
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science

Master Thesis

Deep multiple-instance learning for
detecting multiple myeloma in CT

scans of large bones

Bc. Vojtěch Mach

Supervised by
Dr. rer. nat. Jan Hering

Submitted in August, 2020

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

420955Personal ID number:Mach VojtěchStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Artificial IntelligenceBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Deep multiple-instance learning for detecting multiple myeloma in CT scans of large bones

Master’s thesis title in Czech:

Hluboké učení z více instancí pro detekci mnohočetného myelomu v CT snímcích dlouhých kostí

Guidelines:
Multiple-instance learning (MIL) is a weakly supervised machine learning
approach to deal with sparsely annotated data. Such data occur often in the
context of medical data analysis, where the diagnosis (global label) is given
naturally during the clinical routine but voxel-level annotations are not
provided. The MIL training paradigm is typically included into a CNN-model
via an aggregation layer prior to loss function computation.
The primary goal of this thesis is to evaluate the feasibility of deep learning
MIL for automated classification of CT scans of femur bones. The objectives of
the thesis are
1) Prepare the image dataset for region-based training [3, 5]
2) Study state-of-the-art (CNN-based) MIL approaches [1, 4]
3) Implement and evaluate selected CNN-MIL methods on augmented
datasets (to have voxel-level labels)
4) Adapt/extend the selected CNN-MIL approach to the thesis’ domain
5) Evaluate the best CNN-MIL model on real clinical dataset and compare
against the latest results by traditional MIL classifier [2]

Bibliography / sources:
[1] Durand, T. et al., WELDON: Weakly Supervised Learning of Deep Convolutional
Neural Networks, 2016 IEEE CVPR, pp. 4743–4752.
[2] Hering, J et al., Detecting Multiple Myeloma via Generalized Multiple-Instance
Learning, SPIE Medical Imaging 2018.
[3] Klein, A. et al., Automatic bone segmentation in whole-body CT images.2019
JCARS 14, 21–29.
[4] Kraus et al., Classifying and segmenting microscopy images with deep multiple
instance learning. 2016, Bioinformatics 32, i52–i59.
[5] Martínez-Martínez, F. et al., Fully Automated Classification of Bone Marrow
Infiltration in Low-Dose CT of Patients with Multiple Myeloma Based on Probabilistic
Density Model and Supervised Learning. 2016, Comput. Biol. Med. 71, 57–66.

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Jan Hering, Dr. rer. nat., Biomedical imaging algorithms, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 14.08.2020Date of master’s thesis assignment: 04.02.2020

Assignment valid until: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signatureJan Hering, Dr. rer. nat.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Abstract

The employment of computer aided diagnosis (CAD) systems for interpreta-
tion of medical images has become an increasingly popular topic with the arrival
of modern machine learning algorithms. Convolutional neural networks perform
exceptionally well nowadays in various pattern recognition tasks including image
classification. In this thesis we examine the capabilities of a convolutional neural
network binary classifier as a CAD system for detection of abnormalities in CT
images of femurs. We focus on the diagnosis of multiple myeloma characterized
by symptomatic bone marrow lesions commonly observable through computer
tomography screening. Different approaches to the problem including multiple
instance learning (MIL) were tested. The classifier showed a solid performance in
our fully supervised experimental setting, it however exhibits a serious inability
to learn from multiple instances. We conclude that the proposed neural model
needs a stronger error signal in order to converge in the standard MIL setting
and suggest potential improvements for further work in this area.

Keywords: computer aided diagnosis, multiple myeloma, machine learning, deep
learning, convolutional neural networks, multiple instance learning

Abstrakt

S nástupem moderních algoritmů strojového učení vzrostla popularita tématu
automatické interpretace výstupů zobrazovacích metod v medicíně pomocí počí-
tačů. Konvoluční neuronové sítě v současné době excelují v mnoha oblastech
strojového vidění včetně rozpoznávání obrazu. V této diplomové práci zkoumáme
možnosti využití konvolučních sítí jako diagnostického nástroje pro detekci ab-
normalit v CT snímcích stehenních kostí. Zaměřujeme se na diagnózu mnohočet-
ného myelomu pro nějž jsou charakteristické viditelné léze v kostní dřeni, které lze
pozorovat při vyšetření pomocí počítačové tomografie. Bylo otestováno několik
různých přístupů včetně učení z více instancí. Náš klasifikátor podává spolehlivý
výkon v experimentech s plně supervizovaným učením, vykazuje ovšem zásadní
neschopnost konvergence při učení z více instancí. Předpokládáme, že náš navrho-
vaný neuronový model potřebuje ke konvergenci silnější chybovou odezvu a na
toto téma navrhujeme budoucí možná vylepšení.

Klíčová slova: analýza medicínských snímků, mnohočetný myelom, strojové
učení, hluboké učení, konvoluční neuronové sítě, učení z více instancí

Declaration:

I declare that the presented work was developed independently and that I have
listed all sources of information used within it in accordance with the methodical
instructions for observing the ethical principles in the preparation of university
theses.

Prague, Friday 14th August, 2020

Vojtěch Mach

Acknowledgements

I sincerely thank my supervisor Jan Hering for his guidance during the whole
process of writing this thesis. I am grateful for the opportunity to work on this
interesting topic and I highly appreciate his valuable advice which helped me gain
a deeper understanding of the researched areas. I also want to express my deepest
gratitude to my family and close ones for their relentless support throughout my
studies. This would never have been possible without your help.

Contents

Introduction . 1

1 Background 3
1.1 Medical background . 3

1.1.1 Medical screening . 3
1.1.2 X-ray computer tomography 4
1.1.3 Multiple myeloma . 7

1.2 Technical background . 9
1.2.1 Machine learning . 9
1.2.2 Neural networks . 13
1.2.3 Convolutional neural networks 19
1.2.4 Deep learning . 27
1.2.5 Model evaluation . 32
1.2.6 Multiple instance learning 35

2 Related work 39
2.1 Task-related . 39
2.2 Model-related . 42

3 Dataset 45
3.1 Structure . 45

3.1.1 Original dataset . 45
3.1.2 Derived dataset . 46

3.2 Data cleaning . 47
3.2.1 Femur skew correction . 47
3.2.2 Bone implants . 48
3.2.3 Removing joints . 48
3.2.4 Removing air voxels . 51

3.3 Data flow . 52
3.3.1 Creating femur patches . 53
3.3.2 Augmentations . 54
3.3.3 Transformations . 57

4 Implementation 59
4.1 Software design . 59

4.1.1 Tools . 59
4.1.2 Data-manipulation hierachy 60

4.2 Classifier design . 60

4.2.1 Base network . 61
4.2.2 MIL modifications . 61

4.3 Training settings . 64

5 Experiments 67
5.1 Input arguments . 67
5.2 General settings . 68
5.3 Supervised learning experiment 69

5.3.1 Training . 69
5.3.2 Evaluation . 70

5.4 Multiple instance learning experiment 70
5.4.1 Standard MIL . 70
5.4.2 Transfer learning . 72

Conclusion 75

Bibliography 77

Appendix A 82

Appendix B 85

Introduction

Artificial intelligence and machine learning have attracted an unprecedented
attention in recent years. Even though the origins of AI research date back to
1950s, it was not until this century, where enormous data collections and high-
performance computational hardware became widely available and gave rise to
many successful real-world applications. Various intelligent systems begin to
infiltrate everyday lives of our society on multiple levels ranging from common
consumer electronics to weather forecasts, autonomous vehicles or surveillance
systems. Given the current pace of innovation in this area, it is not surprising
that general public believes that artificial intelligence will be the driving force of
next industrial revolution.

In the past, computer scientists have studied various approaches to AI based
on different mathematical principles although in the modern era of data-driven
businesses and powerful hardware, many researchers have shifted their primary
focus to statistical methods of inference which seem to perform better than others
in the current environment.Nowadays statistical machine learning benefits from
growing computational power and vast amounts of data stored and shared over
the internet every day.

Technological and scientific advances of the last decade has brought a great
popularity to deep learning – an area of statistical machine learning focused on
optimising very complex neural networks using huge quantities of data for the pur-
pose of solving specific abstract tasks from various fields. It has been particularly
successful or even revolutionary in computer vision and natural language pro-
cessing. Deep learning of convolutional neural networks, which deals with models
specifically modified to pick up spatial and temporal relations between patterns in
inputs, has dominated image recognition competitions and is currently regarded
as the state-of-the-art approach for variety of computer vision tasks. Despite
many impressive results, it has also been a subject of criticism mainly address-
ing its undesirable reliance on large datasets and poor interpretability of result
models.

In recent years, deep learning has been applied in a wide range of profes-
sions including medicine. One such example of such interdisciplinary fusion is
computer-aided diagnosis (CAD) – a computer system used by doctors and med-
ical experts such as radiologists as a supportive diagnostic tool for interpretation
of screening examination results. These systems perform image recognition in
order to localize and describe possible areas of interest in the image and therefore
provide the professional with an additional diagnostic input.

The goal of this thesis is to use the aforementioned deep learning methods
to design and implement a prototype of CAD system providing a diagnosis of

1

multiple myeloma based on visible symptomatic bone marrow lesions in CT im-
ages of femurs. We approach this by first researching suitable methods focused
on related work in the area followed by implementation of our proposed solution.
For that purpose we design a binary convolutional neural network classifier fit
for our data and perform extensive data cleaning procedures which aim to help
alleviate the model optimisation process. In the second part of the thesis, we
propose two consecutive experiments with different settings – a traditional fully
supervised learning experiment followed by a multiple instance learning (MIL)
experiment. Both approaches are evaluated and the latter is compared to the
results of related MIL models dealing with similar tasks. Finally, a conclusion
regarding the method and its results is made and possible means of improvement
are suggested.

2

1 | Background

Contents
1.1 Medical background . 3

1.1.1 Medical screening . 3

1.1.2 X-ray computer tomography 4

1.1.3 Multiple myeloma . 7

1.2 Technical background 9

1.2.1 Machine learning . 9

1.2.2 Neural networks . 13

1.2.3 Convolutional neural networks 19

1.2.4 Deep learning . 27

1.2.5 Model evaluation . 32

1.2.6 Multiple instance learning 35

The goal of this thesis is to propose and prototype a computer program which
performs an automatic diagnostic of multiple myeloma from CT images using
selected machine learning methods. This chapter is dedicated to introduction to
both medical and technical notions and description of terminology used through-
out the text of the thesis.

1.1 Medical background

This section provides a basic description of medical foundations of our project
and explains the terminology used in the text. It also gives a brief overview
of the history and present of computation in medical imaging with an accent
on computer tomography. Lastly it focuses on multiple myeloma, a cancerous
plasma cell disorder resulting in lesions and infiltration of bone marrow which is
the focus of the project.

1.1.1 Medical screening

Medical imaging has gone through a remarkable development in the 20th century.
The foundations of radiological imaging were laid by Wilhelm Röntgen in the end
of the 19th century when he discovered X-rays during his research of radiation. In
1895 he captured the famous picture of the skeleton of his wife’s hand producing

3

Chapter 1: Background

the first recorded radiogram in history. Since then, medical imaging has reported
a massive progress most notably with the arrival of computational power in the
digital era as illustrated on figure 1.1.

(a) (b) (c)

Figure 1.1: A comparison of the Röntgen’s 1895 radiogram (a) and its
modern counterpart obtained from a CT scan (b) including its 3D computer
reconstruction (c).

1.1.2 X-ray computer tomography

History

The first commercially used CT scanner was developed by Sir Godfrey Hounsfield
in the early 1970s while conducting research for British company EMI Ltd. Ac-
cording to a popular belief, British music band Beatles indirectly helped finance
Hounsfield’s research, since at the time EMI was also the band’s record producer.
However, the extent of their actual contribution was doubted [1] and so the story
remains unverified. In 1979 Hounsfield was awarded the Nobel prize in physiology
and medicine for his invention.

Mechanism

A CT scanner acquires a cross-sectional 2D image by repeatedly casting X-ray
beams from an emitter to a photosensitive detector while rotating around the
scanned object. By moving the object through the scanner, different cross-
sections are acquired and a stack of these slices creates the final 3D CT image.

Computer tomography has evolved significantly since the first scan performed
in 1973. Output image resolution as well as the scanning speed were both im-
proved by several orders of magnitude. For illustration, a slice resolution went

4

Chapter 1: Background

from the original 80×80 up to 512×512 in common clinical screenings or even to
1024× 1024 in current state-of-the-art scanners [2]. New generations of CT scan-
ners are also able to acquire a high resolution whole-body scan in a much shorter
amount of time then before. The duration of a single scanning was reduced from
> 5 minutes to a couple of seconds [3].

Hounsfield scale

Hounsfield units (HU), also termed CT numbers, are quantitative measurement
units used to interpret the radiodensity of bodily tissues and other materials in
the scanned subject. Hounsfield scale is a linear transformation of the attenua-
tion measurements into a scale where radiodensity of water and air of standard
pressure is defined as 0 HU and −1000 HU respectively. The transformation is
defined as follows:

HU = 1000× µx − µwater

µwater − µair
, (1.1)

where µx denotes an attenuation coefficient of a material or tissue x.
In the context of radiography, the attenuation coefficient associated with a mate-
rial characterizes the ability of an X-ray beam to penetrate the material, where
larger coefficient means larger portion of the beam which passes through without
being absorbed or reflected. This implies that the attenuation value is directly
dependent on the the applied radiation energy which would complicate the in-
terpretation of the results. This is conveniently solved by the Hounsfield scale
transformation which removes this dependence and as a result, HU values of dif-
ferent tissues are constant and invariant to the input voltage. Common materials
and body tissues with their respective Hounsfield units are recorded in table 1.1.

Tissue or material Common values (HU)

Air −1000
Fat −130 to −100
Water 0
Muscle +10 to +40
Brain matter +20 to +45
Bone marrow −150 to −50
Cancellous bone +300 to +700
Cortical bone +1800 to +1900
Metal implants (alloys) > +2000
Raw metals (steel, gold, silver) ∼ 105

Table 1.1: Table of commonly reported CT number measurements of vari-
ous substances. Presented values were compiled from multiple sources.

5

Chapter 1: Background

The Hounsfield scale is theoretically open-ended, although selected bit-depth
of the result gray-scale image defines the range of available values. In practice,
commonly used 12-bit color depth encoding represents exactly 4096 values, which
satisfies the range of −1000 to +3071 Hounsfield units covering all human body
tissues including from soft tissues to bones. In examinations of high-density
materials like metal implants, an extended 16-bit encoding is often used providing
65536 values which covers substances from air to precious metals [4].

CT image interpretation

According to a recent study [5], human eye is believed to detect around 10 million
different colors but only about 30 shades of gray. This estimation shows a great
disbalance in human perception of color versus brightness, which is caused by
biological structure of human visual system.

As implied by table 1.1, a common clinical CT scan of a human body may
contain around 2500 HU values ranging from -1000 HU to 1500 HU, all repre-
senting different gradations of gray. Furthermore, conventional 8-bit or 10-bit
monitors used in medical environment are only capable of displaying 256 or 1024
different shades of brightness respectively [6]. To distinguish between organs of
similar attenuation, the raw values from a CT scan must be mapped to an ap-
propriate range, where the dynamic contrast between such tissues is enhanced –
technique commonly referred to as windowing. The window is a chosen interval
of CT values and it is adjustable by two parameters – width and level. Window
width defines width of the interval of CT values the examiner wishes to display
while window level, also refereed to as window center, denotes the midpoint value
of the chosen interval. A proper windowing is the key to successful diagnosis and
radiologists are trained to apply suitable windowing in different clinical cases.
Table 1.2 presents the most common window widths and levels used in imaging
of different body parts.

Body part Window level (L) and width (W)
(values in HU)

Brain L: 30 W: 100
Heart L: 35 W: 30
Liver L: 65 W: 10
Lung L: −700 W: 400
Fat L: −70 W: 250
Cancellous bone L: 120 W: 200
Cortical bone L: 1000 W: 1500

Table 1.2: A common window levels and widths used in CT examination
of different body parts and organs. Source: [7]

6

Chapter 1: Background

An increased awareness of harmful effects of repeated radiation exposure has
triggered the development of alternative screening methods. Although, low-dose
CT scans are currently performed [3], in some cases such as during pregnancy it is
unwanted to expose patients to any level radiation. Therefore, methods based on
different physical principles started to emerge. Most notable innovations of the
20th century in this area include diagnostic sonography and magnetic resonance
imaging (MRI) described in the following paragraphs.

Magnetic resonance provides a diagnostic power comparable to a CT scan
without emitting X-rays. MRI scanners use electromagnetism and radio waves to
create strong magnetic field and excite certain atoms in the imaged object. The
resultant spin polarization of the atoms induces an electromagnetic radiation
that is detected by the coils in the machine and transformed into the final image.
In clinical screening, hydrogen is often targeted since it is omnipresent in the
majority of living organisms mostly in watery and fat tissues. For this reason
MRI scans, unlike CT or X-ray scans, are especially sensitive to soft tissues.
Exposing the human body to a magnetic field is considered harmless, however
there are limitations to this technique in terms of cost, comfort and materials
which may be a subject to the examination. Compared to CT scans, it is still
a relatively expensive diagnostic method, the scanning procedure takes quite a
long time and it might be uncomfortable especially for claustrophobic patients
due to the loud present noise and constraint movement inside the narrow tube
where the patient is laid.

1.1.3 Multiple myeloma

Multiple myeloma (MM) is a malignant cancerous plasma cell disorder which
causes proliferation of clonal cells in bone marrow. It is the second most common
hematologic malignancy and the most frequent bone cancer [8]. The disease
is most often present in elderly, recorded median ages of diagnosed patients in
2016 settle around 70 years [9, 10]. Studies suggest an incidence of six to seven
positive cases in 100000 per year in USA and Europe, with men being more
likely to be diagnosed than women [9]. The cause of multiple myeloma is not
fully understood, probable factors favoring the occurrence of the disease include
radiation, pesticides, chronic infections and obesity [10]. Common indications of
MM include bone pain, fatigue or anemia, although in many patients symptoms
are latent or vague until more advanced stages of the disease [11].

Diagnosis of multiple myeloma is currently based on blood or urine tests. In
advanced stages of the disease lytic lesions located in bone marrow are observed
under medical screening. Therefore, CT or MRI scans of patients examined
for other reasons might be evaluated by a reliable CAD system for presence of
different injuries or diseases including multiple myeloma.

7

Chapter 1: Background

(a) Sagittal image of lum-
bar vertebrae infiltrated
by multiple myloma.
Source: [12].

(b) An axial CT image of so called raindrop
skull representing a severe case of MM with
numerous lytic lesions. Source: [13].

Figure 1.2: CT images showing infiltration in vertebrae (a) and in a skull
(b).

Symptomatology

Bone pain and fractures are common symptoms caused by destroyed bone struc-
ture by adjacent cancerous cells. In the majority of cases the first infiltration
appears in axial skeleton, therefore vertebrae, ribs, skull or pelvis [14] are usu-
ally among the first areas developing visible symptomatic manifestations. The
infiltration often results in bone pain which is reported by the majority of MM
patients [15]. These deformations can be observed through medical imaging in a
form of osteolytic lesions spread over bone marrow [15]. The lesions are charac-
teristic areas of increased osteolysis with highly suppressed or absent osteoblast
function [8]. A generally recommended diagnostic imaging method is a low-dose
whole-body CT scan, alternatively other more sensitive methods such as MRI or
PET might be used to reveal other MM lesions in soft tissues [10, 16]. Under
CT screening, the bone marrow infiltration usually appears in a form of small
localized islets of changed density. According to a recent study, the radiodensity
of the medullary lesions was found to range from −90 HU to 70 HU [17].

The osteolytic lesions are particularly relevant for this thesis since they rep-
resent the basis of our practical project. Their role in the system prototype
implementation phase is further explained in chapter 3. Lesions present in severe
multiple myeloma cases are clearly distinguishable as shown on figure 1.2.

In serious stages of the disease, one might also observe so called endosteal

8

Chapter 1: Background

scalloping, an etching in the inner wall of cortical bone caused by a growth of
neighboring lesions (Fig. 1.3). Scallops have a destructive effect on bone rigidity
and may lead to fractures.

(a) Multiple scallops in cortical femur. (b) Endosteal scallops and pro-
nounced lytic lesions in a severe case
of MM.

Figure 1.3: X-ray (a) and CT (b) screenings of endosteal scalloping in fe-
murs caused by multiple myeloma. Affected areas are indicated with arrows.
Source: [12].

1.2 Technical background

Following sections provide an insight to techniques used in the development of
the thesis project. General notions and terminology used in the field of machine
learning are explained in the beginning. The main attention is paid to neural
networks, especially to convolutional networks and deep learning. The final sec-
tion explains the notion of multiple instance learning, its origins and meaning in
the context of our project.

1.2.1 Machine learning

Machine learning (ML) is a field of artificial intelligence that aims to extract
knowledge, infer facts and find relationships in collections of data with an intent
to generalize on new unseen data of the same domain, predict development of a
modelled process or provide other reasoning. For that it exploits a number of
mathematical concepts like statistics, logic, linear algebra or numerical optimisa-
tion and offers algorithms which are designed to run effectively on a computer.
The mechanisms of these algorithms resemble human learning process, hence the
name.

9

Chapter 1: Background

History

The origins of machine learning date back to 1950s but its true potential became
apparent in the current century, especially in the second decade. A considerable
portion of ML practice overlaps with data mining – a formerly used technique at-
tempting to extract knowledge from large datasets. Even though both share a few
common techniques to pursue similar goals, nowadays data mining may already
be considered a subset of machine learning since the scope of machine learning
grew immensely over recent years. The main difference lies in used algorithms –
while data mining works mostly with clustering algorithms in order to categorize
data, ML deals with much broader set of tasks ranging from self-improving al-
gorithms to image recognition systems or even generative models which learn to
sample an entirely new data from a given domain.

Paradigms

Structuring the whole field of machine learning into disjunctive sections is not
trivial because many interdisciplinary ML approaches already exist, but the fol-
lowing list provides a basic categorization of modern machine learning algorithms
into three high-level paradigms distinguished by the nature of the task, structure
of available data and recommended optimisation processes.

1. Supervised learning

The learner is provided annotated data usually in a form of data-label
pairs. Depending on the annotation coverage we distinguish between differ-
ent types of supervision. For instance, weakly supervised learning studies all
kinds of tasks with incomplete dataset annotations. On the contrary, fully
supervised learning is a simpler setting where every data point is assigned a
label. The systems learning under this paradigm repeatedly cycle through
the data to learn probabilistic mapping from the input space to the space
of outputs. Output predictions are then compared to the sample outputs
and an error is measured which is subsequently used to adjust the system
properties in order to yield better predictions in future iterations. Super-
vised learning is widely used for plethora of classification and regression
tasks and it recently achieved a notable industrial success in combination
with neural networks, which are thoroughly described in 1.2.2.

2. Unsupervised learning

There are many real-world tasks based on data collections which lack an-
notations for various reasons – they might be anonymized for instance or

10

Chapter 1: Background

not exist at all. In such cases, clustering algorithms represent a popular ap-
proach to provide reasoning and inference over such data. These techniques
are widely employed in market applications such as product recommenda-
tion systems.

3. Reinforcement learning

Reinforcement learning studies the behaviour of an abstract agent and its
interactions with a surrounding environment. The agent learns to optimize
its behaviour continuously from feedback signals received upon performing
actions which affect the environment as depicted on figure 1.4. Problems in
this area are usually modelled as Markov decision processes and applications
include robot control, expert-level game systems etc.

Agent

Environment

Action at in state stNew state st+1 Reward rt+1

Figure 1.4: A schematic image of the action-reward mechanism in a typical
reinforcement learning setup.

These three categories roughly encompass most of the currently popular ma-
chine learning techniques though, it may be rather oversimplified as new ap-
proaches overlapping and fusing multiple paradigms emerge nowadays, but it will
suffice for the scope of this thesis.

Statistical machine learning

A comparably important distinction can be made regarding the different mathe-
matical fundamentals used in the field. This addresses not solely machine learning
but the whole AI which was approached from different technical and philosoph-
ical angles in the past. Two main competing ideological trends were symbolic
AI relying on mathematical logic and reasoning over explicitly stated rules and
non-symbolic AI focusing mostly on statistical inference over data.

While the symbolic AI was in the center of focus for many years in the previ-
ous century, probabilistic methods became increasingly accurate and successful in
the modern world where shortage of neither data nor computational resources is a
limiting factor. The current century has seen a tremendous increase in amounts
of all kinds of data stored, shared and transferred over the internet. The rise

11

Chapter 1: Background

of personal computers followed by the era of smartphones and other multimedia
gadgets, worldwide internet access, social websites, internet of things, cloud stor-
age etc. all contributed to this phenomenon which resulted in the current era of
data-driven businesses.

Additional benefits of statistical models include their robustness against un-
known or malformed inputs and the ability to increase their accuracy. Algorithms
which learn rules and concepts automatically from observations may be improved
by simply supplying more data, whereas rule-based systems can only be improved
by providing more complex rules, which is a substantially more difficult proce-
dure.

Current state of AI

Artificial intelligence in general has gone through a few periods of optimistic and
pessimistic eras in its long history of more than seventy years as shown on figure
1.5. Unfulfilled expectations or funding cuts have been some of the triggers for
periods of lost interest and decreased enthusiasm about its abilities aptly coined
as AI winter.

Figure 1.5: Illustration of the timeline and milestones of the AI research.
Source: [18]

Its renaissance which we observe today is caused mainly by the enormous
quantities of available data and increase in computational power which are two
essential ingredients for fruitful applied statistical machine learning. Addition-
ally, the field has been revolutionized by the arrival of rediscovered methods like
deep learning and complex neural networks which flourished in the modern envi-
ronment. Over the course of the past decade they have become extremely popular

12

Chapter 1: Background

x2 w2 Σ a

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 1.6: A schematic picture of a single neuron unit.

after a breakthrough success they have achieved in various tasks across different
areas of AI. These methods as well as the events leading to their current position
are explained thoroughly in the following sections.

1.2.2 Neural networks

An artificial neural network (ANN) is a parametrized connectionist model of a
function approximator f that performs a mapping f(x,θ) : x −→ y, where x ∈ X
is an element from an input space X, y ∈ Y is an element of an output space
Y and θ is the set of parameters. The system was inspired by the structure of
a biological brain where interconnected neurons receive and output signals using
electrical impulses. It can be interpreted in a form of a directed graph struc-
tured in a sequence of layers performing linear and non-linear transformations to
given inputs. This analogy is convenient for schematic illustrations of different
architectures.

Neuron structure

A building block of every neural network is called neuron and it is a simple
function that calculates dot product of an input vector x with a set of weights w
and a bias b according to the formula

y = a(wTx+ b),

where a is a non-linear transformation function also referred to as activation.
The bias b is usually incorporated in the weights vector for faster computations
and simpler notation. A graphical representation of neuron is shown on figure 1.6.

Neurons in a neural network are arranged in multiple layers where outputs of
one layer are the inputs of the next layer with the exception of the first and the
last layer. In a fully connected neural network, every neuron from layer l takes
output of every neuron from layer l − 1 as its input.

13

Chapter 1: Background

For historical reasons a single neuron with a step function as activation func-
tion is also called perceptron or single-layer perceptron. Similarly, since neural
networks are structured layers of perceptrons they are sometimes called multi-
layer perceptrons (MLP). This connectionist framework is quite flexible for repre-
sentation of other machine learning models as well. Logistic regression, a popular
mathematical model of a binary classifier, can be also expressed and optimized
in this context as a single neuron with sigmoid activation function. The same
model with identity activation then represents a linear regression.

Typology

A design and architecture of ANNs is an extensive area of study with multiple
branches which is beyond the scope of this thesis, but we may present the two
most prominent types of networks and highlight the contrast between them.

The first type, a feedforward neural network, is the simplest network archi-
tecture template. These networks can be formalized as directed acyclic graphs
(DAG) and they feature multiple consecutive layers of neurons, specifically an
input layer followed by one or more hidden layers and an output layer. The main
characteristic feature is that the data always flow in a fixed direction from the
start in a form of input to the end of the network where outputs are returned
(Fig. 1.7).

Figure 1.7: A fully connected feedforward neural network with one hidden
layer performing a function f : R3 → R2; y = f(x). The edges oriented in
the direction of output indicate the flow of the tensors through the network.

The number and shape of hidden layers vary depending on the network’s
purpose. For instance, undercomplete autoencoders are feedforward networks

14

Chapter 1: Background

commonly used for input dimensionality reduction and vector embedding and
therefore often contain narrower hidden layers resembling an hourglass shape
(Fig. 1.8). Complementary, hidden layers in image recognition networks typi-
cally grow wider towards the middle of the network followed by narrower layers.

Figure 1.8: Schematic image of a basic undercomplete autoencoder. The
model learns to reconstruct an input after passing it through the bottleneck
architecture. The middle red-colored layer contains a latent representation
of input in a lower-dimensional space. Source: [19].

Despite its simplicity, feedforward architecture is widely popular and well-
performing over a variety of domains. It is the basis of the current state-of-the-art
models performing image and video recognition and other classification tasks.

The second achitectural template is a recurrent neural network (RNN), which
is characterized by a cycle in its graph representation and the data flow is there-
fore not unidirectional, unlike in the feedforward design. The building block of
an RNN is a complex computational neuron-like cell unit which links its output
back to itself over the cyclic connection. Due to their recurrent nature, RNNs
are usually visualized by unrolling the structure for several timesteps. These
networks process sequences of inputs while feeding the current output of the cell
back to itself as an additional internal state input along with the next external
input in the sequence. The role of the state input is to capture long-distance
relationships between patterns in the input sequence and it is often compared to
a kind of simplistic memory unit which captures the current state of the network
in the context of the modelled system. This property is exceptionally impor-
tant when dealing with task featuring temporal dimension and logically ordered
sequences of inputs, in particular text or video. One of the fields most revolution-
ized by application of RNNs is natural language processing (NLP) – an area of
machine learning which focuses on machine translation, speech recogniton, text
understanding and generation.

15

Chapter 1: Background

Activation functions

Activation functions are the essential part of every neural network as they allow
the model to fit very complex functions and have a large impact on the opti-
misation process. A neural network without non-linear transformations is only
capable of approximating affine functions since composition of multiple affine
transformations is again an affine transformation (proof omitted). This implies
that a multi-layer network featuring only linear layers has an identical expressive-
ness as a single-layer linear perceptron. Such a network, if treated as a classifier,
produces a linear decision boundary in the feature space, which means it is only
able to perfectly classify a linearly separable data. The XOR function is one such
example of a simple but linearly non-separable problem. It was this issue which
in 1969 triggered an AI winter which lasted for almost two decades [20].

−4 −2 0 2 4
−1

−0.5

0

0.5

1

σ(x)

tanh(x)

(a) Sigmoid (σ) and hyperbolic tan-
gent (tanh) are both bound and satu-
rating.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

σ′(x)

tanh′(x)

(b) Primes of sigmoid and hyperbolic
tangent. Maximum gradient value is
much higher for the tanh function.

Figure 1.9: Sigmoid and hyperbolic tangent functions (a) and their re-
spective primes (b). Hyperbolic tangent is a superior option for activation
function due to its higher maximum gradient value and centering in zero
point.

In the past the most used activation functions were sigmoid and hyperbolic
tangent (Fig. 1.9). Both of these functions are saturating, which means that they
are bound and on their extremities their gradients converge to zero. This com-
plicates the optimisation of neural networks, since small gradient values result in
small weight adjustments which consequently inhibits or slows down the process
substantially. The sigmoid function was formerly popular for its connection to
activation of real biological neurons, however it has a few extra drawbacks apart
from the mentioned saturation property. It also has an undesirable property of
not being zero-centered. This has reportedly a negative impact on the train-
ing process, therefore the hyperbolic tangent was usually recommended instead.
Although this issue is mitigated by modern batch optimization methods, it has

16

Chapter 1: Background

already been widely replaced by ReLU activation and its modifications.

ReLU is a much simpler piecewise linear function defined as max(x, 0), which
is much computationally efficient than the previously mentioned functions. It
does not suffer from the saturation issues and its gradient is 1 for all positive
inputs, which is also beneficial. Nevertheless, similar problems might arise due to
its flat part where gradient is zero which might theoretically cause some neurons
to degenerate and yield a constant zero output for all inputs. This phenomenon
was termed dead ReLU and described in [21]. Even though modern stochastic
batch optimization methods mitigate this issue it triggered inventions of different
parametric variations which aim to fix this problem (Fig. 1.10).

−4 −2 0 2 4

−1

0

1

2

3

4
ReLU

(a) ReLU activation function.

−4 −2 0 2 4

−1

0

1

2

3

4
Leaky ReLU

ELU

(b) Leaky ReLU (a = 0.2) and Expo-
nential linear unit (α = 0.5).

Figure 1.10: ReLU (a) and two of its parametric variants (b) that avoid
the flat part and its negative effects.

Optimisation process

Formally, let X be an input feature space and Y be an output label space. The
standard process of fully supervised learning involves learning a map X 7→ Y
from a set of n labelled pairs {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi ∈ X is a
training sample and yi ∈ Y is a label associated with xi. Training set is then a
finite set T ⊂ X of observations xi and, accordingly, the learning phase is called
training.

Among many different optimisation methods which are studied in the context
of neural networks, first-order gradient-based methods are currently the most
popular. These algorithms iteratively minimize a criterion function by taking
proportional steps opposite to the gradient in a given point. Modern training
schedules are very diverse, but in general a single iteration of the training loop
consists of the following sequence of actions:

1. A sample input is processed by the model yielding an output.

17

Chapter 1: Background

2. The output is compared to the sample output and an error is measured
using a predefined criterion function. The error and the criterion are called
loss and loss function respectively.

3. The loss is differentiated with respect to all the network parameters and
the parameter gradients are obtained. This done efficiently using the back-
propagation algorithm.

4. The gradients are used to adjust the parameters under a chosen optimiza-
tion schedule. The adjustment depends on the chosen optimizer and other
involved regularization techniques.

The backpropagation algorithm computes partial derivatives of the loss func-
tion with respect to all network weights by repeatedly applying the chain rule
transferring the network from the back to the front one layer at a time.

A loss function L is an arbitrary function differentiable with respect to the
network parameters. In classification tasks, the output of the model is usually a
discrete probability distribution over the domain classes C. To be able to measure
the error of the output distribution, the true class label is also represented as a
categorical one-hot distribution over the classes with one assigned at the index of
the true label and zeros elsewhere. Then we can measure the difference between
the two distributions by a crossentropy function defined as

LCE(ŷ, y) =
∑
i∈C

−yi log (ŷi) ,

where for i ∈ C, yi and ŷi are the i-th elements of the distributions y and ŷ
respectively. A binary crossentropy loss lBCE is a special case of crossentropy loss
used in two-class classification problems and has the following formula

LBCE(ŷ, y) = −(y log(ŷ) + (1− y) log(1− ŷ)).

Let f(x;θ), y) be a model output computed with parameters θ and let L be
a loss function. Then

J(θ) = E(x,y)∼p̂T L(f(x;θ), y)

is an expectation of the loss over labeled samples (x, y) from an estimated training
data distribution p̂T . Since we aim to minimize the loss, we want to find θ∗ such
that

θ∗ = argmin J(θ).

Gradient methods allow us to approximate θ∗ by iteratively subtracting a scaled
gradient of J with respect to parameters J(θ), denoted

θ ← θ − α∇θJ(θ),

18

Chapter 1: Background

where α < 1 is called learning rate.
Following list presents three basic gradient descent variants used for neural

network optimisation:

• Batch gradient descent calculates the criterion J(θ) using the whole training
set T of cardinality M as

J(θ) =
1

M

M∑
i=1

L
(
f
(
x(i);θ

)
, y(i)

)
. (1.2)

This might be computationally infeasible for larger datasets of high - di-
mensional data due to memory requirements. The gradient then follows the
actual sharpest descent towards the local or global minimum of the criterion
function.

• Stochastic gradient descent (SGD), uses only a single random sample from T
to approximate∇θJ(θ). This estimate is naturally quite noisy, therefore the
gradients often follow suboptimal directions. However, for simpler problems
with a smoother function landscape, SGD offers probabilistic guarantees of
convergence.

• Minibatch SGD combines the best of two previous methods as it uses a
small random subset of m samples from T called minibatch in equation
1.2 to better estimate the true gradient. There is a trade-off between the
computational cost and the accuracy of the estimate which is adjustable
by a hyperparameter controlling the size of the minibatches. This option is
usually the preferred approach to neural network optimisation.

1.2.3 Convolutional neural networks

In computer vision, the second decade of this century was dominated by deep
convolutional networks (CNN). In the past decade, different variations of CNNs
ultimately surpassed other alternative approaches and have become the model
of choice for various image processing tasks. Convolutions have proven to be a
superior tool for pattern recognition in domains of high-dimensional data with
spatial relationships such as audio signal, time series, images and videos.

History

At the turn of the millennium a team of scientists led by Yann LeCun – a com-
puter vision pioneer and one of the most respected reasearches in the field –
designed and deployed a multi-layer convolutional network named LeNet to rec-
ognize hand-written characters on cheques. This was an unusual method at the
time, though it achieved a record performance and was reportedly widely used

19

Chapter 1: Background

in commercial sector in US and Europe. In his speech at CERN colloquium in
2016, LeCun stated that by estimation 10− 20% of all US checks were processed
by his system in the early 2000s [22].

As a lifelong machine learning practitioner and a strong advocate of con-
volutional networks, LeCun successfully applied CNNs in multiple consecutive
projects throughout his scientific career tackling some of the more challenging
tasks of computer vision like face detection[23], object detection [24] and image
segmentation [25]. All of these methods incorporated convolutions and achieved
comparable results to the then state-of-the-art performance or even improved it
in some cases. A hand-written ZIP code recognition system from 1989 [26] was
one of the first demonstrations of the power of convolutions in pattern recognition
tasks.

Structure

CNNs were designed to specifically address issues that make fully connected neu-
ral networks unsuitable for dealing with structured high-dimensional data.

First, if all pixels of a three-channel RGB image are used in an input vector,
the number of network parameters becomes infeasibly large and the complexity
of the network becomes unmanageable.

Secondly, fully connected neurons are not able to reliably encode local inter-
actions between semantically connected input signals. In case of images, depicted
objects usually have a coherent structure given by neighboring pixels of a local-
ized region. Connecting every pixel of an input image to every neuron of the first
fully connected layer disregards this input property.

Lastly, if one wants to detect patterns in an input with spatial or temporal
dimensions, it is reasonable to expect that the patterns travel across the input.

All these these issues are addressed by structural aspects of a CNN resulting
in the following properties:

1. Parameter sharing

2. Local interaction filters

3. Translation or shift invariance

In order to explain these concepts, we must first describe the mechanism the
specialized CNN layers. Since many modifications and variations exist, we only
provide a description of these concepts and structural principles of a basic CNN
used in simple image recognition tasks. Therefore in the following text, words
input and image might be considered equivalent even though the input domain
is not restricted to images as mentioned earlier.

There are three main types of layers in a common CNN model:

20

Chapter 1: Background

• Convolutional layers performing feature extraction usually followed by ReLU
activations

• Pooling layers subsampling tensors processed by the network

• Trailing fully connected layers which perform a classification over features
provided by the preceding layers

A convolutional layer consists of a given number of kernels or filters which
slide over the input in a predefined fashion and calculate cross-correlation in each
position. A filter is a small rectangular region which simulates a receptive field
usually in a form of a 3×3 or 5×5matrix of trainable weight values and an optional
bias. Cross-correlation is a mathematical operation related to convolution which,
in a discrete case, can be viewed as a dot product of input tensor and the sliding
tensor, the filter in this case. A single output of cross-correlation between a kernel
and an input volume is a scalar value which represents a measure of similarity
between the kernel pattern and patterns in the image positioned on different
places in the input. As a kernel slides over the input volume it produces an
output called activation map or feature map, which represents an activation of
its pattern on different positions in the input. This process is also called filtering
and addresses the local interactions between input values.

Figure 1.11: The calculation of matrix dot product or cross-correlation on
a two-dimensional input. Source: [27].

Although the operation is theoretically applicable on inputs of arbitrary di-
mensionality, in practice 1D, 2D and 3D convolutional layers prevail as they are
sufficient for most tasks. A demonstrative example of calculation of a 2D cross-
correlation is shown on figure 1.11.

21

Chapter 1: Background

The structure and behaviour of convolutional layer is subject to a rich set of
hyperparameters defined prior to the training by the user, such as stride, kernel
size or padding. The same hyperparameters also apply to a pooling layer described
below. The role of different hyperparameters used in training and design of neural
networks is further described in 1.2.4.

Every kernel of a convolutional layer is responsible for filtering the input for
different pattern. In a fully supervised setting these patterns are gradually learned
by a standard training processes described in 1.2.2.

(a) The × operation denotes cross-
correlation of the gray kernel volume
with an input frame volume in a single
filtering step.

(b) Each layer of the activation map
volume on the figure is a result of the
filtering process with a kernel of re-
lated color.

Figure 1.12: An illustration highlighting layers of convolutional kernel vol-
ume used on a 3-channel RGB image (a) and a final activation map volume
(b). Source: [28].

Parameter sharing is another important property of a convolutional layer
which solves the problem of the network complexity by restricting every filter
to a given set of weights. For illustration, a fully connected layer accepting a
high-dimensional input like a one-channel image of N × N pixels would contain
N2 weights for every neuron. Conversely, a convolutional layer with parameter
sharing and a single 3 × 3 kernel only contains 9 weights regardless of the in-
put dimensionality. Refer to a schematic depiction on figure 1.13. An intuitive
reason behind this technique is that patterns in the input image are not bound
to their positions, which means the filter will register the same activation for a
given pattern regardless of its position in the input volume. This dramatic param-
eter reduction helps to avoid overfitting and supports generalization performance.

Creating convolutional layers with a high number of kernels is desirable since
it increases the capacity of the network, i.e. more filters are able to recognize
more input patterns or their high-level combinations. This however increases the
input depth linearly, therefore pooling layers were introduced to counterweight
the effect and keep the input size manageable. The role of the pooling layer in
a CNN is to reduce a spatial resolution, more specifically to decrease width and
height of its input by merging regions of input values. The operation is very
similar to the previously described filtering in a convolutional layer since pooling

22

Chapter 1: Background

Figure 1.13: An illustration of the filtering process and weight sharing in
a case of one-dimensional input with strides of 1 (left) and 3 (middle). The
kernel weights (right) are shared through all of the filtering steps. Source:
[29].

layers also produce outputs by using a fixed-shape pooling window sliding across
the input. They usually do not contain any trainable parameters though and they
only perform very simple operations. Instead of cross-correlation they typically
compute maximum or average of the values in their current pooling window (Fig.
1.14).

(a) Max-pooling and average-pooling
are two popular methods of pooling in
common CNNs. Depicted are kernels
of size 2× 2 and stride 2. Source:[30].

(b) Pooling operators increase the tol-
erance of a network to input distor-
tions and widen the spatial extent of
subsequent filtering layers. Source:
[28].

Figure 1.14: A pooling calculation executed by two popular pooling oper-
ators (a) and a schematic illustration of pooling distortion tolerance.

Parameter sharing and pooling operations together contribute to one of the
most important characteristics of CNNs that is translation invariance. It is a
property of mathematical objects and has connotations in geometry, but in the
context of convolutional neural networks it means that the internal state of the
network does not depend on positions of patterns in the input. This is an essential
feature for a successful object recognition, since we expect an output to depend
only the presence of the pattern only, not on its placement.

Note that shift invariance does not imply the existence of other invariances
though. For instance, rotation, scale or flip invariances are also important but

23

Chapter 1: Background

they are not guaranteed by default. If these properties are demanded, they are
usually achieved by techniques of data augmentation, although it requires an
increased network complexity to encode the broader space of internal represen-
tations. Alternatively, specialized CNN variants designed to address these short-
comings were proposed [31, 32].

Nowadays a common approach to design of a convolutional network purposed
for classification is to treat the convolutional layer, activation layer and pooling
layer as a coherent structural block. These blocks are then stacked on top of
each other and finally, depending on the use case, appended with a few fully con-
nected layers as shown of figure 1.15. Note, that due to inconsistent terminology,
convolutional layer sometimes refers to this block of compound layers [27].

This cascade structure altering the feature extraction and pooling allows layers
closer to the input to learn low-level features e.g. lines and edges, and farther
layers to learn more abstract high-level features like shapes and textures [33].

Figure 1.15: A schematic illustration of the block structure in architecture
of a deep convolutional network image classifier. Source: [34].

The input volume changes its spatial dimensions depending on the filtering
and pooling settings in the network. The kernel stride and size affect the width
and height of the input whereas number of kernels in a convolutional layer defines
the depth of the input. The shape of convolutional layer output is determined by
the following formulas:

Wout =
Win − F + 2P

S
+ 1,

Hout =
Hin − F + 2P

S
+ 1,

where Win, Wout and Hin, Hout denote widths and heights of input and output
respectively. F , S and P represent hyperparameters of the layer, specifically
kernel size, stride and padding. A demonstration of the effects of each CNN layer
on the input shape is shown on figure 1.16.

ImageNet era

ImageNet is the largest online public database of annotated images. It was cre-
ated in late 2000s by Fei-Fei et al.[36] and it shares some features with WordNet,

24

Chapter 1: Background

Figure 1.16: A simple CNN architecture used for recognition of handwrit-
ten digits. Similar convolutional networks gradually decrease width and
height of the input in pooling layers to counterweight the increase of its
depth in convolutional layers. Source: [35].

another public database, which reportedly served as an inspiration for the project
in terms of hierarchical structure of the annotations. Nowadays ImageNet stores
millions of images categorized into several thousand classes.

Between 2010 and 2017, ImageNet hosted an annual image recognition compe-
tition called ImageNet Large Scale Visual Recognition Challenge (ILSVRC) where
contestants designed and submitted increasingly complex models every year in
order to surpass the competitors while pushing the boundaries of the field. Its
popularity quickly increased and within a first few years it became respected as
a benchmark for measuring performance of state-of-the-art image classifiers from
world’s top research teams.

Popularization

There were a few notable milestones in the relatively short history of ILSVRC.
Probably the most famous contribution was submitted in 2012 by Krizhnevsky
et al. who proposed a novel approach to the image classification task by using
a deep convolutional neural network commonly referred to as AlexNet [37]. The
team won by a substantial margin and marked the beginning of the new era for
the ILSVRC competition and for the whole image recognition field. In just two
years after the AlexNet submission a majority of competitors shifted their focus
to CNNs [22] abandoning all alternative methods.

Since 2012, every single one of the winning ILSVRC models used a CNN with
some tweaks and improvements allowing for deeper architecture, faster conver-
gence or better generalization. This vigorous research of increasingly deeper neu-
ral networks was supported by newly emerging technological abilities in terms of
both software and hardware. As business gained interest noticed this phenomenon

25

Chapter 1: Background

and gained interest in it, many robust optimised deep learning frameworks and li-
braries like TensorFlow and PyTorch were developed facilitating the whole design,
training and deployment process. Furthermore, utilization of a specialized hard-
ware optimised for fast matrix calculations like graphic processing units (GPU)
and later tensor processing units (TPU) was a breakthrough innovation which
generally sped up the training by a few orders allowing teams to train even very
deep architectures with hundreds of layers in reasonable time horizons.

To illustrate the remarkable pace of the research powered by the ImageNet
competitions, let us consider two winning models just three years apart. The
AlexNet CNN in 2012 featured 8 layers whereas the ResNet CNN in 2015 already
contained over 150 layers and the respective top-5 errors dropped from around
16% to below 4%. The estimated human recognition rate of 5.1% [38] was already
surpassed by submitted models in 2015 [39], yet the accuracy of the winner models
in the following years kept improving to the point where the classification task
was pronounced solved (Fig. 1.17. The last ILSVRC competition was hosted in
2017 where the winning model achieved 2.251% top-5 error rate [40], less than a
half error of the human error rate.

Figure 1.17: A graph showing the top-5 error development of ILSVRC
winner models from the pre-convolutional era, over AlexNet in 2012 to
ResNet in 2015. Source: [41].

Present state

The success of AlexNet was so significant it attracted a massive attention to neu-
ral networks in general. Over the following years, not only image recognition
but also other research areas reported major leaps in progress by employing deep
neural networks. A notable example of a field revolutionized by deep learning

26

Chapter 1: Background

is natural language processing (NLP) which deals with speech recognition, ma-
chine translation, text generation, sentiment analysis and more. Other fields also
benefited from the rediscovered potential of neural networks. Sophisticated im-
age perception tasks like video object recognition, tracking and segmentation has
seen a dramatic improvement with this approach as well. Reinforcement learning
adopted neural networks and merged them with the established algorithms. The
result of this fusion was popularized under the name deep Q network an origi-
nated from experiments by Mnih et al. They combined the Q-learning algorithm
with a deep convolutional neural network to create a model which learns to plays
a several old-school Atari games only from observations of raw pixel values of the
game scene and a reward signal [42, 43], reaching a remarkable ability to learn
the game rules and mechanics. A similar fusion pattern was also used in another
expert-level game systems named AlphaGo and AlphaZero. These algorithms
were optimised to play the game of Go on a superhuman level and they were able
to beat the world champion for the first time in 2016 [44]. The game of Go was
previously dominated by humans due to its enormous state space which was too
complex for formerly used algorithms. Consequently, a whole new subfield termed
deep reinforcement learning emerged studying the role of deep neural networks
in reinforcement learning settings.

Recent skepticism

The role of complex CNNs in large-scale industrial cases is becoming increasingly
important, which also creates a concern about their reliability. As mentioned,
complex neural networks suffer from poor interpretability, which means it is dif-
ficult to understand the specifics of the input-output relationship they represent.
This might pose a security risk in case of an attack exploiting its vulnerabili-
ties. In fact, an adversarial attacks on AI systems in general have become a
serious research topic in recent years. In terms of convolutional networks, the
previous decade of optimistic eager research and successful applications is being
slowly diluted by a certain level of skepticism. Recently, it has been revealed that
even though current state-of-the-art image recognition models, which are based
on very deep CNNs, achieve superhuman accuracy in certain image recognition
tasks, they are shockingly vulnerable to adversarial attacks and exhibit a serious
lack of robustness [45, 46, 47]

1.2.4 Deep learning

Deep learning is a subfield of machine learning studying optimisation techniques,
design and architecture of neural networks with multiple hidden layers. The goal
of deep learning is to learn complex networks from large quantities of data. The
training process is computationally

27

Chapter 1: Background

Popularization

Even though deep learning gained its current popularity mostly in the last decade,
the origins of the subfield date back to the previous century, notably to Y. LeCun
and his research of convolutional neural networks thoroughly described in 1.2.3.
The major factor which enabled application of deep learning in a large scale was
mostly technical progress like increased computing power, specialized hardware
and data availability.

There are two major properties that render deep neural networks successful
nowadays. First, despite being generally very data demanding, the more data is
supplied to the learning system, the better understanding of the concept is learned
by the model and also the larger, more complex architecture can be trained. Sec-
ondly, deep neural networks are flexible and highly versatile autonomous feature
extractors for a broad range of tasks if provided with enough computing power.
This is especially useful in tasks where features are not provided and therefore
are left to be extracted by the learner from the raw data.

Nowadays world’s largest tech companies like Facebook, Google or Apple col-
lect enormous amounts of data from their clients, which in combination with vast
resources creates a perfect setting for deep learning methods of knowledge ex-
traction. Many of real-world business applications were built using deep learning
and neural networks [48, 49], although the specifics of these systems are naturally
subject to trade secret.

Common issues

The structure and dynamics of deep networks bring along several complications
which are not so pronounced in shallower networks. Apart from the lack of train-
ing data and computational power, which inhibited deep learning research in the
past, there were also several problems related to the mathematical background.
The rest of this section is dedicated to some of them, which are still relevant
today.

Vanishing gradient One of the main issues which complicated training
of deep networks in the past was presented by S. Hochreiter in his thesis from
1991 (original paper in German: [50]). The phenomenon was termed vanishing
gradient and it became increasingly important with the current renaissance of
deep learning.

The backpropagation algorithm calculates gradients of all trainable parame-
ters by applying the chain rule, which results in repeated multiplication of gradi-
ents. As shown on figure 1.9, gradient values of common activation functions are
always lower than one. Depending on the number of layers, tens or hundreds of
small values are multiplied together including the final multiplication by learning
rate which is also a small decimal number. The resultant gradients diminish expo-

28

Chapter 1: Background

nentially with distance from the last layer causing the subsequent weight updates
insignificant. In such cases, the training becomes inhibited or stops completely.

A variety of solutions have been proposed, some of the more recent ones
recommend utilization of the following techniques:

• Non-saturating activation functions
Different variations of ReLU have widely replaced the previously used acti-
vations as described in section 1.2.2. To reiterate, the main benefit of ReLU
is its constant gradient of value one in the positive domain.

• Proper weight initialization
Empirical tests have shown that an improper initialization of network weights
results in deformed distributions of gradients in different layers, leading to
reduced convergence rates and consequently poor final performance. Pop-
ular solutions of comparable results addressing this issue were proposed by
Glorot and Bengion in [51] and He et al. in [52]. Their techniques have
been quickly accepted as the best practice and implemented in all major
deep learning frameworks.

• Normalization of inputs
Input data features often come in different ranges which might complicate
the learning process and hurt convergence in some cases. Normalization of
the features is a cheap common practice to bring the feature values to
comparable scales without any adverse effects. Depending on the data
distribution, it is usually done by transformation to a standard normal
distribution N (0, 1).

• Batch normalization
Normalization across tensor batches commonly referred to as batch nor-
malization has proved to have a remarkably positive effects on convergence
rates especially for very deep networks [53]. The role of batch normalization
as a regularization technique is described further in this section.

• Residual connections
Residual connections (Fig. 1.18) are the building block of residual networks,
a deep neural networks with modified connections enhancing gradient flow.
First introduced in ResNet model [54], the winner of ILSVRC 2015, it has
become a recognized architectural improvement for very deep networks.

These techniques contributed significantly to the present state of deep learning
as one of the most versatile machine learning techniques and state-of-the-art
solution for a wide range of tasks.

29

Chapter 1: Background

Figure 1.18: An illustration of the residual block structure. The iden-
tity connection helps to increase gradient values during backpropagation.
Source: [54]

Hyperparameter space The rapid development of deep learning in recent
years has resulted in additional complexity of the field. More specifically, the
space of hyperparameters which should be considered in designing and training a
model has grown substantially. Hyperparameters represent a family of decisions
made by a human designer that are crucial for the output quality and usually
cannot be altered ex-post without repeating the training process.

The following list suggests three categories of hyperparameters with selected
representative examples based on their role in the development process and their
impact on the model.

• Architectural
These hyperparameters define the structural of the model network in terms
of shape, depth and complexity. This category includes number of layers,
number of units in each layer, activation functions, residual connections or
loss function. Additionally in case of convolutional networks, number of
kernels, kernel sizes, stride and padding (similarly for pooling layers).

• Structural
These parameters are related to the first category but provide more sub-
tle enhancements to the convergence speed or performance. These include
dropout [55], weight size constraints, weight initialization, batch normaliza-
tion and more.

• Training-related
Decisions affecting mostly the training properties like batch size, number of
epochs, weight decay, optimizer settings, scheduler settings, early stopping,
label smoothing etc.

• Data-related
Training set to test set split ratio, data normalization and data augmenta-
tions (flip, crop, cutout, noise, etc.) in case of image classification.

30

Chapter 1: Background

Note that the decision in majority of these options is not binary since most
of those include their own set hyperparameters.

While some of these hyperparameters have a well-explained impact on the final
outcome, in many cases it is very difficult to predict which combinations would
achieve the best results. Therefore a common practice in deep learning project is
to select just a small subset, repeat training for a few values and leave the rest
on fixed values. This method is called hyperparameter grid search and common
machine learning libraries like scikit provide optimized processes for that purpose.
The ultimate goal of hyperparameter optimization is to improve generalization of
the model. This approach is useful for models which do not require an expensive
training like linear regression, support vector machine, k nearest neighbors etc. It
is, however, problematic in case of neural networks since a training session might
be, and usually is, very lengthy.

Choosing a suitable network architecture for a given task is essential for achiev-
ing a competitive performance. Overly complex models are computationally de-
manding in training and may even overfit to the training data. Conversely, simple
models may not have enough capacity to learn the input domain appropriately.
Designing a novel network architecture is a difficult process with no leading heuris-
tics or guarantees of good results.

Neural architecture search

Designing a novel network architecture is very demanding in terms of time and
computational capacity. The amount of hyperparameters and related design op-
tions has grown considerably with the recent increase in popularity and employ-
ment of deep learning. Hyperparameters and proper regularization are the key
factors affecting training efficiency, size, robustness and overall performance of
the final deep learning model.

Moreover, since the most common optimization technique is currently the
stochastic gradient descent which offers no guarantees on resulting point of con-
vergence, it is a common research practice to repeat the training several times and
average the results since a single result could be noisy and not truly informative.
This also greatly prolongs the whole research process and consumes even more re-
sources. Especially when dealing with very deep networks containing hundreds of
layers, a blind non-informed hyperparameter search becomes infeasible. Naturally
a question arose whether the design process could be automated and optimized by
some kind of heuristic. This was addressed by neural architecture search (NAS), a
subfield of AutoML, which strives for automated network design using another AI
techniques, often including reinforcement learning methods [56, 57, 58] but also
evolutionary algorithms [59, 60] or combinations [61]. Architectures designed
using NAS generally perform substantially better than human-designed models,
currently the reinforcement learning NAS approach seems to be generally one of

31

Chapter 1: Background

the most successful approaches as it often achieves state-of-the-art performance
on a given task surpassing all previous rival traditionally developed models [62].

1.2.5 Model evaluation

Evaluation of a trained classifier is an important part of every machine learning
system development. The purpose of evaluation in statistical ML is to empiri-
cally estimate generalization capabilities of the result model on a secluded testing
dataset. Provided the testing dataset reliably represents the true data distribu-
tion of the task input domain, the result of the evaluation is then considered an
accurate approximation of its future performance.

Different metrics are suitable for different cases depending on many factors
like the type of the task (classification, regression or other), target application of
the model, distribution of data classes etc. In the context of this thesis, we will
focus on evaluation of classifier models.

In multiclass classification, for example in a common image recognition, accu-
racy is often a sufficient and widely used metric. Accuracy is the simplest metric
measuring the ration of correct predictions to all predictions of the classifier.
Image classification is a particularly simple example because in most cases the
penalty for misclassification is uniform over classes. In other words, classifying a
cat as a dog is considered no worse then confusing any other two classes.

Binary classifier evaluation

A binary classification task, also called dichotomy, is a special case of a multiclass
classification which assigns an input one of two possible categories. Medical
testing and spam filters are typical cases where binary classification is employed,
as patients are either tested positive or negative for a given disease and an every
e-mail is either spam or ham. These tasks naturally deal with heavily unbalanced
class distribution in the dataset, which must be addressed during evaluation.
The proportion of positive cases in such dichotomies is called prevalence and is
usually very low. Accuracy is almost never a reliable metric for dichotomies since
in a reasonable case of 5% prevalence, an obviously incorrect classifier predicting
negative class for every input achieves a misleadingly high accuracy of 95%.

In order to avoid this issue more informative measures are used, a common
practice is creating a confusion matrix which summarizes all predictions made
by the classifier which are segregated in four distinctive categories depending
on the relationship between a prediction and a true condition of the data (tab.
1.3). The four categories are termed True Positive, False Positive,True Negative
and False Negative. The two-word names indicate which kinds of prediction-
reality relationship they represent – the first word implies whether the contained
predictions are correct, the second word denotes the predicted class.

32

Chapter 1: Background

True condition

Negative Positive

P
re
di
ct
io
n Negative TN FN

Positive FP TP

Table 1.3: Confusion matrix contains exact counts of each type of error
and correct prediction made by a classifier. These counts help to better
understand the true performance.

The elements of the confusion matrix might also be expressed as joint proba-
bility measures as presented in table 1.4.

Unit metric Joint probability

True positive (TP) p(ŷ = 0, y = 1|x)
False positive (FP) p(ŷ = 1, y = 0|x)
True negative (TN) p(ŷ = 0, y = 0|x)
False negative (FN) p(ŷ = 0, y = 1|x)

Table 1.4: Meanings of unit metrics expressed as joint probabilities. x, y
represent the observation-label sample and ŷ is the label prediction.

The four elemental categories in confusion matrix are essential for more com-
plex derived metrics. Some of them are listed in table 1.5. The main distinguish-
ing factor of these metrics is their dependence on the sample prevalence.

These compound scores also have a meaning in terms of probability, not joint
but conditional, presented in table 1.6

Sensitivity and specificity are frequently used in medicine for drug testing or
disease diagnosis, whereas precision and recall is preferred in realm of computer
science.

Another widely used methods which aid a visual assessment of the evaluation
results are Receiver Operating Characteristic curve (ROC). ROC is a graphical
plot measuring specificity on the x axis versus sensitivity on the y axis for the
binary classifier while its discrimination threshold is varied. To reiterate, a binary
classifier outputs a single probability value which represents its confidence about
the affiliation of the input to one of the two classes. To transform the probability

33

Chapter 1: Background

Metric name Formula Prevalence

True positive rate (TPR), Sensitivity, Recall TP/(TP+FN) Independent

True negative rate (TNR), Specificity TN/(FP+TN) Independent

False positive rate (FPR) FP/(FP+TN) Independent

Positive prediction value (PPV), Precision TP/(TP+FP) Dependent

Negative predictive value (NPV) TN/(TN+FN) Dependent

Table 1.5: Basic metrics derived from the confusion matrix

Compound metric Conditional probability

True positive rate (TPR) p(ŷ = 1|y = 1,x)

False positive rate (FPR) p(ŷ = 1|y = 0,x)

Positive predictive value (PPV) p(y = 1|ŷ = 1,x)

Negative predictive value (PPV) p(y = 0|ŷ = 0,x)

Table 1.6: Compound scores and their respective meanings as conditional
probabilities. Note that the first two cases are conditioned by the true labels
while the last two are conditioned by the label predictions.

into a two-class categorization, a discrimination threshold must be defined which
creates a decision boundary separating the two classes. ROC takes candidate
threshold values ranging fro 0 to 1 and for each value calculates the True Positive
Rate (TPR) and False Positive Rate (FPR). Finally, these are plotted in a graph
such as the one shown on figure 1.19.

A scalar score related to ROC is called Area Under Curve (AUC) and as the
name suggests, it represents the area under the ROC curve. The AUC values
range from 0 to 1, a random-decision classifier has AUC of value 0.5, while 1
denotes a perfect classifier. AUC values lower than 0.5 are rather odd since they
symbolize binary classifiers which make wrong predictions most of the time – in
that case it would be reasonable to switch the output predictions. On figure 1.19
the area under ROC curve is highlighted in light blue.

The diagonal line connecting the origin with the top right corner of the graph
represents a random guess classifier and consequently every curve above the line
is understood as a better-than-random classification. Furthermore, the closer the
ROC curve is to the top left corner, the better the classifier skill.

34

Chapter 1: Background

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

AUC: 0.905

Figure 1.19: A ROC curve example with a highlighted area under curve.

1.2.6 Multiple instance learning

Multiple instance learning (MIL) is a special case of weakly supervised learning
paradigm where instances of data samples are arranged in sets or multisets called
bags. Ground truth labels are available only for the bags, instance labels may
exist but they are unknown or hidden to the learner. The goal of MIL is to learn
the underlying concept which correctly predicts the bag label given its unlabelled
instances.

Formally, let X be an input feature space and Y be an output label space.
The standart process of fully supervised learning involves learning a map X 7→ Y
from a set of n training samples {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi ∈ X is
a training sample and yi ∈ Y is a label associated with xi.

In MIL, the training set {(X1, Y1), (X2, Y2), . . . , (Xm, Ym)} consists of m la-
beled bags Xi = {xi1 ,xi2 , . . .xik} and the goal is to learn a map fMI : 2

X 7→ Y

History

The term multiple instance problem was first defined by Diettrich et al. [63] in
their drug research. The team measured bonding capabilities of drug molecules
which may adopt several low-energy and high-energy shapes also called confor-
mations determined by orientations of their bonds. Only some of these confor-
mations bond well with a bonding site of some fixed target molecule hence the
goal was to learn an instance-level binary classifier using labeled sets of confor-
mations. Many variants of MIL exist today. Most of the work in the area is
still done under assumption of binary labels for input instances, however more
complex MIL concepts were also proposed [64].

35

Chapter 1: Background

Terminology

Although terminology in MIL is rather vague, there have been attempts to struc-
ture the methods and create a basic taxonomy and nomenclature. A notable
contribution was made by Gärtner et al.[65] who proposed following definitions
and terms which are commonly used in MIL research today.

Definition 1.2.1 (Concept). A concept is a function νI : X 7→ Y, where X is
an instance space and Y = {⊥,>} is a label space.

A concept over an instance space is called instance concept or, according to
Gärtner, an underlying concept.

Definition 1.2.2 (Multi-instance concept). A multi-instance concept is a func-
tion νMI : 2

X 7→ Y defined as:

νMI(X)⇔ ∃ x ∈ X : νI(x),

where X ⊆ X and νI is an instance concept over X .

Single-instance learning (SIL) is a special case of MIL where each bag contains
exactly one instance. In this setting, the bag labels become instance labels and
the learning process is analogous to classical fully supervised learning.

Assumptions

A bag label is determined in a certain way by labels of the instances. This is re-
ferred to as the multiple-instance assumption, which defines two basic categories
of MIL tasks – a standard MIL and a generalized MIL. The original idea of this
two-level hierarchy view of multiple instance was originally proposed by Wied-
mann et al. in [66].

The standard MIL assumption states that a bag B is labeled positive if at
least one of its instances is labeled positive. Similarly, a bag is labeled negative
if all of its instances are labeled negative. A formal notation is as follows:

YI = 1⇔
∑
i∈I

Jyi > 0K ≥ 1

YI = −1⇔
∑
i∈I

Jyi > 0K < 1

Complementary, the generalized MIL works with a threshold k which defines
the minimum number of positive instances in a positive bag:

36

Chapter 1: Background

YI = 1⇔
∑
i∈I

Jyi > 0K ≥ k

YI = −1⇔
∑
i∈I

Jyi > 0K < k

Based on these definitions, the standard MIL might be seen as a specialized
case of the generalized MIL, where the threshold k = 1.

37

2 | Related work

Contents
2.1 Task-related . 39

2.2 Model-related . 42

This chapter reviews projects with goals similar to our task and and other
related research. The first section provides an overview of work related to our
task of automatic diagnosis of multiple myeloma, the second section then studies
applications of convolutional neural networks on CT images in general.

2.1 Task-related

Here we provide an overview of work closely related to our task of automatic
diagnosis of multiple myeloma. A proper description of the disease is given in
1.1.3 but to restate the problem, multiple myeloma is a malignant cancerous
disease affecting plasma cells. One of the main characteristic symptoms of the
disease in advanced stages is development of medullary osteolytic lesions. The
lesions are clearly visible under computer tomography screening, which is usually
a recommended diagnostic tool for this purpose. Currently a radiologist or other
clinician is required to examine the images visually, which might be inefficient or
insufficient if the examiner is unsure or still in training. An automated diagnosis
of these images providing another diagnostic opinion to the human expert would
be appreciated as an educational or practical tool.

Under screening, these lesions exhibit a different density than the surrounding
bone marrow. Many approaches in this area exploit this fact to create a proba-
bilistic models of marrow voxel intensities of healthy femurs an then detect the
lesions as outliers of these models. An automatic diagnosis of multiple myeloma is
interestingly not a frequent research topic, nevertheless we present several notable
exceptions.

The most closely related research projects come from Martínez et al. [67, 68]
and Hering et al. [69] who focused on automatic MM diagnosis from CT images
of femurs. A similar problem was addressed by Omiotek et al. who worked
with a dataset of computed radiography (CR) images of humeri. Following text
describes their approaches in depth and highlights notable differences.

[67] and [68] are methodologically fairly similar subsequent projects with a
few differences. Both deal with the variability of femur shapes in a rather in-
teresting way. To unify the scale of all femurs they introduced a transformation

39

Chapter 2: Related work

of the original (x, y, z) coordinates of marrow voxels to normalized radial and
longitudinal (l, t) ∈ [0, 1]× [0, 1] coordinates (Fig. 2.1).

Figure 2.1: Radiodensities of bone marrow voxels. The Euclidean space
(left) was transformed to the (l, t) space (right) for the purpose of unification
of highly variable femur shapes. Source: [67].

Authors of [67] focused on both infiltration detection and scalloping detec-
tion. They collected healthy femurs and created a probabilistic model of marrow
voxel intensity values. To achieve this they split each femur to 100 sub-volumes
and computed histograms of marrow intensities on each of them. Corresponding
histograms were then summed across all femurs in a training set, normalized and
rescaled to a fixed range. These histograms represent the probabilistic model, in-
dividual voxels in test images are then compared to these histograms and detected
as outliers of the model if

p (I > I(l, t)) < ξ0,

where I(l, t) is the intensity of the voxel with coordinates l, t. I is the intensity
on that position in the corresponding histogram and ξ0 is a parameter threshold.
A demonstrative example of detection of infiltrated voxels in a diseased femur is
shown on figure 2.2b.

The whole marrow mass is then considered infiltrated if it contains at least
ρ connected components of τ outlier voxels. The three thresholds were varied to
optimize performance which yielded the results presented on figure 2.2a.

This work was extended in [68] with a few additional improvements. First, the
cortical scalloping detection was omitted probably due to unconvincing results.
The diagnosis of MM is based on the presence of the marrow lesions anyway,
the scallops are merely a secondary indicator and often less prominent. Also, to
localize bone marrow the authors segmented a cortical bone by a simple intensity
thresholding procedure. While this method reliably identifies most of the cortical
bone mass, it is overly rough on the edges of the bone. Especially on the bor-
der between cortical bone and bone marrow, this method defines a strict border,

40

Chapter 2: Related work

(a) A ROC curve showing lesion detection
and scalloping detection of the final model
with optimised thresholds ρ, τ and ξ0.

(b) Original image of visibly infiltrated fe-
mur (top), probabilities for each marrow
voxel according to the model (middle) and
a detection of infiltrated voxels given se-
lected thresholds (bottom).

Figure 2.2: Figures from [67] showing performance of the proposed model
(a) and a demonstration of an infiltrated area detection (b).

which is not necessarily authentic and more importantly it introduces unwanted
artifacts, which may resemble scalloping. Second, the ρ and τ thresholds were
used as a two-dimensional feature vectors and k-nearest neighbors and support
vector machine were employed to perform classification in this vector space. This
approach lead to substantially better results exceeding 0.99 AUC.

Omiotek et al. [70] assessed a large variety of different machine learning
and statistical methods suitable for diagnosis of the MM from marrow lesions.
Instead of femurs, they focused on humeri and performed an extensive image pre-
processing in order to extract descriptive features from the marrow. Note that
their dataset consisted of computed radiography (CR) images unlike the other
mentioned studies which worked with CT images. They claim to have identified
279 distinct bone marrow descriptors, which were then reduced to top ten most
informative combinations of features using rather unknown Hellwig’s method of
feature selection [71]. This method supposedly finds the best feature combina-
tions which exhibit the weakest intercorrelation and simultaneously the strongest
correlation with the dependent variable (a diagnosis label in this case). A to-
tal number of 90 experiments were conducted – one for each combination of a
classifier model and a feature set, which lead to a conclusion that in all cases an
instance of k nearest neighbors classifier (k-NN) was dominant in terms of accu-
racy and binary classification metrics like TPR, TNR, PPV and NPV. Finally,
they proposed and described a fully automatic CAD system for usage in clinical
practice of medical screening.

41

Chapter 2: Related work

To our knowledge, the most recent work related to the topic of this thesis was
published by Hering et al. [69] who attempted to use generalized multiple instance
learning (MIL) on the same dataset of labelled femurs for the purpose of localizing
the marrow lesions. From a relatively small dataset of about 200 femurs, their
method learned to infer locations of lesions in the bone marrow under certain
assumptions from femur-level labels only without any further information about
number or positions of the lesions (Fig. 2.3). Unlike [67] and [68] this approach
does not build a probabilistic model of marrow intensities. The proposed method
of feature extraction splits each femur to Nz cylindrical regions of interest (ROI)
with Nt intervals of the radius and Nφ intervals of the angle coordinate. Each
ROI is then appended with a vector of intensity features consisting of the mean,
the standard deviation and a histogram with Nh bins. Finally, by concatenation
of these features along with the coordinates of the cylindrical split, each ROI is
assigned a feature vector

xi = [l, t, φ, µ, σ, h1, . . . , hNh
] ,

which represents i-th instance in a bag of instances. The authors conducted
several experiments using random forest and SVM classifiers modified for learning
from multiple instances. The results of the best performing model achieved a near
perfect score of > 0.98 AUC.

The utilization of multiple instance learning in the area of automatic multiple
myeloma diagnosis was a novel approach and no similar known method was found
by the authors at the time.

Figure 2.3: Marrow lesions localized by the MIL classifier proposed in [69].
Source: original paper.

2.2 Model-related

The research projects mentioned in the previous section often perform some kind
of manual feature extraction or marrow segmentation. It is a reasonable approach
to this specific task since the relevant part of the input, which carries the majority
of the information (bone marrow), can be quite simply localized and extracted by

42

Chapter 2: Related work

a deterministic procedure. However, with the power of modern deep convolutional
neural networks, it should be also feasible to leave the feature extraction to the
model and learn from raw image data.

CNN are currently being applied in many different image recognition task
across multiple fields. Medical imaging is no exception to this rule. Authors
of [72] support this claim by their extensive survey of deep learning methods
in medical image analysis, which revealed that the vast majority of over 300
participants used a CNN-based model in their research projects.

However, not much research is done specifically on CAD systems for multiple
myeloma despite the wide occurance of the disease in the population. In the
context of 3D medical imaging modalities like CT, MRI or PET, we find that
pneumonia, tuberculosis and other pulmonary diseases seem to be much more
prevalent research topics according to our analysis [73, 74, 75, 76, 77]. This might
be attributed to the emergence of publicly available datasets and competitions
even in the area of medical data. For instance, LUNA16 [78] is a project which
for several years held a CAD competition on IDRI dataset [79] – a popular large-
scale dataset of thoracic CT scans with manually annotated and segmented lung
nodules.

The goal of all of these research projects is to perform a diagnosis in a form of
binary classification on the CT or X-ray image inputs. Some of them also produce
a segmentation maps of nodules if the chosen dataset supports it. A variation of
3D convolutional network was used in all of the cases, either for the classification
or the segmentation purposes. Note that the following text omits the description
of the exact achieved results, since the reported scores differ only marginally in
a > 90% accuracy range. Most of the papers report results, which are on-par
with state-of-the-art models or fairly similar. The main differences are observed
in proposed network architecture designs, which are briefly mentioned here.

Authors of [77] employed a 3D modification of Faster R-CNN, which is a
specialized neural network architecture widely used for image segmentation, and
then classified the nodule regions using gradient boosted machine. On the con-
trary, [73] proposed an interesting original multi-task network architecture for
a simultaneous segmentation and classification. Their motivation is to provide
the classifier not only with the small segmented regions of interest, but also with
contextual information from a broader input area.

Dou et al. [80] participated in the LUNA16 competition with a nodule classi-
fier model aimed for reduction of false positive diagnoses. They proposed a novel
classifier architecture consisting of an ensemble of three 3D CNNs each processing
a different size of a candidate nodule region. Finally, an affine combination of the
three output probabilities was calculated to obtain the final verdict.

Nowadays neural networks are also being applied to more traditional tasks like
data compression, image/video colorization or image/video quality enhancement.

43

Chapter 2: Related work

The last named category also includes super resolution, which is a method of arti-
ficially increasing resolution of an image. Reportedly, neural networks trained on
large datasets of similar images have the ability to perform super resolution bet-
ter than conventional methods. This is the case of Wang et al. [81] who trained
a novel deep 3D CNN model to upsample resolution of input CT images and
reported an increase in the output image quality compared to similar non-neural
methods.

Our goal and dataset were most similar to those of Huang et al. in [76],
who trained a reasonably deep 3D CNN binary classifier on a small dataset of
only 99 lung CT images. They report state-of-the-art results. Their proposed
architecture served as an inspiration for our classifier model.

To our best knowledge, there is no published work combining convolutional
neural networks and multiple instance learning for the task of multiple myeloma
diagnosis from medical images.

44

3 | Dataset

Contents
3.1 Structure . 45

3.1.1 Original dataset . 45

3.1.2 Derived dataset . 46

3.2 Data cleaning . 47

3.2.1 Femur skew correction 47

3.2.2 Bone implants . 48

3.2.3 Removing joints . 48

3.2.4 Removing air voxels 51

3.3 Data flow . 52

3.3.1 Creating femur patches 53

3.3.2 Augmentations . 54

3.3.3 Transformations . 57

Unlike ordinary image datasets, acquiring annotated medical image data is
quite problematic for multiple reasons. First, they are produced by obviously
very expensive methods and usually in smaller counts. Second, the annotation
procedure requires an assessment from medical experts, which is time consuming
and also costly. Lastly, data about personal health are confidential and must be
anonymized prior to their public exposition. The following sections describes the
structure of our dataset of CT scans and operation taken in order to reshape it
for the purpose of our thesis project.

3.1 Structure

This section describes the refinements done to the original dataset in order to
extract information relevant for our task. The performed changes were quite
significant, therefore we distinguish the original and the final transformed dataset
here.

3.1.1 Original dataset

The original dataset available to us contained lower body CT images capturing
both femurs of about 290 patients, which were diagnosed by professionals for

45

Chapter 3: Dataset

presence or absence of multiple myeloma lesions. Each femur was diagnosed indi-
vidually and annotated with a label according to the level of infiltration observed
in the sample. The following table shows the categories of annotations which
were used.

Annotation Meaning

-1 Healthy patient

0 No visible infiltration, blood
test positive for MM

1 Small infiltration visible

2 Medium infiltration visible

3 Large infiltration visible

4 Some infiltration visible
(not quantified)

Table 3.1: The original dataset annotation structure.

The global label of a lower body CT image is created by concatenation of the
labels of both femurs in the image. For example, label 23 stands for medium
and large infiltration in left and right femur respectively in the given CT image.
However, most often both femurs of a patient fall in the same category.

3.1.2 Derived dataset

For the purpose of this thesis, we utilized a dataset of cropped legs which was
derived from the original dataset prior to this thesis. Moreover, the labels of the
femurs were simplified to binary indicators of the disease, i.e. the scale of the
infiltration is omitted in our experiments. The cropping process consisted of two
phases:

1. Localization and segmentation of femurs by a thresholding procedure.

2. Creating a three dimensional cuboid encompassing the femur with a certain
clearance. Note that in the following text the term cuboid will always
address the notion defined here.

In addition to the images of cropped legs, we also generated dictionary files
containing dimensions of bounding boxes for each layer of each femur. In the
context of this thesis, bounding box is a rectangle circumscribed about the femur
in its layer in axial view 3.4 separating it from the surrounding tissues. Bounding

46

Chapter 3: Dataset

Figure 3.1: Axial view of a femur layer with segmented marrow mass with-
out lesion augmentations (left) and with full augmentation (right).

boxes are important in a process of creating image crops closely focused on the
femur. This process is described in section.

Lastly, we also created segmentation maps for each femur, allowing us to mask
out three different parts of a femur image. Figure 3.1 displays the effect of each
individual mask on a sample image. Refer to chapter 5 for a detailed description
of the masking process.

3.2 Data cleaning

Data preparation is an integral part of every data mining and machine learn-
ing application. A related term data cleaning is a modern jargon which refers
to a set of actions taken on the data for the purpose of reducing noise, remov-
ing inconsistency, detecting data outliers, correcting data class distributions etc.
Cleanliness of the data is a crucial factor affecting the final outcome of the project
and is therefore often dominant in overall time costs. Our dataset also contained
several inconsistencies like outliers or irrelevant data, therefore we decided to per-
form a thorough cleaning before proceeding. The following subsections describe
encountered obstacles and the respective actions taken to overcome them.

3.2.1 Femur skew correction

Since the vertical axes of the cropped femurs were not always aligned with the ver-
tical axes of the their cropping cuboids, some femurs laid askew in their cuboids,
which was the source of following inconveniences.

• Because of the skew of the femur its bounding cuboid needed to be unneces-
sarily large to encase the whole femur. This means that the relevant parts
like the marrow would be relatively small compared to the unimportant
surrounding tissues which will prevail in the cuboid.

47

Chapter 3: Dataset

• An excessive cuboid size also means it often spans outside the leg which
increases a chance of containing unwanted air voxels.

The mentioned issues were fixed by rerunning the cropping procedure on the
original dataset while aligning the vertical axis of each femur with the vertical axis
of its cuboid. The principal vertical orientation of the femur was approximated
by a straight line which passes in a minimal distance to the geometrical center
points of bone marrow in the first, the middle and the last axial slice.

Femur skew was also tackled in the related work of Martínez et al. [67]
mentioned in chapter 2, who used principal component analysis (PCA) to estimate
the direction of the largest variance of bone marrow voxels and rotated the original
images and masks by the angle difference.

3.2.2 Bone implants

Around 10% of the femurs in our dataset were found to have a metal implant
placed in the bone. These femurs are problematic for our experiment because the
dense implant material interferes with its surrounding tissues in the CT image,
or it even replaces a part of the femur marrow completely as presented on figures
3.2 and 3.3. Since these implants are mostly (but not always) located at the end
of the femur on the hip side, a reasonable idea would be to cut them off the femur
images and leave only the rest. However, these implants often reach far in the
femur and they appear gradually along the vertical axis in the femur image so
choosing an appropriate spot to make the cut is not trivial. Algorithms that try
to locate a suitable cutting spot were developed as a part of this project, although
we eventually decided to remove these femurs from our dataset since the benefits
of the correction procedures were too subtle and the cut femurs would not fit our
experiment well for technical reasons.

Apart from the bone implants, some images also contain stents, a plastic or
a metal tube inserted into a blood vessel which supports blood flow, or different
unidentified metal objects located in fat or muscle tissues (Fig. 3.2, bottom). Un-
like the bone implants, these objects did not require any corrective actions, since
they were not obstructing the marrow and were distant enough to get cropped
out later in our data preprocessing pipeline.

3.2.3 Removing joints

We aimed our focus on femurs in this project due to their long uniform shape and
voluminous marrow mass, which provides better conditions for our classifier. To
our knowledge, there is no evidence that the lesions form in some part of femurs
more often than in others or that they follow some non-uniform distribution of
localization. In serious advanced stages of multiple myeloma, the lesions are
present and visible in the marrow of the femoral shaft as well as in the joint.

48

Chapter 3: Dataset

Figure 3.2: Axial view of various bone implants interfering with the femur
bone marrow (top) and small unidentified metal bodies, presumably debris
(bottom).

Figure 3.3: Longitudinal sections of femurs with different metal implants.

Our initial examinations uncovered that the edges of each cropped femur
image in our dataset capture joints. These joint areas differ substantially from
femur shaft areas as they tend to be much wider, they are strongly asymmetrical
and their inner structure and density are also different since they contain a high-

49

Chapter 3: Dataset

Figure 3.4: Axial section of a joint (left) and a femoral shaft (right) of the
same femur sample with bounding boxes highlighted in red color. Note how
the automatic bounding box generation procedure fails in the case of the
joint.

density cancellous bone (Fig. 3.4).
Obtaining more data to fix this problem was not possible, so we agreed to cut

off the joints from both ends of each femur. This does not sacrifice the generality
of our task if our hypothesis about lesion distribution along the femur holds, i.e. if
the disease is in a certain phase of severity, the whole body of the femur marrow
including joints is affected evenly which means cutting off two relatively small
parts from the femur should not change the overall diagnosis based on visual
aspects.

The problem of cutting off the joints is not as straightforward as might seem
though, mainly because one has to locate a suitable place to make the cut for each
uniquely shaped femur. The task may be equivalently reformulated to locating
a femur-joint border, which is obviously a very vague task definition and should
illustrate the problems associated with it. After thorough discussion of possible
approaches, we decided to use the size of bounding boxes of a femur as joint
indicators since all joints contain much larger bounding boxes. The final solution
was to locate the femur-joint border by calculating a layer-wise geometric means
of width and height of all bounding boxes of a femur, taking their median and
multiplying it by a constant factor. This yielded an upper limit value for the
geometric mean of bounding box dimensions in all axial layers of the femur.

In some femur layers the procedure generating the bounding boxes fails to
some extent, most often in joint areas as shown on figure 3.4. However, in some
rather rare cases the bounding box is enlarged to encase a nearby tissue, which
was mistaken for a bone by the detection algorithm (Fig. 3.5). Such poorly
generated bounding boxes then cause spikes on the BB graphs, which must be
addressed as shown on figure 3.6.

Martínez et al. in his related research [68] mentioned in chapter 2 also identi-
fied joints as problematic areas of increased density and performed correction by

50

Chapter 3: Dataset

Figure 3.5: Bounding boxes erroneously encasing adjacent tissues of higher
density.

0 100 200 300 400
Axial layer index

35

40

45

50

55

60

BB
 d

im
en

sio
n

[p
x]

BB width
BB height
Sqrt BB area
42.844

0 100 200 300 400
Axial layer index

35

40

45

50

55

60
BB

 d
im

en
sio

n
[p

x]

BB width
BB height
Sqrt BB area
42.844

Figure 3.6: Graph of width, height and square root of the area of bounding
boxes measured on each axial layer of a femur. Two different settings are
presented here regarding the treatment of the graph spikes. The procedure
can either halt on spike detection (top) or ignore it (bottom). The scaled
median level is represented by the red horizontal line. In both cases, the
median scale factor is set to 1.1. The vertical lines mark the found cutting
spots.

removing 15% from both ends of the femur cuboid in the longitudinal (vertical)
axis. This approach is rather simple and significantly less robust than our solu-
tion, which treats femurs individually, takes into account differences in structures
and finds a unique cutting spot for each femur.

3.2.4 Removing air voxels

A CT screening naturally captures the surrounding environment of the scanned
object, the air is present on the final image in the majority of cases. As presented
in table 1.1, the air is projected to the lowest value of −1000HU on the CT
number scale, which renders it pitch black after mapping to a greyscale color
space (Fig. 3.7).

Depending on the thickness of a patient’s leg, cropped images of legs in our

51

Chapter 3: Dataset

Figure 3.7: Axial view of femur crops with air voxels (left) and without air
voxels (right). We aimed to remove the air voxels from all images in our
dataset since this disparity in appearance creates an unwanted variance in
the input distribution and might hinder the classifier training.

dataset contain air voxels, usually around the knee area, where the bounding
cuboid spans outside the leg. The air is unwanted in the image, since it shifts
ranges of intensity values after mapping to gray scale. This naturally leads to
To illustrate the problem consider a normal CT image containing a femur and
its surrounding tissues like muscles and fat. The intensities in such image range
from around −200 HU to 1800 HU according to table 1.1. Conversely, if air voxels
are present in the image, the lower limit of the range is extended to −1000 HU.
The latter creates a much wider range which then needs to be mapped to only
256 grey steps ([0, 255] value range of an 8-bit gray scale). In clinical practice,
this very issue is addressed by the windowing technique described in section 1.1.
Figure 3.7 provides example images of these two cases to illustrate the problem.

After a thorough discussion and different proposed solutions, we settled with a
simple method of value clipping to remove the air voxels where all image patches
are clipped to a [−200, 1800] HU range. This interval was chosen as it created
least visible edge between an outer leg and the air.

This issue is mostly present in our derived dataset described above. However,
it becomes very rare after the second cropping based on femur bounding boxes,
which is explained in the next section.

3.3 Data flow

Following subsections describe the operations and transformations applied on
the raw data from the our dataset in order to obtain tensor batches which are
compatible with the input requirements of our classifier network.

52

Chapter 3: Dataset

3.3.1 Creating femur patches

Since our model of choice is a convolutional neural network, its inputs must obey
predefined shape requirements in order to get processed. Clearly, feeding the
whole unprocessed CT images of cropped legs is infeasible, partly because of
the memory requirements, but mainly because of the variability of their shapes
as shown on figure 3.8. Obviously, without any deforming transformations, the
depth of the cuboid encasing the leg varies greatly depending on the length of
the patient’s femur.

Figure 3.8: Histogram showing the variance in lengths of cropped femurs
with removed joints in our dataset measured in pixels.

Our solution to this is to split each femur along its vertical axis in a set of
smaller patches with a fixed height. Each patch also overlaps the previous patch
by an adjustable constant number of voxels. Throughout the rest of this text,
the term patch will always refer to a chunk of femur CT image as defined here.

After patching the femur, the remaining two dimensions of every patch also
needed to be brought to some fixed values for the same reason. These values were
unknown and we examined two different approaches in order to determine them.

The first attempted approach was to rescale both width and depth of every
patch to a predefined value. This is a straightforward solution, although it has
its disadvantages. Firstly, if the amount of useful information in the patch, which
is mainly the bone marrow, is already relatively small compared to the whole
patch, downscaling along any axis makes the valuable information even smaller
which means it will be more difficult to diagnose and classify. On the other
hand, upscaling by any axis means extrapolation on values in that direction and
creates artifacts in the image which might also confuse the classifier considering
the degree of the rescaling in both axes is variable across all patches.

53

Chapter 3: Dataset

Therefore, a more sophisticated method was developed using the bounding
boxes mentioned in the previous section which frame the area of the femur in
each of its layers along the vertical axis. Since our task focuses on multiple
myeloma lesions present in a bone marrow, the surroinding tissues around the
femur are rather distractive to the classifier. The goal of this idea is to create a
tight crop of the femur removing as much of the irrelevant tissues as possible. In
other words, minimizing both dimensions of the bounding box which is needed
to perform the image cropping over the whole dataset. This may be approached
in a few different ways, two of which are following:

1. Cropping out the femurs layerwise using the exact dimensions of their re-
spective bounding boxes is an obvious idea which arrives at the true global
minimum of our cropping problem. However, the trouble of this approach is
that each axial femur layer would then have different dimensions defined by
its respective bounding box. This complicates the subsequent construction
of patches and one would have to introduce some sort of padding in order
to unify the shapes of the layers. This would ultimately hurt the continuity
of the image in the patch and therefore this method is not suitable.

2. An opposite approach requires finding the smallest dimensions which are
able to fit all the femurs in our dataset. Although these constants are
obviously not globally optimal, after investigation we found that they are
acceptably close and the benefit of simplicity overweights their suboptimal-
ity. A noteworthy fact is that we examined this approach on the femurs
which had their joints already removed. This is important because joints
would have a serious impact on the result of this method because of their
shapes, as explained earlier in this chapter. Martínez et al. arrived to a
similar solution to this problem in [68].

After a thorough discussion and a study of the dataset statistics, we agreed to
use the second mentioned method and proceeded to determine these constants to
both have a value of 63 pixels. To reiterate, these values represent the smallest
width and height of a bounding cuboid that is capable of encasing all femurs in
our dataset so that the joints are not included. The fact that the constants are
equal is a convenient coincidence.

3.3.2 Augmentations

Since our dataset is annotated only on the femur level we first had to deal with
the absence of labels for individual patches. Without a manual annotation there
was no simple way of extracting infiltrated volumes automatically from the im-
ages. For that reason we reversed the process and create artificial lesions by
augmenting images of healthy femurs. We employ this technique to be able to

54

Chapter 3: Dataset

assess the classifier performance under the weakly supervised learning paradigm
while observing and evaluating its predictions on the level of individual instances.
Further details are provided in chapter 5.

We use two different methods to imitate the infiltration of multiple myeloma:

1. Creating a small 3D ellipsoid randomly positioned in the bone marrow vol-
ume of a femur CT image to simulate a homogeneous lytic lesion.

2. Adding a random noise to a marrow volume representing a diffuse lesion.

For training purposes, these two augmentations were applied on healthy patches
which were then labelled as positive. The application of either of them is deter-
mined by their respective probabilities as adjustable hyperparameters. Following
subsections briefly describe both augmentations in general terms. There are many
Implementation details which are quite technical, and their description is there-
fore omitted in the text. A detailed explanation of the whole process is provided
in the code documentation. All possible appearances of an augmented patch in
are shown on figures 3.9 and 3.10 from axial and sagittal view.

Figure 3.9: Axial view of a healthy femur marrow (top left), with an ar-
tificial ellipsoid lesion (top right), with a diffuse noise lesion (bottom left)
and with both augmentations (bottom right). These lesions were generated
with a real level of intensity.

55

Chapter 3: Dataset

Figure 3.10: Sagittal view of the four augmentations from figure 3.9.

Noise lesion

Since our dataset contains segmented binary marrow masks for all cropped femur
CT images, adding a noise to the marrow may be done by simply generating a
random noise, adding it to the marrow mask, multiplying by a desired intensity
factor and adding the result to the original image. The factor determines the
intensity of the noise in proportion to the rest of the image.

Ellipsoid lesion

In order to generate an authentic lesion, one must deal with a number of techni-
cal difficulties. Most importantly, it must be assured that the whole lesion body
stays in bounds of the marrow volume. This problem requires a few programmatic
checks which may increase the overall computational cost of the training consid-
ering that these operations take place in a three-dimensional space and they are
being executed with every sample of every training mini-batch. According to our
measurements, it is not a limiting factor of the whole computation process though.

The mentioned intensity factors belong to one of three categories – mild, real
or hard depending on their intensity relative to the patch intensities normalized
to range from 0 to 1. To promote the randomness of the data, the three categories
represent short intervals of values. During each individual augmentation a factor
is sampled from an interval of the user-defined category. Table 3.2 summarizes
the intervals for each interval and for both augmentation types.

Note that the intensity intervals differ for both lesion augmentations. This
is because the real interval was purposefully manually adjusted so that the fi-
nal lesions are appear authentic. The mild and hard categories are meant for
experimental testing of the factor influence on the classifier performance.

56

Chapter 3: Dataset

Lesion
type

Intensity level

Mild Real Hard

Ellipsoid [0.08, 0.17] [0.18, 0.24] [0.25, 0.35]

Noise [0.05, 0.09] [0.1, 0.19] [0.2, 0.3]

Table 3.2: The augmentation intensity levels and their respective intervals.

3.3.3 Transformations

The last step in our data flow pipeline is the application of non-destructive trans-
formations on patches. Namely, we employ two simple operations, a rotation
and a flip. Similarly to the lesion augmentations, these transformations are also
tied to an adjustable probability of effect. In our implementation, the degree of
both of these transformations is also randomized. The purpose of this step is
to artificially expand the dataset and improve robustness of our network. This
technique is usually called data augmentation in deep learning practice but in
the context of this thesis this term is reserved for the operations of creating the
artificial lesions. Rotation, flipping, scaling, shifting, cropping etc. are common
augmentation used in neural network training to simulate a broader space of
inputs which reportedly leads to a better generalization of the final model.

These transformations are naturally additive, which means that in total one
sample has twelve different orientations (3 flip × 4 rotational).

57

4 | Implementation

Contents
4.1 Software design . 59

4.1.1 Tools . 59

4.1.2 Data-manipulation hierachy 60

4.2 Classifier design . 60

4.2.1 Base network . 61

4.2.2 MIL modifications . 61

4.3 Training settings . 64

This chapter is dedicated to description of the prototype software implemen-
tation and tools chosen for its development. It also reviews our classifier design
and general training settings and discusses several issues and obstacles which were
solved in the process. The whole repository is stored online and can be retrieved
from https://gitlab.fel.cvut.cz/machvojt/dp.

4.1 Software design

The whole project was designed with attention to modularity of the individual
parts. Since the final repository is quite extensive, only a few selected parts are
described in this section.

4.1.1 Tools

The entire project including all scripts was written in Python programming lan-
guage with the help of common high-performance computational libraries like
NumPy and SciPy for efficient data handling. PyTorch deep learning framework
was used for building, training and evaluation of the classifier model. PyTorch is
a modern open source high-level library for fast and convenient implementation
of neural networks with APIs for Python and C++. It is popular for its intuitive
syntax, efficient backend computation structures and usage of dynamic compu-
tation graphs, which are more flexible and user-friendly than static graphs in the
case of TensorFlow.

PyTorch also supports a connection with NVIDIA CUDA technology for ef-
ficient model training on dedicated graphics hardware. All resource-expensive

59

https://gitlab.fel.cvut.cz/machvojt/dp

Chapter 4: Implementation

training sessions were run remotely on faculty servers zorn and boruvka, which
host arrays of eight NVIDIA GTX 1080 Ti GPUs.

4.1.2 Data-manipulation hierachy

A large portion of the code in the software project deals with data loading and
data processing, which is implemented by several classes arranged in a hierarchical
structure with separated responsibilities. Following list describes these classes
from the lowest level to the highest level and figure 4.1 provides its schematic
illustration.

• DS class – A low-level class providing file handling and I/O operations. It
is able to retrieve femurs or other specific files related to a given patient
and vice-versa. This functionality exploits a fixed naming convention of our
data.

• PatchGenerator class – A class managing femur loading and patch gener-
ation. Patches are supplied from currently loaded femur, if it is depleted,
next femur is loaded automatically. Moreover, it keeps track of metadata
of the current femur like the patient ID and or a leg indicator.

• SVDataset and MILDataset classes – Indirect descendants of the Dataset
class from the PyTorch library in the class inheritance system. These classes
perform higher-level tasks under either supervised or multiple-instance learn-
ing paradigm including a management of lesion augmentations and tensor
transformations described in section 3.3. They aggregate all the related
data and metadata into objects of custom classes like Patch, Bag and Batch,
which is not necessary in the runtime but it is useful for testing.

• SVDataloader and MILDataloader classes – These classes mimic the data-
batching functionality of the torch.utils.data.Dataloader class which
could not be used in our MIL setting due to non-standard batching and
custom training loop as explained in 5.4.

4.2 Classifier design

As a classification model, we designed a CNN with 3D convolutions. An alterna-
tive choice of 2D convolutions with a channel dimension substituting for the third
data dimension was also considered, although after discussion we agreed that 3D
architecture is more suitable for our data of 3D CT images. We faced many
design-related decisions since the employment of a CNN was a novel approach to
lesion detection in femurs.

60

Chapter 4: Implementation

DS

PatchGenerator

SVDataset / MILDataset

SVDataloader / MILDataloader

Figure 4.1: A nested structure of data loading classes used in the imple-
mentation of our thesis project. The innermost is the lowest-level class.

4.2.1 Base network

An inspiration for the network architecture has been drawn from some of the
research papers mentioned in 2. Since the lesions in our task are quite symmetrical
objects in gray scale, and the network output is only a probability measure, we
assumed that a simpler network would have a sufficient capacity to perform well,
given appropriate training conditions. Therefore, we decided to use a slightly
modified architecture from [76], perform tests and switch to a more complex model
if necessary. The network was then appended with a sigmoid output layer which
outputs a single probability measure. Table 4.1 presents the chosen architecture.

This network, hereinafter referred to as the supervised network or basenet, was
used in the supervised experiments and in the transfer learning setting described
in the next chapter.

4.2.2 MIL modifications

As described in 1.2.6, standard multiple instance learning assumes bag-level labels
only for the data. In our case, a single femur represents a bag, femur patches
are its instances and the bag label is the binarized diagnosis associated with the
femur.

Aggregation layer

We modified our supervised network to be compatible with the MIL setting by
appending it with an aggregation layer. Figure 4.2 shows a diagram of the mod-
ification. In the rest of the text, this network will be referred to as the mil
network.

For the aggregation layer we employed Noisy-And function proposed by Kraus
et al. in [82]. It is a parametric sigmoid function that maps the instance label

61

Chapter 4: Implementation

Layer Number of kernels Kernel size

C 32 3x3x3
BN 32 –
R+M – 2x2x2
C 32 3x3x3
BN 32 –
R+M – 2x2x2
C 16 3x3x3
BN 16 –
R+M – 2x2x2
F 128 units
F 64 units

Table 4.1: The proposed architecture of our CNN model. C,M stand
for 3D variants of convolutional layer and max-pooling layer respec-
tively. BN and F are batch normalization and fully connected layers,
R stands for ReLU activation layer.

predictions to the bag label prediction by the following general formula:

Pi =
σ(a(pij̄ − bi))− σ(−abi)
σ(a(1− bi))− σ(−abi)

, (4.1)

where

pij̄ =

∑
j pij

|j| (4.2)

denotes the mean of instance level predictions pj of class i.
Furthermore, a is defined as a global non-trainable hyperparameter and bi is a
trainable parameter of class i, all of which determine the shape of the Noisy-And
sigmoid curve. Note that in our case of a binary prediction task, an output of
the classifier is merely a single probability of the input being positive, hence we
can omit the class index i from the equations.

Custom input batching

Prior to the learning stage, we had to overcome an issue regarding a batch-
ing process of input tensors supplied to the classifier. Our supervised network
classifier was designed to batches of uniformly-shaped patches. Specifically, we
unified patch dimensions to values of 63 pixels for width and depth and 30 pixels
for height, although these values are externally adjustable. Each patch is rep-
resented as a four dimensional tensor with the channel dimension equal to one

62

Chapter 4: Implementation

Supervised	network

Input	tensor Instance	labels
predictions

Bag	label
predictionAggregation

layer

MIL	network

Figure 4.2: A schematic diagram of the supervised network and its role in
the mil network.

since CT images have one color channel. Patches are drawn from the dataset in
a controlled fashion regardless of their femur affiliation in order to populate the
batch given a required batch size. This means that the number of patches in a
femur is not important for the final batch size. Should there be a shortage of
patches, i.e. when the generating dataset runs out, the last batch does not need
to have the full capacity. This is not a problem because the batch dimension does
not affect the computation and thus it is allowed to vary.

A single forward pass of an input batch of N patches through the supervised
network produces N label predictions. In tensor notation this operation might
be described as

N × C ×D ×H ×W → N × 1,

where N is the batch dimension. Note that the input is a 5D tensor.
This is a standard batching process in a fully supervised setting, where in-

dividual input tensors have a unified shape. In our MIL setting though, where
each femur should be treated as a single data point, this is does not hold since
femurs have variable lengths. The input to the mil network is a single femur di-
vided into K patches, where K depends on the femur length. Batching multiple
femur tensors is therefore impossible unless they are reshaped to a fixed length.
Moreover, note that even if we unified the values of K across the whole dataset,
a standard batching would introduce an additional dimension resulting in a 6D
input tensor.

We solved this problem by matching the 5D input tensor with the 5D femur
tensor substituting the batch dimension with the K femur dimension to obtain

K × C ×D ×H ×W → K × 1.

This allowed us to keep the base network architecture unchanged for MIL set-
ting, but we also had to substitute for the missing batching process in order to
maintain the stochastic gradient descent training properties. A standard training
performing a minibatch SGD update is described by a PyTorch-like pseudocode
in listing 4.1.

63

Chapter 4: Implementation

draw a batch of patch-label pairs from the dataset
for batch, labels in data_loader:

clear all previously stored gradients
optimiser.zero_grad()
N x 1 tensor of label predictions
preds = model(batch)
backward done for the whole batch at once
l = loss.backward()
parameters update controlled by an optimiser
optimiser.step()

Listing 4.1: Standard SGD algorithm.

We modified this training routine by using an accumulated gradient update
and custom data loaders. Instead of creating a batched tensor object, which was
not possible for the reasons explained above, we kept the individual femurs (bags)
in a simple list, performed the loss.backward() method for each processed bag
and called the optimiser.step() only after depleting the list. A pseudocode in
listing 4.2 explains this process.

batch_list is a list of (bag, label) pairs
for batch_list in data_loader:

clear all previously stored gradients
optimiser.zero_grad()
for bag, bag_label in batch_list:

bag label prediction
pred = model(bag)
accumulation of loss gradients over individual bags
l = loss.backward()

SGD step using the accumulated gradient over all bags in a batch
optimiser.step()

Listing 4.2: Our SGD modification using accumulated gradient.

4.3 Training settings

In all training cases models were optimised using Adam optimizer [83] with default
parameters and binary cross-entropy was used as a loss measure. To track the
training progress our training script records three training losses, each averaged
over different number of training steps – batch loss, epoch loss and total loss.
Validation of the model is performed every n training epochs, where n is a user-

64

Chapter 4: Implementation

defined value set to one by default. Prior to each training session the dataset is
split to the conventional three disjunctive sets used for training, validation and
testing of the model by a user-defined split ratio.

The training is moderated by a ReduceLROnPlateau scheduler, which reduces
learning rate of an optimizer after a predefined number of non-improving val-
idation results during training. This technique reportedly helps in some cases
to converge to better local optima. Finally, we use early stopping to track the
progress of the validation error through training and avoid overfitting the model.

65

5 | Experiments

Contents
5.1 Input arguments . 67

5.2 General settings . 68

5.3 Supervised learning experiment 69

5.3.1 Training . 69

5.3.2 Evaluation . 70

5.4 Multiple instance learning experiment 70

5.4.1 Standard MIL . 70

5.4.2 Transfer learning . 72

We carried out our experiments in two main phases. First, we worked un-
der a standard fully supervised learning paradigm to assess the quality of our
model of choice, then we proceeded to multiple instance learning setting. Both
experiments were executed multiple times with several different combinations of
hyperparameters. Finally the results were averaged, evaluated and compared.

5.1 Input arguments

Apart from the standard design-related hyperparameters described in section
1.2.4, we introduced a set of parameters specific for our task, which control the
data augmentation process (Tab. 5.1), input masking (Tab. 5.2) and more. These
parameters are defined by the user via command line arguments.

Note that under MIL setting, the patch probability is also conditioned on the
femur probability and for a patch p in femur f holds

p(yp|p, f) = p(yp|p) · p(yf |f),

where yp ∈ {0, 1} and yf ∈ {0, 1} are patch and femur labels. The augmentation
process assigns the femur a label that is determined by its patch labels as

max yp for p ∈ Pf ,

where Pf is a set of patches belonging to a femur f .

The user is also able to choose any combination of three input masking options
presented in table 5.2. For example, combination {1, 2} masks out cortical bone

67

Chapter 5: Experiments

Parameter Value range Meaning

Augmentation level {mild, real, hard} Intensity of artificial lesions
relative to a normalized
patch voxel intensity

Patch probability [0,1] Probability of generating a
lesion in given a patch p, i.e.
p(yp = 1|p)

Femur probability [0,1] Probability of generating a
lesion in a given femur f , i.e.
p(yf = 1|f)

Table 5.1: Table of parameters that control the data augmentation. First
two apply for both supervised and MIL experiments; the last one is MIL-
specific.

Mask value Segmented tissue

0 Outer region (fat and muscle tis-
sue surrounding the femur)

1 Cortical bone

2 Bone marrow

Table 5.2: Input image mask values and their respective regions of effect.

and bone marrow and removes all surrounding tissues. Masking is used in both
experiments to assess the influence of image noise on the result performance.

The scripts in the attached repository provide quite a large number of user-
adjustable parameters. For a detailed description refer to the code documenta-
tion.

5.2 General settings

In both experimental settings a few combinations of hyperparameters and argu-
ments were selected and three or more training runs were performed for each com-
bination. All three runs under each given setting used the same testing dataset.

Training and testing datasets are created by splitting the list of patients into
two random disjunctive sets. The training set is then further split to training and
validation set. All the splitting ratios are adjustable by command line arguments
by they were left to default values in our experiments, which is 6 : 1 for train:test
split ratio and 5 : 1 for train:val ratio.

The final models are evaluated by ROC curves and AUC scores. All ROC

68

Chapter 5: Experiments

curves in this chapter were generated using the best saved model, i.e. the one
with the lowest validation loss from all saved models in the given training session.

5.3 Supervised learning experiment

Supervised learning experiments were prepared to assess the capabilities of our
chosen network architecture. For that purpose we examined six combinations of
values of three parameters – augmentation level, patch augmentation probability
and marrow masking.

5.3.1 Training

Figure 5.1 presents convergence rates of the parameter combinations each aver-
aged over multiple runs.

0 5 10 15 20 25 30
Epoch

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ss

 (B
CE

)

Mild, p = 0.1
Real, p = 0.1
Real, p = 0.25

0 5 10 15 20 25 30
Epoch

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Lo
ss

 (B
CE

)

Mild, p = 0.1
Real, p = 0.1
Real, p = 0.25

0 5 10 15 20 25 30
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

 (B
CE

)

Mild, p = 0.1
Real, p = 0.1
Real, p = 0.25

0 5 10 15 20 25 30
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ss

 (B
CE

)

Mild, p = 0.1
Real, p = 0.1
Real, p = 0.25

Figure 5.1: Training (left column) and validation (right column) loss on
samples without any masking (top) and with marrow masking (bottom).

Note that the models were trained with the early stopping scheduler men-
tioned in chapter 4, which halted the training at a different epoch in each of the
runs. In order to the gather the data in concise graphs, the value arrays needed
to be truncated to a common number of thirty epochs here. The training sessions
were actually longer with an upper limit of fifty, seventy or one hundred epochs.

69

Chapter 5: Experiments

5.3.2 Evaluation

Evaluations of all the experimental runs are presented on figure 5.2. The aug-
mentation level seems to be the defining factor, marrow masking on the contrary
has a negligible effect on the results. This implies that the convolutional network
does not struggle with the noise information in the input images as much as was
assumed.

5.4 Multiple instance learning experiment

Standard multiple instance learning (MIL) works with bag-level labels only. In
our case a femur represents the bag, its instances are the femur patches and the
bag label is the label associated with the whole femur. In the training phase of
the MIL experiment, the patches were augmented on the run similarly as in the
previous experiment, hence the instance-level labels were known but they were
not available to the classifier.

The mil network classifier described in chapter 4 is used in all experiments
mentioned in this section. Since we wanted to compare the learning abilities of
the classifier under both experimental scenarios, we extended the mil network
to also output the intermediate instance-level predictions. Patches of each input
femur are augmented on the run, therefore the ground truth instance labels are
known but they are not available to the MIL classifier. This allows us to measure
the learning progress on the level of instances in the MIL setting.

We examined two approaches to training the mil network – learning from
scratch and by using a pre-trained supervised network from the previous experi-
ments.

5.4.1 Standard MIL

The idea of the standard MIL is to optimise a classifier only using the loss sig-
nal measured between the predicted bag label and the ground truth bag label.
We performed multiple experimental runs with different parameters in the MIL
scenario. Figure 5.3 summarizes the training progress of all the runs.

The results of this experiment did not quite meet our expectations – it is clear
that the model does not converge in this setting. Upon deeper investigation of the
possible cause, we found that the model fails to differentiate between predictions
of individual instance labels i.e. it assigns very similar values usually close to
zero or one to all instance predictions of an input batch. Another observation
is that the trainable parameter b of the Noisy-And aggregation layer fluctuates
throughout the whole training process. This indicates that the loss signal, which
is based solely on the bag label prediction, is probably not strong enough to drive
the entire network to convergence. It is also possible that the aggregation layer

70

Chapter 5: Experiments

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

AUC: 0.905
AUC: 0.952
AUC: 0.959
Mean ROC (AUC = 0.935 ± 0.024)

(a) Augm. level: mild, p = 0.1, no mask.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

AUC: 0.929
AUC: 1.0
AUC: 0.998
AUC: 0.986
AUC: 1.0
AUC: 0.94
Mean ROC (AUC = 0.972 ± 0.030)

(b) Augm. level: mild, p = 0.1, marrow
masking.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

AUC: 0.997
AUC: 1.0
AUC: 1.0
Mean ROC (AUC = 0.994 ± 0.001)

(c) Augm. level: real, p = 0.1, no mask.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
AUC: 0.999
AUC: 1.0
AUC: 1.0
AUC: 1.0
AUC: 1.0
AUC: 1.0
Mean ROC (AUC = 0.995 ± 0.000)

(d) Augm. level: real, p = 0.1, marrow
masking.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

AUC: 0.993
AUC: 0.995
AUC: 1.0
AUC: 0.998
Mean ROC (AUC = 0.993 ± 0.003)

(e) Augm. level: real, p = 0.25, no mask.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e AUC: 1.0
AUC: 0.996
AUC: 0.856
AUC: 1.0
AUC: 0.991
AUC: 1.0
AUC: 0.999
AUC: 0.952
AUC: 0.916
Mean ROC (AUC = 0.963 ± 0.048)

(f) Augm. level: real, p = 0.25, marrow
masking.

Figure 5.2: Plots of ROC curves for fully supervised experimental runs with
different parameter combinations. Right column shows runs with marrow
masking of the input patches.

parameters interfere with the rest of the network parameters during the training.
A few potential improvements regarding this issue are proposed in the conclusion
of this thesis.

71

Chapter 5: Experiments

0 25 50 75 100 125 150 175 200
Epoch

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

 (B
CE

)

Mild, p = 0.1
Real, p = 0.1
Real, p = 0.25

(a) Instance-level losses without masking.

0 20 40 60 80 100
Epoch

1

2

3

4

5

Lo
ss

 (B
CE

)

Mild, p = 0.1
Real, p = 0.1
Real, p = 0.25

(b) Instance-level losses with marrow
mask.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

 (B
CE

)

Mild, p = 0.1
Real, p = 0.1
Real, p = 0.25

(c) Bag-level losses without masking.

0 10 20 30 40 50 60 70
Epoch

0.0

0.5

1.0

1.5

2.0

2.5
Lo

ss
 (B

CE
)

Mild, p = 0.1
Real, p = 0.1
Real, p = 0.25

(d) Bag-level losses with marrow mask.

Figure 5.3: Training progress of different MIL settings. Full lines represent
training loss, dotted lines validation loss. All plots were generated by aver-
aging multiple runs. Marrow masking seems to have no positive effect on
the training. Validation losses diverge in all test cases.

5.4.2 Transfer learning

The goal of transfer learning is to reuse the knowledge extracted from one input
domain on another similar domain. It is a popular method in practice particularly
in terms of neural networks because it saves time and resources required to train
large complex models from the start. A common approach is to take a previously
trained model, freeze most of its parameters and train only a few last layers.
This is especially useful in convolutional networks, which aim to embed low-
level input domain features in its frontal layers, which should theoretically be
universally valid across similar domains.

The design of our model allowed us to use a pre-trained model of the super-
vised network as a basis for the mil network and transfer the learned instance-level
knowledge. The weights and biases of the base network were frozen and only the
parameter b of the Noisy-And aggregation layer was trained. Training and vali-
dation losses averaged over multiple runs are presented on figure 5.5.

We tested this approach in order to observe the behaviour of the Noisy-And

72

Chapter 5: Experiments

0 20 40 60 80 100
Epoch

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54
Pa

ra
m

et
er

 a

(a) Non-transferred model, no masking.

0 20 40 60 80 100
Epoch

0.48

0.50

0.52

0.54

0.56

Pa
ra

m
et

er
 a

(b) Non-transferred model, marrow mask.

0 10 20 30 40 50
Epoch

0.1

0.2

0.3

0.4

0.5

Pa
ra

m
et

er
 a

(c) Transfer learning model, no masking.

0 10 20 30 40 50
Epoch

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Pa
ra

m
et

er
 a

(d) Transfer learning model, marrow mask.

Figure 5.4: Non-averaged values of the Noisy-And parameter b ∈ [0, 1]
during individual runs of training in the standard MIL setting (top) and
using a transferred supervised network (bottom). In all cases b was initial-
ized to 0.5. Apparently the parameter b is unable to converge if trained
simultaneously with the other network parameters.

0 10 20 30 40
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

 (B
CE

)

Marrow mask
No mask

Figure 5.5: Training progress of MIL setting with pre-trained supervised
network with and without marrow masking. The transferred fully super-
vised model was trained with real augmentation level and 0.25 patch preva-
lence. Full lines represent training loss, dotted lines validation loss.

73

Chapter 5: Experiments

aggregation in a situation where the instance label predictions are already mostly
correct. We found that for unexplained reasons the optimizer drives the value of
the parameter b below zero even though the authors in [82] state that b should
be in the range of [0, 1]. The development of b during training with different
initialization values are shown on figure 5.6.

0 10 20 30 40 50
Epoch

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Pa
ra

m
et

er
 b

Figure 5.6: Convergence of the Noisy-And parameter b during training
sessions with different initialization values.

The cause of this unexpected behaviour is not clear, although performance of
the trained models seem to benefit from the negative values of b (Fig. 5.7).

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

AUC: 0.994
AUC: 0.948
AUC: 1.0
AUC: 1.0
AUC: 1.0
AUC: 1.0
AUC: 0.987
Mean ROC (AUC = 0.986 ± 0.018)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

AUC: 1.0
AUC: 1.0
Mean ROC (AUC = 0.995 ± 0.000)

Figure 5.7: Mean ROC curves for the MIL classifier with a transferred pre-
trained supervised network. The performance on inputs without masking
(left) and with marrow masking (right) is quite similar.

74

Conclusion

The goal of this thesis was to propose, implement and evaluate a computer
aided diagnosis (CAD) system based on neural networks and deep learning in
order to diagnose a multiple myeloma (MM) from computer tomography images
of femurs. The clinical diagnosis of the disease is commonly determined by a
presence of lytic lesions observed in bone marrow of the majority of MM patients.
This was reflected in the design of our CAD system prototype.

A thorough data cleaning and preprocessing was performed to normalize the
available data to the best possible extent. This included detection of bone im-
plants, femur alignment and air-voxel removal. Furthermore, a heuristic was de-
signed to find suitable cropping range in each bone image to consistently exclude
joints on both ends. Altogether, the data preprocessing resulted in a significant
reduction of the input tensor size, which aids any future image recognition system
learning from this dataset.

All parts including model training and evaluation as well as data manipulation
were implemented within own extensive framework, which was designed with an
accent on modularity and reusability for similar future projects. The complete
framework uses and extends the capabilities of the PyTorch module and was made
available through a gitlab repository.

We designed a binary classifier based on a 3D convolutional neural network
for the purpose of detecting the bone marrow lesions in input volumes. Since our
dataset was only annotated on the level of femurs without further localization of
the lesions, we also explored the possibilities of multiple instance learning (MIL)
to tackle the weak supervision. In order to evaluate the model learning in the
MIL setting we developed complex procedures of data augmentation like artificial
lesion generation to simulate a full supervision from the original task.

We experimented with different input data variants – prevalence of positive
instances in the dataset, strength of data augmentation and different masking
settings. Three distinct learning scenarios were examined – a fully supervised
learning, a standard multiple instance learning and multiple instance learning
with pre-trained instance classifier. All experiments were run multiple times and
the results were averaged to eliminate the role of chance. Despite the relatively
small dataset and a rather simpler network architecture we observed a solid clas-
sification performance from the fully supervised learning experiment. It was re-
vealed that the augmentation factor has a larger impact on the performance than
the patch prevalence value. This might be problematic in diagnosis of patients
with less pronounced lesions as the classifier might be susceptible to increased
false negative rate. The benefits of marrow masking were found to be negligible
or very subtle, which is surprising given the amount of noise coming from tissues

75

surrounding the marrow mass in the femur CT images. The results obtained
from the standard MIL experiments are quite poor since the model diverged in
all explored training settings. We conclude that the error signal based solely on
a bag label prediction is not strong enough to drive the optimisation of the entire
model in this scenario to convergence. We discovered that the multiple instance
learning with pre-trained instance classifier achieves satisfactory performance in
diagnosing input femurs. This finding confirms that the proposed network for
the standard MIL setting could deliver competitive results as a CAD system if
successfully trained.

Further work

We propose several improvements, which could potentially lead to better results
of our CAD system.

First, since deep learning is a resource-expensive discipline, we were only able
to test a few selected combinations of hyperparameters. An extensive hyper-
parameter optimisation was infeasible for time reasons. It is plausible, that a
different choice of values would yield better results. The effect of different train-
ing schedulers and optimizers could be examined as well as the role of different,
possibly non-trainable, aggregation layers.

Secondly, the poor performance observed in the multiple instance learning
setting might presumably be improved by incorporating instance-level network
predictions to the loss function in certain cases. For illustration, working under
the standard MIL assumption, when a healthy femur is passed to the classifier
all its patches can be labelled as negative. This information could be exploited
in order to compute an additional loss using instance-level predictions along with
the standard bag-level prediction loss. The design of the proposed network allows
this without larger modifications.

Lastly, a certain kind of heuristic approximating positions and spread of the
marrow lesions in a given femur could be employed to create new annotated
training data for the network classifier. Some of the probabilistic models from
the related work in this area could be possibly explored for this purpose.

76

Bibliography

[1] Z. V. Maizlin and P. M. Vos, “Do we really need to thank the beatles for
the financing of the development of the computed tomography scanner?,”
Journal of Computer Assisted Tomography, vol. 36, no. 2, pp. 161–164, 2012.

[2] M. J. Willemink and P. B. Noël, “The evolution of image reconstruction
for CT—from filtered back projection to artificial intelligence,” European
Radiology, vol. 29, pp. 2185–2195, Oct. 2018.

[3] M. M. Lell et al., “Evolution in computed tomography,” Investigative Radi-
ology, vol. 50, pp. 629–644, Sept. 2015.

[4] G. Liugang et al., “Effects of 16-bit CT imaging scanning conditions for metal
implants on radiotherapy dose distribution,” Oncology Letters, Dec. 2017.

[5] E. Kreit et al., “Biological versus electronic adaptive coloration: how can
one inform the other?,” Journal of The Royal Society Interface, vol. 10, Jan.
2013.

[6] J. C. Mandell et al., “Clinical applications of a CT window blending algo-
rithm: RADIO (relative attenuation-dependent image overlay),” Journal of
Digital Imaging, vol. 30, pp. 358–368, Jan. 2017.

[7] Computed Tomography. Springer Berlin Heidelberg, 2008.

[8] B. G. Hansford and R. Silbermann, “Advanced imaging of multiple myeloma
bone disease,” Frontiers in Endocrinology, vol. 9, Aug. 2018.

[9] C. Röllig, S. Knop, and M. Bornhäuser, “Multiple myeloma,” The Lancet,
vol. 385, pp. 2197–2208, May 2015.

[10] C. Gerecke et al., “The diagnosis and treatment of multiple myeloma,”
Deutsches Aerzteblatt Online, July 2016.

[11] “Multiple Myeloma.” https://www.cancerquest.org/patients/
cancer-type/multiple-myeloma. [Online. Accessed 20-July-2020].

[12] “Case courtesy of Assoc. Prof. Frank Gaillard, Radiopaedia.org, rID: 16464.”
https://radiopaedia.org/articles/endosteal-scalloping. [Online.
Accessed 10-July-2020].

77

https://www.cancerquest.org/patients/cancer-type/multiple-myeloma
https://www.cancerquest.org/patients/cancer-type/multiple-myeloma
https://radiopaedia.org/articles/endosteal-scalloping

[13] “Case courtesy of Dr Matthew Lukies, Radiopaedia.org, rID: 55119.” https:
//radiopaedia.org/articles/multiple-myeloma-1. [Online. Accessed
10-July-2020].

[14] D. Resnick, Diagnosis of bone and joint disorders. Philadelphia: Saunders,
2002.

[15] R. Eslick and D. Talaulikar, “Multiple myeloma: from diagnosis to treat-
ment,” Australian Family Physician, vol. 42, pp. 684–688, Oct. 2013.

[16] S. Jewell et al., “Multiple Myeloma: Updates on Diagnosis and Manage-
ment,” Federal practitioner: for the health care professionals of the VA, DoD,
and PHS, vol. 32, pp. 49S–56S, Aug. 2015.

[17] R. Zambello et al., “Whole-body low-dose CT recognizes two distinct pat-
terns of lytic lesions in multiple myeloma patients with different disease
metabolism at PET/MRI,” Annals of Hematology, vol. 98, pp. 679–689, Dec.
2018.

[18] “Implementing deep learning using cuDnn.” https://www.slideshare.
net/deview/251-implementing-deep-learning-using-cu-dnn/4, 2015.
[Online. Accessed 24-July-2020].

[19] M. Alkhayrat et al., “A comparative dimensionality reduction study in tele-
com customer segmentation using deep learning and PCA,” Journal of Big
Data, vol. 7, Feb. 2020.

[20] S. Russell, Artificial intelligence : a modern approach. Hoboken: Pearson,
2021.

[21] L. Lu, Y. Shin, Y. Su, and G. E. Karniadakis, “Dying relu and initialization:
Theory and numerical examples,” 2019.

[22] “Deep learning and the future of AI.” https://indico.cern.ch/event/
510372/, 2015. [Online. Accessed 24-July-2020].

[23] R. Vaillant, C. Monrocq, and Y. Le Cun, “Original approach for the local-
isation of objects in images,” IEE Proceedings - Vision, Image and Signal
Processing, vol. 141, no. 4, pp. 245–250, 1994.

[24] Y. LeCun, Fu Jie Huang, and L. Bottou, “Learning methods for generic
object recognition with invariance to pose and lighting,” in Proceedings of the
2004 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2004. CVPR 2004., vol. 2, pp. II–104 Vol.2, 2004.

[25] C. Couprie, C. Farabet, L. Najman, and Y. LeCun, “Indoor semantic seg-
mentation using depth information,” 2013.

78

https://radiopaedia.org/articles/multiple-myeloma-1
https://radiopaedia.org/articles/multiple-myeloma-1
https://www.slideshare.net/deview/251-implementing-deep-learning-using-cu-dnn/4
https://www.slideshare.net/deview/251-implementing-deep-learning-using-cu-dnn/4
https://indico.cern.ch/event/510372/
https://indico.cern.ch/event/510372/

[26] Y. LeCun et al., “Backpropagation applied to handwritten zip code recogni-
tion,” Neural Computation, vol. 1, no. 4, pp. 541–551, 1989.

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[28] N. Buduma, Fundamentals of deep learning : designing next-generation ma-
chine intelligence algorithms. Sebastopol, CA: O’Reilly Media, 2017.

[29] “CS231n Convolutional Neural Networks for Visual Recognition.” https:
//cs231n.github.io/convolutional-networks/#convert. [Online. Ac-
cessed 14-July-2020].

[30] M. Yani et al., “Application of transfer learning using convolutional neu-
ral network method for early detection of terry’s nail,” Journal of Physics:
Conference Series, vol. 1201, p. 012052, May 2019.

[31] Y. Xu et al., “Scale-invariant convolutional neural networks,” 2014.

[32] M. Jaderberg et al., “Spatial transformer networks,” 2015.

[33] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” 2013.

[34] “Learn About Convolutional Neural Networks.”
https://www.mathworks.com/help/deeplearning/ug/
introduction-to-convolutional-neural-networks.html. [Online.
Accessed 24-July-2020].

[35] S. Srivastava et al., “Handwritten digit classification using Convolutional
Neural Networks,” International Journal of Advance Research, Ideas and
Innovations in Technology, vol. 6, pp. 301–305, 5 2020.

[36] J. Deng et al., “Imagenet: A large-scale hierarchical image database,” in 2009
IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255,
2009.

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information Pro-
cessing Systems 25 (F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger, eds.), pp. 1097–1105, Curran Associates, Inc., 2012.

[38] O. Russakovsky et al., “Imagenet large scale visual recognition challenge,”
2014.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” 2015.

79

http://www.deeplearningbook.org
https://cs231n.github.io/convolutional-networks/#convert
https://cs231n.github.io/convolutional-networks/#convert
https://www.mathworks.com/help/deeplearning/ug/introduction-to-convolutional-neural-networks.html
https://www.mathworks.com/help/deeplearning/ug/introduction-to-convolutional-neural-networks.html

[40] J. Hu et al., “Squeeze-and-excitation networks,” 2017.

[41] J. Kim, J. Hong, and H. Park, “Prospects of deep learning for medical imag-
ing,” Precision and Future Medicine, vol. 2, pp. 37–52, June 2018.

[42] V. Mnih et al., “Playing atari with deep reinforcement learning,” 2013.

[43] V. Mnih et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, pp. 529–533, Feb. 2015.

[44] D. Silver et al., “Mastering the game of go without human knowledge,” Na-
ture, vol. 550, pp. 354–359, Oct. 2017.

[45] T. B. Brown et al., “Adversarial patch,” 2017.

[46] Z. Wu, S.-N. Lim, L. Davis, and T. Goldstein, “Making an invisibility cloak:
Real world adversarial attacks on object detectors,” 2019.

[47] D. Hendrycks et al., “Natural adversarial examples,” 2019.

[48] “About Face ID advanced technology.” https://support.apple.com/
en-us/HT208108.

[49] “Tesla Autopilot AI.” https://www.tesla.com/cs_CZ/autopilotAI.

[50] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen netzen,” Mas-
ter’s thesis, Josef Hochreiter Institut fur Informatik Technische Universit at
Munchen, 6 1991.

[51] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” Journal of Machine Learning Research - Proceed-
ings Track, vol. 9, pp. 249–256, 01 2010.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” 2015.

[53] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” 2015.

[54] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[55] N. Srivastava et al., “Dropout: A simple way to prevent neural networks
from overfitting,” Journal of Machine Learning Research, vol. 15, no. 56,
pp. 1929–1958, 2014.

[56] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learn-
ing,” 2016.

80

https://support.apple.com/en-us/HT208108
https://support.apple.com/en-us/HT208108
https://www.tesla.com/cs_CZ/autopilotAI

[57] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network
architectures using reinforcement learning,” 2016.

[58] B. Zoph et al., “Learning transferable architectures for scalable image recog-
nition,” 2017.

[59] E. Real et al., “Large-scale evolution of image classifiers,” 2017.

[60] R. Miikkulainen et al., “Evolving deep neural networks,” 2017.

[61] Y. Chen et al., “Reinforced evolutionary neural architecture search,” 2018.

[62] S. Xie et al., “Snas: Stochastic neural architecture search,” 2018.

[63] T. Dietterich et al., “Solving the multiple instance problem with axis-parallel
rectangles,” Artificial Intelligence, vol. 89, pp. 31–71, 03 2001.

[64] Z.-H. Zhou et al., “Multi-instance multi-label learning,” Artificial Intelli-
gence, vol. 176, pp. 2291–2320, Jan. 2012.

[65] T. Gärtner et al., “Multiple-instance kernels,” Proc. Int’l Conf. Machine
Learning (ICML), pp. 179–186, 01 2002.

[66] N. Weidmann et al., “A two-level learning method for generalized multi-
instance problems,” vol. 2837, 07 2003.

[67] F. Martínez-Martínez, J. Kybic, and L. Lambert, “Automatic detection of
bone marrow infiltration by multiple myeloma detection in low-dose ct,”
pp. 4813–4817, 2015.

[68] F. Martínez-Martínez, J. Kybic, L. Lambert, and Z. Mecková, “Fully auto-
mated classification of bone marrow infiltration in low-dose CT of patients
with multiple myeloma based on probabilistic density model and supervised
learning,” Computers in Biology and Medicine, vol. 71, pp. 57–66, Apr. 2016.

[69] J. Hering, J. Kybic, and L. Lambert, “Detecting multiple myeloma via gen-
eralized multiple-instance learning,” in Medical Imaging 2018: Image Pro-
cessing (E. D. Angelini and B. A. Landman, eds.), SPIE, Mar. 2018.

[70] Z. Omiotek, O. Stepanchenko, W. Wójcik, W. Legieć, and M. Szatkowska,
“The use of the hellwig’s method for feature selection in the detection of
myeloma bone destruction based on radiographic images,” Biocybernetics
and Biomedical Engineering, vol. 39, pp. 328–338, Apr. 2019.

[71] P. Kowalik, On an implementation of the method of capacity of information
bearers (the Hellwig method) in spreadsheets, pp. 31–40. 09 2014.

81

[72] G. Litjens et al., “A survey on deep learning in medical image analysis,”
Medical Image Analysis, vol. 42, p. 60–88, Dec 2017.

[73] B. Wu, Z. Zhou, J. Wang, and Y. Wang, “Joint learning for pulmonary nodule
segmentation, attributes and malignancy prediction,” 2018.

[74] A. Bhandary et al., “Deep-learning framework to detect lung abnormality
– a study with chest x-ray and lung CT scan images,” Pattern Recognition
Letters, vol. 129, pp. 271–278, Jan. 2020.

[75] Y. Li, Y. Tian, and B. Ge, “Lung cancer classification using 3d-cnn with a
scheduled learning strategy,” 01 2018.

[76] X. Huang, J. Shan, and V. Vaidya, “Lung nodule detection in ct using 3d
convolutional neural networks,” pp. 379–383, April 2017.

[77] W. Zhu, C. Liu, W. Fan, and X. Xie, “Deeplung: 3d deep convolutional nets
for automated pulmonary nodule detection and classification,” 2017.

[78] A. A. A. Setio et al., “Validation, comparison, and combination of algorithms
for automatic detection of pulmonary nodules in computed tomography im-
ages: The LUNA16 challenge,” Medical Image Analysis, vol. 42, pp. 1–13,
Dec. 2017.

[79] G. Armato et al., “The lung image database consortium (LIDC) and image
database resource initiative (IDRI): A completed reference database of lung
nodules on CT scans,” Medical Physics, vol. 38, pp. 915–931, Jan. 2011.

[80] Q. Dou et al., “Multilevel contextual 3-d cnns for false positive reduction in
pulmonary nodule detection,” IEEE Transactions on Biomedical Engineer-
ing, vol. 64, pp. 1558–1567, July 2017.

[81] Y. Wang et al., “Ct-image super resolution using 3d convolutional neural
network,” 2018.

[82] O. Z. Kraus, L. J. Ba, and B. Frey, “Classifying and segmenting microscopy
images using convolutional multiple instance learning,” 2015.

[83] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014.

82

Appendix A - Additional evaluations

Figure 5.8 presents plots averaged ROC curves for all twelve combinations of
augmentation level frommild to hard and patch prevalence from {0.1, 0.2, 0.35, 0.5}
in the fully supervised experiment without input masking. Both parameters have
a visible impact on the classification performance, the augmentation level seems
to be a slightly dominant factor.

83

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p:
0.

1,
au

gm
:m

ild

AU
C:

 0
.7

9
AU

C:
 0

.8
9

AU
C:

 0
.8

8
AU

C:
 0

.8
9

AU
C:

 0
.7

6
M

ea
n

RO
C

(A
UC

 =
 0

.8
4

±
0.

06
)

±
1

st
d.

 d
ev

.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p:
0.

1,
au

gm
:re

al

AU
C:

 0
.9

7
AU

C:
 0

.7
5

AU
C:

 0
.9

2
AU

C:
 0

.8
3

AU
C:

 0
.9

4
M

ea
n

RO
C

(A
UC

 =
 0

.8
8

±
0.

08
)

±
1

st
d.

 d
ev

.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p:
0.

1,
au

gm
:h

ar
d

AU
C:

 0
.9

4
AU

C:
 0

.9
7

AU
C:

 0
.9

7
AU

C:
 0

.9
6

AU
C:

 1
.0

M
ea

n
RO

C
(A

UC
 =

 0
.9

6
±

0.
02

)
±

1
st

d.
 d

ev
.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p:
0.

2,
au

gm
:m

ild

AU
C:

 0
.8

9
AU

C:
 0

.9
5

AU
C:

 0
.8

2
AU

C:
 0

.9
2

AU
C:

 0
.8

5
M

ea
n

RO
C

(A
UC

 =
 0

.8
8

±
0.

05
)

±
1

st
d.

 d
ev

.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p:
0.

2,
au

gm
:re

al

AU
C:

 0
.9

6
AU

C:
 0

.9
3

AU
C:

 0
.9

9
AU

C:
 0

.9
6

AU
C:

 0
.7

7
M

ea
n

RO
C

(A
UC

 =
 0

.9
2

±
0.

08
)

±
1

st
d.

 d
ev

.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p:
0.

2,
au

gm
:h

ar
d

AU
C:

 0
.9

9
AU

C:
 0

.9
6

AU
C:

 1
.0

AU
C:

 0
.9

8
AU

C:
 0

.9
5

AU
C:

 1
.0

M
ea

n
RO

C
(A

UC
 =

 0
.9

7
±

0.
02

)
±

1
st

d.
 d

ev
.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p:
0.

35
,a

ug
m

:m
ild

AU
C:

 0
.8

4
AU

C:
 0

.8
9

AU
C:

 0
.8

2
AU

C:
 0

.8
3

AU
C:

 0
.8

7
M

ea
n

RO
C

(A
UC

 =
 0

.8
5

±
0.

03
)

±
1

st
d.

 d
ev

.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p:
0.

35
,a

ug
m

:re
al

AU
C:

 0
.9

5
AU

C:
 0

.9
7

AU
C:

 0
.9

8
AU

C:
 0

.8
6

AU
C:

 0
.9

3
M

ea
n

RO
C

(A
UC

 =
 0

.9
4

±
0.

04
)

±
1

st
d.

 d
ev

.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p:
0.

35
,a

ug
m

:h
ar

d

AU
C:

 1
.0

AU
C:

 1
.0

AU
C:

 1
.0

AU
C:

 1
.0

AU
C:

 0
.9

9
M

ea
n

RO
C

(A
UC

 =
 0

.9
9

±
0.

00
)

±
1

st
d.

 d
ev

.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p:
0.

5,
au

gm
:m

ild

AU
C:

 0
.8

4
AU

C:
 0

.9
AU

C:
 0

.9
1

AU
C:

 0
.8

3
AU

C:
 0

.8
6

M
ea

n
RO

C
(A

UC
 =

 0
.8

7
±

0.
03

)
±

1
st

d.
 d

ev
.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p:
0.

5,
au

gm
:re

al

AU
C:

 1
.0

AU
C:

 0
.8

4
AU

C:
 0

.9
6

AU
C:

 0
.8

9
AU

C:
 0

.9
4

M
ea

n
RO

C
(A

UC
 =

 0
.9

2
±

0.
05

)
±

1
st

d.
 d

ev
.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p:
0.

5,
au

gm
:h

ar
d

AU
C:

 1
.0

AU
C:

 1
.0

AU
C:

 0
.9

9
AU

C:
 1

.0
AU

C:
 1

.0
M

ea
n

RO
C

(A
UC

 =
 0

.9
9

±
0.

00
)

±
1

st
d.

 d
ev

.

Figure 5.8: Plots of ROC curves showing the impact of selected values of
augmentation levels and patch prevalence.

84

Appendix B - Contents of the project
repository

dp
resources

trim_dict_all
implants_all.npy

exec
train_sv.py
train_mil.py
eval_sv.py
eval_mil.py

src
augmentations.py
constants.py
metrics.py
model.py
myexceptions.py
dataset.py
printer.py
result.py
saveutils.py
settings.py
transformations.py

juputils
jds.py
jutils.py
filenames.py

oth
build_dataset.py
unbuild_dataset.py

85

	Introduction
	Background
	Medical background
	Medical screening
	X-ray computer tomography
	Multiple myeloma

	Technical background
	Machine learning
	Neural networks
	Convolutional neural networks
	Deep learning
	Model evaluation
	Multiple instance learning

	Related work
	Task-related
	Model-related

	Dataset
	Structure
	Original dataset
	Derived dataset

	Data cleaning
	Femur skew correction
	Bone implants
	Removing joints
	Removing air voxels

	Data flow
	Creating femur patches
	Augmentations
	Transformations

	Implementation
	Software design
	Tools
	Data-manipulation hierachy

	Classifier design
	Base network
	MIL modifications

	Training settings

	Experiments
	Input arguments
	General settings
	Supervised learning experiment
	Training
	Evaluation

	Multiple instance learning experiment
	Standard MIL
	Transfer learning

	Conclusion
	Bibliography
	Appendix A
	Appendix B

