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Abstract
This work proposes, implements and
evaluates modified convolution operation
within CNNs which explicitly considers
additional context when processing data.
This is done through a mechanism where
local context corresponds to a local real-
valued convolution mask which assigns
higher weights to contextually close data
and lower weights to contextually distant
data.

Basics of machine learning are briefly
reviewed and theoretical background for
the method is given. Networks with and
without the novel operation are trained
with a simple, fair training process,
utilizing identical training parameters.
Many expectations of potential benefits
are refuted, some are confirmed.

Traditional convolution is found to
achieve better results in the experiments
than the proposed novel operation.
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Abstrakt
Práce navrhuje, implementuje a vyhod-
nocuje užití modifikované konvoluční
operace v konvolučních neuronových
sítích, která explicitně uvažuje doda-
tečný kontext při zpracování dat. Toho
je docíleno mechanismem, ve kterém
lokální kontext nabývá formy lokální
konvoluční masky s reálnými hodnotami,
která přiděluje vyšší váhy kontextuálně
blízkým datům a nižší váhy kontextuálně
vzdáleným datům.

Text shrnuje základy strojového učení
a stručně probírá teoretický základ
navrhované metody. Jsou natrénovány
sítě využívající tradiční a novou operaci
pomocí jednoduchého, férového tréno-
vacího procesu. Předpoklady mnoha
prospěšných vlastností operace jsou vyvrá-
ceny, některé předpoklady jsou potvrzeny.

Tradiční konvoluce v experimentech
dosahuje lepších výsledků než nově
navržená operace.

Klíčová slova:

Konvoluční neuronové sítě, prostorově
proměnná konvoluce, doplnění hloubky,
fúze charakteristik, sémantická
segmentace, KITTI, Cityscapes

Překlad názvu:

Konvoluční neuronové sítě s lokálními
kontextovými maskami
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Chapter 1
Introduction

Deep convolutional neural networks (DCNNs) registered large success in
processing of data organized in grid-like topology such as discretized audio
signals or images. Accomplishments of these networks stem largely from local
dependence of the data, where elements which are spatially close in the grid
are closely contextually related. This property makes the data ideal for the
convolution operation. In most cases the local dependence property holds
true: consecutive audio samples are closely related in time, nearby pixels
likely share the same color or belong to the same object. However under
certain conditions, such as in images at object boundaries, the dependence is
broken and spatially close pixels can be contextually distant.

This work proposes and evaluates modification of the standard convolu-
tion operation which aims to resolve this issue by explicitly considering
additional context. This is done through a mechanism, where local context
corresponds to a local real-valued convolution mask which assigns higher
weights to contextually close grid elements and lower weights to contextually
distant grid elements.

The resulting convolution is spatially variant and context dependent. The
operation is implemented within neural networks with state-of-the-art archi-
tectures and the approach is evaluated on depth completion and semantic
segmentation tasks. The operation allows fusion of intermediate representa-
tions of processed data with additional context source data. It also follows a
recent trend in the depth completion task to exploit additional information,
namely images, surface normals or masks of measurement validity.

Similar approaches were used on a limited number of tasks with state-
of-the-art results. This work evaluates the approach on multiple tasks and
compares the findings with similar research.

Chapter 2 provides theoretical background for the research. Deep learning
and its history are reviewed. Convolutional neural networks are introduced
and the convolution operation is examined. Modified, spatially variant con-
volutions are reviewed. The discussed applications of depth completion and
semantic segmentation are defined and the main hypothesis of this work is
formulated.
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1. Introduction .....................................
Chapter 3 contains information about the research methods. The proposed
convolution operation is explained in detail, the network architecture is de-
scribed and details about the experiment setup are given.

Chapter 4 summarizes the experimental results. Evaluated metrics of the
approach on depth completion are on semantic segmentation are listed.

Chapter 5 discusses the results and mentions potential limitations of the work.
Suggestions for future research are also given.

Chapter 6 contains the final summary and concludes the work.

2



Chapter 2
Convolutional Neural Networks and
Theoretical Background

2.1 Introduction to Deep Learning

Since the inception of artificial intelligence (AI) as a field of scientific research,
following the invention of the programmable digital computer, it was obvious
that computers were fully capable of solving problems which were difficult to
grasp for humans, but simple to describe formally. Problems which involved
a limited set of rules and options, such as playing chess, were shown to be
theoretically solvable purely through use of search algorithms and statistical
analysis. However problems which are easy for humans, but do not have
a formal definition, actions which seem intuitive or even automatic to us,
proved to be a difficult task for computers.

The solution was machine learning; allowing the computers to learn. A
central idea of AI is the concept of a rational agent. An agent is anything that
perceives its environment through sensors and acts upon the environment
through actuators. A human agent has eyes, ears, sense of touch, etc. for
sensors, limbs and muscles for actuators and acts upon his surroundings. A
robotic agent might have cameras and Light Detection And Ranging (LIDAR)
for sensors and motors for actuators. A software agent might receive files as
sensory inputs and act upon computer memory by writing new data to it.

The question then becomes: how does an agent process its sensory inputs?
The amount of sensory data can be extremely large, yet contain minimal
amount of relevant information. Consider an agent which is supposed to
differentiate between cars and motorcycles as displayed on figure 2.1. Now
compare the difficulty of the task, depending on whether its sensory input is
an image of the vehicle or a number of its wheels.

If the picture is appropriately preprocessed, the task is much simpler. The
information can be encoded into variables such as number of wheels, formally
features, which describe knowledge of the real world condensed into relevant
information.

With statistical and probabilistic models, such as linear regression or naive
Bayes, one can achieve impressive results as long as proper features are used.
The difficulty comes from designing these features, as they must not only be

3



2. Convolutional Neural Networks and Theoretical Background ................

(a) : Car category (b) : Motorcycle category

Figure 2.1: Images taken from KITTI Depth Completion Benchmark [1].

x

y

(a) : Cartesian coordinates

r

(b) : Polar coordinates

Figure 2.2: Difference between two representations of the same data.

relevant, but also appropriately represented for the given task. An epitome
of this is shown on figure 2.2, where red and blue squares represent two
categories of inputs. When the data is viewed in cartesian coordinates 2.2a, a
linear model would be unable to differentiate between the categories. When
the data is viewed in polar coordinates 2.2b a linear model is sufficient.

The question then becomes: how to define these features and ensure their
validity for the given task? One might point out that it is possible to give
these probabilistic models all the available data - RGB images for example -
but individual pixels only hold negligible amount of information related to the
final result and this approach would require unrealistically large amounts of
training data in order to learn correct dependencies and correlations. Feature
extraction is therefore necessary in most AI tasks, yet it remains a complicated
issue which is still unsolved. A promising idea which shows great results is to
allow the AI to learn both: a) mapping from features to output, b) mapping
input data to features.

It can however be quite difficult for a computer to extract high-level
features directly from raw data. Take for example a network which decides
what advertisement to display to someone, based purely on their picture.
It would certainly be helpful for the network to know the person’s age and

4



............................ 2.2. Brief History of Neural Networks

gender, but extracting these features from an RGB image is quite difficult.
Deep learning solves this issue by consecutively deducing more and more
complicated features from simpler ones, starting with detection of edges,
colors and shapes, then deducing textures etc. In the given example, the
network might first detect hair color, hair length, presence of facial hair and
the amount of wrinkles. From these features, it can then estimate the age
and gender.

Typical example of a deep learning network is a feedforward network or a
multilayer perceptron (MLP). These models are represented by a single func-
tion which is a composition of many simple functions. The name feedforward
network comes from the process of feeding output from one function as an
input to the next without any backwards connections. The whole network
results in a single mapping which becomes progressively more complex as
more functions or layers of functions are added.

Many network models more complex than MLP exist. Some combine
the learned mapping with probabilistic models. Others expand upon the
feedforward idea by taking the output of the network and feeding it back to
the network as input.

A type of neural networks which achieved great success in computer vision
tasks is the convolutional network. Brief history of convolutional networks,
explanation of how they work and motivations which led to their current
form are reviewed in the following chapter.

2.2 Brief History of Neural Networks

Earliest predecessors of current deep learning networks were simple linear
models inspired by discoveries made during study of the nervous system.
These models received n input values x1, . . . , xn and mapped them to an
output y, where

y = f(x,w) = x1w1 + . . .+ xnwn. (2.1)

Scalars w1, . . . , wn served as a set of model parameters or weights which
had to be precisely configured in order to create a function which best maps
inputs data to desired outputs.

A simple brain inspired linear model emerged in 1943, the McCulloch-Pitts
Neuron[32]. Its basic idea was that the activation of a neuron directly repre-
sents validity of a proposition about the observed world. Initially, elementary
propositions are measured by sensors. Neurons which are connected to these
sensors deduce more refined propositions. McCulloch and Pitts [32] argued
that connections between neurons can represent logical not, and and or
functions. Therefore a sufficiently large network of interconnected neurons
could learn to represent every conceivable finite logical combination of the
initial elementary propositions.

Output of their model was represented as a scalar value y = f(x,w) and
differentiated two categories of inputs, determined by y being positive or

5



2. Convolutional Neural Networks and Theoretical Background ................
negative. The weights w1, . . . , wn of the model had to be manually set by a
human operator. Thus the model was not able to learn by itself, but it was
capable of being taught. The first model which could truly learn by modifying
its weights was the perceptron developed by Rosenblatt in 1958 [38][39].

Linear models have many limitations, as was shown by Minsky and Papert
in 1969 [33]. Most predominant of these limitations is the inability to learn
logical xor function y = f(x,w), where

f([0, 1],w) = 1, f([1, 0],w) = 1, f([0, 0],w) = 0, f([1, 1],w) = 0.
(2.2)

After the discovery of these limitations, research of neural networks saw its
first major decline in popularity. Many concepts important for the field of
deep learning were uncovered during this hiatus, such as Fukushima’s self-
organizing neural network proposed in 1975, the Cognitron [10]. A simplified
version of this concept later led to development of a neuron activation model
which is currently the most widely used elementary unit in neural networks,
the rectified linear unit.

Major resurgence in popularity of neural networks was seen in the 1980s.
A movement called connectionism arose in the field of cognitive science
and found ground upon earlier implementations of neural networks. The
basic principle of connectionism is that a sufficiently large number of basic
computational units connected together can accomplish intelligent behavior.
A vital achievement of the movement was demonstration and successful use
of the back-propagation algorithm in 1986 by Rumelhart et al. [40] and in
1987 by LeCun [31] to train deep neural networks. The back-propagation
algorithm remains prevalent in training of neural networks to this day.

Research of neural networks showed its second decline in popularity in
the mid-1990s. AI based businesses made unrealistically ambitious claims to
attract investors and later found it impossible to fulfill their expectations.
Concurrently, other fields of machine learning showed great results. Combi-
nation of these two factors shifted attention of researchers away from neural
networks for over 10 years.

That is not to say that development of neural networks completely stopped.
The Canadian Institute for Advanced Research (CIFAR), well known for its
classification benchmarks, continued to fund neural network research during
this time and grounded it as a multi-disciplinary subject.

The third and current wave of neural network research began with break-
throughs in 2006, when Hinton et al. [19] showed a network training strategy
which could be used to train much deeper neural networks than before. The
strategy proved functional for many kinds of neural networks and brought
spotlight to the theoretical importance of network depth.

Deep neural networks quickly outperformed other machine learning tech-
nologies and reinvigorated interest in their study. Furthermore, graphics
processing unit (GPU) development enabled great increase in speed of deep
neural network training and reduction in its cost.
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.............................2.3. Convolutional Neural Networks

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a special kind of neural networks
which process data organized in a grid-like topology. Audio signals and
discretized time-series are an example of 1-D grid data. Images can be
thought of as 2-D grids and voxels as 3-D grids. The name of convolutional
networks comes from their use of mathematical convolution. Convolution
is a linear mathematical operation with many practical applications. Its
use in neural networks stems from research done in the 1980s, however the
community disagrees on a specific origin. LeCun et al. [30] are often credited
with the invention of convolutional networks, thanks to their research on
handwritten digit recognition published in 1989. The origin could be traced
to even earlier work of Fukushima [11], published in 1980, expanding upon
his previous research [10].

Mathematical convolution and motivation for its use in neural networks,
specifically in the field of computer vision, are reviewed in 2.3.1 and 2.3.2.

2.3.1 Mathematical Convolution

Mathematical convolution is an operation on two functions which produces
a new function. Convolution of two functions x(t), w(t) : R −→ R in its
continuous form is defined as

(x ∗ w)(t) =
∞∫
−∞

x(τ) · w(t− τ)dτ, t, τ ∈ R. (2.3)

For the purposes of this text, function x(t) will be referred to as input and
function w(t) as kernel. Discrete form of convolution is defined ase

(x ∗ w)(t) =
∞∑

τ=−∞
x(τ) · w(t− τ), t, τ ∈ Z. (2.4)

Extended to n-dimensional case, discrete convolution is an operation on
functions X(u),W (u) : Zn −→ R, defined as

(X ∗W )(u) =
∑
v1

· · ·
∑
vn

X(v) ·W (u− v), u,v ∈ Zn. (2.5)

Specifically for 2-D case, where u =
[
i
j

]
, v =

[
k
l

]
,

(X ∗W )(i, j) =
∑
k

∑
l

X(k, l) ·W (i− k, j − l). (2.6)

Functions X,W can be written in a matrix form, where X(i, j) = Xi,j is a
value on i− th row and in j − th column of matrix X. Similarly for W (k, l)
and indices k, l. Example of the matrix form is shown on figure 2.3. It is
customary to regard values outside of indices in the matrix as equal to zero.
It is also customary to only compute the convolution for indices with said
values.
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2. Convolutional Neural Networks and Theoretical Background ................
X1,1 X1,2 X1,3 X1,4

X2,1 X2,2 X2,3 X2,4

X3,1 X3,2 X3,3 X3,4

X4,1 X4,2 X4,3 X4,4

0 0 1

1 0 1

1 0 1

6 2

5 4
∗ =

X
W

X ∗ W

1 0 1 0

1 0 1 1

1 0 1 1

0 1 1 1

1 0 1

1 0 1

1 0 1

6 2

5 4
∗ =

X
W

X ∗ W

Figure 2.3: Function X(u) : Z2 −→ R written in a matrix form.

1 1 1 1 1

1 0 0 0 0

1 1 1 1 1

0 1 0 1 1

0 1 0 1 1

∗
-1 -2 -1

0 0 0

1 2 1

=

0 0 0

1 2 3

-2 -2 -1

-1 -2 -1

0 0 0

1 2 1

×− 1 ×− 2 ×− 1

×0 ×0 ×0

×1 ×2 ×1

X

W X ∗W

Figure 2.4: Example of a 2-D discrete convolution using input matrix X and
Sobel-Feldman 3× 3 kernel W to detect vertical edges. The output is limited to
only valid kernel positions.

2.3.2 Motivation

Use of convolutional neural networks in computer vision tasks was motivated
by findings made in the field of neurophysiology in the 1950s. First, the
principle of operation of a neuron was demystified, when A. Hodgkin and A.
Huxley [20, 21, 22, 23, 24] measured electrical changes within Doryteuthis
pealeii giant axon in response to external stimulus. They constructed a
mathematical model of the neuron and earned the Nobel Prize in Physiology
and Medicine in 1963 for their work. The complicated Hodgkin-Huxley model
(output displayed on figure 2.5) inspired creation of simplified neuron models,
which though lacking certain biological features were easier to simulate and
analyze. These models followed the form of

o = f
(∑

i

wi · vi
)
, (2.7)

where f is a nonlinear activation function, traditionally rectified linear unit
(ReLU) or sigmoid, vi is signal from i-th pre-synaptic neuron and wi is
strength of the signal.

A noticeable difference between the Hodgkin-Huxley and a simplified model
was, that a model described by equation (2.7) summed up inputs from all
pre-synaptic neurons and operated on the sum as a whole. It also lacked any

8



.............................2.3. Convolutional Neural Networks

10 20 30 40 50 60
-100

-80 

-60 

-40 

-20 

0   

20  

40  

60  
M

e
m

b
ra

n
e

 V
o

lt
a

g
e

 (
m

V
)

Time (msec)

Figure 2.5: Simulation of Hodgkin-Huxley model generated with MATLAB.

dynamic term and therefore could not display output spiking as it can be seen
on figure 2.5. This problem could however be circumvented by interpreting the
output o of equation (2.7) as a frequency of the spiking, rather than voltage.
With this change, humans could now create reasonable neuron simulations.

Second, D. Hubel and T. Wiesel revealed how individual neurons were
connected and explained how they processed visual information. Through
the use of D. Hubel’s invention, the modern tungsten microelectrode, they
were able to research striate cortex in paralyzed cats. In 1959 they discovered
certain selectivity and columnar organization in the cortex [26] and that
nearby neurons process information from nearby visual fields. In 1962 [25],
they observed that neurons responded differently to changing light intensity
and simple shapes such as rectangles and lines, especially when varying angles
of their inclination. They received the Nobel Prize in Physiology and Medicine
in 1981 for their work.

Their research proved that neurons are only sparsely connected with spa-
tially restricted interactions. This made convolution an ideal candidate to
simulate neuron connections, as the operation was shown to possess many
convenient features. When utilizing a relatively small kernel, convolutional
connections between neurons were sparse and spatially restricted. Important
to detection tasks, convolution was also equivariant to translation. Last
but not least, learnt convolution kernels could be used to process inputs of
any size. This ultimately led to convolution replacing fully connected layers
(FCLs) which were more computationally and memory intensive.

Comparison: Convolution and Fully Connected Layer

When first observing convolutional layer and FCL, 1-D case shown on figures
2.6 and 2.7 respectively, one might believe the layers to be very similar. It is
critical, however, to discern their differences. As can be seen, convolutional
layer has restricted perceptive field while FCL does not. This naturally leads
to FCL having more learnable parameters and requiring more memory and
computations. One could be concerned that the inherently small receptive
field of convolutions may result in poor network performance. Figure 2.10
shows this not to be the case, as the deeper a neuron is in the network,
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Figure 2.6: Example of a simple neural network for processing 1-D grid data
with one convolutional layer.

the larger its receptive field becomes. This structure of connections further
mimics the columnar organization of neurons discovered by Hubel and Wiesel.
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Figure 2.7: Example of a simple neural network for processing 1-D grid data
with one fully connected layer.
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Figure 2.8: A single parameter is shared by multiple computations in a convolu-
tional layer.

Convolution can also be used on nearly any size of data while FCLs only
support one fixed size. It has been mentioned that FCLs are also more
computationally and memory intensive than convolutional layers. This claim
seems reasonable, as FCLs have more connections and therefore require more
parameters, however that is not the sole reason. A large increase in memory
efficiency of convolutional layers also arises from parameter sharing, as the
same kernel is used for every computation in a convolutional layer. This fact
is shown on figure 2.8, where bold arrows represent an identical parameter.
Observing FCL on figure 2.9, each parameter is only used once.

The following section briefly reviews other operations, beside convolution,
which are often utilized in convolutional networks.

2.3.3 Convolution Arithmetic

Convolution and Cross-Correlation

Many deep-learning libraries surprisingly do not include genuine convolution
implementations. They instead utilize operation known as cross-correlation,
which is identical to convolution, but with reversed kernels. One could argue
that this makes cross-correlation non-commutative and he/she would be
correct. Convolutional neural networks, however, contain many operations
which are not commutative and therefore the loss of this property is not an
issue. Additionally, since the kernels are fully learned, the fact that they are
reversed is not an issue either. For those reasons, expressions convolution
and cross-correlation are often used interchangeably while discussing neural

11
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Figure 2.9: Parameters in a fully connected layer are used only once.

networks. This text follows the same practice and will often default to the
use of convolution, when referring to cross-correlation.

Deep learning libraries often accept additional parameters for convolution,
including, but not limited to, dilation, stride and padding. These parameters,
alongside data representation within a neural network, are briefly reviewed
and demonstrated on a 2-D discrete case in the following sections. For an in
depth understanding refer to [9] which influenced section 2.3.3 heavily.

2-D Discrete Convolution, Channels, Batches

Previously, 1-D case was used to illustrate how convolutional layers are
connected within a neural network. Most data in computer vision tasks
however comes in form of 2-D grids, such as RGB images or depth maps. An
example of 2-D discrete convolution is shown on figure 2.11.

Naturally, both the input data and the kernel here are 2 dimensional
matrices. Thus each element in such data can be indexed with 2 numbers.
Upon examining RGB images however, one might argue that 3 numbers are
needed to index an element, as not only does a position of a pixel have to be
specified, but also a color channel - red, green or blue. Therefore an RGB
image can not be represented as a matrix, but can be represented as multiple
matrices, each color channel represented with a separate one. Another way
to represent an image is as a tensor which, though mathematically incorrect,
can be thought of as generalized n-D matrix.

RGB images can still be processed with 2-D convolution, even though they
can not be represented with a matrix, only the convolution kernel must have
the same number of channels as the input data. An example of convolution

12
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Figure 2.10: Example of a simple neural network for processing 1-D grid data
with two convolutional layers, showcasing increased receptive field of view of
deeper neurons.
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Figure 2.11: Example of a default discrete 2-D convolution with one input
channel.

with multiple channels is shown on figure 2.12. This convolution reduces the
number of channels from 3 to 1, but when multiple kernels are provided, the
number of output channels can be arbitrary.

This is indeed often the case, as it is desirable to process the same data with
multiple different kernels. One kernel might detect vertical edges, another one
might detect horizontal edges, etc. An example of convolution with multiple
kernels is shown on figure 2.13.

For completeness it must also be mentioned that deep learning libraries
typically do not use 3 dimensional tensors, while processing 2-D grid data,
but use 4 dimensional tensors instead. The last added dimension comes from
parallel processing of multiple grids.
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Figure 2.12: Example of a default discrete 2-D convolution with three input
channels and one output channel.
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Figure 2.13: Example of a default discrete 2-D convolution with three input
channels and multiple output channels.

Neural network computations are usually carried out on graphics processing
units (GPUs), leveraging parallelism in their architecture and computing
convolutions across the whole data at the same time. This means that the
same convolution is being computed for the upper left corner, the bottom
right corner, as well as all other remaining parts of the grid, simultaneously.
With recent increases in memory size of commercially available GPUs, it
became possible to process multiple grids at the same time, and therefore
another dimension was added to differentiate between the grids.

A set of grids processed in parallel is called a batch, and is indexed within
a tensor as [batch size, channels, height, width]. An important property of
convolution is that convolutional layers do not interact across axes, and as
such the change of stride, dilation and padding along axis j only affects the
output size of axis j. Therefore, only the simplified case, where kernel size k,
dilation rate d, stride s and padding p are identical between width and height
axes, will be outlined. The resulting properties however still generalize to
n-D case with distinct values of k, d, s, p for each axis.

Dilation

The dilation parameter d allows the convolution to attain larger receptive
field without needing to increase the amount of parameters. As can be seen
on figure 2.10, stacked layers of regular convolution allow the receptive field
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of deeper neurons to linearly grow in size. Layers of dilated (or “atrous”)
convolution allow the receptive field to grow exponentially.

Input 1

Input 2

Input 3

Input 4

Input 5

Input 6

Input 7

Input 8

Input 9

Hidden
layer 1

Input
layer

Hidden
layer 2

Figure 2.14: Example of a simple neural network for processing 1-D grid data
with two convolutional layers with dilation d = 2, showcasing exponential
receptive field growth of deeper neurons.

Dilated convolution enlarges the provided kernel by inserting spaces between
the kernel elements, effectively making the kernel size equal k̄ = k + (k − 1)(d− 1),
where k is the original kernel size. Usually, there are d− 1 spaces inserted
between kernel elements, therefore regular convolution corresponds to d = 1.
A 1-D case where d = 2 can be seen on figure 2.14. Notice the spaces between
connections and the resulting enlarged field of view compared to figure 2.10.
An example of 2-D case where d = 2, limited to two output positions, can be
seen on figure 2.15.
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(a) : Upper left corner.
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(b) : Upper right corner.

Figure 2.15: Example of a discrete 2-D convolution with dilation parameter
d = 2, visualized for two output positions.
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Stride

The stride parameter s allows the convolution to downsample the input.
It specifies by how much to move the convolution kernel before computing
another element of output. Typically, s − 1 valid positions of kernel over
input data are skipped in both directions, but the horizontal and vertical
strides can potentially be distinct. This is equivalent to downsampling the
output of a regular convolution by deleting certain elements, as is shown for
s = 2 on figure 2.16. Regular convolution corresponds to s = 1. A complete
example of 2-D case where s = 2, can be seen on figure 2.17.

Stride s > 1 is often used to downsample the input, while increasing the
number of channels. This allows the network to distinguish larger number
of features, though with reduced resolution, without requiring unreasonable
amounts of memory.
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Figure 2.16: Example of a regular discrete 2-D convolution with stride parameter
s = 1 with highlighted elements, which would not be computed for stride s = 2.

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 1

0 0 0 0 1 1

1 0 0 0 0 1

1 1 0 0 0 0

∗
1 0 1

0 1 0

1 0 1

=
1 3

1 1

1 0 1

0 1 0

1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

(a) : Upper left corner.

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 1

0 0 0 0 1 1

1 0 0 0 0 1

1 1 0 0 0 0

∗
1 0 1

0 1 0

1 0 1

=
1 3

1 1

1 0 1

0 1 0

1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

(b) : Upper right corner.

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 1

0 0 0 0 1 1

1 0 0 0 0 1

1 1 0 0 0 0

∗
1 0 1

0 1 0

1 0 1

=
1 3

1 1

1 0 1

0 1 0

1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

(c) : Bottom left corner.
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Figure 2.17: Example of a discrete 2-D convolution with stride parameter s = 2,
showing all viable positions of kernel over input data to produce output.
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Padding

The padding parameter p specifies the number of columns and rows which
should be added to input data, before computing the desired convolution.
The number of added columns and rows can potentially be distinct. The
elements of new rows/columns are usually zero valued.

When convolution kernel of an odd size k is used, padding p = (k − 1)/2
ensures that the input and output height/width are identical. Such case is
shown for k = 3 on figure 2.18.
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Figure 2.18: Example of a discrete 2-D convolution with padding parameter
p = 1 and kernel size k = 3, resulting in identical size of input and output data.

With all parameters k, d, s, p reviewed, it is possible to write down the
following equation which describes the relationship between those parameters,
the input size and the output size:

o =
⌊
i+ 2p− k − (k − 1)(d− 1)

s

⌋
+ 1, (2.8)

where o, i are the output and input sizes along axis j and k, d, s, p are kernel
size, dilation rate, stride and padding along axis j. It should also be reminded,
that bxc denotes integer floor function on x.

2.3.4 Non-Convolutional Layers

In 2.3.3, it has been mentioned that convolutional neural networks comprise
multitude of layers which are not commutative. This permits the use of
cross-correlation instead of convolution. Convolutional and fully connected
layers were introduced in 2.3.2. Other layers which are widely used within
convolutional neural networks are briefly reviewed in the following sections.

Activation functions

Advancements in neurobiology in the 20th century allowed scientists to
demystify the function of a neuron and subsequently create a simplified model
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described by equation (2.7). The equation contains term

∑
i
wi · vi which

models signals from pre-synaptic neurons and can be implemented through a
FCL or a convolutional layer, depending on the desired neuron connections.

The equation also contains an unspecified non-linear function f . Let us
explore why f must not be linear. Writing an expression which is a composite
function of two equations (2.7), we obtain

o = f

(∑
j

f

(∑
i

wj,i · vj,i
)
· uj

)
, (2.9)

where f is an activation function, vj,i is signal from i-th neuron in first layer to
j-th neuron in second layer, wj,i is strength of the signal vj,i and uj is strength
of signal from j-th neuron in second layer to a neuron in third layer. The
equation (2.9) is a plain extension of equation (2.7) for one additional neuron
layer. It should be noted, considering no backwards neuron connections, that
for linear f , the whole equation (2.9) is a linear combination of vj,i. Even
with more layers added, the expression would indeed still remain linear and
therefore the network would exhibit shortcoming mentioned in section 2.2.

This fact raises the necessity of f to introduce nonlinearity to the equation.
Functions used to model this nonlinearity are called activation functions and
they represent the amount of neuron activation based on pre-synaptic signals.
Brief review of the most popular activation functions follows.

Logistic Sigmoid. Zero gradient when saturated.. Computationally inefficient.. Positive value bias.

A function which originally registered success as a neuron activation approxi-
mation, was the logistic sigmoid function, shown on figure 2.19a:

σ(x) = 1
1 + e−x

. (2.10)

The function is clearly non-linear and seems to possess the benefit of saturating
the neuron activation for large inputs. This intuitively seems advantageous,
the activation can not approach infinity and has an upper limit. One must re-
alize, however, that neural networks are trained through the back-propagation
algorithm since its successful use in 1986 by Rumelhart et al. [40]. This
optimization algorithm is gradient based, it computes gradients of learnable
weights for each layer and uses them to iteratively update the weights.

Explanation of the algorithm is beyond the scope of this text, it should
however be noted that when the gradient is equal to zero, no change in
weights can occur. Unfortunately, the sigmoid clearly has zero gradient when
saturated. Another drawback of the sigmoid is the range of possible values,
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which is positive only. In section 2.3.2 it was mentioned that the neuron
output should be interpreted as frequency of deviations in the neuron output
magnitude instead of the magnitude itself. This again seems intuitively
correct, as the frequency should not reach negative values, however it causes
problems during the training process. The last major issue is that the function
and its gradient are quite computationally intensive.

Hyperbolic Tangent. Zero gradient when saturated.. Computationally inefficient.

Hyperbolic tangent is a sigmoid type function, but centered around zero.
Therefore it avoids one of the logistic curve problems, the positive value bias,
but retains the remaining - diminishing gradient and computational intensity.
It is shown on figure 2.19b and is defined as

tanh (x) = sinh (x)
cosh (x) = e2x − 1

e2x + 1 . (2.11)

Rectified Linear Unit. Zero gradient when saturated.. Positive value bias.

The most popular activation function at the time of writing is the rectified
linear unit (ReLU), shown on figure 2.19c and defined as

ReLU(x) =
{

0 x ≤ 0
x x > 0

. (2.12)

Though the function is very simple and not representing neuron activation
accurately, it makes up for its lack of complexity by being computationally
inexpensive. Its use enables fast gradient computation for deep networks,
speeding up the training process. ReLU however still suffers from zero gradient
and zero activation for values of x ≤ 0 and from positive value bias.

Leaky Rectified Linear Unit. Slight positive value bias.

Leaky rectified linear unit (LReLU) is a slight variation of ReLU. It improves
upon its predecessor by avoiding saturation, zero slope, for values of x ≤ 0.
It is shown on figure 2.19d and defined as

LReLU(x) =
{
ax x ≤ 0
x x > 0

, (2.13)

where a is a decimal smaller than 1, usually a = 1
10 .
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(d) : Leaky Rectified Linear Unit.

Figure 2.19: Visualization of the most common activation functions.

Pooling

Pooling layers are a class of layers which provide summary of neuron acti-
vations at a certain location. Different applications favor different types of
pooling methods, the most common being: maximum activation, average
activation and weighed average activation of spatially close neurons. Pooling
methods are specified in advance and posses no learnable parameters.

Examples of pooling over maximum values (Max-Pool) and over average
values (Avg-Pool) are shown on figures 2.20a, 2.20b respectively. Pooling
layers can under certain circumstances be interpreted as convolution. Average
pooling for example can be though of as convolution, where all kernel values are
equal to 1

kn for n-D grids. Max pooling can also be thought of as convolution,
though spatially variant, and with zero valued kernel elements except for a
single one. Because of this analogy between pooling and convolutional layers,
pooling also supports kernel size k, dilation rate d, stride s and padding p
parameters.

The reason why pooling layers in convolutional neural networks are used
and work so well is debatable. One intrinsic property of pooling is that
it makes the neural network invariant to small translations of input. Such
property is beneficial for certain applications (classification tasks), but can be
detrimental to others (detection and localization tasks). Another argument
is that pooling allows the network to switch between smaller activation
subnetworks and discriminate between redundant information, while being
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computationally simple.
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(a) : Pooling maximal values.
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Figure 2.20: Example of a pooling layer applied to 1-D grid data.

2.4 Spatially Variant Convolution

Previously, convolutional neural networks were introduced as a tool for
processing grid organized data, where spatially close values are likely to be
contextually close as well. For example, when processing an image, nearby
pixels have a high probability of belonging to the same object. In certain
application however, additional information about the data is provided and
can be used to further modify how the data is processed. Take for example a
2-D depth map obtained from Light Detection And Ranging (LiDAR) scans,
shown of figure 2.21, where only a small portion of the grid represents valid
measurements. The remaining values represent areas which did not have
their distance measured. Surely this information could be used to improve
the network performance.

2.4.1 Sparse Convolution

J. Uhrig et al. [47] exploited the information whether data is valid or not on
the large scale KITTI dataset [12] for the task of depth completion. They
modified the convolution operation so that only valid values are considered
and the output is scaled by the amount of observed valid values. Paraphrasing
Uhrig et al. using notation consistent with this text:
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Close-up of sparse

depth measurements

Sparse LiDAR
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Valid Measurements

Figure 2.21: Example of a 2-D grid data of sparse LiDAR depth measurements.
LiDAR data taken from KITTI Semantic Segmentation Benchmark [47].

Consider the case, where the 2-D grid input data x = {xu,v} are
only partially observed. Let o = {ou,v} denote corresponding bi-
nary variables indicating if an input is observed (ou,v = 1) or not
(ou,v = 0). The output f of a standard convolutional layer at indices
corresponding to height u and width v using this notation is

fu,v(x) = b+
κ∑

i,j=−κ
xu+i,v+j · wi,j (2.14)

with kernel size k = 2κ+ 1, kernel weights w = {wi,j} and bias b.
If the input comprises multiple channels, xu,v and wi,j represent
vectors xu,v,c and wi,j,c with length c equal to the number of channels.
The output for one output channel then is

fu,v(x) = b+
κ∑

i,j=−κ
xu+i,v+j,c ·wi,j,c = b+

κ∑
i,j=−κ

∑
c

xu+i,v+j,c · wi,j,c

(2.15)

Making use of the same notation, the output of a sparse convolutional
layer, proposed by Uhrig et al. [47], where only valid measurements
are considered, is

fu,v(x,o) = b+
∑κ
i,j=−κ ou+i,v+j · xu+i,v+j · wi,j

ε+
∑κ
i,j=−κ ou+i,v+j

= b+ num
den
(2.16)

where small ε is added to denominator to avoid division by zero at
filter locations where none of the input pixels are valid.

Visualization accompanying equation (2.16) is shown on figure 2.22 with
∗sp. denoting sparse convolution. The additional averaging over observed valid
values makes the sparse convolution spatially variant and content dependent
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Figure 2.22: Example of a discrete 2-D sparse convolution with one input
channel. Input and kernel weights are identical to regular convolution on figure
2.11, however first row of x is considered invalid, bias b = 0 and ε = 0.01.

on the matrix o. This means that different parts of the 2-D grid are convolved
using a different kernel, based on context of whether the convolved values
are valid or not. Figure 2.23 shows that the effective kernel weights w̄ indeed
change depending on the position of kernel.
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Figure 2.23: Example of effective sparse convolution kernels w̄ being spatially
variant based on position in o and global kernel w.

2.4.2 Guided Convolution

The same task, depth completion, was also pursued by J. Tang et al. [44],
which explored the idea of using a separate neural network to generate spatially
variant and content dependent kernels from RGB images with great success.
They employed an encoded-decoder network to extract convolution kernels
from an RGB image and used the kernels within another encoder-decoder
network to process the sparse depth data.

The convolution uses no predetermined rules to obtain the kernels and all
of its traits are fully learned. This method was introduced as an alternative
to previously popular addition/concatenation of RGB image data with depth
data and was shown to produce impressive results, ranking 1st at the KITTI
depth completion leaderboard at the time of writing.
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2.4.3 Deformable Convolution

Another approach to modifying generic convolution was explored by J. Dai
et al. [7]. They do not alter the elements of the convolution, instead they
generate offsets and use them to deform the regular sampling grid of a kernel.
All the offsets are first obtained from channels within the network and then
used to deform learned convolution kernels. This shape deformation allows
the deformable convolution to describe geometric transformations such as
rotation, scaling or other general transformations.

These offsets are local and therefore the convolution can learn to approxi-
mately adapt to distortions or camera lens properties.

(a) : Scaling. (b) : Rotation. (c) : Generic.

Figure 2.24: Example of offsets in discrete deformable 2-D convolution enabling
kernels to learn geometric transformations. Position of original kernel is displayed
in red. New positions of kernel elements are displayed in cyan.

2.4.4 Pixel-Adaptive Convolution

The last approach to modifying generic convolution, presented in this text,
was explored by H. Su et al. [42]. They present convolution in which the
filter weights are multiplied with a spatially varying kernel that depends
on learnable, local pixel features. The spatially varying kernel is extracted
through the use of a predefined function which measures difference in pixel
features and outputs an appropriate weight - the closer the features, the
larger the weight. Analogical approach was devised separately by the thesis
supervisor and researched by the author and therefore is explained in detail
in chapter 3.

2.5 Discussed Applications

CNNs were introduced as a special kind of neural networks which process
data organized in grid-like topology - audio signals, images and voxels. Most
common of these are images therefore such the most common CNN applica-
tions process 2-D data. The following sections cover two application areas
of CNNs which were used to evaluate viability of the proposed convolution,
with local masks based on context. They also provide brief literature review
of recent development in those applications.
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2.5.1 Depth Completion

Depth completion or depth inpainting is an open field of research applicable
to a wide range of problems in industrial robotics, automotive industry and
general autonomous mobile robots. It is the task of deriving dense depth
image from sparse depth measurements. This dense distance data is a prereq-
uisite for obstacle avoidance, object detection or 3-D scene reconstruction.
With the recent interest in development of autonomous vehicles, produc-
ing accurate dense depth images from sparse inputs became desirable. As
low-priced Light Detection And Ranging (LiDAR) scanners become widely
available, this trend can be expected to continue. Source of the sparse mea-
surements differs between specific cases. For indoor scenes, depth cameras
are often used. For outdoor scenes, LiDAR sensors or algorithmic approaches
(Structure-From-Motion, Stereo Vision) are used.

Popular large scale indoors datasets suitable for depth completion are
the NYU dataset [34] or Matterport3D [2]. Popular outdoors dataset is the
KITTI benchmark [12]. For the purposes of this work, KITTI was chosen as
the dataset to be used. Since the measurements are provided by a LiDAR,
the data sparsity is far higher in comparison to NYU and Matterport3D,
mere 64 scan lines in vertical direction. The indoor datasets are also mostly
targeted at segmentation tasks. The KITTI depth completion dataset consist
of over 93 thousand ground-truth depth maps with corresponding raw LiDAR
scans and synchronized RGB images. An example of depth completion on
KITTI [1] is shown on figure 2.25.

Figure 2.25: Depth completion on KITTI Depth Completion Benchmark [1].
Top left: Network input, Top right: Ground truth,
Bottom left: Network output, Bottom right: Network output + RGB.

Historically, depth inpainting was performed by handcrafted approaches
to achieve upsampling of sparse inputs through interpolation. In the recent
years, data driven Deep Convolutional Neural Networks (DCNNs) started to
replace these classical approaches, however J. Ku et al. [29] show that a well
designed algorithmic approach remains viable. Nevertheless, DCNNs show
better results on complicated tasks and allow exploitation of additional data,
such as RGB images. Recently J. Tang, F. Tian et al. [44] achieve state-of-
the-art performance by generating context-dependent and spatially-variant
convolution kernels from RGB image used as guidance. J. Qiu et al. [37]
show impressive results by using RGB image and sparse depth to predict
surface normals and a confidence map separately, fusing their outputs to
produce dense depth prediction. A convolution operation, which explicitly
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considers sparsity by evaluating only observed pixels and normalizing the
output appropriately is presented by J. Uhrig et al. [47]. This approach leads
to creation of networks which are invariant to input sparsity.

Noticeably, all of the mentioned approaches exploit additional information
to improve the performance. Whether this additional information is an image,
normal map or a validity mask. This shows that providing the network
with additional context information is essential to achieve state-of-the-art
performance. It can also allow the network to gain other beneficial properties.
An example of this is the explicit handling of sparsity.

Simple approaches to handle the sparse inputs are to either replace invalid
values with zeros or to supply the network with an additional input channel
representing pixel validity. These methods were shown to be successful,
however they depend on training to develop appropriate interpretation of the
sparse input and are spatially invariant. The convolution operation presented
by J. Uhrig et al. [47] (2.16) explicitly considers the sparsity by evaluating
only observed pixels and normalizing the output appropriately. This approach
leads to more robust models, which are invariant to sparsity of input and
therefore allow sensor (e.g. LiDAR) replacement without the necessity of
retraining the model. Similar benefits can be expected when exploiting other
context data.

2.5.2 Semantic Segmentation

Semantic segmentation is the task of labeling all pixels within an image
as belonging to one of n classes. It can also be understood as pixel-wise
classification. Semantic segmentation is necessary for scene understanding of
autonomous vehicles and is being used for inspection of industrial products
and detection of defects. Lately it also found invaluable application in medical
image analysis.

Popular large scale datasets suitable for semantic segmentation are the
ADE20K dataset [49], Cityscapes [6] or the recent Audi A2D2 dataset [13].
For the purposes of this work, Cityscapes and A2D2 were considered, since
they consist of automotive street scenes, similar to KITTI. This would allow
the segmentation network to later be used as a context source for the depth
completion network or vice versa. Ultimately Cityscapes was chosen as the
dataset to be used, because of its established benchmarks and provided dense
stereo depth. A2D2 dataset in comparison only provides sparse LiDAR
measurements, which though more accurate, are not suitable as a context
source for segmentation. Example of semantic segmentation on the Cityscapes
dataset is shown on figure 2.26.

Historically, in classification tasks, DCNNs recognized rapid increase in
popularity after AlexNet architecture [28] won ImageNet Large Scale Visual
Recognition Challenge 2012. Among continuous improvements in the field,
architectures with growing amount of parameters such as VGG-16 [41], In-
ception [43] and ResNet [17] were developed. These architectures continued
to introduce additional modules to DCNNs such as Inception modules and
ResNet skip connections. In Xception model, F. Chollet [5] shows that In-
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Figure 2.26: Semantic segmentation on Cityscapes dataset [6].
Top left: RGB image, Top right: Ground truth,
Bottom left: Network output, Bottom right: Validity.

ceptpion modules can be modified to an operation of depthwise separable
convolution. This special case of convolution, showcased as early as 2014 by
A. Geiger et al. [12], significantly improves performance without increasing
the number of model parameters. This is extremely desirable for networks
utilizing spatially variant convolution, as it has inherent high memory usage
during backpropagation in the training process.

In semantic segmentation tasks, L. Chen et al. [3] first show that convolu-
tion with upsampled filters, or ‘atrous convolution’, allows explicit control
over the resolution at which feature responses are computed. They also
present it as a method of arbitrarily enlarging field of view of filters, without
increasing the number of network parameters. Second, they propose Atrous
Spatial Pyramid Pooling (ASPP) in DeepLab’s later iterations, an advanced
pooling module, to capture features and objects at multiple scales. They
implement proposed operations in a decoder on top of feature-extraction
layers from acknowledged networks (encoders), such as ResNet and VGG-16,
achieving state-of-the-art performance from 2015 until 2019. Only recently
A. Tao, K. Sapra, B. Catanzaro [45] achieve better performance by allowing
the network to learn how to best combine predictions from multiple scales
of the original image - in contrast to simple averaging over the predictions.
They also utilize semi-supervised learning, enlarging the original dataset with
outputs from a teacher network.

2.6 Hypothesis

It is possible to improve network performance through the use of local context
mechanism based on the sparse convolutions (2.16) [47], where the local
context corresponds to local real-valued mask which assigns higher weights
to contextually close neighboring pixels and lower weights to contextually
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distant pixels. This can be seen as an extension of (2.16) for generic context
sources. The context source can vary depending on the application. For
semantic segmentation, spatial context based on depth or 3-D distance can
be used. For depth completion, semantic context based on a class label
distance or learnt inter-class dependencies or appearance context based on
RGB distance seem reasonable. It can be expected that the additional
information provided in combination with explicit consideration of context
will improve performance near object edges or thin objects by placing lower
emphasis on contextually distant, though spatially close pixels. It can also
allow the network to gain beneficial properties such as the sparsity invariance
described by J. Uhrig et al. [47].

For task of depth completion, this approach could benefit the network
in multiple ways, depending on the context source. It is expected to allow
the network to fill in the depth of entire objects, even though only parts
of the objects possess valid distance measurements. It is also expected to
allow finer predictions at areas with thin objects such as railings. This
property would be highly dependent on accurate synchronization between
the depth measurements and the context source. The last expected benefit
is preservation of textures within the context. Standard depth completion
networks often predict smooth depth transitions regardless of varied, irregular
depth measurements. This causes irregular and textured objects such as
bushes to appear smooth in the prediction. Thus these objects are afterwards
difficult to distinguish from truly smooth ones, for example walls.

For segmentation networks with depth context the approach is expected to
allow the network to more accurately process areas with multiple overlapping
classes. These classes, such as cars, people and background buildings, are
spatially close within an image and as such are going to be processed at the
same convolution kernel position. Though spatially close within the image,
the classes likely are distant in the real world and the depth measurements.
The weights generated from depth context are then expected to allow the
network to better distinguish between the overlapping classes and to improve
accuracy at object boundaries.

Furthermore the proposed masked convolution can be generalized to n-D
case and used with diverse context sources appropriate for the task. If proven
fruitful, the approach could substitute current methods of providing the
network with additional information - such as concatenation or addition.

Detailed explanation of the proposed local context mechanism is provided
in section 3.1.
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Chapter 3
Methods

3.1 Convolution with Local Context Based Masks

In the equation (2.16), tensor o serves as a source of validity context. The
tensor elements are only allowed two values, indicating valid input (ou,v = 1)
or invalid input (ou,v = 0). We propose a novel convolution operation, Local-
Context-Masked Convolution (LCMC), described by equation (3.1), which is
an extension and generalization of (2.16).

fu,v(x,o) = b+
∑κ
i,j=−κ mu,v,i,j · xu+i,v+j · wi,j∑κ

i,j=−κ mu,v,i,j
(3.1)

Expressions (2.16), (3.1) are indeed identical for mu,v,i,j = ou+i,v+j . We
propose that mu,v,i,j need not be directly equal to values of tensor o. Instead
it can be computed through any real valued function mu,v,i,j = mu,v,i,j(o),
where o is a tensor encoding additional context suitable for the task.

Apparent example of such a tensor can be found in the task of depth
completion. The sparse depth measurements are often supplemented with a
synchronized RGB image. This image is a clear candidate for downsampling
and further processing to generate context sources o for the convolution.

The question then arises: what properties should the function mu,v,i,j(o)
have? It seems natural to assign higher weights mu,v,i,j to pixels xu+i,v+j ,
which are contextually close to central pixel xu,v of the convolution. In the
same manner lower weights should be assigned to pixels which are contextually
distant from the central pixel. A simple expression to model this relation is
the weighed inverse distance

mu,v,i,j = 1
a ·∆oi,j + b

, a, b ∈ R, ∆oi,j =
∑
k

∣∣ ou+i,v+j,k − ou,v,k
∣∣.

(3.2)

Note that the index k represents summation over all channels of tensor o.
To better suit the type of context source, other distance norms can be used
instead of Manhattan distance L1 (3.2). Reasonable substitutions can be the
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Euclidean distance L2 (3.3)

∆2oi,j =
√∑

k

(
ou+i,v+j,k − ou,v,k

)2
, (3.3)

or Chebyshev distance L∞ (3.4)

∆∞oi,j = max
k

∣∣ ou+i,v+j,k − ou,v,k
∣∣. (3.4)

Weights generated with the inverse distance expression (3.2) are displayed on
figure 3.1.
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(a) : Varying parameter a and fixed
parameter b = 1.
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(b) : Fixed parameter a = 0.010 and
varying parameter b.

Figure 3.1: Local mask weights mu,v generated as the inverse distance of o
elements through expression wu,v,i,j = 1

a·∆oi,j+b .

Another natural choice for the weight mapping are the Gaussian (3.5) and
Laplacian (3.6) distributions respectively

mu,v,i,j = e−
1
2

(∆oi,j
σ

)2
, σ ∈ R, (3.5)

mu,v,i,j = 1
2e
−∆oi,j

σ , σ ∈ R. (3.6)

Note that (3.5), (3.6) are not exact forms of Gaussian and Laplacian dis-
tribution, as they lack the scaling terms 1

σ
√

2π and 1
σ respectively. This

scaling is omitted in order to ensure mu,v,i,j = 1 for ∆oi,j = 0, as to penalize
contextually distant pixels, but not inflate weights of contextually close pixels.

The Gaussian weight distribution is shown on figure 3.2. The Laplacian
weight distribution is shown on figure 3.3. It is important to note that the
proposed convolution is spatially variant and dependent on the context source
tensor o. To explain further, figure 3.4 displays an example of how the
effective convolution kernel and the context weight kernel mu,v are generated
using Gaussian distribution weights and RGB image as tensor o.

Analogical approach called Pixel-Adaptive Convolution (PAC) was also sep-
arately devised by H. Su et al. [42] and used for the task of depth prediction
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Figure 3.2: Gaussian distribution mu,v,i,j = e− 1
2
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of local mask weights
mu,v depending on context tensor o and learnable standard deviation σ.
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Figure 3.3: Laplacian distribution mu,v,i,j = 1
2e

−
∆oi,j
σ of local mask weights

mu,v depending on context tensor o and learnable parameter σ.

on KITTI benchmark [12] with great success by V. Guizilini et al. [16]. This
task involves predicting dense depth only from an RGB image with no sparse
measurements provided and is not to be confused with depth completion.
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V. Guizilini et al. used PackNet [15] as the depth prediction network and
a pretrained, separate Feature Pyramid Network (FPN) with ResNet [17]
backbone as the context source network.

Articles of H. Su et al. and V. Guizilini et al. were discovered while working
on late stages of the thesis. Though the proposed convolutions are similar, it
is important to note the differences. H. Su et al. introduce Pixel-Adaptive
Convolution (PAC), transposed Pixel-Adaptive Convolution (PACT ) and
Conditional Random Fields which employ PAC (PAC-CRF).

This work only proposes Local-Context-Masked Convolution (LCMC)
which is analogical to PAC, but introduces additional normalization in the
form of denominator

∑κ
i,j=−κ mu,v,i,j in equation (3.1). It evaluates the

LCMC on KITTI benchmark [12] on the task of depth completion and on
Cityscapes [6] on pixel-level semantic labeling task and employs wide range
of context sources: RGB image, depth image, feature maps from a pretrained
network. Thus, this work could be viewed as an extension of previous work
by H. Su et al. and V. Guizilini et al.

Network architecture used for the experiments is described in section
3.2. Experiment setup, implementation details and the training process are
described in section 3.3.

3.2 Network Architecture

Network architecture used for experiments with the LCMC was constructed
as a modification of DeepLab [3]. Variation of Xception [5] is used as the
backbone for extraction of both low-level and high-level features. High-
level features are resampled at multiple scales through ASPP and upscaled
through bilinear interpolation. Low-level features are then concatenated with
resampled high-level features, upscaled and further convolved to produce the
output.

The network can be separated into an encoder and a decoder, shown for
the task of depth completion on figures 3.5, 3.6 respectively. Modifications
from a traditional DeepLab network are the replacement of all convolutions
with LCMCs and reduction of channel numbers of intermediate layers due to
the increased memory requirements of spatially variant convolution.

Semantic segmentation networks had channel numbers reduced by a factor
of 4 within both the encoder and the decoder. Depth completion networks
had channel numbers reduced by a factor of 2 within the first 2 layers of
the encoder and by a factor of 4 within the remaining layers of the decoder.
Channel numbers within the decoder of depth completion networks were
reduced by a factor of 2. Note that such reductions do not result in trivial
decrease of the network size by a factor of approximately 4.

Comparing the architecture to V. Guizilini et al. [16], one must notice that
V. Guizilini et al. employ the additional context information only during
decoding stages through PACT . Our network utilizes the context information
throughout the entire forward pass and employs exclusively LCMC to exploit
the context. LCMC also supports depthwise separable convolution as proposed
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(a) : Local context mask mu,v generated with Gaussian dis-
tribution weights from an RGB image o. Standard deviation
σ = 100. Only upper channel of o is non-zero for clarity.
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(b) : Convolution of input {xu+i,v+j} with local mask mu,v and
global kernel w. Displayed division is elementwise. Note that
the entire tensor x is of the same height and width as tensor o,
but mask mu,v is used only locally for fu,v(x,o).

Figure 3.4: Accompanying visualization for equations 3.1, 3.5, elucidating
Gaussian distribution mask generation from RGB image with RGB L1 distance.

in Xception [5]. Note that the equation (3.1), which describes LCMC, has
no effect on pointwise convolution (convolution with kernel size k = 1) and
pointwise convolution is therefore visualized in a color separate from LCMC.

3.3 Experiment Setup

We utilize 5 GTX 1080Ti, 2 GTX Titan X, 1 GTX Titan Xp GPUs for training,
with batch size of 2. Multitude of networks was trained in parallel and
GPUs were distributed according to computational and memory requirements.
Gaussian distribution was chosen as the default function to generate context
weights. The choice was made for two reasons
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. the distribution only has one parameter σ to be learned,. the weights remain in interval mu,v,i,j ∈ ]0, 1].

Parameter σ was initialized to 100. This value is based on experiments with
RGB distance context and L1 norm. The largest possible L1 distance ∆oi,j
between two pixels, black and white, assuming 24-bit color, is

∆oi,j =
3∑

k=1

∣∣0− 255
∣∣ = 3 · 255 = 765. (3.7)

Standard deviation of L1 pixel distance, computed on ImageNet [8] dataset, is
172.89. It can then be assumed that about 68% of all pixels are within distance
of twice the deviation, 345.78. Gaussian (3.5) with parameter σ = 100 assigns
negligable weights to L1 distance of pixels ∆oi,j ' 320 and as such seems a
reasonable choice. The same initial σ was used for all experiments, even ones
which do not utilize RGB, to keep comparison of network variations simple.

Because of a large observed difference in training times between depth
completion networks with and without LCMC, two additional experiments
on the depth completion task were conducted with more powerful hardware.
Network using RGB context source with batch size of 60 and network using
ResNet [17] feature maps context source with batch size of 20 were trained
on 8 Tesla V100 GPUs.

The higher batch size and more powerful hardware allowed these networks
to reach number of training epochs comparable to networks without LCMC.
It should be noted however that the training process of these networks differs
significantly from others. The higher batch size allows batch normalization
[27] to compute less noisy mean and variance, improve parameter update
direction, but causes the network to perform fewer parameter optimization
steps per epoch. Since the loss is averaged over batch elements, the training
process does not compensate for the decrease in the number of update steps
with higher loss.

3.3.1 Programming Language and Libraries

LCMC, the networks and training framework were implemented in PyTorch
1.5.0 [36] with Python 3.7.2 [48] and CUDA 10.0.130. The convolution imple-
mentation is flexible, allowing simple substitution of context weight function
mu,v,i,j(o). Final implementation of LCMC, provided by the thesis supervisor,
is written purely in PyTorch and therefore supports automatic differentia-
tion. If the function mu,v,i,j(o) holds the same property, then the user is not
required to manually implement the backward gradient propagation.

Additionally, experiments with PAC [42] were conducted with an alternative
setup of PyTorch 1.1.0 and CUDA 9.2, as PAC does not support newer versions.
As PAC also does not support depthwise separable convolution, the networks
had to be implemented with a backbone other than Xception [5]. Such
modifications prevented these networks from being directly compared to the
main experiment and therefore the experiments with PAC were terminated.
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3.3.2 Training

Loss Function

Depth Completion

Loss between the ground-truth and predicted depth is computed as mean
squared error (MSE), formula of which can be seen in equation (3.8). Ground-
truth depth of real world scenes, especially outdoor scenes with moving
objects, is difficult to obtain. Therefore KITTI provides only partially dense
ground truth and the loss is computed over the valid ground-truth pixels only.
Let P = {Pi,j} be the 2-D depth prediction and let T = {Ti,j} be the 2-D
ground truth target. The MSE is then computed as

MSE =
∑
k,l(Pk,l − Tk,l)2∑

k,l 1
, (3.8)

where k, l ∈ N2 are indices of valid measurements within the ground truth T.

Semantic Segmentation

Cross entropy loss, a combination of negative log likelihood and softmax,
equations (3.10) and (3.9) respectively, is utilized for training of semantic
segmentation networks. The loss is computed separately for all pixels and
classes, then reduced to a single number through averaging.

Let P = {Pi,j,k} be the network output and let T = {Ti,j,k} be the ground-
truth probability. Softmax of Pi,j,k is

Si,j,k = ePi,j,k∑
k e

Pi,j,k
. (3.9)

The negative log likelihood of Si,j,k then is

Ni,j,k = − log(Si,j,k) · Ti,j,k. (3.10)

The final cross entropy loss can be computed as

CEL =
∑
i,j,kNi,j,k∑

i,j 1 . (3.11)

Optimizer

All networks were trained with Stochastic Gradient Descent (SGD) optimizer
with momentum 0.9, using Nesterov momentum [35]. Depth completion
network loss was observed to diverge for learning rates higher than 0.02.
Semantic segmentation network loss was observed to diverge for learning rates
higher than 0.5. Initial learning rates were afterwards chosen as 0.002 and
0.05 respectively, a tenth of the experimentally discovered boundaries. The
learning rate was scheduled to decrease by a factor of 0.1 after training for
30, 40, 50, 60 and 70 epochs.
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The training process and parameters are designed to deliberately be simple

and not introduce additional hyperparameters which could complicate final
comparison of network variations.

3.3.3 Datasets and Data Augmentation

Depth Completion

The KITTI depth completion dataset [12] comprises over 86k training images,
1k validation images and 1k test images. The depth measurements are
obtained through LiDAR and verified with stereo image pairs. Images in
validation and test sets are provided already cropped to size 1216×352, while
training images are not. Since LiDAR points at the top of an image are
uncommon, all images are cropped to a uniform size 1216× 256, discarding
the upper part, following the approach of Tang et al. [44]. Example of the
cropping is shown on figure 3.7. For training the image is horizontally flipped
with a probability p = 0.5.

Semantic Segmentation

Cityscapes pixel-level segmentation dataset [6] comprises 3475 training and
validation images which are both finely and coarsely annotated, 19998 ad-
ditional coarsely annotated training images and multitude of further data,
such as precomputed depth maps using semi-global matching. All images
are provided already cropped to size 2048 × 1024. For both, training and
validation, images are cropped at center to a size 1843× 921. This is done to
remove parts of the image where no depth data is available.

Missing section of depth data in other parts of the image were filled prior
to training. Inpainting using cross-bilateral filter (CBF) at multiple scales
produced the best results, but was replaced with a technique proposed by
A. Telea [46] due to computational complexity of CBF. An example of the
inpainting and cropping is shown on figure 3.8. Figure 3.9 shows an example
of depth image where defects are present. It should therefore be noted that
the depth measurements are of a lesser quality than LiDAR measurements
and could potentially be a worse source of context.

For training, images are horizontally flipped with probability p = 0.5.
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Figure 3.5: Proposed encoder architecture for depth completion task. Modified
Xception [5] architecture with LCMC. Feature maps are extracted from syn-
chronized RGB image with a separate network and used as a context source.
Convolutional blocks which consist of two layers, lighter and darker, represent
convolution followed by batch normalization and ReLU.
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Figure 3.6: Proposed decoder architecture for depth completion task. LCMC
makes use of identical context sources as the encoder, though they are not
displayed. Upper part of the image displays ASPP [3]. Convolutional blocks
which consist of two layers, lighter and darker, represent convolution followed by
batch normalization and ReLU.
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(a) : Original image.

(b) : Original depth.

(c) : Cropped depth.

(d) : Cropped ground-truth depth.

Figure 3.7: Crop of KITTI [12] data.
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(a) : Original image. (b) : Original depth.

(c) : Filled depth. (d) : Cropped depth.

Figure 3.8: Preprocessing and crop of Cityscapes [6] depth data.

Figure 3.9: Defects of Cityscapes [6] depth data. Most noticeable on the car in
the bottom left corner of the image. Further defects are present on the sky at
the top of the image.
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Chapter 4
Experimental Results

4.1 Results of Depth Completion

Depth completion network performance was measured on a set of 1000
standardized handpicked images. Network outputs were generated, then
evaluated with development kit provided as a part of the KITTI dataset.

KITTI benchmark measures multiple metrics, comparing models on ba-
sis of Root Mean Square Error and Mean Absolute Error [mm] on depth
(RMSE, MAE) and inverse depth (iRMSE, iMAE) [1/km] respectively. Mean,
minimum and maximum of these metrics measured on the set of evaluation
images are shown in tables 4.1, 4.2, 4.3 respectively. Network parameters
for the evaluation were chosen as parameters that minimized RMSE on the
validation dataset during training.

Aforementioned metrics can be computed for a 2-D depth prediction
P = {Pi,j} and a 2-D ground-truth depth target T = {Ti,j} as

MAE =
∑
k,l|Pk,l − Tk,l|∑

k,l 1
, iMAE =

∑
k,l|P−1

k,l − T
−1
k,l |∑

k,l 1
, (4.1)

RMSE =

√√√√∑k,l |Pk,l − Tk,l|
2∑

k,l 1
, iRMSE =

√√√√∑k,l |P−1
k,l − T

−1
k,l |

2∑
k,l 1

, (4.2)

where k, l are indices of valid measurements within the ground-truth depth.
All depth completion network variations can be identified from a list of

properties - LCMC, rgb, large batch, context. Their explanation is as follows:..1. Property LCMC indicates if the network uses LCMC instead of regular
convolution...2. Property rgb indicates if the network was provided with an RGB image.. Networks with context: ResNet use the image to generate feature

maps which serve as a context source.. Networks with context: RGB use the image as a context source.. Networks with context: 7 concatenate the image to input.
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4. Experimental Results ...................................3. Property large batch indicates if the variation was trained with larger
batch size than default batch size of 2.. Networks with context: ResNet use larger batch size of 20.. Networks with context: RGB use larger batch size of 60...4. Property context indicates the context source for LCMC.

Network variations with LCMC and batch size of 2 managed to finish only
50 training epochs, due to computational complexity, before the work had to
be submitted. The networks can under no circumstance be considered fully
trained at that point and tables 4.1, 4.2, 4.3 therefore compare all network
results only for the initial 50 epochs.

Network Mean Metrics
LCMC rgb large batch context iRMSE [1/km] iMAE [1/km] RMSE [mm] MAE [mm] SILog [log(m)·100]

3 3 3 ResNet 4.6 2.19 1473.08 501.52 54.24
3 3 7 ResNet 6.58 4.23 1769.78 797.46 64.82
3 3 3 RGB 4.81 1.98 1449.88 448.78 56.56
3 3 7 RGB 10.98 3.65 1896.57 864.32 63.46
7 3 7 7 4.75 2.33 1270.95 441.01 48.94
7 7 7 7 4.36 1.77 1228.32 370.95 48.07

GuideNet [44] 2.25 0.99 736.24 218.83 -
DeepLidar [37] 2.56 1.15 758.38 226.50 -
SparseConvs [47] 4.94 1.78 1601.33 481.27 -

Table 4.1: Mean of metrics on KITTI evaluation. Lower is better.

Network Min. Metrics
LCMC rgb large batch context iRMSE [1/km] iMAE [1/km] RMSE [mm] MAE [mm] SILog [log(m)·100]

3 3 3 ResNet 1.82 1.21 565.1 290.56 20.05
3 3 7 ResNet 3.14 2.32 865.93 534.47 24.91
3 3 3 RGB 1.59 0.94 630.02 237.18 20.3
3 3 7 RGB 2.7 2.14 794.65 453.25 23.9
7 3 7 7 1.7 1.17 557.56 250.68 19.09
7 7 7 7 1.46 0.94 483.04 191.24 17.76

Table 4.2: Minimum of metrics on KITTI evaluation. Lower is better.

Network Max. Metrics
LCMC rgb large batch context iRMSE [1/km] iMAE [1/km] RMSE [mm] MAE [mm] SILog [log(m)·100]

3 3 3 ResNet 19.71 6.07 8132.75 2095.11 192.26
3 3 7 ResNet 20.99 7.73 8551.68 2495.92 213.12
3 3 3 RGB 20.91 5.43 7074.15 1825.74 209.54
3 3 7 RGB 2525.15 166.98 159360.23 116755.02 1801.8
7 3 7 7 23.52 6.16 8924.36 2218.11 198.73
7 7 7 7 21.67 5.7 7571.79 1858.81 180.16

Table 4.3: Maximum of metrics on KITTI evaluation. Lower is better.

4.2 Results of Semantic Segmentation

Semantic segmentation network performance was measured on a test set of
handpicked images. Network outputs were generated and evaluated with
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........................... 4.2. Results of Semantic Segmentation

cityscapesscripts functions provided with the Cityscapes dataset.
In multi-class classification problems, such as semantic segmentation, the

traditional performance metric is Intersection over Union (IoU), also called
the Jaccard index. IoU of two sets A,B is defined as

IoU = |A ∩B|
|A ∪B|

. (4.3)

The segmentation networks were trained to predict 1 class from a list of 19
classes, a standard setup on Cityscapes, for each pixel. These classes can be
seen in tables 4.5 and 4.7. Each class also belongs to one of 6 categories which
can be seen in tables 4.4 and 4.6. Network parameters for the evaluation were
chosen as parameters that maximized mean IoU on the validation dataset
during training.

Metrics measured on the test set cropped at center to size 1843 × 921,
removing regions of the image with no depth measurements, are shown in
tables 4.5, 4.4. Metrics measured on the same set without cropping are shown
in tables 4.7, 4.6.

All semantic segmentation network variations can be identified from a list
of properties - LCMC, coarse, depth. Their explanation is as follows:..1. Property LCMC indicates if the network uses LCMC instead of regular

convolution...2. Property coarse indicates if the network was pretrained for 20 epochs
on the large set of coarsely annotated images. The training parameters
being specified in section 3.3.2...3. Property depth indicates if the network was provided with a depth image.. Networks with LCMC : 3 use the depth as a context source.. Networks with LCMC : 7 concatenate the depth to input.

All network variations were trained for over 100 epochs. For in-depth
examination, confusion tables of some network variations are shown on figures
4.1, 4.2, 4.3.

Network Category IoU
LCMC coarse depth construction flat human nature object sky vehicle mean

3 3 3 0.84 0.97 0.64 0.86 0.45 0.85 0.82 0.78
3 7 3 0.83 0.97 0.63 0.85 0.41 0.85 0.81 0.76
7 3 3 0.88 0.98 0.65 0.87 0.52 0.93 0.87 0.81
7 7 3 0.87 0.98 0.61 0.87 0.46 0.92 0.85 0.79
7 3 7 0.89 0.98 0.68 0.9 0.54 0.93 0.89 0.83
7 7 7 0.88 0.98 0.67 0.9 0.49 0.93 0.88 0.82

Table 4.4: Category IoU on cropped Cityscapes evaluation. Higher is better.
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4. Experimental Results .................................

Network Class IoU
LCMC coarse depth road swalk build wall fence pole tlight tsign veg terr sky person rider car truck bus train mcycle bcycle mean

3 3 3 0.96 0.68 0.83 0.2 0.25 0.36 0.44 0.54 0.87 0.42 0.85 0.61 0.33 0.83 0.24 0.14 0.11 0.22 0.54 0.5
3 7 3 0.95 0.64 0.83 0.25 0.24 0.33 0.37 0.48 0.85 0.43 0.85 0.58 0.23 0.81 0.25 0.22 0.11 0.11 0.49 0.48
7 3 3 0.97 0.76 0.88 0.43 0.48 0.45 0.45 0.51 0.87 0.53 0.93 0.63 0.37 0.89 0.55 0.67 0.55 0.23 0.55 0.62
7 7 3 0.97 0.73 0.87 0.35 0.38 0.39 0.42 0.44 0.87 0.48 0.92 0.58 0.3 0.87 0.47 0.58 0.32 0.15 0.51 0.56
7 3 7 0.98 0.79 0.88 0.43 0.5 0.47 0.45 0.61 0.9 0.59 0.93 0.66 0.41 0.9 0.51 0.64 0.55 0.28 0.63 0.64
7 7 7 0.97 0.76 0.88 0.39 0.42 0.43 0.43 0.56 0.89 0.57 0.93 0.66 0.39 0.89 0.44 0.59 0.4 0.25 0.62 0.6

Table 4.5: Class IoU on cropped Cityscapes evaluation. Higher is better.

Network Category IoU
LCMC coarse depth construction flat human nature object sky vehicle mean

3 3 3 0.82 0.96 0.59 0.85 0.4 0.85 0.78 0.75
3 7 3 0.79 0.94 0.58 0.83 0.36 0.81 0.75 0.72
7 3 3 0.86 0.97 0.61 0.86 0.46 0.9 0.83 0.78
7 7 3 0.83 0.97 0.57 0.84 0.4 0.87 0.79 0.75
7 3 7 0.88 0.98 0.65 0.9 0.51 0.89 0.88 0.81
7 7 7 0.87 0.98 0.65 0.9 0.48 0.9 0.87 0.81

Table 4.6: Category IoU on Cityscapes evaluation. Higher is better.

Network Class IoU
LCMC coarse depth road swalk build wall fence pole tlight tsign veg terr sky person rider car truck bus train mcycle bcycle mean

3 3 3 0.92 0.59 0.82 0.19 0.27 0.32 0.38 0.51 0.85 0.39 0.85 0.57 0.29 0.77 0.24 0.09 0.14 0.18 0.51 0.47
3 7 3 0.89 0.53 0.79 0.21 0.22 0.28 0.32 0.44 0.83 0.4 0.81 0.55 0.22 0.75 0.19 0.19 0.12 0.09 0.46 0.44
7 3 3 0.96 0.72 0.86 0.4 0.43 0.4 0.39 0.44 0.86 0.52 0.9 0.59 0.35 0.85 0.45 0.57 0.46 0.2 0.51 0.57
7 7 3 0.96 0.69 0.82 0.32 0.33 0.34 0.34 0.36 0.85 0.45 0.87 0.54 0.25 0.84 0.36 0.53 0.16 0.11 0.47 0.5
7 3 7 0.97 0.78 0.88 0.43 0.5 0.44 0.44 0.58 0.89 0.57 0.89 0.64 0.4 0.89 0.55 0.62 0.5 0.29 0.62 0.63
7 7 7 0.97 0.76 0.87 0.39 0.43 0.41 0.41 0.54 0.89 0.56 0.9 0.63 0.36 0.88 0.41 0.58 0.37 0.22 0.61 0.59

H. Multi-Scale Attention [45] 0.99 0.89 0.95 0.72 0.69 0.76 0.82 0.85 0.95 0.75 0.96 0.9 0.79 0.97 0.8 0.94 0.86 0.77 0.81 0.85
Panoptic DeepLab [4] 0.99 0.88 0.95 0.68 0.66 0.75 0.81 0.84 0.94 0.74 0.96 0.89 0.77 0.97 0.79 0.92 0.89 0.76 0.79 0.84

Table 4.7: Class IoU on Cityscapes evaluation. Higher is better.
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Figure 4.1: Normalized confusion matrix of LCMC 3, coarse 3, depth 3.
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Figure 4.2: Normalized confusion matrix of LCMC 7, coarse 3, depth 3.
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Figure 4.3: Normalized confusion matrix of LCMC 7, coarse 3, depth 7.
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Chapter 5
Discussion

This work proposed, implemented and evaluated use of modified convolution
operation within CNNs. The operation, named Local Context Masked Con-
volution (LCMC), explicitly considers additional context when processing
data. This is done through a mechanism, where local context corresponds to
a local real-valued mask which assigns higher weights to contextually close
data and lower weights to contextually distant data. The mask is spatially
variant and is applied to standard convolution kernel at each output pixel
position. Multitude of networks was trained with parameters described in
section 3.3.2.

5.1 Depth Completion

It was expected that the operation could be used for fusion of data within
neural networks and potentially result in performance improvements. In the
depth completion task, it was expected that the network would fill in depth of
whole objects, even though their distance was only partially measured. Basis
for the expectation was that the network would recognize pixels belonging to
the object as contextually close. This would cause the depth inpainting to
consider spatially distant measurements belonging to the object more heavily
than spatially close measurements belonging to the background.

Results have shown that this was a false expectation, as can be seen on
figure 5.1. None of the networks were able to obtain the property described
above and correctly predict depth of tree trunk, highlighted in red at the top
of the image, where no depth measurements are present. Comparison of all
network outputs on the scene can be seen on figures A.4, A.8. The figures
display predicted depth projected to the original RGB image and isolated
predicted depth, respectively.

Another expectation was that the operation would allow finer depth pre-
dictions at areas with thin objects such as railings. This expectation was
confirmed, although not conclusively, by multitude of images. Exemplar
case can be seen on figure 5.2, where networks with LCMC were able to
more accurately capture the shape of railings on the right side of the image,
highlighted in blue. This property however was not highly influential of
the measured metrics, as KITTI ground truth images posses only sporadic

49



5. Discussion ......................................

Figure 5.1: Depth completion networks are not able to correctly inpaint depth
in areas, where no measurements are present.

measurements of such thin objects. Comparison of networks on the scene are
again shown on figures A.3, A.7.

Figure 5.2: Networks utilizing LCMC are able to generate finer predictions of
thin objects and are able to transfer texture from the image to depth.

Figure 5.3: RGB image accompanying depth prediction figure 5.2.

Lastly, it was expected that structure from within the context source, such
as textures in images, would be transferred to the depth, without needlessly
being blurred. This property was partially observed on irregular object, such
as bushes, displayed on figure 5.2, highlighted in red.

5.2 Semantic Segmentation

In the semantic segmentation task, it was expected that the network would
more accurately process areas with multiple overlapping objects and classes.
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.................. 5.3. Work Limitations and Suggestions for Future Research

These objects, such as cars captured in front of background buildings, are
spatially close to the background within the image, but are distant in the
depth measurements. It was thus expected that object boundaries would be
refined and the overall prediction improved.

Another expectation was that the information about object distance would
provide the network with explicit knowledge of object scale. Based on this
information, sub-networks could form within the network and process objects
at different scales with different convolution kernels. This was expected to
majorly improve segmentation of distant scenery.

Neither of these expectations was confirmed by the results, as can be
deduced from figures in the appendix B. Instead, object boundary predictions
were observed to become coarse and less accurate. Epitome of this is presented
on figure 5.4, best seen on boundary between the car and the road. Different
network outputs of the same scene are compared on figures B.1, B.2, B.3.

The classification also became highly dependent on quality of the depth
image. In many cases, artifacts in the depth images resulted in incorrect
and noisy predictions. Example of such classification failures can be seen on
figures 5.5 and 5.6. Network outputs of the scenes, where noisy predictions
were observed, are compared on figures B.7, B.8, B.9 and B.10, B.11, B.12.

Figure 5.4: Object boundaries predicted by network with LCMC and depth
context are often coarse and inaccurate.

5.3 Work Limitations and Suggestions for Future
Research

Ultimatelly, evaluation of experiments on depth completion and semantic
segmentation tasks suggest that use of regular convolution results in better
performance than use of LCMC. This claim is based on performance metrics
recorded in sections 4.1 and 4.2. The performance degradation was surprising,
as learned parameters of function mu,v,i,j = mu,v,i,j(o) can in theory achieve
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5. Discussion ......................................

Figure 5.5: Failure of class prediction by networks utilizing LCMC and depth
context, caused by anomalies in the depth image.

Figure 5.6: Failure of class prediction by networks utilizing LCMC and depth
context, caused by anomalies in the depth image.

obliviousness of the operation fu,v(x,o) to the context source o. Such is the
case of Gaussian mu,v,i,j(o), displayed on figure 3.2, for σ → ∞ and finite
∆oi,j . It must be noted, however, that such operation is not identical to
regular convolution, because it retains the normalization term

∑κ
i,j=−κmu,v,i,j

as denominator. Possible limitations of the work and suggestion for future
research are structured in following paragraphs. The author plans to continue
research into this topic.

Kernel Size

Major oversight of the network architecture is the use of convolution kernels
of size 3. While the original Xception model [5] utilizes this kernel size, it
can be expected that larger kernels would be able to capture more dispersed

52



.................. 5.3. Work Limitations and Suggestions for Future Research

context differences. These kernels would then be able to register differences
in context not only at object boundaries, but also near them.

Simplicity of Training Process

Training of the networks was deliberately kept simple in order to create an
equitable comparison. In this comparison, it is clear that regular convo-
lution outperforms LCMC. Effectiveness of the novel operation upon final
convergence of the model would be another potential topic for future research.
Ideally, the networks would be trained for a longer period of time, with an
adaptive optimizer, until reaching convergence. Then they would be trained
again with SGD to reach a state of better generalization.

Initialization

It is possible that the kernel weight initialization favored networks with
regular convolution. Initialization of standard CNNs has been thoroughly
studied, producing methods such a Xavier [14] or Kaiming [18] initialization.
Xavier initialization was used within the networks and therefore it is possible
that networks were trained in a setting advantageous to regular convolution.

The initial parameter value σ = 100 was selected for RGB distance context,
but was used for all the experiments. Even though the network can adjust
value of σ during the training process, the initial value should be chosen
specifically for the given task.

Context Source Selection

Only a limited amount of context sources was explored, all with an identical
function mu,v,i,j(o). However, function mu,v,i,j(o) should be designed with
regard to context source o. Example of a problem which could have been
avoided with better design of the function mu,v,i,j(o) was the poor classifi-
cation on Cityscapes. Anomalies in Cityscapes depth maps were partially
caused by the inpainting process and caused the network to produce noisy
predictions at times. A different approach, where areas with missing depth
measurements are not filled-in and function mu,v,i,j(o) is designed with this
knowledge, could have solved this issue.

Author’s Error

Lastly, when implementing an idea, it is always a possibility that the execution
is flawed. Though functionality of LCMC was tested and confirmed, errors
have been made in other parts of the implementation. It was discovered
that the learnable context weighing parameter σ was being reset to its initial
value of σ = 100 after loading a model checkpoint. This means that the
parameter was not able to converge to an optimal value and attributed to
poor performance of models with LCMC. The error was resolved and further
results of corrected networks will be made public on https://github.com/
paplhjak/Contextus.

53

https://github.com/paplhjak/Contextus
https://github.com/paplhjak/Contextus


5. Discussion ......................................
Comparison to Pixel-Adaptive Convolution

Comparison of LCMC and PAC in a neural network setting would be helpful,
as to validate that both methods achieve similar results.

Comparison of the two operations in a different backbone is a possibility
for future work - potentially in the task of depth prediction. This is sug-
gested not only to compare performance of LCMC and PAC, but also to
compare performance of PAC and transposed PAC. If both methods were
to achieve similar results, it would suggest that transposed convolution with
context masks is superior to the standard convolution with context masks, as
transposed PAC was shown to produce state-of-the-art results in [16].

The reason this comparison was not provided as a part of this work is lack
of certain parameters in PAC which are required for efficient implementation
of depthwise separable convolution within Xception [5]. Because articles
proposing PAC by H. Su et al. were discovered while working on late stages
of the thesis, it was decided not to change the backbone.
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Chapter 6
Conclusion

An operation called Local Context Masked Convolution (LCMC) was pro-
posed, implemented and evaluated. No performance improvements were
observed in networks with the proposed novel operation. In fact, performance
of networks with the operation degraded. After being compared to research of
Guizilini et al. [16], it is possible to assume that the method produces better
results when applied to transposed convolution instead.

The LCMC operation was inserted into network architectures traditionally
used for the depth completion and semantic segmentation tasks. A seemingly
fair training environment was used to train network variations with and
without the novel operation. Their performance was evaluated and compared.

Multiple potential areas of future research were discovered throughout
work on this thesis. Among those were: evaluation of the method with
a larger kernel size, training the networks with a more advanced training
process and reaching parameter convergence, analyzing weight initiliazation
of the method, analyzing use of different functions to simulate the context
dependency, analyzing differences between the method and similar, previously
succesful methods.

Implementation and results of further experiments will be made public on
https://github.com/paplhjak/Contextus.
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Appendix A
Comparisons of Depth Completion
Networks

position LCMC rgb large batch context
top left 3 3 3 ResNet
top right 3 3 7 ResNet
middle left 3 3 3 RGB
middle right 3 3 7 RGB
bottom left 7 3 7 7

bottom right 7 7 7 7

Table A.1: Layout of depth completion network outputs in comparison images.

Figure A.1: Comparison of projected depth c. network outputs on KITTI
2011_09_26_drive_0005_sync_image_0000000074_image_02.png.
Layout of network outputs is specified in table A.1
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A. Comparisons of Depth Completion Networks .......................

Figure A.2: Comparison of projected depth c. network outputs on KITTI
2011_09_26_drive_0036_sync_image_0000000686_image_02.png.
Layout of network outputs is specified in table A.1

Figure A.3: Comparison of projected depth c. network outputs on KITTI
2011_09_26_drive_0079_sync_image_0000000065_image_03.png.
Layout of network outputs is specified in table A.1

Figure A.4: Comparison of projected depth c. network outputs on KITTI
2011_09_26_drive_0095_sync_image_0000000248_image_02.png.
Layout of network outputs is specified in table A.1
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....................... A. Comparisons of Depth Completion Networks

Figure A.5: Comparison of depth completion network outputs on KITTI
2011_09_26_drive_0005_sync_image_0000000074_image_02.png.
Layout of network outputs is specified in table A.1

Figure A.6: Comparison of depth completion network outputs on KITTI
2011_09_26_drive_0036_sync_image_0000000686_image_02.png.
Layout of network outputs is specified in table A.1

Figure A.7: Comparison of depth completion network outputs on KITTI
2011_09_26_drive_0079_sync_image_0000000065_image_03_pred.png.
Layout of network outputs is specified in table A.1
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A. Comparisons of Depth Completion Networks .......................

Figure A.8: Comparison of depth completion network outputs on KITTI
2011_09_26_drive_0095_sync_image_0000000248_image_02.png.
Layout of network outputs is specified in table A.1

Figure A.9: Comparison of depth completion network outputs on KITTI
2011_09_26_drive_0002_sync_0000000005_image_02.png.
Layout of network outputs is specified in table A.1

Figure A.10: Comparison of depth c. network output errors on KITTI
2011_09_26_drive_0002_sync_0000000005_image_02.png.
Layout of network outputs is specified in table A.1
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....................... A. Comparisons of Depth Completion Networks

Figure A.11: Comparison of depth completion network outputs on KITTI
2011_09_26_drive_0002_sync_0000000023_image_02.png.
Layout of network outputs is specified in table A.1

Figure A.12: Comparison of depth c. network output errors on KITTI
2011_09_26_drive_0002_sync_0000000023_image_02.png.
Layout of network outputs is specified in table A.1
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Appendix B
Comparisons of Semantic Segmentation
Networks

position LCMC coarse depth
top left 3 3 3

top right 3 7 3

middle left 7 3 3

middle right 7 7 3

bottom left 7 3 7

bottom right 7 7 7

Table B.1: Layout of semantic segmentation network outputs in comparison
images.

Figure B.1: Segmentation ground truth of munster_000055_000019.png.
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B. Comparisons of Semantic Segmentation Networks.....................

Figure B.2: Segmentation outputs of munster_000055_000019.
Layout of network outputs is specified in table B.1

Figure B.3: Segmentation correctness of munster_000055_000019.
Layout of network outputs is specified in table B.1

70



..................... B. Comparisons of Semantic Segmentation Networks

Figure B.4: Segmentation ground truth of munster_000089_000019.png.

Figure B.5: Segmentation outputs of munster_000089_000019.
Layout of network outputs is specified in table B.1
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B. Comparisons of Semantic Segmentation Networks.....................

Figure B.6: Segmentation correctness of munster_000089_000019.
Layout of network outputs is specified in table B.1

Figure B.7: Segmentation ground truth of munster_000095_000019.png.
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..................... B. Comparisons of Semantic Segmentation Networks

Figure B.8: Segmentation outputs of munster_000095_000019.
Layout of network outputs is specified in table B.1

Figure B.9: Segmentation correctness of munster_000095_000019.
Layout of network outputs is specified in table B.1
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B. Comparisons of Semantic Segmentation Networks.....................

Figure B.10: Segmentation ground truth of munster_000172_000019.png.

Figure B.11: Segmentation outputs of munster_000172_000019.
Layout of network outputs is specified in table B.1
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..................... B. Comparisons of Semantic Segmentation Networks

Figure B.12: Segmentation correctness of munster_000172_000019.
Layout of network outputs is specified in table B.1
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