
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Map Merging for UAV Swarms

Jan Maděra

Supervisor: Ing. Matěj Petrlík
Field of study: Open Informatics
Subfield: Computer and Information Science
August 2020

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

469836Personal ID number:Maděra JanStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Computer and Information ScienceBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Map Merging for UAV Swarms

Bachelor’s thesis title in Czech:

Slučování map pro roje dronů

Guidelines:
The focus of this thesis is to implement an algorithm for merging local occupancy grid maps [1] of UAV agents. The input
of the implemented technique will be the map built by the Hector SLAM [2] algorithm. The developed system should be
applicable in real-world UAV teams. The following tasks will be solved:
• Become familiar with the Hector SLAM [2] algorithm and its occupancy grid map [1] representation.
• Perform a survey of available map merging techniques suitable for building a global map shared by a team of UAVs.
Recommended starting point are publications [3, 4, 5].
• Implement an occupancy grid map merging method of choice.
• Integrate the implemented method into the MRS group software architecture based on ROS middleware.
• Provide an on-demand merged map output with a 2D pose estimate of each agent.
• Verify the functionality in the Gazebo simulator, assess the capabilities and limitations. Discuss the scalability with respect
to the number of agents.
• Prepare an experiment with a group of UAVs that shows the applicability in the real-world environment of choice.

Bibliography / sources:
[1] Thrun, Sebastian, and Arno Bücken. "Integrating grid-based and topological maps for mobile robot navigation."
Proceedings of the National Conference on Artificial Intelligence. 1996.
[2] S. Kohlbrecher, O. von Stryk, J. Meyer and U. Klingauf, "A flexible and scalable SLAM system with full 3D motion
estimation," 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, Kyoto, 2011.
[3] A. Birk and S. Carpin, "Merging Occupancy Grid Maps From Multiple Robots," in Proceedings of the IEEE, July 2006.
[4] H. Li, M. Tsukada, F. Nashashibi and M. Parent, "Multivehicle Cooperative Local Mapping: A Methodology Based on
Occupancy Grid Map Merging," in IEEE Transactions on Intelligent Transportation Systems, Oct. 2014.
[5] Carpin, S. Fast and accurate map merging for multi-robot systems. Auton Robot 25, 305–316 (2008).

Name and workplace of bachelor’s thesis supervisor:

Ing. Matěj Petrlík, Multi-robot Systems, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 14.08.2020Date of bachelor’s thesis assignment: 08.05.2020

Assignment valid until: 30.09.2020

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Matěj Petrlík
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to thank my supervisor Ing.
Matěj Petrlík for his patience, guidance
and valuable insights. I thank my family
for their encouraging support throughout
my studies. I am also grateful to all people
from the MRS group who helped me to
understand the workflow with the MRS
group software architecture. Last but not
least, I thank my girlfriend for her endless
support.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, 14. August 2020

v

Abstract
In this thesis, we present an implementa-
tion of a genetic-algorithm-based method
for merging occupancy grid maps. This
method finds the relative pose of agents
by iteratively evolving a population of
relative poses using a fitness function to
evaluate each individual pose. We apply
the method on two datasets, which shows
that the approach can merge maps with
relatively high noise and initial poses of
agents being up to 20 meters apart.

With known local poses of agents in
their respective maps and with the com-
mon merged map, we can approximate
the pose of agents relative to each other.
Another benefit of the map merging is
that we can significantly reduce the time
needed for exploration tasks by using mul-
tiple agents with a shared map at once.

Keywords: genetic algorithm, LIDAR,
map merging, occupancy grid map,
relative pose estimation, ROS,
simultaneous localization and mapping,
unmanned aerial vehicle

Supervisor: Ing. Matěj Petrlík

Abstrakt
V této práci představujeme implementaci
slučování mřížkových map obsazenosti za
použití metody založené na genetickém
algoritmu. Tato metoda je schopna najít
relativní pózy agentů iterativním vývo-
jem populace relativních póz za použití
fitness funkce vyhodnocující pózu každého
jednotlivce. Metoda je aplikována na dvě
datové sady. Aplikace metody ukazuje, že
tento postup dokáže sloučit mapy s rela-
tivně velkým zašuměním a s počátečními
pózami agentů vzdálených až 20 metrů.

Se známými lokálními pózami agentů
v jejich mapách a se společnou sloučenou
mapou můžeme odhadnout relativní vzá-
jemné pózy všech ostatních agentů. Dal-
ším přínosem slučování map je možnost
významně zredukovat čas potřebný k pro-
zkoumání okolí použitím více agentů se
sdílenou mapou najednou.

Klíčová slova: bezpilotní letoun,
genetický algoritmus, LIDAR, mřížková
mapa obsazenosti, odhad relativní pózy,
ROS, simultánní lokalizace a mapování,
slučování map

Překlad názvu: Slučování map pro roje
dronů

vi

Contents
Abbreviations and Notation 1

List of notation 1

List of abbreviations 2

1 Introduction 3

1.1 Simultaneous localization and
mapping . 4

1.1.1 UAV SLAM 4

1.1.2 UAV swarm SLAM. 5

1.1.3 Types of map representation . 6

1.2 Thesis structure 7

1.3 Related work 8

1.3.1 SLAM . 8

1.3.2 Map merging 9

1.4 HectorSLAM 10

1.5 Scalability 12

1.6 Contribution 12

2 Map merging methods survey 15

2.1 Map merging definition 15

2.2 Random Walk method 17

2.3 Hough Transform method 19

2.4 Genetic-Algorithm-Based
methodology 21

2.5 Neural Networks-Based approach 23

2.6 Probabilistic Generalized Voronoi
Diagram method 25

3 Implementation 29

3.1 Method of map merging 29

3.1.1 Requirements on the method 29

3.1.2 Choice of method 30

3.2 Genetic-algorithm-based
methodology in detail 30

3.2.1 Compounding notation 31

3.2.2 Fitness function 31

3.2.3 Optimization of relative pose 31

3.2.4 Terminating condition 36

3.3 On-demand merged map output
with a 2D pose estimate 37

3.4 ROS middleware 38

3.5 Integration to MRS group software
architecture . 39

4 Experiments 41

4.1 Datasets creation 41

4.1.1 Simulation dataset creation . 41

4.1.2 Real-world dataset creation . 42

4.2 Visualization of merging process 42

4.3 Simulation experiments 43

4.3.1 Identical initial position 43

4.3.2 Different initial position 45

4.4 Real-world experiment 48

4.5 Performance of the genetic
algorithm . 50

4.6 Limitations 50

5 Conclusion 53

5.1 Future work 54

A Bibliography 57

B CD Content 61

vii

Figures
1.1 F450 quad-copter 4

1.2 Occupancy grid map 6

1.3 Topological map 7

1.4 Point cloud map 8

1.5 HectorSLAM overview. 11

2.1 Relative pose of two occupancy
grid maps . 16

2.2 The overlap and overfit
illustration . 18

2.3 Hough spectra and thier cross
correlation . 20

2.4 Practical example of vehicle to
vehicle relative pose estimation
usage . 23

2.5 Neural-networks-based approach
overview . 24

2.6 Probabilistic generalized Voronoi
diagram method finding edges 26

3.1 Local UAV map pose 32

3.2 Initialization of relative maps pose 33

3.3 Illustration of the relative pose
estimations . 37

3.4 Occupancy grid merger pipeline 40

3.5 Relative pose estimator pipeline 40

4.1 Gazebo simulator environment . 42

4.2 F450 quad-copter in forest 43

4.3 Visualization topics of occupancy
grid merger node 44

4.4 Fitness function and acceptance
index of first experiment 44

4.5 An incorrect convergence of map
merging process 46

4.6 Process of map merging 46

4.7 Fitness function and acceptance
index of second experiment 47

4.8 Merged map of the second
experiment . 47

4.9 Merged map of the real-world
experiment . 48

4.10 Fitness function of the real-world
experiment . 49

4.11 Overlapping of the merged maps
in real-world experiment 50

4.12 Effect of number of occupied cells
on iteration duration 51

4.13 Dependence of convergence and
epochs duration on number of
iterations . 51

4.14 Convergence of relative
translation to optimum 52

4.15 Convergence of relative
orientation to optimum 52

viii

Tables
1 Lists of mathematical notation 1

2 Lists of abbreviations 2

B.1 CD content structure 61

ix

Abbreviations and Notation

List of notation

In Table 1 is listed notation used in this thesis. Note that we denote vectors
with bold lowercase letters (e.g. p), matrices (and map vectors) with capital
letters (e.g. Mi).

Symbol Meaning

plain lowercase letter, e.g. c scalar
bold lowercase letter, e.g. p column vector
uppercase letter, e.g. M matrix or map vector
pT ,MT vector and matrix transpose
⊕ Compounding operator
∆, F Objective function (heuristic function,

fitness function)
ai acceptance index
Mi Generic occupancy grid map with index i
md Manhattan distance function
Occ Occupancy threshold function
p Relative pose
p̂ Optimal relative pose

Table 1: Lists of mathematical notation

1

Abbreviations and Notation................................
List of abbreviations

In Table 2 are listed abbreviations used in this thesis.

Abbreviation Meaning

2D Two-dimensional
3D Three-dimensional
6DOF Six degrees of freedom
API Application programming interface
DHT Discretized Hough transform
GNSS Global navigation satellite system
GVD Generalized voronoi diagram
IMU Inertial measurement unit
ICP Iterative closest point
LIDAR Light detection and ranging
MAV Micro aerial vehicles
MRS Multi-robot systems
MRSLAM Multi-robot simultaneous localization and mapping
OGM Occupancy grid map
OV Occupancy value
PC Personal computer
ROS Robot operating system
SLAM Simultaneous localization and mapping
SOM Self-organizing map
UAV Unmanned aerial vehicle
UGV Unmanned ground vehicle
V2V RP Vehicle to vehicle relative pose

Table 2: Lists of abbreviations

2

Chapter 1
Introduction

Autonomous unmanned aerial vehicles (UAVs) have become a popular part
of multi-robot systems (MRS). Although an autonomous UAV can have
many shapes (airplane, helicopter) and features, when we refer to UAV in this
thesis, we usually mean quad-copter similar to the one presented in figure 1.1.
There are many valid reasons for their increased frequency of usage in a lot
of real-world scenarios. The first reason can be their high flexibility. UAVs
can be used in many unique scenarios. It is relatively affordable to have a
small drone or a swarm of micro aerial vehicles (MAVs) for reconnaissance
and flying in tight spaces. On the other hand, some UAVs can be as large
as a couple of meters. Another reason can be better precision of available
sensors and rising onboard computational power, which allows the use of
more computationally intensive algorithms.

Groups of UAVs are being used in many challenging scenarios. Examples of
possible deployment are search and rescue operations where UAVs aid human
workers in mapping hazardous environments and gathering information about
the position of essential subjects. In letter [25], only single UAV was used,
but the simultaneous use of multiple cooperating UAVs could speed up the
exploration. Many technological challenges and scenarios where MRS could
be used are outlined in a visionary project [29]. The last example is the
documentation of dark and human-restricted areas of historical monuments
[26, 18]. In both cited letters, all MAVs rely on ground-based devices that
provide a common reference frame, precise localization, and mapping of their
surroundings to ensure their safety. Deployment of ground-based localization
devices can be time-consuming and expensive in large scenarios, or even
impossible in some hard to access places like caves and mines.

The localization precision requirements of some missions can be satisfied
only by relying on the additional localization devices. In some other missions
like search and rescue, the fast deployment is much more significant than
extreme precision. Without ground-based stations measuring the UAV’s
position, UAVs’ swarm has to rely on their sensors to determine the relative
position of each other and map their surroundings. Furthermore, to utilize
a group of UAVs for faster completion of missions, each UAV provides its

3

1. Introduction

Figure 1.1: F450 quad-copter equipped with 2D Slamtec RPLIDAR A3 360°
which was used in this thesis real-world experiments.

map, also called a local map, to other swarm members. These available
local maps can then be merged to produce one common global map. The
additional information about the environment from other members of the
swarm contained in a global map can then be used for better path planning
and optimal exploration of unexplored parts of the environment. This thesis
addresses problem of map merging for UAV swarms with an estimation of
UAV position relative to each other.

1.1 Simultaneous localization and mapping

1.1.1 UAV SLAM

To autonomously complete a UAV mission and simultaneously ensure its
safety and especially the safety of surrounding subjects which can be in many
cases of a (historical) value many times larger than the value of a UAV (as
in [26]), the drone has to have precise sensors which sense any obstacle that
could disturb an execution of the UAV mission and sensors which determine
its position. However, that is not enough. Among other things, these sensed
data from multiple sensors have to be fused into meaningful information
about UAV state, pose, and surrounding obstacles based on which the UAV
can choose the best solution of a given task while minimizing risks. The
process of incrementally constructing a consistent map given the data from
sensors while at the same time, localizing agents in the environment is called
simultaneous localization and mapping (SLAM). Accurately solving SLAM

4

......................... 1.1. Simultaneous localization and mapping

for a robot is one of the most challenging problems in field robotics by itself,
as is roughly stated in [34].

1.1.2 UAV swarm SLAM

SLAM is a complex problem for a single UAV. Trying to localize swarm of
UAV relative to each other and simultaneously merging maps of individual
drones adds another layer of complexity.

The problem of merging maps can be described in the sense of frames of
reference. If we provide a common frame to all UAVs, then merging maps is
trivial. In this situation, we know the accurate relative pose of each UAV.
We just need to transform the map of each UAV by its relative pose with
respect to the UAV that is currently merging maps. This is needed in order
to align the local maps of UAVs correctly. If there is no external device
providing a common reference frame, or UAVs do not provide it themselves,
each individually localized UAV has different non-coincident reference frame.
Without a common frame, UAVs cannot cooperate, and while deployed to the
same workspace, they are risking collision unless they are localized relative
to each other. Localization can be provided using only sensors and hardware
right on the UAVs like markers [23], blinking UV LEDs [37] or computer
vision [36]. Another possible way to provide an approximate common frame of
reference is to use some type of global navigation satellite system (GNSS) like
GPS or GLONASS. Nevertheless, GNSS’s main disadvantage is that it can be
used only in areas with a mostly unobstructed view of satellites. Consequently,
to determine UAV position in indoor missions or even operations in dense
forest or dense urban areas with high buildings where the GNSS signal is
insufficient, a different type of localization like the ones using markers, UV
LEDs, or computer vision has to be used.

However, what if any of the mentioned methods for relative localization
is not available? If direct localization of other UAVs is impossible, the
transformation (relative pose) between individual reference frames has to be
estimated indirectly. One way to estimate the frame is by building a single
global map from local maps of UAVs. That way, if we have prior knowledge
of UAVs location in local maps and merge the local maps, we can also extract
the UAV global position from the created global map. This thesis assumes
LIDAR (Light Detection and Ranging) as the primary sensor for collecting
data of single UAV, which are then processed in SLAM problem-solving
algorithm called HectorSLAM [17] to build a local map. There are some
possible solutions to the problem of merging maps described in chapter 2. We
selected one of the solutions and implemented it into Multi-robot Systems
Group software architecture 1.

1Documentation of the MRS Group software architecture with links to open source code
on Github and MRS Group’s main website can be found on https://ctu-mrs.github.io/

5

https://ctu-mrs.github.io/

1. Introduction

Figure 1.2: (left) A visualization of a occupancy grid map generated by RVIZ,
the 3D visualization tool for Robot Operating System (ROS). Black cells have
occupancy value 100, white are unoccupied cells with occupancy value 0, and
the rest of cells have unknown occupancy state with value -1. (right) Detail of
the occupancy grid map with visible boundaries of cells.

1.1.3 Types of map representation

Until now, we used maps as a general concept of understanding the environ-
ment. However, mobile robotics use many different representations of maps
for different applications. Let us introduce at least three commonly used map
representations.

One of the most frequently used map representations is occupancy grid
map first proposed as an occupancy map in [8]. This representation of the
map will be described in more depth because we use it to implement map
merging. It is a metric representation in which each object or its part has
assigned coordinates in the map space. It represents a map in most cases as
a two-dimensional (2D), a discrete evenly-spaced grid of cells. Each cell has
an occupancy value indicating a belief that an obstacle is located at the place
of the cell in the real environment. For example, in Robot Operating System
[27], the cell inside the occupancy grid map representation can acquire value
-1 if its state is unknown and value in the interval [0, 100]. The value is 0
if the cell is believed to be unoccupied. The higher the value is, the firmer
the belief that the cell is occupied. An example of an occupancy grid map
is shown in figure 1.2. Sensors like LIDAR, SONAR, or stereovision can be
used to generate the occupancy grid map.

Topological map is another type of map representation. It usually di-
vides the map into regions that represent parts of the environment. These
regions can be represented as nodes in a graph with edges representing paths
between the regions. This representation needs significantly less memory and
computational power than the occupancy grid representation of the same
environment. Nevertheless, this map representation has many drawbacks.
The simplification of the environment and the loss of important information

6

................................... 1.2. Thesis structure

Figure 1.3: Example of topological map representation. Topological map is in
this case generated from occupancy grid-map. In (e) the yellow circles are nodes
in centers of rooms and red lines are edges of the topological map connecting
neighboring nodes. Reprinted from [13, Figure 5]

about the environment are the main ones. The difference between the occu-
pancy grid map and topological map can be seen in [35]. An example of a
topological map generated on top of the occupancy grid map can be seen in
figure 1.3.

3D Point cloud is a three-dimensional (3D) representation of an environ-
ment. It uses a set of points to represent the boundary of a 3D object. As in
the case of the occupancy grid, it can be generated by the LIDAR scanner.
Example of 3-D point cloud map merging can be seen in figure 1.4 or in the
article [3].

1.2 Thesis structure

In this thesis, we present related work to the topic of map merging for UAV
swarms in section 1.3, then a description of the used solver of SLAM problem
called HectorSLAM in section 1.4. Chapter 2 presents survey of available
map merging techniques suitable for building a global map shared by a team
of UAVs. In chapter 3, we introduce the implementation of the method
for merging local occupancy grid maps based on genetic algorithms. The
experiments performed on the implementation and analysis of its performance
are detailed in chapter 4. Possible future work is discussed in chapter 5.1.
Finally, the thesis is concluded in chapter 5.

7

1. Introduction

Figure 1.4: Examples of point cloud map representations with photos of relevant
real world environments to the left of each point cloud. Reprinted from [39,
Figure 10]

1.3 Related work

1.3.1 SLAM

SLAM is still an open problem in mobile robotics with significant interest
among the research community. Basics of construction of occupancy grid
map representation as well as an interesting use of grid-based map combined
with not so precise but more memory efficient topological map is detailed in
[35].

A survey of SLAM [12] describes many SLAM algorithms that could be
possibly used. According to the survey, the SLAM solvers can be divided
into two main subgroups. The first group uses camera sensors as the primary
source of the necessary information about the surrounding environment used
for localization and mapping. These approaches are labeled as visual SLAM
solvers. The use of cameras and inertial measurement units (IMUs) brings
increased robustness of the algorithms, mainly during an aggressive motion
of the camera. The most of SLAM problem solvers can be categorized into
two main approaches. These are filtering-based approaches and optimization-
based approaches. The paper [22] is an example of a filtering-based approach
that uses an extended Kalman filter-based algorithm called A Multi-State
Constraint Kalman Filter for vision-aided inertial navigation. As an example
of an optimization-based SLAM can serve an article [10], which uses a semi-
direct visual odometry approach to create a map of the environment and
estimate the motion of the vehicle and thus localize itself in its surrounding.
Among the other worth mentioning visual SLAM approaches are the ones
using deep learning, which can perceive not only semantic entities but also

8

.....................................1.3. Related work

geometric features and odometry at once, as is shown in [14]. As authors
of the survey state, the visual SLAM approaches generally face problems
like poor adaptability to changing illumination conditions, high dynamic
environment, and low texture environment. They also have problems with
fast motion, vigorous rotation, and image deformation while using a rolling
shutter instead of a global shutter.

The second group labeled as LIDAR SLAM solvers can be further
divided into subgroups of 2D SLAM using, for example, the occupancy grid
map described in section 1.1.3 as an output map representation, and 3D
SLAM using, for example, 3D point cloud representation of the environment.
The survey [12] provides examples of 2D SLAM systems. One of them is
Cartographer [11], which is SLAM system developed by Google, and the
HectorSLAM [17] which is described in the section 1.4. Example of 3D
SLAM solver can be IMLS-SLAM [5] using only point cloud generated by 3D
LIDAR without IMU, Lidar Odometry and Mapping in Real-time (LOAM)
[39] which uses point cloud from 3D LIDAR to separately compute odometry
and generate the map. Compared to visual SLAM solvers using cameras, the
LIDAR SLAM solvers are affected much less by illumination condition than
visual solvers. For example, in our experiment with LIDAR in a dark forest
with dense tree crowns, we had only small inaccuracies in detecting spots of
surfaces directly illuminated by the Sun. On the other hand, LIDAR can be
much more expensive than a camera due to its high-end technology and the
need for expensive sensors to precisely measure the distance to objects. The
survey further states that many researchers focus on the fusion of LIDAR
and vision, balancing LIDAR reliability and versatility of vision.

Other types of LIDAR SLAM solvers were not exactly mentioned in the
survey. One of these approaches uses the normal distribution transform [1] to
solve SLAM with data from LIDAR. These methods divide the 2D plane into
cells similar to an occupancy grid. To each cell, they then assign a normal
distribution, and as a result, they get continuously differentiable probability
density, which they can match with another scan. The SLAM technique
described in [24] is using correlation for scan matching. This method does
not use heuristics but instead try to implement probabilistically-motivated
scan-matching.

1.3.2 Map merging

The map merging methods can be divided into many categories by different
criteria. According to the article [20], there are two basic categories of map
merging methods. The first category estimates the relative pose of two
vehicles directly based on localization sensors, such as GPS, and then merges
the maps according to this relative pose. These methods are called Vehicle-
Pose-Estimation-Based Methods. The second category does not rely on
accurate estimation of vehicle relative pose, but instead, these methods try to
merge maps directly based on the maps’ consistency measurements. These are

9

1. Introduction
Map-Consistency-Based Methods. We deal only with the latter category
of methods in this thesis as we do not use any localization sensors that could
directly and precisely localize the two vehicles. The Map-Consistency-Based
merging methods can be further divided by the type of map representation
used, as shown in section 1.1.3. We use specifically the occupancy grid
map representation in map merging, so this related work will cover methods
using the same representation as we do. We found many interesting ideas on
merging multiple occupancy grid maps.

The article [2] uses a random walk as a search method for the optimal
relative pose of maps. Next in [20] H. Li et al. present a general framework for
map merging based on genetic algorithm and uses objective function based on
occupancy likelihood, which has many benefits oppose to [2]. The described
method in [20] is the one we chose to implement. [30] is an exciting review of
the state of the art of mobile MRS research, including easy to understand
description of main problems with localization of agents relative positions
and other mapping-specific issues.

Other interesting articles are describing merging methods or possible im-
provements to merging that we will also further explain in chapter 2. The
map merging approach [4] uses Hough transform to find straight line-like
features in both occupancy grid maps, which are then used to align maps
during the merging process. The method [32] applies neural networks to the
map merging problem. In the conclusion of the article, authors stated: "This
is the first known application of neural network theory to solve the multiple
robot SLAM." The paper [31] further improve the neural network method
in [32]. It uses a similar method to find the relative rotation of two maps,
but it approaches the problem of searching for translation differently. The
authors used a probabilistic generalized Voronoi diagram to find the relative
translation. This approach also accounts for uncertainty in the relative map
pose rotation. The article [6] describes how Reinforcement Learning can be
used to decide when is the best time to merge maps of two agents upon their
rendezvous instead of immediate merging. The merging time management
upon rendezvous is not a part of this thesis and could be explored in future
work.

1.4 HectorSLAM

In our implementation of occupancy grid map merging, we used an open-
source SLAM solver called HectorSLAM [17], which is available as a ROS
package [16]. Its functionality is further described in the article [17]. This
SLAM solver is aiming for usability not only on unmanned ground vehicles
(UGV) but also on UAVs. The authors achieved this by estimating motion in
full six degrees of freedom (6DOF). As is shown in figure 1.5, HectorSLAM
provides not only the occupancy grid map but also a 2D pose estimate to
3D navigation subsystem, where it aids IMU and other optional sensors

10

.....................................1.4. HectorSLAM

Figure 1.5: Overview of the mapping and navigation system (dashed lines depict
optional information). Reprinted from [17, Figure 1]

information in 3D pose estimation. The navigation subsystem and SLAM
subsystem are updated individually, so the 3D pose estimation is not slowed
down by the SLAM subsystem and can be used for navigation of the agent.
This solver is used only for the estimation of the 3D pose in real-time, not
for the optimization of a pose graph generated in the past. This means that
it cannot be used in scenarios with large loops being closed.

SLAM subsystem

Given the joint values, attitude, and initial pose (see fig. 1.5), the data from
the LIDAR scan are converted into point cloud of scan endpoints. The data
from LIDAR can be downsampled and filtered. For example, the authors
state that if the z coordinates of endpoints are not within a given threshold
of the intended scan plane, they are filtered out by the HectorSLAM. This
filtering is useful for our case as we use UAV, which can sometimes be in
attitude in which it could scan ground instead of a wall or other obstacles.

Multi-level Map representation

HectorSLAM uses Gauss-Newton method for optimization of scan alignment
inspired by work [21]. Gauss-Newton method can get stuck in a local minimum.
To diminish this problem, authors use multiple occupancy grids with a
descending resolution where every coarser map has half the resolution of the
preceding map with higher resolution. Each map with the different resolution
is kept in memory and updated every time the alignment process generates
the pose estimates. The process of aligning the new scan with the current
occupancy grid map starts with estimating a pose in the map with the lowest

11

1. Introduction
resolution. The resulting estimated pose is iteratively used in maps with
higher resolution to refine the estimate and achieve higher precision.

Navigation filter

HectorSLAM uses an Extended Kalman Filter to estimate the pose in 6DOF.
The article [17] also states that scan matching provides only 2D position and
orientation in the plane. An additional height sensor is needed for a full 3D
estimation of the pose.

1.5 Scalability

As is described in the article [2], the definition and implementation of the
pairwise map merging method can be easily extended to solve the multiple-
map merging problem. The merging of two maps M1 and M2 gives us a new
map, which we will call M̃2. Let us use × in this section as a symbol for the
merging operation of two overlapping maps. Let the m be the number of
local maps to be merged into one global map. The first two local maps can
be merged as follows:

M̃2 = M1 ×M2. (1.1)

We can then gradually merge a newly created map M̃n with next map Mn+1:

M̃n+1 = M̃n ×Mn+1, (1.2)

until we merge all m maps to one global map. The map M̃m is the resulting
map of merging. By iteratively repeating this pairwise merging step on all
maps, we can get the final merged map. Therefore we only need to implement
the pairwise merging process, which can then be easily scaled to merge any
number of maps. By easily scaled, we mean that merging three or more
maps can be solved by merging maps in pairs, as described above. This serial
pairwise merging can be further optimized. We could, for example, distribute
the process on more than one UAV instead of merging all maps on one UAV.
We could also represent each UAV as a node in a graph and connect the
UAVs so that they form a directed chordless cycle. Each UAV would then
need to merge only its map with the map of the next UAV connected by the
cycle edge. The optimization of the sequence in which the multiple-merging
process will be carried out is a difficult task that can be further explored in
future work. We will mainly discuss the pairwise merging in this thesis.

1.6 Contribution

The contribution of the thesis is:

12

.....................................1.6. Contribution

. Survey of available map merging techniques suitable for building a global
map by merging local occupancy grid maps of multiple UAVs..Occupancy grid map merging method implementation with a 3D pose
estimate of UAVs relative to each other. Our method does not make any
geometric assumptions about the environment.. Integration of the map merging method into the MRS group software
architecture based on Robot Operating System (ROS) middleware [27].

13

14

Chapter 2
Map merging methods survey

This chapter defines map merging and describes methods for merging occu-
pancy grid maps (OGM) obtained from HectorSLAM solver.

2.1 Map merging definition

First, let us formally define what we mean by a 2D map and unify the
definition of map merging terminology for all methods in this chapter.

We assume that the occupancy grid map M is a matrix with r rows and
c columns. Each cell M(i, j) contains belief value (also called occupancy
value), which indicates if the cell is occupied, unoccupied, or its state is
unknown. We will use the same values for belief state as in the ROS definition
of occupancy grid1. The values in range [0, 100] indicate the probability of the
cell occupancy. The value 100 represents the belief that the cell is occupied,
0 represents the belief that the cell is unoccupied, and the value -1 represents
an unknown state. The used HectorSLAM discards probabilistic information
in the cells and encodes the occupancy belief of each cell only with the three
values -1,0 and 100 for "unknown," "unoccupied," and "occupied" cell.

Indices i and j of each cell M(i, j) also indicate the spatial location of the
cell because each OGM representation in ROS contains its map resolution
as a length of side of each uniform square cell in meters. We can get a cell’s
position in a local map by multiplying the indices with the map resolution,
which gives us distance from map origin in meters.

To merge two occupancy grid maps M1 and M2, we need to find the best
rigid transformation T given some evaluation function. We assume that the
deficiencies of the OGM like spatial distortion or map scale are insignificant, so
that non-rigid transformations like scaling or shearing do not have to be used.
The transformation T rotate the OGM M2 by a given angle θ and translate it
by given translation (tx, ty) so that it overlaps with M1. This transformation

1definition of occupancy grid can be found in the documentation of ROS API:
http://docs.ros.org/melodic/api/nav_msgs/html/msg/OccupancyGrid.html

15

2. Map merging methods survey..............................

M1

y1

x1

p

y2

x2

M2

Figure 2.1: We are looking for a relative pose p by which we can transform the
occupancy grid map M2 so that it overlaps with the M1.

can be represented by a relative pose p = [tx, ty, θ]T of the OGM M2 in the
M1 as is shown in the figure 2.1. Thanks to easy conversion between relative
pose p and transformation T , the terms will be used interchangeably to suit
the context throughout this thesis. We can achieve transformation of the
whole grid map by transforming each cell by given relative pose p. This
transformation of map can be defined by multiplication with transformation
matrix as in paper [2]:

Ttx,ty ,θ(x, y) =

cos θ − sin θ tx
sin θ cos θ ty

0 0 1


xy

1

 . (2.1)

This notation is a little tricky because the multiplication of 3 by 3 matrix with
three component vector gives us again three component vector. We would like
this transformation of two component point to return again two component
vector. Because of this reason, we will use the notation defined in the PhD
thesis [38] called the compounding notation in which the transformation of
coordinates (x, y) by translation (tx, ty) and rotation θ is defined as follows:txty

θ

⊕ [x
y

]
=
[
x cos θ − y sin θ + tx
x sin θ + y cos θ + ty

]
. (2.2)

The symbol ⊕ is used for compounding operation. We will follow the com-
pounding notation for the rest of this thesis. The notation will be further
expanded in the implementation chapter 3.

Suppose we have occupancy grid map M = {(c1, o1), (c2, o2), . . . , (cn, on)},
where (ci, oi) is i-th cell of the map M with position ci in the grid and the
occupancy state oi (note that bold lowercase letters like ci denotes vector). To
transform the mapM by pose p = [tx, ty, θ]T we can use defined compounding
operation ⊕ like this:

p⊕M = {(p⊕ c1, o1), (p⊕ c2, o2), . . . , (p⊕ cn, on)}. (2.3)

16

................................ 2.2. Random Walk method

Now that we have defined how to transform map by pose with the com-
pounding operation, we can define the general goal of occupancy grid merging
of two maps. Methods for merging OGM usually consist of the objective
function, which represents a consistency of maps and an optimization tech-
nique whose task is to search for optimal map alignment that maximizes the
objective function.
Definition 2.1. Given objective function of map merging ∆ and two OGMs
M1 and M2 we search for optimal relative pose p̂ such that:

p̂ = arg max
p

(∆(M1,p⊕M2)). (2.4)

The objective function ∆ takes as a parameter two occupancy grid maps
and returns a value indicating how well the maps overlap. The higher the
value, the better they overlap. Each merging method differs from others in
its objective function ∆, and the method for optimizing the relative pose p.
The objective function is in some merging methods called heuristic function
as it provides information on whether the search for the optimal relative pose
is going towards the goal.

In the rest of this chapter, we will introduce several map merging methods
with their objective functions and methods for optimizing relative pose. As
was explained in section 1.5 the pairwise map merging can be easily scaled to
map merging with a higher number of maps. Therefore, we discuss only the
pairwise map merging problem in the described methods.

2.2 Random Walk method

The first considered method in article [2] uses a random walk to explore
a space of relative poses and a heuristic function with combination of the
Manhattan distance and a "locking" parameter.

Heuristic function

The heuristic function of this method consists of two parts:

∆(M1,M2) = ψ(M1,M2) + clock · (dis(M1,M2)− agr(M1,M2)). (2.5)

The first part which is named ψ computes the Manhattan distance (md)
between cells with same occupancy value (OV):

ψ(M1,M2) =
∑
c∈C

d(M1,M2, c) + d(M2,M1, c), (2.6)

d(M1,M2, c) =
∑
M1[p1]=cmin{md(p1,p2)|M2[p2] = c}

#c(M1) , (2.7)

17

2. Map merging methods survey..............................
where d function sums all minimal Manhattan distances from cells with OV
(occupancy value) c in M1 to cells with the same OV c in M2 and divides this
sum by number of cells with OV c in M1. The function ψ can be computed
in linear time. The Manhattan distance is the distance between two points
given by absolute differences of their coordinates.

The agr(M1,M2) and dis(M1,M2) in the second part of heuristic function
(2.5) is the number of cells in M1 and M2 where there is agreement (respec-
tively, disagreement). The higher value of constant clock ≥ 0 allows for smaller
amounts of overlap needed for maps to be correctly merged, but it slows
down the convergence to correct merging. The author explained the heuristic
function simply: "Only ψ provides meaningful gradients for the motion plan-
ning, whereas dis(M1,M2) - agr(M1,M2) only ’locks’ the two maps in place
as soon as the identical regions are aligned." The one disadvantage of this
heuristic function is that we have to choose the constant clock, which can be
hard to tune for this method to be fast and robust in different environments
with different conditions. All given equations are explained in detail in the
article [2].

Figure 2.2: The heuristic function consists of two parts. The ψ generates a kind
of a attraction force between the maps. The second part with the scaling factor
clock helps the two maps to "lock" in an aligned state and prevents the method
from overfitting. Reprinted from [2, figure 3]

Optimization method

Let us now describe the random walk algorithm used in this merging method.
It is given some starting relative pose ps. First it computes the heuristic

18

............................... 2.3. Hough Transform method

value ck = ∆(M1,ps ⊕M2). Then in a loop, the algorithm generates a new
relative pose pt using a Gaussian distribution as described in the article
and computes its heuristic value ct as with the ps. If the heuristic value of
newly generated pose is better then the current best pose (ct > ck), then
the newly generated pose becomes the best pose (ps = pt, ck = ct). If the
newly generated pose does not have a better heuristic value than the current
value (it does not improve the overlapping), it still has a slight chance to
be accepted and assigned to ps. The reason for accepting even pose with
worse overlapping, which is a behavior similar to simulated annealing, is
to avoid getting trapped in local minima as in the case of the hill-climbing
optimization.

Interesting ideas

Authors suggest how to identify failure of merging method when there is
no overlapping or when the method did not have enough time to find global
optimum. To rule out cases where the merging of M1 and M2 failed, they
came up with acceptance indicator ai:

ai(M1,M2) = agr(M1,M2)
agr(M1,M2) + dis(M1,M2) . (2.8)

Only if this acceptance indicator is close to 1.0, it indicates that merging was
successful. It is shown in experiment, that the successful attempts lead to ai
with value well above 0.98, while failed attempts with the best ai had value
well below 0.9.

An interesting idea mentioned in the article (in III. A. Overview) is that
the search for the transformation of one map to align and merge with another
map correctly is similar to the docking problem of a protein and a ligand in
computational biology. This idea could be inspected in future research.

2.3 Hough Transform method

The next method [4] uses Discretized Hough transform (DHT). It is a method
for the detection of primitive shapes. In our case, it is used to detect line-like
objects in the occupancy grid map. This method can detect more complex
shapes like circles or ellipses, but authors focus only on the detection of lines
due to their intention of using this method primarily for mapping building
interiors where linear features like walls are abundant. This algorithm returns
a set of possible transformations with the respective objective function values.
This choice of returning multiple possible transformations instead of the
"best" one is due to the possibility of the transformation with the highest
objective value being the wrong transformation that does not align maps
correctly. We can use a more suitable objective function to choose the correct
transformation.

19

2. Map merging methods survey..............................
The main idea behind DHT is that a line has its polar representation

x cos θ + y sin θ = ρ. If we discretize θ to uniform steps in the interval [0, 2π)
and choose the interval of ρ to accommodate expected line segment length,
we can then represent DHT by a matrix HTM with ρS rows and θS columns.
First, the occupancy grid has to be converted to a binary image before DHT.
The conversion can be done by setting occupied cells to 1 and other unknown
or free cells to 0. The DHT is explained in [7], and we will try to explain this
computation simply. The values of the matrix HTM are computed by first
setting all elements to zero. Then for every pixel (x0, y0) in binary image with
value 1, compute the ρ value in the polar representation x cos θ + y sin θ = ρ
for all θS discrete values and increment the cell in the DHT matrix with
indexes closest to computed values of ρ and θ.

Figure 2.3: Two Hough spectra in the two top panels with their cross correlation
in the third one normalized to the range 0-1. Reprinted from [4, figure 3]

We can then compute a Hough Spectrum HSM of both occupancy grids
being merged. It is computed from their HTM matrix created by the DHT
as a signal with sampling period 2π/θS :

HSM(k) =
ρS∑
i=1

HTM(i, k)2 1 ≤ k ≤ θS . (2.9)

We can also compute circular cross correlation CCM1M2 of two Hough spectra
with same sampling period:

CCM1M2(k) =
θS∑
i=1

HSM1(i)HSM2(i+ k) 1 ≤ k ≤ θS . (2.10)

Example of the circular cross correlation is shown in figure 2.3. We can then
extract multiple local maxima from the CCM1M2 , which are associated with
a possible optimal rotation for the correct overlap of two occupancy grids.

With possible rotations extracted, we still need to find candidates for
optimal translation (tx, ty). We can get tx and ty separately by extracting
two more Hough spectra from binary images of the first map and the second

20

......................... 2.4. Genetic-Algorithm-Based methodology

map rotated by each extracted rotations and then computing circular cross-
correlation for X-spectra and Y-spectra defined in the article. The algorithm
for computing hypothesis in the article then chooses the translation with
the best cross-correlation. For all possible optimal rotation it finds best
translation and returns possible transformations p1,p2, . . . ,pn with their
respective objective function values ∆1,∆2, . . . ,∆n.

This approach works well for merging maps with many linear features like
walls of buildings. Authors also state that if the maps being merged contain
at least one long wall, the algorithm will be capable of merging the maps.
The article shows an experiment with robots mapping outdoor areas with less
linear features where the maps were still successfully merged, but experiments
with no linear features were not shown.

2.4 Genetic-Algorithm-Based methodology

The method in [20] is unique in a way that it uses the strategy of the
evolutionary Genetic Algorithm as an optimization technique to search for
optimal relative pose p̂.

Heuristic function

The objective function ∆(M1,M2) measuring the consistency of two maps, in
this case, differs from the other two presented approaches. It uses only the
occupied cells (in an article called local maximum occupied cells) to measure
consistency. Authors explain this choice with the idea that occupied cells
most likely correspond to objects on the map. An object (occupied cells) in
both maps increases the ∆ only if it tends to be close to its corresponding
image in the other map. As authors say, it should also be affected less by
inconsistencies of maps caused by the used SLAM algorithm than methods
computing consistency of all cells in a map.

The used heuristic function is defined like this:

∆(M1,p⊕M2) =
∑

c∈C(M2)
ψM1(p, c), (2.11)

ψM1(p, c) =
{
M1(p⊕ c) if p⊕ c ∈ Occ(M1)
0 otherwise

. (2.12)

The Occ(M1) is a function that returns all grid cells with occupancy value
higher than some chosen threshold. This function could be used with SLAM
solvers that return the occupancy grid with a probabilistic representation of
cells state, compared to HectorSLAM that uses only three values to represent
the state of the cell. Authors, for example, chose this threshold for occupied
cells to be 0.6. The whole process of computing this heuristic function could

21

2. Map merging methods survey..............................
be simply described as this. Each occupied cell in map M2 is transformed
by pose p. If the cell in map M1 on coordinates of the transformed cell is
occupied (above the Occ threshold), add its value to the total sum of ∆ value.

Optimization method

This method is inspired by genetic algorithm (GA) heuristic search method-
ology [28]. A biological analogy inspires the idea of GA. Natural selection
favors the strongest individuals in a population as they are more likely to
survive and transfer their genes to the next generation. The new generation
inherits the genetic traits of their parents that were naturally selected. The
traits can be inherited by genetic operations like mutation and crossover.

The population in our case consists of relative poses between which we
are looking for the optimal pose p̂ which maximizes the objective function
∆(M1, p̂⊕M2). The objective function serves as an evaluation of the poses
population. The evaluated population can be sorted into strong and weak
groups of individuals, and the process of natural selection can create the next
generation. The genetic operations work with the position and orientation of
pose. The mutation takes one individual and creates a new one by making a
little change of position and orientation values. This method uses two designs
of crossover operation. Both crossovers take two poses from the previous
generation and create one new pose. First, crossover_I takes the position
of first pose and orientation of the second pose and mixes them to create a
new pose. The second crossover method crossover_II makes a random linear
combination of the position and orientation of the two given poses. The last
option of making a new individual is by initializing it to a random value,
which serves as a means of preserving diversity in the population.

Interesting ideas

The article also described how the UAV1 which is merging the maps could
estimate the position of the UAV2 in the merged map with the found relative
pose p of the two maps M1 and M2 in combination with the local pose of the
second UAV in its local map M2. Authors also outlined how this knowledge
of vehicle to vehicle relative pose (V2V RP) can be used with cameras for
multi-vehicle perception association. In other words, each vehicle can see
through the cameras of other vehicles and even "see through" these vehicles,
as was illustrated in the experiments. This problem of "seeing through" other
vehicles is called cooperative augmented reality, which two of the authors of
this article explained in [19]. We chose the method described in this section
for our implementation of the map merging algorithm. It will be described in
more detail in chapter 3.

22

............................ 2.5. Neural Networks-Based approach

Figure 2.4: The occupancy grid map merging can also be used for estimation of
vehicle to vehicle relative pose. With this pose known, we can for example use
other vehicles perception to "see" through them. Reprinted from [19, figure 5]

2.5 Neural Networks-Based approach

The method in [32] uses neural networks to downscale the occupancy grid
map (OGM) representation into cluster points to speed up the process of
map merging. We start by describing the optimization method first.

Optimization method

This method consists of multiple steps, shown in figure 2.5(top left). First, a
map segmentation is performed on both occupancy grids, depicted in figure
2.5(bottom). This segmentation divides occupied cells into groups of cells that
are close together. This is done, so the computation of objective function does
not have to check every cell, and a faster heuristic can be used. Then a neural
network called self-organizing map (SOM) is trained. Its structure can be seen
in figure 2.5(top right). The input of the SOM is the 2D location of occupied
cells. It is trained so that the weights of each neuron represent coordinates of
clusters in the occupancy grid. These clusters represent features of a map in
a much more compact way than the occupied cells do, and the search for the
relative pose of maps can now be performed efficiently.

The third step is to find first the relative orientation. It is found by
generating a 360-degree histogram of each cluster surface norms, which are
explained in the article and then by tuning these histograms with the Radon
transform, that is similar to the Hough transform with one difference. The
Radon transform, as is explained in [33], is the projection of the image intensity
along a radial line. Similar to the Hough transform method described in 2.3,

23

2. Map merging methods survey..............................

Figure 2.5: (top left) Flowchart of the proposed algorithm (top right) Struc-
ture of self-organizing map (SOM) neural network (bottom) A map segmenta-
tion process. Reprinted from [32, figures 1, 2, 3]

we get the orientation.

Now that we have the occupancy grids aligned, the points with the same
orientation determined by their norm are probably the same in the real world.
This information is used in an algorithm similar to the iterative closest point,
which finds the relative translation. The search for the relative translation of
this method can be accelerated, as is described in section 2.6.

24

.................... 2.6. Probabilistic Generalized Voronoi Diagram method

Heuristic function

Similar to the Hough method 2.3 this method does not use any specific
heuristic function during the search for relative pose orientation. It uses
objective function only as a final verification of correct map merging or to
choose the best candidate between found relative pose translations. The
verification method of cluster convergence that is used during the selection of
relative translation is computed like this:

J =
n∑
i=1
‖p{i}

1 − p{i}
2 ‖. (2.13)

Where p1 and p2 are points of two corresponding clusters in M1 and M2. The
n is a total number of clusters. As authors explain "The J is the sum of
the squared Euclidean distances between corresponding matching points."To
ensure accurate merging of whole maps the same acceptance indicator as in
the case of Random Walk method 2.2 is used:

ai(M1,M2) = agr(M1,M2)
agr(M1,M2) + dis(M1,M2) . (2.14)

Interesting ideas

Downscaling the occupancy grid map into cluster points is an interesting way
to speed up the map merging process. It can also recognize different shapes
of features, not only lines like in the case of the Hough transform method.

2.6 Probabilistic Generalized Voronoi Diagram
method

This method [31] uses Radon transform to find the relative rotation of two
OGMs similar to the neural network-based approach in section 2.5. It also
refers to the article [32] of the neural network-based approach as its inspiration
for the search of relative rotation. The novelty of this approach is in the use
of probabilistic Generalized Voronoi Diagram (GVD) to find the relative
translation of two OGMs and the use of entropy filter for maps fusion.

Optimization method

As was said, this method uses Radon transform to find the relative rotation of
two OGMs. It then, in contrast with other methods, incorporates uncertainty
to the rotated map. This uncertainty of rotation is represented by the
Gaussian distribution approximation of non-Gaussian distribution in the
covariance matrix.

25

2. Map merging methods survey..............................
With maps aligned, the next step is to find the relative translation. The

method first finds the Generalized Voronoi Diagram (GVD) using mathemat-
ical morphological operations on the binary representation of the occupancy
grid map (OGM). The probabilistic version of GVD can be generated to incor-
porate the probabilistic information of OGM into the GVD. The probabilistic
GVD is useful only in the case that OGM is represented by probabilistic
occupancy state and not like in case of HectorSLAM only by "free", "occu-
pied", and "unknown" state. The GVD skeleton is then divided into edges
by applying a dilation mask on vertices of the skeleton. The vertices are
cells with at least three edges of the skeleton coming out of these cells. The
dilation mask goal is to delete enough surrounding occupied cells of vertices
so that the edges have gaps big enough between each other. Each edge is
represented as a matrix with dimensions large enough for edge to fit in, as
shown in figure 2.6.

Figure 2.6: a) A GVD with vertices marked by "v" b) Dilation mask on vertices
c) Edges with representation of matrix marked by dashed line. Reprinted from
[31, figure 3]

These probabilistic edge matrices of two maps are then used in a matching
process which finds the best relative translation between the maps. The
matching process uses a 2D cross-correlation. After finding a relative trans-
lation, the uncertainty of this translation is incorporated, as in the case of
rotation uncertainty. The last step after transforming the map is to fuse both
maps.

The fusion is done by first combining and filtering probabilities of both
maps into one fused map Mfused. Then the entropy filter H is applied to the
Mfused. For cell M(i, j) with probability p(M(i, j)) = pij :

H(M(i, j)) = −pij log pij − (1− pij) log(1− pij). (2.15)

The difference of both map entropies called mutual information is computed:

Iij = H(M1(i, j))−H(Mfused(i, j)). (2.16)

With values fromMfused applied only when the mutual information is positive,
the final map Mfinal cells look like this:

Mfinal(i, j) =
{
Mfused(i, j) Iij ≥ 0
M1(i, j) Iij < 0

. (2.17)

26

.................... 2.6. Probabilistic Generalized Voronoi Diagram method

Interesting ideas

The use of uncertainty is an interesting way of making the merging process
more robust. The experiments described in the article also show that this
method is at least eight times faster then the random walk method described
in section 2.2 with comparable accuracy of map merging.

27

28

Chapter 3
Implementation

This chapter describes the chosen method in more detail, as well as the
reason for its selection. Furthermore, we describe the ROS middleware and
the integration of the implemented method into the MRS group software
architecture based on the ROS. Finally, we present a diagram of the whole
map merging process pipeline.

3.1 Method of map merging

As we have shown in the short survey of methods in chapter 2, there are
many completely different approaches to the problem of map merging. Each
of them has some drawbacks and some benefits. We will now inspect which
method will best suit our problem domain.

3.1.1 Requirements on the method

We choose to use HectorSLAM described in section 1.4 as a SLAM algorithm
for occupancy grid mapping. The inputs to our map merging method are
the OGMs (occupancy grid maps) generated by HectorSLAM on each UAV
of the swarm and their local pose in the map, which is also generated by
the HectorSLAM navigation subsystem. The output on each UAV should
be global OGM and the relative poses of other UAVs relative to the current
UAV.

The method should also be usable even with some UAVs failing. Failure
of one robot should not ruin the overall mission. Because of this, any type
of leader/follower algorithm should not be used. The computation of map
merging should be decentralized with each robot computing its own global
map. This is possible with all of the described methods.

29

3. Implementation....................................
3.1.2 Choice of method

We have described five suitable methods for map merging, which are:..1. Random Walk method (RW)..2. Hough Transform method (HT)..3. Genetic-Algorithm-Based methodology (GA)..4. Neural Networks-Based approach (NN)..5. Probabilistic Generalized Voronoi Diagram method (PGVD)

As was said in section 2.6, the PGVD was at least eight times faster than
the RW approach. Deciding between the two approaches, we should pick
PGVD. Also, the HT method works well only in areas with linear features
like walls. The other methods do not have a problem like this without any
significant disadvantage compared with the HT method. This leaves us with
the last three methods.

Both the PGVD method and the NN approach use Radon transform to
find the relative rotation of two OGMs. For finding relative translation, the
NN uses an algorithm similar to the iterative closest point (ICP) algorithm.
The PGVD uses as the name suggests the probabilistic generalized Voronoi
diagram as an alternative to the ICP. Unfortunately, the PGVD article does
not offer a comparison of the merging speeds of the two approaches.

The GA methodology has one inconvenience, which is neither disadvantage
nor advantage. If we have prior knowledge of approximate relative pose, the
relative pose’s search space will be much smaller than if we have no prior
knowledge. Another way around if we do not have prior knowledge, this
method will have to search in the space of all possible relative rotations and
translations. The other methods do not work with prior knowledge, so there
is no advantage in knowing the approximate relative pose in their case. In a
situation where the merging is used more than once, the GA can continuously
optimize the approximation of the relative pose by using the estimate from
the previous map merging for initialization of relative pose population.

The best approach would be to try more than one method, but that would
go far beyond the scope and the time constraints of this thesis. Concretely,
we implemented a genetic-algorithm-based method described in section 2.4.

3.2 Genetic-algorithm-based methodology in
detail

The genetic-algorithm-based method was described briefly in section 2.4. We
will now describe it with all details needed for implementation.

30

...................... 3.2. Genetic-algorithm-based methodology in detail

3.2.1 Compounding notation

We described part of the compounding notation in the section 2.1. Let us
now complete the description following the notation in [38]. Given the two
poses [x1, y1, θ1]T , [x2, y2, θ2]T , and a 2D point [xp, yp]T , the compounding
notation is defined as follows:

x1
y1
θ1

⊕
x2
y2
θ2

 =

x2 cos θ1 − y2 sin θ1 + x1
x2 sin θ1 + y2 cos θ1 + y1

θ2 + θ1

 , (3.1)

x1
y1
θ1

⊕ [xp
yp

]
=
[
xp cos θ1 − yp sin θ1 + x1
xp sin θ1 + yp cos θ1 + y1

]
, (3.2)

inv


x1
y1
θ1


 =

−x1 cos θ1 − y1 sin θ1
x1 sin θ1 − y1 cos θ1

−θ1

 . (3.3)

The inv() is a inversion function which works like a point reflection with
center in the origin. As was defined in the section 2.1, to transform the occu-
pancy grid map M = {(c1, o1), (c2, o2), . . . , (cn, on)} by pose p = [θ, tx, ty]T
we can use defined compounding operation ⊕ like this:

p⊕M = {(p⊕ c1, o1), (p⊕ c2, o2), . . . , (p⊕ cn, on)}. (3.4)

3.2.2 Fitness function

We also defined the objective function in the section 2.4 which we will call in
terminology of genetic algorithms the fitness function and use symbol F
as in the article [20] instead of ∆:

F (M1,p⊕M2) =
∑

c∈C(M2)
FM1(p, c), (3.5)

FM1(p, c) =
{
M1(p⊕ c) if p⊕ c ∈ Occ(M1)
0 otherwise

. (3.6)

3.2.3 Optimization of relative pose

An evolution algorithm is used for the optimization of a relative pose. This
optimization method iteratively evolves a population of poses based on a
given fitness function. The process of finding the relative pose is composed of
the initialization and evolution, as is defined in the article [20].

31

3. Implementation....................................
We will first clarify what we mean by local and global pose. The local

pose of the UAV is the pose on the local map. We will explain how the
pose is represented in the ROS middleware because we are using it as our
environment for the implementation of this algorithm. The local pose of
an agent in the OGM (occupancy grid map) is defined as a translation and
rotation from the initial pose of an agent in the OGM. This initial pose is
often set to the center of the map with zero rotation corresponding to the
direction of the x-axis. However, in some missions, we have prior knowledge
that the agent will move only in a certain direction. Thus, it is convenient to
set the initial pose so that the agent has enough map space in the direction
it will explore. The relation between initial pose and local pose is illustrated
in figure 3.1.

Mo

y1

x1

•
agent

•
(0, 0)

Figure 3.1: The local agent pose (red arrow) in the OGM is given by translation
and rotation from the initial pose depicted by (0,0). When the initial pose is not
in the occupancy grid map origin Mo the pose of the Mo (green arrow) in the
ROS middleware has negative coordinates.

By the global pose of the UAV, we mean a pose in some higher frame of
reference than the OGM of the UAV (for example, the pose in the global
map of UAV swarm or pose received from the GPS in the frame of reference
of the whole globe).

Initialization

Initialization consists of the computation of the initial pose p and the creation
of the initial population...1. Computation of initial pose pi:

With local pose of UAV1 and UAV2 in map labeled as LUAV1 , LUAV2

respectively and the global pose labeled as GUAV1 , and GUAV2 the initial
pose can be computed as follows:

pi = LUAV1 ⊕ inv(GUAV1)⊕GUAV2 ⊕ inv(LUAV2). (3.7)

Nevertheless, the approximation of global pose is usually unknown to us,
as explained in the introduction. We have to initialize the relative pose
of the two maps using a different approach.

32

...................... 3.2. Genetic-algorithm-based methodology in detail

Let us describe possible solutions for generating the initial approximation
of the relative pose without knowledge of the UAVs global poses.
Without any knowledge of the UAVs relative pose the easiest solution to
implement is to approximate the initial pose with zero vector:

pi =

0
0
0

 . (3.8)

But this yield inconsistent results in maps that have different sizes and
in maps where the UAVs initial pose is in different location of map. For
this reason we will initialize the relative pose pi of the OGMs so that
the initial poses of both UAVs are on the same spot in the map as is
illustrated in the figure 3.2.

•UAV1

pi•UAV2y1 = y2

x1 = x2Mo1 = Mo2

•UAV1 = UAV2

pi

y1

x1

y2

x2

Mo1

Mo2

Figure 3.2: The pi is the initial pose of the received red occupancy grid map in
the reference system defined by the origin of the blue occupancy grid map...2. Initialization of population:

Authors randomly initialize the population of poses {p(k)|k = 1, 2, . . . , n}
within an error range around the initial pose pi with position error being
±30 m and orientation error being ±30°. The maps can only be merged if
there is an overlap between them, which means that the largest possible
transformation of the map would be a translation by the length of
the diagonal of the largest OGM being merged and rotation of ±180°.
The error range in which the population is generated should be chosen
according to the initial location of the UAVs. We set the position error
to be a circle with a radius equal to half of the UAVs occupancy grid
map longest dimension and with a center in the initial pose position.
The orientation error is, in our case ±180°. This is a much larger error
range than the one used in the experiments proposed in the article.

Iteration

The evolution process begins after the initialization of the first population.
The evolution can be divided into epochs. Each epoch starts by acquiring

33

3. Implementation....................................
the current state of the occupancy grid maps. The epoch then iteratively
performs the steps of evolving one generation of the population into the next
generation. Each iteration performs the following steps to form the next
generation:..1. Get likelihood of each individual in population by computing its fitness

function as is explained in section 3.2.2...2. Compute mean likelihood of the population:

Fmean = 1
n

n∑
k=1

F (M1,p(k) ⊕M2), (3.9)

and divide the population into a superior group which has higher or
equal likelihood than the Fmean and inferior group with lower likelihood
than the mean:

{p(superior)} = {p(i)|F (M1,p(i) ⊕M2) ≥ Fmean} (3.10)
{p(inferior)} = {p(j)|F (M1,p(j) ⊕M2) < Fmean} (3.11)

This division is used in order to find superior poses which will probably
merge map better and should be propagated into the next generation
with no to little change. The inferior group will be replaced with newly
generated poses. Now comes the genetic part of the genetic algorithm.

Genetic operations. Before we describe next steps of iteration let us first
describe the used genetic operations. Authors of the article [20] use three
operations called mutation, reinitialization, and two versions of crossover :

.Mutation changes the position and orientation of a pose by a minor
margin. We for example use normal distribution to generate the change
of orientation in degrees with 0° mean and standard deviation of 4° to
generate change mostly between ±4°. The error in position is in our
case generated by normal distribution with mean of 0 cells and standard
deviation of 20 cells. This position change is given in length of square
occupancy grid cells side so the pose position translate mostly between
±20 cells side lengths..Crossover I. gets position of one pose and orientation of other pose
and combines them together to create a new pose:

pnew = crossover_I(p1,p2) = [xp1 , yp1 , θp2]T . (3.12)

.Crossover II. generate random number λ in interval [0, 1] and do a
linear combination of two poses:

pnew = crossover_II(p1,p2) = λp1 + (1− λ)p2. (3.13)

34

...................... 3.2. Genetic-algorithm-based methodology in detail

.Reinitialization generates individual pose as in the initialization of
population by randomly mutating the initial pose pi by an error defined
in the initialization of population step.

Now that we know how the basic genetic operations work we can continue to
the next step of iteration...3. Mutate superior group:

We create mutated individual out of each member of the elite group,
evaluate its fitness function, and if the mutation has a higher likelihood
value, we replace the individual with this new mutation. Authors mutate
the individual with the highest likelihood value (best individual) 100 times
and other individuals only once. We tried to enhance the algorithm’s
performance by mutating the other individuals in the superior group
more than once based on their likelihood compared with the likelihood
of the best individual. Given the likelihood of the best individual lmax,
likelihood of the worst individual in the superior group lmin and likelihood
of the individual from the superior group currently being mutated lcur
the number of attempts n is computed like this:

n = max

(⌊
100

(
lcur − lmin
lmax − lmin

)10⌋
, 1
)
. (3.14)

This gives us integer from interval [1, 100]. Individuals with higher
likelihood will have an exponentially higher number of attempts for
mutation. The problem of this "enhancement" is that as we converge to
the correct solution of finding the best relative pose for map merging, the
number of individuals with similar likelihood values as the best individual
increase rapidly. This means that many individuals would get close to
100 attempts for mutation, and the optimization process of finding the
best relative pose would slow down rapidly. Therefore, we returned to
the method used in the article, which mutates only the best individual
100 times and other individuals only once...4. Replace inferior group:

The inferior group is replaced by performing randomly selected (in our
case with uniform distribution) genetic operations on randomly selected
individuals from the superior group. As was described, we can replace
the individual in the inferior group by mutating an individual from the
superior group, doing a crossover I. or crossover II. on two individuals
from the superior group, or the individual can be reinitialized as in
initialization of population.

We described the process of evolving one generation into the next generation.
We will now describe how the evolution process works as a whole.

35

3. Implementation....................................
Evolution

The whole evolution process starts by initializing the initial population
generation. Then the first epoch starts. Each epoch consists of several
iterations. After each epoch, the algorithm publishes its results of merging
consisting of two parts. The first part is the merged occupancy grid map.
It is a result of merging the received OGM transformed by relative pose
with the highest likelihood value and the map of the UAV on which the
merging process is executed. The second part of the merging process result
is the approximation of a relative pose between the two UAVs whose maps
were merged. The map merging method continuously accepts the updated
occupancy grids and UAVs local poses at the beginning of each epoch.

The choice of the number of iterations in each epoch depends on how the
users of this algorithm want it to behave. The epoch starts by preparing
its data for the iteration process, which causes a significant overhead. This
involves, for example converting the two occupancy grid maps into an image
and the process of extracting a set of all occupied cells in each OGM. This
process is mirrored when the epoch ends as we have to convert the image of
the map back into the OGM. So users of this algorithm have to choose how
they want to balance the frequency of epochs and speed of convergence to
the optimal relative pose. With a higher frequency of epochs, the frequency
of updates of the UAVs relative pose is increased, which can be preferred, for
example, in a situation where we want to get the approximation of relative
pose fast, but it does not have to be so precise. On the other hand, with the
lower frequency of epochs, the overhead is decreased, and the algorithm’s
performance is increased, which could lead to faster convergence to the optimal
relative pose between the two occupancy grid maps. However, in this case,
the updates of the relative pose would be less frequent.

The computational power of the used UAV for map merging should also
be considered in the choice of the frequency of epochs.

The next important question is, how should we use the approximation of
the relative pose of the two maps and the evolved generation from the last
epoch in the next epoch? We consider two approaches. One described in the
article [20] which uses the evolved generation from last epoch without any
alteration. For the second approach, we choose to reinitialize the generation
around the approximation of the relative pose from the last epoch.

3.2.4 Terminating condition

The terminating condition of the algorithm is not exactly specified in our
implementation, and the process runs until the UAV interrupts the merging
of maps by itself, for example, after landing due to finishing its mission or
depleting its batteries. We implemented the computation of the acceptance
index explained at the end of section 2.2, which could be used as a terminating
condition for the map merging by selecting some high threshold which if

36

................. 3.3. On-demand merged map output with a 2D pose estimate

passed by acceptance index would end the process. We decided to not use the
ai because unlike in article [4] the ai of two maps with correct pose in our
experiments does not always have value well above 0.9 and therefore cannot
be distinguished from incorrect map merging which has value ai in our case
somewhere between 0.8 and 0.9.

3.3 On-demand merged map output with a 2D
pose estimate

Mglobal

y1

x1

LUAV1
•UAV1

pr

•
Sp1

•Sp2
pM1M2

LUAV2

LUAV2 pU2G

•
UAV2

Figure 3.3: Depiction of the poses described in the section 3.3. The poses are
depicted in the space of global map Mglobal. The Sp1 and Sp2 are starting
positions of the UAV1 and UAV2 respectively.

As was described in section 3.2.3, the merging algorithm on one UAV
returns the merged map and the pose estimate of the other UAV relative to
the current UAV. The HectorSLAM provides the 3D local pose of UAV in its
local OGM. This pose contains all 6 degrees of freedom, which are position in
3D xyz coordinate system and the roll, pitch, and yaw attitude of the UAV
(represented by a quaternion). We labeled these local poses of UAVs LUAV1

and LUAV2 . After finding the approximation of the relative pose pM1M2 of
the two OGMs, we can estimate not only the 2D relative pose of the two
UAVs but even the 3D relative pose pr despite having few problems with this
process. The problem in finding the 3D relative pose is that the pM1M2 is a
2D pose and we have defined only the 2D compounding notation. We simply
represent this 2D pose by 3D pose with z coordinate set to zero and the roll
as well as pitch set to zero. The 3D relative pose of the received UAV relative
to the current UAV can be therefore computed similarly as the 2D relative
pose which is computed like this:

pr = inv(LUAV1)⊕ pM1M2 ⊕ LUAV2 . (3.15)

37

3. Implementation....................................
We simply translate the received UAV pose in the xy plane and rotate only
its yaw orientation as in the case of 2D relative pose and let the z coordinate
with roll and pitch unchanged. This approach can be used only if the UAVs
height stored in z coordinate is the real height above the surface and not
the height relative to the origin of the second UAVs map because the UAVs
starting positions can be in different height. The figure 3.3 illustrate all
poses defined in this section. We depicted only the 2D xy plane of each pose
for illustrating purposes with the orientation of these poses equal to zero.
Returning to the equation (3.15) the pose pr of UAV2 is relative to the UAV1
which is executing the merging algorithm. To correctly transform this pose
to be relative to the starting position of the UAV1 in the frame of reference
of the merged map we have to transform this relative pose by the local pose
of the UAV1. We will call this pose the pU2G as it is pose of the UAV2 (U2)
relative to the starting position in global map (G) :

pU2G = LUAV1 ⊕ pr = LUAV1 ⊕ inv(LUAV1)⊕ pM1M2 ⊕ LUAV2 = (3.16)

= pM1M2 ⊕ LUAV2 ,

from which we can deduce that:

pU2G = pM1M2 ⊕ LUAV2 . (3.17)

3.4 ROS middleware

We choose to integrate the developed map merging algorithm into the Multi-
robot Systems group software architecture, which is based on the ROS (Robot
Operating System) middleware. The ROS is free, open-source software. It
provides a structured communication layer above heterogeneous clusters of
sensors, devices, and computing units.

The ROS implementation uses nodes, messages, topics, and services to
organize its code in one large structure. Each system (e.g., a UAV system)
consists of many nodes. The nodes are processes (e.g., map merging) that
perform computation. Each node communicates with other nodes with
messages. The nodes can be subscribed to topics publishing messages, and
also, a node can publish its messages to topics. The topics are not the only
way how the nodes can communicate. They can also use service which uses
two types of messages called request and response. We can imagine the topics
as a way to "broadcast" the node messages to anyone who wants to subscribe
to it. On the other hand, the service communicates on the transaction-based
approach of requesting some tasks to be accomplished and receiving the
response to the request.

The whole system together forms a graph with computing nodes and edges
being the topics and services.

38

..................... 3.5. Integration to MRS group software architecture

3.5 Integration to MRS group software
architecture

The Multi-robot Systems group uses its ROS based software to control
and command its robots in many problems with few examples given in the
introduction of this thesis. In our case of map merging, we use the MRS group
software to extract data from LIDAR and height sensors, which are located
on the f450 quadrocopter depicted in figure 1.1. The data from sensors are
provided as messages in topics to which other nodes can subscribe.

The HectorSLAM is subscribed to both LIDAR and height sensor. It
runs a Gauss-Newton method to optimize scan alignment and produce the
occupancy grid map along with the estimate of the 3D pose generated using
the Extended Kalman Filter on data from the height sensor and the 2D pose
estimate generated in SLAM subsystem. The OGM and 3D pose estimates
are each wrapped in an appropriate type of ROS message and continuously
published as topics.

Our occupancy grid map merging node located on one of the UAVs sub-
scribes to the topics of OGM and 3D pose of both UAVs. After each epoch
of the map merging, the node sends one message with a merged occupancy
grid map and one with an estimated pose of the map of the second UAV
relative to the map of the merging UAV. After each iteration, our node also
publishes messages with sets of occupied cells of both OGMs and a set of
the population poses. These messages are used for visualization of the map
merging process. The whole used pipeline is shown in figure 3.4.

We also implemented a node for UAVs relative pose approximation on top
of the map merging node. This division to two nodes was made so that the
map merging process does not interfere with the poses’ approximation so
that the poses can be estimated with much higher frequency. This second
node subscribes to the local poses of UAVs and the map merging node’s topic
publishing relative pose of maps, as shown in figure 3.5. It also needs to
subscribe to the origins of the occupancy grid map in case the maps have
different sizes to compensate for the difference.

39

3. Implementation....................................

IMU

LIDAR sensor data

Height sensor data

IMU

LIDAR sensor data

Height sensor data

HectorSLAM

HectorSLAM

Occupancy
grid map

3D local pose

Occupancy
grid map

3D local pose

UAV2

Occupancy grid merger

UAV1 Merged map

Estimated rel-
ative pose

Occupied
cells UAV1

Occupied
cells UAV2

Set of popu-
lation poses

Figure 3.4: The pipeline of the occupancy grid map merging process. The round
elements depict the topics. Rectangles depict the ROS nodes.

Occupancy grid
map origin of UAV1

3D local pose
of UAV1

Occupancy grid
map origin of UAV2

3D local pose
of UAV2

Estimated rel-
ative map pose

Relative pose estimator

Pose of UAV2

relative to UAV1

Pose of UAV2 rela-
tive to merged map

Figure 3.5: The pipeline of the relative pose estimation process. The round
elements and rectangles have same meaning as in figure 3.4. Estimator subscribes
to relative poses of both UAVs and to the estimation of pose of UAV2 map
relative to the UAV1 map.

40

Chapter 4
Experiments

We tested our implementation of the merging method on both data generated
by simulation and data from a real-world experiment. The simulation data
were created using the Gazebo simulator [15]. For the real-world verification,
we prepared and executed an experiment in a forest environment. In this
chapter, we will present results from experiments generated in the simulation
and the results of the experiment in the forest environment. We will show a
rate of convergence of the fitness function and discuss the genetic algorithm’s
overall performance in each experiment. Last but not least, we will also
discuss the limitations of our approach.

4.1 Datasets creation

Our map merging method is based on a genetic algorithm that uses a random
function in the search process for best map alignment. Because of this
randomness, it could, in some lucky few cases, find the alignment after the
first iteration and sometimes be clueless for a large number of iterations even
while merging the same OGMs as in the lucky case. Therefore, we recorded
the experiments to be able to run the merging process on exactly the same
data repeatedly. The Rosbag package [9] was used to record the data from
all sensors of UAVs in real time and then it was used to playback the data on
PC (personal computer) as many times as was needed in order to be able to
test the robustness of the algorithm.

4.1.1 Simulation dataset creation

We used the Gazebo simulator to create testing environments, with the
example depicted in figure 4.1. This map was mainly used to test the
algorithm during the implementation process, but in the end, we also used it
to test the final version capabilities. After that, we used a simulation model of
F450 quad-copter equipped with 2D LIDAR and height sensors to fly through
different parts of maps to create OGMs using the HectorSLAM. Each flight

41

4. Experiments
was recorded by Rosbag to be later used for experiments. The real version
of the F450 was later used in the real-world experiment. For experiments
on the simulation environment showcased in this chapter, we used the maze
environment shown in figure 4.1. We choose the initial arrangements of UAVs
as follows. One arrangement with the initial positions on the opposite sides
of the maze and the second with UAVs starting from the identical spot in the
center of the environment.

Figure 4.1: Map created in Gazebo simulator. It is approximately 34×17 meters
large with walls 3 meters high.

4.1.2 Real-world dataset creation

We took the opportunity to make a real-world dataset on a testing camp
organized by the MRS group. We have chosen a forest environment for testing
our algorithm. Like the simulation dataset, we made many flights through
different parts of the forest and recorded them with the Rosbag. We did in
total around 30 flights from which only five flight recordings were usable for
the experiments. The other 25 were either too short, the Rosbag did fail to
record the flights, or the HectorSLAM did not work properly, and the UAV
had to abort the flight. The forest environment is shown in figure 4.2.

4.2 Visualization of merging process

The map merging node (as shown in figure 3.4) also publishes topics purely
meant for visualization purposes. These are topics with messages containing
the position of occupied cells in both occupancy grids being merged and also
set of poses of each generation of the evolution process. We also visualized
the relative pose of UAVs published by the relative pose estimator node.

As our method has parameters that can (but do not have to) be tuned
to a specific problem before it is used, the visualization topics are useful for

42

................................ 4.3. Simulation experiments

Figure 4.2: F450 equipped with 2D LIDAR and height sensor using HectorSLAM
to navigate through a forest.

evaluating made changes. An example of these topics can be seen in figure
4.3.

4.3 Simulation experiments

We will now show two extreme cases of map merging scenarios. As a first
experiment, we will show a scenario with two OGMs which are already aligned.
The second experiment shows map merging with UAVs initial positions on
opposite sides of the maze environment. The size of occupancy grid maps
used in these experiments is 2048× 2048 cells. Each cell represents a square
with the length of the side being 4 centimeters. Therefore the maps are
representing an area of size 81.92× 81.92 meters.

4.3.1 Identical initial position

As was explained earlier, we created datasets by flying each UAV separately
and recording their flights by the Rosbag. This allows us to have two identical
initial UAV poses. By already aligned OGMs (map), we mean that the UAVs’
initial poses are identical, and the relative pose between the maps depends only
on their difference between the sizes of the maps. This difference is included
in the relative pose before the evolution process even starts. Therefore, we
can set the initial error ranges, which are also used for the reinitialization of
individuals as close to zero as we like to.

We chose this approach to be able to test map merging with a relatively
small overlap of the two maps. This overlap can be seen in figure 4.3 and
with relative pose close to optimum it is roughly 10% of all the occupied cells.

43

4. Experiments

Figure 4.3: (top)Visualization of occupied cells (green and blue) of two OGMs
(occupancy grid maps) merged together and also a current population of relative
poses represented by red arrows pointing in the direction of pose orientation.
(bottom) Visualization of overlapping occupied cells of both OGMs shown in
red on top of the merged OGM.

0 10 20 30 40 50 60
Iteration

0

500

1000

1500

2000

F
it

n
es

s
va

lu
e

Fitness function value of UAVs starting from identical spot.

±41 meters

±12 meters

±4 meters

0 10 20 30 40 50 60
Iteration

0.80

0.82

0.84

0.86

0.88

0.90

0.92

A
cc

ep
ta

n
ce

in
d

ex
va

lu
e

Acceptance index of UAVs starting from identical spot.

±41 meters

±12 meters

±4 meters

Figure 4.4: Development of fitness function and acceptance index through the
process of genetic evolution.

44

................................ 4.3. Simulation experiments

We first started merging with error range set to 10% of the maps side length,
which is, in this case, approximately ±4 meters. The algorithm was able to
find the relative pose with a small error in units of decimeters in most cases at
the end of the first iteration. We, therefore, increased the error range to 30%
of maps side length. By increasing the error range from now on, we mean
increasing the error of position and orientation explained in 3.2.3, which is
used for the initialization of the population and reinitialization of the inferior
group. By increasing the error range to a particular percent, we mean that
the error range is as big as the percent of the map’s side length.

As we found out while merging maps with increased error range, there are
other significant local optima as only in one out of seven merging attempts
did the algorithm converge to the correct relative pose, and in other six cases,
it converged to similar relative pose as in the figure 4.5. We also tried to use
the 100% error range (in this case, we have a map with a roughly 82 meters
long side. This means an error of ±41 meters). None of the attempts made
has lead to the correct solution.

The development of fitness function value, as well as the acceptance index
value (described at the end of section 2.2) can be seen in figure 4.4. We can
distinguish the successful merging attempts from the unsuccessful as those
that converged to the correct solution have fitness value around 2000 after 60
iterations as opposed to the incorrect solutions.

The use of the acceptance index (ai) was a disappointment to us as we could
not extract any meaningful information about the state of the map merging
from its value. We checked many times and did not find any differences
between our definition of the ai and the definition used in the source literature.
We suspect that the ai value being only in the range between 0.80 and 0.93
could be caused by a high resolution of used maps and by the UAV falsely
identifying the ground as an obstacle while taking off. However, we think
that it should correlate with fitness value more then it does as both the ai
and the fitness function serve as an indicator of correct map merging.

4.3.2 Different initial position

In the second case, we tested merging with two maps of fully explored mazes
with UAVs initial position being on the opposite sides of the environment.
The results can be seen in figure 4.7. None of the seven attempts shown in
the graph could merge the occupancy grid maps even after 60 iterations. The
attempt that was the closest to the correct solution is shown in figure 4.8.
Merging maps with a larger error range ended with a similar result.

As the UAVs initial poses are roughly 36 meters apart, the used error
range has to be at least 44% of the map. We, therefore, set the error of
the translation to 45%. The authors of the genetic algorithm method used
position error of ±30 meters which is only 6 meters less then in this case.
They were able to merge their OGMs within the first few iterations, with the

45

4. Experiments

Figure 4.5: An incorrect convergence of map merging process after 60 iterations
with initialization of poses population generation ranging the whole map (100%
error range, and 360° orientation error).

Figure 4.6: Process of map merging which converged to a correct solution to
the merging problem. In the upper left state of the merging process are initial
poses before first iteration. The upper right state is after 2 iterations. Lower left
is state after 8 iterations. Lower right is state after 15 iterations.

majority finding the maps before the seventh iteration.

The inability to merge maps of the maze can be caused by the chosen
parameters of evolution, with most significant being the size of the population,
the choice of random distributions for individual mutations, or the number

46

................................ 4.3. Simulation experiments

of mutations of each individual per generation iteration. The incorrect
map merging can also be caused by the chosen fitness function, which uses
information only about the position of occupied cells and not the cells with
other states.

The genetic-algorithm-based method of map merging with parameters used
in these experiments works robustly and reliably only for smaller error ranges
than used in this experiment. Therefore, the UAVs should take off in close
proximity.

0 10 20 30 40 50 60
Iteration

400

500

600

700

800

F
it

n
es

s
va

lu
e

Fitness function value of UAVs starting from opposite sides of maze.

0 10 20 30 40 50 60
Iteration

0.880

0.885

0.890

0.895

0.900

0.905

0.910

0.915

0.920

A
cc

ep
ta

n
ce

in
d

ex
va

lu
e

Acceptance index of UAVs starting from opposite sides of maze.

Figure 4.7: Graphs of map merging with initial poses of UAVs on the opposite
sides of the maze environment. All attempts used roughly ±37 meters translation
error range and ±81 degrees orientation error. None of the attempts to merge
maps was successful.

Figure 4.8: The map merging result after 60 iterations with fully explored maze
by both UAVs with initial poses on opposite sides of maze.

47

4. Experiments
4.4 Real-world experiment

Figure 4.9: Successful merging attempt of two maps from the forest environment.
Map of the merging UAV in the blue and received map in green. Note that the
relative poses population is not around the initial position of UAV (middle of the
map) but in the left upper corner. Different sizes of maps being merged cause
this.

The first few flights made in the forest were using OGM with the same size
as in the simulation cases, which is 2048×2048 cells with a resolution of a cell
being 4 centimeters. During one flight, the UAV flew out of the OGM and
crashed. Therefore, we increased the size of the map to 4096×4096 cells with
the same resolution (which gives us a map roughly 164×164 meters large) so
that we could map a larger area of the forest. Only later, we found out that
only a few of the OGMs are overlapping. Between them, the one half had the
original size, and the other half was the larger one. To test the map merging
on the dataset from the forest, we made the map merging more generalized so
that it can use a map of any size and with the initial pose of UAV anywhere
in the OGM.

As can be seen in figure 4.9, the maps contain much noise. This is apparent
mainly in the middle part where UAV with green OGM did have in a field of
view some higher bushes. This was probably caused by a sudden decrease
in the altitude of the UAV. We commanded it to maintain a height of 1.5
meters, but as the UAV was flying autonomously only with requests to fly to
a given coordinate, the control unit could have some problem, which caused
the momentary drop in altitude. We suspected that the noise could be a
problem for the algorithm, but as it turns out, it successfully merged these
two maps.

The maps used in this experiment have different sizes, as described above.
As we know that UAVs in all datasets took off from the same area of roughly

48

................................ 4.4. Real-world experiment

five by five meters with a similar orientation, we can, therefore, set the error
range as low as ±5 meters and orientation error as low as 30 degrees. We test
our merging algorithm with three different error ranges. These are ranges
with the error of 5%, 15%, and 30% of the map side size of the merging
UAV. The UAV merging in our case has a map with 4096×4096 cells and
a resolution of 4 centimeters. The errors are, therefore, ±8, ±25, and ±50
meters. The orientation error is in all cases set to 30% or ±54 degrees.

We started testing forest map merging with the error range of ±50 meters.
As we expected, none of the map merging tests was successful. Next out
of the seven tests with error range ±25, three were successful. These three
successful cases can be clearly distinguished from the other four cases in figure
4.10. As observers of this merging process, we could see that the merging
process converged to the correct solution in these three cases in iteration
29, 41, and 59, respectively. Our observation roughly agrees with the steep
growth of fitness function of the best relative pose of the population from
value around 1000 to value 3 or 4 times larger within a few iterations.

We further tested the map merging speed by decreasing the error range
to ±8 meters. Note that the orientation error is still ±54 degrees, as stated
above. With error this low, the algorithm converged to correct local optimum
in all seven attempts. The best two attempts did even merge the two maps
after 2 and 4 iterations, respectively. The slowest attempt to converge did
find the correct relative pose after 29 iterations.

0 10 20 30 40 50 60
Iteration

500

1000

1500

2000

2500

3000

3500

4000

4500

F
it

n
es

s
va

lu
e

Fitness function value of UAVs in the forest environment.

±8 meters

±25 meters

±50 meters

Figure 4.10: Graph of fitness function in forest environment. Notice the steep
growth of the function around an iteration where the algorithm converged close
to the correct relative pose.

49

4. Experiments

Figure 4.11: Detail of the same merged map as in figure 4.9 but with overlapping
occupied cells in red on top of occupied cells in map of merging UAV which is in
blue. Note that majority of trees trunks are overlapping.

4.5 Performance of the genetic algorithm

The time complexity of map merging algorithm iteration grows linearly with
the number of occupied cells in the received occupancy grid map, as can
be seen in figure 4.12. This figure contains data from the experiment with
identical initial poses of two UAVs described in section 4.3.1. We proposed at
the end of section 3.2.3 that the number of iterations in epoch (or duration
of epoch) should be chosen by users of the algorithm to suit their needs. The
short duration of the epoch should be chosen if the user needs more frequent
updates of the relative pose but does not need it to converge as fast to the
correct solution. The longer duration of epoch leads to faster convergence, but
the relative pose update frequency is lower. Figure 4.13 shows the dependence
of convergence and epoch duration on the chosen number of iterations.

We also tested the convergence of the algorithm which can be seen in
figures 4.14 and 4.15. These figures show the error of translation and rotation
of the relative pose with the highest value of the fitness function in the given
iteration. The data were collected from the experiment with identical initial
position described in section 4.3.1.

4.6 Limitations

As discussed in the experiments above, the algorithm is suitable for small
error ranges that do not exceed 20 meters. The merging process does not
always converge to the correct solution even after 60 iterations with a range
higher than this.

50

..................................... 4.6. Limitations

1000 2000 3000 4000 5000 6000 7000 8000

Number of occupied cells

0.2

0.3

0.4

0.5

0.6

0.7

0.8
It

er
at

io
n

d
u

ra
ti

on
in

se
co

n
d

s

Effect of number of occupied cells on iteration
duration.

Figure 4.12: Time complexity of evolution iteration with dependence on number
of occupied cells in received OGM.

0 10 20 30 40 50 60 70

Iteration

500

1000

1500

2000

2500

3000

3500

4000

4500

F
it

n
es

s
va

lu
e

Dependence of convergence and epochs duration on
number of iterations.

0

25

50

75

100

125

150

175
cu

m
u

la
ti

ve
ti

m
e

in
se

co
n

d
s

Figure 4.13: Data from simulation experiment on UAVs with identical initial
pose. This graph illustrates the 3.2.3 choice of number of iterations of epoch.

The algorithm can also converge to a suboptimal local maximum of the
fitness function, as can be seen in figure 4.5.

51

4. Experiments

0 100 200 300 400

Iteration

−20

−10

0

10

20

30

T
ra

n
sl

at
io

n
er

ro
r

in
n
u

m
b

er
of

ce
ll
s

Convergence of relative translation to optimum.

x

y

600

800

1000

1200

1400

1600

fi
tn

es
s

fu
n

ct
io

n
va

lu
e

Figure 4.14: Convergence of relative translation on data from the first simulation
experiment.

0 100 200 300 400

Iteration

−1.5

−1.0

−0.5

0.0

0.5

O
ri

en
at

at
io

n
er

ro
r

in
d

eg
re

es

Convergence of relative orientation to optimum.

600

800

1000

1200

1400

1600

fi
tn

es
s

fu
n

ct
io

n
va

lu
e

Figure 4.15: Convergence of relative rotation on data from the first simulation
experiment.

52

Chapter 5
Conclusion

In this work, we have done a survey of five available occupancy grid map
merging approaches. We have implemented a genetic-algorithm-based map
merging methodology and verified it on our datasets created in simulation
and real-world forest environments. Only onboard sensors were used to obtain
the occupancy grid map of the surrounding and local pose of the UAV on
the map. These sensors are a 2D rotating LIDAR and a height sensor. The
proposed method does not assume any prior knowledge about the shape of
obstacles in the surrounding environment and can be used indoors with many
straight walls as well as in outdoors with diversely shaped obstacles. However,
the method needs a rough estimate of the distance to the farthest UAV in
the group.

We have also implemented an estimator of UAVs relative pose which, based
on the accuracy of the map merging, can accurately estimate relative pose
with much higher frequency than the map merging algorithm.

It was shown in the experimental chapter that the implemented method
could merge maps with a distance of initial poses of two UAVs as long as 25
meters. It was also shown that it could be used in real-world scenarios even
with inaccurate data with high noise.

According to the thesis assignment, the following tasks were successfully
completed:

.We have become familiar with the HectorSLAM algorithm and the
occupancy grid map representation, as shown in the introduction of this
thesis.. The survey of available map merging techniques suitable for building a
global map shared by a team of UAVs was performed in chapter 2.. The genetic-algorithm-based occupancy grid map merging method was
implemented, as is described in chapter 3.. The implemented method was integrated into the MRS group software
architecture based on ROS middleware.

53

5. Conclusion......................................
. The on-demand merged map output with a 2D estimate of the maps

relative pose is provided by the occupancy grid merger ROS node shown
in figure 3.4. On top of that, we have implemented a relative pose
estimator ROS node, which provides a 3D relative pose estimate of UAVs
as well as the 3D pose estimate of UAVs in a global merged map as is
shown in figure 3.5. The implemented pairwise method of map merging
can be easily used for multiple agents map merging by iteratively merging
each received map with the implemented map merging method, as is
described in section 1.5..We have verified the functionality in the simulation experiments created
in the Gazebo simulator..We have prepared and executed an outdoor experiment in a forest. The
collected data from the outdoor experiment was then used to test the
implemented map merging algorithm.

5.1 Future work

During the implementation of our method, we have come across multiple
possible improvements that could be incorporated into the merging process.
Many of these exciting ideas were mentioned in chapter 2. We will outline
some of the possible improvements in this section.

First, we would like to mention that the 2D occupancy grid navigation
for flying vehicles is very restrictive as UAVs one of the main advantages
compared with ground vehicles is the possibility of moving over an obstacle.
By generating only a planar map of the surroundings, the UAV does not fully
use its abilities. Therefore the occupancy grid map should be combined with
more suiting 3D representation. A point cloud is a good alternative that
could be inspected in the future work. We do not recommend fully replacing
a 2D representation as it can store the basic information about the layout of
obstacles in a large environment with smaller memory requirements, although
without the information about the full 3D space.

Some methods are much more efficient in specific cases than the genetic-
algorithm-based approach that we used. A process that would select the most
suiting method for map merging based on the observation of surrounding
should be implemented. This process would then, for example, select a method
using Hough transform described in section 2.3 based on the observation that
the UAV is in a building with straight walls.

We also had a problem with the increasing complexity of map merging
with an increasing number of occupied cells. A downscaling of occupancy
grid map into cluster points such as in 2.5 could be incorporated into the
map merging process so that the algorithm can be used on merging problems
with much larger maps with more occupied cells.

54

..................................... 5.1. Future work

A rendezvous technique should be implemented. It helps the two UAVs to
decide when is the best time to merge their maps by finding out when they
are close together, and their maps overlap. The method mentioned in the
introduction [6] could be a good introduction to this topic.

Lastly, in article [2] authors mention that the optimum of the heuristic
function ∆(M1,p⊕M2) can be right next to the worst case. This is true, for
example, if the map consists of spirals. To compete with this problem, we
could use a multi-level map representation as in [17] as described in section
1.4.

55

56

Appendix A
Bibliography

[1] Peter Biber and Wolfgang Straßer. The normal distributions transform:
A new approach to laser scan matching. volume 3, pages 2743 – 2748
vol.3, 11 2003.

[2] Andreas Birk and Stefano Carpin. Merging occupancy grid maps from
multiple robots. Proceedings of the IEEE, 94:1384 – 1397, 08 2006.

[3] T. M. Bonanni, B. Della Corte, and G. Grisetti. 3-d map merging on
pose graphs. IEEE Robotics and Automation Letters, 2(2):1031–1038,
2017.

[4] Stefano Carpin. Fast and accurate map merging for multi-robot systems.
Auton. Robots, 25:305–316, 10 2008.

[5] Jean-Emmanuel Deschaud. IMLS-SLAM: scan-to-model matching based
on 3d data. CoRR, abs/1802.08633, 2018.

[6] Pierre Dinnissen, Sidney Givigi, and Howard Schwartz. Map merging of
multi-robot slam using reinforcement learning. pages 53–60, 10 2012.

[7] Richard O. Duda and Peter E. Hart. Use of the hough transformation
to detect lines and curves in pictures. Commun. ACM, 15(1):11–15,
January 1972.

[8] A. Elfes. Sonar-based real-world mapping and navigation. IEEE Journal
on Robotics and Automation, 3(3):249–265, 1987.

[9] Tim Field, Jeremy Leibs, and James Bowman. Rosbag ROS package.
http://wiki.ros.org/rosbag. Acessed: 2020-08-10.

[10] C. Forster, M. Pizzoli, and D. Scaramuzza. Svo: Fast semi-direct
monocular visual odometry. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 15–22, 2014.

[11] W. Hess, D. Kohler, H. Rapp, and D. Andor. Real-time loop closure in
2d lidar slam. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 1271–1278, 2016.

57

http://wiki.ros.org/rosbag

A. Bibliography.....................................
[12] Baichuan Huang, Jun Zhao, and Jingbin Liu. A survey of simultaneous

localization and mapping with an envision in 6g wireless networks, 2019.

[13] K. Joo, T. Lee, S. Baek, and S. Oh. Generating topological map from
occupancy grid-map using virtual door detection. In IEEE Congress on
Evolutionary Computation, pages 1–6, 2010.

[14] Ue-Hwan Kim, Se-Ho Kim, and Jong-Hwan Kim. Simvodis: Simultaneous
visual odometry, object detection, and instance segmentation, 2019.

[15] N. Koenig and A. Howard. Design and use paradigms for gazebo,
an open-source multi-robot simulator. In 2004 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), volume 3, pages 2149–2154 vol.3, 2004.

[16] Stefan Kohlbercher and Johannes Meyer. hector_slam ROS package.
http://wiki.ros.org/hector_slam. Acessed: 2020-07-16.

[17] Stefan Kohlbrecher, Oskar Von Stryk, Johannes Meyer, and Uwe Klin-
gauf. A flexible and scalable SLAM system with full 3D motion estimation.
2011 IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), pages 155–160, 2011.

[18] V. Krátký, P. Petráček, V. Spurný, and M. Saska. Autonomous re-
flectance transformation imaging by a team of unmanned aerial vehicles.
IEEE Robotics and Automation Letters, 5(2):2302–2309, 2020.

[19] H. Li and F. Nashashibi. Multi-vehicle cooperative perception and
augmented reality for driver assistance: A possibility to ‘see’ through
front vehicle. In 2011 14th International IEEE Conference on Intelligent
Transportation Systems (ITSC), pages 242–247, 2011.

[20] H. Li, M. Tsukada, F. Nashashibi, and M. Parent. Multivehicle coop-
erative local mapping: A methodology based on occupancy grid map
merging. IEEE Transactions on Intelligent Transportation Systems,
15(5):2089–2100, 2014.

[21] Bruce Lucas and Takeo Kanade. An iterative image registration technique
with an application to stereo vision (ijcai). volume 81, 04 1981.

[22] A. I. Mourikis and S. I. Roumeliotis. A multi-state constraint kalman
filter for vision-aided inertial navigation. In Proceedings 2007 IEEE
International Conference on Robotics and Automation, pages 3565–3572,
2007.

[23] Matias Nitsche, Tomáš Krajník, Petr Čížek, Marta Mejail, and Tom
Duckett. Whycon: An efficent, marker-based localization system. 01
2015.

[24] E. B. Olson. Real-time correlative scan matching. In 2009 IEEE In-
ternational Conference on Robotics and Automation, pages 4387–4393,
2009.

58

http://wiki.ros.org/hector_slam

..................................... A. Bibliography

[25] Matěj Petrlík, Tomáš Báča, Daniel Hert, Matouš Vrba, Tomáš Krajník,
and Martin Saska. A robust UAV system for operations in a constrained
environment. IEEE Robotics and Automation Letters, PP:1–1, 02 2020.

[26] P. Petráček, V. Krátký, and M. Saska. Dronument: System for reliable
deployment of micro aerial vehicles in dark areas of large historical
monuments. IEEE Robotics and Automation Letters, 5(2):2078–2085,
2020.

[27] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Ng. Ros: an open-source robot
operating system. volume 3, 01 2009.

[28] Colin Reeves. Genetic Algorithms, volume 146, pages 109–139. 09 2010.

[29] Robert Richardson, Raul Fuentes, Tim Chapman, Michael Cook, James
Scanlan, Zhibin Li, and David Flynn. Robotic and Autonomous Systems
for Resilient Infrastructure. UK-RAS White Papers. UK-RAS Network,
06 2017.

[30] William Rone and Pinhas Ben-Tzvi. Mapping, localization and motion
planning in mobile multi-robotic systems. Robotica, 31(1):1–23, 2013.

[31] S. Saeedi, L. Paull, M. Trentini, M. Seto, and H. Li. Efficient map
merging using a probabilistic generalized voronoi diagram. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 4419–4424, 2012.

[32] Sajad Saeedi, Liam Paull, Michael Trentini, and Howard Li. Neural
network-based multiple robot simultaneous localization and mapping.
IEEE transactions on neural networks / a publication of the IEEE Neural
Networks Council, 22:2376–87, 12 2011.

[33] Sajad Saeedi, Michael Trentini, Mae Seto, and Howard Li. Multiple-
robot simultaneous localization and mapping: A review. Journal of Field
Robotics, 33(1):3–46, 2016.

[34] Chuck Thorpe and Hugh F. Durrant-Whyte. Field robots. In ISRR,
pages 329–340, 2001.

[35] Sebastian Thrun and Arno Bü. Integrating grid-based and topological
maps for mobile robot navigation. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, volume 2 of AAAI’96,
page 944–950. AAAI Press, 1996.

[36] M. Vrba, D. Heřt, and M. Saska. Onboard marker-less detection and
localization of non-cooperating drones for their safe interception by
an autonomous aerial system. IEEE Robotics and Automation Letters,
4(4):3402–3409, 2019.

59

A. Bibliography.....................................
[37] V. Walter, N. Staub, A. Franchi, and M. Saska. Uvdar system for visual

relative localization with application to leader–follower formations of
multirotor uavs. IEEE Robotics and Automation Letters, 4(3):2637–2644,
2019.

[38] Chieh-Chih Wang. Simultaneous Localization, Mapping and Moving
Object Tracking. PhD thesis, Carnegie Mellon University, Pittsburgh,
PA, 04 2004.

[39] Ji Zhang and Sanjiv Singh. Loam: Lidar odometry and mapping in
real-time. 07 2014.

60

Appendix B
CD Content

In Table B.1 are listed names of the root directories and files contained on
the enclosed CD. The CD contains ROS nodes source code of map merging
algorithm and relative pose approximation designed for multiple UAVs, the
text of this thesis in a PDF format, and the latex source code of the thesis.

Directory Description

/occupancy_grid_merger ROS node for the occupancy grid map
merging.

/relative_pose_estimator ROS node for the on demand approximation
of relative pose.

/experimetns Experiments source code without the rosbag
files.

/README.md Instructions on how to use the ROS nodes.
/thesis.pdf Text of this thesis in PDF format.
/thesis_source Latex source code of this thesis.

Table B.1: CD content structure

61

	Abbreviations and Notation
	List of notation
	List of abbreviations

	Introduction
	Simultaneous localization and mapping
	UAV SLAM
	UAV swarm SLAM
	Types of map representation

	Thesis structure
	Related work
	SLAM
	Map merging

	HectorSLAM
	Scalability
	Contribution

	Map merging methods survey
	Map merging definition
	Random Walk method
	Hough Transform method
	Genetic-Algorithm-Based methodology
	Neural Networks-Based approach
	Probabilistic Generalized Voronoi Diagram method

	Implementation
	Method of map merging
	Requirements on the method
	Choice of method

	Genetic-algorithm-based methodology in detail
	Compounding notation
	Fitness function
	Optimization of relative pose
	Terminating condition

	On-demand merged map output with a 2D pose estimate
	ROS middleware
	Integration to MRS group software architecture

	Experiments
	Datasets creation
	Simulation dataset creation
	Real-world dataset creation

	Visualization of merging process
	Simulation experiments
	Identical initial position
	Different initial position

	Real-world experiment
	Performance of the genetic algorithm
	Limitations

	Conclusion
	Future work

	Bibliography
	CD Content

