
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague November 5, 2019

ASSIGNMENT OF MASTER’S THESIS
 Title: Orchestration and Monitoring of Manta Flow Processes

 Student: Bc. Petr Gondek

 Supervisor: Ing. Michal Valenta, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

The aim of the thesis is to design and implement a tool for orchestrating and triggering processes in Manta
Flow software and their monitoring. The tool will have a graphical user interface.

Follow these steps:
1. Analyze Manta Flow processes and design an API that allows you to run and monitor processes.
2. Analyze orchestration needs and design a configuration description for more complex process
orchestration.
3. Use wire-frame to design a graphical interface for starting and monitoring processes.
4. Implement the prototype as a web application.
5. Test and document the prototype properly.

References

Will be provided by the supervisor.

Master’s thesis

Orchestration and Monitoring of Manta
Flow Processes

Bc. Petr Gondek

Department of Software Engineering
Supervisor: Ing. Michal Valenta, Ph.D.

July 27, 2020

Acknowledgements

First of all, I would like to thank MANTA and its employees for creating a
pleasant collective and allowing the creation of a thesis under their auspices.
Then, above all, to Jakub Moravec for his valuable advices throughout the
project that I would have been hard-pressed to finish the thesis without.

Further, I would like to thank the Czech Technical University in Prague,
Faculty of Information Technology and its professors for great opportunities
and preparing me for my career life. Especially to my supervisor Michal
Valenta whose insight and knowledge helped me to finish this thesis. He was
always kind and willing to help.

Last but not least, I would like to thank my family, friends and Šárka
Weberová for their support, patience and encouragement during studies.

Declaration

I hereby declare that I have authored this thesis independently, and that all
sources used are declared in accordance with the “Metodický pokyn o etické
př́ıpravě vysokoškolských závěrečných praćı”.

I acknowledge that my thesis (work) is subject to the rights and obliga-
tions arising from Act No. 121/2000 Coll., on Copyright and Rights Related
to Copyright and on Amendments to Certain Laws (the Copyright Act), as
amended, (hereinafter as the “Copyright Act”), in particular § 35, and § 60 of
the Copyright Act governing the school work.

With respect to the computer programs that are part of my thesis (work)
and with respect to all documentation related to the computer programs
(“software”), in accordance with Article 2373 of the Act No. 89/2012 Coll.,
the Civil Code, I hereby grant a nonexclusive and irrevocable authorisation
(license) to use this software, to any and all persons that wish to use the soft-
ware. Such persons are entitled to use the software in any way without any
limitations (including use for-profit purposes). This license is not limited in
terms of time, location and quantity, is granted free of charge, and also cov-
ers the right to alter or modify the software, combine it with another work,
and/or include the software in a collective work.

In Prague on July 27, 2020

Czech Technical University in Prague
Faculty of Information Technology
c© 2020 Petr Gondek. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Gondek, Petr. Orchestration and Monitoring of Manta Flow Processes. Mas-
ter’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2020.

Abstrakt

Tato diplomová práce popisuje problematiku spouštěńı mnoha dlouhotrvaj́ıćıch
proces̊u. Zabývá se možnostmi orchestrace takových proces̊u v kontextu firmy
MANTA a část práce je věnována také jejich plánováńı s využit́ım možnost́ı
paralelizace. V neposledńı řadě popisuje možnost monitorováńı a sledováńı
pr̊uběhu spuštěného plánu a scénář̊u.

Kĺıčová slova MANTA, MANTA CLI, procesy, spouštěńı, paralelizace, mo-
nitorováńı, plánováńı, orchestrace

Abstract

This master thesis describes problematics of execution a lot of long-running
processes. It describes the possibilities of orchestrating such processes in the
context of MANTA, and part of the work is also devoted to planning processes
using parallel running capabilities. Last but not least, it details the possibility
of logging and monitoring the Workflow and Scenario progress.

Keywords MANTA, MANTA CLI, processes, execution, parallelisation,
monitoring, progress, planning, orchestration

vii

Contents

1 Introduction 1
1.1 Thesis Structure . 2

2 Thesis Goals 3

3 Analysis 5
3.1 MANTA Ecosystem . 5

3.1.1 Data Lineage . 6
3.1.2 MANTA Architecture 7

3.2 Requirements Gathering . 11
3.2.1 Use-Cases . 12
3.2.2 Functional Requirements 15
3.2.3 Non-functional Requirements 20

3.3 Requirements Analysis . 23
3.3.1 Current Parallelism in Scenarios 23
3.3.2 Creating Customised Workflow for MANTA CLI 24
3.3.3 Scenarios Progress and State Knowledge 25

3.4 Existing Solutions . 26
3.4.1 Prometheus (monitoring) 27
3.4.2 PushMon (monitoring) 28
3.4.3 Activeeon (Orchestration and Monitoring) 28

3.5 Summary . 30

4 Design 33
4.1 New Business Processes . 33
4.2 Application Architecture . 36

4.2.1 Deployment Diagram 37
4.2.2 State Diagrams . 38

4.3 User Interface Design . 43
4.3.1 Task Group . 44

ix

4.3.2 Wireframes and Screen Transition 45
4.3.3 Scenario Centric vs Connection Centric Approach . . . 50

4.4 Orchestration Component Architecture 52
4.4.1 Component Architecture 52
4.4.2 Workflow Class Diagram (Workflow Definition) 55
4.4.3 Sequence Diagrams . 57
4.4.4 Executing MANTA Platform 57

4.5 Monitoring Component Architecture 67
4.6 Public API . 67
4.7 Data Persistence and User Customization 68

4.7.1 Database Model . 71

5 Implementation 73
5.1 Implementation . 73

5.1.1 Workflow’s Life Cycle 73
5.1.2 Workflow Plan . 76
5.1.3 Scenario Execution . 79

5.2 Testing . 81
5.3 Documentation . 81

Conclusion 83

Bibliography 85

A Acronyms 89

B Contents of enclosed SD card 93

C Attachments 95

x

List of Figures

3.1 MANTA Data Lineage Visualisation [1] 6
3.2 MANTA Architecture Diagram [2] 8
3.3 Revisions in MANTA Server [1] . 9
3.4 Example of Scenarios Execution with all Phases and Oracle Tech-

nology . 10
3.5 Use Case Diagram . 14
3.6 Prometheus Scrapes Cached Metrics from Pushgateway [3] 27
3.7 Example of a Metric Collected by Prometheus [3] 27

4.1 New Business Process Activity Diagram 34
4.2 Application Architecture Diagram 37
4.3 Deployment Diagram . 39
4.4 Scenario Execution State Diagram 40
4.5 Workflow Execution State Diagram 41
4.6 Scenario Execution State to Workflow State Mapping Diagram . . 43
4.7 Screens Transitions . 45
4.8 Workflows Overview List Screen 46
4.9 Create a new Workflow (description) Screen 47
4.10 Create a new Workflow (definition) Screen 48
4.11 Choose from Template Modal Window 49
4.12 Workflow Detail Screen . 50
4.13 Execution Detail Screen . 51
4.14 Connection Centric (left) vs Scenario Centric (right) Approach . . 52
4.15 Orchestration Component Architecture Diagram 53
4.16 Workflow Class Diagram . 56
4.17 Workflow Execution Sequence Diagram (left) 58
4.18 Workflow Execution Sequence Diagram (right) 59
4.19 Monitoring and Orchestration Database Model 72

5.1 Workflow Plan Execution Example 75

xi

5.2 Workflow Plan Class Diagram . 76
5.3 Simple Workflow Planner - transmutation from Scenario Depen-

dency graph into Workflow plan example 78
5.4 Scenario Execution with Failure Recovery Activity Diagram 80

C.1 Workflow Detail Screen - Definition 95
C.2 Template Modal Window - Bigger preview for Workflow Definition 96
C.3 Workflow Creation Sequence Diagram 97

xii

List of Tables

4.1 Workflow State Severities . 42
4.2 Workflow Storage Endpoints . 68
4.3 Workflow Execution Endpoints . 69

xiii

Chapter 1
Introduction

One of the glaring shortcomings of the MANTA flagship product is the often
recurring problems users face in creating their own workflows and monitor-
ing their execution progress. MANTA, as software for creating data lineage
from customer’s systems, uses over a hundred Scenarios to achieve this goal.
Each such Scenario takes care of a task, such as extracting metadata from a
customer’s system or analysing this obtained metadata. Together, these Sce-
narios create the data lineage, which users may observe in a web application.
Using this view, they can more easily study their data flow at their company,
finding potential issues and learn important aspects from them on which they
can, for example, perform optimisation of these systems.

These Scenarios are executed as separate processes, and shell and batch
scripts are now used for their orchestration. Such a modification of a relatively
simple script can be quite a challenge not only for an IT inexperienced user,
as Scenarios have a fixed execution order, and rearranging them can cause the
system to crash and fail to get the desired results.

As a company grows, its systems grow with them and extracting metadata
from large systems as MANTA customers may take a long time. Actually,
some customers build their data lineage over days. Tracing log generated
by a console application may be annoying, and users may lose awareness of
what has been executed and what is still waiting to run. Part of the problem
with too long Scenario executions is that the running and parallelisation of
Scenarios are not 100% effective, due to the use of so-called Master Scenarios.

This thesis is about problematics of execution a lot of long-running pro-
cesses. Chapters describe the possibilities of orchestrating such processes in
the context of MANTA, and part of the work is also devoted to planning pro-
cesses using parallel running capabilities. Last but not least, it details the
possibility of logging and monitoring the execution process and Scenarios.

1

1. Introduction

1.1 Thesis Structure

Thesis is structured as follows:

• Chapter 2

– informally introduces thesis goals,

• Chapter 3

– provides the detail description of Manta ecosystem,
– defines functional and non-functional requirements,
– analyses existing solutions,

• Chapter 4

– introduces new business processes,
– explains application architecture,
– shows graphical user interface and API,
– details component architecture,
– presents data persistence with database model,

• Chapter 5

– describes implemented prototype,
– characterises used algorithms,
– states testing and documentation.

2

Chapter 2
Thesis Goals

The thesis aims to create a software product to make work with MANTA CLI
for users more comfortable. It would help them run Scenarios, allow them to
create their customised workflows more easily and efficiently so that users are
not reliant only on a few pre-prepared workflows from MANTA, and improve
parallel run capabilities and thus speed up the process.

To achieve these goals, the entire MANTA ecosystem must first be anal-
ysed. Find out what the MANTA CLI is, what the Scenarios are, how the
Scenarios work, what the Scenarios can preform, what the Scenarios depend
on, how their configurations work, how the Scenarios are currently triggered,
how they are currently orchestrated. Also, the analysis must reveal hidden
characteristics and limitations of the existing execution to avoid the risks that
might arise in implementing a new run.

After finding out enough information about MANTA CLI and Scenarios,
new orchestration options need to be proposed. New Workflow format must
be devised with its execution and configuration possibilities. Current customi-
sation options need to be taken into account and ideally preserved to the same
extent. The solution must be prepared for possible software updates, so the
design must include user data migration - backward compatibility between
versions.

Then an API must be designed through which users can easily use the
system’s services, such as starting Workflow and monitoring its running.

However, ordinary users may not be able to exploit the full potential of
the API; thus, a graphical user interface of the web application through which
the services can be used also needs to be prepared. The design must be user-
friendly and not burdensome and will be designed using wire-frames.

At last, a prototype will be implemented, tested, and software documen-
tation will be created.

3

Chapter 3
Analysis

This chapter describes MANTA and its product MANTA, what MANTA does,
what is data lineage, history of the company, product architecture, what is
MANTA Server and CLI, what is MANTA Service Utility. Then, there is
described requirements gathering, requirements analysis, analysis of existing
solutions and illustration of current processes. And at last, there is a high-
level brief of the proposed solution, the new architecture, new activities and
processes using the new tool.

3.1 MANTA Ecosystem

MANTA is a tool which automatises data lineage creation (can be seen in
figure 3.1) by analysing metadata from report definitions, custom SQL code,
and extract-transform-load (ETL) workflows.[4][5] “It can to cope with SQL,
altogether with various of its sub-dialects, ETL and reporting tools, and pro-
gramming languages like Java. The uniqueness of the software product is in
its capability of handling code that is hardly readable by a human. Thanks to
this feature, MANTA can automatically process databases consisting of mil-
lions of records and create a map of data flow across the business intelligence
environment - data lineage. Alternatively, the data flow is not visualised di-
rectly by MANTA but cooperates with third-party data governance solutions
like Informatica, TopQuadrant, Collibra, and IBM IGC.” [4]

“MANTA’s history began back in 2008 when it was an internal tool of
the Czech consulting company Profinit. After a few years of enhancements
and adding new features, MANTA won the Czech ICT Incubator @ Silicon
Valley competition held by the Czech ICT Alliance. Shortly thereafter, in late
2016, it became an independent company and opened their first office in San
Francisco. Then, it opened another one in New York City in 2018 and moved
the HQ there a year later. With an office in the US and a development center
in Prague, MANTA has become the first-of-its-kind central hub of all data
flows that allows information users to understand the where, how, and what of

5

3. Analysis

Figure 3.1: MANTA Data Lineage Visualisation [1]

their information assets. MANTA currently operates on a global level through
their own offices and an extensive network of partners. It help customers from
sectors and industries of all kinds since there’s no such thing as having too
good of an understanding of what is happening with an organisation’s data.
Their customers include Teradata, SCP Health, OBI, and many more.” [6]

3.1.1 Data Lineage

“Data Lineage or Data Provenance describes data origins, movements, charac-
teristics, and quality. According to Stewart Bond, Data Lineage has typically
described where the Big Data begins and how it is changed to the final out-
come.” [7]

“It is like telling the story of a piece of data, including where does it
come from, what transformation it undergoes, and how it interacts with other
data. It should provide answers to questions such as where the data in a given
solution come from, whether it can be trusted or not, how it gets from point A
to point B, and how the data changes over time in the analysed system. Data
lineage helps enterprises to gain more in-depth knowledge and understanding
of what happens to data as it travels through various interconnected data
pipelines that their systems contain.” [4]

“Data lineage is important to data quality measurement.” [8] “From data-
quality and data-governance perspectives, data lineage ensures that existing
business rules exist where expected, calculation rules and other transforma-
tions are correct, and system inputs and outputs are compatible. Data trace-
ability is the actual exercise to track access, values, and changes to the data

6

3.1. MANTA Ecosystem

as they flow through their lineage. Data traceability can be used for data
validation and verification as well as data auditing.” [9]

3.1.2 MANTA Architecture

MANTA consists of three separate components as can be seen in figure 3.2.
Two core components MANTA CLI and MANTA Server are responsible for
creating data lineage. The third supporting component MANTA Service Util-
ity, which consists of two modules named MANTA Updater and MANTA
Configurator, helps users to update and configure the MANTA.[10]

During writing this work1, MANTA Service Utility is being rewritten to a
new application called MANTA Admin UI. The product of this thesis, with the
working name MANTA Process Manager, will be a module for new MANTA
Admin UI. Simultaneously with this module emerges another tool MANTA
Log Viewer which will also be part of MANTA Admin UI. Alongside these all
components, there is also another tool named MANTA Installer which installs
MANTA and updates the MANTA Service Utility.

This thesis will use shorten names for all these components and modules
from this point further to achieve better readability. The word ‘MANTA’ in
names will be left out, but the reader must keep in mind that their shortened
name references to its only correct full name containing preposition ‘MANTA’.

MANTA CLI

MANTA is implemented as a client-server Java application. CLI is the client
which takes care of the main execution plan, which consists of Extraction,
Analysis and Export. In the extraction Phase Dictionaries, Scripts, ETL
or reporting content are extracted from specified database systems. These
extracted data are analysed in the second Analysis Phase altogether with
user’s SQL scripts. Result of the Analysis is a graph which is posted to the
Server where it is stored. This storing operation is named Merge and it creates
new Revision (can be seen in figure 3.3). The graph can be later downloaded
and exported to the third-party software, and this is the last Phase called
Export. [5][11][10]

CLI consists of Scenarios where every Scenario represents a particular task
for creating the final graph. These Scenarios are logically divided into three
parts representing Phases (Extraction, Analysis, Export), and they are also
divided by the technology they serve. There is silently used a naming con-
vention, but it is not guaranteed. A simple plan can look like in figure 3.4
where the Oracle technology was used as an example. There can be seen
highlighted Extraction Scenarios (green), Analysis Scenarios (orange) and an
example of export Scenarios. The Analysis contains many Scenarios, but only

1first half of 2020

7

3. Analysis

Figure
3.2:

M
A

N
TA

A
rchitecture

D
iagram

[2]

8

3.1. MANTA Ecosystem

Figure 3.3: Revisions in MANTA Server [1]

a few are tied up with the technology. The rest only performs necessary tasks
to maintain the execution environment, e.g. ‘Revision Create’ and ‘Commit’.

Every Scenario is at the end, the own process instantiated by MANTA
Platform. These processes are executed sequentially, and this could be very
time consuming if there wouldn’t be any parallelism. That is why Master
Scenarios were introduced. Master Scenarios handle parallelism in the con-
text of one particular technology. So for example, if there is more than one
Connection for a technology, then Extractions may be executed in parallel.
But this solution is not optimal. Almost all Extraction may run in parallel
because databases usually correspond with their own machines and computing
resources, so the computing load is distributed, and the process may speed
up. However, this is difficult to achieve by current architecture.

The original architecture consists of many .sh and .bat Scenario scripts.
These scripts execute mantar.bat script which runs java command with
MANTA Platform jar and appropriate arguments. These Scenario scripts
are called from parent scripts logically divided by their Phase. From snip-
pet 3.1 can be seen that Scenario scripts are executed sequentially, and they
wait for each other to finish before starting a new one.

9

3. Analysis

Scenarios
for a technology

Scenarios
for a technology

oracleOpenExportMasterScenario

oracleIgcUploadMetadataMasterScenario

oracleIgcDiffMasterScenario

oracleIedcExportMasterScenario

oracleIgcExportMasterScenario

oracleIedcUploadMetadataMasterScenario

pruneRevisionScenario

diagnoseRepositoryScenario

ExportExtraction AnalysisScenarios
for a technology

exportRepositoryScenario

commitRevisionScenario

repositoryPostprocessingScenario

importMetadataDataflowScenario

importLinksDataflowScenario

importDataflowScenario

newRevisionScenario

oracleExtractorMasterScenario

oracleDictionaryMappingMasterScenario

oraclePlsqlDataflowMasterScenario

oracleDdlDataflowMasterScenario

oracleDictionaryDataflowMasterScenario

Figure 3.4: Example of Scenarios Execution with all Phases and Oracle Tech-
nology

MANTA Server

“MANTA Server is a server application written in Java. The purpose of the
server is to store (‘merge’) in optimal form all the metadata received inside the
so-called metadata repository in the form of a graph database. This data will
then be transformed by the exporter to export to a third party application,
or prepared for display in the web user interface.”2 [10]

MANTA Service Utility (Admin UI) and Installer

Service Utility is a set of tools assisting users to configure and maintain
MANTA. This utility consists of two main applications: Configurator and
Updater. Configurator helps users to configure Connections to third party
systems like Data Governance Tools or database machines. These Connec-
tions are stored in CLI and used by Scenarios to extract or export metadata.
Updater, on the other hand, was created to help users merge their customised

2author’s translation

10

3.2. Requirements Gathering

8 . . .
9 c a l l ”\%˜dp0 .\ orac l eDic t ionaryData f l owMaste rScenar io . bat ”

10 c a l l ”\%˜dp0 .\ orac leDdlData f lowMasterScenar io . bat ”
11 c a l l ”\%˜dp0 .\ orac l eP l sq lData f l owMaste rScenar i o . bat ”
12
13 c a l l ”\%˜dp0 .\ te radataDict ionaryData f lowMasterScenar io . bat ”
14 c a l l ”\%˜dp0 .\ teradataDdlDataf lowMasterScenar io . bat ”
15 c a l l ”\%˜dp0 .\ teradataBteqDataf lowMasterScenar io . bat ”
16 c a l l ”\%˜dp0 .\ teradataTptDataf lowMasterScenar io . bat ”
17
18 c a l l ”\%˜dp0 .\ mssqlDict ionaryDataf lowMasterScenar io . bat ”
19 c a l l ”\%˜dp0 .\mssqlDdlDataf lowMasterScenario . bat ”
20 c a l l ”\%˜dp0 .\ mssqlTsqlDataf lowMasterScenar io . bat ”
21
22 c a l l ”%˜dp0 .\ hiveDict ionaryData f lowMasterScenar io . bat ”
23 c a l l ”%˜dp0 .\ hiveDdlDataf lowMasterScenar io . bat ”
24 . . .

Listing 3.1: Snippet from Analyze parent script

configurations with new changes in these configurations during an update. It
is capable of updating Server and CLI without destroying users’ data.

These two tools are currently3 being rewritten into a new tool with working
name MANTA Admin UI using modern technologies like a React JS. And these
two tools will be enriched by two new tools: MANTA Log Viewer [12] and
this tool MANTA Orchestration & Monitoring.4 This business decision, made
by MANTA team, lays down limitations for technologies that can be used for
development.

Together with these tools, a MANTA Installer was created. It assists
users to installs MANTA into customers machines, and it is also responsible
for updating Service Utility. This creates a challenge for this thesis because
Updater cannot be used for merging user’s configuration as same as for Server
and CLI.

3.2 Requirements Gathering

This section describes what requirements for Orchestration & Monitoring tool
are, what use-cases are and what are typical users. This information was gath-
ered in several meetings and discussion with technical supervisors represented
by Lukáš Hermann and Jakub Moravec and later verified from the customer
scope by the ordering party represented by Jan Ulrych and Ernie Ostrich.

3between years 2019-2020
4sometimes referenced by its original working name Process Manager or Process Monitor

11

3. Analysis

3.2.1 Use-Cases

This chapter describes the use-cases for MANTA Monitoring & Orchestration
tool. Use-Case Diagram 3.5 helps to define functional requirements and gives
an overview of the usability and behaviour from the user perspective. The
shortcut U# is the identifier of particular use-cases in the Use-Case diagram.
The shortcut F# is the identifier of a particular Functional Requirement and
T# is the identifier of a particular Technical Requirement.[13]

There are three persons pictured in the use case diagram. These persons
represent business roles which may be used for Orchestration and Monitoring
as access roles.

The first role with minimal privileges is Viewer. This person could be a
woman or man in a company who is using data lineage daily for his work,
e.g. data architect upkeeping their data warehouse or a member of decision
management preparing a report for his colleague. He or she can use this tool
to check if the data lineage he is currently using is up to date and from which
day it is. However, if she or he cannot find its lineage, then this person may
look into the last Execution to see what happened and if all required systems
were analysed correctly.

The Viewer may tell the Executor that his data lineage is not up to date
because a necessary change happened during last week and he or she may
request to start a particular workflow which will provide him/her newer and
reliable lineage. The Executor may be a member of dev-ops team, and his
or her responsibility may be to plan Workflow executions to not overload
targeted systems. Alternatively, the Executor may be a robot or another
system executing workflows using API.

The last role is the Administrator. This person is someone who has partici-
pated in MANTA training program and has learnt about how MANTA works,
what every Scenario does, how to create custom Workflows, how to optimise
Workflows. He or she has enough knowledge to let him or her edit Workflows
without need to worry that she or he breaks the Workflow definition, and his
or her co-workers will not have their data lineage next working day.

U1: Create Workflow

Users can create Workflow in a graphic user interface, with basic knowledge of
how Scenarios work. The user interface must guide and help users to prepare
the desired Workflow to gather their metadata and create data lineage. They
can work in levels of complexity, e.g. at the first level, they must know only
basics - what Phases are, or they may use prepared templates. The most
experienced users should be able to make use of knowledge of every Technology
Scenarios and all Processing Scenarios to create particular Workflows to meet
their desires. What Workflow does, how it is configured and defined, is called

12

3.2. Requirements Gathering

‘Workflow definition’. This replaces workflows in Scenario Scripts.5
There should be an option to create Workflows with wildcards, e.g. ‘all

Scenarios for all Oracle Connections’, and so.
There should be an option to create one-scenario specific Workflows, e.g.

‘DictionaryDataflowScenario for Connection A in Technology Oracle’.

U2: Update Workflow

It must be possible to change the existing Workflow definition later using the
same or similar graphic user interface with similar or same guidance as during
creation. There should be no limit for updating existing Workflows, what
could be done during creation must be achievable during update too.

U3: Delete Workflow

User must have an option to delete existing Workflows. The deletion must be
confirmable. Restoring deleted Workflow is not necessary.

U4: Import Workflow

User should have an option to Import Existing workflow from file or via REST
API. Workflow definition backward compatibility should be achieved if possi-
ble.

U5: Export Workflow

User should be able to export his creations from the graphic user interface
into the file. He can do it during creation in Workflow editor or Workflow
detail.

U6: Execute Workflow

Existing Workflow can be executed as defined by the user. Execution uses
Scenarios from CLI. This replaces execution from Scenario Scripts. Execution
may use MANTA Platform.

U7: Terminate Workflow

User has an option to terminate a running Scenario. Some of the Scenarios
cannot be easily terminated because special terminating Scenario must be
called. Terminating Workflow may break the Metadata Repository on the
server, and a correct recovery approach must be chosen6.

5.bat and .sh scripts in CLI
6ignore, commit or rollback

13

3. Analysis

U15: Create Workflow
from Template

U14: Create
Wildcard Workflow

U13: Automatically resolve
Processing Scenarios

only if requested

U12: Set environment
variables for Scenario

Viewer

U11: See progress
of executed
Workflow

Executor
U10: Orchestrate

Workflow

U8: See state
of executed
Workflow

U9: See progress
of executed

Scenario

U7: Terminate Workflow

U6: Execute Workflow

U2: Update Workflow

U3: Delete Workflow

U4: Import Workflow

U5: Export Workflow

U1: Create Workflow

Administrator

«extends»

«extends»

«extends»

«includes»

«includes»

Figure 3.5: Use Case Diagram

U8: See the state of executed Workflow

User must be able to distinguish from Workflow states easily. Workflow states
can be seen in the state diagram 4.5.

U9: See the progress of executed Scenario

Today, all Scenarios do logging at some level. Some of them are genuinely
verbose; they are tracking their progress and know how much work left. Some
of them does not do that so well. For example, graph processing Scenarios
do not know how much work left because they do not have knowledge about

14

3.2. Requirements Gathering

nodes count and edges count. Making these Scenarios to count how much
work they must do could be time-consuming. Scenario states can be seen in
the state diagram 4.4.

U10: Orchestrate Workflow

Workflow execution runs in parallel using the most potential of machine re-
sources. Workflow definition works as a set of Jobs which is organised to
meaningful Workflow during run-time.

U11: See the progress of executed Workflow

User may list the Execution Plan and see its progress and steps real-time.
They can identify the progress of Workflow by states of each Scenario, by
how much time left calculated from previous executions, and by a number of
completed tasks7 and how many tasks left.

U12: Set environment variables for Scenario

User has an option to define Environment Variables for Scenario. Some of the
Scenario needs to set Environment Variables before executing. These variables
may hold Connection information or libraries referenced needed by Scenario,
e.g. LD_LIBRARY_PATH.8

U13: Automatically resolve Processing Scenarios only if requested

There should be an option to create a Workflow without automatically added
Processing Scenarios for specific cases for customers with specific needs.9 For
example, a user may want to run MANTA to the whole environment, which
may take days to finish. He or she cannot block his or her systems during
working days and weekend is not long enough to analyse all systems. Thus he
or she may create a multiple smaller Workflows which will partially process
some part of the environment overnight. Using these small Workflows, he or
she may analyse the whole environment without preventing others from work.

3.2.2 Functional Requirements

“Functional requirements are product features or functions that developers
must implement to enable users to accomplish their tasks. So, it is important
to make them clear both for the development team and the stakeholders.

7a Scenario work unit; for some Scenarios, this information may be unavailable
8this change was requested in mid of March, and it caused a minor change in Workflow

Definition and redesigning the Scenario execution
9this change was requested on 27. 4. 2020 and the already existing design did not need

to be changed so much

15

3. Analysis

Generally, functional requirements describe system behaviour under specific
conditions.” [14]

F1 (U1, U2, U3): Create, Update and Delete a Workflow

A user enters the application; he or she creates a new Workflow where he
or she fills name, description and chooses Scenarios for Workflow definition,
which defines what will be executed.

The application shows only available Scenarios that have a Connection
configured10. These possible Scenarios are divided into groups by Phases:
Extraction, Analyse, Export. Each Phase has sub-steps which are specific for
every Technology and Connection ID11. User should be able to filter Scenarios
using filters Phase, Technology, Connection. Step order in Workflow definition
does not matter. The Scenarios’ execution order will be determined on run-
time and will use the most potential of the user’s machine resources – the
parallelism.

User should be able to choose some options for the Workflow as Minor
or Major Revision type representing the Full run and the Incremental run or
override the max thread count for a Job.

When the user finishes the Workflow, he or she saves it, and he or she
should be able to find it in his Available Workflows list. The list is persistent
for system shutdown. He can edit existing Workflow in the same way as he is
creating a new one only with the difference that editing will have prefilled all
data.

The user can also remove the existing Workflow. This operation will re-
quest confirmation, and it will be irreversible.

These operations are performable via API. Workflow creation using API
may work the same as Workflow import. The main benefit of Workflow cre-
ation is the guiding graphic user interface.

F2 (U12, U13, U14, U15): Create a special Workflows

The application should allow creating a special Workflows called wildcards.
These wildcards will always execute all available Scenarios even if new config-
uration is created when the Workflow already exists. For example, users can
define ‘execute all for Connection DB2_PROD’.

Users can create Workflows by choosing from some predefined Workflow
Templates. Default predefined Workflows will match already existing Work-
flow Scripts, so users will be familiar with these definitions as they already
exist in MANTA.

10configured in MANTA Configurator, and information may be obtained from Configu-
rator’s API or file system

11unique Connection identifier is a pair of Technology name and Connection ID

16

3.2. Requirements Gathering

User must be able to override or define environment variables for execution.
For example, to make Informatica PowerCenter able to run, a client must
define INFA_HOME, PATH and LD_LIBRARY_PATH. MANTA itself provides an
option to define Java environment variables as MEMORY_OPTS, or JAVA_HOME
and JRE_HOME; or MANTA environment variables as MANTA_DIR_INPUT,
MANTA_DIR_OUTPUT and MANTA_DIR_LOG. This must be configurable in each
Workflow for each pair (Connection, Scenario), because the user may have
multiple versions installed for the same technology.

There will be two modes for creating Workflow: guided mode and ad-
vanced mode. In the guided mode, users do not need to specify MANTA
related Processing Scenarios12but only Technology Scenarios. In this mode,
these Scenarios will be automatically added. On the other hand, in the ad-
vance mode user may create very specific Workflows without these processing
Scenarios to achieve special requirements for MANTA. For example, if a client
has a lot of large database system, they may be creating data lineage over five
nights, so they will need to run five separate workflows every night. And after
that run processing Workflow containing only processing Scenarios.

F3 (U4, U5): Export and Import Workflow

User should be able to export any existing Workflow to JSON using the graphic
user interface and importing an existing one from JSON. Importing JSON
during Workflow creation will prefill fields and Workflow definition but will
not save it. Importing elsewhere will automatically save the Workflow, on
name duplication will be added timestamp of the import time.

Exporting Workflow in mid-process of creation Workflow asks a user to
store a generated file on their file system. So, this option will create a JSON
file from the partial Workflow Definition. The user can save this file into a
local disk and upload it later moreover continue where he stopped his work.
The Workflow does not have to be valid all the time during creation even
though it may be exported at any time. That is not a problem for Workflow
editor because during importing mandatory fields it may be filled by empty
value and saving will be unavailable until the user fills all requested fields.
This Workflow will be impossible to import elsewhere because of its missing
mandatory fields - it is not a valid and complete Workflow.

When an error occurs during Workflow creating or updating13, the appli-
cation shows a modal window with the error message, and a user should be
able to export the work-in-progress Workflow to save it locally and reupload
it when the problem disappears. This will prevent from losing user’s work.
This export must be done on the client-side.

12e.g. revision prepare and commit
13e.g. system crash

17

3. Analysis

Export and import are available trough API and GUI. Export via API
is available only for saved Workflows, and import using API creates a new
Workflow, so the Workflow must be valid and complete.

F4 (U6, U7): Execute and Terminate Workflow

User can execute Workflow which will be put it into the Waiting Queue of
running Workflows. User cannot start Workflow, which is currently being
executed or it waits for the execution.

He or she can also easily remove it from that queue. It is a simple task
to removing Workflow which is not running, but Workflows being executed
must be terminated. Termination will process-kill the Scenario which is being
executed, and no other will be started, and the terminated status for the
Workflow will be set. Process-kill is not a solution for every Scenario; some
of them may lock remote resource; thus, a special Scenario must be run to
terminate current Scenario. A good example is the Collibra Export Scenario
because CollibraTerminateExport Scenario must be executed to stop it.
After that, either the Rollback or the Commit procedure will be performed
based on user choice.

API will be provided to control Workflows with the same behaviour as
above.

F5 (U10): Workflow Orchestration

Orchestration manager can execute only one Workflow at a time from the wait-
ing queue. Orchestration manager optimises inner Workflow jobs (Scenarios)
and finds the best Workflow Execution Plan to execute Scenarios in parallel as
much as possible, considering available resources and requested threads. The
application will have defined max thread count for the Workflow and max
threads number for each particular Job (Scenario).

Creating Workflow Execution Plan must consider available resources. These
resources will be manually definable, and it will use default values if not. Re-
sources will be implemented in so-called weight system. Every resource will
have their max capacity, and every Job will define its weight for this resource.
During execution, this capacity cannot be exceeded to prevent its overloading.
The weight number for every Job will use a default value from the MANTA
team by default, and it will be overridable by users.

List of resources with its weight examples, the resources are final, but its
weights are subject to change, and it will be regularly updated:

• MANTA Server Usage: Only # jobs can use MANTA Server - Job
Weights (easy to implement)

– Weight 1, light job, another job can use the MANTA Server simul-
taneously

18

3.2. Requirements Gathering

– Weight 3, heavy Job, no other job can use the MANTA Server
simultaneously

– Max capacity 3 (configurable)

• Local disk usage: The ratio between Reading and Writing operations
(For balancing this ratio precisely a further analysis is required)

– Weight 1, the Job mostly reads (for example, 5:1)

– Weight 3, the Job mostly writes (for example, 1:5)

– Weight 4, the Job reads and writes similarly (for example, 3:2)

– Max capacity 5 (configurable)

Usage of remote nodes running the database systems as a resource does
not have to be considered because load for them is minimal in contrast for
what they are built for.

The parallelism between Workflows will not be part of MVP, but the ap-
plication must be designed for its future implementation. MVP will allow
executing only one Workflow at once, but in future, it should allow execut-
ing more simultaneous Workflows, and its orchestration and synchronisation.
This feature will make able to start two independent Workflows simultane-
ously and merge their results into one data lineage. This is a very complex
problem because of CLI architecture. Parallelism will be implemented inside
of a Workflow, so for example, all extraction in one Workflow will run in par-
allel. This will replace parallelism of MasterScenario. Parallelism inside of
Scenario will remain unchanged.

F5 (U8, U11): See state and progress of executed Workflow

User will be able to see a state of the Workflow. States are available only for
executed Workflows or Workflows waiting for execution in the queue. States
in detail may be found in 4.5. Users can see the state of Workflow as a whole
or they can peek into it and see states of every Job inside of it. These Job14

states are defining the Workflow progress. For example, if users see Workflow
in the state ‘Executing’ and they look on its details, they can learn that five
from thirty-three Jobs are completed, two Jobs are being executed right now,
and twenty-six Workflows in the state pending are waiting to be executed.

If a user wants to look at details about a Job state, he or she can see how
long the Job ran or how long it will approximately run or what is its error
message or why it was skipped.

14some Jobs may represent particular Scenario, but not every Job does, some of the Jobs
may have a different meaning; for example, parallel Job which executes multiple Jobs in
parallel

19

3. Analysis

F6 (U9): See the progress of executed Scenario

As users can easily see Workflow progress, they may go even deeper to see the
progress of particular Scenario, and they find a link to corresponding logs in
the Log Viewer for already executed Scenarios.

3.2.3 Non-functional Requirements

Next subsection is describing non-functional requirements for the application.
MANTA had no requirements for Hardware, Memory, Standards15, Monitor-
ing and Transactions requirements.

T1: Performance

Application has to be real-time and immediately responding, on click confir-
mation must be under 1 second. Any more prolonged operation must show a
spinner. Less than ten users will use the application at a time.

T2: Documentation

The application will be distributed with its API documentation in Swagger and
User documentation as other MANTA applications. The installation manual
is not required because the application will be installed with other MANTA
Admin Console applications.

T3: Data Model

“JSON should be used wherever it is possible.” [15] Use JSON format every-
where user can access any data. Namely, users’ configuration for Scenarios,
the Workflow Definition, and export and import will be in JSON format. The
application configuration may be in property files16.

T4: Data Migration

All Workflows, user have already created, must survive every update. Work-
flow can be updated, but it must persist in the application, and the user must
be able to find it after the update.

Already existing Workflows in Scenario Scripts must be re-implemented
in a new workflow format and used as Template Workflows. Users could
customise these Workflow Scripts.

15application must meet general MANTA standards and standards of used frameworks
16Spring best practices

20

3.2. Requirements Gathering

T5: Compatibility

Backward compatibility with Workflow Scripts must be achieved, and Workflow
Scripts should use the new Orchestration application17. The application must
be aware that the user could modify their Workflows, User must not lose their
modifications, a one-time upgrade may be needed.

Remove Master Scenarios (JARS orchestrating Scenarios parallelization).18

The Workflow will substitute Master Scenario, and it will handle its paral-
lelism.

T6: Configurability

Manta developers can specify a default max threads count for Scenario. This is
already implemented in MANTA Configurator, and this information should be
considered. User can change Scenario’s max threads in MANTA Configurator.
In application, users can specify max thread for Workflow to control how many
Jobs can run simultaneously; the default value will be used otherwise.

T7: Information security

The used database must be embedded and accessible only from the application.
It will be secured for unauthorised access by username and password, and this
password will be safely stored in code.

An unauthorised user can reach only the login screen. Everything else
requires a login.

T8: Audit logs

The application will use the new logging approach defined by MANTA Log
Viewer.

T9: Prescription of used technologies, framework libraries

The application should be built using frameworks commonly used in Manta,
namely: Spring, MyBatis, and React JS for Presentation Layer. If any new
framework or library is needed, it must be approved by MANTA Librarian
first.

T10: Reliability

Any error in the application must be logged, transaction or request may be
cancelled, but the application should not be terminated.

17The requirement that Workflow Scripts should use new Orchestration application was
rejected later by the Ordering Party. Current Workflow Scripts must not change because
MANTA wants to keep an option to use MANTA product without this application.

18Because workflow scripts must be kept as is; Master Scenarios cannot be removed.

21

3. Analysis

If a problem with CLI execution occurs, show it in Workflow Execution
Hierarchy with the error message and hyperlink to the MANTA Log Viewer.

T11: Localisation

The application will be English only. Keep all texts for GUI in external
localisation files.

T12: Architecture

Orchestration and Monitoring must be a Maven module, which will be inte-
grated altogether with other modules to one application named Admin UI. The
Admin UI is a web application distributed altogether with Apache Tomcat as
its application server. This module must manage all of the backend’s logic. It
must also provide a REST API and asynchronous user interface implemented
in React JS. This module may use logic from other MANTA modules.

T13: Integration to other systems and interface specification

The application will provide a secured API for the outer world, which can be
integrated into Scheduling application commonly used by a customer.

The application will show hyperlinks to MANTA Log Viewer, and it will
subscribe on the MANTA Log Viewer (or its part) to get Scenario state.

The application will use Scenarios in the MANTA CLI.

T14: System installation and update

The application will be distributed with other MANTA Administration appli-
cations via MANTA Installer.

MANTA Installer must do updating, so there is no option to use MANTA
Updater for merging because Updater and this application will be bundled as
one deployable artefact. After every update, the application must be able to
migrate its data to the newest version without user intervention.

T15: Testing

The application will have integration tests with MANTA CLI and MANTA
Log Viewer (or its part), and it will have JUnit tests.

T16: Administration

There will be no GUI or API administration. The administration will be done
using configuration files.

22

3.3. Requirements Analysis

T17: GUI

The GUI must match the graphic design of other MANTA Administration
applications which will be done by MANTA graphic designer. Only wireframes
are needed.

3.3 Requirements Analysis

This chapter analyses requirements and things related to them, such as busi-
ness processes related to requirements, their current state - what is to be
improved. This section deals only with the most critical aspects of the re-
quirements.

3.3.1 Current Parallelism in Scenarios

The current architecture of Scenarios makes parallelism possible to use. How-
ever, it is not the best what could be achieved because of the unfortunate
design decisions. It was an easy, quick and smart solution which solved the
problem at that moment. It should have been only temporary because it had
its drawback; it was not scalable. And because MANTA grew a lot in recent,
this became a significant problem. [16]

There are currently two levels of parallelism implemented from three pos-
sible. The zero level of parallelism is in the Scenario itself. The Scenario
creates necessary threads for its run, and its count may be configurable from
the outside. These threads may, for example, process nodes or obtain meta-
data form resource or parse user scripts. That is already optimized for the
best performance by MANTA developers, and there is no benefit from chang-
ing this behaviour. However, is configurable trough Connection configuration
and it must be taken in mind.

The first level of parallelism creates multiple processes for processing mul-
tiple sources at once. That, unfortunately, works only for Connections in the
same technology group, e.g. two independent MSSQL servers. That is because
of the Scenarios architecture called Master Scenarios. This parallelism is han-
dled by so-called ParallelScenario and executing a Master Scenario (e.g.
HiveExtractionMasterScenario19) does not execute Extraction for Hive as
someone could think. It executes ParallelScenario instead, which executes
multiple HiveExtractionScenarios for every existing Connection in the Hive
technology group. And these Scenarios are executed in parallel. This rule does
not apply for all Scenarios; some of them are not capable of this parallelism
because the resources cannot handle this load.

So, there is a space for improvements in level one. For example, to make
the execution of all available Connections in parallel possible. And that creates

19this is not a correct example, but it is used for illustrating the problem

23

3. Analysis

new challenges. The major problem is that Scenarios must be synchronized at
some point because Analysis may start only if all Extraction is done already.

Level two, already mentioned in previous chapters, makes able to execute
two Workflows in parallel. Use case behind this is that a user can create a
Workflow for Connection One (called WorkflowA) and second Workflow for
Connection two (called WorkflowB). He or she may run WorkflowA on a daily
basis and execute WorkflowB only on a weekly basis. Doing it like this may
save some computing power by not executing WorkflowB every day because
it is not necessary for some reason20. The problem is that one day their
executions meet, and both must be started at once to make their results be
written in one Revision.21

There is another option for parallelism22 that is based on having multiple
CLI as computing nodes on different machines. They could be controlled
from a single point (a server), and that server could be this application. This
feature was rejected because it is not needed.23

3.3.2 Creating Customised Workflow for MANTA CLI

Creating a custom Workflow may be difficult for not experienced user. They
must understand how MANTA works at least at some basic level and even
though creating it is not user friendly. It requires editing batch and shell
scripts.

For better understanding, it would be shown on a practical example [17]:

1. At first, a copy of a script executing all Master Scenarios must be cre-
ated, (for example, _run_extract.sh)

2. From the source script (of the copied script) must be removed the Sce-
nario which would be run on an individual basis.

20for example, the source is not changed often
21This problem was consulted with the Ordering party, and they said it is not necessary to

have it now. Solving level one parallelism is enough now. However, they requested to make
the design open to this feature. This is hard to accomplish. Created WorkflowPlan (which
is a graph) must be merged with WorkflowPlan of the second Workflow. Nevertheless, both
WorkflowPlans are optimized for being executed alone, and because of merging it must be
created again. That is a problem because WorkflowPlan is already being executed for the
first Workflow, and it cannot be destroyed and created again easily. So plans must be merged
and recreated from a certain point, or their Phases may be executed in sequence, and only
the plan for Analysis and Extraction would be created again.

22may be called level 4
23A note from the future: the final design of this thesis is not blocking this feature. There

may be multiple instances of ScenarioExecutor all linked to different CLIs. ScenarioExecutor
will need the ID of the remote node, and it will identify itself by it. A proxy class could
resolve, which instance of ScenarioExecutor will get which Scenario to execute. To deter-
mining it, a parameter in Workflow or in ScenarioMetadata could be used, which would be
compared with the remote node ID.

24

3.3. Requirements Analysis

1 export SCENARIO OPTS=”−Dmaster . p r o p e r t i e s . f i l t e r=
↪→ OracleConnection1 , OracleConnect ion2 ”

2 . . .
3 unset SCENARIO OPTS

Listing 3.2: Setting SCENARIO OPTS with filter for particular Connection

3. The user have to remove all other Scenarios except for the desired Sce-
nario from the copied script.

4. Then he or she have to wrap the Scenario of his or her interest by code
3.2.

5. At last, he or she must include his or her new script in the parent script
(_run*.sh) to be executed together with other scripts.

As can be seen, this is not an easy task for an inexperienced business user,
and users are often guided by MANTA Help Desk to achieve this task. [18]

3.3.3 Scenarios Progress and State Knowledge

This chapter describes the actual state of Scenarios’ capability to provide
their progress. The chapter is divided by Phases, and Scenarios are grouped
into logical groups because most of them share progress-knowledge capabilities
with others.

Extraction

There are some Extracting Scenarios, extracting from Oracle, MSSQL, Hive
and SSRS, which have the tracking of their work already implemented. They
provide their progress into log files, and they know their total number of steps
beforehand.

Some of the Scenarios like a Teradata, SSIS, PostgreSQL, ODI and Netezza
are capable of tracking their progress, but this feature is not implemented.
For Teradata, the number of steps may be the number of completed database
extractions, the total amount of databases is known, but its granularity may
not be sufficient. For SSIS, it may be the size of the packages list and the
projects list. For ODI, it knows the number of items to be extracted, and after
each extraction, the information may be logged. For Netezza, it is similar as for
Teradata, the number of databases extracted may be gathered. PostgreSQL
doesn’t have progress tracking implemented but logging on databases count
is possible, and also a number of schemas may be available after a quick scan
for great detail.

For some of the Scenarios, it is hard to tell. For example, DB2 does not
log any progress. The schema extraction seems to be time-consuming because

25

3. Analysis

tables are extracted relatively fast in comparison to schemas. But the number
of schemas which have to be extracted is unknown.

Analysis

It is complicated for the analysis. For Dictionary Dataflow, the number of
Extracted objects may be used for progress tracking. But this information
must be given from Extraction Scenarios to Dictionary Dataflow Scenario.
Another option is to count nodes in the graph, but that could be a very time
consuming regarding graph sizes used in MANTA.

In the DDL Dataflow Scenarios, there is a file iterator that iterates over
all files, so obtaining a number of files is straightforward. Processing of these
files is already logged.

A lot of Analysis Scenarios work similarly, so a similar approach described
above can be used for most of them.

Repository Postprocessing Scenario processes a large graph multiple times,
and there is no knowledge of the number of edges and nodes.

There are some other Scenarios which are very fast with short execution
time and tracking their progress won’t bring any use because the user won’t
be able to see them for a time long enough to be concerned.

Export

All exporting Scenarios are using a similar concept. Statistics for graph pro-
cessing are known from the Analysis, and file sending can be tracked by a
number of already sent lines.

3.4 Existing Solutions

Considering MANTA requirements for this application, it can be said that
finding an already existing application matching their requirements may be a
real challenge or almost impossible. MANTA needs software tailored for its
ecosystem to be easy to use, user-friendly, matching their existing graphical
design and not to tie dependence on another vendor.

In any case, the behaviour and functionality of existing solutions must
be analysed. Indeed, it is desirable for an emerging program of this type to
match the behaviour and functionality of already existing applications thus to
meet and comply with already defined standards. Users familiar with these
programs will quickly learn a new one and understand how the new program
works. E.g. process states and its names, monitored statistics, what is view-
able on first sight in the processes overview, etc.

26

3.4. Existing Solutions

3.4.1 Prometheus (monitoring)

“Prometheus is an open-source systems monitoring and alerting toolkit origi-
nally built at SoundCloud.” [19]

Prometheus gathers time series via a pull strategy over HTTP. This solu-
tion is not suitable for short live processes because the process can stop existing
before it is scratched by Prometheus. This system provides a generic solution
to monitor Ephemeral Processes (for example, Batch script). It is a middle
layer called Pushgateway. Processes can push their metrics to Pushgateway
and Prometheus can scrape them later as it can be seen in figure 3.6. [3]

Figure 3.6: Prometheus Scrapes Cached Metrics from Pushgateway [3]

“Prometheus works well for recording any purely numeric time series. It
fits both machine-centric monitoring as well as monitoring of highly dynamic
service-oriented architectures. In a world of microservices, its support for
multi-dimensional data collection and querying is a particular strength.” [19]
Preview from the Prometheus can be seen in figure 3.7.

Figure 3.7: Example of a Metric Collected by Prometheus [3]

27

3. Analysis

1 #!/ bin / bash
2 set −e # i f command f a i l s , e x i t and do not ping
3 u r l s t r i n g=” http :// pshmn . com/eaFnY”
4 c u r l −L ”${ u r l s t r i n g }”

Listing 3.3: Snippet showing how to push notification to PushMon [20]

3.4.2 PushMon (monitoring)

PushMon is an online service with a free plan which provides monitoring for
automation jobs. Usage is very simple and straightforward. User registered
on PushMon, will get a generated unique URL. The user then adds short code
(can be seen in snippet 3.3) to his job which calls the URL. And if the URL
is not called on a scheduled time it generates alert via Email, SMS, Instant
Messenger or Twitter. [20]

3.4.3 Activeeon (Orchestration and Monitoring)

Activeeon24 is a paid on-premises or cloud web application providing a solution
for workload automation from a French company Activeeon, SAS. In Activeeon
application, a user can create his or her workloads as an orchestration of
scripts execution or Java class execution; he or she can execute them, or plan
the execution of these workloads, and monitor their state, status and history.
The application provides analysis and statistics of previous executions, and
it can alert the user if the execution failed (or succeeded), for example, by
email. [21]

Activeeon Workload creation (Orchestration)

A workload, called Job, is a sequence of tasks and logical operations. Base
tasks are script executions or Java class executions. This sequence is named
Workflow. Activeeon looks like a professional tool for solving problems of this
domain.

Workflows and tasks are written in XML. The unique identifier for a Task is
a name of the Task defined by a user. There are three basic types of Task: Na-
tive, Script and Java. Native is a command executed by the default command
line in the OS where Activeeon is installed (Shell, PowerShell, etc.). The Script
is a hardcoded script in Activeeon GUI or an URL reference link to some script
online. Activeeon supports many script languages as Bash, Shell, Powershell,
Windows CMD, Javascript, Lua, R, Pearl, Python and more. The Java type,
the most interesting type for this project, is Java class extending an abstract
class (Scheduler API, org.ow2.proactive.JavaExecutable) defined

24for analysing this tool an evaluation version was used, evaluation version can be obtained
from https://try.activeeon.com/

28

https://try.activeeon.com/

3.4. Existing Solutions

by Activeeon. It can also be a JAR, but it must be added to the classpath.
For all types, arguments and parameters can be defined. A result of these
tasks is output script binding, and it can be used later in Workflow. There
is also a special notification Task, which is a predefined Script Task, and it
sends an email about progress or result. [22]

There is a significant configuration behind every Task, but it is not manda-
tory. To make Task executable, the user needs only to define the script. User
can also define job priority, error handling, properties, attributes, define pre/-
post/clean scripts, data management, multi-node management (nodes are ex-
ecution resources) and more. However, a user can create predefined Task and
use them in other Workflows. If the user specifies variables for a Task or
a Workflow, he or she must define them on Workflow execution. These are
parameters which can vary for each run.

Examples of error handling:

• Ignore and Continue,

• Suspend Dependencies,

• Pause Job Execution,

• Cancel Job,

• Number of Execution attempts

There are many options what a user can do with the workflow orchestra-
tion. For example, a Task can be forked to many tasks, and user can gather
output from them; or he or she can wait for another task to finish its payload.
Examples of logical operation used in Activeeon:

• If,

• Loop,

• Replicate,

• Task Dependencies,

• Submit Job and Wait,

• Wait for Any

The UI for workflow creation is user-friendly. Each component in the
application has a help button which shortly describes what it does and how
it can be used. User can go back or next step even hotkeys Ctrl+Z and
Ctrl+Shift+Z work. User can drag and drop Task anywhere in work-screen
and link it to other Tasks. After while the work-screen can be a little chaotic
because of a lousy arrangement. The application has a button which sorts

29

3. Analysis

and orders Tasks into a pretty and easily readable hierarchy. It may come in
handy that every Job can be cloned to a new one. The Workflow is validated
on the fly, and not disturbing popup notifies a user about the result in the top
right corner. Errors are referring to a line number in the Workflow’s XML.

Activeeon Execution and Monitoring

Activeeon helps user execute, plan and monitor Jobs. User can schedule work-
flow launch by creating a cron expression, or importing a .ics calendar and
choosing an event from it, or creating an event in the internal calendar in the
application.

The GUI is more in technical style; it uses tables with well arranged data.
In Job centric view, there is one main table of scheduled and executed jobs
called Execution list. A user can easily distinguish pending, currently execut-
ing and past Jobs, and he or she can use one-click filters to highlight these
states, or he or she can use more complex filters to filter what he or she needs.
User can switch to Task centric view, and see Tasks from all Jobs and their
details for the period. A job can be in many states; all states are available in
ProActive Workflow Guide.

Details of jobs are displayed in two ways. One approach is table view with
detailed data as id, state, execution nodes, failures, duration and attempts for
each Task. Other approach shows the Job as a Workflow (when Task centric
view is active) and shows only the most crucial information as Task names
and its results.

User can click on particular Task and see all details like id, result, duration,
attempts, started at, finished at and description. User can go to the panel
of Statistics or Usage and see some useful information from Scheduler about
executions (business-centric details (as graphs) can be seen on Job Analytics
Dashboard).

3.5 Summary

These and other non-mentioned applications, are trying to solve the challenges
as broadly as possible so they can cover as many use-cases as they can to be
competition capable. For example, Activeeon can create a run sequence of
apps with a parameter (a Workflow); it can run these sequences in parallel; it
can work with variables, and thus it can create more complex execution rules;
it can monitor the running processes, and view statistics. Activeeon can do
pretty much everything that is in requirements of this application and even a
little bit more.

So why not use some of the existing solutions? Because what is their
competition capability is a problem for MANTA. They creates unnecessary
complexity and demands on users and their knowledge. MANTA needs soft-
ware that shields users as much as possible from the complexity of the workings

30

3.5. Summary

and linkages of the individual parts of the MANTA ecosystem. And in cre-
ating the new Workflow, it will help the user as much as possible, automate
everything that can be automated, and help the user achieve their goals with
minimal knowledge of how MANTA processes work and without the need to
know the MANTA technical aspects. Such tailored software is easily adaptable
to MANTA requirements and does not create further reliance on third-party
software, which may be a risk.

Compared to existing tools, the new one must:

• suit to MANTA ecosystem (functionally),

• fit to MANTA brand - graphical design and logo,

• be usable without special configuration,

• guide Workflow creation, simple even for not IT specialists,

• prevent and correct mistakes made by users during workflow creation,

• automatise orchestration, users do not need to deal with execution order,

• provide an overview of the Workflow execution state.

From a detailed analysis of requirements and a search of existing solutions
(both in the previous parts of this chapter), there is a clear decision to design
and implement new tool.

31

Chapter 4
Design

This chapter describes the design of the application. First, it looks at the
news in business processes and how they differ from previous. Next sections,
describes the architecture of the application, then the architecture of the Or-
chestration and Monitoring modules and its basic operations in sequence di-
agrams showing usage of chosen existing solutions. After that, there are ex-
plained states of Workflows and Scenarios and is introduced graphical user
interface design, including wireframes. Last but not least, there is described
database model, Scenario Metadata and application configuration.

4.1 New Business Processes

One of the most significant disadvantages in the current business process is
the creation of a custom Workflow. The need to commenting out, editing and
adding lines of codes into the Scenario Scripts is not very user friendly. Prob-
ably an experienced user can get to use to it, but overall it is not convenient.

The new business process for Workflow creation focuses on a user-friendly
approach. The main goal is to provide users with an option to make or edit a
Workflow in a more friendly way but the respect of backward compatibility.
The new approach of maintaining Workflows will be set side by side with the
original CLI way, and it will meet standards already set in MANTA - web
application running on Tomcat together with Updater and Configurator.

From the users’ perspective, they will be using already emerging appli-
cation Admin UI where Process orchestration and Monitoring will be a new
component. Users will be able to see their already configured Workflows25 and
create a new one there too. Creating a new Workflow for the first time may
be confusing, so to help users to reach their goals, they may form a Workflow
from predefined templates. These templates will work same as in CLI: run

25Only for Workflows created in Process Monitoring and Orchestration. Already existing
Workflows in CLI will not be considered.

33

4. Design

User MANTA CLI

:Connections
Get configured

Connections

View Results

read notification
(email)

send notification
(email)

Execute
all Scenarios

Create
Workflow Plan

Resolve Wildcards

Workflow can
be executed

put Workflow
in Waiting queue

Execute Scenario

Validate Wokflow

Store Workflow in DB

out of work hours

Save

Create Workflow
Definition

Create Workflow

Enter Workflow
Information

Figure 4.1: New Business Process Activity Diagram

‘all Scenarios’, ‘run all analysis Scenarios’ and others. When users choose to
create a Workflow from a template, they may edit this newly created Work-

34

4.1. New Business Processes

flow, which should be much easier26 then starting with a blank page. Users
may use Scenario wildcards, to execute a particular group of Scenarios, for
example, all Scenarios for specific Technology or Connection.

Experienced users may choose to form Workflow in advance mode. It
will unlock managing the processing Scenarios, e.g. New Revision, Commit
or Postprocessing. In this mode, users are allowed to have full control over
Workflow so they may prepare more complicated Workflows to satisfy their
complex business goals. Otherwise, these Scenarios will be dynamically in-
cluded on runtime as application decides.

Scenarios in Workflow will be logically grouped. At first, by their Phase27,
then by their technology and at last by particular Connection name. It will
form a tree structure where leaves are Scenarios, and inner nodes are Phase
→ Technology → Connection in this order with zero28 or multiple descen-
dants. This approach may be seen as too much complicated, but all MANTA
clients participate in a training program, where they learn how background
processes work in MANTA CLI, and this approach should support and evolve
this know-how. Moreover, as it was mentioned before, they may start using
MANTA only via templates which are executable without modifications, only
the configuration in Configurator is required.

In addition, users may create a description for Workflow for quickly re-
minding what a particular Workflow does; they may choose if a Workflow is a
Major revision or update (a Minor revision) of the last revision which might
or might not be available only in advance mode. Created Workflow will also
have an icon, based on technologies used in Workflow, which may be changed
by the user.

When the user executes a Workflow, the orchestration logic will arrange
the execution order of all Scenarios, so users do not have to think about
it during creation, altogether with adding processing Scenarios for Workflows
created in basic mode. Execution order will always be (even in advance mode)
resolved by the application, but users may skip some Scenarios. For like this
fully expanded Workflow and with wildcards resolved, an execution plan will
be created. This plan will consider the relationship between Scenarios and
will try to found as many Scenarios that can run in parallel as possible to
improve execution time, which is the second significant benefit of using Process
Monitoring and Orchestration instead of original CLI approach.

Although Workflow optimization, it still may run for hours or days, and
users must be able to see progress and state of the Workflow. Currently, users
have only one option to monitor their Workflow. MANTA logs the progress of
Scenarios into log files. Users can see how many steps were done, and for some
of the Scenarios, they may also find information about total step count, but

26Because of the templates simplicity.
27Extraction, Analysis, Export
28Zero descendants will be resolved as a ‘for all’ wildcard

35

4. Design

not all Scenarios are capable of giving this information. Logfiles display very
detailed information about each Scenario, and it is irreplaceable. Monitor-
ing of this application will focus on an overview of all Scenarios in Workflows.
The application will provide essential information like an execution start time,
finished time, how many Scenarios are already finished, how many steps were
done in a Scenario and how many left to be done. If users want to see de-
tails, they will have a hyperlink for the Scenario which will redirect to newly
emerging Log Viewer.

4.2 Application Architecture

Application is logically divided into two modules: Orchestration module and
Monitoring module. These two modules must be integrable into Admin GUI
where they will run alongside with Updater, Configurator and Log Viewer.
Orchestration module is responsible for storing new Workflows, preparing an
execution plan and performing the execution. It is also capable of handling
errors and their fallbacks. Monitoring module gathers states from Scenario
processes and links them with the execution.

MANTA has a technical requirement for using technologies. For example,
a decision made in September 2019 was to use a new javascript framework
for the emerging Admin UI in MANTA. It was mainly between the React JS
and AngularJS. In the end, MANTA senior engineers selected React JS as a
javascript framework. The application’s backend must be written in Spring
using Java configuration; frontend must be implemented in React JS, and H2
database must be used as persistent storage. MANTA raised these limitations
because they already use these technologies, and they do not want to introduce
new technologies if unnecessary.

Application is architecturally designed as two-tier application known as
thin-client. The graphical interface is implemented as a web application in
javascript using React JS framework, and it is connected to the backend via
REST API.

The traditional multi-layer architecture was chosen for the application’s
backend architecture(see figure 4.2 for details). Unlike traditional three-layer
architecture, the used architecture is extended for the fourth infrastructure
layer.

React application communicates with the backend via public and private
REST API. API is controlled by the Presentation layer, which transforms data
transfer objects to domain model objects and calls corresponding services on
the Service layer.

The second layer, the service layer, provides the logic for internal processes
of the application. For example, in the orchestration section is it: process
start-up, raw-format workflow processing, workflow storage, and configuring
the application will be addressed. On the other hand, in the monitoring sec-

36

4.2. Application Architecture

Monitorign&Orchestration
React Application

«javascript»

Monitoring
DAO Layer

Monitoring
Infrastructure Layer

Orchestration
Infrastructure Layer

Overriden Scenario metadata
«file»

Monitoring
Presentation Layer

Monitoring
Service Layer

Persistent Storage
«database»

Orchestration
Repository Layer

Orchestration
Service Layer

Orchestration
Presentation Layer

REST

publicAPI

REST

publicAPI

REST
getState

«message broker»REST
GetConfigurations

«MANTA Configurator»

Shell
ExecuteScenario

«MANTA Platform»

FS JDBCJDBC

REST

privateApi

REST

privateAPI

Figure 4.2: Application Architecture Diagram

tion, the collection of data and progress of running Workflow will be gathered
and processed using the Message Broker created for the purpose of MANTA
Log Viewer. Monitoring Service Layer will also link states gathered from
Message Broker to the Workflow Execution Plan.

There is a link between the Orchestration Service Layer and Monitoring
Service Layer. Monitoring service Layer needs information about Execution
Plan of currently executing Workflow or past Workflow executions.

The primary function of the repository layer is to provide access to the
database and filesystem. It also provides functions for communication with
other application and modules such as MANTA CLI, Log Viewer and Config-
urator, but its implementation is separated from the repository layer into the
infrastructure layer.

The infrastructure layer is an adapter to the MANTA ecosystem. Or-
chestration infrastructure layer provides an interface to run scripts through
MANTA Platform, and it is responsible for collecting existing configurations
from Configurator. Monitoring infrastructure layer gathers states from Sce-
narios using MANTA Log Viewer.

4.2.1 Deployment Diagram

Monitoring and Orchestration application benefits from the restriction that
Configurator must run on the same device as MANTA CLI because it needs
access to the file system to create configuration files. This restriction allows

37

4. Design

direct executing of Scenarios using command line without implementing a
service providing a way to execute Scenarios remotely.

In figure 4.3 are highlighted newly added components and artefacts by
orange colour. There can be seen new module Monitoring and Orchestration
with API and links to other components and applications.

MANTA CLI does not get by without any change too. As it can be seen in
figure 4.3 there are highlighted new links in CLI. CLI can execute any Scenario
nowadays. However, Master Scenarios loaded the Connection configuration
used by Scenario to connect to a remote resource, and Master Scenarios should
be no longer in use when a Scenario is executed and orchestrated by this
application. Master Scenarios are capable of filtering a particular existing
Connection. Nevertheless, to use this feature, the Spring context must be
changed before every execution to tell a Master Scenario which Connections
it should filter, and it is just a workaround to avoid Master Scenario although
it is used. After discussion with MANTA, they agreed to implement a change
in MANTA Platform to make it capable of accepting Connection properties
differently without Master Scenarios, and these highlighted links refer to this
change in MANTA Platform.

4.2.2 State Diagrams

Orchestration and Monitoring tool distinguishes states only for two objects:
Workflow and Scenario Execution. Workflow’s state is resolved from states of
each Scenario Execution. For example, failure of one Scenario Execution may
be resolved as ‘Failed’ Workflow’s state for mandatory Scenario or ‘Success
with failure’ Workflow’s state for optional Scenario.

Scenario Execution States

Scenario Execution changes between seven states. These states may be logi-
cally divided into three simple groups: not yet executed, executed, not exe-
cuted because of an error. Error level or return code and result message will
be injected into Scenario Execution object after execution. Details of each
state may be found in the enumeration below and the figure 4.4.

Pending Scenarios that are waiting for their turn to be executed are set to
the Pending state.

Running Scenarios that are currently being executed are set to the Running
state.

Succeeded Scenarios that succeeded in their execution are set to Succeeded
state.

Failed Scenarios that failed on their execution are set to the Failed state.

38

4.2. Application Architecture
«d

ev
ic

e»
C

om
pu

te
r

«a
pp

lic
at

io
n

se
rv

er
»

T
om

ca
t 9

.5

«w
ar

»
M

A
N

T
A

 A
dm

in
 U

I

«m
od

ul
e»

M
A

N
T

A
 M

on
ito

rin
g

an
d

O
rc

he
st

ra
tio

n
T

oo
l

«m
od

ul
e»

M
A

N
T

A
 U

pd
at

er

«p
ro

pe
rt

ie
s»

C
on

ne
ct

io
n

P
ro

pe
rt

ie
s

m

ax
 th

re
ad

 c
ou

nt

«s
he

ll»
m

an
ta

r.
sh

«s
he

ll»
_r

un
.s

h

«p
ro

pe
rt

ie
s»

C
om

m
on

 P
ro

pe
rt

ie
s

m

ax
 th

re
ad

 c
ou

nt

«j
ar

»
M

on
ito

rin
g

T
oo

l

«j
ar

»
O

rc
he

st
ra

tio
n

T
oo

l

«d
at

ab
as

e»
H

2

«b
ea

n»
E

xt
ra

ct
io

n
S

ce
na

rio

«m
od

ul
e»

M
A

N
T

A
 C

on
fig

ur
at

or

«s
ch

ed
ul

er
»

T
hi

rd
-p

ar
ty

 S
ch

ed
ul

in
g

T
oo

l

«j
ar

»
M

A
N

T
A

 P
la

tfo
rm

«b
ea

n»
A

na
ly

si
s

S
ce

na
rio

«b
ea

n»
M

as
te

r
S

ce
na

rio

«m
od

ul
e»

M
A

N
T

A
 L

og
 V

ie
w

er

«w
ar

»
M

A
N

T
A

 S
er

ve
r

«a
pp

lic
at

io
n

se
rv

er
»

T
om

ca
t 9

.5

«b
ea

n»
P

os
tp

ro
ce

ss
in

g
S

ce
na

rio

«J
av

a
ap

pl
ic

at
io

n»
M

an
ta

 C
LI

G
et

S
ce

na
rio

P
ro

gr
es

s

O
bt

ai
nE

xe
cu

tio
nD

et
ai

ls G
et

C
on

fig
ur

at
io

ns

«i
ns

ta
nt

ia
te

s»

11

G
et

C
on

fig
ur

at
io

ns
1

1

1

1

R
E

S
T

G
et

E
xe

cu
tio

nD
et

ai
ls

R
E

S
T

C
R

U
D

_W
or

kf
lo

w

R
E

S
T

E
xe

cu
te

W
or

kf
lo

w

JD
B

C

ge
tW

or
kf

lo
w

P
la

n

sh
el

l
E

xe
cu

te
S

ce
na

rio

R
E

S
T

«s
ch

ed
ul

e»

«i
ns

ta
nt

ia
te

s»

1

1.
.*

«i
ns

ta
nt

ia
te

s»

1
1.

.*

«i
ns

ta
nt

ia
te

s»

«e
xe

cu
te

s»

«e
xe

cu
te

s»

«e
xe

cu
te

s»

«l
og

S
ta

te
»

«c
re

at
es

»

«g
et

D
et

ai
ls

»

«e
xe

cu
te

s»

Fi
gu

re
4.

3:
D

ep
lo

ym
en

t
D

ia
gr

am

39

4. Design

Skipped

Terminated FailedFinished

Blocked

Running

Pending

execution terminated failed

success

started
[predecessor ok]
/execute

execution terminated[predecessor failed]

Figure 4.4: Scenario Execution State Diagram

Terminated Scenarios that have just been run are set to the Terminated
state when the termination signal is sent to them.

Skipped All not executed Scenarios which cannot be executed because of
their mandatory predecessor’s failure are set to the Skipped state.

Blocked All not executed Scenarios which cannot be executed because of
total Workflow failure or termination are set to the Blocked state.

Workflow Execution States

Workflow execution state is resolved from all Scenario Executions based on
a type of failure: total failure or group failure29. If a failed Scenario does
not trigger total failure procedure, it is resolved as Finished with Error state.
If it does trigger it, then the whole Workflow is stopped and the Failed and
the Blocked Scenarios are resolved as the Failed state. When the Workflow is
stopped, the recovery procedure is started, and after that, the Failed Commit-
ted or Failed Rollbacked state is set. Rollback or commit procedure is chosen
base on the configuration. The Terminated state is resolved similarly. In the
mapping diagram 4.6 may be found all transforming rules.

29Scenarios are divided into Execution group by its Connection. If two Scenarios should
be executed against the same Connection, they are also in the same group.

40

4.2. Application Architecture

Terminating

Finished
success

Failing

Failed
rollbacked

Failed
failed

Terminated
unknown

Terminated
rollbacked

Terminated
commited

Terminated
failed

Failed
commited

Finished
with error

Running

Pending

found on app startup

found on app startup

found on app startup

found on app startup

[can rollback]
/rollback

[can commit]
/commit

[can rollback]
/rollback

execution terminated
critical job failed[can commit]

/commit

recovery failed

[can rollback]
/rollback

finished
[minor job failed]finished

[all succeed]

started

Figure 4.5: Workflow Execution State Diagram

Pending Workflow is waiting in a waiting queue for its turn to be executed.
Probably another Workflow is being executed now.

Running Workflow is currently being executed. One of its Scenarios is cur-
rently running.

Finished Success Workflow finished successfully; all of its Scenarios finished
with zero error level.

Finished with Error Workflow finished, but one of its Scenarios did not
finish with zero error level. That Scenario was not mandatory to finish
Workflow.

Failing One of the Scenarios finished with non-zero error level. That Sce-
nario was mandatory to finish the Workflow and triggered the failure
procedure.

Failed Commited One of the Scenarios finished with non-zero error level.
That Scenario was mandatory to finish the Workflow and triggered the
failure procedure. After the failure procedure, the commit recovery pro-
cedure started, and both finished successfully.

Failed Rollbacked One of the Scenarios finished with non-zero error level.
That Scenario was mandatory to finish the Workflow and triggered the
failure procedure. After the failure procedure, the rollback recovery
procedure started, and both finished successfully.

Failed Failed One of its Scenarios finished with non-zero error level. That
Scenario was mandatory to finish the Workflow and triggered the failure

41

4. Design

procedure. After the failure procedure, the commit recovery procedure
started, and one of them did not finish successfully.

Terminating The terminating signal was sent to the Workflow, and the ter-
minating procedure was initiated.

Terminated Commited The terminating signal was sent to the Workflow,
and the terminating procedure was initiated. After the terminating pro-
cedure, the commit recovery procedure started, and both finished suc-
cessfully.

Terminated Rollbacked The terminating signal was sent to the Workflow,
and the terminating procedure was initiated. After the terminating pro-
cedure, the rollback recovery procedure started, and both finished suc-
cessfully.

Terminated Failed The terminating signal was sent to the Workflow, and
the terminating procedure was initiated. After the terminating proce-
dure, the rollback recovery procedure started, and one of them did not
finish successfully.

Terminated Unknown Any Workflow found on application startup in not
finite state will be transformed to Terminated Unknown as a result of
application failure.

Because multiple Scenarios may be resolved as different Workflow execu-
tion states, they are reduced into one state using their preconfigured severity
level. Their severity may be seen in table 4.1.

Name Severity
Finished Success 0
Finished with Error 10
Pending 20
Running 30
Failing 35
Failed Rollbacked 40
Failed Commited 45
Failed Failed 50
Terminating 60
Terminated Commited 70
Terminated Rollbacked 80
Terminated Failed 90
Terminated Unknown 100

Table 4.1: Workflow State Severities

42

4.3. User Interface Design

Blocked	

Terminated
rollbacked

Terminated
commited

Failed
rollbacked

Failed
commited

Finished
with error

Finished
success

Pending

Running

Terminated	

Failed

Skipped	

Succeeded

Running

Pending

Figure 4.6: Scenario Execution State to Workflow State Mapping Diagram

4.3 User Interface Design

MANTA has already designed a layout (may be seen in the figure 4.8) for the
user interface which is implemented for MANTA Configurator and MANTA
Updater. For this project, new screens with elements matching the existing
layout must be created. Admin UI is a web application implemented in React
JS, and MANTA does not support mobile devices; thus, the created UI design
is only for desktop.

Admin UI layout is divided into three sections: the top navigation menu,
the left content bar and the main content. The layout of the top navigation
menu is unchangeable; it is used to switch between Admin UI modules. Only
the left content bar and the main content may be changed. The left content
bar is used in Updater and Configurator as a menu for the modules, and the
main content is the module’s screen for showing information. This behaviour
must be met to keep consistency between modules.

This chapter defines tasks that user should be able to perform using graphic
UI; introduces screen layouts using wireframes, and shows the flow between
screens. In this section, there is a subsection discussing the difference between

43

4. Design

Scenario centric and Connection centric approach.
Wireframes are input for MANTA graphic designer who will prepare a

pixel perfect graphic design from it.

4.3.1 Task Group

This section breaks down actions that are feasible within the application using
GUI. These actions are grouped according to logical belonging.

Workflow creation or edditation

• Create a Workflow

• Update a Workflow

• Delete a Workflow

• Choose execution of a specific Scenario for Connection

• Choose execution of a wildcard30

• Export Workflow to JSON

• Import Workflow from JSON

• Set revision type for Workflow

• Create Workflow from a template

Workflow execution

• Execute Workflow

• Stop a pending Workflow in a waiting queue

• Terminate currently being executed Workflow

Monitoring of Workflow execution

• See currently running Workflows

• See the status of executed Workflows

• See Workflow’s execution details

• See Scenario’s execution details

• See the number of processed nodes for any Scenario
30for example, all Scenarios for Connection A

44

4.3. User Interface Design

• See execution plan (execution hierarchy) of executed Workflow

• See execution history of given Workflow

4.3.2 Wireframes and Screen Transition

Screen transitions are shown in this subsection (see the figure 4.7) followed by a
description of all screens with wireframe examples. The rest of the wireframes
may be found in the attachment.

Different App

Screen

Modal Window

Legend

Export to JSON

Choose from
Template

Export to JSON

Import from JSON

Log Viewer

Workflow's
Exectuion Hieararchy

Workflow Edit
- Definition

Workflow Edit
- Description

Workflow Detail
- Definition

Workflow Detail
- Overview

Create a new
Workflow - Definition

Worklows
Overview List

Create a new
Workflow - Properties

Redirects to different App

Redirects to a Screen

Opens Modal Window

Figure 4.7: Screens Transitions

Workflows Overview List

This is the default and main screen (figure 4.8) of application showing all
created Workflows ready to be executed, currently being executed Workflows
and pending Workflows. From this screen, users may reach detail of existing
Workflow or create a new one.

Create a new Workflow - Description

Users are redirected to this screen when they click on the button ‘create new
Workflow’ (or edit Workflow, because these screens are the same). This (figure
4.9) is the main screen for Workflow creation containing a name, description
and icon. User may also change the revision type if any Analysis Scenario is

45

4. Design

51 x 40 MANTA Admin Console - Orchestration

Configurator Updater Logs Orchestration

40 x
35 User

Create new Task Running and Pending Workflows

~2h 15m left KillOracle Workflow All [full run]

My Master Workflow... [incremental] Pending ~35m Cancel

Runnable Workflows

Extraction ScenarioProcessing

Workflow name Expected length

My Master Workflow [full run]
35 x
35 ~35m Start

Start~2h 15mOracle Workflow All [full run] Config

Config

MSSQL Workflow for some we... [incremental] ~2d 3h 45m Config Start

Last execution

2019/8/17 15:48:21

2019/8/17 15:48:21

never executed

35 x
35

Search...

Success

Failed on: Scenario A

Success

Last status

Workflow name Status Actual Job Progress Expected length

Figure 4.8: Workflows Overview List Screen

selected. Users may also enable an advance mode which enables some planning
features for expert users.

On the left content panel, users may export or import a Workflow or open
a modal window to create a Workflow from predefined templates which are
automatically generated from existing Connections.

Create a new Workflow - Definition

From the screen ‘Create a new Workflow - Description’ user must change to
this screen (figure 4.10) to define which Scenarios will be executed for the
Workflow. These available Scenarios and Connections are determined from
the existing configuration. Users drag & drop available Phases, Technologies,
Connections or Scenarios from available list to execution list. The order in
the list does not matter; it is a set which is ordered and planned on runtime.

User may click on every execution object to see details and basic configu-
ration in the most right panel. If user moves a Scenario which is dependent on
any processing Scenario and the Advance mode is not enabled that particular
processing Scenario is automatically added to the Workflow definition.

The left content panel is unchanged from ‘Create a new Workflow - De-
scription’.

46

4.3. User Interface Design

51 x 40 MANTA Admin Console - Orchestration

Configurator Updater Logs Orchestration

40 x
35 User

Oracle All

Create new Workflow 1/2 - Oracle All [full run]

Workflow name *:

Name is in use

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id
est laborum.

Next

Save

Delete

Import from JSON

Export to JSON

Choose from templates

Definition

Properties

Revision type:

Description:

Full run
Incremental run

75 x 75My own image: Upload

* The full name will be: Oracle All [full run]

Advance mode: Disabled
Enabled

Figure 4.9: Create a new Workflow (description) Screen

Export to JSON

Export to JSON is a browser’s window to save a file.

Import from JSON

Import from JSON is a browser’s window to upload a file. If users decide
to Import a Workflow, they are asked first if they want to replace current
Workflow and that they may lose their work. The spinner is shown when the
file is being uploaded and processed.

Choose from Template

Chose from Template screen (figure 4.11)is a simple list of predefined Work-
flows with a preview and description. On confirmation, user is asked if he or
she is sure to override existing Workflow by the template. User may open the
preview in a larger window (figure C.2).

Workflow Detail - Overview

Workflow Detail - Overview (figure 4.12) provides information about past
execution, Workflow description, name and icon. From this screen, users

47

4. Design

51 x 40 MANTA Admin Console - Orchestration

Configurator Updater Logs Orchestration

40 x
35 User

Save

Delete

Create new Workflow 2/2 - Oracle All [full run]

Step description

Description
Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est
laborum.
Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est
laborum.

Available jobs Workflow Definition

Create Revision

Extraction DB2

Extraction Oracle

Analyse Oracle

Analyse DB2

Search...

Configuration A

Configuration B

Short Description

Commit

Scenario A

Scenario B

Export B

Export A

Export B

Search...

Analyse Oracle

Configuration B

Scenario A

Scenario B

Extraction Oracle

Extraction DB2

Back

Orchestration Configuration

Do analysis for all available configurations.

Max thread count

Incremental run

Properties

Definition

Import from JSON

Export to JSON

Choose from templates

To unlock this configuration drag the selected
step in Workflow HiearchyPostprocessing

Analyse Hive

No other job can run simultaneously

Full run

Figure 4.10: Create a new Workflow (definition) Screen

may access details about a particular execution. They can cancel or kill an
unfinished Workflow from this screen. The left panel has options like editing
the Workflow, exporting it to JSON, deleting it or executing it.

Workflow Detail - Definition

Users may click on a button on ‘Workflow Detail - Overview’ screen (figure
C.1) to switch to Workflow’s definition, which shows the collapsible tree struc-
ture of the Workflow definition exactly how the users created it. Users may
read a description of each Scenario, see the available configuration for Scenar-
ios and other executable objects, but the configuration is unchangeable. To
change it the user must click on the edit button in the left panel. The left
content panel is the same as on the screen ‘Workflow Detail - Overview’.

Workflow’s Execution Hierarchy

Workflow’s Execution Hierarchy (figure 4.13) screen is execution detail screen
displaying Workflow’s result in a collapsible tree structure with fully expanded
wildcard execution object, for example, if the user creates ‘execute all Scenar-
ios’ for ‘Configuration A’ all the corresponding Scenarios will be displayed.

48

4.3. User Interface Design

51 x 40 MANTA Admin Console - Orchestration

Configurator Updater Logs Orchestration

40 x
35 User

Oracle All

Create new Workflow 1/2 - Oracle All [full run]

Workflow name *:

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id
est laborum.

Next

Save

Delete

Import from JSON

Export to JSON

My own image:Choose from templates

Definition

Properties

Revision type:

Description

Full run
Incremental run

75 x 75Upload

* The full name will be: Oracle All [full run]

Choose from template

ConfirmCancel

Description
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est laborum.

Workflow Definition

Export B

Analyse Oracle

Extraction Oracle

Extraction DB2

Analyse Oracle

Scenario A

Scenario A

All my configurations
Oracle only
DB2 only

Figure 4.11: Choose from Template Modal Window

Every execution object has a status icon, so users may immediately see the
result of each execution object. Every object also has a button which redirects
into Log Viewer to see logs for the corresponding object.

When a user clicks on any execution object, the most right panel shows
execution details, e.g. start time, finished time, processed nodes count. In the
most right panel, users see the object’s description and its configuration just
as on previously described screens.

In the left content panel, there is a Run again, Stop button and a button
to download all logs for the Workflow, which may come handy when a user
reports an incident for MANTA Helpdesk.

Workflow Edit - Description and Definition

Screens ‘Workflow Edit - Description and Definition’ are the same as ‘Create
a new Workflow - Description and Definition’. Only the title is changed.

Log Viewer

Log Viewer screen is from module MANTA Log Viewer containing relevant
logs for given Workflow execution.

49

4. Design

51 x 40 MANTA Admin Console - Orchestration

Configurator Updater Logs Orchestration

40 x
35 User

Configure

Workflow: Oracle Workflow All [incremental]

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est laborum.

Description:

Last executions

Pending

Processing

Success

Failed on: Scenario A

2019/10/18 14:51

2019/10/18 14:51

2019/10/18 14:51

2019/10/18 14:51

Result state Executed Finished

2019/10/18 14:51

2019/10/18 14:51

Cancel

Kill

Administrator

Manta

Manta

Manta

Executed by Action

1h 35m

Time length

2d 18h 35m

35m

75 x 75

Run

Delete

Definition

Overview

Export to JSON

Figure 4.12: Workflow Detail Screen

4.3.3 Scenario Centric vs Connection Centric Approach

During designing GUI and preparing Workflow’s JSON format, a question,
how to order execution objects in the tree structure, came in mind. At first,
two approaches seem to be usable: Scenario centric approach and Connection
centric approach (see the figure 4.14 for example).

The Scenario centric approach would use new abstract Scenarios to which
is Connection assigned. This assignment defines the specific Scenarios match-
ing the original abstract Scenario. For example, abstract Scenario ‘Dictio-
naryMappingScenario’ with Oracle Connection would become specific Sce-
nario ‘OracleDictionaryMappingScenario’ at runtime.

The Connection centric approach does not use abstract Scenarios - users
pick Connection first. When the Connection is known, specific Scenarios may
be resolved based on the chosen Connection so that user may choose the
specific Scenarios directly.

Two use-cases for better understanding:

Use-case for Scenario centric approach Users configure Connections in
Configurator. After that, they enter the Orchestration and Monitoring
application and creates a new Workflow. Then they define a Workflow
by picking Scenarios from the available Scenarios list. After that, they
assign one or more Connections to each Scenario. Users will have an

50

4.3. User Interface Design

51 x 40 MANTA Admin Console - Orchestration

Configurator Updater Logs Orchestration

40 x
35 User

Execution detail of: Oracle Workflow All [full run]
75 x 75

Step description

Status: Scenario A

Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est laborum.

Execution Hierarchy Search

Analyse Oracle

Extraction Oracle

Extraction DB2

Configuration

Checkbox

Checkbox

text goes here

Radio button

Radio button

Analyse Oracle

Scenario A

Scenario A

Download all logs as zip

Show log

Executed 2019/2/18 14:55:48 by Administrator

One of children failed

Success

Description

Started: 2019/2/18 16:35:48
Finished: 2019/2/18 17:10:21
Execution length: 35 minutes
Analysed: 354 nodes

Status: Success

Show log

Error message: Lorem ipsum dolor sit amet,
consectetur adipiscing elit, sed do eiusmod
tempor

Scenario A

Scenario A

Analyse Oracle

Analyse OracleProcessing children

Export B

Export C

Waiting for execution

Export ABlocked by previous error

Run Again

Stop

Back

Figure 4.13: Execution Detail Screen

option to create Scenario groups; thus, they will be able to assign one
Connection to multiple Scenarios.

Use-case for Connection centric approach Users configure Connections
in Configurator. After that, they enter the Orchestration and Monitor-
ing application and create a new Workflow. In Workflow, they create
one or more Connections; then they define for each Connection a list of
Scenarios to run for a given Connection.

From both use-cases, both approaches seem to be valid alternatives, and
the Scenario centric approach seems to be more usable then Connection cen-
tric. However, that is not true when it comes to execution wildcards and
execution of only one specific Scenario.

If users want to define a Workflow for executing all Scenarios for one
Connection31, which is very common use-case, they would need to specify
all Scenarios first, and for all Scenarios, they must specify the Connection if
Scenario centric approach would be used. On the other hand, if users want to
define the same Workflow using Connection centric approach, they define the
Connection with a wildcard mark which may be, for example, an empty list
of specific Scenarios.

31a Connection wildcards

51

4. Design

Note:

This is an Abstract Scenario.

This Abstract Scenario substitute all corresponding
Scenarios from Analyse phase for each connected
Connection.

These scenarios are choosed at runtime.

db2ExtractorScenario

Note:

Scenarios are NOT ordered in the
execution order. The execution order is
determined at run time.EXTRACT

Conn_DB2_ANY

Note:

Each connection is identified by its
Connection_ID (name) and Technology. There
will be an option to use patterns as "DB2_ANY"
which means all connections for DB2, or "ANY"
which means all connection for all technologies.

Conn_DB2_prod

Conn_DB2_dev

ExtractorScenario

Conn_DB2_dev

DictionaryMappingScenario

PlsqlDataflowScenario

Conn_DB2_dev

Conn_ORACLE_dev

Conn_DB2_prod

My Workflow 2

ANALYSE

DdlDataflowScenario

Conn_DB2_dev

DictionaryDataflowScenario

My Workflow 1

Conn_DB2_prod

Figure 4.14: Connection Centric (left) vs Scenario Centric (right) Approach

The execution of only one specific Scenario using Scenario centric approach
leads to the same tree structure as the Connection centric: Abstract Scenario
→ Connection → specific Scenario.

In the end, the Connection centric approach was chosen for the tree struc-
ture, but its format is not final yet. In the next chapters, the Connection
centric approach will be extended for Phases which is using the idea of Ab-
stract Scenario from Scenario centric approach, and Connections are divided
into Technologies and Connections objects.

4.4 Orchestration Component Architecture

This section desribes orchestration component architecture, focusing on used
Spring Beans and their usage represented by the sequence diagram. Part of
this chapter is looking on Workflow definition class structure, including its
JSON format. The end of this chapter is focused on a deeper analysis of
MANTA Platform and its capabilities.

4.4.1 Component Architecture

The diagram 4.15 shows the high-level architecture of the Orchestration com-
ponents in scope of layers. The diagram also shows links to the database
tables and dependency between components.

WorkflowExecutionController WorkflowExecutionController defines and
handles application interface (API) for Workflow Execution logic which

52

4.4. Orchestration Component Architecture

T
em

pl
at

es
W

or
kf

lo
w

D
A

O
C

LI
P

ro
pe

rt
ie

sP
ro

vi
de

r

O
nl

in
eE

xe
cu

tio
nP

la
nn

er
«s

tr
at

eg
y

pa
tte

rn
»

O
ffl

in
eE

xe
cu

tio
nP

la
nn

er
«s

tr
at

eg
y

pa
tte

rn
»

S
ce

na
rio

M
et

ad
aD

A
O

W
or

kf
lo

w
R

es
ol

ve
r

W
or

kf
lo

w
Q

ue
ue

D
A

O
W

or
kf

lo
w

D
A

O
R

es
ou

rc
eM

an
ag

er «t
ab

le
»

W
or

kf
lo

w
 T

em
pl

at
es

W
or

kf
lo

w
T

em
pl

at
es

S
er

vi
ce

E
xe

cu
tio

nP
la

nn
er

M
an

ta
P

la
tfo

rm
E

xe
cu

to
r

E
xe

cu
tio

nP
ro

ce
ss

or
S

er
vi

ce

P
ay

lo
ad

Q
ue

ue
D

A
O

«t
ab

le
»

P
ay

lo
ad

 Q
ue

ue

W
or

kf
lo

w
S

to
ra

ge
C

on
tr

ol
le

r

W
or

kf
lo

w
S

to
ra

ge
S

er
vi

ce

«t
ab

le
»

W
or

kf
lo

w
 Q

ue
ue

«t
ab

le
»

U
se

r
D

ef
in

ed
 W

or
kf

lo
w

s

W
or

kf
lo

w
E

xe
cu

tio
nC

on
tr

ol
le

r

«f
ile

»
O

ve
rr

id
en

 S
ce

na
rio

M

et
ad

at
a

P
ro

pe
rt

ie
s

W
or

kf
lo

w
E

xe
cu

tio
nS

er
vi

ce

«t
ab

le
»

S
ce

na
rio

 M
et

ad
at

a

«d
at

ab
as

e»
H

2

JD
B

C

JD
B

C
F

S

JD
B

C

R
E

S
TG
et

W
or

kf
lo

w
s

R
E

S
TC
R

U
D

_W
or

kf
lo

w

JD
B

C

R
E

S
TE
xe

cu
te

W
or

kf
lo

w
(n

am
e:

 s
tr

in
g)

R
E

S
TS
to

pW
or

kf
lo

w

JD
B

C

Fi
gu

re
4.

15
:

O
rc

he
st

ra
tio

n
C

om
po

ne
nt

A
rc

hi
te

ct
ur

e
D

ia
gr

am

53

4. Design

is primarily used by React application.

WorkflowStorageController WorkflowStorageController defines and han-
dles application interface (API) for creating, updating and deleting Work-
flows stored in the database.

WorkflowExecutionService WorkflowExecutionService provides the busi-
ness logic for preparing Workflow for execution.

ExecutionProcessorService ExecutionProcessorService handles the logic
of execution of particular Workflow in a separate thread. It creates
an execution plan, prepares the parallelisation and calling the MANTA
Platform Executor when a Scenario should be started.

UserWorkflowStorageService UserWorkflowStorageService provides logic
and transformation for storing, updating and deleting of existing Work-
flows.

WorkflowTemplatesService WorkflowTemplatesService provides operation
for handling Workflow Templates created by MANTA.

WorkflowResolver WorkflowResolver transforms Workflow from JSON to
class structure. It resolves abstract Scenarios and Scenario patterns.

WorkflowQueueDAO WorkflowQueueDAO handles storing Workflows wait-
ing for execution. It is an adapter for accessing the persistent queue.

ResourceManager ResourceManager monitors usage of machine resources
as MANTA Server Read or Write weights and machine CPU weight.

UserWorkflowDAO UserWorkflowDAO handles storing Workflows created
by a user. It is an adapter for accessing the database.

PayloadQueueDAO PayloadQueueDAO handles storing Workflow’s jobs
waiting for execution. It is an adapter for accessing the persistent queue.

ExecutionPlanner ExecutionPlanner is logic for online and offline planning
Workflow execution. It orders jobs and plans their parallelisation. It is
a composite of offline and online planner.

CLIExecutorDAO CLIExecutorDAO executes Scenarios via MANTA Plat-
form.

TemplatesWorkflowDAO TemplatesWorkflowDAO is an adapter for ac-
cessing stored Workflow Templates created by MANTA.

CLIPropertiesProvider CLIPropertiesProvider provides access to proper-
ties created by MANTA Configurator and used by MANTA CLI.

54

4.4. Orchestration Component Architecture

4.4.2 Workflow Class Diagram (Workflow Definition)

The following diagram 4.16 shows the Workflow JSON format and configurable
Scenario metadata. The diagram has two views showing the class structure
with their links, and the keyword ‘exported’ shows what can be stored as
JSON. This final structure is motivated by chapter ‘Scenario centric vs Con-
nection centric approach’.

The definition format has a tree structure. If the inner node has no de-
scendants, then its descendants are dynamically added at the run-time from a
known and existing MANTA CLI configuration created by MANTA Configu-
rator. This feature has been already mentioned as execution object wildcard,
or shortly wildcard. The structure is illustrated in figure 4.16.

Scenario metadata are stored in persistent storage (a database) or it can
be overridden in the special file which contains overridden attributes in JSON
format.

As it was mentioned in the functional requirement ‘F3 (U6, U7): Execute
and Terminate Workflow’, for every node, it must be possible to define new
environment variables or override existing global environment variables. These
variables are included in Workflow JSON. During run-time and after resolving
JSON, the application gathers all user overridden environment variables, links
them to the particular MANTA Scenario, and merges them with environment
variables from MANTA linked to ScenarioMetadata.

All hierarchical arrangements have the same expressive capabilities and
are transformable to each other, and therefore do not restrict display in GUI.
This arrangement was chosen because it is simpler to create it manually, and
creating in this order is the most likely use-case. Described by examples:

Example A: If users want to create a workflow ’ALL for Technology A’,
then they must:

1. define Workflow,

2. in the Workflow, they must define all Phases (max. 3)

3. and for each Phase, they must specify Technology A.

That is maximally seven records at total (Workflow, 3x Phase, 3x Tech-
nology). If Technology would be a parent of Phase, there are only two records
maximally.

Example B: If users want to create a workflow ’Analysis for ALL Tech-
nologies’ and Technology would be a parent of Phase, then they must:

1. define Workflow,

2. in the Workflow, they must define all Technologies (max n),

3. and for each Technology, they must specify Analysis as the Phase.

55

4. Design

«interface»
S

cen
ario

P
ro

g
ress

+
 getP

ercentage(): long
+

 increase(): long
+

 increase(int value): long
+

 getR
em

ainingE
stim

ate():long

«class»
S

tep
S

cen
ario

P
ro

g
ress

«class»
U

serE
n

viro
n

m
en

tV
ariab

les
{Json S

erializable}

- key: S
tring {exported}

- value: S
tring {exported}

«enum
eration»

V
ariab

leT
yp

e

E
N

V
IR

O
N

M
E

N
T

JA
V

A

«class»
E

n
viro

n
m

en
tV

ariab
les

{Json S
erializable}

- key: S
tring {exported}

- value: S
tring {exported}

- changable: boolean {exported}

«class»
C

o
n

n
ectio

n
T

ech
n

o
lo

g
y

{Json S
erializable}

+
 technology: S

tring {exported}

«class»
W

o
rkflo

w
E

xecu
tio

n
P

h
ase

{Json S
erializable}

- phase: S
tring {exported}

«class»
W

o
rkflo

w
{Json S

erializable}

- nam
e: S

tring {exported}
- description: S

tring {exproted}
- createdB

y: S
tring {exported}

- creationD
ate: D

ate {exported}
- updatedB

: S
tring {exproted}

- updatedD
ate: D

ate {exported}
- advance: boolean {exported}

W
orkflow

 D
efinition JS

O
N

«class»
M

an
taS

cen
ario

{Json S
erializable, optional}

- scenarioN
am

e: S
tring {exported}

«class»
M

an
taC

o
n

n
ectio

n
{Json S

erializable}

+
 connectionID

: S
tring {exported}

S
cenario D

efinition in D
B

«enum
eration»

S
cen

ario
T

ech
n

o
lo

g
y

N
O

N
E

O
R

A
C

LE
D

B
2

H
IV

E
M

S
S

Q
L

T
E

R
A

D
A

T
A

JA
V

A
...

«enum
eration»

S
cen

ario
N

am
e

N
E

W
_R

E
V

IS
IO

N
_M

IN
O

R
N

E
W

_R
E

V
IS

IO
N

_M
A

JO
R

R
O

LLB
A

C
K

_R
E

P
O

S
IT

O
R

Y
C

LE
A

N
_R

E
P

O
S

IT
O

R
Y

R
E

P
O

S
IT

O
R

Y
_P

O
S

T
P

R
O

C
E

S
S

IN
G

C
O

M
M

IT
_R

E
P

O
S

IT
O

R
Y

P
R

U
N

E
_R

E
V

IS
IO

N

D
IC

T
IO

N
A

R
Y

_M
A

P
P

IN
G

...

«enum
eration»

S
cen

ario
P

h
ase

E
X

T
R

A
C

T
R

E
P

O
S

IT
O

R
Y

_C
R

E
A

T
E

A
N

A
LY

S
E

C
O

M
M

IT
R

O
LLB

A
C

K
E

X
P

O
R

T
D

O
N

E

«class»
C

o
n

strain
s

{Json S
erializable}

«class»
T

im
eS

cen
ario

P
ro

g
ress

«class»
S

cen
ario

M
etad

ata
{Json S

erializable}

- scenarioN
am

e: S
tring {exported}

- m
axT

hreads: int {exported}
- lastduration: long [0..10]

+
 getO

peration(): S
cenarioO

peration
+

 getT
echnology(): S

cenarioT
echnology

+
 getC

om
m

and(): S
tring

+
 getN

am
e(): S

tring
+

 getP
hase(): S

cenarioP
hase

«enum
eration»

S
cen

ario
W

eig
h

t

N
O

N
E

LO
W

E
S

T
LO

W
M

E
D

IU
M

H
IG

H
B

LO
C

K
E

R

«enum
eration»

E
xecu

tab
leS

tate

S
U

C
C

E
S

S
F

A
ILE

D
B

LO
C

K
E

D
S

K
IP

P
E

D
T

E
R

M
IN

A
T

E
D

R
U

N
N

IN
G

P
A

U
S

E
D

W
A

IT
IN

G
D

O
N

E

«interface»
IM

an
taE

xecu
tab

le

+
 run(): E

xecutableS
tate

+
 kill(): E

xecutableS
tate

+
 stop(): E

xecutableS
tate

+
 pause(): E

xecutableS
tate

+
 continue(): E

xecutableS
tate

+
 getS

tate(): E
xecutableS

tate
+

 getN
am

e(): S
tring

+
 getP

rogress(): S
cenarioP

rogress

nam
e

m
u

st ru
n

 b
e

fo
re

{exported}

0..n
1

nam
e

m
u

st ru
n

 a
fte

r
{exported}

0..n
1

nam
e

ca
n

't ru
n

 w
ith

{exported}

0..n
1

1
1

- stepP
rogress

{exported}

1

0..n
- environm

entV
ariables

{exported}

1

0..n
- environm

entV
ariables

{exported}

1

0..n
- environm

entV
ariables

{exported}

1

0..n
- environm

entV
ariables

{exported}

10..n
- environm

entV
ariables{exported}

1

1
- variableT

ype

{exported}

1

0..n
- environm

entV
ariables

{exported}
1

1 - variableT
ype

co
n

sist o
f

{exported}

1

0..n
- connections

co
n

sist o
f

{exported}

1

0..n
- technologies

co
n

sist o
f

{exported}

1

1..4
- phases

{exported}
1..n

1
- m

antaS
erverR

eadW
eight

d
e

fin
e

s

{exported}

1

0..n
- scenarios{flyw

eight}

1

1 - m
etadata

«uses»

1 1- state

{exported}
1..n

1
- m

antaS
erverW

riteW
eight

{exported}
1..n

1
- scenarioW

eight

{exported}
1..n

1
- operation

{exported}

1..n

1 - technology

{exported}

11 - phase

{exported}
1

1 - constrain

«uses»

1
1

- tim
eP

rogress

Figure
4.16:

W
orkflow

C
lass

D
iagram

56

4.4. Orchestration Component Architecture

That is 1+n+n records for the JSON output. In the other hand, if the
Phase would be a parent for Technology, it would be two records maximally.

So to summarise this approach. To chose the correct hierarchy, it is better
to construct it from the nodes with the lowest variability, considering the most
probable use-case. From Example B, it is evident that making Phase parent
of Technology leads to fewer records in the JSON.

4.4.3 Sequence Diagrams

Sequence diagrams in this chapter and attachments show usage of the com-
ponents from the previous chapter. Diagrams were created primarily for un-
derstanding the complex program and finding critical sections.

In this section, there is displayed the most important diagram 4.17 of the
Workflow execution, which is one of the core functionalities. The diagram
shows the Workflow’s lifecycle:

1. the translation Workflow from JSON,

2. storing it in the waiting queue,

3. obtaining it from the waiting queue by WorkflowProcessor,

4. expanding wildcards, including:

a) obtaining all existing Connection configurations,
b) Scenario Metadata injecting

5. creation of the workflow plan,

6. obtaining a job from the plan and its execution by JobExecutionPro-
cessor including:

a) obtaining Connection properties
b) the Scenario execution.

In the same diagram 4.17, there can also be found critical sections high-
lighted by a colour box. There are three sections: storing and obtaining a
Workflow to and from waiting queue; grabbing a job from the Workflow to
execute it by JobExecutionProcessor; and access to the ResourcesService.

4.4.4 Executing MANTA Platform

MANTA Platform is a Java application with the Main method instantiating
MANTA Scenario, and Scenarios are passed by its name as an argument. This
Platform now mainly launches the Master Scenarios for each Technology, and
the Master Scenario provides a parallel run of the corresponding Scenarios in

57

4. Design

Figure 4.17: Workflow Execution Sequence Diagram (left)

58

4.4. Orchestration Component Architecture

Figure 4.18: Workflow Execution Sequence Diagram (right)

59

4. Design

the Technology for all Connections. The Manta Platform started using several
level launch scripts: .bat for Windows or .sh for Linux.

The first level is just one script, which is the main MANTA CLI launch
point, called RUN and executes a complete MANTA CLI process for all ex-
isting Connections. This script executes three second-level scripts. These
scripts are three aggregation scripts for individual technologies divided into
three Phases: Extraction, Analysis and Export. Each of these three scripts
contains a list of call commands to run scripts of the third level for all technolo-
gies for the particular Phase. The third-level scripts so-called Master Scenario
scripts launch the MANTA Platform script with two arguments. The first ar-
gument is the module, and the second is the Scenario name, more specifically,
the name of Master Scenario.

Historically, MANTA has supported a total of three modules: the general
module, the module for IGC and the module for IMM. MANTA already inte-
grated IGC module into the general module, and they are now backing away
from the IMM module and slowly merging it into a generic module. MANTA
Orchestration and Monitoring (and the entire MANTA Admin UI) supports
only the general manta-dataflow-cli module.

MANTA Platform script (mantar.bat, mantar.sh) is a lowest-level script
that runs the Java virtual machine with JAR applications MANTA Platform
and passes the script name as an argument to it. This script sets up a lot
of environmental variables, which are then passed along as arguments to the
aforementioned JAR. MANTA Platform script also calls script configure.bat
(or configure.sh), which sets other environment variables. These variables
(in the configure script) are designed to be changed by users. See the list
below for more information on individual variables.

Execution of the MANTA Platform is done by ProcessBuilder [23] be-
cause it is native, simple, and it does not require a third-party library. Its
support for process controlling operation is also done by a native class Process
which seems to be enough for requirements by this application [24]. The use
of these libraries must be properly encapsulated so their future change will be
smooth and clear.

Environment Variables used during Scenario execution by
MANTA Platform

Environment Variables in mantar.bat and mantar.sh:

MEMORY OPTS Variable MEMORY_OPTS is only configurable variable in
MANTA Platform script. Its value defines initial and maximal memory
used by Java Virtual Machine. In some cases, the default value defined
by MANTA is not large enough, and it must be overridden. This value
will be gathered from the system, and if it is undefined, the default value
will be used. The default value is -Xms128m -Xmx3072m -Xss4m.

60

4.4. Orchestration Component Architecture

JAVA CMD JAVA_CMD variable contains a path to Java executable. Its de-
fault value is ’java’ unless JRE_HOME or JAVA_HOME is defined. The hier-
archy is: always use JRE_HOME if it is defined, otherwise use JAVA_HOME if
it is defined, otherwise use default value java. This logical functionality
will be kept as-is, but it will be implemented in the application.

MANTA DIR HOME It is a path to MANTA CLI root directory. Orig-
inally this value was determined as the grandparent of the working di-
rectory (for windows %˜dp0..\.., for a Linux $MANTA_DIR_BIN/../..).
This variable is passed to MANTA Platform by redefining a property
value -Dmanta.dir.home via PLATFORM_OPTS. This variable was origi-
nally used to define PLATFORM_OPTS. This logic will be changed a little
bit. If this variable is not defined, then it will be resolved on run-time
using a knowledge of the relative path of the working directory of this
application to MANTA CLI.

MANTA DIR BIN This variable is a parent directory of MANTA Platform
script where this variable was also set. It was originally used to define
MANTA_DIR_HOME and to call configure script, but configure script will not
be called anymore. This variable is unchangeable, and it will be resolved
from MANTA_DIR_HOME. Its default value is <MANTA_DIR_HOME>/platform
/bin.

MANTA DIR PLATFORM This variable is a path to the parent direc-
tory for MANTA home directory. It was originally used to define vari-
able MANTA_CLI_JAR. This variable is unchangeable, and it will be re-
solved from MANTA_DIR_HOME. Its value is <MANTA_DIR_HOME>/platform.
It is passed to the MANTA Platform by redefining a property value
-Dmanta.dir.platform via PLATFORM_OPTS.

MANTA CLI JAR In this variable is stored path to MANTA Platform
jar. This variable is unchangeable, and it is used as an argument
for Java executable. MANTA Platform jar contains a CLI version.
It must be obtained during run-time and dynamically resolved from
MANTA_DIR_PLATFORM variable. Its possible value could be, for example,
<MANTA_DIR_HOME>/platform/lib/manta-platform-cli-1.27.jar.

MANTA DIR SCENARIO This variable contains the path to the direc-
tory of MANTA CLI module which were being passed to MANTA Plat-
form script. As it was mentioned before, this application will not sup-
port other modules than the general one. This variable is passed to
the Platform by redefining a property value -Dmanta.dir.scenario
via PLATFORM_OPTS. Its default value is <MANTA_DIR_HOME>/scenarios/
manta-dataflow-cli.

61

4. Design

1 −Dmanta . d i r . home=”<MANTA DIR HOME>”
2 −Dmanta . d i r . p lat form=”<MANTA DIR PLATFORM>”
3 −Dmanta . d i r . s c e n a r i o=”<MANTA DIR SCENARIO>”
4 −Dmanta . s c e n a r i o . name=”<MANTA SCENARIO NAME>”
5 −Dmanta . l i c e n s e . f i l e=”<MANTA LICENSE FILE>”
6 −Dmanta . l i c e n s e . l oade r=”<MANTA LICENSE LOADER>”
7 −Dmanta . l i c e n s e . warndays=<WARN DAYS>

Listing 4.1: Default value of PLATFORM OPTS variable

MANTA LOG This variable is used to define the logging configuration for
LOGGING_OPTS. Its default value is <MANTA_DIR_HOME>/platform/etc/
log4j2.xml. This variable is unchangeable.

MANTA LICENSE FILE In this variable is stored path to MANTA Li-
cense file. Its default location is <MANTA_DIR_HOME>/platform/etc/
license.key. This variable is changeable, that means if a user rede-
fines this variable in his environment, then this redefined value will be
used instead of its default value. This variable is passed to the MANTA
Platform by redefining a property value -Dmanta.license.file via
PLATFORM_OPTS.

WARN DAYS This variable originally did not exist, but it will be in-
troduced to achieve a unified approach for every variable. It defines
when the user will be notified of his license expiration. This vari-
able is passed to the MANTA Platform by redefining a property value
-Dmanta.license.warndays via PLATFORM_OPTS and is changeable. Its
default value is 7.

PLATFORM OPTS This variable contains arguments which redefine prop-
erty value for MANTA Platform. Originally, it was passed as an argu-
ment for Java and dereferenced by Shell. This dereferencing will be done
in the application. Its default value may be seen in the listing 4.1.

LOGGING OPTS This variable contains an argument which redefines prop-
erty value -Dlog4j.configurationFile for MANTA Platform. Origi-
nally it was passed as an argument for Java and dereferenced by Shell.
This dereferencing will be done in the application. If the log4j con-
figuration file exists then is used, otherwise <MANTA_LOG> is used. This
variable is changeable. The most priority has users specified value then
the existence of <MANTA_DIR_SCENARIO>/etc/log4j2.xml and the last
is the default <MANTA_LOG>.

MANTA SCENARIO NAME This variable did not exist, but same as
for <WARN_DAYS> it will be introduced to achieve a unified approach for
every variable. It is unchangeable, and it contains the Scenario name

62

4.4. Orchestration Component Architecture

usually passed as an argument for MANTA Platform script. It is passed
to MANTA Platform via PLATFORM_OPTS.

MANTA LICENSE LOADER This environment variable is defined in
the third-level Master Scenario script. This variable contains the ref-
erence to java bean loading the license. Reason for exposing this is not
valid anymore, and it will be hardcoded for better safety and for prevent-
ing it from foisting by a forged implementation. This variable is passed to
the MANTA Platform by redefining a property value -Dmanta.license.
loader via PLATFORM_OPTS.

SCRIPT DIR Environment variable SCRIPT_DIR is defined in the third-
level Master Scenario script. It contains parent directory of the script to
which script does ‘change directory’ and makes it as a working directory.
The working directory is <MANTA_DIR_HOME>/scenarios/manta-datafl
ow-cli/bin. This application will resolve the working directory from
MANTA_SCENARIO_DIR and will not let the user change it. This variable
will also be renamed to MANTA_SCRIPT_DIR to keep naming convention,
but it affects nothing because this variable will be unknown for a user.

JAVA OPTS This variable is used only in few of third-level Scenario Scripts.
For example, it is used for mssqlExtractorMasterScenario and both
operating systems. By default, its already set value is kept unchanged
and in the script is added a reference to MANTA Scenario library direc-
tory. Its default value can be easily understood from the next bash code:
export JAVA_OPTS=("${JAVA_OPTS[@]}" "-Djava.library.path=\"
$SCRIPT_DIR/../lib\"")

Jakub Moravec asked for keeping this behaviour as is if it is possible.
That means defining this variable only for those Scenarios which need it.
That means its definition will be in the database for particular Scenarios.

DEBUG OPTS This variable is defined in the script mantad, and it is used
by MANTA Developers to debug MANTA CLI in Eclipse. If the mantad
script is called, then its default value is:

DEBUG_OPTS=-Xdebug -Xrunjdwp:transport=dt_socket,server=y,a
ddress=8000,suspend=y

The mantad script calls MANTA Platform script (mantar) and MANTA
Platform script passes this variable to MANTA Platform. This variable
will be in default blank because its default value is undefined/blank, but
it will remain changeable. So a user (MANTA developer) can define its
value for his debugging needs. However, they will not probably be using
this application during development for debugging purpose, because of
backward compatibility they may still use already existing scripts.

63

4. Design

SCENARIO OPTS Variable SCENARIO_OPTS is usually defined by users to
customise MANTA Scenarios somehow. Its default value will be blank,
and a user should be able to redefine it.

Environment Variables in configure.bat and configure.sh:

MANTA USER MANTA_USER contained the username of the user who exe-
cuted the configure script. This username will hold the username of the
user who started this application. This variable is passed to MANTA
Platform via WORKSPACE_OPTS as -Dmanta.user. This variable is un-
changeable.

MANTA DIR USER This variable, if the user does not redefine it, con-
tains <MANTA_DIR_HOME>. That means this variable is changeable. This
variable is passed to MANTA Platform via WORKSPACE_OPTS as -Dman
ta.dir.user.

MANTA DIR INPUT In this variable, if the user does not redefine it,
is <MANTA_DIR_HOME>/input. That means this variable is changeable.
This variable is passed to MANTA Platform via WORKSPACE_OPTS as
-Dmanta.dir.input.

MANTA DIR OUTPUT MANTA_DIR_OUTPUT, if the user does not rede-
fine it, contains <MANTA_DIR_HOME>/output. That means this vari-
able is changeable. This variable is passed to MANTA Platform via
WORKSPACE_OPTS as -Dmanta.dir.output.

MANTA DIR LOG In this variable, if the user does not redefine it, is
stored <MANTA_DIR_HOME>/log. That means this variable is changeable.
This variable is passed to MANTA Platform via WORKSPACE_OPTS as
-Dmanta.dir.log.

MANTA DIR TMP This variable, if the user does not redefine it, con-
tains <MANTA_DIR_HOME>/temp. That means this variable is changeable.
This variable is passed to MANTA Platform via WORKSPACE_OPTS as
-Dmanta.dir.temp.

MANTA LICENSE VALIDATOR Variable MANTA_LICENSE_VALIDATOR
is similar to MANTA_LICENSE_LOADER apart from the fact; it is defined
in configure script. It will also be ignored and replaced by its default
value.

WORKSPACE OPTS This variable contains arguments which redefine
property value for MANTA Platform. Originally, it was passed as an
argument for Java and dereferenced by Shell. This dereferencing will be
done in the application. Its default may be seen in listing 4.2.

64

4.4. Orchestration Component Architecture

1 −Dmanta . d i r . home=”<MANTA DIR HOME>”
2 −Dmanta . d i r . p lat form=”<MANTA DIR PLATFORM>”
3 −Dmanta . d i r . s c e n a r i o=”<MANTA DIR SCENARIO>”
4 −Dmanta . s c e n a r i o . name=”<MANTA SCENARIO NAME>”
5 −Dmanta . l i c e n s e . f i l e=”<MANTA LICENSE FILE>”
6 −Dmanta . l i c e n s e . l oade r=”<MANTA LICENSE LOADER>”
7 −Dmanta . l i c e n s e . warndays=<WARN DAYS>

Listing 4.2: Default value of WORKSPACE OPTS variable

Most of the variables become locked from changes. It is not bad because
they were never meant to be changeable by users. It even adds some security to
MANTA, because customers will not be able to change them inappropriately
and break their MANTA CLI.

Most of these variables will have their default values hardcoded in Java
in an Infrastructure package. It also is not bad because their default values
never change, and they all are common for all scripts, and most of them refer
to the working directory structure. These which are not shared are open to
change in ScenarioMetadata or by users in GUI and/or in Workflow Definition
JSON.

Manta Platform is nowadays executed on Windows by command: %JAVA_CM
D% %DEBUG_OPTS% %JAVA_OPTS% %MEMORY_OPTS% %PLATFORM_OPTS% %WORKS
PACE_OPTS% %LOGGING_OPTS% %SCENARIO_OPTS%-jar "%MANTA_CLI_JAR%"
%2 %3

These all variables and its order must be kept in the application. Interest-
ing is the third argument %3, which is “app context filename”, and has been
used in special situations to do tricks with MANTA CLI by MANTA devel-
opers. After discussion with the head developer (L. Hermann), he approved
not to implement it because it is not relevant anymore.

Bash arrays used by MANTA Platform

In all-levels Bash scripts for Linux executing any Scenario, variables are cre-
ated and used as Bash array. To verify possibilities to support the for-
mat of these variables a prototype-test which exported an array variable
and tried to obtain it via System.getenv(String) or ProcessBuilder.en
vironment() (which uses System.getenv(String)too) was created [23].

This test verified that standard way to work with environment variables
does not support bash arrays. That is not unexpected behaviour because it
conflicts with the definition of the environment variable :

“The value of an environment variable is a string of characters. For a C-
language program, an array of strings called the environment shall be made
available when a process begins. The array is pointed to by the external
variable environ, which is defined as: extern char **environ;” [25]

65

4. Design

“These strings have the form name=value; names shall not contain the
character ’=’. For values to be portable across systems conforming to POSIX.1-
2017, the value shall be composed of characters from the portable character
set (except NUL and as indicated below). There is no meaning associated with
the order of strings in the environment. If more than one string in an environ-
ment of a process has the same name, the consequences are undefined.” [26]

That means Bash arrays cannot be easily supported in Java application
and they will not be supported in this application.

Changes in MANTA Platform

MANTA Platform allows run any Scenario - Master Scenario and ordinary
Scenario. The problem with running ordinary Scenarios is that they assume
that the properties from the Connection configuration files that the Configu-
rator creates are already loaded in the application’s context and are directly
available to them. However, this loading is handled by Master Scenarios,
which are skipped because of the requirement of this application. Somehow,
therefore, these property needs to be acquired and added to the context.

Some of the properties may be encrypted, and a decryption procedure
must be called on these properties before the Scenario uses them.

Three variants are possible:

Passing all properties as application’s arguments This first option ex-
pects the Monitoring and Orchestration to read the configuration file
and forward all properties as SCENARIO_OPTS variable to the MANTA
Platform. MANTA platform only reads and decrypts these properties.
The advantage of this solution is the minimal change in the CLI and the
MANTA Platform, as it is only needed to do decryption properties in
SCENARIO_OPTS.

Passing Connection file path as application’s argument The second op-
tion moves the reading of the property file containing the Connection to
the MANTA Platform. The decryption remains in MANTA Platform.
Location of the file is passed as an argument to MANTA Platform with
Scenario name. This option is not optimal because a major change is
required in MANTA Platform.

Executing special initial Scenario This last option is in basic same as
the previous one, but the change is not in MANTA Platform, but a
new special Scenario, which will handle the file reading and injecting
properties into application’s context, will be created. This extraction
of the logic into separate Scenario, which will be executed only when
required by Monitoring and Orchestration application, is a nice and
clean solution and the most bullet-proof solution because no change in
MANTA Platform is required.

66

4.5. Monitoring Component Architecture

For the need of the prototype, the first solution will be implemented, but
it will be changed to the third one later.

4.5 Monitoring Component Architecture

Monitoring Component Architecture is not as sophisticated as the Orchestra-
tion Component. Its core functionality is to inject gathered states from CLI
Scenarios into Scenarios Execution Data Objects that then may be shown to
users. This will happen asynchronously when any Scenario finishes its work.

This solution is tightly coupled with Jakub Kováč’s Log Viewer. Jakub
created as his Bachelor thesis a logging solution for MANTA. Very simply said,
he created a unified Logging API which should be widely used in MANTA as a
logging framework. Its solution is focusing primarily on Errors and Warnings
level logs which are parametrized because they will be displayed to users via
GUI. These new parametrized logs contain, besides other parameters, a ‘how-
to-fix’ parameter which should guide users to do a self-help fixes without
needing to contact MANTA Help desk. [27]

After several discussion, he prepared as part of his solution a similar way
to log the Scenario’s states. This solution expects from the Orchestration and
Monitoring tool to provide Workflow execution ID to identify to which Work-
flow the Scenario’s execution belongs, and Scenario execution ID to identify
particular Scenario’s execution across the application.

Based on these two IDs, the Monitoring component can obtain Scenario’s
states very easily by calling Log Viewer’ API with filters. The only drawback
of this solution is that MANTA developers must rewrite current logging to
new logging which uses Jakub’s Logging API.

4.6 Public API

Like all modern tools, Orchestration and Monitoring has a public API designed
to facilitate integration with the outside world. APIs will mainly be used by
partners, who will be able to extend their tools with functionalities provided
by this tool, but it will also be used by customers to automate their MANTA-
related processes.

Most other tools from the Admin UI has the public API already imple-
mented, and thus the API implementation in this application will follow the
standards already defined. The API on the presentation layer is implemented
using Spring Web Binding Annotation and documented in Swagger using the
Swagger Annotation library. The API is secured using a shared configuration
across the Admin AI using Spring Security. The API version is resolved using
the version number in the resulting URI.

We can split APIs into two logical units: Workflow Storage, which handles
the persistence of user Workflows and templates; and Workflow Execution,

67

4. Design

which handles the startup and termination of Workflows and provides its state
or output from Extraction. Description for Workflow Storage may be found
in table 4.2 and description for Workflow Execution may be found in table
4.3.

Method URI
Description
GET /workflow/templates
Provides a list of all available templates with their information as a
description and name but without definition.
GET /workflow/templates/{templateName}
Provides information about template as the previous endpoint, in-
cluding Workflow-template definition.
GET /workflows
Provides a list of all existing Workflows created by users with in-
formation as creation time, creator’s name, updated time, updater’s
name and description. This endpoint does not provide the Workflow
definition.
GET /workflows/{workflowName}
Provides same details as the previous endpoint, including Workflow
definition.
POST /workflows?name={name}
To create a user-defined Workflow, this endpoint must be called with
the Workflow definition in body and its name as parameter.
DELETE /workflows/{workflowName}?force={false}
This endpoint deletes not running Workflow. If the Workflow has a
pending execution, the force parameter may be used to cancel it and
delete the Workflow.
PUT /workflows/{workflowName}
Updates the Workflow definition and description. The updated times-
tamp and username is set for the Workflow.

Table 4.2: Workflow Storage Endpoints

4.7 Data Persistence and User Customization

The main problem with the configuration files in MANTA (which caused that
MANTA Updater was created) is that the configuration files are already cre-
ated and defined in advance and shipped with the product together. Therefore,
if a user changes something in these files, they will lose their changes when

68

4.7. Data Persistence and User Customization

Method URI
Description
GET /executions
List all execution with information but without the execution details
for every Scenarios. This list may be filtered using parameters and it is
returned in pages.
POST /executions?name={workflowName}
Executes user-defined workflow.
GET /executions/{executionId}/status
Returns the detailed information about particular execution with list of
planned Scenarios with their execution details.
GET /executions/{executionId}/output
Downloads output from export Scenarios
DELETE /executions/{executionId}/terminate?force={false}
Cancels pending Workflow or if the force parameter is true terminates
running Workflow.

Table 4.3: Workflow Execution Endpoints

these files are updated. This is a consequence of the application update, as
the update does not merge these files in any way and they are not in any way
process-updated, a new version only replaces them. This design (described be-
low) solves the problem by creating property files on runtime, and these files
are not part of the shipment thus they are not replaced. Default MANTA
Scheduling and Monitoring configuration is defined in the database, and the
user only overrides it in a separated file.32 This solution is update-safe in
MANTA context. Another benefit to keeping user-defined configuration in
external files instead of another structure (e.g. database) is the ability to
change it directly without GUI.

Once installed, the user should be able to use this application with minimal
limitation even if there isn’t any record in the user-defined configuration files.
This means that once installed application should not require any other user’s
intervention to start using it. To achieve this goal, anything that must be
configured in advance to start using this application will be written by the
MANTA Installer during installation (or during update), and a default value
will be used. For example, the application should not require additional links
to other MANTA applications because Installer can provide it, the application
should not require resources configuration because the application can use
default values and it will be sufficient. Or a user doesn’t have to create

32recommended by Jan Ulrych

69

4. Design

their own Workflows because he or she can use default workflows prepared
by MANTA in advance.

The database update of the structure and entries will be done using Liqui-
base, where so-called change (update) scripts contain change-set which de-
scribes the changes from the previous version to the new version. If there is
a multi-version update, then more change scripts are applied to ensure table
transformation and data migration.

“Liquibase is an open-source solution for managing revisions of your data-
base schema scripts. ... The feature that is probably most attractive in
Liquibase is its ability to roll changes back and forward from a specific point
— saving you from needing to know what was the last change/script you ran
on a specific DB instance.”[28]

The developer provides scripts (referred to as “changesets”) during the
implementation phase. He or she creates a change script which transforms a
database from the previous state to the new state. The framework executes
these scripts on the application’s startup. The library checks their previously
saved metadata about the database, which are stored in the database. Based
on this information, the framework knows which change scripts weren’t applied
and applies them. The framework also checks check-sums of update scripts,
if there is some inconsistency the application won’t load. To prevent this, the
developer must not change already published change scripts.

Most of the data database holds are MANTA declared data because the
user’s configuration is stored in separated and easily accessible files. This min-
imalise changes over user-data and the database is more open to data-wipe.
Nevertheless, developers must proceed with caution because the database
holds execution statistics and user-defined workflows. Losing it would be
critical. These user’s data are loaded on-demand by the appropriate DAO
bean, whether from the database or configurable properties files.

User-configuration properties are always stored in separated files in key-
value format. User will be able to find configurable properties in the applica-
tion’s user documentation. The update process must never change these files
directly, and a few rules must be kept in mind:

• Adding new property is trivial. The default value is known in the
database, and if the user needs to change it, they simply add it to the
configuration file with their own value.

• If a property is no longer needed, it will be ignored by the application.
The application will log a warning.

• All changes to the name, format or data type of property should be
avoided. The suggested solution is to start ignoring the old property and
add a new one with a default value. If this happens, then users must
be notified in Log Viewer and in application GUI about old property in
configuration, and this change must be written in release notes.

70

4.7. Data Persistence and User Customization

The other solution is to implement a property file transformation. This
forces property files to begin to be versed, and the need to implement its
transformation and migration from version to version, similarly as Liquibase
does. MANTA wants to avoid this if possible, Jakub Moravec said.

The database used for this project is H2. The reason for its use is a non-
functional requirement from MANTA, which was explained by the fact that
it is a lightweight database with which, from their experience, clients do not
have any problem.

4.7.1 Database Model

This subsection shows the Entity-Relationship model (figure 4.19) used by
this project. The known drawback of this model is that Workflow’s definition,
the JSON, is stored as a CLOB. Structural change in this JSON will cause
a migration problem that liquibase cannot solve easily. A special migration
script will be required for some cases of structural change.

71

4. Design

SCENARIO_ENVIRONMENT_VARIABLES

id
* type (java|env)
* key
* value
* changable

USER_ENVIRONMENT_VARIABLES

id
* job_type (workflow|phase|connection|scenario)
 job_name

* type
* key
* value
* changable

WORKFLOW_EXECUTION

id
* executed
* by_whom
 execution_message_code
* state
 execution_plan

SCENARIO_CONSTRAINT

id
* source_scenario
* target_scenario
* constrain_type

SCENARIO_EXECUTION

id_hex
* executed
* finished

WORKFLOW_TEMPLATE

name
* description
* created_time
* created_person
* workflow_definition

USER_DEFINED_WORKFLOW

name
* description
* created_time
* created_person
* workflow_definition

WORKFLOW_QUEUE

id

SCENARIO_METADATA

name
* technology
* operation
* phase
 max_threads
 server_read_weight
 server_write_weight
 cpu_weight
* recovery_strategy
* is_total_failure

execution_id

 is_variable_for

 is_variable_for

has_parent

source_workflow

 is_execution

is_constrain

was_executed

Figure 4.19: Monitoring and Orchestration Database Model

72

Chapter 5
Implementation

This chapter describes the prototype implementation, shows some examples
from implemented application and shortly talks about testing.

5.1 Implementation

An application-module without a graphical user interface with implemented
API was created as a prototype implementation. Infrastructure, repository
and service layers with all required logic were implemented for this thesis.
The API was implemented in cooperation with other MANTA Developers.
The application supports getting, creating, updating and deleting User De-
fined Workflow; getting Workflow templates; executing Workflow, cancelling
pending Workflow, getting existing Executions, getting the detail of Work-
flow Execution and getting a zip file with output from Export Scenarios. The
application supports over thirty technologies that are over two hundred Sce-
narios.

Module Orchestration and Monitoring uses services provided by other
MANTA modules, so it is not executable without them. For example, it
uses Configurator to find a location of the MANTA CLI and also gets existing
Connections from it.

Not implemented features: termination of running Workflow, Workflow
failure recovery, Connections for technologies having special requirements on
the environment (e.g. Csharp connector needs .NET Core) and parallelisation
for Analysis Phase.

5.1.1 Workflow’s Life Cycle

This subsection describes a Workflow’s life cycle from its creation to its first
execution.

1. Workflow is created and stored into DB.

73

5. Implementation

2. – a user starts Workflow –

3. The copy of the Workflow is obtained from DB.

4. WorkflowExecution is created for the Workflow, and reference on the
Workflow is stored inside it.

5. WorkflowQueueItem is created, and reference on the WorkflowExecution
is stored inside it.

6. WorkflowQueueItem is pushed into WaitingQueue (in DB).

7. – time elapses –

8. WorkflowExecutionProcessor obtains WorkflowQueueItem and starts
its processing.

9. The WorkflowQueueItem is destroyed, and the WorkflowExecution is
reconstructed.

10. Base on the Workflow’s reference in WorkflowExecution, the Workflow
is constructed.

11. Wildcards in Workflow are resolved using existing Connections. The
ExpandedWorkflow is created.

12. If advance mode is turned off, the Essential Processing Scenarios are
added to the ExpandedWorkflow, and a base on the Workflow’s revision
type the RevisionScenario is chosen (major or minor).

13. ExpandedWorkflow is posted to the WorkflowPlanner.

14. WorkflowPlanner gets a copy of the ScenarioDependencyGraph. If the
graph does not exist yet its created now.

15. WorkflowPlan is created based on inputs from ExpandedWorkflow and
ScenarioDependencyGraph.

16. WorkflowPlans with all jobs (Scenarios) is executed using MANTA Plat-
form.

17. – execution ended –

18. Results and states are gathered.

19. WorkflowExecution is updated by results and states from WorkflowPlan.

74

5.1. Implementation

BarrierJob

ParallelJob

ExecutionJob

Used symbols:

Failed

Skipped

Export IGC

Commit

Post processings
MSSQL Analysis

Step 2

Oracle Analysis
Step 2

Hive Analysis
Step 2

MSSQL Analysis
Step 1

Oracle Analysis
Step 1

Hive Analysis
Step 1

Create Revision

MSSQL Extraction
Step 3

MSSQL Extraction
Step 2

MSSQL Extraction
Step 1

Oracle Extraction
Step 1

Hive Extraction
Step 2

Hive Extraction
Step 1

Figure 5.1: Workflow Plan Execution Example

75

5. Implementation

«class»
BarrierJob

- currentForce: int
- maxForce: int

«enum»
ScenarioExecutionStateEnum

«class»
ScenarioExecutionState

«enum»
WorkflowExecutionState

«class»
WorkflowExecution

«enum»
RecoveryStrategy

commit
rollback
continue

«class»
WorkflowExecutionPlan

- totalFailure: boolean «class»
JobGroup

- groupFailure: Boolean

«class»
ParallelJob

- processors: Thread [1..n]
- maxThread: int

«class»
ExecutionJob

- executeScenario(): void

«abstract»
JobAbstract

- errorCode: ErrorMessageCode

+ execute(): void

0..1

0..n
- jobs

1
- state

1
- state

has successor

0..1

0..n

- next

has termination job

0..1

0..n

- terminationJob

1
- state

 is par t

1..n

- plan
1

contains
1..n

- plan
1

- jobgroups

contains

1

0..1
workflowPlan

workflowExecution

has recovery job

0..1

0..n

- recoveryJob

 failure recovery
1..n

1

failure recovery

0..n

1
1
- root

belongs to

1..n

1
- group

Figure 5.2: Workflow Plan Class Diagram

5.1.2 Workflow Plan

The Workflow Plan consists of three types of jobs: SingleJob, ParallelJob,
BarrierJob. Each Job belongs to the execution group (JobGroup) identified
by Connection technology and Connection ID. If one of the Jobs from execu-
tion group fails all other, which were not executed yet, are skipped. Single
Job contains a Scenario to execute; Barrier Job synchronizes all threads and
decides if it was broken and execution can continue, and Parallel job creates
FutureTasks for all its children. All relations may be seen in figure 5.2.

The figure 5.1 shows an example of a Workflow plan with ExecutionJob,
ParallelJob and BarrierJob. There also can be seen a usage of JobGroup,
when ‘MSSQL Extraction Step 1’ failed the rest of Scenarios in the same group
(also named MSSQL) are skipped.

76

5.1. Implementation

Essential Processing Scenario List

If a user does not create the Workflow in advance mode, these Scenarios are
added into it automatically at runtime.

• diagnoseRepositoryScenario

• newRevisionScenario or newMinorRevisionScenario

• importDataflowScenario

• importLinksDataflowScenario

• importMetadataDataflowScenario

• commitRevisionScenario

• pruneRevisionScenario

• repositoryPostprocessingScenario

• exportRepositoryScenario

The diagnoseRepositoryScenarios is always added but the rest is only
added if any other Scenario from the same Phase exists.

Simple Planning Algorithm

The implemented Simple Planning Algorithm is an offline planning algorithm
that creates WorkflowPlan base on Scenarios from the ExpandedWorkflow
and ScenarioDependencyGraph.

This graph is created from Scenario Constraints which are predefined in the
DB and contain rules like a ‘Scenario A must be executed BEFORE—AFTER
Scenario B’. Every vertex in ScenarioDependencyGraph represents one Sce-
nario and holds its name. The directed edges represent an execution order, e.g.
(A) → (B) means A must be executed before B. The ScenarioDependency-
Graph contains all existing Scenarios in MANTA.

The algorithm takes an editable copy of ScenarioDependencyGraph and
starts deleting vertices which are not in ExpandedWorkflow. Vertex deletion
means that all its predecessors must be linked to all successors.

When this smaller or equally sized graph is created, all nodes are recur-
sively processed one more time. The currently processed vertex is transformed
to ExecutionJob, and the relevant ScenarioMetadata is linked into it.

Then the algorithm looks at the number predecessors of currently pro-
cessed vertex, and if their number is greater than zero, a BarrierJob is cre-
ated, and the ExecutionJob is linked as its successor. This BarrierJob will
be returned from the recursion; otherwise, the ExecutionJob is returned.

77

5. Implementation

Workflow plan graph

Scenario dependency graph

new BarrierJob

new ParallelJob

new ExecutionJob

Figure 5.3: Simple Workflow Planner - transmutation from Scenario Depen-
dency graph into Workflow plan example

78

5.1. Implementation

Then the algorithm looks at the number of successors of currently pro-
cessed vertex, and if their number is greater than zero, a ParallelJob is
created, and the ExecutionJob is linked as its predecessor. Then this recur-
sion is called on each successor of currently processed vertex, and the returned
values are linked to the ParallelJob as its successors. If only one predecessor
of the currently processed vertex exists, the ParallelJob is not created, and
the ExecutionJob is linked directly on returned value from next recursion call.
If no predecessor exists for the currently processed vertex, the ExecutionJob
will not have any successors, and it becomes a leaf.

Every vertex remembers its return value, and when it should be processed
again, it simply returns its already calculated value.

This last steps of the algorithm may be seen visualised in the figure 5.3.
The algorithm must be aware of that not all Scenarios can be executed

in parallel. It is achieved by special cross-technology dependencies which the
algorithm can handle. With Extraction, this is not a problem, and everything
can be run in parallel. The local machine is not so overloaded by Extraction,
but remote sources are. This is no longer the case with Analysis. For Analysis,
the order to be maintained is that inputs from database machines must be
analysed first, then integration technologies, and finally reporting tools. For
export it is the same only for SSAS technology is an exception and it has to
be exported before all other reporting tools.

Developers must bear in mind that the algorithm is working only on trees
without backward references, but they may have multiple components and
forward references. So a unit test were created, which builds the dependencies
graph and looks for cycles.

5.1.3 Scenario Execution

This chapter shortly outlines the execution algorithm and implemented par-
allelisation.

The execution algorithm starts by executing the root node, which is always
only one. It may be either a ParallelJob or ExecutionJob. From the plan-
ning algorithm above is evident that every Job has one successor or it is a leaf
which means that execution for that branch ended. So before the Job finishes
the execution, it creates a task for its successor, and that FutureTask is put
into ServiceExecutor. Besides, the ending task sends the Future into Work-
flowPlanBO where the main thread is notified and checks all known Futures
which one has finished33.

Both ParallelJob and BarrierJob are simple. The ParallelJob con-
tains multiple successors which are all put into ServiceExecutor. BarrierJob
has a final variable power and variable Force. If these two variables are equal,

33The main thread is also woken up periodically because the last notification is received
before the Job is finished.

79

5. Implementation

the barrier is broken, and it starts its successor. Otherwise, the Job ends and
waits for its another execution to increase a force by one.

ExecutionJob is more complicated than the previous two. At first the
WorkflowPlanBO is checked if this Job may be executed. If WorkflowPlanBO
has the termination flag set, the Job changes its state and immediately exe-
cutes the next one. Otherwise, it checks the JobGroup and again if JobGroup
has termination flag set the Job changes its state and executes the next Job.
If no termination flag is set, the Scenario execution may be proceed.

Write failures
Scenario failed

Execute the
failure Scenario

Write
termination failed

Execute the
termination
Scenario

Send
Total Failure

Send
Total Failure

Send
Group Failure

Execute a
Hive Extraction

Scenario

Rollback Commit

Choose strategy

[has Scenario a termination Scenario?]

[continue]

[no]

[failed?]

[yes]

[has Scenario a failure Scenario?]

[no]

[no]

[yes]

[failed?]

[no]

[yes]

[yes]

[is state termination?]

[yes]

[no]

[causes Scenario total failure?]

[no]

[success]

[any non success]

[rollback] [commit]

[which strategy?]

[state?]

Figure 5.4: Scenario Execution with Failure Recovery Activity Diagram

80

5.2. Testing

5.2 Testing

During implementation, the integration tests and JUnit tests were created
using Mockito to supplement dependencies. There are ninety-six tests which
cover over 90 % of the infrastructure and repository layers. In order to save
time for developing more vital functionalities and make the product on time,
the service layer is covered only partially and creates a technical debt which
must be atoned in the next iteration. Thus, the rest of the application and
the API were tested primarily using Scenario tests.

Before the module’s beta release and again before official release MANTA
Quality Assurance team prepared and performed other thorough Scenario tests
and acceptance tests. Three weeks before the official release, the module was
sent as a beta to one of MANTA partners who started implementing against
its API.

As MANTA policy defines, the regular code reviews were done by MANTA
developers to assure code quality.

5.3 Documentation

The most important part of the documentation is this work itself. It contains
important information about the data model, a complete description of func-
tionalities, the Workflow life cycle, algorithm descriptions, the architecture
of the application and other diagrams such as component diagrams, activity
diagrams, state diagrams.

The code, all methods, classes, enumerations, interfaces and member vari-
ables, are completely documented with Javadoc which may be found in en-
closed SD card. The API is documented by annotations which generate Swag-
ger documentation.

More complicated parts are enriched by comments to make them easier to
understand for the next developers. The most complicated parts are mainly
the Scenario execution and Workflow planner.

81

Conclusion

As part of this thesis, the MANTA ecosystem was analysed with its processes,
also known as Scenarios. A REST API was designed to allow processes to
be executed and monitored. Orchestration requirements were analysed, and a
planning solution was proposed for a more comprehensive workflow containing
a larger number of processes. A graphics interface design using wireframes has
been created. A fully functioning prototype that can start, orchestrate and
monitor MANTA processes has been implemented. The application has been
tested and documented. All thesis assignments were fulfilled.

On 24th July 2020, the Orchestration and Monitoring module with im-
plemented API was released together with other MANTA products in version
1.29.1, and it is available to be used by MANTA’s customers and partners. The
product has the benefits of creating more customised workflows with wider us-
age, allowing for cross-technology parallelism, which Master Scenarios did not
allow, and allowing users to create automated processes that use the already
mentioned REST API. The application supersedes the non-existent API of
the flagship product MANTA CLI.

Once released, the Orchestration and Monitoring awaits maintenance and
further development. A user interface needs to be developed and missing
features implemented, especially Scenarios which need special treatment must
be implemented as soon as possible. As MANTA Help Desk team gathers
feedback from users; newly found bugs have to be fixed, and users request
fulfilled. Whenever missing features are implemented, the planning algorithm
should be extended by an online planner which will reflect Scenario Weights
so the analysis can be paralleled too.

83

Bibliography

[1] Andrš, J. MANTA Screenshots & Screencaptures. MANTA Con-
fluence [online], June 2019, [cited 2020-5-3]. Available from:
https://mantatools.atlassian.net/wiki/spaces/SM/pages/
743669977/MANTA+Screenshots+Screencaptures

[2] Hermann, L. MANTA Flow Architecture. MANTA Conflu-
ence [online], April 2020, [cited 2020-6-26]. Available from:
https://mantatools.atlassian.net/wiki/spaces/MTKB/pages/
70230122/MANTA+Flow+Architecture

[3] Triller, N. Monitoring Batch Jobs with Prometheus. Nick’s
TechBlog [online], Dec 2018, [cited 2020-5-6]. Available from:
https://www.nicktriller.com/blog/monitoring-batch-jobs-with-
prometheus/

[4] Drobný, D. Extracting Information from Database Modeling Tools.
Charles University, Faculty of Mathematics and Physics, 2019.

[5] Eliáš, R. Analyzing Data Lineage in Database Frameworks. Charles Uni-
versity, Faculty of Mathematics and Physics, 2019.

[6] Manta Tools s.r.o. About us MANTA [online]. c©2020, [cited 2020-5-3].
Available from: https://getmanta.com/about-us/

[7] Knight, M. Data Lineage Demystified: The What, Why, and How.
Dataversity [online], April 2017, [cited 2020-5-3]. Available from: https:
//www.dataversity.net/data-lineage-demystified/

[8] Sebastian-Coleman, L. Measuring Data Quality for Ongoing Improve-
ment. Morgan Kaufmann, first edition, 2013, ISBN 9780123970336.

[9] Allen, Cervo. Multi-Domain Master Data Management. Morgan Kauf-
mann, 2015, ISBN 9780128008355.

85

https://mantatools.atlassian.net/wiki/spaces/SM/pages/743669977/MANTA+Screenshots+Screencaptures
https://mantatools.atlassian.net/wiki/spaces/SM/pages/743669977/MANTA+Screenshots+Screencaptures
https://mantatools.atlassian.net/wiki/spaces/MTKB/pages/70230122/MANTA+Flow+Architecture
https://mantatools.atlassian.net/wiki/spaces/MTKB/pages/70230122/MANTA+Flow+Architecture
https://www.nicktriller.com/blog/monitoring-batch-jobs-with-prometheus/
https://www.nicktriller.com/blog/monitoring-batch-jobs-with-prometheus/
https://getmanta.com/about-us/
https://www.dataversity.net/data-lineage-demystified/
https://www.dataversity.net/data-lineage-demystified/

Bibliography

[10] Košvanec, P. Analýza datových tok̊u v reportovaćıch nástroj́ıch. Praha:
České vysoké učeńı technické v Praze, Fakulta informačńıch technologíı,
2019.

[11] Mı́ček, D. Analýza datových tok̊u v Excelu. Praha: České vysoké učeńı
technické v Praze, Fakulta informačńıch technologíı, 2019.

[12] Kováč, J. [in person], 2020, MANTA Employee, Developer of Utils Team.

[13] Visual Paradigm. What is Use Case Diagram? [online]. c©2020, [cited
2020-5-5]. Available from: https://www.visual-paradigm.com/guide/
uml-unified-modeling-language/what-is-use-case-diagram/

[14] AltexSoft. Functional and Nonfunctional Requirements: Specification
and Types. AltexSoft [online], May 2018, [cited 2020-5-3]. Available
from: https://www.altexsoft.com/blog/business/functional-and-
non-functional-requirements-specification-and-types/

[15] Ostic, E. [in person], 2019, MANTA Employee, Senior Vice President of
Products.

[16] Hermann, L. [in person], 2019, MANTA Employee, Vice President of
Development.

[17] Ulrych, J. How to Run Individual Connections within a Technology.
MANTA Confluence [online], April 2020, [cited 2020-5-10]. Avail-
able from: https://mantatools.atlassian.net/wiki/spaces/MTKB/
pages/811433991/How+to+Run+Individual+Connections+within+a+
Technology

[18] Ulrych, J. [in person], 2020, MANTA Employee, Vice President of Pre-
sales.

[19] Prometheus Authors. Overview - What is Prometheus? [online].
c©2020, [cited 2020-5-7]. Available from: https://prometheus.io/docs/
introduction/overview/

[20] PushMon. Script, Job, App, Batch & Cron Job Monitoring –
Push Monitoring. c©2020, [cited 2020-5-7]. Available from: https://
www.pushmon.com/

[21] Activeeon. Activeeon Try Platform. c©2020, [cited 2020-5-7]. Available
from: https://try.activeeon.com/

[22] The Activeeon team. ProActive Workflows & Scheduling - User Guide.
c©2020, [cited 2020-5-7]. Available from: https://try.activeeon.com/
doc/user/ProActiveUserGuide.html

86

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/
https://www.altexsoft.com/blog/business/functional-and-non-functional-requirements-specification-and-types/
https://www.altexsoft.com/blog/business/functional-and-non-functional-requirements-specification-and-types/
https://mantatools.atlassian.net/wiki/spaces/MTKB/pages/811433991/How+to+Run+Individual+Connections+within+a+Technology
https://mantatools.atlassian.net/wiki/spaces/MTKB/pages/811433991/How+to+Run+Individual+Connections+within+a+Technology
https://mantatools.atlassian.net/wiki/spaces/MTKB/pages/811433991/How+to+Run+Individual+Connections+within+a+Technology
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://www.pushmon.com/
https://www.pushmon.com/
https://try.activeeon.com/
https://try.activeeon.com/doc/user/ProActiveUserGuide.html
https://try.activeeon.com/doc/user/ProActiveUserGuide.html

Bibliography

[23] Oracle. Class ProcessBuilder. Java Documentation [online], c©2020,
[cited 2020-6-17]. Available from: https://docs.oracle.com/javase/8/
docs/api/java/lang/ProcessBuilder.html

[24] Oracle. Class Process. Java Documentation [online], c©2020, [cited 2020-
6-17]. Available from: https://docs.oracle.com/javase/8/docs/api/
java/lang/Process.html

[25] Wildcard. Unable to use an Array as environment variable.
Stack Exchange [online], 2018, [cited 2020-6-25]. Available from:
https://unix.stackexchange.com/questions/393091/unable-to-
use-an-array-as-environment-variable

[26] The Open Group. Environment Variables. The Open Group Base
Specifications Issue 7 [online], 2018, [cited 2020-6-25]. Available from:
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_
chap08.html

[27] Kováč, J. Design and prototype implementation of a logging framework for
Manta Flow. Czech Technical University in Prague, Faculty of Electrical
Engineering, Department of Computer Science, first edition, 2020.

[28] Shmeltzer, S. Introduction to Liquibase and Managing Your Database
Source Code. DZone [online], October 2017, [cited 2020-7-19]. Available
from: https://dzone.com/articles/introduction-to-liquibase-
and-managing-your-databa

87

https://docs.oracle.com/javase/8/docs/api/java/lang/ProcessBuilder.html
https://docs.oracle.com/javase/8/docs/api/java/lang/ProcessBuilder.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Process.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Process.html
https://unix.stackexchange.com/questions/393091/unable-to-use-an-array-as-environment-variable
https://unix.stackexchange.com/questions/393091/unable-to-use-an-array-as-environment-variable
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html
https://dzone.com/articles/introduction-to-liquibase-and-managing-your-databa
https://dzone.com/articles/introduction-to-liquibase-and-managing-your-databa

Appendix A
Acronyms

MANTA CLI extracts metadata, analyses scripts and sends it to MANTA
Server. Optionally, it can export Dataflow Analysis to third party-tools.

MANTA Server is a Java web application running on Tomcat server which
consumes the Analysis from MANTA CLI and visualises the Dataflow.

MANTA Utility Tool is a set of java web applications which helps to Up-
date or Configure MANTA Software. This set runs on different Tomcat
server.

MANTA Admin UI is a new work-in-progress name for MANTA Utility
Tool containing Updater, Configurator, Log Viewer and Orchestration
& Monitoring tool.

MANTA Log Viewer is a new bachelor thesis from Jakub Kováč (CTU
FEL) which is being created simultaneously with this thesis. This prod-
uct should gather logs from whole MANTA Ecosystem.

MANTA Updater is my bachelor thesis which helps a customer to merge
changes in XML and properties files keeping their changes.

MANTA Configurator is a tool which helps a customer to configure MANTA
to their environment.

MANTA Orchestration & Monitoring (sometimes referenced as the ap-
plication or Orchestration & Monitoring Tool) is a product of this thesis.

MANTA Installer is a tool which installs MANTA to customer’s device
and helps to update MANTA Updater and MANTA Configurator.

Dataflow Analysis is data from MANTA CLI, which can be visualised as
data processing, its movement and its transformation in MANTA Server
or third party software. It also can be referenced as a Revision, and
Revision can be distinguished to Major Revision and Minor Revision.

89

A. Acronyms

Workflow (Scope AS-IS MANTA CLI) is a MANTA CLI process com-
posited from three steps in this order: Extract, Analyse, Export. It is
also known as the Full Run. Technically it is a set of batch or shell
scripts which define the execution order of Master Scenarios. Newly,
when batch and shell is used no more, it is a payload definition for
Orchestration & Monitoring tool.

Master Scenario is a Java bean which executes one or more Scenarios. Sce-
narios have a predefined order, and some of them can run parallelly in
more threads.

Scenario (Scope AS-IS MANTA CLI) is a Java bean responsible for a
step of MANTA Extract, Analyse and Export process.

Platform is a Java application with instantiates and executes a Master Sce-
nario or Scenario. It is possible to run more Master Scenarios parallelly,
that means there could be more Platform processes.

Connection ID (Scope AS-IS MANTA CLI) is a pair of Connection Name
and Technology Name. This pair identifies a user-configured Connection
to one of the user’s systems in MANTA Configurator.

Workflow Scripts are actual workflows configured in .sh and .bat scripts in
MANTA CLI.

Full Run is a Workflow containing all three steps Extract, Analyse, Export
for some technologies. It creates a new revision of the Dataflow Analysis.
It does not mean that all available technologies were analysed.

Incremental Run can add Dataflow Analysis of previously skipped tech-
nologies. Alternatively, it can update the Analysis for some Scenarios
in specific cases.

Extract is a retrieving of the metadata from Databases and supported tech-
nologies. The corresponding Master Scenario is named 〈technology〉Ex-
tractorMasterScenario. In this step, MANTA CLI communicates with
the outer world.

Analyse is a workflow step which processes source files, links them with ex-
tracted metadata, and sends them to MANTA Server. The correspond-
ing Master Scenario is named 〈technology〉DataflowMasterScenario. The
first step of Analysis is Open Revision, and the last is Commit. In this
step, MANTA CLI does not talk with the outer world.

Export is a workflow step which takes the Dataflow Analysis from MANTA
Server and sends it to third party software. The corresponding Master
Scenario is named 〈technology〉ExportRepositoryScenario.

90

Repository is a set of files and graph database containing commits of Anal-
ysis for Dataflow. MANTA Server uses it.

Major Revision contains a Dataflow Analysis from Full Run. Technologies
which were not analysed cannot be seen here.

Minor Revision inherits Dataflow Analysis from Major Revision and re-
writes or adds new technologies analysis.

Open Revision is the first step of Analysis. It prepares the MANTA Server
for Analysis arrival.

Commit is a name of the last step of sending the Analysis to MANTA Server.
It determines that all data were sent. Commit must be preceded by Open
Revision step.

Workflow (Scope Orchestration & Monitoring) is a list of Phases, Tech-
nologies, Connections and Scenarios. It defines which Scenarios should
be executed for which Phase, Technology and/or Connection, regardless
of their Orchestration Constraints. The Workflow also contains meta-
data about itself, e.g. creation time and the creator or configurable
environment variables.

Scenario (Scope Orchestration & Monitoring) is an execution unit for
a Workflow. The Scenario may have Orchestration Constraints.

Job is a node in an execution plan. (Execution Job, Parallel Job, Barrier
Job)

Phase is a step grouping list of Scenarios. Its value may be one of Extract,
Analyse, Export.

Technology ID is the name of supported technology by MANTA. Together
with Connection ID identifies a particular Connection for MANTA Con-
figurator.

Connection ID (Scope Orchestration & Monitoring) is the name of a
user-created Connection. This name is unique only for a particular tech-
nology; thus, two technologies can contain two different Connection with
the same name. The system-wide unique identifier is a pair of Technol-
ogy ID and Connection ID.

Scheduling is a process of finding the best execution order respecting run-
time constraints.

Orchestration Constraints is a set of rules. It defines which Scenarios
cannot run simultaneously, which has to be executed first or which one
has to wait for the other one. These constraints are defined in the
Scenario Metadata layer.

91

A. Acronyms

Workflow ID is a name and identifier of an existing Workflow. It is a String,
and it must be unique. Can also be referenced as a Workflow name.

Workflow Execution ID is the identifier of a particular Workflow Execu-
tion. It is a Long, generated in the database. One Workflow ID may
have multiple Workflow Execution IDs. Workflow Execution ID is linked
with several Scenario Execution IDs.

Scenario ID is a name of a Scenario. It is a combination of Technology name
and Operation name. It is used as an ID for a Scenario in a Workflow
and as an ID for a Scenario in ScenarioMetadata. It is a unique String.
Can also be referenced as a Scenario name.

Scenario Execution ID is an ID of execution of a particular Scenario. One
Scenario ID may have multiple Scenario Execution IDs.

Scenario Metadata is information about a particular Scenario and is iden-
tified by Scenario ID. These Scenarios are hidden from users and stored
in the database.

Customer, Client is a purchaser of MANTA software.

User is a person who uses the MANTA software.

Ordering Party is a group of MANTA employees represented by Jan Ulrych,
Ernie Ostic.

Technical Supervisor is a group of MANTA employees represented by Lukáš
Hermann and Jakub Moravec.

92

Appendix B
Contents of enclosed SD card

outputs/................the directory with application output examples
readme.txt...................the file with SD card contents description
src/......................................the directory of source codes

app/..implementation sources
diagrams/........................diagram sources used in the thesis
thesis/.............the directory of LATEX source codes of the thesis

text/...the thesis text directory
MT Gondek Petr 2020.pdf.............the thesis text in PDF format

93

Appendix C
Attachments

51 x 40 MANTA Admin Console - Orchestration

Configurator Updater Logs Orchestration

40 x
35 User

Configure

Workflow: Oracle Workflow All [full run]
75 x 75

Run

Delete

Definition

Overview

Export to JSON

Step description

Description
Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est
laborum.
Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est
laborum.

Workflow Definition Search

Export B

Analyse Oracle

Extraction Oracle

Extraction DB2

Configuration

Checkbox

Checkbox

text goes here

Radio button

Radio button

Analyse Oracle

Scenario A

Scenario A

Figure C.1: Workflow Detail Screen - Definition

95

C. Attachments

51 x 40 MANTA Admin Console - Orchestration

Configurator Updater Logs Orchestration

40 x
35 User

Oracle All

Create new Workflow 1/2 - Oracle All [full run]

Workflow name *:

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id
est laborum.

Next

Save

Delete

Import from JSON

Export to JSON

My own image:Choose from templates

Definition

Properties

Revision type:

Description

Full run
Incremental run

75 x 75Upload

* The full name will be: Oracle All [full run]

Choose from template

ConfirmCancel

Export B

Analyse Oracle

Extraction Oracle

Extraction DB2

Analyse Oracle

Scenario A

Scenario A

Workflow Definition

Figure C.2: Template Modal Window - Bigger preview for Workflow Definition

96

:C
LI

P
ro

pe
rt

ie
sP

ro
vi

de
r

:T
em

pl
at

es
W

or
kf

lo
w

D
A

O
:W

or
kf

lo
w

T
em

pl
at

es
S

er
vi

ce
:W

or
kf

lo
w

S
to

ra
ge

C
on

tr
ol

le
r

:W
or

kf
lo

w
D

A
O

:W
or

kf
lo

w
S

to
ra

ge
S

er
vi

ce

us
er

s
in

te
ra

ct
io

n
us

ab
le

T
em

pl
at

es
ge

tL
is

tO
fE

xi
st

in
gC

on
fig

ur
at

io
n(

)

te
m

pl
at

es
=

fil
te

rT
em

pl
at

es
()

te
m

pl
at

es
=

ge
tT

em
pl

at
es

Li
st

()
ge

tT
em

pl
at

es
Li

st
()

ok
ok

sa
ve

W
or

kf
lo

w
(js

on
)

cr
ea

te
W

or
kf

lo
w

(js
on

)

Fi
gu

re
C

.3
:

W
or

kfl
ow

C
re

at
io

n
Se

qu
en

ce
D

ia
gr

am

97

	Introduction
	Thesis Structure

	Thesis Goals
	Analysis
	MANTA Ecosystem
	Data Lineage
	MANTA Architecture

	Requirements Gathering
	Use-Cases
	Functional Requirements
	Non-functional Requirements

	Requirements Analysis
	Current Parallelism in Scenarios
	Creating Customised Workflow for MANTA CLI
	Scenarios Progress and State Knowledge

	Existing Solutions
	Prometheus (monitoring)
	PushMon (monitoring)
	Activeeon (Orchestration and Monitoring)

	Summary

	Design
	New Business Processes
	Application Architecture
	Deployment Diagram
	State Diagrams

	User Interface Design
	Task Group
	Wireframes and Screen Transition
	Scenario Centric vs Connection Centric Approach

	Orchestration Component Architecture
	Component Architecture
	Workflow Class Diagram (Workflow Definition)
	Sequence Diagrams
	Executing MANTA Platform

	Monitoring Component Architecture
	Public API
	Data Persistence and User Customization
	Database Model

	Implementation
	Implementation
	Workflow's Life Cycle
	Workflow Plan
	Scenario Execution

	Testing
	Documentation

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed SD card
	Attachments

