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Abstract
Neural networks are currently one of the
most common methods in machine learn-
ing. They have established a new scientific
discipline known as “deep learning” and
have been successfully applied in many
research fields, such as computer vision,
speech recognition, or machine transla-
tion.

In most fields, the primary and some-
times only concern is good accuracy. It
can be achieved by training on large
amounts of human-labeled data. How-
ever, real-time applications, such as au-
tonomous driving, demand both good ac-
curacy and fast, efficient inference.

This thesis provides an overview of
known methods of improving neural net-
work performance, with a primary focus
on convolutional neural networks. It also
presents a series of experiments that mea-
sure the efficiency of these methods ap-
plied to various neural network architec-
tures and run on different platforms and
discusses the results.

Keywords: neural networks, deep
learning, quantization, real-time

Supervisor: Ing. Jan Čech, Ph.D.

Abstrakt
Neuronové sítě jsou v současné době jed-
nou z nejpoužívanějších metod ve strojo-
vém učení, která dala vzniknout vědecké
disciplíně známé jako hluboké učení. Do-
sud byly úspěšně nasazeny v mnoha vý-
zkumných odvětvích, jako jsou počítačové
vidění, rozpoznávání řeči nebo strojový
překlad.

Ve většině odvětví je hlavním a někdy
jediným měřítkem úspěchu přesnost. Té
lze dosáhnou trénováním na velkém množ-
ství člověkem označených dat. Nicméně
některé aplikace, pracující v reálném čase,
jako jsou například autonomní vozidla, vy-
žadují kromě dobré přesnosti i rychlé a
efektivní vnímání.

Tato práce poskytuje přehled známých
metod pro zlepšení výkonu neuronových
sítí se zaměřením na konvoluční. Také za-
hrnuje několik experimentů, které měří
účinnost použití těchto metod na různé
architektury neuronových sítí spuštěné na
různých platformách, a diskutuje jejich
výsledky.

Klíčová slova: neuronové sítě, hluboké
učení, kvantizace, aplikace v reálném čase

Překlad názvu: Efektivní implementace
neuronových sítí pro použití v reálném
čase
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Chapter 1
Introduction

1.1 Motivation

Neural networks have become the state-of-the-art method for various machine
learning problems. In the last decade, much research was done, and different
architectures for solving problems in different fields were established, notably
convolutional networks for computer vision or recurrent neural networks for
natural language processing.

Novel architectures built on top of these approaches then succeeded in
various annual competitions. The main challenge was achieving the best
accuracy – the portion of correctly classified data based on prior training on
vast amounts of human-labeled data.

In real-time applications, however, the networks need to be both precise and
efficient. For example, in autonomous driving, decisions must be delivered
quickly and be accurate to prevent collisions and accidents. Mobile and
embedded devices are memory- and energy-constrained, and their hardware,
which needs to fit their size, is less powerful.

1.2 Thesis outline

The thesis is divided into two main parts.
The first one, chapter 2, presents the main findings of the literature review.

Section 2.1 provides an overview of how some types of hardware help speed up
computations of neural networks. Section 2.2 describes a systematic approach
called “deep compression”, which can reduce the size of a neural network.
Section 2.3 describes network quantization, a class of techniques which pur-
sue the algebra inside neural networks and replace expensive calculations
with less expensive. Section 2.4 documents TensorRT, a software library
for deep learning inference, its features, and its compatibility with other
frameworks. Finally, section 2.5 enumerates several network architectures
that were designed with efficiency in mind.

The second part, chapter 3, presents a series of experiments conducted
to prove the efficiency of the methods discussed in the second chapter. It
describes the motivation behind each experiment, software, hardware, and

1



1. Introduction .....................................
data used for carrying out the experiment, the results, and discussion, which
are illustrated with charts generated from the measured data.

The final chapter summarizes the whole thesis and provides a conclusion.
It is followed by a list of used literature and appendices.
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Chapter 2
Literature review

In the literature, we identified the following possibilities for making the
inference of neural networks faster. They are explored further in individual
sections:.Ordinary hardware may not be designed for running inference. Special-

ized hardware (notably GPUs) may accelerate neural networks using
techniques of data multiprocessing, such as parallelization or SIMD1.
(Section 2.1). Neural networks may hold too many parameters, which are needed for
calculating the prediction. There are ways of reducing their numbers.
(Section 2.2). Arithmetic computations are mostly carried out over standardized floating-
point values. It is possible to use values with fewer bits and faster machine
language instructions. (Section 2.3). Software libraries for deep learning provide APIs for high-level program-
ming languages (mainly Python), known to have runtime overheads
(garbage-collection, etc.). Migrating to using a low-level programming
language for inference removes these overheads and can make inference
faster. (Section 2.4). State-of-the-art architectures may be too complex and heavy for inference
on devices with limited performance. In-depth research on network
structure produced new alternative architectures that aim to improve
their performance. (Section 2.5)

2.1 Hardware acceleration

Central processing units (CPUs) are general-purpose hardware, designed
for many situations. Although it is possible to run parallel algorithms on
multi-core CPUs, it does not generally scale well [5].

1Stands for “Single Instruction, Multiple Data”.

3



2. Literature review ...................................
GPUs are designed for parallel computations. Their highly parallel struc-

ture makes them more efficient than general-purpose CPUs for algorithms
that process large blocks of data in parallel [6]. In fact, GPUs are already
widespread in deep learning, and their development contributes to the success
of deep learning. A notable actor in this field is the NVIDIA Corpora-
tion, which focuses on developing new-generation GPUs and the demands of
employing deep learning in the industry.

Originally, GPUs were used for efficient handling of computer graphics [6].
Later, with the adoption of general-purpose computing on GPU, researchers
experimented with training neural networks using (possibly multiple) GPUs.
Thanks to that, AlexNet, an early architecture of a deep neural network,
became the first of its kind to win the ImageNet Challenge in 2012 [7, 8].
This strategy was subsequently adopted by other researchers, resulting in
success of achieving human-level accuracy in image categorization problem
[8]. As latency became a concern later, GPUs were also found to be efficient
for inference, improving both energy efficiency and speed [9, 10].

Some libraries ease developers and researchers moving computations to
GPUs. An NVIDIA-specific framework is CUDA, an abstract model for
parallelizing algorithms on GPUs and an API for CPU-GPU cooperation,
memory management, and running code on GPUs. Some deep learning
frameworks, such as PyTorch or TensorFlow, allow training models and
inference using CUDA-enabled GPUs. Some may also provide optimized and
more efficient algorithms for mathematical operations inside neural networks.
For instance, NVIDIA’s cuDNN library implements im2col operation and
Winograd algorithm for fast calculating of convolutions [11]. Section 2.4
documents TensorRT, an NVIDIA’s library for fast deep learning inference
on GPUs.

Besides GPUs, new specialized architectures have emerged recently:. NVIDIA Deep Learning Accelerator (DLA) is an open project promoting
a specialized architecture that addresses the computational demands of
inference [12].. Tensor Processing Unit (TPU) is a type of integrated circuits developed
by Google. They are designed for training large networks with massive
amounts of data in the cloud. Nonetheless, Edge TPU, a version for
inference, is available [13].. Efficient Inference Engine (EIE) was designed to improve inference speed
of compressed models with sparse structure (see sect. 2.2) [14].

2.2 Network compression

Neural networks consist of numerical parameters (“weights”), which are
organized into groups, called “layers”. Values of weights are learned after
training on labeled data. During inference, the weights together with the
input are used to calculate the network output. The calculations usually

4



................................. 2.2. Network compression

Figure 2.1: Illustration of weight sharing, and centroids update during back-
propagation, as proposed by deep compression algorithm. Image from [1].

involve matrix multiplications, which themselves mainly consist of many dot
products. Consequently, each weight must be loaded into the device operating
memory during inference at some point, potentially multiple times, so that
the device can carry out these computations.

However, there exists a natural trade-off between accuracy and computa-
tional efficiency. Deep networks may be successful in solving various problems,
but for devices with smaller memory and higher memory access cost, such
as mobile devices, repeated loading weights into memory can make inference
even slower, especially when the relatively small memory can hold only a
subset of them.

To reduce the number of weights needed for efficient inference while pre-
serving comparable accuracy, a systematic approach called “deep compression”
was proposed. This process reduces the size of the network by eliminating
redundant weights and only storing the important ones. The decision on
their importance is determined during training [1]. It is based on results from
previous research that concludes the network can learn both to generalize
the data and also the “connectivity” – which connections are important and
which are possibly redundant. As in the whole deep learning field, there is
said to be an analogy with how human brains work [15].

Initially, the network is trained using the standard procedure by forwarding
training data and back-propagating the error. When the training finishes
and the optimal values for weights are found, some are chosen according to
specific criteria and pruned (set to zero). A simple example of such criteria is
a fixed threshold of absolute value, but it may be more complex [1, 15].

5



2. Literature review ...................................
Setting weights in the layer matrix to zero does not save memory space and

computation time on its own. Instead, the matrix becomes sparse, meaning
many of its elements are zero. Therefore, the new weights are stored in
compressed sparse row (CSR) or compressed sparse column (CSC) format,
which save only non-zero matrix elements and their positions (indices), as
opposed to sequential storage of all elements in a multi-dimensional array.
After pruning, the network should be re-trained to mitigate possible accuracy
loss (not considering the pruned connections anymore) [1, 15].

Secondly, to further reduce the amount of data needed to store the whole
network, the process continues with weights sharing. For each layer, the
remaining weights are clustered using the k-means algorithm.2 When it
converges, the centroids become the only values of weights in this layer.
Consequently, layer matrices do not store the values but only indices to the
table of centroids, which occupy less space. (Space efficiency is achieved when
for the given number of bits n the number of centroids is 2n.) Analogously
to weight pruning, the network should be re-trained to recover the loss of
accuracy. The gradients are grouped by centroid; each group is summed
together and subtracted from the corresponding centroid (see fig. 2.1) [1].

The last proposed step in this process is compressing the network with
Huffman code, which further increases the compression rate for storing the
model on the drive [1].

2.3 Network quantization

A widely studied approach of accelerating neural networks is called “network
quantization”. This class of techniques allows using less memory for storing
weights and activation values during computation. In contrast to the quanti-
zation utilized in deep compression (sect. 2.2), the reduced values are directly
used for arithmetic operations, not as indices to a lookup table.

2.3.1 Half-precision

Weights of network models are usually stored in single-precision floating-point
format (referred to as “floats”, denoted with FP32), which has been specified
by the IEEE 754 standard. It allows for decimal weights in the range from
−3.4× 1034 to 3.4× 1034, more than 4 billion distinct values in total. Each
of these weights occupies 32 bits (4 bytes) in the memory [16, 17].

A lighter alternative to 32-bit values is half-precision floating-point format
(denoted with FLOAT16, FP16, or HALF). Values stored by this data type
require 16 bits (2 bytes) and can be used to represent decimal numbers in
the range from −65,504 to 65,504 (providing 30,720 distinct values in total).
Memory usage is reduced by half, which improves efficiency of computations.

2Although the cited paper calls this “quantization” and this is how the k-means algorithm
is also sometimes referred to, this thesis uses the term for describing a category of different
techniques (sect. 2.3).
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................................. 2.3. Network quantization

The IEEE 754 standard has specified this floating-point format since 2008
[16, 17].

The accuracy of network with FP16 values is expected to be the same as
that with ordinary FP32 values [18].

2.3.2 Integer inference

Another possibility is reducing floating-point weights and activation values to
integers. This is usually what “quantization” refers to.

Mapping floats to integers

A frequent mathematical operation inside neural networks is matrix (or
matrix-vector) multiplication. This involves calculating exactly as many dot
products as the number of elements the resulting matrix holds (for two square
matrices of dimensions n× n, it is n2). As dot product of vectors X and Y
of dimension n is defined as

∑n
i=1X[i] ∗ Y [i], calculating each dot product

requires n additions and multiplications of floating-point values (resulting in
n3 operations for the whole matrix multiplication). These two operations are
generally faster with integer values, which require less memory for storing,
making the computation process more energy and area efficient [8, 19, 20].

The inefficient calculations can be avoided by mapping the real values
to discrete integer (“quantized”) values, carrying out the computations in
their field, and mapping the results to floating-point values. However, there
are significantly fewer integers than floating-point numbers (by orders of
magnitude), therefore the calculations just approximate the correct result,
and maintaining the same or comparable accuracy of the quantized network
becomes a new challenge.

The literature mostly advises using 8-bit integers (256 integers in the fixed
range [−128; 127] or [0; 255]) due to good hardware support, satisfactory
results from experiments, and simple transformation procedures. This thesis
mostly deals with procedures of post-training quantization, an intermediate
step between the usual training procedure, and inference, which mostly works
with 8-bit integers [18, 19, 20].

When integer quantization harms network accuracy, it may be necessary to
modify the network structure or transform the training process to quantization-
aware training. This generally happens when using shorter bitwidths for
storing weights or activations, such as INT4, INT2 (“ternary networks”), or
even INT1 (“binary networks”). Training of such networks will naturally
require augmenting the traditional stochastic gradient descent method with
new techniques or even using different training methods [18, 19, 20].

One problematic aspect is that quantization is not a differentiable function
– its derivative is (almost always) equal to zero. A technique that deals
with this problem is known as Straight-Through Estimator (STE), which
replaces the gradient with an estimate. Quantization of weights is treated as
the identity mapping, resulting in a unit gradient w.r.t. quantized weights
[18, 19, 20, 21, 22].

7



2. Literature review ...................................
For purposes of the following paragraphs, we define clipping as a vector

function clip(X, a, b) = [ clip(X[i], a, b) ], where:

clip(X[i], a, b) =


a X[i] < a

X[i] a ≤ X[i] ≤ b
b b < X[i]

(2.1)

and a, b are the lower and upper bound of an interval, respectively.

Asymmetric quantization

Also known as scale and shift quantization or affine quantization. This
procedure maps the minimal and maximal value from the array (tensor) to
the lower and upper bound of the integer range, respectively. First, the
whole array is shifted (i.e., a number is added to all its elements), so that the
minimal value corresponds to the lowest integer, then scaled by the ratio of
the spans of integer and float range (this constant is called “scale factor”),
and rounded to the nearest integer. The element-wise formula for asymmetric
quantization is:

QX [i] = round((X[i]−min(X)) ∗ sX) (2.2)
= round(X[i] ∗ sX −min(X) ∗ sX) (2.3)

where X is the tensor to be quantized, QX is the quantized tensor, and sX is
the scale factor, a positive real constant, calculated as:

sX = 2n − 1
max(X)−min(X) (2.4)

where n is the number of bits available for representing the quantized values.
The shift min(X) ∗ sX is called “zero-point” (alternatively “quantization
bias”3 or “offset”).

Sometimes it is important to ensure that the zero value in the array of floats
is represented exactly, without the rounding error. This may be necessary, for
instance, for convolutional layers with zero-padding [23, 24]. This is solved
by scaling the array, then shifting by an integer that is one of the integral
quantized values. Therefore, the zero-point (zX) is calculated as:

zX = round(min(X) ∗ sX) (2.5)

By substituting 2.5 to 2.3, we get the final formula for the quantize function:

QX [i] = round(X[i] ∗ sX − zX) (2.6)

For the “inverse”4 operation dequantization, we infer the following formula:
3Not to be confused with neuron bias in fully-connected layers.
4This is not an inverse mapping by definition because it is not possible to “recover” the

loss of the rounding function.

8



................................. 2.3. Network quantization

X[i] ≈ 1
sX

(QX [i] + zX) (2.7)

Now given two vectors X and Y , we can calculate the dot product more
efficiently by re-arranging the operations:

X ∗ Y =
∑

i

(X[i] ∗ Y [i]) ≈
∑

i

1
sX

(QX [i] + zX) 1
sY

(QY [i] + zY ) (2.8)

= 1
sX ∗ sY

∑
i

(QX [i] + zX)(QY [i] + zY ) (2.9)

Provided zX and zY are integral, the calculations inside the loop involve
only integers. Intermediate results should be accumulated to variables with a
bigger size (e.g., 16-bit or 32-bit integer) to avoid overflows.

The formula 2.9 does not remove all floating-point arithmetics because the
factor 1

sX∗sY
is not guaranteed to be integral. If it is necessary to avoid it

altogether, the effect can be approximated by multiplying the result by an
integer and then right-shifting (that is, dividing by a positive power of 2)
[23, 24].

Symmetric quantization

Also known as scale quantization or linear quantization. This procedure maps
the real values to a quantized symmetric (zero-centered) interval, without
shifting. Instead, the range of real numbers is extended to the same length
on both sides from the zero using the maximal absolute value from the array
as the upper bound and then scaled to the integer range, possibly leaving
some unmapped quantized values [23]. (It can be viewed as a special case of
asymmetric quantization where the zero-point is equal to zero.)

If all available integer values are to be utilized, the range of the mapping is
not symmetric. For 8-bit signed integers, this is [−128; 127]; in general, this
is [−2n−1; 2n−1 − 1]. There are two options [18, 23]:. Use the full range. After scaling and rounding, values above the upper

bound are clipped (2.1). The scale factor is calculated as sX = 2n−1 ∗
max(|X|)−1 (2.10).. Drop the lowest integer and make the range of quantized values symmetric.
The scale factor is calculated as sX = (2n−1 − 1) ∗max(|X|)−1 (2.11).

Although non-symmetric range provides one more quantized value to map to,
quantization using it can introduce a bias towards the negative bound in the
results [18].

For both cases, the formulae for symmetric quantization and dequantization
are the following:

QX [i] = round(X[i] ∗ sX) (2.12)

X[i] ≈ QX [i] ∗ 1
sX

(2.13)

9



2. Literature review ...................................
Dot product of vectors X,Y can be calculated as:

X ∗ Y =
∑

i

(X[i] ∗ Y [i]) ≈
∑

i

( 1
sX

QX [i] 1
sY
QY [i]) (2.14)

= 1
sX ∗ sY

∑
i

(QX [i] ∗QY [i]) (2.15)

Compared to (2.9), the loop, still consisting of only integer arithmetics,
requires significantly fewer operations, making it more suitable for real-time
inference and application of SIMD instructions. For example, DP4A (provided
by NVIDIA cards) calculates the dot product of two vectors of four 8-bit
integers (as a 32-bit integer) and adds the result to another 32-bit integer
[16, 25]. Likewise, zero-point subtractions were dropped from the quantization
function, making it simpler as well (compare 2.6 and 2.12) [23].

Another advantage of linearity is compatibility some other common op-
erations inside neural networks, such as the ReLU activation function or
pooling, which may operate in the quantized space and do not demand prior
dequantization5 [18].

A disadvantage of symmetric quantization can be an excessive span of
the interval in case of presence of an outlier in the data or substantially
disproportionate distribution of values w.r.t. zero, which can cause that too
many quantized values are not mapped to, and there is worse resolution
around zero, resulting in accuracy loss. In fact, this is a common situation in
layers after the ReLU activation function, which only produces non-negative
values. This means the most significant bit of the quantized values becomes
unused. If supported by the hardware, it may be possible to map the values
to unsigned integer type with the same number of bits, which disposes of
twice as many unique, non-negative values, and combine it with the signed
counterpart [18].

The problem of outliers can also be solved by setting a threshold and
clipping (2.1) all activation values exceeding it (see fig. 2.2). The value choice
may be either artificial as a result of analyzing the distribution of activation
values (see also below) or determined during quantization-aware training.
One technique for the latter is known as Parametrized Clipping Activation
(PACT). It augments the lower-bounded ReLU activation function (max(0, x))
with an upper bound α (clip(x, 0, α)), which is a hyperparameter contributing
to the loss function – its value can be learned during training. Consequently,
activation values are guaranteed to belong to a bounded interval, which
defines the appropriate quantization scale [18, 22, 23].

Another possibility is decomposition of input tensors (e.g., to input channels
in convolutional layers) and determining the best quantization scheme for
each portion separately (“fine-grained scale”) [18, 19, 20].

5As the general formula for fully-connected layers (y = ReLU(W x + b)) suggests, the
bias addition has to happen in the quantized space as well. “Backup slides” of [2] provide a
hint how this might be implemented in TensorRT.
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Figure 2.2: Illustration of symmetric quantization with a set threshold. Some
outliers are clipped and the range is narrower. Image from [2].

Real-time integer inference

Latency-sensitive tasks need to reduce computations during inference. While
the quantization parameters for weights can be determined after training
and saved for inference, this cannot be done for the data to be inferred. For
example, minima or maxima (2.4, 2.10, 2.11) of the whole tensor in each
quantized layer need to be calculated first in order to map the input data to
quantized space (i.e. it cannot happen in parallel).

As in the case of outliers (see above), prior knowledge about the forth-
coming data helps real-time applications to be more reliable. A systematic
approach to preliminary data analysis was incorporated into TensorRT (there
called “calibration”), a library for real-time inference (sect. 2.4), where sym-
metric quantization is used. Determining the best threshold is considered
an optimization problem, where the loss of information caused by network
quantization is minimized [2, 23].

The process starts with feeding the network with representative data sam-
ples. The activation values in individual layers are recorded and accumulated
in histograms. After that, the algorithm generates different thresholds, creates
a new histogram, adds all exceeding values to the last bin, and generates the
corresponding histograms of quantized values. For each of these thresholds, it
measures the relative entropy (also known as Kullback-Leibler divergence) of
the distribution of real values and quantized values, and chooses the threshold,
for which the relative entropy is minimal6 [2].

2.4 NVIDIA TensorRT

NVIDIA TensorRT is a software development kit for high-performance deep
learning inference developed by NVIDIA. It is used for optimizing trained
models for specific hardware architecture and thus improving their latency

6The pseudocode for this algorithm was provided in “Backup slides” of [2].

11



2. Literature review ...................................
during inference. It is built on CUDA, NVIDIA’s platform providing an
abstract model and an API for running computations on GPUs. TensorRT is
not open-source but is freely available [26].

TensorRT provides API for both C++ and Python. Since using C++
is generally faster and eliminates overheads of high-level programming lan-
guages, the thesis is only considering the use of C++ API. This approach
is recommended for “performance-critical scenarios” and “where safety is
important” [27]. Some other deep learning frameworks, such as Google’s
TensorFlow, have already integrated TensorRT, and they may be another
alternative.

2.4.1 Workflow overview

When deploying a model for inference, TensorRT needs to understand the
network structure first. There are two ways of loading a model into memory:
either by building the network structure and setting the weights program-
matically or by importing the network from a file (deserializing) and using a
parser. The latest release of TensorRT as of writing (version 7.0) supports
parsers for three file formats: ONNX, Caffe and UFF file formats [27].7

When the previous step is successful, an optimized inference engine is built
by feeding dummy data to the network and observing the performance. The
default optimizations include some platform-specific optimizations, removing
layers that do not contribute to the network’s output and choosing the best
CUDA kernels (functions called by many GPU threads in parallel). Further
optimizations, such as using different precision for weights (sect. 2.4.2), are
available on demand. The created engine can be serialized to a so-called
“plan file” and stored for later reuse, which allows to skip all previous steps
and thus reduce the time needed for deployment. However, this plan file is
not portable, as it is created for the specific platform, GPU, and TensorRT
version; therefore, a new instance needs to be built from the original model
on any other platform [27, 28].

When the engine is ready, the remaining step is to create an execution
context that allocates the memory needed for storing layer weights and acti-
vation values and acts as the interface for performing inference. Memory for
both inputs and outputs from the network must be allocated and populated
on the device (GPU) using CUDA Runtime API, and pointers to the memory
must be provided to the corresponding API call. The inference can run syn-
chronously or asynchronously. Synchronous inference suspends the program
until a response from the network has been computed on GPU. Asynchronous
inference is executed on GPU parallel with the program, which continues
execution; the prediction can be received later using synchronization functions
from the CUDA API [27, 28].

7Caffe and UFF file formats are going to be dropped in an upcoming release.
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2.4.2 Lower-precision inference

TensorRT allows using two other data types for storing weights and activation
values during inference: half-precision floating-point (sect. 2.3.1) and 8-bit
integer format. They can be enabled on demand before the building phase.
However, not every hardware has native support for arithmetic operations
over them, and also the support may be limited for some types of layers.
Furthermore, since TensorRT always chooses the fastest execution strategy for
inference, they may only be used for some layers (“mixed-precision inference”)
or not at all even with proper support [27, 29].

8-bit integer quantization

One available precision mode allows quantizing the network using 8-bit
integers. Quantization in TensorRT follows the post-training symmetric
quantization (described in detail in section 2.3.2).

The quantization happens during the building phase. The preliminary
step is implementing a class that extends one of the abstract classes in the
TensorRT API and is responsible for memory management, loading and
(optionally) caching data, and preparing a “calibration” dataset. Various
resources do not agree on whether the dataset must be entirely disjoint from
the training and validation datasets or a subset of which of these two is more
appropriate. However, some of them jointly mention the nature of the data to
be “representative”. Neither is it clearly stated what amount of data samples
is sufficient, ranging from “few hundreds” to “1000s of samples” [2, 18, 25, 27].

When the engine for a quantized network is being built, it is first initialized
with FP32 weights, and inference is performed on the calibration data. During
this process, activation values of each to-be-quantized layer are recorded and
collected to histograms. When all calibration data is processed, the best
intervals for each layer are determined, and then the building continues with
finding the fastest execution strategy. The results of calibration (so-called
“calibration cache (table)”) can be serialized and saved on the drive and reused
when a new engine for the same model is being built on another device [27].

2.4.3 TensorRT, PyTorch, and ONNX file format

Unlike TensorFlow, PyTorch (a Python library for machine learning) has not
yet integrated TensorRT in any way. Nevertheless, models trained in PyTorch
can be exported to ONNX file format8, which can be imported to TensorRT,
using the following sample (for AlexNet) code [30]:

import torch, torchvision

dummy_input = torch.randn(10, 3, 224, 224)
model = torchvision.models.alexnet(pretrained=True)

8ONNX stands for Open Neural Network Exchange.
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torch.onnx.export(

model, dummy_input, "model.onnx",
input_names=["input"], output_names=["output"])

This will serialize the model to the file “model.onnx” and make the serialized
model remember the exact provided dimensions, including batch size. Since
some network architectures, e.g., fully convolutional networks, are designed
to work with variable input size (“dynamic shapes” or “dynamic axes”),
TensorRT also offers tools to work with them.

There is also an important difference in handling serialized ONNX models
by different TensorRT releases. Before TensorRT 7.0, it was possible to
override (maximal) batch size parameter when building an optimized engine
from the network. Starting with TensorRT 7.0, this information is hard-coded
into the model during serialization.9

2.5 Efficient architectures

Development of convolutional neural networks (CNN) was initially driven by
improving accuracy, starting with the success of AlexNet [7]. Its successors
improved the results further by adding additional complexity (such as residual
learning in ResNet [31]) or increasing the number of layers and weights.

As a downside of this evolution, neural networks run more efficiently on
high-performance devices but are not as efficient on low-performance devices.
Recently, new approaches to neural network architecture design emerged.
Some of them are described in this chapter below. Their common denomi-
nator is introduction of new types of operations that reduce computational
complexity, network size, or number of parameters.

2.5.1 SqueezeNet

SqueezeNet is a CNN architecture that aims to reduce the total number of
weights to train and use for inference while preserving good accuracy. It takes
advantage of 1x1 convolution filters, which in comparison to 3x3 convolutions,
hold nine times fewer weights and are less computationally expensive (given
the same input and output size), and uses them to limit the number of
input channels to the remaining 3x3 convolutions. Accuracy is maintained by
delaying downsampling, i.e., deferring convolutions and pooling operations
with stride greater than one to the end of the network. Furthermore, the
performance of SqueezeNet can be improved by deep compression (sect. 2.2)
[32].

Networks based on this architecture are built from building blocks called
“fire modules”. Each fire module has two layers. The first (“squeeze”) layer
consists only of 1x1 convolutions, which moderate the number of input chan-
nels to the second (“expand”) layer which uses both 1x1 and 3x3 convolutions.

9The difference can be observed in the two TensorRT scripts provided on the CD.
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The network is a chain of several fire modules interspersed with pooling
operations and bypasses [32].

2.5.2 MobileNet

MobileNet architecture focuses on mobile and embedded devices. It aims to
reduce the computational complexity of convolutional layers used in various
applications for mobile platforms. One of the key means of achieving it is
decomposition of standard convolutions to depthwise separable convolutions.
These operations have two layers. In the first layer, a convolutional filter
is applied to each input channel separately, producing the same number of
output channels as the input channels (“depthwise convolution”). The second
layer applies the standard 1x1 convolutional filters (“pointwise convolution”)
to the output of the first layer, and its output becomes the result of the
operation [33].

Consequently, the number of operations needed to compute the result is
reduced compared to the conventional convolution. Denoting C the number
of input channels, W,H the width and height of the input, K the length of
the convolutional kernel (typically 3), and O the number of output channels,
the complexity of standard convolution is H × W × C × K × K × O.10

On the other hand, the complexity of depthwise separable convolution is
H ×W × C ×K ×K + H ×W × C × O (addition of parameters of both
layers). Their ratio is 1

O + 1
K×K , therefore (considering 3x3 filters where

K := 3) there is an almost ninefold reduction in the cost and the number of
weights with small impact on accuracy [33].

2.5.3 ShuffleNet

ShuffleNet architecture is designed for low performance devices. It is built
from ShuffleNet units consisting from group convolution and channel shuffle
operations [34]. Group convolution, first introduced by AlexNet [7], splits
input channels into several groups, performs convolution on each group
separately and stacks their output channels. Complexity of group convolution
is k ×H ×W × C

k ×K ×K ×
O
k , where k is the number of groups11 – k-fold

reduction compared to standard convolution.
However, chained group convolution has a drawback – the information does

not flow between groups, each group gets just a portion of all outputs from
the previous layers.12 Therefore, ShuffleNet augments group convolutions
with channel shuffle operations – the output channels are arranged to a matrix
respecting the order of groups, the matrix is transposed, and the channels
are flattened back. Consequently, it is possible to exchange data between all
groups, and network performance is improved thanks to this [34].

10Assuming the input and output feature maps have the same height and width, square
kernels, and stride = 1.

11Considering C and O divisible by k.
12By intuition: the more information is available, the better the decision is.
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Chapter 3
Experiments

The second part of the thesis involved carrying out a series of experiments
to provide a quantitative analysis of how the described techniques influence
efficiency of neural networks. We generally measured the dependency between
input size and time to process it (inference time) and compared the results
of various inference engines (i.e., a combination of devices, hardware, and
frameworks).

Unless otherwise noted, the experiments were carried out remotely on
a Unix workstation with 6-core Intel Core i7-8700 CPU and a GeForce
GTX 1080 Titan GPU [35]. Necessary toolkits and libraries were installed
there using virtual environments, mainly Singularity images [36] built from
corresponding docker images from NVIDIA GPU Cloud (e.g., [37]). We used
TensorRT 7.0 and PyTorch 1.3 releases.

For inference using TensorRT, we developed custom scripts. They are
provided on the CD attached to this thesis. Its usage is documented in the
Appendix B.

Desirable data preprocessings and postprocessings were done using Python
scripts, using NumPy, PyTorch, Torchvision, and Pillow libraries. Torchvision
library includes functions useful for computer vision tasks and provides trained
models of many popular neural network architectures (some of which were
used for purposes of the following experiments) [4].

Some pretrained models provided by Torchvision have a flaw that makes
any attempts to import ONNX files generated from them to TensorRT using
the provided parser unsuccessful in some environments. While this could
be avoided by using the latest release of TensorRT (7.0 as of writing), some
platforms only support older releases (for example, Jetson only upgraded from
5.0 to 6.0 as of writing), where some of the models provided by Torchvision
could not be parsed and imported to TensorRT.

Presented charts were generated using the matplotlib library. Some data
in charts are missing due to various technical limitations (such as insufficient
runtime memory on GPU).

Measuring times

When inference time was being examined, only the computations done by
the network were measured. In TensorRT, we followed the recommended way
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Figure 3.1: Comparison of duration of different RetinaNet engines performing
inference with different input sizes (averaged per one image). While for smaller
images, inference on GPU using PyTorch performed better than that using
TensorRT, TensorRT outperforms PyTorch for large images.

of recording events on GPU provided by CUDA API. The same mechanism
is available in PyTorch in torch.cuda module. When inference was being
done on the CPU, the clock time was measured using the time method from
Python’s native time library.

3.1 Object detection using RetinaNet

This was an early preliminary experiment to measure efficiency of using
TensorRT. The key indicators were the ultimate performance (time to process
the input) and the accuracy of TensorRT compared with the reference method.

We used the repository of the RetinaNet Examples research project,1 a
toolkit taking advantage of RetinaNet detector for object detection [38, 39].
It supported PyTorch and TensorRT as inference engines; therefore, we chose
PyTorch as the reference engine for comparison with TensorRT (version 5).

The inference was carried out on COCO “2017 Val images” dataset, which
contains 5000 JPEG images of maximal size 640x640 and their annotations in
JSON format used by COCO [40]. This dataset was consecutively evaluated
by three distinct engines (PyTorch on GPU, TensorRT, and TensorRT with
INT8) with different input image sizes and batch sizes. We chose ResNet50FPN
[31] as the pretrained backbone model for inference. The INT8 calibration
dataset was identical to the test dataset.

The two key metrics, inference speed and accuracy, were obtained from the
text and file output of retinanet infer script, respectively. The annotations
were evaluated using COCO API tools [41].

18



...............................3.2. Segmentation using U-Net

Figure 3.2: Comparison of RetinaNet inference accuracy using different engines.

Results

The graph from figure 3.1 shows the inference time of the three engines
where batch size was 2 and 8, respectively. The horizontal axis is the input
image size,2 the vertical axis is the average time of processing one image in
seconds. We can see that inference using PyTorch scaled worse for larger
images, whereas the increase in time for both TensorRT engines considerably
smaller. Still, PyTorch was faster than TensorRT most of the time, probably
because of the implementation.

The figure 3.2 shows graph of accuracy per input size. The metric repre-
sented by the vertical axis is the “Average Precision at IoU=.50 (PASCAL
VOC metric)” (or “mean average precision”, mAP), one of the metrics pro-
moted by COCO [40]. In this graph, we can observe a general trend where
detections for smaller images are less accurate due to the objects being cap-
tured by fewer pixels and are improving with increasing image size. Since
the graphs for three engines overlap, they all provided approximately the
same accuracy on the dataset (less than 0.2% difference). Nevertheless, the
quantized network had no significant effect on detection accuracy.

3.2 Segmentation using U-Net

This experiment was inspired by a blog post on NVIDIA’s website [25].
The main theme was simulating inference of an autonomous vehicle deployed

in city traffic. Such a vehicle captures the surrounding space using a camera
and tries to detect objects, their positions, and what kind they are (vehicle,

1As of writing, it had been renamed to NVIDIA Object Detection Toolkit and not
declared a research project anymore.

2The length of the shorter image side after resizing.
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Figure 3.3: Mean latency of inferring images using U-Net with different engines.
Both charts present the same data; the left one in log scale, the right one in
linear scale without PyTorch CPU. Inference using the baseline PyTorch CPU
method was 15 times slower than using GPU. TensorRT could improve this by
factor of 1.5, or 3 when quantized network was used.

pedestrian, traffic sign, etc.) in its way. These requirements can be satisfied
using a neural network model for semantic segmentation, i.e., a model that
accepts an image tensor as the input and returns a tensor with class predictions
(probability) for each image pixel. A famous architecture developed for
semantic segmentation tasks is known as “U-Net” [42].

We used a third-party PyTorch model of the U-Net architecture [43]
and evaluated it on the CityScapes dataset, which contains labeled images
captured in the streets of German agglomerations [3]. First, the network
was trained on the “train split” (3000 images with 1024x2048 resolution) of
“leftImg8bit_trainvaltest” package (more than 100 epochs). For simplification,
the number of classes was reduced to 8 by considering each category one
class3.

After training, the trained model was serialized to ONNX file format
(sect. 2.4.3). Instead of utilizing the “dynamic shapes” feature, a separate
instance for each of the following input sizes was created: 128x256, 256x512,
384x768, 512x1024, 768x1536, and 1024x2048 (the aspect ratio of the original
images was preserved).

We evaluated 500 files from the validation dataset using four engines:
PyTorch on CPU, PyTorch on GPU, TensorRT without quantization, and
TensorRT with quantization. For quantization in TensorRT, the network
was calibrated (sect. 2.4.2) with 1000 samples from the training dataset
(proportionally subsampled per city).

Results

The figure 3.3 shows the results of average inference time measurements per
input size for different engines. For clarity, the results are presented both

3The categories are referred to as “groups” on the CityScapes website
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Figure 3.4: Comparison of accuracy of U-Net image segmentation using different
engines (omitting CPU). The metric on the vertical axis corresponds to the mean
IoU score metric. Orange and green lines overlap which means that predictions
yielded by PyTorch and TensorRT on GPU without quantization were identical.
However, quantized network had severe accuracy loss.

in log scale, and in linear scale without inference using PyTorch on CPU.
We can see that inference using the baseline PyTorch inference method on
CPU was 15 times slower than that utilizing GPU. Using TensorRT without
quantization accelerated it further by a factor of 1.5, still providing the same
accuracy (see fig. 3.4). We can also notice TensorRT has better GPU memory
management, and unlike PyTorch, it could infer even the largest images.

Quantization in TensorRT allowed twice as fast inference in comparison
with TensorRT without quantization. However, the quantized network did
not maintain the same accuracy. Figure 3.4 shows the graph of accuracy per
input size for PyTorch and TensorRT, including the quantized network. For
the standard inference engines, we can again observe the pattern of increasing
with increasing input size (see fig. 3.2).

Nevertheless, quantized network did not follow the pattern and suffered
from accuracy loss. We do not have a clear explanation for it (neither could
we explain the non-monotonicity of the graph in fig. 3.2), but we believe at
least one of the following applies:

. The quantization methods provided by TensorRT may not be appropriate
for the semantic segmentation problem.. It is not possible to apply quantization on this architecture (or this
specific model).. The training procedure may have to be aware of quantization (sect. 2.3).
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Figure 3.5: Semantic segmentation of sample images (256x512) from the
Cityscapes dataset [3]. From top to bottom: input image, ground truth, output
from trained model, output from quantized model. The last two rows demonstrate
the accuracy loss of TensorRT we observed.

Determining the actual cause of the loss and the odd shape of the graph
would demand a more in-depth analysis.

3.3 Image categorization using ResNet

To better understand the problems of network quantization in TensorRT, we
did another experiment and focused on image categorization problem – the
input to the network is an image, and the output is a mapping of classes to
probability the image (or the captured object) belongs to the class. The class
with the highest probability (argmax) is considered the actual prediction.

We chose ResNet-50 [31] model provided by Torchvision, which had been
trained on the ImageNet database to classify images to 1000 classes [4]. Due
to the inaccessibility of the ImageNet database, we evaluated it on Kaggle’s
“Dogs vs. Cats” train dataset, which contains 25 000 images of cats and dogs
(evenly distributed) [44]. Since the ground truth for the dataset consists only
of dog and cat, predictions were considered accurate if the maximal index
was in range 151–268 or 281–285, respectively.4 For calibration, a subset of
1000 images was used (500 dog and 500 cat images).

4Inferred from https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a.
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Figure 3.6: Mean latency of ResNet-50 inferring batches of 224x224 images
using four different engines. The left graph shows the average time for a single
image whereas the right one for the whole batch. Both horizontal (batch size)
and vertical (duration of inference in seconds) axes in either graph are in log
scale.

Figure 3.7: Mean latency of ResNet-18 inferring batches of 224x224 images on
a Jetson Nano using three engines. The left graph shows the average time for
a single image whereas the right one for the whole batch. The horizontal axes
(batch size) are in log scale, the vertical axes (time in seconds) in linear scale.

Since the so far used hardware had no support for half-precision inference in
TensorRT (sect. 2.3.1), we also run experiments on a Jetson Nano Developer
Kit, a small embedded device for deep learning applications [45]. Its hardware
includes both an ARM CPU and a GPU (NVIDIA Maxwell architecture),
which supports half-precision inference but not integer quantization. We
evaluated a portion of the dataset using the ResNet-18 [31] model provided
by ONNX model zoo [46].

Results

The data measured ResNet-50 are presented in figure 3.6. We can see that
the C++ implementation of TensorRT without quantization running on GPU
delivered predictions 100 times faster than PyTorch running on CPU and
2 times faster than PyTorch running on the same GPU. Quantized network
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Figure 3.8: Comparison of performance of five image categorization models,
using different inference engines (log scale).

in TensorRT was even 4 times faster and maintained the same accuracy on
the dataset (86.93%). We can also again notice that TensorRT has better
memory management than PyTorch and allows inferring even more images
simultaneously.

Figure 3.7 presents the measurements from Jetson Nano. Inference using
TensorRT outperformed PyTorch by a factor of 1.5, though the ratio decreased
with increasing batch size. Half-precision mode in TensorRT supported on this
device improved performance by a factor of 1.6 and did not induce accuracy
loss. Inference using PyTorch on CPU was not measured because it was not
effective.

3.4 Efficient architectures

The last experiment examined performance of several neural network archi-
tectures, including some “efficient” architectures (see sect. 2.5). We compared
performance and accuracy on the “Dogs. vs. Cats” dataset of the fol-
lowing architectures for image classification: AlexNet [7], ResNet-50 [31],
SqueezeNet 1.1 (revision of [32]), MobileNet V2 (revision of [33]), and Shuf-
fleNet V2 (revision of [34]).

Trained models of these networks were downloaded from Torchvision [4].
The performance was measured two different platforms: on the computer with
GTX 1080 GPU (using PyTorch and TensorRT) and Jetson Nano’s ARM
CPU (using PyTorch). Using the latter was meant to simulate inference on
low-performance devices, such as mobile phones, which some of the efficient
architectures target.
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Model Size (MB) Top-1 error
(Dogs vs. Cats)

Top-1 error
(ImageNet)

AlexNet 244.4 28.11 43.45
ResNet-50 102.5 13.07 23.85
SqueezeNet 1.1 5.0 26.28 41.81
MobileNet V2 14.2 15.2 28.12
ShuffleNet V2 5.6 28.22 30.64

Table 3.1: Accuracy and size (on drive) of the five image categorization models.
Data about ImageNet error are from [4].

Results

Comparison of the models’ performance is shown in figure 3.8. Table 3.1
presents data about the models’ size and their accuracy on the dataset. We
observed the following:. As demonstrated in the previous experiments, the best performance can

be achieved by optimizing the models for running on a modern GPU
using TensorRT. Performance of ARM CPU was always the worst by
orders of magnitude.. ResNet-50 has the best accuracy of all the five models but the worst
performance on all three engines.. ShuffleNet V2 achieved the best performance when evaluated using both
ARM CPU and TensorRT. This was not the case of PyTorch on GPU,
where AlexNet had the best performance, despite being the heaviest
model. The second-best performance with PyTorch on GPU was achieved
by SqueezeNet 1.1. This divergence may be due to naive implementations
of special convolutional operations on GPU in PyTorch (see sect. 2.5).. AlexNet and MobileNet V2 have comparable running times on the low-
performance CPU, but MobileNet V2 model is lighter and has better
accuracy.
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Chapter 4
Conclusion

In the thesis, we presented various approaches and methods to accelerating
deep learning inference. We did experiments where we measured effectivity
(time vs. accuracy) and compared the performance of different inference
engines on different platforms and hardware. We dealt with neural networks
designated for different challenges in machine learning and also with different
architectures for the same challenge.

We explored features of the TensorRT library and observed that optimiz-
ing models using TensorRT usually results in an improvement on its own.
Therefore, we believe it can become a state-of-the-art technology for acceler-
ating neural network inference. We also experimented with the quantization
method introduced by TensorRT and got both satisfying and surprising re-
sults. Specifically, we observed accuracy loss in quantization of a network for
semantic image segmentation but not in the case of image categorization.

We also compared different network architectures for image categorization
and observed that their relative performance with different inference engines
might differ. We noticed that some supposedly “efficient” architectures could
indeed make inference faster on low-performance engines while some high-
performance engines might not fully exploit their performance advantage.

Although we presented and described deep compression as one of the
available techniques in the thesis (sect. 2.2), we did not experiment with it
for lack of support in the used frameworks. Similarly, we did not research
advantages of quantization-aware training and limited ourselves to either
training our models or downloading pretrained ones from the web.

During the experiments, we also experienced some difficulties when op-
timizing available pretrained models on Jetson, a platform for embedded
devices. They were mostly related to incompatibilities of releases of required
machine learning frameworks. We hope these issues will eventually be solved
with advancing adoption of the frameworks in research and industry.
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. Thesis.pdf. inference.cpp. inference_jetson.cpp
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Appendix B
Documentation of TensorRT script

Both inference.cpp and inference_jetson.cpp can be used for measuring
inference speed of TensorRT engines. inference.cpp is compatible with
TensorRT 7.0, whereas inference_jetson.cpp with TensorRT 6.0 (runnable
on Jetson). They can be compiled using Makefiles provided in samples/
directory of the TensorRT package.

Some inspiration for writing these scripts was taken from [28].
Both scripts accept the following command line arguments:. --file= – Path to the model in .onnx format to parse and create

optimized engine for (mandatory unless --plan= provided).. --plan= – Path to the inference engine..When --file= is provided, it will serialize the optimized engine
and save it to the specified path (possibly overwriting)..Otherwise it is mandatory and the inference engine is deserialized
from the path. All arguments relevant for building the engine are
ignored.. --dir= – Path to directory with files to evaluate. Each file in the directory

corresponds to one sample (regardless of batch size). Mandatory for
running inference.. --output_dir= – Path to directory where predictions should be saved.
File names will correspond to input file names. (Only works with
--batch=1.). --batch= – Batch size, i.e. how many samples to process at once (default:
1). Needed also for building on TensorRT 7.0.. --half – If supported by the GPU, it enables half-precision when building
the engine (see sect. 2.3.1).. --calibration_dir= – Path to directory with calibration samples. If
building happens (--file= is provided), it enables INT8 quantization if
supported by the GPU (see also sect. 2.4.2).
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B. Documentation of TensorRT script ...........................
. --calibration= – Path to calibration cache. If --calibration_dir=

is provided as well, the cache will be serialized and saved (overwritten)
to this path. Otherwise it is deserialized and the engine is calibrated
using it.. --iter= – How many times to run inference (default: 1). Times will be
measured and averaged over all runs.

Files loaded using --dir= and --calibration_dir= and serialized using
--output_dir= are plain memory arrays. Given path is a path to the file
and data is a reference to a NumPy’s ndarray, the following Python code
serializes (deserializes) the array to (from) the drive:

import numpy as np
with open(path, ’wb’) as f:

f.write(data.tobytes())
with open(path, ’rb’) as f:

data = np.frombuffer(f.read(), dtype=np.float32)

When the engine is successfully built or loaded, information about network
input and output (called “bindings”) and memory usage is printed to standard
output. If inference was made, the script also prints total running and average
inference time with standard deviation, and the number of processed files.
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