
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Measurement

Firmware for Control Module of an
Intelligent Vehicle

Bc. Jaroslav Beran

Supervisor: doc. Ing. Jiří Novák, Ph.D.
Field of study: Open Informatics
Subfield: Computer Engineering
August 2020

ii

Acknowledgements
I would like to thank my supervisor Doc.
Ing. Jiří Novák, Ph.D. for the consula-
tions, valuable advises and support dur-
ing the work on this thesis. I would also
like to thank Ing. Ondrej Ille and Ing.
Pavel Píša, Ph.D. for valuable support
and advices during integration stage of
CTU CAN FD IP Core. Finally, I would
like to thank my family and friends for
support during my entire studies.

Declaration
Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

I hereby declare that I developed the
submitted work independently and that I
listed all the used information sources in
accordance with the Methodical Instruc-
tion on Adherence to Ethical Principles
in the Preparation of University Theses.

Prague, August 14, 2020

iii

Abstract
This work deals with the design and imple-
mentation of the control module firmware
for the purpose of controlling selected
functions of an intelligent vehicle. The
introductory part outlines the principles
of automotive CAN network and then
deals with the analysis of the car func-
tions for controlling the air conditioning,
speed limiter, adaptive cruise control and
infotainment. Based on the analysis, the
requirements for the solution are deter-
mined, and the design part is approached.
The design part deals with the selection
of components that constitute the control
module. After the Terasic DE0-Nano-SoC
development kit, the CAN FD IP Core
CTU controller and the independent CAN
FD Gateway modules are selected for the
solution, the overall system structure is
designed. Then the communication pro-
tocol towards the superior artificial intel-
ligence system is designed, as well as the
algorithms for control of CAN Gateway
modules. In the following section, the
control software is designed with respect
to extensibility of the system in the fu-
ture. Then, the Linux OS is deployed
on the development kit, the CTU CAN
FD controller is integrated into its FPGA,
the driver of this controller is integrated
into the OS, and finally the control soft-
ware, which is implemented in C++, is
integrated too. The resulting prototype
was integrated into a Škoda Kodiaq vehi-
cle and several test drives were performed
with success.

Keywords: CAN, CAN FD, automotive,
control, Linux, kernel, programming,
software design, C++, system on chip,
embedded systems, FPGA, Avalon bus

Supervisor: doc. Ing. Jiří Novák, Ph.D.

Abstrakt
Tato práce se zabývá návrhem a implemen-
tací firmware řídícího modulu pro účely
ovládání vybraných funkcí inteligentního
vozu. Úvodní část nastiňuje principy au-
tomobilové sítě CAN a následně se věnuje
analýze funkcí vozu pro ovládání klima-
tizace, omezovače rychlosti, adaptivního
tempomatu a infotainmentu. Na základě
analýzy jsou stanoveny požadavky na ře-
šení, a je přistoupeno k návrhové části.
Tato se zabývá výběrem komponent, ze
kterých je složen řídící modul. Poté co
je pro řešení vybrán vývojový kit Terasic
DE0-Nano-SoC, řadič CTU CAN FD IP
Core a nezávislé moduly CAN FD Ga-
teway, je navržena celková struktura sys-
tému, poté komunikační protokol s nadřa-
zeným systémem umělé inteligence a dále
metody řízení modulů CAN Gateway. V
následují části je navržen řídící software
s ohledem na rozšiřitelnost systému do
budoucna. Pak je na vývojovém kitu zpro-
vozněn OS Linux, do FPGA na kitu je
začleněn řadič CTU CAN FD, do OS Li-
nux ovladač tohoto řadiče, a nakonec je
do systému zakomponován řídící software,
který byl naimplementován v jazyce C++.
Výsledný prototyp byl integrován do vozu
Škoda Kodiaq, kde bylo úspěšně prove-
deno několik testovacích jízd.

Klíčová slova: CAN, CAN FD,
automotive, řízení, Linux, jádro,
programování, návrh software, C++,
systémy na čipu, vestavné systémy,
FPGA, sběrnice Avalon

Překlad názvu: Programové vybavení
modulu pro řízení funkcí inteligentního
vozu

iv

Contents
Project Specification 1
1 Introduction 3
1.1 Motivation . 3
1.1.1 Control elements in the vehicle 3

1.2 Outline of the system 5
1.3 Goals . 6
1.4 Controller Area Network 6
1.4.1 Physical layer 6
1.4.2 Data link layer 7
1.4.3 Frame format 9
1.4.4 CAN with Flexible Data-Rate 9

1.5 Network in a vehicle 10
1.5.1 Topology 10
1.5.2 Messages 11

1.6 Analysis . 12
1.6.1 Vehicle control functions 12
1.6.2 Requirements for the solution 12
1.6.3 List of tasks 13

2 System design 15
2.1 Selection of HW platform 15
2.1.1 CAN Gateway 15
2.1.2 Controller Module 16
2.1.3 CAN FD controller 17

2.2 Top level system design 18
2.3 Communication protocol between
CAN Activator and Master Control
System . 19
2.3.1 Transport layer discussion . . . 19
2.3.2 Data exchange 21
2.3.3 Messages format 22

2.4 Control of CAN Gateway modules 25
2.4.1 General operation 25
2.4.2 Communication with Gateway 25
2.4.3 Gateway functions 25
2.4.4 Design of the interface 26

3 Software design 29
3.1 Control application architecture 29
3.2 Event Loop 30
3.2.1 EventedFd 31

3.3 CAN Components 31
3.3.1 CAN Socket and Interface . . . 31
3.3.2 CAN Gateway 32

3.4 Master Control System Interface 33
3.4.1 TCP communication 33
3.4.2 Request and response handling 33

3.5 Command Manager 34
3.6 Command processors 34
3.6.1 General processing procedure 35
3.6.2 Commands for the RPC
protocol . 35

3.6.3 Commands for ACC and Speed
Limiter . 37

3.7 Runtime configuration 41
3.7.1 System schema 41
3.7.2 Commands schema 42
3.7.3 Processing schema 43

3.8 Logging . 43
3.8.1 Logger . 44
3.8.2 Log Server 44
3.8.3 Log Writer 44

4 Integration of components to
Terasic DE0–Nano–SoC board 47
4.1 Preparation of the development
board . 47
4.1.1 Boot process description 47
4.1.2 SD card partitioning and
contents . 48

4.1.3 Making the artifacts 48
4.2 Integration of CTU CAN FD IP
Core . 53
4.2.1 IP block with Avalon interface 53
4.2.2 Device tree node 55
4.2.3 Linux driver 56

4.3 Integration of software artifacts . 56
4.3.1 Build process 56
4.3.2 Configuration of the target
system . 57

4.3.3 SW deployment to the target 57
5 Testing and Conclusion 59
5.1 Final Conclusion 60
Bibliography 63
A Abbreviations 67
B List of implemented commands 69

v

Figures
1.1 Control panel of Climate unit . . . 4
1.2 Control lever of ACC and Speed
Limiter . 4

1.3 Interface of Infotainment 5
1.4 Block schema of the car network
controlled by an artifical intelligence 6

1.5 CAN node error states transitions.
Taken from [40, p. 44] 9

1.6 Frames in FD format can be
transmitted with dual bit–rate.
Taken from [9] 10

1.7 A typical car network (from [5]) 11
1.8 Photo of the interior of the vehicle
during analysis 13

2.1 CAN FD Gateway module 16
2.2 Terasic DE0-Nano-SoC board
(Taken from: [4]) 17
2.3 Terasic DE0-Nano-SoC board with
CTU IO Extension board attached 18

2.4 Top–level system architecture with
physical connection lines and logical
data flow (grey, dashed) 19

3.1 SW architecture of CAN Activator
application . 30

3.2 Execution of one MCS request . . 31
3.3 State diagram of the processing of
RPC–protocol commands 36

3.4 State diagram of ACC and Limiter
states. Within each state are listed
commands that are applicable in that
state. 38

3.5 Processing of Limiter enable and
ACC enable commands. Labels in
parentheses apply for ACC enable 39

3.6 Process of setting a target value by
modification of a control signal . . . 40

3.7 Logging solution 44

4.1 Correct waveforms on CTU CAN
FD Avalon interface (taken from
Platform Designer IDE) 54

5.1 Tester client window 61

5.2 Control module (on the left)
connected to one of the CAN
Gateways (Gateway data interfaces
are disconnected) 62

vi

Tables
3.1 List of commands for ACC and
Speed Limiter control 37

4.1 CAN signals to pins assignment 55
4.2 Build artifacts of the can_activator
project . 57

vii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

364455Personal ID number:Beran JaroslavStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Measurement

Open InformaticsStudy program:

Computer EngineeringSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Firmware for Control Module of an Intelligent Vehicle

Master’s thesis title in Czech:

Programové vybavení modulu pro řízení funkcí inteligentního vozu

Guidelines:
Design and implement software for CMV module intended to control functionalities of an intelligent vehicle. Follow these
steps:
1. Implement support for CTU CAN FD IP function into Linux OS.
2. Implement the software library supporting communication with CAN FD Gateway modules..
3. Design and implement communication protocols to master control system.
4. Design and validate algorithms for independent control of selected vehile functions.
5. Implement these algorithms into the CMV module and present demonstrujte theirs functionality in Škoda car.

Bibliography / sources:
[1] Ille, O.: CTU CAN FD Manual, 2019
[2] Schwank, F.: Programové vybavení pro CAN Gateway. Diplomová práce ČVUT FEL 2018
[3] Jeřábek, M.: Open-source a Open-hardware podpora pro CAN FD. Diplomová práce ČVUT FEL 2018

Name and workplace of master’s thesis supervisor:

doc. Ing. Jiří Novák, Ph.D., K 13138 - katedra měření

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 14.08.2020Date of master’s thesis assignment: 30.01.2020

Assignment valid until:
by the end of winter semester 2021/2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signaturedoc. Ing. Jiří Novák, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

2

Chapter 1
Introduction

1.1 Motivation

Nowaday road vehicles are increasingly taking advantage of information
and communication technologies. Demands on travel safety and
comfort of passengers are growing at the same time. To meet these

requirements, car manufacturers introduce new improvements and innovations
into their products so they can reach customers.

The current trend is to use artificial intelligence (AI) for many interesting
and computable complex tasks and one car manufacturer came up with an
idea he would like to implement into one of its own vehicles.

The idea is to facilitate passengers a travelling in a vehicle by means
of introducing a system that would monitor and learn which actions the
passengers regularly take and under which circumstances. Such system would
then use the gained knowledge and try to anticipate certain passengers’ actions
that it would perform automatically.

1.1.1 Control elements in the vehicle

Here comes an overview of the control elements that could be subject to
that AI control. Information in this section comes from a source of the car
manufacturer that cannot be referenced.

Air Conditioning, Ventilation and Heating

The control panel on Fig. 1.1 forms the user interface to Climate unit
functions.

Functions that can be controlled by this panel include:. Controlling the volume and distribution of air blowing out of air vents.. Setting the desired temperature of the interior. Choose between manual and automatic modes for reaching the target
temperature. Enabling or disabling the interior cooling system

3

1. Introduction

Figure 1.1: Control panel of Climate unit

. Control of seat heating and ventilation. Steering wheel heating. Front and rear windows heating. Enabling air recirculation, and more. . .

Adaptive Cruise Control and Speed Limiter

The control lever on Fig. 1.2 has control elements common for both Speed
Limiter and ACC.

Figure 1.2: Control lever of ACC and Speed Limiter

Limiter just sets the limit on maximum speed. ACC regulates the speed of
the vehicle to the desired value and also keeps distance from the preceding
vehicle.

The lever has two stable positions OFF and ON. When the lever is OFF,
both ACC and Limiter are disabled. In position ON, either ACC or Limiter
is selected, but it is inactive. The MODE button switches between these two

4

................................. 1.2. Outline of the system

modes. From position ON, the lever can be triggered to one of sprung positions
RESUME or CANCEL. RESUME has the function of both activation of the
selected mode and increasing the speed by 1 km/h. CANCEL deactivates
the currently active mode.

The lever can be triggered up and down to increase (decrease) speed by 10
km/h. SET button decreases speed by 1 km/h.

DISTANCE switch regulates ACC distance of the preceding vehicle.
Information about current state, speed and distance is shown on the

Instrument cluster display.

Infotainment

Infotainment interface is provided by a big touchscreen in the middle of the
front panel (Fig. 1.3).

Figure 1.3: Interface of Infotainment

There are many menus and mostly static configuration is stored here. Only
the interactive ones, which an user sometimes changes, are interesting for
purposes of controlling by AI.

These may be e.g. changing the driving mode, setting the audio source to
some value,

1.2 Outline of the system

Schema on Fig. 1.4 describes the system in basics.
Block MCS (Master Control System) is the AI containing the decision logic.

It commands the Control module block, whose task is to trigger actions on
the vehicle control units to emulate user actions on the control elements of
these units. The Control module block is the main concern of this thesis.

5

1. Introduction

Vehicle
network

MCS

Vehicle
status data

Climate unit

Infotainment

ACC

Control
module

Ethernet

CAN

CAN

CAN

other unit

Figure 1.4: Block schema of the car network controlled by an artifical intelligence

1.3 Goals

Goals of this thesis are to implement the Control module block on Fig. 1.4,
design and implement its interface towards MCS and implement a set of
commands for controlling selected vehicle functions.

1.4 Controller Area Network

Since this thesis deals with a road vehicle internals, this section provides an
overview of the fundamental network technology used for communication of
units inside a vehicle.

CAN is a standard for multi–master serial communication. It was designed
by Bosch company as a reliable bus intended for use in automotive industry.
Since then it has been widely used for implementation of in–vehicle networks
([28]). Properties of Data Link and Physical layers are specified in ISO
11898–1 standard [40]. A general and higher–level view is provided in [10]

Communication on CAN bus happens in a broadcast manner. There is no
direct addressing of target nodes, but instead various nodes transmit frames
that are distinguished by an unique identifier. Any node attached to the bus
receives all frames that appear.

1.4.1 Physical layer

Physical layer defines electrical properties of the bus, transceiver characteris-
tics, signal levels, bit timing and mutual synchronization of nodes.

6

................................1.4. Controller Area Network

Implementation of the physical layer is covered in [11]. And even more
details of the electrical aspects are covered in [49]

Bus signals. The physical bus is realized by two signal wires, CANH and
CANL. A differential voltage between these two signals defines either dominant
or recessive level of the bus. Differential signalling is one of the features that
makes this bus robust with respect to crosstalks and EMI [36].

Dominant level represents logical ’0’, recessive logical ’1’. Dominant level is
actively driven by a sending node. If at least one node sends dominant, the
bus level is dominant. Recessive is the default level when no node transmits
dominant level. The bus is pulled to the recessive level by termination
resistors. Termination also prevents reflections on the line.

Bit synchronization. Due to lack of a common clock, a proper synchroniza-
tion between nodes must be ensured so they all sample the correct bit even
the signal from one node can get to different nodes with different delays.
Synchronization is carried out by dividing a bit–time into segments, which
define the sample point of a single bit. The sample point on each node gets
continuously fixed according to actually detected delay.

1.4.2 Data link layer

Data link layer handles encapsulation of data into frames with well defined
format, error signaling and detection, bit–stuffing, acknowledgement of trans-
mitted frame and serialization/deserialization. In addition to the specification
[40], provided information is taken from [8].

Frame transmission. Information on the bus is exchanged in terms of frames
with defined format. A node can start transmission if the bus is idle, which
is the default state on the bus after certain time since the last transmission
occured.

Transmission starts by SOF (start of frame) bit, which is dominant. Then
comes the arbitration phase, during which it is settled which node acquires
the bus. In arbitration phase transmitting nodes send CAN identifiers, MSb
first. Each of the nodes transmits its bit and simultaneously observes the
actual state of the bus. If it differs, which condition happens when a node
sends recessive and reads dominant, it retreats from further transmission. As
a consequence of the definition of dominant and recessive states, the node
that transmits CAN ID with the lowest value, wins the arbitration.

After the arbitration phase, there is only one transmitting node, which
continues with the transmission of its frame. It now transmits the rest of the
frame consisting of control field and data. In the end, CRC field is sent to
provide some protection of the data on this layer.

At this point, error check is performed in ACK slot, during which transmit-
ter sends recessive and any other node acknowledges reception of the frame
by driving the bus to dominant.

7

1. Introduction
Finally, End of Frame consisting of seven recessive bits and Intermission

field consisting of three recessive bits ensure minimum delay to transmission
of a next frame.

Bit–stuffing. Because there is no common clock, nodes need to use solely
changes of logical levels on the bus to carry out synchronization. Bit–stuffing
is a technique that ensures regular changes of logical levels on the bus. After
each five consecutive bits of the same logical level, transmitting node sends
stuff bit of the opposite logical level to the bus. Receivers use an inverse
procedure of destuffing to remove these auxiliary bits from the bit stream.

Error handling. On the frame level, there are three types of errors that can
occur during a frame transmission:. CRC error – if some receiving node computes bad CRC. Frame structure error – if any node detects an incorrect value in any of

the fields that have a fixed value defined by the specification.. ACK error – if transmitting node does not obtain acknowledgement in
ACK slot from any receiver.

If any node detects an error, it sends an error frame to the bus. The error
frame consists of six consecutive bits of either dominant or recessive level
depending on the error state of that node (see Fault confinement). Such bit
sequence violates bit–stuffing rules and is detected as an error by all other
nodes on the bus. In such way, communication is jammed and the data frame
has to be retransmitted.

Fault confinement. To distinct between permanent and occasional errors
and to prevent the bus from being completely jammed by error frames in
case there is a node permanently detecting errors and sending error frames, a
mechanism to confine such failing node is defined.

Each node is in one of the three error states:. Error–active – a node in this state sends active error frame in case it
detects an error.. Error–passive – a node in this state sends passive error frame in case it
detects an error.. Bus–off – a node does not participate on the communication.

Active (passive) error frame is made of six consecutive dominant (recessive)
bits. So transmitting of passive error frame does not jam the communication
for the rest of the network.

Transitions between the error states are based on values of two error
counters within each node: Transmit Error Counter (TEC) and Receive Error
Counter (REC). Transitions are defined on Fig. 1.5.

The standard also defines rules for modifying the values of both counters.
It can be briefly described this way:

8

................................1.4. Controller Area Network

Figure 1.5: CAN node error states transitions. Taken from [40, p. 44]

.When a node detects an error during transmission (reception), it increases
its TEC (REC respectively) by 8..When a node successfully transmits (receives) a frame, it decreases its
TEC (REC respectively) by 1.

1.4.3 Frame format

According to the specification ([40, p. 10.4.2.3]) CAN supports base frame
format with 11–bit identifiers and extended format with 29–bit identifiers.
It is achieved by dedicating defining Identifier Extension (IDE) bit in the
arbitration field to distinguish between them and extending arbitration field
in extended format frames.

There is also Remote Request type of frame, which unlike data frames does
not contain data fields, but is rather used to request a transmission of a data
frame with that identifier from a remote node.

1.4.4 CAN with Flexible Data-Rate

CAN FD is an extension of CAN protocol, which is specified by Bosch [12].
It extends the classical CAN frames by redefining and introducing some new

control bits in the frame control field. The changes are forward–compatible,
so a CAN FD controller also supports classical CAN frames. Basic ideas are
summarized in articles [9, 31].

Data length extension. Maximum length of data field in frames is extended
by utilizing all possible values of 4–bit DLC field. So in addition to values

9

1. Introduction
from 0 to 8 bytes, data length can be 12, 16, 20, 24, 32, 48 or 64 bytes as
well. To ensure transmission reliability of longer data frames, an extension of
the CRC field was also defined by this standard.

Dual bit–rate. The standard also introduces possibility to use a second
bit–rate for the data phase to increase transmission speed. The idea is shown
on Fig. 1.6.

Figure 1.6: Frames in FD format can be transmitted with dual bit–rate. Taken
from [9]

One bit–rate is used for arbitration and ACK phases, which is up to 1
Mbit/s that the classical CAN supports. For data phase a new control bit
BRS (bit–rate switch) is introduced. If recessive, all controllers switches their
clocks to a higher rate for duration of data phase. No maximal value of the
second bit–rate is specified, but it is constrained by physical properties of used
transceivers and of the bus such the actual topology, lengths of signal wires,
number of nodes on the network and other properties that affect propagation
of a signal.

Both standard 11–bit and extended 29–bit indentifiers are supported for
FD frames.

1.5 Network in a vehicle

Once the fundamental vehicles network protocol was introduced, it is now
time for closer look on the network topology, nodes, and messages being
transferred.

1.5.1 Topology

A typical car network is shown on Fig. 1.7
There are various Electronic Control Units (ECU), each is responsible

for controlling a certain part of the vehicle, like engine, transmission, anti–
breaking system, doors, radars, etc. Units can be organized into topologies
as needed to fulfill requirements on safety, performance and other properties
that come to mind when dealing with a network architecture.

ECUs that communicate mostly between themselves can be grouped on a
dedicated network segment and connected to the rest of the network through
a central gateway.

10

................................. 1.5. Network in a vehicle

Figure 1.7: A typical car network (from [5])

1.5.2 Messages

DBC database. In order to provide ECUs on a particular network segment
the ability to read and decode the messages that appear on the bus, a
definition is provided in a database file. Commonly used database format is
DBC, which is an ASCII–based proprietary format of the Vector company
[16].

Besides other information, it defines what nodes exist on that network
segment and which messages are being sent there. Message content is defined
on a bit level by signals definition. For each signal, there is start bit offset,
length, data type it represents, endianity and transformation options can be
specified.

There is also defined which units send which messages. For each message
signal, there can be defined which units are receivers of this particular signal.

Message types. There are two main classes of messages in the network of
the vehicle to which this thesis relates.. Cyclic messages are sent by an ECU with a defined period (usually tens

of milliseconds). These messages contain an additional CRC field on a
fixed position of the message data..One–shot messages that carries data of an proprietary application pro-
tocol. This protocol is similar to an RPC. It defines messages with
some header, operations (read, write, response) and parameters. Details
are not disclosed here. This protocol is hereinafter referred to as the
proprietary RPC protocol or just RPC if the context is clear.

11

1. Introduction
1.6 Analysis

1.6.1 Vehicle control functions

This part concerns analysis of CAN messages belonging to control units of
the car functions that are in the scope of this thesis.

For the purposes of analysis and testing was engaged a vehicle equipped
with connections to certain segments of the CAN network.

Computers with diagnostic software were connected to the network with
use of the following tools:.Kvaser Memorator Pro 2xHS v21 USB to CAN converter.. Vector CANoe for capturing, decoding and sending messages to the

network.. Utitilities from can--utils project 2 for capturing and sending messages.. A Python package cantools 3 for decoding messages according to the
definitions in DBC databases.

Illustration from this phase of work is on Fig. 1.8.
It was necessary to determine which messages in which direction are being

sent while triggering the control elements and to clarify some data fields,
ranges of some parameters and to observe unexpected behaviour.

Outcomes

The analysis showed that the Air conditioning and Infotainment functions
can be controlled by one–shot messages with the proprietary RPC protocol
payload.

The RPC protocol cannot be utilized for control of ACC and Limiter
funtions. Instead, it was identified that the actual position of the control
lever is sent in one cyclic message. There are two more status messages. One
carries the information about current status and setpoint speed for Limiter.
The second message carries the same information for ACC plus a signal
indicating the distance setting.

1.6.2 Requirements for the solution

General requirements. Automotive industry puts great emphasis on the
safety. It is obvious that the equipment must not put the crew in danger in
any way.

The solution should be simple, because complex things tends to fail easily
and it is more difficult to debug complex system than simple one. Acceptable

1https://www.kvaser.com/product/kvaser-memorator-pro-2xhs-v2/
2https://github.com/linux-can/can-utils
3https://github.com/eerimoq/cantools

12

https://www.kvaser.com/product/kvaser-memorator-pro-2xhs-v2/
https://github.com/linux-can/can-utils
https://github.com/eerimoq/cantools

.......................................1.6. Analysis

Figure 1.8: Photo of the interior of the vehicle during analysis

cost, accesibility of HW components, reliability and modularity are also
important requirements.

Functional requirements. The outcomes of functions analysis showed that
the solution must be able to send, read and modify CAN messages in some
way and be able to recalculate CRC field of cyclic messages, if it will modify
these messages.

The solution also has to be able to receive requests and send responses to
the Master Control System over Ethernet.

1.6.3 List of tasks

These are the tasks that has to be done to fulfill the goals:. Choice of suitable platform for the solution.Design of communication protocol between the selected platform and
MCS. Design and implementation of actions in the car network

13

1. Introduction
. Testing the solution inside a vehicle, carry out several test drives

14

Chapter 2
System design

Based on the analysis of the control functions and the requirements for the
solution, the design part can be approached.

2.1 Selection of HW platform

One of the possible approaches would be to integrate the entire HW on one
board together with the control application. However, this decision would
be difficult to extend if more CAN network segments were introduced in the
future.

With regard to modularity and availability of the HW components listed
below, the following proposal was selected:. One central module carrying the control logic for actions on the vehicle

elements and interface to the MCS.. One or more independent modules carrying out the technical implemen-
tation of the actions.. Connect the low–level modules to the central module in a suitable way.

2.1.1 CAN Gateway

CAN FD Gateway is a module developed on the Department of Measurement
at CTU [18].

The board, which is shown on Fig. 2.1), has two CAN data interfaces and
one CAN FD control interface.

By default, its main activity is to forward frames from one data interface
to another. The control interface allows the gateway to be controlled using
commands in the form of CAN FD frames.

Control commands allow an user to set rules for blocking or modifying some
frames, based on their IDs. The important feature of the Modify command
is the ability to calcute (after modification) the correct CRC field of cyclic
messages, which were analysed in section 1.6.

The Gateway also has function for sending and reading of messages to or
from specified target data interface.

15

2. System design
Thanks to a configurable address of the control interface, more of these

modules can be present on one network segment.
These features make this module perfect for utilizing it in this work.

Figure 2.1: CAN FD Gateway module

2.1.2 Controller Module

The CAN Gateway itself is a simple module with no clue about the meaning of
frames that go through its data interfaces. It just routes the frames according
to set of rules. So a control logic for such rules has to be provided by an
external module with CAN FD interface.

When selecting the main module, more options were considered (A STM32
platform based, Xilinx Zynq based). One of the important guidelines was the
idea that for prototyping it is better to have a universal platform and some
reserve in resources (CPU, HW, memory, I/O).

Other important aspects are the peripherals actually present on board,
connectivity options, extendability (both SW and HW), which software
development tools are supported for that platform, and previous experience
with a platform.

The platform has to provide at least an Ethernet interface for the connection
to MCS and CAN FD controller to interface the Gateway modules.

16

............................... 2.1. Selection of HW platform

Terasic DE0-Nano-SoC Development board

The Terasic DE0-Nano-SoC Kit [17] is a development board with an Altera
System–on–Chip (SoC) as the main processing part. The SoC integrates an
FPGA (based on Altera Cyclone V) and hard–processing system (HPS) with
dual–core ARM Cortex–A9 on a single chip. The HPS also contains various
controllers (Ethernet, CAN, USB, SPI, SD, I2C, . . .). The board provides 1
GiB of RAM and a rich set of I/O interfaces (Fig. 2.2).

Linux OS, which runs there, renders a very nice environment for SW
development.

These features make this platform perfect for prototyping.

Figure 2.2: Terasic DE0-Nano-SoC board (Taken from: [4])

Connection to CAN bus. An I/O extension board was used for connecting
the CAN controller on the Terasic DE0-Nano-SoC board to the CAN bus.
This board had been developed by Jan Nejtek in his bachelor thesis [35,
Appendix C: 100Base-T1 board for Terasic DE0–NANO–SoC, rev. 2].

It was equipped with TJA1051–T high–speed CAN transceivers [46] and
DB9 connectors. Both modules connected together are on Fig. 2.3.

2.1.3 CAN FD controller

The SoC on the Terasic board integrates an CAN controller within its HPS, but
unfortunatelly this controller does not support CAN FD standard. Therefore,
an external CAN FD controller has to be added.

One option that was considered was to use the MCP2517FD controller
with SPI interface from Microchip [32]. However there was no working Linux
driver at that time, and there were concerns about reliability of this HW
with respect to the SPI connection, so this option was denied. Other options
were some proprietary IP cores. But due to unclear pricing, licensing and

17

2. System design

Figure 2.3: Terasic DE0-Nano-SoC board with CTU IO Extension board attached

uncertainty about the synthesis process into the Intel/Altera FPGA, these
were not chosen either.

CTU CAN FD IP Core

CTU CAN FD IP Core [2] is an open–source HW project originated at FEE
CTU by Ondrej Ille.

The core is still under development, but in stable and usable state. The
project also includes a Linux SocketCAN[1] driver[30], which is also stable and
tested. The bus interface for accessing its registers block is compatible with
Avalon interface used for on–chip interconnections on Altera/Intel platform[29,
14]. It can been synthesized into Xilinx Zynq1, which is similar platform as
Altera SoC used in this thesis.

Based on these features, this IP core was chosen for implementation of
CAN FD controller on the Terasic board.

2.2 Top level system design

Just after all the HW components are selected, it is time to put them together
to form a working system. A top–level structure of the system is on Fig. 2.4.

The dashed connections represent data flows of protocols and algorithms
that will be designed in the following sections.

1https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

18

https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

........ 2.3. Communication protocol between CAN Activator and Master Control System

CAN Activator

Climate unit
controls CAN GW 1 CAN GW 2

ACC
controls

Vehicle
network

Infotainment

control

CAN
data

CAN
data

Control SW

CTU CAN FD
1

control

CTU CAN FD
2

possible
extension to

more Gateways

MCS

Ethernet

Requests,
Responses

command
processing

(also
Control

module or
main

module)

Figure 2.4: Top–level system architecture with physical connection lines and
logical data flow (grey, dashed)

Due to disambiguity in terms when refering to the Control module as to
main module or CAN Activator in later parts of the text, here is at least a
remark on this issue.

2.3 Communication protocol between CAN
Activator and Master Control System

In the section Top level system design (2.2) it was decided that CAN Activator
and MCS will be connected over Ethernet. Naturally, IP, which is the most
common protocol on the internet layer, is the only reasonable option. Then
it is needed to make decisions on protocols of the transport and application
layers.

2.3.1 Transport layer discussion

Regarding the transport layer, there are three usable options that can be
considered on an IP network: UDP, TCP, SCTP.

UDP

User Datagram Protocol (specified in [48]) is the simplest among those three
protocols.

Its characterstics are:

19

2. System design
.Message based. Datagrams are transferred either whole or not at all.

This is nice because transmitter does not need to care about messages
framing. It just receives a message or handles and error.. Stateless. There is no connection and state associated with it. This
makes the protocol simple, but unreliable, since there is no guaranteed
delivery and ordering of the messages. It has to be solved on another
layers.. Symmetry. The communication is carried out between two (or more)
equal peers. No one of them acts as a server, they just transfer messages.

If UDP is used, the protocol will have to ensure proper ordering and delivery
of request and response messages on an upper layer. On the other hand,
framing of the messages will be ensured natively, if each message entirely fits
in a UDP datagram.

TCP

Another widely used transport protocol is the Transmission Control Protocol
(specified in [47]), whose main features are:. Connection oriented. Prior to data exchange, a connection between

client and server has to be established by a handshake procedure. When
a communication is over, the connection is terminated in a similar
handshake process.. Reliability. The protocol guarantees proper ordering of packets by using
sequence numbers. Retransmission of lost packets is also guaranteed.. Stream orientation. TCP does not operate with messages but rather a
stream of bytes. So there is no notion of message boundaries, which has
to be handled in upper layers.

If the protocol is built upon TCP, there will be an unnecessary burden
with the server side, listening, and accepting a new connection, even if the
system is designed in such way there is only one client and one connection at
a time.

The advantage is that the upper layers of the protocol would not care
about proper data delivery. It would only need to ensure messages framing.

SCTP

The Stream Control Transmission Protocol (specified in [44]) provides advan-
tages of both TCP and UDP. It is a message oriented like UDP and stateful,
connection oriented and reliable as TCP. In addition it provides features like
multihoming and it is more robust than TCP in terms of attacks like SYN
flooding.

20

........ 2.3. Communication protocol between CAN Activator and Master Control System

The main disadvantage of SCTP is the fact that it is not well supported
on all platforms. Linux and several other Unix operating systems have native
support for SCTP, but others including MS Windows or Mac OS X would
need a third–party SCTP stack.

Also some firewalls may block SCTP communication, so it is not suitable
to use in a general environment. This should not be an issue in this project,
if the network between MCS and CAN Activator is fully private.

Conclusion

After considering pros and cons of all the three protocols, it was decided to
use TCP. The main reasons for this decision are following:..1. It is not specified on what platform the Master Control System runs and

whether it would natively support SCTP...2. Efforts to implement the proper ordering and ensure reliability on the
UDP layer seems to be greater than to handle TCP connections and
implement framing of TCP data stream.

After it is decided to use TCP, it remains to determine who will be the
server and who the client. This question is answered quite naturally, because
it is the CAN activator that provides access to the vehicle functions and acts
o demand, so the server role is suitable for it.

2.3.2 Data exchange

Now it is decided that the protocol will be built upon TCP and it is specified
that the MCS is the client and the CAN activator is the server in the TCP
communication. The next question is to define the basic principles of the
communication.

Following the top level system definition the CAN Activator communicates
only with the MCS on one channel. So the server allows only one connection
at a time. Any more clients attempting to connect will be accepted and
disconnected immediately.

Because the layout is so simple (one server, one client), the application
layer of the protocol can be simple as well. No initial client–server handshake
or identification is really needed. The protocol should be simple like request–
response with the client initiating the communication.

An application protocol can be binary or text oriented. Binary formats
like Google Protobufs 2 or Apache Avro 3 are suitable for applications that
demand high performance. This is not required in this work. Rather the
data should be human readable to allow easy inspection of what is happening
between the client and the server. A text oriented protocol also allows to
establish an ad hoc connection to a server from a common network client

2https://developers.google.com/protocol-buffers
3https://avro.apache.org/

21

https://developers.google.com/protocol-buffers
https://avro.apache.org/

2. System design
utility like telnet or netcat ([34]) without need of developing a client tester
application at first.

Once a text oriented protocol is selected, there comes a choice about
messages framing. This can be performed by roughly two ways ([19, p. 5.2.1]):..1. Prepend an information about the message length at the beginning of

each message.
A downside is that the length of the message needs to be known in
advance. This can be inconvenient e.g. in the development or debugging
phase when one wants to send a test message with an arbitrary contents,
so he needs to calculate length at first somehow.
An advantage is that it may be easier to segment such messages on the
receiver side.
With this approach it is also possible to use all the byte values. However
this is pointless if the protocol utilizes only a subset of byte range...2. Use a dedicated delimiter character (or maybe a sequence of characters)
at the end of each message.
Picking the right delimiter character is important, because this character
cannot be used
Because the possible length of a message is conceptually unconstrained,
the protocol should specify some maximum length.

With a text oriented protocol, it seems better to use the delimiter for
framing. Then each message is a string terminated with a zero byte (ASCII
0x0). A message can be multiline and can contain any whitespaces. The
receiver just scans for the delimiter. A message contains only ASCII characters
(no multi–byte Unicode characters). Maximum length of a message on the
receiving side is constrained by a sufficiently high constant (e.g. 512 bytes).

2.3.3 Messages format

On the decisions that have been made was chosen JSON format (specified in
[6]) to represent messages in commmunication between the control module
and MCS.

JSON format was chosen because it is universal, simple, lightweight and
language–independent. It is also widespread, which is nice, because there are
many open–source parsers available for various languages.

Possible drawbacks of JSON are that the format itself does not support
comments, only 10 base format of numbers is supported and that the repre-
sentation of numbers in the specification is defined quite vague. At least this
can be mitigated by using a string to represent a precise value.

The concrete message format is inspired by JSON–RPC4. Each message is
a JSON object (it is encapsulated in “{ }” at the highest level). There are
following types of messages: Request, Response, Error Response, Heartbeat,
and Heartbeat Response.

4https://www.jsonrpc.org/specification

22

https://www.jsonrpc.org/specification

........ 2.3. Communication protocol between CAN Activator and Master Control System

Request

Requests are always initiated on the client side.
A Request message contains following fields:. command – name of the command (string). This field is mandatory.. params – JSON object containing key–value pairs of parameters for

given command. A parameter values may be a number (integer, floating
point), a string or a boolean. For a command without parameters the
value shall be an empty JSON object.. id – a string with an identifier used for correlation purposes between the
Request and the associated Response. This field is recommended, but
not mandatory. It should be ommited e.g. in the Heartbeat command.

A sample Request message is shown in Listing 2.1

Listing 2.1: Request message sample
{

" command ": " command_name ",
"id ": " id_value ",
" params ": {

" integer_param ": 1,
" float_param ": 23.5 ,
" bool_param ": true ,
" string_param ": " normal "

}
}

Response

Responses are always sent by the server side.
Response message contains following fields:. command and id – that of the associated request. result – either “ACCEPTED”, “DONE” or “ERROR”. error – error field is present only in the error messages. Messages with
“ACCEPTED” or “DONE” result does not contain this field

A sample Response message is shown in Listing 2.2.

Listing 2.2: Response message sample
{

" command ": " command_name ",
"id ": " id_value ",
" result ": " ACCEPTED "

}

23

2. System design
When a Request is successfully accepted, the server sends a response

message with the “result” field set to ACCEPTED. When a Request is
succesfully executed, the server sends a response message with the “result”
field set to DONE.

ACCEPTED and DONE are consequent responses, so the client first gets
ACCEPTED meaning the message has been validated and accepted for
processing, then it receives a DONE result indicating that a command has
been processed successfully.

At each of these two stages the server sends an error message if a problem
occurs. An error message means that handling of the current command has
been terminated and no further response for this request will come.

Error Response. If the server encounters an error during handling of a
request, it sends a response with the error field.

The value of the error field is an object containing following fields:. code – a string constant identifying the error. It may be used by the
client to take further action.message – a string with human readable description, intended mainly
for logging purposes. command and id fields are the same as in the corresponding request,
or empty, if not specified in the request

It contains command and id fields as well if they’re provided in the Request
causing the error.

Heartbeating

To track living connection between server and client, hearbeating mechanism
is used since the connection is established.

The following thoughts and proposed mechanism are based on [13].
In case the link is somehow interrupted or in cases when the connection

dies on one side without letting know the other side and other side does not
detect that on its own, there would be a dead connection on either side.

A problem could happen after the link is reestablished after some time.
If e.g. the server keeped such dead connection, the client (which closed the
previous connection on his side, but server didn’t notice) would not be able
to reconnect to the server after a while, because the server allows only one
connection at a time.

The client periodically sends request with the command set to “heartbeat”
value and the server sends response (possibly with some information useful
for the client).

Server measures a time since the last request was received. If the server
does not receive any request within a certain time, it will close the connection.

Similarly, if the client does not receive any response within certain time, it
will close the connection.

24

........................... 2.4. Control of CAN Gateway modules

2.4 Control of CAN Gateway modules

The hardware and features of CAN Gateway were described earlier 2.1.1.
This section deals with the design of how the control application on the

main module communicates with the CAN Gateway modules connected to it.
The design of controlling the CAN Gateways follows from its specification in
the document [18].

2.4.1 General operation

The Gateway manages two configuration stacks inside its firmware. One
configuration is always active and another one is inactive. That one that is
currently inactive is configured with the configuration functions. Toggling
between these configurations is done with the Trig command. Each configu-
ration stores filtering rules and default (blocking or passing) behavior. When
the Gateway is turned on, it starts with an empty list of filtering rules and
by default passes all frames through its data interfaces.

2.4.2 Communication with Gateway

Each CAN Gateway module is identified by a 5–bit address, which is set by
a DIP switch on the Gateway board.

The gateway address then defines CAN identifiers for request (configu-
ration) and response (possitive or negative acknowledgement) frames for
communication on the control interface.

All frames on gateway’s control interface are FD frames with Extended
Identifier.

Request frame CAN ID has the following format:
0000 1000 0000 0000 0000 000X XXXX 0000

Response frame CAN ID is similar:
0000 1000 0000 0000 0000 000X XXXX 0001

The part marked with Xs indicates the address bits.

2.4.3 Gateway functions

A gateway provides six functions:
The first byte of a configuration request frame contains a function identifier

in its upper nibble and the number of segment of the request in the lower
nibble in case the request is segmented into more consecutive frames. Further
content of a request frame depends on the particular function.

Reset

This command clears filtering rules in the inactive configuration and sets the
default behaviour to block or pass frames going through the Gateway’s data
interfaces.

25

2. System design
Block/Pass

This command adds a filtering rule to the inactive configuration. It allows to
filter frames with a particular CAN identifier.

Modify

This command adds a rule for modification of frames with a particular CAN
identifier. It has “mask” and “data” parameters that determine which parts
of the frame will be replaced by which data.

The command also has an option to automatically recalculate the CRC
field, which is placed at the first byte of the data in messages that use this type
of security, to the correct value after data modification. For this functionality
a CRC seed has to be supplied in a parameter.

Due to length of data and mask fields, which is 64 bytes each, the command
has to be segmented into three consecutive messages.

Trig

This command toggles between active and inactive configuration. That is,
the configuration being currently active becomes inactive and vice versa.

Stat

This command is used to monitor the Gateway status on the control interface.
It periodically sends a frame with a dedicated identifier and status data.

Send

This command allows to send a CAN frame from the control interface to one
of the data interfaces. The options provided for this functions are whether
the frame is in normal or FD format and if the Bit Rate Switch bit should be
set.

Read

This command allows to forward messages with a given identifier from a
selected data interface to the control interface.

2.4.4 Design of the interface

The controlling software should provide such an interface to its users that
they can control a gateway in a straightforward manner. The software API
should provide a method to reset the gateway to a defined state, a group
of methods to add, remove and apply the filtering rules and a method for
sending a single frame.

The send method is quite simple as this is an one–shot action, which is
carried out by a single function.

26

........................... 2.4. Control of CAN Gateway modules

Hard Reset

An important functionality is to have a way to bring the Gateway to the
default state at any point of its operation.

The Gateway does not offer a single function for that. The Reset command
only clears the filter rules list.

Clearing all rules by the Reset command and then switching to this clear
configuration by the Trig function can achieve the default state.

Filter rules management

Gateway does not provide any functions to read back current configurations,
nor it supports removal of single rules once stored in the current configuration.
Rules removal can be achieved only by Reset command, but this removes all
the rules from current (inactive) configuration.

Due to these properties the most convenient way the controlling software
would handle filtering is to store the configuration within its internal data
structures. Every time a rule is added or removed, the software has to first
clean the configuration in the gateway by the Reset function, then apply all
the rules stored in its memory and finally enable the configuration by the
Trig function.

For setting up the filtering rules, the API exposes add and remove methods
for each of block/pass, modify and read filter types.

Then a commit method applies all the rules to the Gateway and enables
the configuration.

27

28

Chapter 3
Software design

In the previous chapter, the general architecture of the system and its main
parts, which are the communication protocol with the master control system
and a method of controlling the CAN Gateway, were proposed.

This chapter deals with design of control software that will implement
those functions.

3.1 Control application architecture

The first topic to consider in this section is the overall architecture of the
control application. The control software fulfills the task to mediate functions
for controlling the vehicle to the Master Control System. These functions are
carried out by sending and reading messages on the CAN interface.

From an algorithmic point of view, there are apparently no computationally
complex tasks required. The module will be idle most of the time. Requests
from MCS will come only once in a while. Rather than effective algorithms,
reliability and proper logical decomposition of software components is impor-
tant. The design should also focus on configurability and extendability of
the software. Of course, it is also important to provide clear logging to allow
observing the software operation for easier debugging.

Another important matter to think about is the flow of control, that is,
how the code will be executed.

One method would be to make the application multi–threaded and run
each component in its own thread. It would be then necessary to ensure
correct synchronization between threads by means of thread–safe FIFOs and
carefully lock shared data structures with mutexes. This approach seems too
cumbersome for this application. It is rather suitable for software that has
higher demands on performance and scalability.

Event–driven approach. For a control software, which has to be reactive to
possible many events from various sources, it is more suitable to choose an
event–driven approach and design the application around an event loop and
use just a single thread.

An event–driven software ([50]) has inverted flow of control, which is defined
by occuring events rather than by a sequence of statements in the code. A

29

3. Software design....................................
significant consequence of using event–driven architecture is non–blocking
and asynchronous nature of the program. Rather than calling a function,
waiting for a result (possibly for an undefined amount of time), and then
returning back, the caller at first installs a handler, then he calls a function
returning immediately. After a while, when the result is ready, the installed
handler is called informing the caller about completion.

Based on these considerations, the application architecture was designed.
A diagram of main components with sketched flow of data is on Fig.3.1.
The components in the diagram are described in the following sections. An
event loop is not depicted on the diagram as it has no influence on how the
components communicate with each other.

TCP	Listener
MCS connects

create new
connection

TCP	Connection
Handler

MCS request

Response to MCS MCS	protocol

handle request

send response
Command
Manager

submit command

command done

command
schema

system
schema

CAN	Gateways

process
command

processing
done

Command
processors

GW responses /
CAN frames

GW commands

processing
schemas

CAN frames
from / to
interface

Figure 3.1: SW architecture of CAN Activator application

A sequential diagram for the proposed architecture describing execution of
a single request from the Master Control System, is shown on Fig. 3.2.

3.2 Event Loop

Event Loop is a central component. It provides its users with an API to
register and unregister custom event handlers. An event handler is a function,
which is associated with a source of events and a list of events of interrest.
The source of events can be a network socket, a timer, or another system
object represented by a file descriptor.

Event loop waits in a blocking system call. If an event occurs on any file
descriptor, the blocking call returns with the information about on which file
descriptors and which events occured. Every time an interresting event or an
error occurs on the file descriptor, the associated event handler is called.

In Linux, there are generally three options around which an event loop
can be designed. Widely used on POSIX–compatible systems are “select”

30

.................................. 3.3. CAN Components

MCS CAN Activator CAN

MCS SW MCS layer
Processing

layer CAN GW

Request

parse request

Response (ACCEPTED)

command submit

start processing

processing in progress

processing finished

command done

Response (DONE)

Figure 3.2: Execution of one MCS request

or “poll” system calls (described in [41, 38]. Their advantage is portability,
but they have performance drawbacks when using with a large number of
file descriptors ([21]). Third option is “epoll” (described in [20]), which is
available only on Linux.

EventLoop component is designed around “epoll” just because it provides
nicer API than “poll” or “select”. Performance reasons are not important at all
in such application. If portability was an issue, it can be easily reimplemented
using e.g. “poll” and without any change of EventLoop API.

3.2.1 EventedFd

To allow registering components into the Event Loop, a base type “EventedFd”
is provided. It encapsulates the underlying file descriptor and carries out
resource management, i.e. automatic deregistering from Event Loop when
the parent object goes out of scope. It can be inherited by any component
that represents a source of events.

3.3 CAN Components

3.3.1 CAN Socket and Interface

CANSocket class is an EventedFd (3.2.1) wrapper around a “socketcan” socket.
It provides basic I/O functions for reading and writing both CAN classic and
FD frames. It is not intended to be used directly.

CANInterface class is the main component for accessing a single CAN

31

3. Software design....................................
interface. It encapsulates CANSocket and carries out much of event handling
on that socket. This component allows its users to send CAN frames and
register a receive handlers for CAN frames with a specific ID. It also logs all
frames going from and to this CAN interface.

3.3.2 CAN Gateway

The control of CAN gateways is provided through two classes.

CANGatewayModule

This component implements low–level functions of a single CAN Gateway
module.

Its main responsibilities are:. to perform serialization of the configuration commands,. segmentation of multisegment commands,. providing each message with a header,. sending messages to the CAN interface. receiving responses from the CAN interface

This class is not intended to be used directly but rather composed into
CANGateway component, which is discussed below.

CANGateway

A component that provides an API to a CAN Gateway. It wraps around the
CANGatewayModule and maintains all the data structures needed to track
the gateway state, it remembers applied configuration and creates friendly
and more natural interface to users.

It stores all the filtering rules and provides methods to add, remove, or
update them. These methods just manipulate with the internal state of the
component, not the gateway itself. Only when the commit of rules is called,
the component applies them to the gateway.

This component also provides a way to reset the gateway to a defined state,
since the gateway itself does not support a single command for that. This is
achieved by erasing all the rules both internally and in the gateway by issuing
the Reset command. Then the Trig command switches the gateway to that
empty configuration.

Commiting of filter rules. The Reset command is issued at the beginning, so
the process starts with a clean configuration. Then all the stored Block/Pass,
Modify, and Read rules are applied. The whole process is carried out in
asynchronous manner, as demands the event–driven architecture discussed
earlier (3.1). That is, after application of each single rule, the control transfers

32

............................ 3.4. Master Control System Interface

back to the EventLoop and CANGateway component continues operation
when it receives a response from the gateway.

When all the rules are applied, Trigger command is sent to activate current
configuration. Upon receipt of the final ACK response from the gateway, the
completion handler is called to inform the user that the commit has been
completed.

3.4 Master Control System Interface

MCS communication layer comprises of a network part and a part for parsing
requests and generating responses.

3.4.1 TCP communication

The network part is made by two parts. TCPListener fulfills a function of
a TCP server. Its task is to accept a new connection and pass its socket to
TCPConnectionHandler. The protocol is designed in such way that at most
one connection is possible. Whenever there exists a living connection, any
new connection is closed right after it is accepted.

TCPConnectionHandler manages the connection socket. It carries out any
event handling on the socket. On a readable event, it ensures correct reading
and splitting the data into frames divided by the delimiter and passing them
one by one to the parser.

This component also maintains a connection timer, which is refreshed with
each incoming request. If it expires, the connection is considered to be dead
and closed.

Writes of responses are handled directly without waiting for a write event.
This method is not generally correct, because the “write” system call ([51])
on a nonblocking socket can actually write less than the required size to be
written if the TCP send buffer is full.

However, it should be okay to use this method here, because the maximum
size of a response is constrained by a smaller value than the TCP send buffer
size (which has default size 16 KB and minimum default size is 4 KB according
to the manual [45]) and the response data are sent synchronously with respect
to requests, so there is no chance to fill up the send buffer.

A generally correct approach for sending a data on a nonblocking socket
would most probably be (based on experiments and comprehension how the
poll or epoll works) to have an internal buffer for data to send and register
the socket for writable events. On each such event, as much data as possible
would be written to the socket. If all the data from the buffer is sent, the
writable are removed from the events of interest until there is any new data
in the buffer.

3.4.2 Request and response handling

This task is carried out by the ClientProtocol component.

33

3. Software design....................................
Upon initialization of this component, command schema (3.7.2), which

contains format definitions for all commands, is loaded.
When a new request arrives, it is parsed by a JSON parser and validated

using the command schema. During the validation, a Command structure for
this request is created.

Command structure represents each single command. It holds name, ID,
parsed parameters from the request and processing state of the command.
There is also a string with the state description, which is returned in a
response message.

If the validation is succeful, the obtained Command is in ACCEPTED state,
which means it is ready for further processing. If there was an error during
parsing the request, the Command is in an ERROR state. At this point the
first response is generated and sent to the MCS via TCPConnectionHandler.

In case the command is a heartbeat or in an error state, the processing
of this command is over. Otherwise, it is submitted to Command Manager
(3.5).

Later after processing, this component gets this command back from the
Command Manager to send MCS the second response.

3.5 Command Manager

Command Manager instantiates all the CAN Interfaces and Gateways accord-
ing to the system schema. It sets up default error and response handlers.

Then it instantiates all supported command processors. If no CAN In-
terface or Gateway is available, no command processor that operates on a
CAN interface is instantiated, but the program stays running to provide
at least some response to the MCS. In this way it is possible to test MCS
communication without the actual CAN hardware or without being connected
to the vehicle network. One can use a simulator command processor, which
simulates command processing or an error by a custom timeouts accord-
ing to its processing schema. However, the simulator processor is not yet
implemented.

A responsibility of Command Manager during the program execution is
to start processing of each submitted command with the correct command
processor. Which commmand processor to use for processing a given com-
mand is defined in the command schema. If a command is being processed,
Command Manager rejects any other commands.

When a command processing is finished, Command Manager passes the
Command back to the MCS protocol layer to handle the completion response.

3.6 Command processors

Command processors are components that contain the logic for processing
the commands. The interface of all processors has just one “process” method,
which accepts a pointer to Command as a single argument. A processor

34

................................. 3.6. Command processors

accepts a reference completion handler, which it calls when the processing is
over.

Such general design allows one to implement a number of processing
algorithms. A particular algorithm may be possibly implemented for a group
of commands if their processing has common features. There can be more
processors for some commands. That one which to use is chosen in command
schema configuration.

Each processor can have its own processing schema from which it loads a
configuration (3.7.3).

All the processors are instantiated in Command Manager. Within the
configuration files, they are reffered to through string identifiers hardcoded
in the Command Manager. Introducing a new processor is also easy.

3.6.1 General processing procedure

A common actions of a comand processor taken after the start of processing
a command are:

Initialization of its data structures, finding the correct CAN Gateway
and Interface, setting response and error handler on the Gateway, setting a
CAN frame read handler if needed, firing up a timer for detecting processing
timeout and starting a communication with the Gateway.

Then the processing is carried out in an asynchronous manner. After a
while the processing succesfully finishes or an error or a timeout occurs.

Command state and info string are set according to the processing outcome,
the response handlers are deregistered, the Gateway is reinitialized to the
default state, and the completion handler is invoked to inform the Command
Manager.

3.6.2 Commands for the RPC protocol

In an introductory section, there was a mention about a proprietary protocol
used for a RPC–like communication of the vehicle control units. A general
description of the processing procedure follows. Details of the protocol are
not disclosed.

This command processor is designed for a set of commands that use CAN
frames of that protocol to control in–vehicle functions. These are the air
conditioning and some infotainment functions.

Processing algorithm

The functions of this protocol are processed in a uniform way. They only differ
on parametrization. So the processing is designed such that only common
procedures are hardcoded and the rest is defined in configuration files.

The procedure implements a read–modify–write operation, so only the
“send” and “read” functions of CAN gateway are needed. A state diagram is
on Fig. 3.3.

A brief description of the states follows:

35

3. Software design....................................
Gateway
response

IDLE

Initialization
Configure GW for read

READ

Make Read request message
Send Read request

GW_READ

Status
response

WRITE

Make Write request message
Send Write request

Status
response

Figure 3.3: State diagram of the processing of RPC–protocol commands

IDLE. The CAN Gateway’s identifier and all other parameters for the
current command are found in this command’s descriptor of the processing
schema. CAN Gateway is then programmed to get status messages of the
RPC protocol from a vehicle control unit.

GW_READ. This state is waiting for the response from CAN Gateway.

READ. When the Gateway acknowledges the commited rule, a message
with a read operation of the RPC protocol is created and sent to the vehicle
network through the Gateway. A status response is expected as an anwer to
this message.

WRITE. After obtaining the status response, it is transformed to a write
operation message and some of its parameters are modified. Which parameters
to set is defined in the processing schema.

Special cases

If any command needs a special handling, the processing can be implemented
separately. This is e.g. case of the “air_volume” command, whose observed
behaviour was irregular. A correct solution for the “air_volume” command
would be to first set its value to a different value and then to the setpoint
value.

Configuration

Runtime configuration of the processor for the RPC functions is stored in
two files.

Processing schema. Here are definitions for each of the commands, which
CAN Gateway to use and mappings to fields and parameters of RPC–protocol
messages.

A mapping to the RPC message parameters can be defined from a constant
value or a command parameter.

There are three types of mapping from command parameters:. identity, which is a simple 1:1 binary mapping,

36

................................. 3.6. Command processors

. linear with a scale and offset,. tab, which is defined by an enumeration.

For both types of mapping a destination, which is a parameter of a RPC
message defined in Functions schema (described below), can have a bitfield
specifier if one needs to write only to some part of the parameter.

Functions schema. This schema contains definitions of the RPC protocol
messages according to their specification together with request and response
messages identifiers, which come from DBC files.

3.6.3 Commands for ACC and Speed Limiter

ACC and Limiter functions are controlled by cyclic messages as follows from
the analysis in section 1.6. It has been already stated that there is one control
messages indicating the state of the control lever, one status message for ACC
and one status message for Limiter.

The algorithms here perform their actions by modification of particular bits
in the control lever control message thus simulating real clicks and switches
of the lever. Algorithm decisions are made upon information in those two
status messages. CAN gateway “modify” and “read” functions are utilized
for these tasks.

Provided commands (listed in Tab. 3.1) are designed such that they can
enable a given function, only if the current state of ACC or Limiter allows it.

Table 3.1: List of commands for ACC and Speed Limiter control

Command Parameters
ACC enable speed
ACC disable –
ACC set distance distance
Limiter enable speed
Limiter disable –

If the entire ACC / Limiter is off (the control lever is switched to position
OFF), no control by a command is allowed. If the control lever is switched
to ON, either ACC or Limiter mode is currently selected (a grey icon on
the display). In this default state, any of ACC or Limiter commands can be
activated except of ACC set distance, which only works in ACC mode.

If the ACC is active (indicated by a green icon on the display), only the
ACC functions take effect. For switching to the Limiter mode, ACC must
first be deactivated by ACC disable command. Likewise if the Limiter is
active, only the Limiter commands are applicable until it is deactivated by
Limiter disable command.

These rules are expressed in the state diagram 3.4.

37

3. Software design....................................
Control stick

switched to ON

OFF

ACC selected

ACC enable
ACC disable
ACC set distance
Limiter enable
Limiter disable

Limiter active

Limiter enable
Limiter disable

Limiter selected

ACC enable
ACC disable
Limiter enable
Limiter disable

ACC active

ACC enable
ACC disable
ACC set distance

Any state

Control stick
switched to ON

Control stick
switched to OFF

ACC enable

ACC disable

Limiter enable

Limiter disable

ACC enable

Limiter enable

previous mode
was ACC

previous mode
was Limiter

Figure 3.4: State diagram of ACC and Limiter states. Within each state are
listed commands that are applicable in that state.

ACC and Limiter enable

These commands have the task to set target speed and to activate the function,
either Limiter or ACC.

The processing of both functions is carried out by the same way. A flowchart
on Fig. 3.5 decribes the algorithm.

Current state and setpoint speed of a given function is indicated in cyclic
status messages.

At the beginning, the status of the function (either ACC or Limiter) that
is the subject of the control is read.

If the function is already active, the speed can be set directly. If the function
is not active, but it is selected, the setting of target speed is performed in
two steps.

Preparing the speed and activating. Firstly in the “Prepare speed” stage,
the speed is set to the nearest lower or equal value of the target speed only
using the UP (+10 km/h) and DOWN(−10 km/h) signals of the control lever
control message. This operation is added due to safety reasons. If the current
value on ACC is much higher than the setpoint value, and ACC is activated,
the vehicle could start accelerating unexpectedly.

When the rounded value of the target speed is reached, the function can
be activated by clicking on the RESUME of the control lever. The RESUME
also has the function of increasing the speed by 1 km/h. This is why the
exact target speed cannot be set before activating the function. After the
function is activated, which is determined by checking the status message,
the exact speed can be set by iterating by 1 km/h.

38

................................. 3.6. Command processors

target rounded
speed reached

Limiter (ACC)
status

ACC (Limiter)
status

Prepare speed

Activate

Set speed

Done

Limiter (ACC)
status == active

selected

active

disabled

Switch mode

selected

target speed
reached

Failed
else

Limiter (ACC)
status == selected

Limiter (ACC)
status == active

Figure 3.5: Processing of Limiter enable and ACC enable commands. Labels in
parentheses apply for ACC enable

Switching the modes. If the function to be controlled is disabled at the
beginning, it has to be selected before setting the speed and activation.

At first it is determined whether it is even possible to switch the mode.
A status message of the second function is read. If the status is active, the
mode cannot be changed due to the rules defined earlier (see Fig. 3.4). When
the status is disabled, it means that both Limiter and ACC are disabled,
which happens iff the control lever is in the position OFF. If the status of
the other function is selected, the mode can be switched. This is performed
by triggering LIMITER signal on the lever until the status changes to one of
the required values.

Setting the target speed. In the active state of either functions, reaching
the target speed is accomplished by first getting to the closest smaller value,
by moving UP or DOWN by 10 km/h and then by using the +/−1 km/h
signals of the control lever. Details of the algorithm to reach the target speed

39

3. Software design....................................
are discussed in the next paragraph.

Process of setting a target value. There are three general ways to reach a
target value by operating the control lever.

One approach is to activate and hold the control element until the target
value is set and then release. This is the most simple, but unfortunately the
slowest solution.

A method that is used in this application is to activate a control element
until an observed value is changed, then release the control and wait for some
time. The delay time was determined experimentally as the time of three
consecutive status messages, which proved to work well. A flowchart of the
process is on Fig. 3.6.

Status message:
value changed

target value
reached?

Activate control signal

Deactivate control signal

Delay

no

yes

Done

Figure 3.6: Process of setting a target value by modification of a control signal

A possible drawback of this method manifested itself while the Limiter
(or ACC) was in an intermediate state. Even if a control signal for speed
change was active, the speed was not changing for several seconds until the
intermediate state went away.

There is a possibility that this unpleasant behavior could be evaded by
using short clicks on the control element instead of activating and waiting for
a change of the value. Unfortunately, this idea has not been examined yet,
because it was difficult to induce that intermediate state. It happened only
about twice during the whole testing.

ACC and Limiter disable

Disabling both of the functions is carried out by activating CANCEL element
on the control lever and waiting for the state in a status message to change
from active to any other.

40

................................ 3.7. Runtime configuration

At the beginning a check is made to ensure the actual state of the function
is active. If not, the function is considered to be already disabled.

ACC set distance

Setting a distance of the preceding vehicle is only possible within ACC mode
(cf. rules on Fig. 3.4).

It is carried out by controlling DISTANCE+ and DISTANCE−signals of
the control lever and observing actual value in ACC status message. The
method of reaching the target value was described in a previous paragraph
(3.6.3).

3.7 Runtime configuration

Much of the runtime configuration for the control application is stored in
JSON schema files rather than hardcoded. This decision was proposed to
facilitate high configurability and to minimize the need of rebuilding the
software every time some configuration changes. JSON format seems to be
suitable for storing configuration and it is already used for implementation of
MCS commands protocol.

3.7.1 System schema

The System schema contains a description of available CAN interfaces on
the board and connnection of CAN gateways. An example of System schema
is exposed in Listing 3.1. The “interfaces” property has an array of CAN
interface names. These names are strings that match the interface names
in the system. The “gateways” property has a list of JSON objects, each of
them defining each CAN gateway.

The “name” property contains a string, which serves as an identifier for a
specific gateway in the control application. Every CAN gateway is referred to
and accessed by means of this identifier. The “interface” and “address” fields
uniquely identify each gateway in the system.

The “interface” is one of the strings from the top–level “interfaces” list in
the schema and “address” is a string with “0x”–prefixed hex number. Gateway
addresses are 5–bits as mentioned in section 2.4.2.

Listing 3.1: System schema example
{

" interfaces ": ["can0"],

" gateways ": [
{

"name ": "KCAN",
" interface ": "can0",
" address ": "0 x1f"

41

3. Software design....................................
},
{

"name ": "ICAN",
" interface ": "can0",
" address ": "0 x1c"

}]
}

3.7.2 Commands schema

The schema defines properties of a request for each command, i.e. command
name, parameters, its data types and valid values. The schema is used by
the request parser to validate and parse a request from the Master Control
System.

The structure of the schema is shown in Listing 3.2. On top level there
is a JSON object containing key–value pairs of records, where each key is
a command name and the value is a JSON object describing the command.
This command description contains key–value pairs for each parameter.

A parameter descriptor contains a mandatory “type” property, which can
take one of values “bool”, “int”, “float” or “string”. The next property in the
parameter descriptor is an optional validation specifier, which is either “enum”
or “ranges” key with a value of an array. In case of enum, this array contains
an enumeration of valid values. In case of ranges, it contains a list of inclusive
ranges of valid values. If the type is “string”, the only legal validation specifier
is “enum”. For “int” or “float” type, it can be either “enum” or “ranges” and
“bool” parameters have no validation specifier. The type of values in the
validation specifier must match the parameter type.

The “proc_name” field specifies which Command processor to use to
process this command. The available command processors are instantiated in
the CommandManager component (discussed in section 3.5).

Listing 3.2: Commands schema structure
{

" command_1 ": {
" params ": {

" param_1 ": {
"type ": "int",
"enum ": [0, 1, 2]

},
" param_2 ": {

"type ": "float",
" ranges ": [[16.0 , 29.5]]

}
},
" proc_name ": " command_processor "

},

42

.......................................3.8. Logging
" command_2 ": {

...
},

...
}

3.7.3 Processing schema

Processing schema describes the particular way the commands are processed.
Each Command processor can use its own processing schema, so the syntax
is not uniform.

There can be a general part with common or default options as timeout,
associated CAN gateway, target interface on the gateway where to send and
receive messages, etc.

If a specific “commands” part is present, a recipe for processing each com-
mand describes function codes, CAN identifiers and conversion of Command
parameters to data fields in messages of the protocol used on the CAN bus.

3.8 Logging

Proper logging is important not only in the development phase of the project,
but also during its use. The role of logging layer is to provide as much
information as possible to track system behavior, but only as much as is
necessary. It is also important to have these information preserved in case of
application or system failure.

Requirements for the logging subsystem are:..1. Log messages should not be lost when the control application is termi-
nated...2. It is not desirable to save possibly large and multiple log files to SD card...3. Log content should be accessible from a remote machine...4. Logging application cannot be blocked in case nobody is reading the log
messages.

Obviously, to fullfill point 1, it is necessary to keep log messages outside
the control application itself. However, following point 2, redirecting logs to
files is not a good solution.

To use some system object like a named pipe[22] or a message queue[33]
alone would not be enough, because messages are lost once read from these
channels. Not even shared memory[43] is optimal, because it does not provide
FIFO semantics.

43

3. Software design....................................

Client (log reader)

Application

Logger Log writer FIFO

Log server
nonblocking

writes

pipe

Client (log reader)

TCP

Run script

messages
ring buffer

Figure 3.7: Logging solution

The most suitable approach seems to be to have a dedicated application,
store log messages in its memory and provide ways to fetch all messages on
demand from there.

The logging subsystem is designed with regard to these principles. It
consists of three parts. All parts together are visualised on Figure 3.7.

3.8.1 Logger

Logger is a component in the control application itself. It provides uniform
way to emit log messages with information about system timestamp, the
log level of a message in terms of severity. Supported severity levels are:
INFO, WARNING, ERROR, and DEBUG. The Logger can be set up to filter
messages of some severity or higher. For WARNING or higher levels, more
verbose information about current function or method is also shown.

The Logger is designed in such way it doesn’t take care of routing messages
to (possible multiple) destinations. The messages are simply put on standard
output and further processed by another component.

3.8.2 Log Server

Log Server is a standalone application, which maintains a circular buffer of
text lines. On one end, it reads incoming data from an external FIFO and
saves it into the circular buffer. An access to the ring buffer is provided over
a TCP connection. Every time a client connects to the Log server, it flushes
the entire buffer to the client and as new messages arrive in the buffer, they
are immediately sent to all connected clients.

3.8.3 Log Writer

Background

Messages are passed to the Log Server via a named pipe (described in [22]).
This is a common way for one–direction IPC in Unix environment ([37]). The

44

.......................................3.8. Logging
standard procedure to initialize such communication channel is:..1. Create a FIFO special file in a filesystem...2. A reader process opens the FIFO for reading and a writer process opens

the FIFO for writing.
The “open” system call in each process blocks until both sides of the
FIFO are opened. This behavior can be avoided by opening the FIFO in
nonblocking mode. In that case, “open” call in reader process returns
successfully without blocking. In writer, “open” returns success only if
the reading end has been opened, otherwise, it returns error...3. Perform I/O...4. If all reading ends are closed and a writer tries to write to the FIFO, it
gets the SIGPIPE.

One problem that can occur is when the process on the writer side termi-
nates and it is the only writing process to the FIFO, the reader would get
failure upon reading and it would has to reopen the FIFO.

This can be solved by opening the FIFO for writing on the reader side, so
there is at least one writer and one reader at a time.

The second problem that can occur is, if no reader has the FIFO opened
or nobody is continuosly reading from the FIFO, the writer side could block,
which is forbidden. It could be avoided if nonblocking mode was used on
the writer side, but this cannot be achieved directly. This is because the
output from the Logger (the main application) has to be redirected from the
standard output to the FIFO by a shell redirection (described for bash in [7]).
But the shell redirection itself does not provide a way to open a destination
file in nonblocking mode.

Solution

These problems are addressed by introducing Log Writer, an utility that
opens the FIFO in nonblocking mode and forwards any input towards it. If
a write to the FIFO fails, Log Writer handles the error transparently and
reopens the FIFO on the fly (if possible). A logging application, which is
providing the input to Log Writer, therefore does not need to care about
accessing the FIFO and handling error conditions.

45

46

Chapter 4
Integration of components to Terasic
DE0–Nano–SoC board

In previous chapters the HW platform for the main CAN Activator module
was selected. It was also decided on which CAN controller will be used for
connecting to CAN portion of the system. The architecture of the main
controller software was designed as well. Now it is time to prepare the
operating system and runtime environment on the development board and
integrate all those parts there.

Procedures, parts of scripts and commands were partially taken and modi-
fied according to needs and experiments from the Rocketboards.org site [3]
and some other information from Xillybus pages 1.

4.1 Preparation of the development board

4.1.1 Boot process description

The boot process of the Terasic DE0–Nano–SoC is described in [39, 23]. The
exact sequence of the boot can differ depending on particular system and
application. Here the description corresponds to this particular system.

After the device is turned on, the CPU in the SoC starts to execute code in
its boot ROM. This code performs some initialization steps and determines
a boot source by reading a value from pins on the board. Usually a boot
source selection is made by a jumper, which allows an user to select between
SD card, integrated flash memory, or perhaps another source. This system
uses SD card as a boot media.

The boot ROM code then loads the Preloader (or First Stage Bootloader)
from a known location on the SD card and executes it. The Preloader contains
further initialization code that is dependent on a custom HW design, like
clocks configuration, setup of on–chip peripherals, watchdog, etc.

When Preloader finishes the initialization of the SoC, it runs a “Second
Stage Bootloader”, which is U–Boot in this case.

Das U–Boot 2 is highly customizable, advanced open–source bootloader,
1http://xillybus.com/tutorials
2https://www.denx.de/wiki/U-Boot

47

http://xillybus.com/tutorials
https://www.denx.de/wiki/U-Boot

4. Integration of components to Terasic DE0–Nano–SoC board
which is often used on embedded platforms that boot an operating system
rather than a bare–metal application. It supports many platforms and
provides default configurations for them.

U–Boot proceeds according to a boot script if present on the SD card. It
executes these steps:..1. Load a bitstream with the HW design and program it to the FPGA..2. Load the device tree to the memory..3. Load the Linux kernel image to the memory..4. Boot the kernel with the device tree address and boot parameters speci-

fying root filesystem type and partition, configuration of serial console,
and possibly other options

The kernel then starts a normal boot process.

4.1.2 SD card partitioning and contents

Information are taken from [27].
The SD card contains (at least) three partitions:..1. Boot partition – The first FAT32 partition on the device contains these

files:. u–boot.img – U–Boot image. boot.scr – U–Boot script. soc_system.dtb – compiled device tree. soc_system.rbf – FPGA bitstream. zImage – compressed Linux kernel

Size of the partition can be in tens of megabytes...2. A partition of type A2 (set in fdisk utility) and no filesystem. It contains
binary image of the Preloader with bootROM header. Its size can be as
small to contain the preloader image (which has exactly 262144 bytes)...3. An Ext3 or Ext4 partition with the root filesystem.

4.1.3 Making the artifacts

Here is described a process of making each artifact on the micro SD card.
Needed prerequisities are:.Quartus Prime IDE with Embedded Command Shell..GNU Cross–compiler for ARM little–endian / gnueabi (gcc–arm–linux–

gnueabi).

48

..........................4.1. Preparation of the development board

. Altera fork of U–Boot source at: https://github.com/altera-opensource/
u-boot-socfpga.git. Altera fork of Linux kernel at: https://github.com/altera-opensource/
linux-socfpga.git

Bitstream file (soc_system.rbf)

Information are taken from [24].
The bitstream is a binary file with compiled HW design that can be loaded

to FPGA. It is produced by Quartus Prime IDE.
As a start point for making any design, a default design from the “DE0–

Nano–SoC CD–ROM (rev.D0 Board)” 3 can be used. A design in directory
(Demonstrations/SoC_FPGA/my_first_hps–fpga_base) on that CD proved
to work.

After succesful compiling the HW design, the important result files are:. soc_system.sof – the compiled HW design. soc_system.sopcinfo – can be used for creating the device tree. hps_isw_handoff/ – a directory with configuration needed for building
the preloader

To be able to load the bitstream from the bootloader, it is necessary to
convert soc_system.sof to .rbf format at first. This can be done from Quartus
Prime by following these steps:..1. In main menu select File – Convert Programming Files..2. Choose .rbf output..3. Choose proper mode according to MSEL pins on the board (FPPx16),

see [17]...4. Generate soc_system.rbf

Preloader

Information comes from [25, 39].
Some commands in this section need to be executed within the Embedded

shell, which is a shell environment for development tools shipped with Quartus
IDE. It is located at “intelFPGA/18.1/embedded/embedded_command_shell.sh”
provided that “intelFPGA” is the installation directory of Quartus IDE.

3http://download.terasic.com/downloads/cd-rom/de0-nano-soc/DE0-Nano-SoC_v.
1.3.2_HWrevD0_SystemCD.zip

49

https://github.com/altera-opensource/u-boot-socfpga.git
https://github.com/altera-opensource/u-boot-socfpga.git
https://github.com/altera-opensource/linux-socfpga.git
https://github.com/altera-opensource/linux-socfpga.git
http://download.terasic.com/downloads/cd-rom/de0-nano-soc/DE0-Nano-SoC_v.1.3.2_HWrevD0_SystemCD.zip
http://download.terasic.com/downloads/cd-rom/de0-nano-soc/DE0-Nano-SoC_v.1.3.2_HWrevD0_SystemCD.zip

4. Integration of components to Terasic DE0–Nano–SoC board
Generate the Preloader. Preloader has to be configured at first. In the
following paragraphs it is assumed that “design_root” is the root directory
of the Quartus HW design project.

Following command will generate the Preloader sources in “spl_bsp” direc-
tory. The support for the FAT filesystem has to be explicitly enabled so the
Preloader can load next boot stage from SD card FAT32 partition.

[embedded-shell] design_root $ cd software &&
bsp-create-settings --type spl --bsp-dir spl_bsp \
--preloader-settings-dir ../hps_isw_handoff/soc_system_hps_0/ \
--settings spl_bsp/settings.bsp \
--set spl.boot.WATCHDOG_ENABLE false \
--set spl.boot.FAT_SUPPORT true

Compile the Preloader. This command creates “preloader-mkpimage.bin”
file:

[embedded-shell] design_root $ cd software/spl_bsp && make

The final step is to binary copy the preloader image to the A2 partition on
the SD card. One should be careful about writing to the correct partition!

dd of=/dev/mmcblk0p3 bs=512 if=preloader-mkpimage.bin ; sync

U–Boot image (u–boot.img)

This project uses a fork of U–Boot source that is provided by Altera/Intel. It
contains default configuration for the Altera’s board/platform. The version
used in this project is: “tag: v2019.04”

The U–Boot image was created by these commands:

$ git clone http://github.com/altera-opensource/u-boot-socfpga
$ cd u-boot-socfpga
$ git checkout v2019.04
$ export CROSS_COMPILE=cross-toolchain-prefix-
Cross toolchain is a tuple in format
’arm-vendor-linux-gnueabi-’ depending
on the concrete toolchain used by the host

$ export ARCH=arm
$ make mrproper
$ make socfpga_cyclone5_config
$ make

The result file u–boot.img is in the root directory.
This procedure is usually made once, or only when it is needed to update

U–Boot.

50

..........................4.1. Preparation of the development board

Boot script (boot.scr)

Boot script contains boot commands for U–Boot. It is an ASCII file with the
U–Boot header prepended on it.

The following bootscript is used in this work (based on information from
[15]):

echo -- Loading bitstream
setenv fpgadata 0x2000000
fatload mmc 0:1 $fpgadata soc_system.rbf

echo -- Programming FPGA
fpga load 0 $fpgadata $filesize

echo -- Enabling HPS <=> FPGA bridges
bridge enable

echo -- Loading linux image
setenv bootimage zImage
setenv loadaddr 0x100000
fatload mmc 0:1 $loadaddr $bootimage

echo -- Loading device tree
setenv fdtimage soc_system.dtb
setenv fdtaddr 0x1000000
fatload mmc 0:1 $fdtaddr $fdtimage

Note: bootargs can be set in device tree
setenv bootargs mem=1024M console=ttyS0,115200 root=/dev/mmcblk0p2 rw rootwait

echo -- Booting kernel
bootz $loadaddr - $fdtaddr

The boot script is created by the following command, given that u–
boot.script is the input ASCII file and boot.scr is the output ([15]).

Switch to Embedded Command Shell at first
to make ’mkimage’ tool available

$ intelFPGA/18.1/embedded/embedded_command_shell.sh
[embedded-shell] $ mkimage -A arm -O linux -T script -C none \

-a 0 -e 0 -n boot_script -d u-boot.script \
boot.scr

Linux kernel image (zImage)

This project uses Intel/Altera Linux fork, which adds some patches and
additional drivers for SoCFPGA platform. A real–time version of the kernel
is used, with CONFIG_PREEMPT_RT_FULL=y config option as this is
recommended for CTU CAN FD IP Core in Linux (this information was
provided by P. Pisa in personal communication). The RT patched kernel is
included in the Altera’s kernel repository. The version used in this repository
is “tag: rel_socfpga-4.14.126-ltsi-rt_19.11.01_pr”

The following procedure produces the kernel image:

51

4. Integration of components to Terasic DE0–Nano–SoC board
$ git clone https://github.com/altera-opensource/linux-socfpga
$ cd linux-socfpga
$ git checkout rel_socfpga-4.14.126-ltsi-rt_19.11.01_pr
$ export CROSS_COMPILE=cross-toolchain-prefix-
Cross toolchain is a tuple in format
’arm-vendor-linux-gnueabi-’ depending
on the concrete toolchain used by the build host

$ export ARCH=arm
$ make socfpga_defconfig
Instead of ’make socfpga_defconfig’ it is possible
to run ’make nconfig’ and load a custom
configuration if provided

$ make zImage

The result artifact is created in “arch/arm/boot/zImage”.
The procedure of making the kernel image is usually done once, or when a

new version or a patch is introduced.

Device tree (soc_system.dtb)

Firstly, there has to exist the DTS file:

arch/arm/boot/dts/socfpga_cyclone5_de0_nano_soc_canfd.dts

Procedure of making this DTS file for CTU CAN FD IP Core is described
in section 4.2.2.

Compiling the device tree source (DTS) into the device tree blob (DTB) is
done simply by running this command in kernel root:

$ make ARCH=arm socfpga_cyclone5_de0_nano_soc_canfd.dtb

This creates “arch/arm/boot/dts/socfpga_cyclone5_de0_nano_soc_canfd.dtb”
file, which can be transferred to the SD card and renamed to “soc_system.dtb”.

Root filesystem

Root filesystem contains the operating system data, settings, tools, programs
and libraries, which is all necessary to have fully functional environment for
running user applications.

There are several options for getting a root filesystem. It can be built from
scratch, which option is provided by projects like Buildroot4 or Yocto5. This
choice is more suitable for final customer embedded products, where it is
desirable to have the entire process of creating the distribution fully under
control.

4https://buildroot.org/
5https://www.yoctoproject.org/

52

https://buildroot.org/
https://www.yoctoproject.org/

.......................... 4.2. Integration of CTU CAN FD IP Core

Another way to obtain a root filesystem is to use some existing Linux
distribution. This project uses Arch Linux ARM, port of Arch Linux for
ARM architecture 6. It is a rolling type of release, which means upgrades
are on daily basis so one does not need to care about support periods for a
certain version and upgrading the whole distribution possibly breaking some
configuration.

Altera boards are not on the list of supported platforms of this distro, but
it is possible to use the release for ZedBoard, which has Xilinx Zynq SoC,
which is the same architecture as Intel/Altera SoC (ARMv7 Cortex-A9)7.

The downloaded archive is just extracted to the Ext3/4 partition of the
SD card.

4.2 Integration of CTU CAN FD IP Core

CTU CAN FD IP Core can be obtained from a CTU git repository 8.
Choose top level design (a default design from the board CD – see section

4.1.3).

4.2.1 IP block with Avalon interface

The first task is to create an IP core from HDL sources that could be integrated
into the HW design in the Quartus IDE.

Preparation of sources

At first, the “update_reg_map” script in the “scripts” directory has to be
run to obtain the source files that are not hardcoded, but rather generated
from a register map description.

The second step is to run a script in the “scripts” directory that collects
all the HDL source files in a single directory:

$ python3 create_release.py --output_dir "../release"

Creation of the IP block

Now the files in the “src” directory under the generated release can be used
to create an IP block in the Platform Designer.

Instructions and a TCL script provided in “synthesis/Quar-
tus/ctu_canfd_avalon” directory in the repository can be used for
creating the IP core with the Avalon interface. ([14])

The TCL script provides all the needed interfaces (clock, timestamp, CAN,
reset, interrupt, Avalon slave) to allow integration to the Platform Designer.
When it is opened in the Platform Designer Component Editor, the list of

6https://archlinuxarm.org/
7https://archlinuxarm.org/platforms/armv7/xilinx/zedboard
8https://gitlab.fel.cvut.cz/canbus/ctucanfd_ip_core

53

https://archlinuxarm.org/
https://archlinuxarm.org/platforms/armv7/xilinx/zedboard
https://gitlab.fel.cvut.cz/canbus/ctucanfd_ip_core

4. Integration of components to Terasic DE0–Nano–SoC board

Figure 4.1: Correct waveforms on CTU CAN FD Avalon interface (taken from
Platform Designer IDE)

Synthesis files can be edited (if a new file in the future is introduced or any
is changed). It is just important to do not forget to set the Top–level file to
can_top_level.vhd.

In “Signals & Interfaces” tab, it is very important to ensure the correct
properties of the Avalon Memory Mapped Slave interface according to the IP
Core System Architecture [29, 2.1 Memory bus]. The Address units has to
be SYMBOLS, Read latency must have value 1 and Read wait must have
value 0. The result waveforms can be seen on Fig. 4.1.

Integration to the HW design

Some information concerning this topic was provided by O. Ille and P. Pisa
in personal communication.

When the IP block is created, it can be instantiated in the Platform
Designer System Content. This design uses two instances of the core.

Registers interface. The Avalon interfaces of both cores are connected
to the “h2f_axi_master” interface on Hard Processing System. Platform
Designer creates an AXI–Avalon bridge for them. In Address mapping, a 64
KB window must be allocated for each instance, though the core itself uses
only 4 KB. If the core registers of both controllers are mapped in the same
64 K window, the registers of one controller become inaccessible.

Hard Processing System configuration. In Parameters of the HPS, FPGA–
to–HPS interrupts has to be enabled.

Output clock is chosen according to needed frequency. Some frequencies
cannot be exactly achieved by some clock. One should pay attention to
warnings in Platform Designer. In such case, it may help to use another clock
that uses different PLL. In this design, HPS–to–FPGA user clock 1 with
50 MHz frequency is used. The design also runs at 100 MHz, but at this
frequency, warnings from the timing analyzer appear during synthesis.

54

.......................... 4.2. Integration of CTU CAN FD IP Core

IRQ, Counters, CAN interface. A free–running synchronous 64–bit counter
has to be connected to “timestamp” port of each core instance.

IRQ lines from “interrupt_sender” are connected to “f2h_irq0” port on
the HPS.

The “can_interface” has to be exported for connection with top–level
entity.

Top–level entity and pin mapping. After finishing setup in Platform De-
signer, the top–level HDL file (ghrd.v) as to be adjusted to the changes that
has been made.

CAN_RX and CAN_TX signals for each CAN controller have to be added
to “ghrd” module definition and then connect these signals to those in the
instantiation of “soc_system”.

In Pin Planner, these signals are assigned to the correct pins (see Tab. 4.1)
according to the Extension I/O board schema [35, Appendix C: 100Base-T1
board for Terasic DE0–NANO–SoC, rev. 2].

Table 4.1: CAN signals to pins assignment

Signal Pin
CAN0_RX PIN_AF8
CAN0_TX PIN_AB4
CAN1_RX PIN_AE23
CAN1_TX PIN_AC22

4.2.2 Device tree node

Based on information from [26, 42] and [30, p. 19, Listing 1].
After the design is compiled, one of the produced files is “soc_system.sopcinfo”,

which describes the specific parts of the design. There is an option to use the
sopc2dts utility within Quartus Embedded Commmand Shell to generate
DTS using “soc_system.sopcinfo” file and board definitions XML files, which
are placed in the HW design root directory (“hps_common_board_info.xml”
and “soc_system_board_info.xml”). Unfortunately, this method turned out
to produce an unusable DTS (the Linux could not boot). Most probably
because the board XML files provided with the default design on the board
CD are broken.

However, a working solution is to use only the part of the generated device
tree that describes the bus portion where the CTU CAN FD controller is
connected and then to integrate this node to an existing DTS in Altera Linux
kernel source tree.

The “arch/arm/boot/dts/socfpga_cyclone5_de0_sockit.dts” in the Linux
kernel source can be used for this purpose. One can copy this file to the new
one “arch/arm/boot/dts/socfpga_cyclone5_de0_nano_soc_canfd.dts” and
add the relevant part with the CTU CAN FD controller under the existing
“soc” node there.

55

4. Integration of components to Terasic DE0–Nano–SoC board
In the added part it is needed to adjust handle references of “clocks”

and “interrupt-parent” properties so they point to the right ones. It is also
important to set the “compatible” property of CTU CAN FD node(s) to the
correct value “ctu,ctucanfd”, so the driver can find the controller. The value
of interrupt number in the “‘interrupts” property has to be reduced by 32,
because of a mapping that the driver of the interrupt controller performs
([42]).

4.2.3 Linux driver

The CTU CAN FD project comes with a Linux driver [30] for the SocketCAN
Linux layer [1].

The driver sources are located in “driver/linux” directory of the CTU CAN
FD repository. An ARM/GNUEABI cross toolchain is needed for building
the modules. The driver is built by runnning this command in the driver’s
source directory:

$ make ARCH=arm CROSS_COMPILE=toolchain-prefix- \
KDIR=linux-socfpga-path

This command produces “ctucanfd.ko” and “ctucanfd_platform.ko” mod-
ules. They can be inserted into the kernel on the target system by “insmod”
utility.

4.3 Integration of software artifacts

4.3.1 Build process

The can_activator software is a CMake–based project. It consists of the main
application, configuration files, logger utility, and run script.

The only third–party library this project uses is a C++ header–only JSON
library 9. The library is provided with this project in the third-party/
directory. The GNU C++ library (libstdc++) has to be present on the target
system to be able to run the application.

To build the can_activator project a “build.sh” script is provided. It builds
the project for native and ARM targets.

The following tools are required to successfully build the project:. CMake, minimum version 3.9.GCC native compiler, a version supporting C++17 standard (only for
native build).GNU cross–toolchain for ARM architecture with a C++17 compiler

9https://github.com/nlohmann/json

56

https://github.com/nlohmann/json

............................ 4.3. Integration of software artifacts

Before building the ARM version of the project, variables “toolchain_prefix”
and “toolchain_tuple” in arm.toolchain.cmake file have to be set to correct
values.

Results of build process are listed in Tab. 4.2.

Table 4.2: Build artifacts of the can_activator project

Artifact Description
can_activator_run shell script for running the ap-

plication
BUILD_DIR/can_activator main control application
BUILD_DIR/log_server/log_server logging server
BUILD_DIR/log_server/log_writer auxiliary utility providing safe

and nonblocking write to FIFO
config/ directory with JSON schemas

for the main application

4.3.2 Configuration of the target system

Network address. The target board ethernet interface has to be set up for
a static address. The prototype uses following configuration:

IP address: 192.168.1.10
Netmask: 255.255.255.0

Configuration of the network is provided by systemd-networkd.service,
whose configuration is stored in “/etc/systemd/network/”.

Startup services. Insertion of CTU CAN FD modules to the kernel and
initialization of the CAN interfaces is carried out by a custom script. It
can be made to run automatically during the system startup by providing
a systemd service that executes it. Similarly, another systemd service can
execute the main application’s run script after the former one is executed.

These services are not provided yet with the current version of the project.

4.3.3 SW deployment to the target

When the application is built, it has to be deployed to the board together
with the CTU CAN FD drivers and execution scripts.

At current state, there is no automation deployment tool or a script, and
data has to be transferred over SSH to the board SD card and run manually.

The sequence of steps needed to run the CAN Activator application is
following:..1. Transfer all the files listed in 4.2 to a directory on the target..2. Transfer the CTU CAN FD Linux kernel modules built in section 4.2.3

(if they are not already present on the board)

57

4. Integration of components to Terasic DE0–Nano–SoC board3. Within the Linux shell on the board, following steps has to be taken:..a. Insert the modules to the kernel:
insmod ctucanfd.ko
insmod ctucanfd_platform.ko..b. Bring up CAN interfaces:
ip link set can0 up type can bitrate 1000000 \

dbitrate 1000000 fd on restart-ms 100
ip link set can1 up type can bitrate 1000000 \

dbitrate 1000000 fd on restart-ms 100..c. The CAN activator can now be run with the “config” directory path
as an argument...d. If one wants to utilize the Log server, a FIFO has to be first created
in the filesystem before the Log server is brought up:
mkfifo /tmp/can_a_logger.fifo &&
./log_server/log_server /tmp/can_a_logger.fifo..e. Then CAN activator can be run with standard output redirected
to the FIFO through Log writer utility, which ensures nonblocking
behavior in case no one reads the FIFO (Log server fails to start or
terminates).

./can_activator | ./log_server/log_write \
/tmp/can_a_logger.fifo..f. Or the provided run script can be used. It performs redirecting

output and restarting the application in a case of failure (any
unhandled exception, segmentation fault, or so)

58

Chapter 5
Testing and Conclusion

A prototype of the Control module was developed and tested.

Note on CTU CAN FD controller. Despite the fact the core seems to
be stable and is operating well, it is still under development and lacks an
industrial certification.

There is still an unresolved issue with the core going to Bus–off when
transmitting a CAN frame on a single–node network. However, this is
probably a matter of synthesis process in Quartus Prime, not a bug in the
core itself.

Regarding the Linux driver for the CAN controller, it seems to work well.
During its integration, some bugs were fixed and it was split to use separate
modules for PCI and platform bus implementation. Now it is in the process
of integrating into the mainline kernel.

Client for testing. For testing and demonstration purposes a simple testing
client GUI application was developed. The tester includes the heartbeating
mechanism (described in section 2.3.3) required by the CAN Activator – MCS
protocol to keep the connection alive.

It offers a simple logging window with nice formatting of messages marked
with timestamps, colors and an option of hiding/showing of heartbeat mes-
sages.

The supported commands are loaded from the command schema, so com-
mands definition can change or be extended in the future without need of
changing the application.

The tester (its relevant parts) may be used as a reference implementation
of the communication layer with the CAN Activator for the Master Control
System.

Screenshot of the testing client is on Fig. 5.1.

Testing process. Testing was performed inside the vehicle. Air Conditioning
and Infotainment functions could be tested while the vehicle was stationary.
To test the ACC and Speed Limiter functions, several test drives had to be
performed, because these functions only work correctly when the vehicle is
traveling at least at a certain speed.

59

5. Testing and Conclusion
Implemented commands. The commands implemented in this thesis are
listed in Appendix B.

Almost all of the implemented Air Conditioning commands worked well.
The only exception is the air_volume command, which sometimes does not
take effect in the control element. The observed behavior is probably caused
by a bug in an ECU, but it can be worked around by special handling of this
command. The worked around solution has not yet been implemented.

Function for setting a driving mode has not been properly tested in the
final version, but it had been tested earlier with success.

Regarding functions for ACC and Speed Limiter, they work well under most
circumstances. There is still an opportunity to experiment with processing of
these functions to avoid delays in corner cases.

Functions for setting the Audio source on the Infotainment has not yet
been implemented.

Enhancements in the integration part are still possible. Some configuration
is still hardcoded and should be moved to the configuration files. There
could also be an (semi)automatic process for preparing the Terasic board and
deploying all the files there insted. It has to be done manually in current
version.

5.1 Final Conclusion

All the assignment points have been met and the implementation is working.
The solution (Fig. 5.2) was integrated into a Škoda Kodiaq vehicle and several
test drives were performed with success. Works on this project will continue
in the future.

60

................................... 5.1. Final Conclusion

Figure 5.1: Tester client window

61

5. Testing and Conclusion

Figure 5.2: Control module (on the left) connected to one of the CAN Gateways
(Gateway data interfaces are disconnected)

62

Bibliography

[1] Oliver Hartkopp et al. Readme file for the Controller Area Network
Protocol Family (aka SocketCAN). url: https://www.kernel.org/
doc/Documentation/networking/can.txt (visited on 2020-08-11).

[2] Ondrej Ille et al. CTU CAN FD IP Core. CAN with Flexible Data–rate
IP Core developed at Department of Measurement of FEE CTU. git
repository. url: https://gitlab.fel.cvut.cz/canbus/ctucanfd_
ip_core (visited on 2020-08-11).

[3] Altera Cyclone V SoC Board. rocketboards.org. url: https://rocketboards.
org/foswiki/Documentation/AlteraSoCDevelopmentBoard (visited
on 2020-08-11).

[4] Atlas-SoC Development Platform. digital image. url: https://rocketboards.
org/foswiki/pub/Documentation/AtlasSoCDevelopmentPlatform/
Board-Top.jpg (visited on 2020-08-11).

[5] Automobile CAN Bus Network Platform. digital image. url: https:
//www.aidc.com.tw/Content/Image/caren-3-2.png (visited on
2020-08-11).

[6] Tim Bray. The JavaScript Object Notation (JSON) Data Interchange
Format. RFC 8259. 2017-12. doi: 10.17487/RFC8259. url: https:
//rfc-editor.org/rfc/rfc8259.txt (visited on 2020-08-11).

[7] Chet Ramey Brian Fox. BASH(1) General Commands Manual. bash -
GNU Bourne-Again SHell. Free Software Foundation, 2018-12-07.

[8] CAN data link layers in some detail. url: https://www.can-cia.org/
can-knowledge/can/can-data-link-layers/ (visited on 2020-08-
11).

[9] CAN FD – The basic idea. url: https://www.can-cia.org/can-
knowledge/can/can-fd/ (visited on 2020-08-11).

[10] CAN lower– and higher–layer protocols. url: https : / / www . can -
cia.org/can-knowledge/ (visited on 2020-08-11).

[11] CAN physical layer. url: https://www.can-cia.org/can-knowledge/
can/systemdesign-can-physicallayer/ (visited on 2020-08-11).

63

https://www.kernel.org/doc/Documentation/networking/can.txt
https://www.kernel.org/doc/Documentation/networking/can.txt
https://gitlab.fel.cvut.cz/canbus/ctucanfd_ip_core
https://gitlab.fel.cvut.cz/canbus/ctucanfd_ip_core
https://rocketboards.org/foswiki/Documentation/AlteraSoCDevelopmentBoard
https://rocketboards.org/foswiki/Documentation/AlteraSoCDevelopmentBoard
https://rocketboards.org/foswiki/pub/Documentation/AtlasSoCDevelopmentPlatform/Board-Top.jpg
https://rocketboards.org/foswiki/pub/Documentation/AtlasSoCDevelopmentPlatform/Board-Top.jpg
https://rocketboards.org/foswiki/pub/Documentation/AtlasSoCDevelopmentPlatform/Board-Top.jpg
https://www.aidc.com.tw/Content/Image/caren-3-2.png
https://www.aidc.com.tw/Content/Image/caren-3-2.png
https://doi.org/10.17487/RFC8259
https://rfc-editor.org/rfc/rfc8259.txt
https://rfc-editor.org/rfc/rfc8259.txt
https://www.can-cia.org/can-knowledge/can/can-data-link-layers/
https://www.can-cia.org/can-knowledge/can/can-data-link-layers/
https://www.can-cia.org/can-knowledge/can/can-fd/
https://www.can-cia.org/can-knowledge/can/can-fd/
https://www.can-cia.org/can-knowledge/
https://www.can-cia.org/can-knowledge/
https://www.can-cia.org/can-knowledge/can/systemdesign-can-physicallayer/
https://www.can-cia.org/can-knowledge/can/systemdesign-can-physicallayer/

5. Testing and Conclusion
[12] CAN with Flexible Data-Rate. Specification. Version 1.0. Robert Bosch

GmbH, 2012-04-17. url: https://can- newsletter.org/assets/
files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf (vis-
ited on 2020-08-11).

[13] Stephen Cleary. Detection of Half-Open (Dropped) Connections. 2009-
05-16. url: https://blog.stephencleary.com/2009/05/detection-
of-half-open-dropped.html (visited on 2020-08-11).

[14] Intel Corp. Avalon Interface Specifications. url: https://www.intel.
com/content/dam/www/programmable/us/en/pdfs/literature/
manual/mnl_avalon_spec.pdf (visited on 2020-08-11).

[15] Creating the U-boot script. Golden System Reference Design (GSRD)
User Manuals FPGA Configuration. rocketboards.org. url: https://
rocketboards.org/foswiki/Documentation/S10SGMIIRDV181CreateUbootScript
(visited on 2020-08-11).

[16] DBC File Format Documentation. Version 1.0. Vector Informatik GmbH,
2007-02-09. url: http://read.pudn.com/downloads766/ebook/
3041455/DBC_File_Format_Documentation.pdf (visited on 2020-08-
11).

[17] DE0-Nano-SoC User Manual. (rev.D0 Board). Terasic, Inc., 2019-11.
url: https://www.terasic.com.tw/attachment/archive/941/DE0-
Nano-SoC_User_manual_rev.D0.pdf (visited on 2020-08-11).

[18] Dokumentace modulu CAN FD Gateway. Version 1.1. ČVUT FEL v
Praze, Katedra měření, 2018.

[19] M.J. Donahoo and K.L. Calvert. TCP/IP Sockets in C: Practical Guide
for Programmers. TCP/IP Sockets in C Bundle. Elsevier Science, 2009.
isbn: 9780080923215. url: https://books.google.cz/books?id=
dmt%5C_mERzxV4C (visited on 2020-08-11).

[20] EPOLL(7) Linux Programmer’s Manual. epoll - I/O event notification
facility. 2019-03-06.

[21] Julia Evans. Async IO on Linux: select, poll, and epoll. url: https:
//jvns.ca/blog/2017/06/03/async- io- on- linux-- select--
poll--and-epoll/ (visited on 2020-08-11).

[22] FIFO(7) Linux Programmer’s Manual. fifo - first-in first-out special
file, named pipe. 2017-11-26.

[23] GSRD - Boot Flow. rocketboards.org. url: https://rocketboards.
org/foswiki/Documentation/GSRDBootFlow (visited on 2020-08-11).

[24] GSRD v13.1 - Compiling Golden Hardware Reference Design. rocket-
boards.org. url: https://rocketboards.org/foswiki/Documentation/
GSRD131CompileHardwareDesign (visited on 2020-08-11).

[25] GSRD v13.1 - Generating and Compiling the Preloader. rocketboards.org.
url: https://rocketboards.org/foswiki/Documentation/GSRD131Preloader
(visited on 2020-08-11).

64

https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://blog.stephencleary.com/2009/05/detection-of-half-open-dropped.html
https://blog.stephencleary.com/2009/05/detection-of-half-open-dropped.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://rocketboards.org/foswiki/Documentation/S10SGMIIRDV181CreateUbootScript
https://rocketboards.org/foswiki/Documentation/S10SGMIIRDV181CreateUbootScript
http://read.pudn.com/downloads766/ebook/3041455/DBC_File_Format_Documentation.pdf
http://read.pudn.com/downloads766/ebook/3041455/DBC_File_Format_Documentation.pdf
https://www.terasic.com.tw/attachment/archive/941/DE0-Nano-SoC_User_manual_rev.D0.pdf
https://www.terasic.com.tw/attachment/archive/941/DE0-Nano-SoC_User_manual_rev.D0.pdf
https://books.google.cz/books?id=dmt%5C_mERzxV4C
https://books.google.cz/books?id=dmt%5C_mERzxV4C
https://jvns.ca/blog/2017/06/03/async-io-on-linux--select--poll--and-epoll/
https://jvns.ca/blog/2017/06/03/async-io-on-linux--select--poll--and-epoll/
https://jvns.ca/blog/2017/06/03/async-io-on-linux--select--poll--and-epoll/
https://rocketboards.org/foswiki/Documentation/GSRDBootFlow
https://rocketboards.org/foswiki/Documentation/GSRDBootFlow
https://rocketboards.org/foswiki/Documentation/GSRD131CompileHardwareDesign
https://rocketboards.org/foswiki/Documentation/GSRD131CompileHardwareDesign
https://rocketboards.org/foswiki/Documentation/GSRD131Preloader

................................... 5.1. Final Conclusion

[26] GSRD v13.1 - Generating the Device Tree. rocketboards.org. url:
https://rocketboards.org/foswiki/Documentation/GSRD131DeviceTreeGenerator
(visited on 2020-08-11).

[27] GSRD v13.1 - SD Card. rocketboards.org. url: https://rocketboards.
org/foswiki/Documentation/GSRD131SdCard (visited on 2020-08-11).

[28] History of CAN technology. url: https://www.can-cia.org/can-
knowledge/can/can-history/ (visited on 2020-08-11).

[29] O. Ille. CTU CAN FD IP CORE. System Architecture. 2019.
[30] Martin Jeřábek. “Open–source and Open–hardware CAN FD Protocol

Support”. MA thesis. Czech Technical University in Prague. Department
of Control Engineering, 2019-01-08.

[31] Kent Lennartsson. Comparing CAN FD with Classical CAN. 2016-10.
url: https://www.kvaser.com/wp- content/uploads/2016/10/
comparing-can-fd-with-classical-can.pdf (visited on 2020-08-
11).

[32] MCP2517FD. External CAN FD Controller with SPI Interface. Mi-
crochip, Inc., 2018. url: http://ww1.microchip.com/downloads/en/
DeviceDoc/MCP2517FD-External-CAN-FD-Controller-with-SPI-
Interface-20005688B.pdf (visited on 2020-08-11).

[33] MQ_OVERVIEW(7) Linux Programmer’s Manual. mq_overview -
overview of POSIX message queues. 2020-06-09.

[34] NC(1) BSD General Commands Manual. nc — arbitrary TCP and
UDP connections and listens. 2018-12-27.

[35] Jan Nejtek. “Automotive Ethernet Analyzer”. bachelor thesis. Czech
Technical University in Prague. Computing and Information Centre,
2019-06-12.

[36] Carsten Pinkle. The Why and How of Differential Signaling. 2016-11-16.
url: https://www.allaboutcircuits.com/technical-articles/
the-why-and-how-of-differential-signaling/ (visited on 2020-
08-11).

[37] PIPE(7) Linux Programmer’s Manual. pipe - overview of pipes and
FIFOs. 2017-09-15.

[38] POLL(2) Linux Programmer’s Manual. poll, ppoll - wait for some event
on a file descriptor. 2020-04-11.

[39] Preparing a Uboot image for Altera’s Cyclone V SoC FPGA. Xillybus
Ltd. url: http://xillybus.com/tutorials/u-boot-image-altera-
soc (visited on 2020-08-11).

[40] Road vehicles – Controller area network (CAN) – Part 1: Data link
layer and physical signalling. Standard ISO 11898-1:2003(E). Geneva,
CH: International Organization for Standardization, 2003-01-12.

65

https://rocketboards.org/foswiki/Documentation/GSRD131DeviceTreeGenerator
https://rocketboards.org/foswiki/Documentation/GSRD131SdCard
https://rocketboards.org/foswiki/Documentation/GSRD131SdCard
https://www.can-cia.org/can-knowledge/can/can-history/
https://www.can-cia.org/can-knowledge/can/can-history/
https://www.kvaser.com/wp-content/uploads/2016/10/comparing-can-fd-with-classical-can.pdf
https://www.kvaser.com/wp-content/uploads/2016/10/comparing-can-fd-with-classical-can.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2517FD-External-CAN-FD-Controller-with-SPI-Interface-20005688B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2517FD-External-CAN-FD-Controller-with-SPI-Interface-20005688B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2517FD-External-CAN-FD-Controller-with-SPI-Interface-20005688B.pdf
https://www.allaboutcircuits.com/technical-articles/the-why-and-how-of-differential-signaling/
https://www.allaboutcircuits.com/technical-articles/the-why-and-how-of-differential-signaling/
http://xillybus.com/tutorials/u-boot-image-altera-soc
http://xillybus.com/tutorials/u-boot-image-altera-soc

5. Testing and Conclusion
[41] SELECT(2) Linux Programmer’s Manual. select, pselect, FD_CLR,

FD_ISSET, FD_SET, FD_ZERO - synchronous I/O multiplexing.
2020-04-11.

[42] Setting up a device tree entry on Altera’s SoC FPGAs. Xillybus Ltd.
url: http://xillybus.com/tutorials/device-tree-altera-soc-
cyclone (visited on 2020-08-11).

[43] SHM_OVERVIEW(7) Linux Programmer’s Manual. shm_overview -
overview of POSIX shared memory. 2016-12-12.

[44] Randall R. Stewart. Stream Control Transmission Protocol. RFC 4960.
2007-09. doi: 10.17487/RFC4960. url: https://rfc-editor.org/
rfc/rfc4960.txt (visited on 2020-08-11).

[45] TCP(7) Linux Programmer’s Manual. 2020-06-09.
[46] TJA1051 High-speed CAN transceiver. product datasheet. NXP, 2017-

11-28. url: https://www.nxp.com/docs/en/data-sheet/TJA1051.
pdf (visited on 2020-08-11).

[47] Transmission Control Protocol. RFC 793. 1981-09. doi: 10.17487/
RFC0793. url: https://rfc-editor.org/rfc/rfc793.txt (visited
on 2020-08-11).

[48] User Datagram Protocol. RFC 768. 1980-08. doi: 10.17487/RFC0768.
url: https://rfc-editor.org/rfc/rfc768.txt (visited on 2020-08-
11).

[49] Conal Watterson. Controller Area Network (CAN) Implementation
Guide. Application Note. Rev. A. Analog Devices, 2017. url: https://
www.analog.com/media/en/technical-documentation/application-
notes/AN-1123.pdf (visited on 2020-08-11).

[50] Stewart Weiss. “Chapter 6 Event Driven Programming”. In: UNIX
Lecture Notes (). url: http://www.compsci.hunter.cuny.edu/
~sweiss/course_materials/unix_lecture_notes/chapter_06.pdf
(visited on 2020-08-11).

[51] WRITE(2) Linux Programmer’s Manual. write - write to a file descrip-
tor. 2019-10-10.

66

http://xillybus.com/tutorials/device-tree-altera-soc-cyclone
http://xillybus.com/tutorials/device-tree-altera-soc-cyclone
https://doi.org/10.17487/RFC4960
https://rfc-editor.org/rfc/rfc4960.txt
https://rfc-editor.org/rfc/rfc4960.txt
https://www.nxp.com/docs/en/data-sheet/TJA1051.pdf
https://www.nxp.com/docs/en/data-sheet/TJA1051.pdf
https://doi.org/10.17487/RFC0793
https://doi.org/10.17487/RFC0793
https://rfc-editor.org/rfc/rfc793.txt
https://doi.org/10.17487/RFC0768
https://rfc-editor.org/rfc/rfc768.txt
https://www.analog.com/media/en/technical-documentation/application-notes/AN-1123.pdf
https://www.analog.com/media/en/technical-documentation/application-notes/AN-1123.pdf
https://www.analog.com/media/en/technical-documentation/application-notes/AN-1123.pdf
http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/unix_lecture_notes/chapter_06.pdf
http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/unix_lecture_notes/chapter_06.pdf

Appendix A
Abbreviations

CTU Czech Technical University in Prague

FEE Faculty of Electrical Engineering

CAN Controller Area Network

FD Flexible Data Rate

CRC Cyclic Redundancy Check

EMI Electromagnetic Interference

ACK Acknowledgment

NACK Negative Acknowledgment

GW Gateway

AI Artificial Intelligence

MCS Master Control System

OS Operating System

FIFO First In First Out

IPC Inter–Process Communication

AC Air Conditioning

ACC Adaptive Cruise Control

TCP Transmission Control Protocol

IP Internet Protocol

IP Intellectual Property (in IP cores context)

IDE Identifier Extension (a bit in CAN frame)

IDE Integrated Development Environment

67

A. Abbreviations
RPC Remote Procedure Call

JSON Javascript Object Notation

SoC System on Chip

HPS Hard Processing System (Intel/Altera SoC)

FPGA Field–programmable Gate Array

I/O Input/Output

SD Secure Digital

68

Appendix B
List of implemented commands

Command Description Parameters

climate_unit_control Enables or disables the climate unit
compressor

enable

ac_control Enables or disables cabin air condition-
ing

enable

ac_controls_rear Locks or releases AC controls on the
rear row

enable

air_recirculation Enables or disables air recirculation in
cabin

enable

air_recirculation_auto Enables or disables automatic air recir-
culation in cabin

enable

ac_zones_sync Enables or disables synchronization of
air conditioning zones to the driver’s
zone

enable

window_heating Enables or disables heating of the front
or rear window

window, enable

air_temperature Sets a temperature for one of three
cabin zones

zone, value

air_volume Sets a volume of air ventilation value
air_distribution Controls the distribution of air ventila-

tion
window, per-
son, feet

ac_auto Switches air conditioning to automatic
mode. In this mode the air volume
is regulated automatically at the rate
set by “ac_auto_style” command, to
reach the setpoint temperature

ac_auto_style Sets a style (rate) of automatic mode
of AC

style

seat_heating Sets a heating degree for front–row
seats

seat, value

seat_ventilation Sets a ventilation degree for front–row
seats

seat, value

69

B. List of implemented commands.............................
steering_wheel_heating Controls a level of steering wheel heat-

ing
level, enable

driving_mode Selects one of six driving modes mode
tm_acc_enable Activates Automatic Cruise Control to

maintain the vehicle at target speed
speed

tm_acc_distance Sets the preceding vehicle distance for
Automatic Cruise Control

distance

tm_acc_disable Deactivates Automatic Cruise Control
tm_limiter_enable Activates Speed Limiter to prevent the

vehicle from speeding above limit
speed

tm_limiter_disable Deactivates Limiter function

70

	Project Specification
	Introduction
	Motivation
	Control elements in the vehicle

	Outline of the system
	Goals
	Controller Area Network
	Physical layer
	Data link layer
	Frame format
	CAN with Flexible Data-Rate

	Network in a vehicle
	Topology
	Messages

	Analysis
	Vehicle control functions
	Requirements for the solution
	List of tasks

	System design
	Selection of HW platform
	CAN Gateway
	Controller Module
	CAN FD controller

	Top level system design
	Communication protocol between CAN Activator and Master Control System
	Transport layer discussion
	Data exchange
	Messages format

	Control of CAN Gateway modules
	General operation
	Communication with Gateway
	Gateway functions
	Design of the interface

	Software design
	Control application architecture
	Event Loop
	EventedFd

	CAN Components
	CAN Socket and Interface
	CAN Gateway

	Master Control System Interface
	TCP communication
	Request and response handling

	Command Manager
	Command processors
	General processing procedure
	Commands for the RPC protocol
	Commands for ACC and Speed Limiter

	Runtime configuration
	System schema
	Commands schema
	Processing schema

	Logging
	Logger
	Log Server
	Log Writer

	Integration of components to Terasic DE0–Nano–SoC board
	Preparation of the development board
	Boot process description
	SD card partitioning and contents
	Making the artifacts

	Integration of CTU CAN FD IP Core
	IP block with Avalon interface
	Device tree node
	Linux driver

	Integration of software artifacts
	Build process
	Configuration of the target system
	SW deployment to the target

	Testing and Conclusion
	Final Conclusion

	Bibliography
	Abbreviations
	List of implemented commands

