = (1 − B)Xt,

and the difference operator of the order d as:
∇dXt = (1 − B)dXt.

A TS is integrated of order d, denoted as I(d), when its d th difference is stationary.

Autoregressive model of the order p

A TS {Xt}t=1...n fitted by an autoregressive model of the order p, denoted as
AR(p), can be written as [20]:

Xt = ϕ0 + ϕ1Xt−1 + ϕ2Xt−2 + · · · + ϕpXt−p + εt, (3.11)
where ϕ1, ϕ2, . . . , ϕp ∈ R are coefficients of the model, εt is a WN and

ϕ0 = µ

(︄
1 −

p∑︂
i=1

ϕi

)︄
,

with µ describing the mean of Xt. We can rewrite this by using a backshift
operator as

Xt = ϕ0 +
p∑︂

i=1
ϕiB

iXt + εt, (3.12)

which is often shortened to
ϕp(B)Xt = ϕ0 + εt. (3.13)

Moving average model of the order q

A TS {Xt}t=1...n fitted by a moving average model of the order q, denoted as
MA(q), can be written as [20]:

Xt = ϕ0 + εt − θ1εt−1 − θ2εt−2 − . . . − θqεt−q, (3.14)
where ϕ0 = µ is a mean of the series, θ1, θ2, . . . , θq ∈ R are coefficients of the
model and εt, εt−1, . . . , εt−q are WN error terms. By using a backshift operator
we can write:

Xt = ϕ0 + (1 − θ1B − θ2B
2 − . . . − θqB

q)εt = ϕ0 + θq(B)εt. (3.15)
If we can rewrite a MA(q) model as a convergent AR(∞) model, that is when
ϕ(B) = θ−1

q (B), we call the MA(q) model invertible. This imposes constraints
on MA parameters, which are complicated to compute for large q – statistical
libraries in R are used to calculate them.
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3.3 Exponential smoothing models
The term ”exponential smoothing” is derived from the exponentially decaying
weights used in these models – forecasted values depend on weighted averages
of past observations with an emphasis on the more recent data. In this chapter
we will define basic exponential smoothing methods and their applications in
forecasting.

3.3.1 Simple Exponential Smoothing (SES)
One of the most basic exponential smoothing methods is SES, which is suitable
for forecasting data with no clear trend or seasonal pattern [17]. The forecasting
equation is given as:

X̂ t+1 = αXt + α(1 − α)Xt−1 + α(1 − α)2Xt−2 + . . .

=
t−1∑︂
j=0

α(1 − α)jXt−j, (3.16)

where 0 ≤ α ≤ 1 is a smoothing parameter, which controls the rate of weight
decay.

3.3.2 Holt’s linear trend
We can extend the SES method to also apply for TS with trend by using two
smoothing equations. This approach was proposed by Charles Holt and is known
as Holt’s linear trend method [17]. The forecasting equation is given as:

X̂ t+h = ℓt + hbt, (3.17)

where ℓt is the equation estimating level of the TS and bt is the equation estimat-
ing trend. These equations are defined as:

ℓt = αXt + (1 − α)(ℓt−1 + bt−1) (3.18)
bt = β(ℓt − ℓt−1) + (1 − β)bt−1, (3.19)

where 0 ≤ α ≤ 1 is a smoothing parameter for the level and 0 ≤ β ≤ 1 is a
smoothing parameter for the trend. The h-step-ahead forecast is equal to the
last estimated level plus h times the last estimated trend value – forecasts are
linear functions of h [17].

3.3.3 Holt-Winters’ seasonal method
To account for seasonality, we need to modify the previous model by adding a
third smoothing equation st, with a corresponding smoothing parameter γ, for the
seasonal component. This can be done in two ways, additive or multiplicative,
depending on the nature of seasonality – the additive method is suitable for
constant seasonal patterns while the multiplicative method preforms better when
seasonal variations are dependent on the level of the TS. Both methods were
developed by Charles Holt and his student Peter Winters and are together known
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as Holt-Winters’ seasonal method [17]. Forecasting and smoothing equations for
the additive method are:

X̂ t+h = ℓt + hbt + st+h−m(k+1) (3.20)
ℓt = α(Xt − st−m) + (1 − α)(ℓt−1 + bt−1) (3.21)
bt = β(ℓt − ℓt−1) + (1 − β)bt−1 (3.22)
st = γ(Xt − ℓt) + (1 − γ)st−m, (3.23)

where m is the frequency of seasonality, k ∈ N is the integer part of (h − 1)/m,
which ensures that the seasonal pattern uses final period of available data as
an input and 0 ≤ α; β; γ ≤ 1 are smoothing parameters [17].The forecasting and
smoothing equations for multiplicative the method are:

X̂ t+h = (ℓt + hbt)st+h−m(k+1) (3.24)

ℓt = α
Xt

st−m

+ (1 − α)(ℓt−1 + bt−1) (3.25)

bt = β(ℓt − ℓt−1) + (1 − β)bt−1 (3.26)

st = γ
Xt

ℓt−1 + bt−1
+ (1 − γ)st−m. (3.27)

3.3.4 ETS model framework
In this section we will discuss a common classification of exponential smoothing
models, the ETS framework, as described in [17]. Methods described in the pre-
vious sections are not the only exponential smoothing models available. If we
account for two common ways of modeling the trend term (additive and damped
additive) and two ways of modeling the seasonal term (additive and multiplica-
tive), we can sort each exponential smoothing model into a category based on
the methods it uses. This gives us 9 distinct models labelled by ordered pairs of
letters (Trend, Seasonal) – possible combinations are shown in table 3.1.

Trend
Seasonal None Additive Multiplicative

None (N,N) (N,A) (N,M)
Additive (A,N) (A,A) (A,M)
Additive damped (Ad,N) (Ad,A) (Ad,M)

Table 3.1: Classification of exponential smoothing models based on trend and
seasonal components [17].

Using this framework, we can assign previous models to categories:

Simple exponential smoothing (N,N)
Holt’s linear trend (A,N)
Holt-Winters’ additive method (A,A)
Holt-Winters’ multiplicative method (A,A)

Models from the ETS framework generate forecasts with prediction intervals,
which are obtained by adding error terms to smoothing equations. We can use
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Figure 3.4: Forecasting and smoothing equations used by models in the ETS
framework [17].

two different kinds of error terms – additive or multiplicative. To distinguish
between the type of error, we add a third letter into the previously described
ordered set of letters (Error, Trend, Seasonal), which completes the ETS frame-
work. The table in the figure 3.4 shows forecasting and smoothing equations for
all available ETS models.

3.4 ARIMA models

As mentioned in chapter 3.2.2, the Box-Jenkins method uses a combination of
autoregression and moving averages for forecasting TS. Both of these methods
require a stationary TS, therefore we need to integrate any non-stationary TS in
order to apply them. In this chapter we will describe the combined autoregressive
integrated moving average (ARIMA) model and its usage in forecasting both non-
seasonal and seasonal TS.
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3.4.1 Non-seasonal ARIMA model
By combining equations (3.13), (3.15) and thr difference operator from definition
6 we obtain non-seasonal ARIMA(p, d, q) model [20]:

ϕp(B)(1 − B)dXt = ϕ0 + θq(B)At, (3.28)

where p is the order of the AR, d is the degree of differencing and q is the or-
der of the MA. The constant ϕ0 determines behaviour of the long term forecast
produced by this model (e.g. for ϕ0=0 and d=0 long term forecast will tend to 0
and for ϕ0 ̸= 0 and d=0 long term forecast will tend to the mean of the TS).

Determining values of parameters (p, d, q) is not trivial and usually can not be
done from the time plot – for better insight we need to examine relations between
the observed TS and its lagged version. To do this, we plot values of ACF for
the sufficient number of lags and evaluate its behaviour. Additionally, we also
need to consider that two lags of TS can show correlation only because they both
correlate with the third lag. We avoid this by using the partial autocorrelation
function (PACF), which removes the effect of other lags. As a rule of thumb,
we can use the following statements to identify parametes for the ARIMA model
[17]:

1. If the ACF of a TS is exponentially decaying or shows sinusoidal behaviour,
and there is a significant peak at lag p in PACF but none beyond, then the
data may follow the ARIMA(p, d, 0) model.

2. If the a PACF of TS is exponentially decaying or shows sinusoidal behaviour,
and there is a significant peak at lag q in ACF but none beyond, then the
data may follow the ARIMA(0, d, q) model.

An example of ACF and PACF plots for 24 lags is shown in figure 3.5.

3.4.2 Seasonal ARIMA model
The non-seasonal ARIMA(p, d, q) model can be extended to account for sea-
sonality by adding seasonal terms with parameters (P, D, Q)m, which plays a
similar role as their non-seasonal counterparts. The constant m represents the
seasonal frequency (e.g. for monthly data m = 12). The resulting seasonal
ARIMA(p, d, q)(P, D, Q)m model is obtained by multiplying each term in equa-
tion (3.28) by its seasonal equivalent, where the backshift operator is applied with
order m [20]:

ϕp(B)ΦP (Bm)(1 − B)d(1 − Bm)DXt = θq(B)ΘQ(Bm)At. (3.29)

3.4.3 Dynamic regression models
In a regression model, we assume that the modelled TS has a linear relationship
to other predictor TS (e.g. air pollution is dependent on temperature, humidity,
. . . ) [17]. Let Yt be a forecasted TS and X1,t, X2,t, ..., Xk,t the TS of its predictor
variables. The regression model is then defined as:

Yt = β0 + β1X1,t + β2X2,t + · · · + βkXk,t + εt, (3.30)
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Figure 3.5: Values of the autocorrelation function and the partial autocorrelation
function of time series of PM10 concentration for 24 lags.

where β0, β1, . . . , βk are parameters of the model, which are usually estimated
by a least square method, and εt is the WN error term. The main advantage
of this method is its ability to include external variables into the equation and
thus enrich the model, however, to use predictors in a forecast we need to know
their forecasted values as well. The main disadvantage is that these models do
not allow forecasts as dynamic as ARIMA. To improve this, we can use ARIMA
to model the error term εt in the regression model, which results in a dynamic
regression given by equations [17]:

Yt = β0 + β1X1,t + β2X2,t + · · · + βkXk,t + ηt

ϕp(B)(1 − B)dηt = θq(B)εt, (3.31)

where ηt is an error series following the ARIMA(p, d, q) model and εt is WN.

Dynamic harmonic regression (DHR)

As was briefly mentioned in chapter 3.2.1, if there is a long seasonal period
or multiple seasonalities (e.g. in hourly data with daily, weekly and monthly
seasonality), Fourier terms may be added to the model to estimate seasonal terms.
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For the seasonal frequency m, Fourier terms are given as:

X1,t = sin
(︃2πt

m

)︃
, X2,t = cos

(︃2πt

m

)︃
X3,t = sin

(︃4πt

m

)︃
, X4,t = cos

(︃4πt

m

)︃
X5,t = sin

(︃6πt

m

)︃
, X6,t = cos

(︃6πt

m

)︃
... (3.32)

Using these TS as predictors in (3.31) we obtain a dynamic harmonic regression
model, where the seasonal term is modelled by Fourier terms and short-term
dynamics are handled by ARIMA [17]. The smoothness of the seasonal pattern
can be regulated by a number of Fourier terms, which we include into the model
(less terms result in a smoother pattern). For TS with multiple seasonalities, we
can include multiple sets of Fourier terms.

3.5 BATS and TBATS models
The DHR model mentioned in chapter 3.4.3 can process long seasonal periods very
well but it can not handle non-integer values of seasonal frequency and changes
in period length. To overcome these issues, A. M. De Livera et al. proposed a
framework of models, which adds Box-Cox transformation, Fourier representa-
tions with time varying coefficients and ARMA error correction to exponential
smoothing models. Their approach also includes an evaluation of best model
based on the Akaike information criterion (AIC) due to a significant number of
parameters, which these models use as an input. In this chapter we will describe
basic principles used in this method.

3.5.1 Box-Cox transformations
The Box-Cox transformations are a group of logarithm and power transforma-
tions, which are used to reduce or eliminate changes in the variation of the TS.
Generally, these can be defined for any series, but we will focus only on non-
negative TS.

Definition 7. Let {Xt}t=1...n be a TS, Xt ≥ 0 for every t ∈ N. The Box-Cox
transformations from Xt to X

(λ)
t is given as:

X
(λ)
t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Xλ

t − 1
λ

for λ ̸= 0

ln Xt for λ = 0

where λ is a parameter defining a particular transformation. Back-transform from
X

(λ)
t to Xt is [24]:

Xt =
⎧⎨⎩(λX

(λ)
t + 1)1/λ for λ ̸= 0

exp(X(λ)
t ) for λ = 0.
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3.5.2 BATS model

The name BATS is an acronym for the key features of the model: Box-Cox
transform, ARMA errors, Trend, and Seasonal components. It is described by
a set of parameters (λ, ϕ, p, q, m1, m2, . . . , mT ) to indicate the Box-Cox parame-
ter, damping parameter, ARMA parameters (p and q), and the seasonal periods
(m1, m2, . . . , mT ) [25]. This model is an extension of the Holt-Winters’ additive
method from section 3.3.3 with T seasonal patterns (represented by T seasonal
equations) and damped trend. Modelling and smoothing equations are:

X
(λ)
t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Xλ

t − 1
λ

for λ ̸= 0

ln Xt for λ = 0

X
(λ)
t = ℓt−1 + ϕbt−1 +

T∑︂
i=1

s
(i)
t−mi

+ dt

ℓt = ℓt−1 + ϕbt−1 + αdt

bt = (1 − ϕ)b + ϕbt−1 + βdt

s
(i)
t = s

(i)
t−mi

+ γidt

dt =
p∑︂

i=1
φidt−i +

q∑︂
i=1

θiεt−i + εt, (3.33)

where X
(λ)
t is a TS after the Box-Cox transformation, (m1, m2, . . . , mk) are sea-

sonal periods, ℓt is the local level in a period t, b is the long-run trend, bt is
a short-run trend in period t, s

(i)
t is the i-th seasonal component, dt denotes

ARMA(p, q) process and εt is a WN error term [25].

3.5.3 TBATS model

To further improve the previous model, we can replace seasonal equations s
(i)
t in

(3.33) by trigonometric seasonal formulation, based on the Fourier series [25]:

s
(i)
t =

ki∑︂
j=1

s
(i)
j,t

s
(i)
j,t = s

(i)
j,t−1 cos λ

(i)
j + s

∗(i)
j,t−1 sin λ

(i)
j + γ

(i)
1 dt

s
∗(i)
j,t = −s

(i)
j,t−1 sin λ

(i)
j + s

∗(i)
j,t−1 cos λ

(i)
j + γ

(i)
2 dt, (3.34)

where γ
(i)
1 , γ

(i)
2 are smoothing parameters and λ

(i)
j = 2πj/mi. The modelling

equation is:

X
(λ)
t = ℓt−1 + ϕbt−1 +

k∑︂
i=1

s
(i)
t−1 + dt. (3.35)

This gives us the Trigonometric BATS model (TBATS), which is described by a
set of parameters (λ, ϕ, p, q, {m1, k1}, {m2, k2}, . . . , {mt, kt}).

27



Figure 3.6: A feed-forward neural network consisting of 3 layers. [17]

3.6 Neural Network Auto-Regressive model
A multilayer feed-forward neural network is a type of neural network where in-
formation flows only in the forward direction - i.e. from input nodes, through
hidden nodes and to the output nodes, without any cycles. We can utilise this
kind of system to create an autoregressive model by feeding lagged values of a
TS as an input to the network.

3.6.1 Neural network architecture
In its simplest form, a neural network consists only of an input layer and an
output layer of nodes, which is equivalent to linear regression. More complicated
networks have a number of hidden layers, which causes a non-linearity. Each
layer of nodes uses modified outputs from the previous layer as its input - e.g.
the hidden layer of neural network in figure 3.6 uses weighted linear combinations
of the first layer nodes as its input, then modifies them by a nonlinear function
and outputs them to the next layer[17].

3.6.2 NNAR model
The NNAR(p, k) model is a feed-forward neural network with 1 hidden layer of
k nodes, which uses a linear combination function and an activation function to
produce forecasts, based on p lagged values of the TS. The modelling equation is
[26]:

Xt = w0 +
k∑︂

j=1
wjg

(︄
w0,j +

p∑︂
i=1

wi,jXt−j

)︄
+ εt, (3.36)

where wi,j and wj are connection weights. The transfer function g(x) is defined
as a logistic function:

g(x) = 1
1 + e−x

. (3.37)
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Given a TS with seasonal a pattern, it is useful to add the last observed values
from same season as input – this gives us a NNAR(p, P, k)m model, where m is
a seasonal frequency. It uses (Xt−1, Xt−2, . . . , Xt−p, Xt−m, Xt−2m, . . . , Xt−P m) as
input values and has k nodes in its hidden layer [17].

3.7 Classification and regression trees
Another approach to TS forecasting is to use a decision tree as a predictive model.
Depending on the kind of the target variable, we distinguish two kinds of decision
trees – a classification tree when the target variable has discreet values and a
regression tree when the target variable is continuous. In this chapter we will
discuss basic principles of using this method.

3.7.1 Decision tree
A decision tree is a structure that is used to represent classifying examples – its
nodes represent a test of a certain attribute and its branches show the outcome
of this test. In order to use a decision tree in modelling, we need to provide a
set of features (individual measurable properties of the observed TS), which will
be used in its construction. For TS analysis the most useful features are lagged
versions of the TS itself and, in the case that seasonal patterns are present, Fourier
coefficients. One disadvantage of using this approach is the fact, that it can not
handle a trend term as it uses only rules made on training data. Therefore, the
original TS must be detrended by other methods and the trend term must be
modelled separately (e.g. by the ARIMA model) [27], [28]. An example of a
decision tree constructed on a TS of PM10 concentration is depicted in figure 3.7.

3.7.2 Recursive partitioning
Recursive partitioning is a statistical method used to produce a decision tree
and classify the input population by splitting it into sub-populations. These can
be then split again until the maximal depth of the tree is reached (based on a
predetermined criterion or when all the leaf nodes are homogeneous). At each
step, the split is made based on the independent feature that results in the largest
possible reduction in heterogeneity of the dependent (predicted) variable.

3.7.3 Conditional inference trees
Recursive partitioning can lead to overfitting – a state, where the model corre-
sponds very closely or exactly to the training data. Another way to use recursive
partitioning, which avoids this problem, is a conditional inference tree. This
method takes into account the distributional properties of the data and uses sta-
tistical theory (permutation-based significance tests) to determine which features
to select instead of minimising heterogeneity. If no significant association between
any of the features and the response is found, recursion is stopped [28].
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Figure 3.7: An example of a decision tree constructed using recursive partitioning
with a lag feature and two sets of Fourier terms on a TS of PM10 concentration.
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4. Modelling PMx pollution
In this chapter we use statistical libraries in the programming language R to
model and forecast PM10 pollution, using the statistical methods described in the
previous chapter. Data used for this analysis were collected from a network of air
quality sensors in Prague, which are operated by the Czech Hydrometeorological
Institute (CHMI)1. The collection of data was realised via application that was
designed by J. Źıdek and is described in [29].

4.1 Introduction
In the analysis bellow, we followed principles described in the book ’Forecasting:
Principles and Practice’ by Rob J. Hyndman [17], who is one of the leading
authorities in forecasting and statistics. For the forecasting via regression trees
we followed the method described by Peter Laurinec in [28].

4.1.1 Analysed data
We used data from 5 different sensors in Prague, which are operated by CHMI –
IDs and locations of these sensors sre shown in table 4.1. We were working only
with PM10 concentration as not all of these sensors measure PM2.5, however, all
models are applicable to PM2.5 as well. Data were collected between 25/02/2017
and 09/05/2019 in hourly measurements as an actual PM10 concentration as well
as a 24 hour average concentration. These two sets of data differ only in averaging
used by the latter, which after a few tests was evaluated as redundant – we let the
models handle this task. To further improve the quality of data, we clean outlier
values by replacing them with linear interpolation. The length of the collected
data is too large for some forecasting methods, according to [17] it is unrealistic
for a model to stay the same for long periods of time. Due to this, we chose to trim
the data to a length sufficient to cover several seasonal cycles. We split the data
into training and testing sets, constructed model using the training data and then
evaluated the accuracy against the test data. In order to quantify the accuracy of
our model, we used metrics described in chapter 3.1.2. In the following chapters
we used figures of models from the ASMIA sensor for demonstration, models for
the remaining sensors are shown in figures in appendix A. An example of analysed
data from the ASMIA sensor before and after cleaning the outliers are shown in
figure 4.1.

4.1.2 Challenges in working with hourly data
The main problem we encountered when working with hourly data was multiple
seasonalities. For this reason we could not use any of the basic, single-seasonal
models and had to work mainly with STL, dynamic harmonic regression and other
methods that allow at least double seasonality. For our data we assumed daily
(m1 = 24) and weekly (m2 = 24 · 7 = 168) seasonalities – a monthly seasonality

1http://portal.chmi.cz/files/portal/docs/uoco/web_generator/actual_hour_
data_CZ.html
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Sensor ID Location
AKALA Praha 8, Karĺın
ALEGA Praha 2, Legerova
AREPA Praha 1, n. Republiky
ARIEA Praha 2, Riegrovy sady
ASMIA Praha 5, Smı́chov

Table 4.1: ID and location of selected CHMI sensors which were used for data
collection.
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Figure 4.1: Hourly concentration of PM10 collected by the ASMIA sensor between
March and May 2019 and data with cleaned outliers.

was omitted mainly due to the need to normalise data for months with different
number of days and an increased length of data.

4.1.3 Forecasting with R

Most methods and models described in chapter 3 are already implemented in
the programming language R. We converted our data to R’s time series objects,
which consist of measured value and their associated time stamps, and used the
following libraries to create models and forecasts:

library(tseries) # TS analysis and computational finance
library(dplyr) # grammar of data manipulation
library(forecast) # tools for displaying and forecasting TS
library(xts) # handling of R’s time-based data classes
library(rpart) # recursive partitioning decision tree method
library(rpart.plot) # decision tree plots
library(party) # conditional inference decision tree method
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4.2 Exponential smoothing and STL
For the first experiments we chose exponential smoothing models, namely Holt’s
linear trend and the Holt-Winters’ method. As expected, Holt’s model yielded
only straight lines capturing the trend of the TS – this model does not contain
any seasonal terms, therefore it does not perform well for short term forecasts.
However, it may provide a reasonable approximation for a long period forecasting
as it models the mean value of the series. An example forecast produced by this
method is shown in figure 4.2 for ASMIA sensor (see appendix A, figures A.2,
A.13, A.24 and A.35 for the rest of the sensors).
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Forecast from Holt's method for ASMIA sensor

Figure 4.2: Forecast obtained by Holt’s linear model (ETS(A,A,N)) from data
collected from the ASMIA sensor.

Standard Holt-Winter’s method did not work for any available data – the
forecast library in R simply failed to estimate any valid parameters. To overcome
this, we used the double-seasonal method, which adds a second seasonal equation
to the expression in equation 3.20. This solved the problem and proved to work
surprisingly well. Forecast produced by Holt-Winters’ method is shown in figure
4.3 for the ASMIA sensor (see appendix A, figures A.3, A.14, A.25 and A.36 for
the rest of the sensors).

The next method we used was STL in combination with the exponential
smoothing model. Again, because of the multiple seasonalities present in the
data, we used a multi-seasonal version of this function (MSTL). This method de-
composes the TS into its seasonal and trend-cycle terms and then forecasts each
of them separately via the exponential smoothing method – in our case the SES
model. A forecast produced this way is shown in figure 4.4 for the ASMIA sensor
(see appendix A, figures A.4, A.15, A.26 and A.37 for the rest of the sensors).
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Figure 4.3: Forecast obtained by the Holt-Winters’ double-seasonal method
(ETS(A,A,N)) from data collected from the ASMIA sensor.
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Figure 4.4: Forecast obtained by MSTL (ETS(A,N,N)) from data collected from
the ASMIA sensor.

4.3 ARIMA and DHR
The ARIMA model encountered similar issues to those encountered by the simple
Holt-Winters’ method mentioned above – multiple seasonalities prevented the
model from capturing single seasonal patterns. Due to this fact, only non-seasonal
ARIMA models could be fitted to data which again resulted in mostly straight line
forecasts. A forecast from ARIMA is shown in figure 4.5 for the ASMIA sensor
(see appendix A, figures A.5, A.16, A.27 and A.38 for the rest of the sensors).

To better model seasonalities, we tried to improve our results by using dynamic
harmonic regression with Fourier terms as predictors. We used 10 sine and cosine
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pairs of Fourier terms for m1 = 24 and other 10 pairs for m2 = 168. The error
term was then modelled by ARIMA. The DHR forecast for the ASMIA sensor is
shown in figure 4.6 (see appendix A, figures A.6, A.17, A.28 and A.39 for the rest
of the sensors).
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Figure 4.5: Forecast obtained by ARIMA (3,1,1) from data collected from the
ASMIA sensor.
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Figure 4.6: Forecast obtained by DHR (with ARIMA(1,1,2) errors) model from
data collected from the ASMIA sensor.

4.4 BATS and TBATS
After the success with Fourier terms in DHR, we expected TBATS models to
perform well. These models are generated automatically by a library in R with a
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particular model being selected according to AIC. For our data and forecasting
conditions, models failed to identify the need for trigonometric seasonal patterns
and kept producing BATS models, which once more resulted in mostly straight
lines. TBATS model has been chosen only for data from the ASMIA sensor,
which is shown in figure 4.7. Models for the rest of the sensors are shown in
appendix A (figures A.7, A.18, A.29 and A.40).
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Figure 4.7: Forecast obtained by the BATS(0,399; {0,0}; 0,836; {[24,4]; [168,5]})
model from data collected from the ASMIA sensor.

4.5 NNAR
As with the previous method, parameters for NNAR are chosen automatically
based on AIC. For the majority of these models only a set with length of about
a day has been used as an input, which often resulted in forecasts diverging from
the observed series after a few points. Despite that, for the very short horizon,
this method managed to produce a reasonable approximation. A forecast from
NNAR is shown in figure 4.8 for the ASMIA sensor (see appendix A, figures A.8,
A.19, A.30 and A.41for the rest of the sensors).
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Figure 4.8: Forecast obtained by NNAR(26,1,114)168 model from data collected
from ASMIA sensor.

4.6 RPART and CTREE
The last experiment we tried was to use decision trees using both recursive par-
titioning and conditional inference. Both methods showed promising results for
some sensors, but in the case of ALEGA sensor they slightly diverged from the
observed data. A forecast from RPART is shown in figure 4.9 and a forecast
from CTREE in figure 4.10 for the ASMIA sensor. For the rest of the sensors
see appendix A (figures A.9, A.20, A.31 and A.42 for RPART and figures A.10,
A.21, A.32 and A.43 for CTREE).
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Figure 4.9: Forecast obtained by the RPART from data collected from the ASMIA
sensor.

37



Feb 15 Mar 01 Mar 15 Apr 01 Apr 15
0

50

100

150

Apr 08 Apr 10 Apr 12
0

50

100

150

Date

P
M

10
 µ

g/
m

3

Type Forecast Test data Train data

Forecast from CTREE for ASMIA sensor

Figure 4.10: Forecast obtained by CTREE from data collected from the ASMIA
sensor.

4.7 Comparing used models
All the metrics, which we considered for measuring accuracy, are dependent on
the length of the compared time series. Due to the fact that the forecasting error
increases with the length of the prediction period, we had chosen 3 different hori-
zons for which we evaluated accuracy - short horizon (6h), medium horizon (24h)
and long horizon (144h). Both MAE and RMSE are scale dependent measures,
therefore they can be used only to compare models of the same TS – for the com-
parison between different TS we use MAPE. We have to consider that MAPE
is an asymmetric measure, which means that it penalises under-forecasting more
than over-forecasting, as well as the danger of division by zero when the observed
value is 0. Lastly, it is also important to observe the shape of the forecasted series
– sometimes the straight line is evaluated as the best model by error measures
even though it fails to capture significant behaviour features of the observed data.

Accuracy measures for the short horizon forecasts for the ASMIA sensor are
shown in table 4.2, for the rest of the sensors see appendix B (tables B.1, B.4,
B.7 and B.10). For better clarity, we color-coded columns in each table to high-
light the best models - greener values mean lower errors and redder values indicate
higher errors. In case of the ASMIA sensor we can observe that all models except
Holt-Winters’ method managed to forecast the short horizon with relatively low
errors. Across the sensors, MSTL and DHR models provide good results in every
case while both decision trees produced higher errors.

The medium horizon measures are shown in table 4.3 for the ASMIA sensor,
for the rest of the sensors see appendix B (tables B.2, B.5, B.8 and B.11). In
this case the models that forecasted straight lines, namely Holt’s linear trend,
ARIMA and TBATS, generated low errors for all sensors. As in the previous
scenario, MSTL and DHR managed to create solid forecasts and decision trees
(RPART and CTREE) are among the worst models in every case.
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MAE RMSE MAPE
HOLT 25.29 25.29 37.54
HW 47.48 47.48 79.82
ARIMA 26.32 26.32 39.66
MSTL 18.65 17.54 26.91
DHR 20.54 16.35 27.56
TBATS 20.59 19.96 27.74
NNAR 15.20 13.03 20.60
RPART 18.22 5.98 28.34
CTREE 22.63 13.34 30.62

Table 4.2: Forecast accuracy metrics for the 6h horizon for data from the ASMIA
sensor.

MAE RMSE MAPE
HOLT 15.97 2.26 87.38
HW 29.30 1.64 118.47
ARIMA 15.24 0.64 80.64
MSTL 16.38 5.17 98.58
DHR 16.80 6.28 88.34
TBATS 14.00 2.54 74.13
NNAR 20.49 13.32 131.08
RPART 18.23 12.18 109.68
CTREE 16.89 6.92 90.48

Table 4.3: Forecast accuracy metrics for the 24h horizon for data from the ASMIA
sensor.

MAE RMSE MAPE
HOLT 13.98 0.28 59.32
HW 30.73 19.56 122.49
ARIMA 13.82 2.71 54.61
MSTL 15.14 0.66 65.14
DHR 15.52 2.83 68.25
TBATS 14.64 1.57 59.24
NNAR 25.52 16.25 121.79
RPART 16.60 3.02 70.63
CTREE 14.81 4.31 67.05

Table 4.4: Forecast accuracy metrics for the 144h horizon for data from the
ASMIA sensor.

The long horizon accuracy measures are shown in table 4.4 for the ASMIA
sensor, for the rest of the sensors see appendix B (tables B.3, B.6, B.9 and B.12).
DHR is again among the best models for long-term forecasting joined with Holt’s
linear model and ARIMA. Regression trees (RPART and CTREE) performed
slightly better than in the short horizon and the medium horizon. The NNAR
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model diverged significantly from the observed data for all sensors and produced
higher errors.

In order to better visualise differences between the performance of different
models, we created a plot of their MAPE for all three horizons. This plot for the
ASMIA sensor is shown in figure 4.11 (see appendix A, figures A.11, A.22, A.33
and A.44 for the rest of the models).
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Figure 4.11: Values of the MAPE for all models created from data collected from
the ASMIA sensor for 3 different horizons.

The best average MAPE (see table 4.5) was achieved by the Holt’s linear
method. This was caused mainly by the fact, that this model had low MAPE
in both medium and long horizons for each sensor. However, Holt’s linear model
does not capture any seasonal patterns and fluctuations in TS – if we want to
reflect these, we need to choose another model. The next best models were MSTL
and DHR with close average MAPE. For these two methods we created a plot of
their MAPE across the sensors for all three horizons. These plots are shown in
the figure for MSTL and in the figure for DHR.

Sensor MAPE [%]
Holt 45.65
HW 79.19
ARIMA 57.48
MSTL 55.44
DHR 49.03
TBATS 58.62
NNAR 103.24
RPART 99.16
CTREE 104.94

Table 4.5: The average value of MAPE calculated across all sensors and all 3
horizons.
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Figure 4.12: Value of the MAPE of MSTL models for 3 horizons across the
sensors.

●

●

●

25

50

75

short medium long
Horizon

M
A

P
E

 [%
]

sensor ●AKALA ALEGA AREPA ARIEA ASMIA

MAPE for DHR model 

Figure 4.13: Value of the MAPE of DHR models for 3 horizons across the sensors.
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Conclusion
In this thesis, we outlined the main issues regarding air pollution, its measure-
ments and prediction. We named the main substances responsible for air pollu-
tion, sources of their emission and their effects on humans and the environment.
Further, we researched emerging low-cost sensors used for detection of the pol-
lutants as well as explored larger projects focused on monitoring the climate. In
chapter 3, we explained statistical principles of forecasting univariate time series
and how we can leverage these for prediction of the evolution of air pollution.

In the final part, we constructed several models of the concentration of PM10
pollutant based on data collected from 5 different measuring stations in Prague.
These models were then used to produce forecasts of pollution for the next 6, 24
and 144 hours and their accuracy was calculated. After the evaluation, we con-
cluded that all models except for RPART and CTREE were capable to predict
the 6-hour horizon very well. For the longer horizons, the best method based on
MAPE is Holt’s linear trend which models the mean of the time series. However,
this model does not include any information about seasonal patterns and random
fluctuations and fails to predict peaks in the concentration of PM10. Due to this,
we recommend using MSTL or DHR models, which consistently produced fore-
casts with relatively small errors. These observations were made for the Prague
area – depending on the location and severity of pollution other models could
perform better. Although we forecasted only the PM10, methods that we used
are not constricted to this pollutant and can be used for any univariate discrete
set of data.

We hope that this thesis will contribute to efforts to provide better information
about air pollution and climate change. It provides foundations for the develop-
ment of automatic an modelling system, that will be used to predict potentially
dangerous air pollution situations.

43





Bibliography
[1] WHO. Ambient (outdoor) air pollution. World Health Organization

fact sheets, 2018. URL https://www.who.int/news-room/fact-sheets/
detail/ambient-(outdoor)-air-quality-and-health. accessed on
30/07/2020.

[2] Cedric D. Koolen and Gadi Rothenberg. Air pollution in europe. Chem-
SusChem, 12(1):164–172, dec 2018. doi: 10.1002/cssc.201802292. accessed
on 30/07/2020.
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[13] Jǐŕı Anděl. Statistické metody. Matfyzpress, Praha, 2007. ISBN 8073780038.

[14] Milan Meloun. Kompendium statistického zpracováńı dat. Karolinum, Praha,
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List of Abbreviations
ACF autocorrelation function
ARIMA autoregressive integrated moving average
BATS Box-Cox transform, ARMA errors, trend, and seasonal
CAQI common air quality index
CF covariance function
CHMI Czech Hydrometeorological Institute
CTREE conditional inference trees
DHR dynamic harmonic regression
ETS error, trend, seasonal
EU European Union
HW Holt-Winters’ seasonal method
LED light-emitting diode
LOESS locally estimated scatterplot smoothing
MAE mean absolute error
MAPE mean absolute percentage error
MODIS Moderate Resolution Imaging Spectroradiometer
MOPITT Measurement of Pollution in the Troposphere
MOS metal oxide semiconductor
MSTL multiseasonal and trend decomposition using LOESS
NMVOC non-methane volatile organic compounds
NNAR neural network auto-regressive
PACF partial autocorrelation function
RMSE root mean square error
RPART recursive partitioning
SES simple exponential smoothing
STL seasonal and trend decomposition using LOESS
TBATS trigonometric BATS
TS time series
UV ultra violet
WHO World Health Organization
WN white noise
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A. Figures

A.1 Models for AKALA sensor
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Figure A.1: Hourly concentration of PM10 collected by AKALA sensor between
March and May 2019 and data with cleaned outliers.
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Figure A.2: Forecast obtained by Holt’s linear model (ETS(A,A,N)) from data
collected from AKALA sensor.
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Figure A.3: Forecast obtained by Holt-Winters’ double seasonal method
(ETS(A,A,N)) from data collected from AKALA sensor.
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Figure A.4: Forecast obtained by MSTL (ETS(A,N,N)) model from data collected
from AKALA sensor.
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Figure A.5: Forecast obtained by ARIMA(2,1,2) model from data collected from
AKALA sensor.
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Figure A.6: Forecast obtained by DHR (with ARIMA(3,1,1) errors) model from
data collected from AKALA sensor.
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Figure A.7: Forecast obtained by BATS(0,416; {0,0}; 0,8; -) model from data
collected from AKALA sensor.

Mar 15 Apr 01 Apr 15 May 01
0

25
50
75

100

May 05 May 07 May 09
0

25

50

75

100

Date

P
M

10
 µ

g/
m

3

Type Forecast Test data Train data

Forecast from NNAR for AKALA sensor

Figure A.8: Forecast obtained by NNAR(30,1,16)168 model from data collected
from AKALA sensor.
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Figure A.9: Forecast obtained by recursive partitioning tree from data collected
from AKALA sensor.
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Figure A.10: Forecast obtained by conditional inference tree from data collected
from AKALA sensor.
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Figure A.11: Values of the MAPE for all models created from data collected from
the AKALA sensor for 3 different horizons.
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A.2 Models for ALEGA sensor
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Figure A.12: Hourly concentration of PM10 collected by ALEGA sensor between
March and May 2019 and data with cleaned outliers.
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Figure A.13: Forecast obtained by Holt’s linear model (ETS(A,A,N)) from data
collected from ALEGA sensor.
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Figure A.14: Forecast obtained by Holt-Winters’ double seasonal method
(ETS(A,A,N)) from data collected from ALEGA sensor.
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Figure A.15: Forecast obtained by MSTL (ETS(A,N,N)) model from data col-
lected from ALEGA sensor.
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Figure A.16: Forecast obtained by ARIMA(2,1,2) model from data collected from
ALEGA sensor.
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Figure A.17: Forecast obtained by DHR (with ARIMA(2,1,1) errors) model from
data collected from ALEGA sensor.
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Figure A.18: Forecast obtained by BATS(0,388; {0,0}; 0,873; -) model from data
collected from ALEGA sensor.
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Figure A.19: Forecast obtained by NNAR(28,1,15)168 model from data collected
from ALEGA sensor.
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Figure A.20: Forecast obtained by recursive partitioning tree from data collected
from ALEGA sensor.
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Figure A.21: Forecast obtained by conditional inference tree from data collected
from ALEGA sensor.
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Figure A.22: Values of the MAPE for all models created from data collected from
the ALEGA sensor for 3 different horizons.
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A.3 Models for AREPA sensor
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Figure A.23: Hourly concentration of PM10 collected by AREPA sensor between
March and May 2019 and data with cleaned outliers.
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Figure A.24: Forecast obtained by Holt’s linear model (ETS(A,A,N)) from data
collected from AREPA sensor.
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Figure A.25: Forecast obtained by Holt-Winters’ double seasonal method
(ETS(A,A,N)) from data collected from AREPA sensor.
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Figure A.26: Forecast obtained by MSTL (ETS(A,N,N)) model from data col-
lected from AREPA sensor.
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Figure A.27: Forecast obtained by ARIMA(1,1,2) model from data collected from
AREPA sensor.
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Figure A.28: Forecast obtained by DHR (with ARIMA(1,1,2) errors) model from
data collected from AREPA sensor.
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Figure A.29: Forecast obtained by BATS(0,508; {0,0}; 0,8; -) model from data
collected from AREPA sensor.
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Figure A.30: Forecast obtained by NNAR(25,1,14)168 model from data collected
from AREPA sensor.
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Figure A.31: Forecast obtained by recursive partitioning tree from data collected
from AREPA sensor.
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Figure A.32: Forecast obtained by conditional inference tree from data collected
from AREPA sensor.
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Figure A.33: Values of the MAPE for all models created from data collected from
the AREPA sensor for 3 different horizons.
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A.4 Models for ARIERA sensor
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Figure A.34: Hourly concentration of PM10 collected by ARIEA sensor between
March and May 2019 and data with cleaned outliers.
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Figure A.35: Forecast obtained by Holt’s linear model (ETS(A,A,N)) from data
collected from ARIEA sensor.
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Figure A.36: Forecast obtained by Holt-Winters’ double seasonal method
(ETS(A,A,N)) from data collected from ARIEA sensor.
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Figure A.37: Forecast obtained by MSTL (ETS(A,N,N)) model from data col-
lected from ARIEA sensor.
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Figure A.38: Forecast obtained by ARIMA(1,1,2) model from data collected from
ARIEA sensor.
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Figure A.39: Forecast obtained by DHR (with ARIMA(1,1,2) errors) model from
data collected from ARIEA sensor.
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Figure A.40: Forecast obtained by BATS(0,534; {0,0}; 0,8; -) model from data
collected from ARIEA sensor.
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Figure A.41: Forecast obtained by NNAR(27,1,14)168 model from data collected
from ARIEA sensor.
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Forecast from RPART for ARIEA sensor

Figure A.42: Forecast obtained by recursive partitioning tree from data collected
from ARIEA sensor.
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Figure A.43: Forecast obtained by conditional inference tree from data collected
from ARIEA sensor.
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Figure A.44: Values of the MAPE for all models created from data collected from
the ARIEA sensor for 3 different horizons.
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B. Tables

B.1 Accuracy measures for AKALA sensor

MAE RMSE MAPE
HOLT 7.67 3.49 49.14
HW 9.24 3.30 66.59
ARIMA 7.45 2.60 63.84
MSTL 10.75 0.23 92.01
DHR 7.43 1.85 64.85
TBATS 7.21 1.53 60.15
NNAR 8.11 5.11 45.98
RPART 16.93 16.66 184.79
CTREE 15.91 15.22 174.43

Table B.1: Forecast accuracy metrics for the 6h horizon for data from AKALA
sensor.

MAE RMSE MAPE
HOLT 6.21 4.62 32.85
HW 7.71 5.27 45.16
ARIMA 6.07 2.36 43.48
MSTL 12.10 9.43 72.24
DHR 5.02 0.68 33.38
TBATS 6.40 4.18 47.78
NNAR 7.77 3.70 53.67
RPART 11.57 8.28 91.29
CTREE 11.52 11.35 93.92

Table B.2: Forecast accuracy metrics for the 24h horizon for data from AKALA
sensor.
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MAE RMSE MAPE
HOLT 7.85 4.54 49.71
HW 8.99 3.49 62.02
ARIMA 8.16 1.88 74.31
MSTL 12.89 10.70 82.67
DHR 7.28 0.28 60.93
TBATS 9.82 6.25 100.58
NNAR 27.32 25.82 230.83
RPART 14.93 11.82 146.85
CTREE 14.10 13.17 139.88

Table B.3: Forecast accuracy metrics for the 144h horizon for data from AKALA
sensor.
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B.2 Accuracy measures for ALEGA sensor

MAE RMSE MAPE
HOLT 3.05 3.05 17.73
HW 1.91 0.94 11.55
ARIMA 1.70 1.34 11.31
MSTL 2.29 1.55 16.00
DHR 2.43 2.22 14.15
TBATS 1.20 0.11 7.44
NNAR 2.83 1.93 18.23
RPART 7.97 7.97 51.25
CTREE 11.30 11.30 74.37

Table B.4: Forecast accuracy metrics for the 6h horizon for data from ALEGA
sensor.

MAE RMSE MAPE
HOLT 4.96 4.84 25.36
HW 5.19 3.87 28.34
ARIMA 3.57 1.84 23.38
MSTL 4.36 2.09 26.70
DHR 4.06 2.22 22.22
TBATS 3.28 1.09 20.94
NNAR 4.46 2.93 24.46
RPART 9.78 8.38 63.97
CTREE 13.11 12.69 84.92

Table B.5: Forecast accuracy metrics for the 24h horizon for data from ALEGA
sensor.

MAE RMSE MAPE
HOLT 8.16 7.33 47.01
HW 7.29 1.85 51.90
ARIMA 6.35 3.50 55.66
MSTL 5.98 1.92 46.18
DHR 5.22 0.07 39.17
TBATS 6.62 3.85 58.29
NNAR 28.61 28.22 244.72
RPART 13.89 13.49 113.18
CTREE 15.55 15.48 127.65

Table B.6: Forecast accuracy metrics for the 144h horizon for data from ALEGA
sensor.
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B.3 Accuracy measures for AREPA sensor

MAE RMSE MAPE
HOLT 5.33 0.26 39.00
HW 13.03 13.03 113.09
ARIMA 5.25 3.34 47.57
MSTL 6.63 0.84 50.05
DHR 5.90 1.60 47.58
TBATS 5.21 3.39 47.32
NNAR 5.13 3.32 31.70
RPART 13.67 13.67 121.02
CTREE 14.97 14.97 130.77

Table B.7: Forecast accuracy metrics for the 6h horizon for data from AREPA
sensor.

MAE RMSE MAPE
HOLT 4.25 0.15 37.55
HW 12.98 12.98 117.84
ARIMA 5.40 4.92 56.12
MSTL 4.75 0.55 37.95
DHR 5.09 2.30 51.85
TBATS 6.09 5.64 61.68
NNAR 15.02 13.25 127.81
RPART 10.26 9.77 97.95
CTREE 13.58 13.58 123.84

Table B.8: Forecast accuracy metrics for the 24h horizon for data from AREPA
sensor.

MAE RMSE MAPE
HOLT 6.47 2.86 41.91
HW 11.91 7.22 103.12
ARIMA 7.01 2.60 59.36
MSTL 8.27 5.66 47.79
DHR 6.30 1.04 44.82
TBATS 7.52 3.73 65.01
NNAR 12.47 11.89 60.92
RPART 11.64 9.46 92.28
CTREE 11.94 10.22 98.59

Table B.9: Forecast accuracy metrics for the 144h horizon for data from AREPA
sensor.
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B.4 Accuracy measures for ARIEA sensor

MAE RMSE MAPE
HOLT 4.96 2.87 58.21
HW 6.13 3.90 74.28
ARIMA 6.36 5.99 79.88
MSTL 5.07 0.09 50.38
DHR 4.12 0.84 43.90
TBATS 6.07 5.51 76.06
NNAR 6.11 2.87 66.83
RPART 7.26 3.25 83.80
CTREE 7.91 6.20 99.72

Table B.10: Forecast accuracy metrics for the 6h horizon for data from ARIEA
sensor.

MAE RMSE MAPE
HOLT 5.36 1.78 37.29
HW 8.55 6.67 74.12
ARIMA 6.04 3.83 54.49
MSTL 5.06 1.15 37.44
DHR 5.64 1.23 42.20
TBATS 5.93 3.70 53.23
NNAR 12.32 10.87 98.02
RPART 9.72 7.03 81.93
CTREE 9.98 9.36 81.15

Table B.11: Forecast accuracy metrics for the 24h horizon for data from ARIEA
sensor.

MAE RMSE MAPE
HOLT 6.60 3.18 64.73
HW 7.89 3.50 119.05
ARIMA 7.79 5.59 117.87
MSTL 6.45 1.19 81.61
DHR 6.27 2.45 86.23
TBATS 7.91 5.79 119.73
NNAR 22.55 22.21 271.99
RPART 12.83 11.48 150.49
CTREE 11.62 11.27 156.68

Table B.12: Forecast accuracy metrics for the 144h horizon for data from ARIEA
sensor.
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C. Digital files
This thesis contains following digital files:

forecast PM10.R program, which creates forecasts and exports their plots,
model parameters and accuracy measures

measures.R program, which exports plots of accuracy measures from pre-
pared data
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