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Abstract
This thesis deal with the classical theory
of electromagnetic field via the framework
of differential forms. The first portion
contains a short introduction to the theo-
retical background, while in the second we
present the electromagnetic field 2-form,
state Maxwell’s equations and discuss the
electromagnetic potential and the Lorenz
gauge. A special attention is given to the
invariance of the laws of electrodynamics
under isometries of the Minkowski space.
The whole theory is illustrated by simple
examples.

Keywords: differential forms,
electrodynamics, Maxwell’s equations,
theoretical physics

Supervisor: doc. Martin Bohata
Jugoslavských Partyzánů 1580,
Praha 6

Abstrakt
Tato bakalářská práce se zabývá klasickou
teorií elektromagnetického pole vyjádře-
nou v jazyce diferenciálních forem. První
část obsahuje krátký úvod do teoretic-
kého pozadí, zatímco ve druhé části uve-
deme elektromagnetickou 2-formu, formu-
lujeme Maxwellovy rovnice a pojednáme
o elektromagnetickém potenciálu a Loren-
zově kalibrační podmínce. Zvláštní pozor-
nost je věnována invarianci zákonů elektro-
dynamiky pod isometriemi Minkowského
prostoru. Celá teorie je ilustrována jedno-
duchými příklady.

Klíčová slova: diferenciální formy,
elektrodynamika, Maxwellovy rovnice,
teoretická fyzika

Překlad názvu: Diferenciální formy a
elektrodynamika
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Chapter 1
Introduction

The theory of electrodynamics is an important foundation of electrical engi-
neering. First complete formulation is attributed to Maxwell in the late 19th
century, however his formulation bears little resemblence to the way we treat
electrodynamics today. Bowing to the limited mathematical tools available
at the time, Maxwell expressed the laws of electrodynamics in cartesian
coordinates as a system of 20 partial differential equations.

Some time later, Hamilton introduced quaternions into physics, expressing
Maxwell’s equations in his new formalism. Building on his work, Heaviside
and Gibbs separated the "curl" and "divergence" from the original quaternionic
∇ operator, bringing Maxwell’s equations to the form we know today.

The main purpose of this text is to explore a modern approach to the theory
of electromagnetic fields based on tools employed in differential geometry,
primarily differential forms. This formulation gained great importance after
the introduction of general relativity into physics and it provides a deeper
insight into the theoretical structure underlying the laws of electrodynamics.

Moreover, it allows us to perform coordinate transformations in a clear
and rigorous way. As we then set the time and space coordinates on equal
footings, allowing us to discuss electrodynamics in arbitrary (inertial as well
as noninertial) coordinate systems in the Minkowski spacetime.

The whole machinery of differential forms also works on curved spacetime
and so the theory of electromagnetic fields can then simply be extended to
include interactions with general relativity [MTWK17]. It is also worth noting
that differential forms are widely used in many areas of theoretical physics.
Besides electrodynamics, they appear, for example, in thermodynamics or
general relativity [Sze12].

In Chapter 2, we introduce multiple purely algebraic concepts, important for
later the chapters. We construct the vector space of multivectors, including the
exterior algebra, with multiplication called the wedge product. Additionally,
we investigate the Hodge star map on multivectors.

Chapter 3 deals with tangent and cotangent spaces on open subsets of Rn.
We additionally introduce differential forms, the primary objects of interest
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1. Introduction .....................................
for the rest of the text. On them, we define the exterior derivative, the
codifferential and Laplace-de Rham operators. We also discuss the pullback
of differential forms and inner product fields, and how it acts as a method
of performing coordinate transformations. The last section presents several
concepts of traditional multivariable calculus rephrased in the symbolism of
differential forms.

Chapter 4 is devoted to electrodynamics expressed in the language of differ-
ential forms. The first section defines the Minkowski space and formulates the
Maxwell’s equations. Additionally, we discuss the electromagnetic potential,
including its uniqueness and the Lorenz gauge condition. We then derive
some of the basic consequences, such as the wave and continuity equations. In
the next section, we discuss isometries of the Minkowski space and show how
they preserve the laws of electromagnetism in different inertial coordinate
systems. Several specific families of isometries are also derived from basic
principles. The final section is dedicated to electromagnetic fields in vacuum,
including several examples such as the relativistic Doppler effect and the
electromagnetic field of a moving charged particle.

2



Chapter 2
Algebraic Concepts

2.1 Dual Spaces

First we are going to introduce the concept of the dual space of a vector space.
Dual spaces are critical concepts for the theory of differential forms and are
going to accompany us for the entirety of this text. A standard reference
is [Axl17] or any other text on advanced linear algebra.

In this text, a vector space is taken as a finite dimensional vector space
over the real numbers, unless implied otherwise.
Definition 2.1 (Linear form). Let V be a vector space. A linear form is then
a linear map from V to R.
Definition 2.2 (Dual space). A dual space of a vector space V , which we shall
denote by V ∗, is the vector space of all linear forms.

Intuitively, linear forms work as "measuring sticks" for elements of our
vector space.
Definition 2.3 (Dual basis). Let V be a vector space with a basis denoted
(e1, . . . , en). Then we define the dual basis of V ∗ to be the tuple of linear
forms (f1, . . . , fn) where each f i acts on the basis of V as follows:

f i (ek) =
{

1 if i = k,
0 if i 6= k.

In other words, taking arbitrary v =
∑
k α

kek ∈ V , we have

f i (v) = f i
(∑

k

αkek
)

= αi.

Proposition 2.4. Dual basis is a basis of the dual space.

Proof. First we show that the dual basis generates V ∗. Take a f ∈ V ∗ and
any v ∈ V . We then compute the coordinates with respect to the dual basis

f (v) = f
(∑

i

f i (v) ei
)

=
∑
i

f i (v) f(ei) =
(∑

i

f (ei) f i
)

(v) .

3



2. Algebraic Concepts ..................................
Now we prove that the dual basis is linearly independent. Assume by contra-
diction that there is a nontrivial linear combination that sums to the zero
form f0, that is ∑

i

σif i = f0.

Evaluating this sum on any element ek of the original basis yields

σk =
(∑

i

σif i
)

(ek) = f0 (ek) = 0.

Corollary 2.5. dimV = dimV ∗.

The concept of a dual basis suggests a possible way of identifying a vector
space with its dual space. This is not basis independent as Example 2.6 shows.
We are going to revisit this concept later in Proposition 2.20.
Example 2.6. Take R2 with bases (x1,x2) and (y1,y2) = (x1 + x2,x2). Let
(f1, f2) and (g1,g2) be the corresponding dual bases.
Denote v = x1 = y1−y2. Now we compute f2(v) = 0 and g2(v) = −1. Even
though x2 = y2 holds the forms f2 and g2 are not equal.
Definition 2.7 (Transpose of a linear map). Let F : V →W be a linear map.
We then define the transpose F T : W ∗ → V ∗ as F T : g 7→ g ◦ F . In other
words, taking a form g ∈W ∗ and a vector v ∈ V we have (F Tg) (v) = g (Fv)

It can be shown that if we express F as a matrix, then expressing F T
with respect to the dual basis coincides with the usual notion of matrix
transposition. This is left to specialized linear algebra texts such as [Axl17].
Definition 2.8 (Multilinear map). Let V be a vector space and let f : V k → R
be a map. We call f an k-linear map1 if it is linear in each of its arguments
separately. In other words, given any vectors v1, . . . ,vk,v, any α ∈ R and
any index 1 ≤ p ≤ k we have

f(v1, . . . ,vp + αv, . . . ,vk) = f(v1, . . . ,vp, . . . ,vk) + αf(v1, . . . ,v, . . . ,vk).

Observe that just as it is sufficient to know the value of a linear map on all
basis vectors of its domain to fully determine its value on the entire vector
space, it is also sufficient to know the value of a k-linear map on every k-tuple
of basis vectors.
Definition 2.9 (Alternating multilinear map). Given a k-linear map on V , we
call it alternating if swapping two adjacent arguments changes the sign of
the image. More concretely, given any v1, . . . ,vk ∈ V we have

f(v1, . . . ,vp,vp+1, . . . ,vk) = −f(v1, . . . ,vp+1,vp, . . . ,vk).

An important example of an alternating multilinear map is the determinant,
which, given an n-dimensional vector space V is an n-linear map on V .

1Multilinear maps such as these are also often called covariant tensors in the physics
literature.
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................................... 2.2. Exterior Algebra

2.2 Exterior Algebra

In this section we shall introduce the concept of exterior algebra. Exterior
algebra allows us to take conceptually introduce "orientation" and "length" to
subpsaces of a vector space.

Definition 2.10 (Space of multivectors). Let V be a vector space with a basis
of (e1, . . . , en). We define the space of multivectors, denoted by Λ∗(V ) as the
vector space of formal sums of symbols with the form eI where I ⊆ {1, . . . , n}2.
We are also going to freely interchange our indexing set I with a k-tuple
containing the elements of I in ascending order. We also define the space of
k-vectors, denoted Λk(V ), as the subspace of Λ∗(V ) generated by considering
elements eI with |I| = k.

To make our life easier, we additionaly define an isomorphism between
Λ1(V ) and V given by ei 7→ e{i}. Therefore from now on, we are not going
to make any distinction between the underlying vector space and the space
of 1-vectors.

Example 2.11 (2-vectors over R3). We take R3 with basis denoted as (e1, e2, e3).
Then the basis of Λ2(R3) is (e12, e23, e13) and the basis of Λ3(R3) is (e123).

Definition 2.12 (Wedge product). Given a vector space V , we define the
wedge product as the bilinear map ∧ : Λ∗(V )× Λ∗(V )→ Λ∗(V ) defined by

eI ∧ eJ =
{

sgn
( IJ
I∪J
)
eI∪J if I ∩ J = ∅,

0 if I ∩ J 6= ∅,

Where IJ denotes concatenation of I and J when expressed as ordered tuples
in ascending order and sgn denotes the permutation sign of IJ .

The usual way of visualizing the wedge product of several 1-vectors is as
an oriented parallelotope with edges formed by the individual vectors, as
illustrated by Figure 2.1. An interactive demonstration of this concept can
be found in [Bos].

2We are not going to do any arithmetic with the indices, meaning they just serve as
symbols. We are thus free to start indexing from 0 later.

5



2. Algebraic Concepts ..................................

e1

e2

a

b
a ∧ b

a = 2e1 + 1
2e2

b = 2
3e1 + 3

2e2

Figure 2.1: Wedge product of two vectors on R2

Proposition 2.13. For any eI ∈ Λk(V ) we have

(αe∅) ∧ eI = αeI .

In other words, the space of 0-vectors together with the wedge product can
be used to perform scalar multiplication of k-vectors.

Proof. By the definition of the wedge product we have

(αe∅) ∧ eI = α (e∅ ∧ eI) = α

(
sgn

(
∅I
∅ ∪ I

)
e∅∪I

)
= αeI .

Proposition 2.14 (Properties of the exterior algebra). Let V be an n-dimensional
vector space. Then the following properties hold:

. dim Λk(V ) =
(n
k

)
=
( n
n−k

)
= dim Λn−k(V ).. ∧ is associative.. For any basis k-vector eI ∈ Λk(V ) where I = (i1, . . . , ik) we have

eI = ei1 ∧ · · · ∧ eik .. For any ω ∈ Λk(V ) and τ ∈ Λl(V ) we have ω ∧ τ = (−1)klτ ∧ ω.. 1-vectors ω1, . . . ,ωk ∈ Λ1(V ) are linearly dependent if and only if

ω1 ∧ · · · ∧ ωk = 0.

The proofs are computationally intensive and left to a specialized text such
as [KST02] or [Fra17].

6



................................. 2.3. Inner Product Spaces

Example 2.15 (Wedge product on 1-vectors in R3). Given arbitrary two
vectors v = α1e1 + α2e2 + α3e3 and w = β1e1 + β2e2 + β3e3 in R3, we
compute their wedge product.

v ∧w = (α1e1 + α2e2 + α3e3) ∧ (β1e1 + β2e2 + β3e3)
= (α1β2 − α2β2)e1 ∧ e2 + (α2β3 − α3β2)e2 ∧ e3 + (α3β1 − α1β3)e3 ∧ e1.

Notice that this is very similar to the standard cross product formula, except
our result is a 2-vector. This illustrates the important concept of axial vectors
found in many areas of physics.

As the vector spaces of 2-vectors and 1-vectors are of equal dimension in
R3, we could attempt to identify them and keep working with 1-vectors only.
However, as will be illustrated in Example 4.1, this might often be misleading.

2.3 Inner Product Spaces

Definition 2.16 (Inner product). Let 〈−|−〉 : V ×V → R. Then we call 〈−|−〉
an inner product if it satisties the following three properties.

. (Bilinearity)
For any v,w,u ∈ V and α ∈ R we have 〈αv + w|u〉 = α〈v|u〉+ 〈w|u〉. (Symmetry)
For any v,w ∈ V we have 〈v|w〉 = 〈w|v〉. (Nondegeneracy)
Given a nonzero v ∈ V , there always exists w ∈ V such that 〈v|w〉 6= 0

We call a vector space equipped with an inner product an inner product
space.

This definition of the inner product is somewhat weaker than usually used
in literature (which assumes positive definiteness). Some of the differences
are highlighted in Example 2.17.
Example 2.17 (Minkowski inner product on R4). We define the Minkowski
inner product on R4 as

〈(α0, α1, α2, α3)T |(β0, β1, β2, β3)T 〉 = −α0β0 + α1β1 + α2β2 + α3β3.

The Minkowski inner product is not positive definite. This yields several
interesting observations. If we use this inner product to define the concept
of "length", we have zero-length vectors other than the zero vector. Likewise
if we define orthogonality using this inner product, we have nonzero vectors
which are orthogonal to themselves.

7



2. Algebraic Concepts ..................................
Definition 2.18 (Orthonormal basis). Let V be an inner product space. We
call a basis (e1, . . . , en) of V orthonormal if the following holds for any ei, ek.

〈ei|ek〉 =
{
±1 if i = k,
0 if i 6= k.

Proposition 2.19. Any inner product space has an orthonormal basis.

This can be proved using the standard theorem on diagonalization of
symmetric matrices. Note that the orthonormal basis is not determined
uniquely.
Proposition 2.20 (Musical isomorphisms). Given an inner product space V ,
we can define a linear map3 (−)[ : V → V ∗ by v[ = 〈v|−〉. This map is an
isomorphism and we are going to denote its inverse by (−)].
In other words, given a linear form f ∈ V ∗, we can always find a unique vector
v ∈ V , such that for all w ∈ V , we have f (w) = 〈v|w〉.

Proof. Linearity of (−)[ follows from bilinearity of the inner product. By
nondegeneracy of the inner product, (−)[ is also necessarily injective. Com-
bining this with Corollary 2.5 and the Rank-Nullity theorem also means that
(−)[ is surjective.
Definition 2.21 (Linear isometry). Let V and W be two inner product spaces
and let 〈−|−〉V and 〈−|−〉W denote their respective inner products. We call
an isomorphism T : V →W a linear isometry if, for any two vectors x,y ∈ V
we have 〈x|y〉V = 〈Tx|Ty〉W .
Definition 2.22 (Contravariant inner product). Let V be an inner product
space. We then define the contravariant inner product on V ∗, temporarily
denoted 〈−|−〉∗ : V ∗ × V ∗ → R, for every f ,g ∈ V ∗, as

〈f |g〉∗ = 〈f ]|g]〉.

It is easy to verify that this indeed defines a valid inner product on
V ∗. Additionally, this definition automatically makes (−)] a linear isometry
between V and V ∗.

From now on, we shall not make an explicit distinction between the covariant
and contravariant inner products. The type of the arguments shall determine
which one is to be used.
Remark 2.23. This construction is much more useful in matrix form. First
we pick a basis of an inner product space V and then represent elements of
V as column vectors with components given by their coordinates. We also
represent elements of V ∗ as row vectors with respect to the dual basis.

Afterwards, we can express the inner product of any x,y ∈ V as 〈x|y〉 = xTGy,
where G is a symmetric square matrix. We then have x[ = xTG and
f ] = G−1fT for a linear form f ∈ V ∗. This means we have

〈f |h〉∗ =
(
G−1fT

)T
G
(
G−1hT

)
= fG−1G

(
hG−1

)T
= fG−1hT .

3We read v[ as "v-flat" and f ] as "f-sharp". These symbols come from music notation
where [ means "lower in pitch" and ] means "higher in pitch".

8



..................................... 2.4. Hodge Star

Therefore to compute the matrix of the contravariant inner product, we just
need to invert the matrix of the original inner product.

2.4 Hodge Star

In this section we shall introduce the concept of the Hodge star map. This is
a linear map which identifies k-vectors with (n− k)-vectors in a way that is
consistent with a given inner product.
Definition 2.24 (Inner product on k-vectors). Let V be an inner product space
with a basis denoted as (e1, . . . , en). We then define an inner product on
Λk(V ) as

〈eI |eJ〉 = 〈ei1...ik |ej1...jk〉 = det


〈ei1 |ej1〉 〈ei1 |ej2〉 . . . 〈ei1 |ejk〉
〈ei2 |ej1〉 〈ei2 |ej2〉 . . . 〈ei2 |ejk〉

...
... . . . ...

〈eik |ej1〉 〈eik |ej2〉 . . . 〈eik |ejk〉

 ,
extending by bilinearity to the entire vector space. The matrix of inner
products is usually called the Gram matrix. To make our definition work for
0-vectors, we consider the determinant of the empty matrix to be 1.

The fact that this inner product is a valid inner product can be easily verified
by picking an orthonormal basis and using basic properties of the determinant.
It can also be shown that this construction is, in fact, independent of the
basis chosen.
Remark 2.25. We are often going to deal with an orthonormal basis. This
means that the Gramian matrix is going to have non-zero entries only on the
main diagonal. Therefore our definition of the inner product reduces to

〈eI |eJ〉 = 〈ei1...ik |ej1...jk〉 =
k∏
p=1
〈eip |ejp〉.

This also means that if I and J are distinct, our inner product is automatically
zero.
Definition 2.26 (Volume form). Given an n-dimensional vector space V , we
call any element σ ∈ Λn(V ) a volume form if it is an orthonormal basis of
Λn(V ). Additionally, we define the metric sign4 as s = 〈σ|σ〉 = ±1.

The volume form is not unique, however we do not have too many choices,
as the following proposition shows.
Proposition 2.27 (A volume form is determined up to a sign). Given two
volume forms σ1 and σ2, we have 〈σ1|σ1〉 = 〈σ2|σ2〉 and also σ1 = ±σ2.

Proof. As volume forms are bases by assumption, we have

σ1 = ασ2

4Note that some authors omit this term. Including it makes our sign convention agree
with several popular Computer Algebra Systems as outlined in Appendix A.

9



2. Algebraic Concepts ..................................
for some real nonzero α. We then have

〈σ1|σ1〉 = α2〈σ2|σ2〉.

Volume forms are orthonormal, so we either have 〈σ1|σ1〉 = 〈σ2|σ2〉 or
〈σ1|σ1〉 = −〈σ2|σ2〉. The second choice yields 1 = −α2, which has no real so-
lutions and thus violates the first assumption, proving that 〈σ1|σ1〉 = 〈σ2|σ2〉.
This then results in 1 = α2, constraining α to either 1 or −1.

Now we consider a volume form σ and take a fixed λ ∈ Λk(V ). We define
the linear map

ϕλ : Λn−k(V )→ Λn(V ),
µ 7→ λ ∧ µ.

As ϕλ is a linear map and the space of n-vectors is one-dimensional, we can
define a linear form fλ ∈ Λn−k(V )∗ such that

λ ∧ µ = sfλ (µ)σ

holds. Now we use Proposition 2.20 to find a unique vector ?λ ∈ Λn−k(V )
such that ?λ = fλ] Ultimately, for any µ, we have

λ ∧ µ = s〈?λ|µ〉σ.

This discussion leads to the following definition.
Definition 2.28 (Hodge star). The map ? : Λk(V ) → Λn−k(V ) is called a
Hodge star if

λ ∧ µ = s〈?λ|µ〉σ

for all λ ∈ Λk(V ) and all µ ∈ Λn−k(V ).
Proposition 2.29. The Hodge star is a linear map.

Proof. We take any λ,ω ∈ Λk(V ) and α ∈ R. We now have, for any
µ ∈ Λn−k(V ), the following:

s〈?(αλ+ ω)|µ〉σ = (αλ+ ω) ∧ µ
= α (λ ∧ µ) + ω ∧ µ
= (αs〈?λ|µ〉+ s〈?ω|µ〉)σ.

As this holds for any µ, linearity is established by non-degeneracy of the
inner product.
Example 2.30 (Hodge star on R2 with the standard inner product). We take
an orthonormal basis (e1, e2) of R2 with the standard inner product given
by 〈α1e1 + α2e2|β1e1 + β2e2〉 = α1β1 + α1β2.
First let us compute ?e1. For this, we consider the equations

e1 ∧ e1 = 0σ = 〈?e1|e1〉σ,
e1 ∧ e2 = 1σ = 〈?e1|e2〉σ.

10



..................................... 2.4. Hodge Star

This obviously requires that ?e1 = e2. Similarly for ?e2, we have

e2 ∧ e1 = −1σ = 〈?e2|e1〉σ,
e2 ∧ e2 = 0σ = 〈?e2|e2〉σ.

Which forces ?e2 = −e1. In this case, the Hodge star corresponds to a quarter
turn counterclockwise rotation.
Proposition 2.31 (Additional properties of the Hodge star). Let V be an inner
product space, let λ ∈ Λk(V ), let σ ∈ Λn(V ) be the volume form and let
s = 〈σ|σ〉. Then the following identities hold.. (Involution up to a sign)

??λ = s(−1)k(n−k)λ.. (Inverse map)
?−1 = s(−1)k(n−k)?.. (Hodge star of the basis 0-vector)
?e∅ = σ.. (Hodge star of the volume form)
?σ = se∅.

The relationship of the Hodge star with the wedge product is summarized
in the following proposition:
Proposition 2.32. For any two k-vectors α and β, we have

α ∧ ?β = 〈α|β〉σ.

Proof. We compute using Definition 2.26 and Proposition 2.31:

α ∧ ?β = (−1)k(n−k) ?β ∧α
= (−1)k(n−k)s〈??β|α〉σ
= (−1)2k(n−k)s2〈β|α〉σ
= 〈α|β〉σ.

This grants us a convenient formula for both computing the Hodge star
and for computing the inner product. The example below illustrates this
process.
Example 2.33. We consider R3 with the standard inner product and an
orthonormal basis (e1, e3, e2). To compute ?e2, we have

e2 ∧ ?e2 = 〈e2|e2〉σ = e1 ∧ e2 ∧ e3.

This requires that we "complement" e2 with the other basis vectors to get
the volume form and thus we can easily see ?e2 = e3 ∧ e1.

11
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Chapter 3
Differential Forms

In this chapter, we shall introduce differential forms, which are the main tool
we are going to use in the rest of this text. The main idea here is to take the
constructs of the previous chapter and attach them to every point of an open
subset of Rn, in a sufficiently smooth fashion as to avoid the pitfalls of real
analysis.

Our treatment will be limited in scope, avoiding discussion of differentiable
manifolds entirely. This is a fascinating topic in and of itself, with elementary
introductions available in [Tu11] or [Fra17].

3.1 Tangent and Cotangent Spaces

Definition 3.1 (Domains). We are going to call and open subset Ω of Rn

an n-domain or just domain if the dimension is not important. The vector
space of smooth real-valued functions on Ω shall be denoted as C∞(Ω). In
coordinates, this means that for any function f : Ω → R in C∞(Ω), all its
partial derivatives of every degree exist and are continuous.

We start off by defining the concept of the tangent space. In general there
are two equivalent ways of constructing tangent spaces, both of which are
equally important. For brevity, we are going to use a construction based on
point derivations of smooth functions, the alternative being a construction
based on tangent vectors to smooth curves on a domain. An interested reader
may consult [Lee09] or [Fra17] for further details.
Definition 3.2 (Derivation at a point and the tangent space). Let Ω be a
domain and let p ∈ Ω. We then call any linear map vp : C∞(Ω) → R a
derivation at point p if, for any f, g ∈ C∞(Ω), it satisties the product rule

vp(fg) = vp(f)g(p) + f(p)vp(g).

It can be shown that the set of all derivations at a point is a vector space
with the usual definitions of scalar multiplication and vector addition.
We call this vector space the tangent space at p and denote it as Ωp.

13



3. Differential Forms...................................
Definition 3.3 (Basis of the tangent space). Let Ω be an n-domain and let
p =

(
x1, . . . , xn

)
∈ Ω. We then define

∂xi |p(f) = ∂f

∂xi
(p).

It can be shown that ∂xi |p is a derivation and additionally that the n-tuple

(∂x1 |p, . . . ,∂xn |p)

then forms a basis of Ωp.
A more detailed discussion can be found in [Lee09].

One may look at the tangent space as an additional n-dimensional vector
space which is attached at every point of Ω. It is important to note however,
that there might not be any "natural" way of identifiying vectors in a tangent
space with coordinate vectors of Ω (in fact, the coordinate "vectors" do not
usually even form a vector space, we only care about the topological structure
of Ω) or vectors in tangent spaces at two different points, even though they
have the same dimension. Visually, this is illustrated by Figure 3.1.

Figure 3.1: Visualization of the tangent spaces of R2

Visually, it is a good idea to think of objects in Ω as "points in space" and
objects in Ωp as "arrows originating at p".
Definition 3.4 (Cotangent space). We define the cotangent space at p, denoted
as Ω∗p to be the dual space of a tangent space Ωp. Given a basis

(∂x1 |p, . . . ,∂xn |p)

of the tangent space, we are going to denote the dual basis by

(dx1|p, . . . ,dxn|p).

To make our life easier, we shall often omit the |p symbolism if the base
point is obvious from context. Additionally, if our coordinates are numbered

14



.................................. 3.2. Differential Forms

and we are dealing only with one set of such coordinates, we are going to
denote the basis tangent vectors as ∂xi = ∂i.

As cotangent vectors are linear forms on the tangent space, we would like to
extend this concept to cotangent k-vectors. The following definition provides
such a concept, constructing an isomorphism between cotangent k-vectors
and the vector space of alternating k-linear forms.
Definition 3.5. Given an n-domain Ω, a point p ∈ Ω, a basis cotangent
k-vector dxi1 ∧ · · · ∧ dxik ∈ Λk(Ω∗p) we define its value on any k-tuple of
tangent basis vectors ∂j1 , . . . ,∂jk at p as

(dxi1 ∧ · · · ∧ dxik)(∂j1 , . . . ,∂jk) =
{

sgn
(i1...ik
j1...jk

)
if {i1, . . . , ik} = {j1, . . . , jp},

0 otherwise.

Further we extend this definition such that dxi1 ∧ · · · ∧ dxip is a multilinear
map on Ωp. This map is also alternating. Note that alternating maps are
closed under addition and as such any cotangent k-vector can be thought of
as an an alternating multilinear map.

One may construct k-vectors, including the wedge product, as alternating
linear maps on the tangent space directly, which sacrifices some of the visual
intuition for a more robust foundation. See [Tu11] for further details.

3.2 Differential Forms

This section serves to introduce differential forms. These will be the primary
objects of our interest in the rest of this text.
Definition 3.6 (Vector field). Let Ω be an n-domain. We then define a vector
field on Ω to be a smooth map defined on Ω which assigns every point p ∈ Ω
an element of Ωp.
In coordinates, for a vector field v, we may write

v(x1, . . . , xn) =
n∑
i=1

vi(x1, . . . , xn)∂i

where the components vi are elements of C∞(Ω). We are going to denote the
vector space of all vector fields on Ω as X(Ω).
Definition 3.7 (Differential form). Let Ω be an n-domain. We then define a
differential k-form on Ω as a smooth map defined on Ω which assigns every
point p ∈ Ω an element of Λk(Ω∗p).
In coordinates, for a differential form ω, we may write

ω(x1, . . . , xn) =
∑
|I|=k

ωI(x1, . . . , xn)dxI .

Where the functions ωI are smooth for every I. For further brevity, we
denote the vector space of all k-forms defined on Ω as Ek(Ω). As suggested by
Proposition 2.13, we are going to identify C∞(Ω) with E0(Ω) by f 7→ fdx∅.

15



3. Differential Forms...................................
Definition 3.8 (Frames and coframes). The tuple of vector fields (∂x1 , . . . ,∂xn)
is called a frame and the tuple of differential 1-forms (dx1 , . . . ,dxn) is called
a coframe.
Definition 3.9 (Exterior derivative). Let Ω be an n-domain. We then define
the exterior derivative as a map1 d : Ek(Ω)→ Ek+1(Ω) given by

dω(x) =
∑
|I|=k

n∑
i=1

∂ωI
∂xi

(x)dxi ∧ dxI .

For the sake of expediency, we have chosen a rather inelegant definition of
the exterior derivative. The reader may consult [Fra17] for a more axiomatic
definition.
Proposition 3.10 (The differential). For a 0-form ω = ω∅ dx∅ ∈ E0(Ω), we
have

dω (x) =
n∑
i=1

∂ω∅
∂xi

dxi .

Proof. Directly from the definition, we get

dω(x) =
∑
|I|=0

n∑
i=1

∂ωI
∂xi

(x)dxi ∧ dxI ,

=
n∑
i=1

∂ω∅
∂xi

(x)dxi ∧ dx∅ =
n∑
i=1

∂ω∅
∂xi

(x)dxi.

This coincides with the usual notion of the "differential" as used in many
branches of physics. Additionally, from now on, we shall not make an
explicit distinction between 0-forms and smooth functions, identifying them
by f 7→ f dx∅.
Proposition 3.11 (Differential of the coordinate function). Let Ω be an n-
domain and let 1 ≤ i ≤ n. Consider a 0-form f : Ω→ R defined as

f(x1, . . . , xn) = xi.

Then we have df = dxi.

This proposition simply asserts that there is no reason to distinguish be-
tween the statement d

(
xi
)
as the exterior derivative applied to the coordinate

function and dxi as a basis vector of the cotangent space.
Proposition 3.12 (Properties of the exterior derivative). For any ω, τ ∈ Ep(Ω)
and µ ∈ Eq(Ω) the following holds:

1. (Additivity)
d(ω + τ ) = dω + dτ

1We have in fact defined an entire family of linear maps, one for every k. We are not
going to distinguish these notationally however.

16



.................................. 3.2. Differential Forms

2. (Derivation with respect to the wedge product)
d(ω ∧ µ) = dω ∧ µ+ (−1)pω ∧ dµ

3. (Nilpotency)
d(dω) = 0

The proofs are left to specialized texts such as [KST02] or [Fra17].

Transforming differential forms

At this point, we are ready to develop mechanisms for performing coordinate
transformations of differential forms.

For the rest of this subsection, Ω is going to denote an n-domain and Ψ
denotes an m-domain. Coordinates in Ω and Ψ will be denoted (x1, . . . , xn)
and (y1, . . . , ym) respectively. We also take ϕ to be a smooth map Ω→ Ψ.

Definition 3.13 (Pushforward of a tangent vector). We define the pushforward
of a tangent vector at point p ∈ Ω as a map ϕ∗ : Ωp → Ψϕ(p), which, for any
function g ∈ C∞ (Ψ) and any tangent vector v ∈ Ωp, is given by

(ϕ∗v)(g) = v(g ◦ ϕ).

Proposition 3.14. The pushforward is a linear map between tangent spaces.

Proof. First we need to verify that, for any tangent vector v ∈ Ωp, its
pushforward ϕ∗v is actually a tangent vector, that is, it is a derivation at
ϕ (p). We consider two functions f, g ∈ C∞ (Ψ) and get

(ϕ∗v)(fg) = v((fg) ◦ ϕ)
= v((f ◦ ϕ)(g ◦ ϕ))
= v(f ◦ ϕ)g(ϕ(p)) + f(ϕ(p))v(g ◦ ϕ).

To show linearity of ϕ∗, we have, for any two tangent vectors v,w ∈ Ωp

and α ∈ R, the following

(ϕ∗(v + αw))(g) = (v + αw)(g ◦ ϕ)
= v(g ◦ ϕ) + αw(g ◦ ϕ)
= (ϕ∗v)(g) + α(ϕ∗w)(g).

An illustration of the pushforward is depicted by Figure 3.2.
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3. Differential Forms...................................

Ω

Ψ

ϕ

ϕ(Ω)

p
v ϕ(p)

ϕ∗

ϕ∗v

Figure 3.2: Illustration of the pushforward

Using the chain rule from multivariable calculus, we can express the push-
forward in coordinates.

Proposition 3.15 (Pushforward of tangent basis). If we write ϕ in components,
that is, as an m-tuple of functions:(

ϕ1(x1, . . . , xn), . . . , ϕm(x1, . . . , xn)
)
.

For the tangent basis vectors, we then have

ϕ∗ (∂xi) =
m∑
j=1

∂ϕj

∂xi
∂yj .

The matrix of the pushforward expressed with respect to the tangent basis is
usually called the Jacobian matrix.

Definition 3.16 (Pullback of a contangent vector). We define the pullback of
a cotangent vector at point ϕ(p) as a linear map ϕ∗ : Ψ∗ϕ(p) → Ω∗p which, for
any tangent vector v ∈ Ωp and any cotangent vector ω ∈ Ψ∗ϕ(p), satistifes

(ϕ∗ω)(v) = ω(ϕ∗v).

In other words, we have that

Ψϕ(p) R

Ωp

ω

ϕ∗
ϕ∗ω

commutes. This is just a special version of Definition 2.7. Expressed in
coordinates, we have, for the pullback of the basis vector dyi acting on a

18
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tangent vector ∂xj , the following:(
ϕ∗(dyi)

)
(∂xj ) = dyi (ϕ∗ (∂xj ))

= dyi
 r∑
q=1

∂ϕq

∂xj
∂yq


= ∂ϕi

∂xj
dxj (∂xj ) .

In other words, we have

ϕ∗(dyi) =
n∑
j=1

∂ϕi

∂xj
dxj = dϕi.

That is, pulling back a cotangent basis vector is identical to computing the
exterior derivative of the 0-form given by ϕi (which is just the differential)
and evaluating it at p.

The pullback is illustrated by Figure 3.3.

Ω

Ψ

ϕ

p

ϕ(p)

ϕ∗

ω
ϕ∗ω

ϕ(Ω)

Figure 3.3: Illustration of the pullback

Remark 3.17. We are often going to use an convenient abuse of notation
— by naming both our coordinate and the components of our smooth map
identically (e.g. yi = ϕi) we get

ϕ∗(dyi) = dyi =
n∑
j=1

∂yi

∂xj
dxj .

Altough aesthetically pleasing, we need to always remember that the
cotangent basis vectors dyi and dxj live in different tangent spaces and as
such one cannot really be equal to a linear combination of the others.

As usual, we are going to extend this pointwise operation on a cotangent
vector to act on an entire differential form at all points of its domain. This
preserves smoothness, but proof is left to specialized texts such as [Tu11].
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3. Differential Forms...................................
Definition 3.18 (Pullback of a differential form). We define the pullback
ϕ∗ : Ek(Ψ) → Ek(Ω) of a differential k-form as a linear map which for
any vector fields v1, . . . ,vk on Ω

(ϕ∗ω)(v1, . . . ,vk) = (ω ◦ ϕ)(ϕ∗v1, . . . , ϕ∗vk)

at every point of Ω.

An important reason for dealing with differential forms instead of vector
fields is the fact that it is always possible to pullback a differential form using
a smooth map. This is however not true if we want to pushforward an entire
vector field! If our smooth map is not surjective, we do not have a way of
determining which tangent vectors to assign outside of its range and if our
smooth map is not injective, we might have too many vector to choose from.
Proposition 3.19 (Pullback in coordinates). In coordinates, the pullback of a
differential k-form on Ψ results on in

ϕ∗ω =
∑
|I|=p

(ωI ◦ ϕ) dϕi1 ∧ · · · ∧ dϕip .

The pullback interacts very nicely with the exterior derivative and the
wedge product. Some of the identities are summarized below.
Proposition 3.20 (Properties of the pullback). Let ω ∈ Ep(Ψ) and σ ∈ Eq(Ψ).
Then the following equalities hold:

1. (Additivity)
If p = q, then ϕ∗(ω + σ) = ϕ∗(ω) + ϕ∗(σ)

2. (Algebra homomorphism)
ϕ∗(ω ∧ σ) = ϕ∗(ω) ∧ ϕ∗(σ)

3. (Commutes with the exterior derivative)
ϕ∗(dω) = d(ϕ∗(ω))

Remark 3.21. We are often going to use the pullback to perform coordinate
transforms. This is particularly useful if the smooth map involved is injective.
In that case, we call it a chart.2 Intuitively, we want to think of charts as
"engraving" the coordinate grid of the domain onto the codomain.

As a specific example, let us consider polar coordinates on the unit disk.
We take a rectangle Ω = {(r, θ) ∈ R2 | 0 < r < 1 & 0 < θ < 2π} and the
disk D = {(x, y) ∈ R2 | x2 + y2 < 1}. Then we consider the map ϕ : Ω→ D
given by

x = r cos(θ) and y = r sin(θ).

This is illustrated by Figure 3.4. Notice that the range of ϕ is not the entire
disk, but we have a "cut" along the positive x-axis. This could be a potential

2Technically, charts are usually smooth injective maps from an open subset of the object
we want to introduce coordinates on to a subset of Rn. We do not want to run into
topological difficulties and thus are using this definition instead.
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problem as a smooth function on Ω might not admit a smooth extension to
D. Formally, this can be solved with the introduction of an atlas, which is a
collection of charts with ranges that collectively cover the entirety of D.

We are not going to worry about this issue too much however, as all
coordinate transformations we are going to use are sufficiently nicely behaved.
For instance, we can take Ω′ = {(r, θ) | |0 < r < 1 & −π < θ < π} and
use an identical prescription to ϕ to define another chart ϕ′ : Ω′ → D which
covers the positive x-axis, missing the negative x-axis instead (both of them
still miss the origin). We can thus stay ambiguous as to what domain we are
using and in effect use all of them at once.

Additionally, if using a chart, we are sometimes going to leave out the
explicit pullback symbolism, understanding that an expression involving the
chart coordinates is just a way of representing a particular object on a subset
of our primary domain of interest.

θ

r

x

y

ϕ

Figure 3.4: Polar coordinates on the unit disk

Inner product fields

Additional structure we need to introduce on our tangent spaces is an inner
product. This concept allows us to measure "length" of tangent and cotangent
vectors.

Altough it may seem like we can always introduce an inner product field,
we have to be aware that we are enforcing additional physical meaning. For
instance, if our domain was describing state of a an electric motor, with
coordinates measuring quantities such as winding current or angular velocity,
there might not be a physically acceptable way to introduce an inner product
field.
Definition 3.22 (Inner product field). Let Ω be an n-domain. We then define
an inner product field on Ω as a smooth map which assigns to every point
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3. Differential Forms...................................
p = (x1, . . . , xn) ∈ Ω an inner product on Ωp. In coordinates we have

〈∂xi |∂xj 〉|p = gij (p) ,

where every gij ∈ C∞ (Ω).

We also extend Proposition 2.20 from a pointwise operation to the entire
Ω and thus get an isomorphism between X(Ω) and E0(Ω).

Definition 3.23 (Pullback of an inner product field). Let Ω and Ψ be n-
domains and let ϕ : Ω→ Ψ be a smooth map. Furthermore, we require3 the
pushforward ϕ∗ to be an isomorphism between tangent spaces at every point
in Ω. We then define the pullback of an inner product field on Ψ to an inner
product field on Ω as

ϕ∗ (〈−|−〉) (v,w) = 〈ϕ∗v|ϕ∗w〉.

Of course an inner product on the tangent space is not that useful for our
purposes — however we can simply use Definition 2.22 to transform it to an
inner product on the cotangent space. We then extend the inner product
to differential k-forms as per Definition 2.24, additionally constructing the
Hodge star in the process.

Definition 3.24 (Euclidean space). We define the Euclidean space, denoted
by En, as Rn with an inner product field given by

〈α1∂1 + · · ·+ αn∂n|β1∂1 + · · ·+ βn∂n〉 = α1β1 + · · ·+ αnβn.

Coordinates of En shall be denoted by (x1, . . . , xn) unless stated otherwise.
Our volume form is given by σ = dx1 ∧ · · · ∧ dxn. We are going to work with
vector fields on En later, so we note the musical isomorphisms take the form
(dxi)] = ∂i.

Example 3.25 (Polar coordinates). Consider the plane E2, with coordinates
denoted by x and y. We wish to introduce polar coordinates. To achieve this,
we take the domain Ω = {(r, θ) ∈ R2 | r > 0 & 0 < θ < 2π} and the map
ϕ : Ω→ E2 given as

x(r, θ) = r cos(θ),
y(r, θ) = r sin(θ).

First we compute the pushforward of tangent vectors in Ω to tangent vectors
in E2 as

ϕ∗∂r = cos (θ)∂x + sin (θ)∂y,
ϕ∗∂θ = −r sin (θ)∂x + r cos (θ)∂y.

We would like to transform the inner product field on E2 to an inner product

3This is required in order to preserve the nondegeneracy of our new inner product.
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field on Ω by using Definition 3.23. To achieve this, we evaluate

ϕ∗(〈−|−〉) (∂r,∂r) = 〈ϕ∗∂r|ϕ∗∂r〉
= 〈cos (θ)∂x + sin (θ)∂y| cos (θ)∂x + sin (θ)∂y〉
= 1,

ϕ∗(〈−|−〉) (∂θ,∂θ) = 〈−r sin (θ)∂x + r cos (θ)∂y| − r sin (θ)∂x + r cos (θ)∂y〉
= r2,

ϕ∗(〈−|−〉) (∂r,∂θ) = 〈cos (θ)∂x + sin (θ)∂y| − r sin (θ)∂x + r cos (θ)∂y〉
= 0.

Therefore, using Remark 2.23, we can convert this inner product to the
contagent space, as follows:

〈dr|dr〉 = 1, 〈dθ|dθ〉 = 1
r2 , 〈dr|dθ〉 = 0.

Now we wish to compute the Hodge star in polar coordinates. We already
have an inner product field, but we have yet to figure out how our volume
form transforms under this coordinate change.

For this we compute the pullback of the coframe of E2 to differential forms
in Ω. We can do this simply by calculating the differentials of our coordinate
maps as follows

dx = cos(θ)dr − r sin(θ)dθ,
dy = sin(θ)dr + r cos(θ)dθ.

And now

σ = dx ∧ dy = (cos(θ)dr − r sin(θ)dθ) ∧ (sin(θ)dr + r cos(θ)dθ)
= (cos(θ)dr − sin(θ)(rdθ)) ∧ (sin(θ)dr + cos(θ)(rdθ))
= dr ∧ rdθ.

We can easily verify that the tuple (dr, rdθ) forms an orthonormal basis with
respect to our inner product field on differential forms at every point of Ω.

Now we proceed using the usual approach. To compute ?dr we take

dr ∧ dr = 0σ = 〈?dr|dr〉σ,

dr ∧ dθ = 1
r
σ = 〈?dr|dθ〉σ.

And thus ?dr = rdθ. Similarly for ?dθ, we have

dθ ∧ dr = −1
r
σ = 〈?dθ|dr〉σ,

dθ ∧ dθ = 0σ = 〈?dθ|dθ〉σ.

And thus ?dθ = −1
rdr. Notice that in multivariable calculus, we often

find ourselves manipulating unit tangent vectors. This means we would, for
example, have

θ0 = 1
r
∂θ.

We shall not use this notation here, but it is worth keeping in mind.

23



3. Differential Forms...................................
As we can see from the above example, computing coordinate transforma-

tions manually is quite tedious. Luckily, several computer algebra software
packages support perfoming automated differential-geometric computations.
One option is further expanded upon in Appendix A (this example is con-
tained specifically in Notebook A.1). This is extremely convenient as it allows
us to perform even very complicated coordinate transformations in automated
fashion.
Definition 3.26 (Isometry). Let Ω and Ψ connected be n-domains, let 〈−|−〉Ω
and 〈−|−〉Ψ be inner product fields on Ω and Ψ respectively and let ϕ : Ω→ Ψ
be a smooth bijection with a smooth inverse. We call ϕ an isometry if ϕ∗
is a linear isometry between Ψϕ(p) and Ωp at every point of p ∈ Ω. In other
words, for every pair of tangent vectors v,w ∈ Ωp we have

〈v|w〉Ω|p = 〈ϕ∗v|ϕ∗w〉Ψ|ϕ(p).

In the rest of this section, we denote Ω, Ψ, their respective inner product
fields and an isometry ϕ as above. An isometry constructs linear isometries
between tangent spaces. However, we also want to work with cotangent
vectors and thus we need to show that the pullback is also a linear isometry
between cotangent spaces using the respective contravariant inner products.
Proposition 3.27. For every pair cotangent vectors µ,ω ∈ Ψ∗ϕ(p) we have

〈µ|ω〉Ψ|ϕ(p) = 〈ϕ∗µ|ϕ∗ω〉Ω|p.

Proof. Let p ∈ Ω and let µ,ω ∈ Ψ∗ϕ(p). First we show that we have
ϕ∗((ϕ∗µ)]) = µ] for any µ. In other words, we want to show that

Ψ∗ϕ(p) Ω∗p

Ψϕ(p) Ωp

ϕ∗

] ]

ϕ∗

commutes. Take any vector v ∈ Ωp and compute

〈ϕ∗((ϕ∗µ)])|ϕ∗v〉Ψ = 〈(ϕ∗µ)]|v〉Ω
= (ϕ∗µ)(v)
= µ(ϕ∗v)
= 〈µ]|ϕ∗v〉Ψ.

Now as ϕ∗ is an isomorphism by assumption and the inner product is nonde-
generate, we have the desired equality.

With this fact in hand, we can now show

〈µ|ω〉Ψ = 〈µ]|ω]〉Ψ
= 〈ϕ∗((ϕ∗µ)])|ϕ∗((ϕ∗ω)])〉Ψ
= 〈(ϕ∗µ)]|(ϕ∗ω)]〉Ω
= 〈ϕ∗µ|ϕ∗ω〉Ω.
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Proposition 3.28. For every pair of differential k-forms µ,ω ∈ Ek(Ψ), we
have

ϕ∗〈µ|ω〉Ψ = 〈ϕ∗µ|ϕ∗ω〉Ω.

Proof. For 1-forms, this is simply a consequence of the previous proposition.
Picking a point p ∈ Ω, we have

(ϕ∗〈µ|ω〉Ψ)(p) = (〈µ|ω〉Ψ ◦ ϕ)(p) = 〈µ|ω〉Ψ|ϕ(p) = 〈ϕ∗µ|ϕ∗ω〉Ω|p.

For k-forms, this can be extended simply by taking the definition of the inner
product based on the Gramian matrix and considering that the pullback
distributes over the wedge product.

We would like to study the interaction between the Hodge star and an
isometric pullback. First we note that orthonormality is preserved if we convert
an orthonormal tangent basis to a cotangent basis using Definition 2.22. Now
we can prove the following important proposition.
Proposition 3.29 (Isometry pullback and the Hodge star). We have, for any
k-form ω ∈ Ek(Ψ), that

ϕ∗?ω = ?ϕ∗ω or ϕ∗?ω = − ?ϕ∗ω .

We call ϕ orientation-preserving in the first case and orientation-reversing in
the second case.

Proof. Label the volume form on Ω as σΩ and the volume form on Ψ as
σΨ. First we note that as ϕ∗ is a linear isometry, it maps orthonormal
volume forms to volume forms and thus we get, by Proposition 2.27, that
ϕ∗σΨ = ±σΩ. As the domains are connected by assumption and the process
is continuous, the sign is identical at every point. The metric sign is then
also necessarily preserved. Now we consider an (n− k)-form µ on Ψ and a
(fixed) k-form ω. We have, from Proposition 2.32, that

s(−1)k(n−k)µ ∧ ω = µ ∧ ??ω = 〈µ|?ω〉ΨσΨ.

Now we apply ϕ∗ to the equality and get

〈ϕ∗µ|?ϕ∗ω〉ΩσΩ = (ϕ∗µ) ∧ ? ?(ϕ∗ω)
= s(−1)n(n−k)(ϕ∗µ) ∧ (ϕ∗ω)
= ϕ∗(〈µ|?ω〉ΨσΨ)
= ϕ∗(〈µ|?ω〉Ψ)(ϕ∗σΨ)
= ±〈ϕ∗µ|ϕ∗(?ω)〉ΩσΩ.

Now as ϕ is a bijection by assumption and ϕ∗ is an isomorphism, we can
show the equality at every point of Ω by picking a suitable µ.
Remark 3.30. If we pullback an inner product field, as defined in Defini-
tion 3.23, we automatically get an isometry. This is particularly useful when
using pullbacks to change coordinates, as we can transform the inner product
field first, and then commute the pullback over every instance of the Hodge
star, writing any differential form involved in the new coordinates directly.
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3.3 Additional Tools

We can compose the tools we have built so far to create several additional
constructs which will be useful in their own right.
Definition 3.31 (The codifferential and Laplace-de Rham). Given a inner prod-
uct field on an n-domain Ω with metric sign s, we can define the codifferential
δ as a linear map Ek(Ω)→ Ek−1(Ω) given by

δ = (−1)k?−1d? = (−1)n(k−1)+1s?d?.

We also define the Laplace-de Rham operator as ∆ : Ek(Ω)→ Ek(Ω) given by

∆ = dδ + δd.

It helps to visualize the sequence of mappings ?d?, which constitute the
codifferential as

Ek(Ω) ?−→ En−k(Ω) d−→ En−k+1(Ω) ?−→ Ek−1(Ω).

From the nilpotency of d, we can easily see that:
Proposition 3.32 (The codifferential is nilpotent). We have δδ = 0.

From Proposition 3.29, we also have:
Proposition 3.33 (The codifferential commutes with isometric pullback). For
an isometry ϕ, we have ϕ∗δ = δϕ∗.
Definition 3.34 (Closed and exact forms). A k-form ω ∈ Ek(Ω) is called closed
if dω = 0 and exact if there exists a differential form λ ∈ Ek−1(Ω) such that
dλ = ω. Additionally, ω is said to be co-closed if δω = 0 and co-exact if
there exists a differential form γ ∈ Ek+1(Ω) such that δγ = ω. Furthermore,
we call ω harmonic if ∆ω = 0.

Additionally note that the set of all closed differential forms is a subspace
of all differential k-forms, that is, the kernel of the exterior derivative. The
set of all exact differential forms is then the range of the exterior derivative.
Similarly for co-closed and co-exact forms and the codifferential.

By Proposition 3.12, we can easily see that every exact form is automatically
closed. The converse however is not always true.
Proposition 3.35 (Poincaré lemma). On Rn every closed form is exact.4 In
other words, if we have a differential form ω ∈ Ek(Rn) such that dω = 0,
then there exists a differential form λ ∈ Ek−1(Rn) such that dλ = ω.

This proposition is highly nontrivial. An interested reader may con-
sult [Tu11] or [Fra17] for more details. Note that it is a purely topological
concept and does not require the introduction of any inner product field.

4This theorem can be generalized to some special open subsets of Rn. Intuitively, we
need such subset to contain no "holes".
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..........................3.4. Connections to Multivariable Calculus

3.4 Connections to Multivariable Calculus

In this section, we are going to work with the Euclidean space to form a
bridge between the formalism of differential forms and multivariable calculus.

First important thing to note is that in multivariable calculus, we tradi-
tionally do not distinguish between tangent vectors and the elements of En

itself. This is unfortunate, as they are fundamentally different objects, which
is especially apparent when changing coordinate systems.

Consider a scalar function f ∈ E0(En). We know that the exterior derivative
is computed as

df =
n∑
i=1

∂f

∂xi
dxi .

This looks almost like the gradient, but it does not behave as expected under
pullbacks. For instance, the exterior derivative of a scalar function on E3

expressed in spherical coordinates is given by

df = ∂f

∂r
dr + ∂f

∂θ
dθ + ∂f

∂ϕ
dϕ .

We remind ourselves that the gradient is usually thought of as a vector
field and thus define:
Definition 3.36 (Gradient). The gradient is a linear map ∇ : E0(En)→ X(En)
given by ∇f = (df)]. In other words, the gradient is a vector field on En

such that for every vector field v on En we have

〈∇f |v〉 = df (v).

Expressed in coordinates in En, this means

∇f =
n∑
i=1

∂f

∂xi
∂xi .

Example 3.37 (Gradient in polar coordinates). We are going to expand upon
Example 3.25 by computing the gradient in polar coordinates. We remind
ourselves that we considered the set Ω = {(r, θ) ∈ R2 | r > 0 & 0 < θ < 2π}
and consider a 0-form f on Ω. Its exterior derivative is then given as

df = ∂f

∂r
dr + ∂f

∂θ
dθ .

Now we have to use the euclidean inner product we have transformed to Ω to
compute (df)]. We have

(∂r)[ = dr and (∂θ)[ = r2 dθ

and thus

(dr)] = ∂r and (dθ)] = 1
r2∂θ.
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3. Differential Forms...................................
Which yields

∇f = ∂f

∂r
∂r + ∂f

∂θ

1
r2∂θ = ∂f

∂r
r0 + ∂f

∂θ

1
r
θ0,

where

r0 = ∂r and θ0 = 1
r
∂θ.

Definition 3.38 (Divergence and curl). We define the divergence∇· : X(E3)→ E0(E3)
of a vector field v on E3 as

∇ · v = ?d?v[.

We also define the curl ∇× : X(E3)→ X(E3) as

∇× v = (?dv[)].

Example 3.39 (Divergence and curl in cartesian coordinates). For a vector field

v = v1∂1 + v2∂2 + v3∂3

on E3, we compute the divergence as

∇ · v = ?d?v[

= ?d ?
(
v1 dx1 + v2 dx2 + v3 dx3

)
= ?d

(
v1 dx2 ∧ dx3 + v2 dx3 ∧ dx1 + v3 dx1 ∧ dx2

)
= ?

(
∂v1

∂x1 + ∂v2

∂x2 + ∂v3

∂x3

)
dx1 ∧ dx2 ∧ dx3

= ∂v1

∂x1 + ∂v2

∂x2 + ∂v3

∂x3 .

For the curl, we get

dv[ =
(
∂v2

∂x1 −
∂v1

∂x2

)
dx1 ∧ dx2 +(

∂v1

∂x3 −
∂v3

∂x1

)
dx3 ∧ dx1 +(

∂v3

∂x2 −
∂v2

∂x3

)
dx2 ∧ dx3

and thus

∇× v =
(
∂v2

∂x1 −
∂v1

∂x2

)
∂3 +

(
∂v1

∂x3 −
∂v3

∂x1

)
∂2 +

(
∂v3

∂x2 −
∂v2

∂x3

)
∂1.

To summarize, we have the following diagram for the gradient, curl and
divergence we defined on E3.

E0(E3) E1(E3) E2(E3) E3(E3)

C∞(Ω) X(Ω) X(Ω) C∞(Ω)

d

]

d

]◦?

d

?

∇ ∇× ∇·
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..........................3.4. Connections to Multivariable Calculus

This diagram illustrates several important points about multivariable
calculus. As it works with vector fields only, all the complexity has to be
present in the various operators, relying heavily on being the ability to identify
2-forms and 1-forms present only in E3 and the musical isomorphisms.

If we leverage differential forms, we can work in arbitrary dimension and
with arbitrary inner product fields, or even without any inner product field
at all. We can then think of the divergence as "codifferential of a 1-form" and
the curl as "exterior derivative of a 1-form". The gradient can be replaced
with exterior derivative of a 0-form and converted to a vector field only when
needed.

We can also use what we know about the exterior derivative to derive the
identities we know from multivariable calculus. This is best left to specialized
textbooks, but we are going to present an example.
Proposition 3.40. For any vector field v on En we have ∇ ·∇× v = 0.

Proof. We compute using the definitions and nilpotency of the exterior
derivative

∇ ·∇× v = ?d??dv[

= ?d??dv[

= ?ddv[

= 0.
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Chapter 4
Electrodynamics

At this point, we have the tools necessary to study electrodynamics in the
formalism of differential forms. We are going to consider a conservative
approach which precludes the introduction of material dependence. However
note that materials are a macroscopic abstraction and thus the laws of
electromagnetism describe the behavior of the electromagnetic field even
inside materials.

We are going to start with a motivating example:
Example 4.1. It is well known that the magnetic vector field generated by
an infinitely long wire oriented along the x3 axis with constant unit current
can be described by(

−x2

(x1)2 + (x2)2

)
∂x1 +

(
x1

(x1)2 + (x2)2

)
∂x2 .

We would like to transform this vector field by a reflection along the plane
spanned by the x2 and x3 axis. We thus setup a coordinate transform as

y1 = −x1, y2 = x2, y3 = x3.

Now if we push forward our vector field (the coordinate transform is bijective,
so we can push forward entire vector fields), we get(

y2

(y1)2 + (y2)2

)
∂y1 +

(
−y1

(y1)2 + (y2)2

)
∂y2 .

Physically, this does not make much sense. Our transformation preserved
both the wire and the direction of the current imposed on it. Yet we have a
different result in our new coordinate system!

However, if instead of a vector field we consider the magnetic field to be a
2-form given by

B =
(

−x2

(x1)2 + (x2)2

)
dx2 ∧ dx3 +

(
x1

(x1)2 + (x2)2

)
dx1 ∧ dx3 .

and its pullback is then

ϕ∗B =
(

−y2

(y1)2 + (y2)2

)
dy2 ∧ dy3 +

(
y1

(y1)2 + (y2)2

)
dy1 ∧ dy3 .
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4. Electrodynamics ...................................
The sign changes cancel out and we get identical result in the new coordinate
system.

Classically, we would call the magnetic field a pseudovector and just remem-
ber that we have to apply different rules while transforming its coordinates.
However, in the theory of differential forms, we can represent pseudovectors as
a distinct object type and thus the coordinate transformations are implicitly
handled correctly.

4.1 Basic Definitions

Definition 4.2 (Minkowski space). We define the Minkowski space, denoted
by M, as the domain R4 with an inner product field given by

〈α0∂0 + α1∂1 + α2∂2 + α3∂3|β0∂0 + β1∂1 + β2∂2 + β3∂3〉
= −α0β0 + α1β1 + α2β2 + α3β3

at every point. We are going to denote coordinates in M by (x0, x1, x2, x3).
Our volume form is given as dx0 ∧ dx1 ∧ dx2 ∧ dx3.

We want to think of the x0 coordinate as the "time" coordinate and
the remaining coordinates as "spatial" coordinates. Additionally, we are
using "geometric units", that is, units where the time coordinate and spatial
coordinates have the same dimensions.

To simplify some further computations, we also define:
Definition 4.3 (Position 1-form). A position 1-form on the Minkowski space
is defined as

R = −x0 dx0 + x1 dx1 + x2 dx2 + x3 dx3 .

And now we are ready to start constructing the theory of electromagnetism.
Definition 4.4 (Electromagnetic field). Given a source 1-form J on M, we
call a 2-form F on M electromagnetic field associated with J if it satisfies
the homogeneous Maxwell’s equation, given by

dF = 0

and the inhomogeneous Maxwell’s equation, given by

δF = J .

To connect the electromagnetic field to the traditional theory of electro-
magnetism, we are going to name its components in the following definition.
Definition 4.5 (Components of the electromagnetic field). Given an electro-
magnetic field F associated with J , we define the electric 1-form E and
magnetic 2-form B, with components named by

E = E1 dx1 + E2 dx2 + E3 dx3 ,

B = B1 dx2 ∧ dx3 +B2 dx3 ∧ dx1 +B3 dx1 ∧ dx2 .
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................................... 4.1. Basic Definitions

Then we set
F = E ∧ dx0 +B.

Note that we can control every coframe 2-form independently and thus we
have not restricted our collection of electromagnetic fields in any way.

We also name the components of J as
J = −ρdx0 + J1 dx1 + J2 dx2 + J3 dx3 .

Proposition 4.6 (Components of any electromagnetic field satisfy Maxwell’s
equations). We shall compare our expression with the traditional vector
calculus form in cartesian coordinates.

Proof. As per Definition 4.5, we construct vector fields on E3 from the
components of F as

E = E1∂1 + E2∂2 + E3∂3,

B = B1∂1 +B2∂2 +B3∂3,

J = J1∂1 + J2∂2 + J3∂3.

Note that the components still depend on time, so we have in fact constructed
an entire family of vector fields on E3. This is necessary as the traditional
formulation from vector calculus does not consider the time coordinate to be
a proper coordinate.

First we compute dF = 0 as
dF = d(E ∧ dx0 +B)

= dE ∧ dx0 + dB

=
(
∂E2
∂x1 −

∂E1
∂x2

)
dx0 ∧ dx1 ∧ dx2 +(

∂E1
∂x3 −

∂E3
∂x1

)
dx0 ∧ dx3 ∧ dx1 +(

∂E3
∂x2 −

∂E2
∂x3

)
dx0 ∧ dx2 ∧ dx3 +

∂B3
∂x0 dx0 ∧ dx1 ∧ dx2 +

∂B2
∂x0 dx0 ∧ dx3 ∧ dx1 +

∂B1
∂x0 dx0 ∧ dx2 ∧ dx3 +(
∂B1
∂x1 + ∂B2

∂x2 + ∂B3
∂x3

)
dx1 ∧ dx2 ∧ dx3 .

Setting all the components to zero shows that this is equivalent to

∇×E = − ∂B
∂x0 and ∇ ·B = 0.

Similarly, by computing δF we get

∇×B = J + ∂E
∂x0 and ∇ ·E = ρ.
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4. Electrodynamics ...................................
See Notebook A.3 for the details of this computation.

From nilpotency of δ we can easily get
Proposition 4.7 (Continuity equation). We have δJ = 0.

Proof. Evaluate 0 = δδF = δJ .

4.2 The Electromagnetic Potential

As the homogeneous Maxwell’s equation just states that F is a closed differen-
tial form, we can use Proposition 3.35 to get a potential for any electromagnetic
field.
Definition 4.8 (Electromagnetic potential). Given an electromagnetic field F ,
we call any 1-form A such that dA = F an electromagnetic potential of F .

With electromagnetic potentials, the Maxwell’s equation simplify even
further. The homogeneous equation is satisfied automatically by nilpotency
of the exterior derivative and thus we are only left with

δ dA = ?d?dA = δF = J .

Any 1-form generates a valid electromagnetic field for some source 1-form.
However the exterior derivative is not injective and thus the electromagnetic
potential is not determined uniquely. We can characterize this more rigorously
by the following proposition.
Proposition 4.9 (Gauge freedom). Let A,A′ ∈ E1(M) and let A be an
electromagnetic potential for F . Then A′ is also an electromagnetic potential
for F if and only if A−A′ is exact.

Proof. First we assume dA′ = F . Then we have

d(A−A′) = dA− dA′ = F −F = 0.

and thus A−A′ is closed and by Theorem 3.35 it is also exact.
Next we assume exactness, therefore dλ = A −A′ for some λ ∈ E0(M).

Then we have

0 = d dλ = d(A−A′) = F − dA′

and thus A′ is an electromagnetic potential of F .

As the electromagnetic potential is not determined uniquely, we are not go-
ing to name its components, referring to them by number of the corresponding
coframe form only.

A natural way to constrain the set of valid electromagnetic potentials is
by introducing additional constraints, called gauge conditions. A convenient
gauge condition for our setting can be stated as follows.
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............................. 4.2. The Electromagnetic Potential

Definition 4.10 (Lorenz gauge condition). An electromagnetic potential A is
said to be in the Lorenz gauge1 if it satisfies δA = 0. In other words, we
demand that A is co-closed.2

In coordinates, this yields
∂A0
∂x0 −

∂A1
∂x1 −

∂A2
∂x2 −

∂A3
∂x3 = 0.

With this calibration condition, the equation for the electromagnetic po-
tential is reduced to the well-known wave equation.
Proposition 4.11 (Wave equation). Given an electromagnetic potential A in
the Lorenz gauge, we have ∆A = J .

Proof. Compute

∆A = (dδ + δd)A = δ dA = J .

In coordinates, the wave equation for the electromagnetic potential is
∂2Ai

∂x02 −
∂2Ai

∂x12 −
∂2Ai

∂x22 −
∂2Ai

∂x32 = Ji.

Notice that we never had to specify some special "wave operator" acting on
vectors. The information necessary to get to the hyperbolic partial differential
equation is included in the Minkowski inner product field.

The Lorenz gauge is still not sufficient to constrain the electromagnetic
potential fully, however it gives us some space to work with. More specifically,
we have the following proposition:
Proposition 4.12. Let A and A′ be electromagnetic potentials of F in the
Lorenz gauge. Then A−A′ is harmonic.

Proof. We consider

∆(A−A′) = J −J = 0.

Beware that if a 1-form satisfies the wave equation, it is not necessarily
co-closed. We thus need to still make sure that the electromagnetic potential
is in the Lorenz gauge.

We can also formulate the wave equation for the electromagnetic field itself
in a very similar fashion.
Proposition 4.13 (Wave equation for the electromagnetic field). Given an
electromagnetic field F associated to J , we have

∆F = dJ .
1Named after Ludvig Lorenz, not Hendrik Lorentz after whom some other concepts in

this thesis are named.
2We are not going to prove that any electromagnetic field actually has an electromagnetic

potential in the Lorenz gauge. This may in fact require some additional constraints on the
electromagnetic field itself.

35



4. Electrodynamics ...................................
4.3 Isometries of the Minkowski Space

To study coordinate transformations of the Maxwell’s equations, we would
like to find out which smooth maps of the Minkowski space are isometries.
In our case, isometries formalize the idea of transforming between "inertial
coordinate frames of reference" which are coordinate systems where laws of
special relativity hold in unchanged form.
Proposition 4.14 (Maxwell’s equations and isometries). Maxwell’s equations
are invariant under isometries. That is, given an isometry ϕ of M and an
electromagnetic field F associated with J , ϕ∗F is an electromagnetic field
associated with ϕ∗J .

Additionally, if A is an electromagnetic potential of F , then ϕ∗A is an
electromagnetic potential of ϕ∗F and if A is in the Lorenz gauge then ϕ∗A
is also in the Lorenz gauge.

Proof. Call our isometry ϕ. Applying ϕ∗ to the homogeneous equation yields

ϕ∗(dF) = d(ϕ∗F) = 0

and pulling back the inhomogeneous equation results in

ϕ∗(δF) = ϕ∗(?d ?F) = δ(ϕ∗F) = ϕ∗J .

If dA = F , then ϕ∗dA = dϕ∗A = ϕ∗F and if δA = 0 then ϕ∗δA = δϕ∗A = 0.

In the following examples, we are going to parametrize several important
families of isometries on the Minkowski space. By applying the definition, we
can easily see that:
Example 4.15 (Translational isometries). Smooth maps given by

yi = xi + xi0,

where xi0 are constant are isometries.

As composition of isometries is again an isometry, we can now restrict
ourselves to mappings which leave the origin fixed.
Example 4.16 (Parity transformations). Smooth maps given by

yi = ±xi.

are also isometries.
Example 4.17 (Lorentz boosts). Now we wish to find out which smooth maps
involving the time coordinate and a single spatial coordinate are isometries.
These transformations are usually called Lorentz boosts in the literature.

We start with defining our coordinate transformation ϕ : M→M as

y0 = f(x0, x1), y1 = g(x0, x1),
y2 = x2, y3 = x3,
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........................... 4.3. Isometries of the Minkowski Space

where f and g are some unknown smooth functions such that f(0, 0) = g(0, 0) = 0.

For brevity, we set ∂f
∂xi (x0, x1) = fi(x0, x1) and compute our cotangent

basis transformations as

ϕ∗(dy0) = f0(x0, x1) dx0 + f1(x0, x1) dx1 ,

ϕ∗(dy1) = g0(x0, x1) dx0 + g1(x0, x1) dx1 ,

ϕ∗(dy2) = dx2 ,

ϕ∗(dy3) = dx3 .

We wish to have an isometry, in other words we wish that any pair of cotangent
vectors α,β ∈ M∗

p satisfy ϕ∗〈α|β〉 = 〈ϕ∗α|ϕ∗β〉. Obviously the third and
fourth equations do not add any information about our solution, so we are
left with

〈ϕ∗(dy0)|ϕ∗(dy0)〉 = −(f0)2 + (f1)2 = −1 = ϕ∗〈dy0| dy0〉,
〈ϕ∗(dy1)|ϕ∗(dy1)〉 = −(g0)2 + (g1)2 = 1 = ϕ∗〈dy1|dy1〉,
〈ϕ∗(dy1)|ϕ∗(dy0)〉 = −f0g0 + f1g1 = 0 = ϕ∗〈dy1|dy0〉.

These are tabulated partial differential equations (see [Pol] for details). From
the first two equations we have solutions of the form

f(x0, x1) = A0x
0 −A1x

1 where A2
0 −A2

1 = 1,
g(x0, x1) = −B0x

0 +B1x
1 where B2

1 −B2
0 = 1.

Substituting the solutions into the third equation additionally yields

A0B0 = A1B1. (4.1)

To get our solution into a more traditional form, we notice that the coefficients
A0 and A1 are constrained to lie on a hyperbola. If we pick a single branch
of said hyperbola3, we can get a hyperbolic angle θ (illustrated by Figure 4.1)
such that

A0 = cosh(θ), A1 = sinh(θ).

For the second pair of coefficient we temporarily pick a hyperbolic angle ψ
and set

B1 = cosh(ψ), B0 = sinh(ψ).

Substituting these equalities to equation 4.1 yields

cosh(θ) sinh(ψ) = sinh(θ) cosh(ψ)

and thus ψ = θ as tanh is bijective.

Parametrized using the parameter θ, our coordinate transformation is given
3Note that this removes some valid solutions. Namely we are keeping only those Lorentz

boosts which are orientation preserving.
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4. Electrodynamics ...................................
by

y0 = cosh(θ)x0 − sinh(θ)x1,

y1 = − sinh(θ)x0 + cosh(θ)x1,

y2 = x2,

y3 = x3.

Figure 4.1: Parameters of the Lorentz boost

Another parametrization of the Lorentz boost which is quite popular in
the literature can be obtained by substituting

β = tanh(θ) and γ = cosh(θ),

yielding

y0 = γ(x0 − βx1) and y1 = γ(x1 − βx0).

Beware that this can be somewhat misleading as the parameters γ and β
cannot be chosen independently. The parameter β is usually intrepreted as
the relative velocity of the two coordinate systems and the parameter γ is
then called the Lorentz factor.

Computing Example 4.17 using a computer algebra system is additionally
shown in Notebook A.4.
Example 4.18 (Spatial rotations). What is left are isometries involving two
spatial coordinates. Our coordinate transform is then given as

y0 = x0,

y1 = f(x1, x2),
y2 = g(x1, x2),
y3 = x3.
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Applying the same approach as in Example 4.17 yields

(f1)2 + (f2)2 = 1,
(g1)2 + (g2)2 = 1,
f1g1 + f2g2 = 0.

Solutions for these partial differential equations are

f(x1, x2) = A1x
1 +A2x

2 where A2
1 +A2

2 = 1,
g(x1, x2) = B1x

1 +B2x
2 where B2

1 +B2
2 = 1.

The third equation gives an additional constraint in the form of

A1B1 +A2B2 = 0. (4.2)

Note that the parameters A1 and A2 are constrained to the unit circle.
This means we can find an angle θ such that

A1 = cos(θ), A2 = − sin(θ).

equation (4.2) gives us two ways of picking the coefficients B1 and B2. To
get a positively oriented isometry we have to pick

B1 = sin(θ), B2 = cos(θ).

Our parametrized isometry is thus given by

y0 = x0,

y1 = cos(θ)x1 − sin(θ)x2,

y2 = sin(θ)x1 + cos(θ)x2,

y3 = x3.

Remark 4.19. It is interesting to note that our isometries turned out to be
affine in the global coordinate vectors. This is often silently assumed, but we
had no reason to believe that would be the case, as we generally only care
about the topological structure of M. It can however be shown that every
isometry of the Minkowski space can be expressed as such. A proof of this
fact can be found in [Wei72].

An important consequence is that the position 1-form "looks the same"
after changing coordinates using an isometry which leaves the origin fixed.

Of great importance are scalars which are invariant under change of inertial
coordinate system. We are going to compute two of these in the next
proposition.
Proposition 4.20 (Invariants of the electromagnetic field). Given an electro-
magnetic field F , the following two scalar functions are invariant under
orientation-preserving isometries

?(F ∧ ?F) and ?(F ∧F) .
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Proof. Naming our isometry as ϕ and using Proposition 3.29, we compute

ϕ∗(?(F ∧ ?F)) = ?((ϕ∗F) ∧ ?(ϕ∗F))

and

ϕ∗(?(F ∧F)) = ?((ϕ∗F) ∧ (ϕ∗F)) .

Expanding F in components, we use Proposition 2.32 to observe that the
first invariant is just the magnitude of F and thus we have

?(F ∧ ?F) = −〈F |F〉
= −〈E ∧ dx0 +B|E ∧ dx0 +B〉
= 〈E|E〉 − 〈B|B〉.

For the second invariant we have

?(F ∧F) = ?
(
(E ∧ dx0 +B) ∧ (E ∧ dx0 +B)

)
= ?

(
B ∧ E ∧ dx0 + E ∧ dx0 ∧B

)
= 2 ?

(
B ∧ E ∧ dx0

)
.

4.4 Vacuum Fields

Definition 4.21 (Vacuum electromagnetic field). An electromagnetic field F
is called a vacuum electromagnetic field if its source 1-form is the zero form.
In other words, we have

dF = 0,
δF = 0.

If A is an electromagnetic potential of F , we have

δ dA = 0.

As vacuum electromagnetic fields are both closed and co-closed, they exhibit
an interesting kind of symmetry.
Proposition 4.22. Let F be a vacuum electromagnetic field. Then ?F is
also a vacuum electromagnetic field.

In essence, this means that we can exchange the components of the magnetic
2-form and the electric 1-form (in a way that is compatible with the Hodge
star) and still get another valid vacuum electromagnetic field.
Example 4.23 (Plane wave). Take an arbitrary4 smooth function f : R → R
and any angular frequency5 ω ∈ R. We want to consider an electromagnetic

4In practice, it is often convenient to work with complex-valued differential forms. These
can be introduced without much issue, see [DK16] for an example.

5Note that f is not necessarily periodic, meaning our name for ω is just a variable name.
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potential given by

A = f(ω(x1 − x0)) dx2 .

Before we proceed, we are going to introduce alternative coordinates on M,
given by

x0 = y+ − y−, x1 = y+ + y−, x2 = y2, x3 = y3,

valid on R4. The coordinates y+ and y− are usually called null coordinates,
as we have 〈dy+| dy+〉 = 〈dy−|dy−〉 = 0. Note that our coframe is no
longer orthonormal, which makes computing the Hodge star somewhat more
involved.

In these coordinates, we have

A = f(2ωy−) dy2 .

Now we compute the electromagnetic field as

F = dA = 2ωf ′(2ωy−) dy− ∧ dy2 .

Next we want to show that F is a vacuum electromagnetic field. It suffices
to show d?F = 0, by

d?F = d
(
2ωf ′(2ωy−) dy3 ∧ dy−

)
= 0,

as ?
(
dy− ∧ dy2) = dy3 ∧ dy−.

If we want to express F in cartesian coordinates, we can use the inverse
coordinate transformation, given by

y+ = 1
2x

1 + 1
2x

0, y− = 1
2x

1 − 1
2x

0, y2 = x2, y3 = x3.

Which then results in

F = ωf ′(ω(x1 − x0))(dx1 − dx0) ∧ dx2 .

Now that we have an example of a vacuum electromagnetic field, we are
going to solve a classical problem, first explored in the seminal work on special
relativity [Ein05].
Example 4.24 (Relativistic longtitudal Doppler effect). We want to explore
how the plane wave changes after undergoing a Lorentz boost to a different
inertial reference frame moving in the direction of propagation.6 We setup
our coordinate transformation ϕ as

x0 = cosh(θ)y0 − sinh(θ)y1,

x1 = − sinh(θ)y0 + cosh(θ)y1

leaving the rest of coordinates unchanged. The pullback of a plane wave
6We have not defined "direction of propagation" as this requires the stress-energy tensor.

41



4. Electrodynamics ...................................
solution is then

ϕ∗A = ϕ∗(f(ω(x1 − x0)) dx2)
= f(ω(− sinh(θ)y0 + cosh(θ)y1 − cosh(θ)y0 + sinh(θ)y1)) dy2

= f(ω(cosh(θ) + sinh(θ))︸ ︷︷ ︸
ω′

(x1 − x0)) dy2 .

Thus our angular frequency changed by a factor of

ω′

ω
= cosh(θ) + sinh(θ) =

√
1 + β

1− β .

We have two classical approximations for the Doppler shift, given by
ω′

ω
≈ 1 + β,

ω′

ω
≈ 1

1− β ,

for a moving receiver and a moving transmitter respectively. The first
expression is the first order Taylor expansion of ω′/ω and the second expression
is the Taylor expansion of ω/ω′. These approximations are depicted by
Figure 4.2.

What is left is to compute the amplitude of the plane wave in the new
coordinate system. We can just argue by symmetry of the transformed
potential and get

ϕ∗F = ω′f(ω′(y1 − y0))(dx1 − dx0) ∧ dx2 .

That is, the relative amplitude ratio is again given by ω′/ω.

-1.0 -0.5 0.0 0.5 1.00

1

2

3

4

5

′ /

Relativistic
Classical - Receiver moving
Classical - Source moving

Figure 4.2: Comparison the the relativistic Doppler shift and its classical
approximations

The discussion in Example 4.23 also shows that there are no longtitudal
plane waves in vacuum.
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Proposition 4.25. Let f : R → R be an arbitrary smooth function and con-
sider a vacuum electromagnetic fieldF with a potential given byA = f(x1−x0) dx1.
Then F is invariant under translational isometries.

Proof. We first compute F as

dA = F = f ′(x1 − x0) dx1 ∧ dx0

and then the inhomogeneous Maxwell’s equation by

d?F = d
(
f ′(x1 − x0) dx2 ∧ dx3

)
= −f ′′(x1 − x0) dx0 ∧ dx2 ∧ dx3 + f ′′(x1 − x0) dx1 ∧ dx2 ∧ dx3

= 0.

Therefore f is a linear function, that is, f(x1 − x0) = A(x1 − x0) + B for
some real constants A and B. But, the electromagnetic field is then given by

F = A dx1 ∧ dx0 ,

which is just an electrostatic field.
Example 4.26 (Field generated by a point charge). We want to compute the
electrical field generated by a stationary charge at the origin. First we note
that the charge density is not going to be defined at the origin and thus we
restrict ourselves to

M0 = {(x0, x1, x2, x3) ∈M | x1 6= 0 & x2 6= 0 & x3 6= 0},

that is, the Minkowski space with a line removed. We wish to argue by
symmetry, so we introduce spherical coordinates on the domain

S = {(t, r, θ, ϕ) ∈ R4 | r ∈ (0,∞) & θ ∈ (0, π) & ϕ ∈ (0, 2π)}

and a coordinate change map ψ : S →M0 given by

x0 = t, x1 = r cos(ϕ) sin(θ),
x2 = r sin(ϕ) sin(θ), x3 = r cos(θ).

As the setup is spherically symmetrical and invariant in time, we are going to
assume that the components of the electric 1-form depend only on the radial
coordinate.

We thus parametrize our electric 1-form as

E = Er(r) dr + Eθ(r) dθ + Eϕ(r) dϕ .

We want to argue by symmetry further, assuming that the result is symmetric
under reflections. We setup a pair of coordinate transformations given by

ψ1 : S → S (t, r, θ, ϕ) 7→ (t, r,−θ, ϕ),
ψ2 : S → S (t, r, θ, ϕ) 7→ (t, r, θ,−ϕ).

Note that the composition ψ1 ◦ ψ is just ψ composed with

(x0, x1, x2, x3) 7→ (x0,−x1,−x2, x3)
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4. Electrodynamics ...................................
and similarly for ψ2 ◦ ψ we have ψ composed with

(x0, x1, x2, x3) 7→ (x0, x1,−x2, x3)

We would surely expect our resulting field to be invariant with respect to
these transformations, meaning we want

ψ1
∗E = E

Er(r) dr − Eθ(r) dθ + Eϕ(r) dϕ = Er(r) dr + Eθ(r) dθ + Eϕ(r) dϕ

and also

ψ2
∗E = E

Er(r) dr + Eθ(r) dθ − Eϕ(r) dϕ = Er(r) dr + Eθ(r) dθ + Eϕ(r) dϕ

which forces Eθ(r) = Eϕ(r) = 0. Now we need to actually enforce that the
electromagnetic field, given by F = E ∧ dt is closed and co-closed.

To show that F is closed, we just need to show that E is closed and thus
compute

dE = d(Er(r) dr) = 0,

adding no additional restrictions on Er.
To get F to be co-closed, we just have to ensure that d?F = 0. We have

d?F = d ?(Er(r) dr ∧ dt)

= d
(
Er(r)r2 sin(θ) dθ ∧ dϕ

)
=
(

2rEr(r) + r2∂Er
∂r

)
sin(θ) dr ∧ dθ ∧ dϕ

= 0.

As both r and sin(θ) are positive on our coordinate range, we can divide and
get an ordinary differential equation given by

2Er(r) + rE′r(r) = 0.

This differential equation then has solutions of the form

Er(r) = A

r2

where A is an arbitrary real constant.
If we want to express the electromagnetic field in cartesian coordinates, we

can use the position 1-form and get

F = A

(
R

((x1)2 + (x2)2 + (x3)2)
3
2

)
∧ dx0

as exterior multiplication annihilates the dx0 term. Note that we cannot
really consider a multiple ofR an electric 1-form as per Definition 4.5 because
it contains a non-zero dx0 term. However this expression will be useful in
the next example.
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Example 4.27 (Moving point charge). We want to transform the previously
acquired expression for the electromagnetic field of a stationary charge to
a moving inertial coordinate frame in the direction of the x3 axis. We set
rx = ((x1)2 + (x2)2 + (x3)2)

1
2 and normalize by setting A = 1, getting

F = R
r3
x

∧ dx0 .

We setup our coordinate transformation ϕ as

x0 = γ(y0 − βy3) and x3 = γ(y3 − βy0)

leaving the rest of coordinates unchanged. We also set ry = ((y1)2 + (y2)2 + (y3)2)
1
2

As per the definition of the position 1-form and Remark 4.19, we have

r2
x = 〈R|R〉+ (x0)2,

r2
y = 〈R|R〉+ (y0)2

and thus

r2
x = r2

y + (x0)2 − (y0)2︸ ︷︷ ︸
s2

= r2
y + s2.

Transforming the electromagnetic field then results in

F = R
(r2
y + s2)

3
2
∧ γ(dy0 − β dy3).

This expression is still not very satisfying, so we transform it to a cylindrical
coordinate system by

y0 = t, y1 = ρ cos(θ), y2 = ρ sin(θ), y3 = z.

Now we have

R = −t dt+ ρ dρ+ z dz , dy0 = dt , dy3 = dz .

which results in

F = −tdt+ ρ dρ+ z dz
(r2
y + s2)

3
2

∧ γ(dt− β dz)

= γ

(r2
y + s2)

3
2︸ ︷︷ ︸

K

((ρ dρ+ z dz) ∧ dt+ β (t dt− ρdρ) ∧ dz)

= K ((ρdρ+ z dz) ∧ dt+ β (t dt− ρdρ) ∧ dz)
= K ((ρ dρ+ z dz) ∧ dt− βtdz ∧ dt+ βρdz ∧ dρ)
= K ((ρdρ+ (z − βt) dz) ∧ dt+ βρdz ∧ dρ)

Now we can properly separate the electric and magnetic components

E = K (ρ dρ+ (z − βt) dz) and B = Kβρ dz ∧ dρ .
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Example 4.28 (Homopolar generator). A homopolar generator is a device
which generates electricity by rotating a conductive disk in a homogenous
magnetic field. We are going to compute the electromagnetic field as seen
from the rotating coordinate frame of the disk.

The magnetic 2-form is homogeneous and oriented along the plane spanned
by the x1 and x2 axis, that is

F = B = dx1 ∧ dx2 .

Classically, we would say that the magnetic field points in the direction of the
x3 axis, however this does not translate well to our visualization of 2-forms
as parallelograms.

First, we transform F to cylindrical coordinates on the domain

P = {(t, r, θ, z) ∈ R4 | r > 0 & 0 < θ < 2π}

where our smooth map ϕ : P →M is given as

x0 = t, x1 = r cos(θ), x2 = r sin(θ), x3 = z

and thus

ϕ∗dx1 = cos(θ) dr − r sin(θ) dθ , ϕ∗dx2 = sin(θ) dr + r cos(θ) dθ .

Which results in

ϕ∗F = r dr ∧ dθ .

Now we want to rotate this coordinate system at constant angular velocity ω.
We take the set

P ′ = {(t′, r′, θ′, z′) ∈ R4 | r > 0 & 0 < θ′ − ωt′ < 2π}

and define a smooth map ψ : P ′ → P given by

t = t′, r = r′, θ = θ′ − ωt′, z = z′,

This means we have

ψ∗dr = dr′ , ψ∗dθ = dθ′ − ω dt′

and our electromagnetic field then looks like

φ∗ϕ∗F = r′ dr′ ∧ (dθ′ − ω dt′)
= r′ dr′ ∧ dθ′ − r′ω dr′ ∧ dt′ .

Thus in our rotating coordinate frame we have obtained a non-zero electric
field in the radial direction. However beware, we have defined the components
of the electromagnetic field on M and verified that Maxwell’s equations
hold in unchanged form only if our transformations are isometric. Therefore
interpreting the components stands on somewhat shaky ground.
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If we also pullback the inner product field, we notice that our frame and
coframe are no longer orthonormal. Notably, we have

〈∂t′ |∂t′〉 = ω2r′2 − 1 and 〈∂t′ |∂θ′〉 = −ωr′2.

Now we see that the magnitude of ∂t′ is not constant and even swaps signs
as the tangential velocity approaches 1 (that is, the speed of light), thus
interpreting the t′ coordinate as the "time" may be somewhat ill-conceived.

To further illustrate, we are going to pretend that we have obtained φ∗ϕ∗F
just by transforming an electromagnetic field to polar coordinates. That is,
we take

F ′ = r dr ∧ dθ − rω dr ∧ dt .

We know that the homogeneous Maxwell’s equation has to be satisfied as
pullbacks commute with exterior differentiation, however the inhomogeneous
equation might not be. So we compute δF ′

δF ′ = ?d?F ′

= ?d
(
dt ∧ dz − r2ω dθ ∧ dz

)
= ?(−2rω dr ∧ dθ ∧ dz)
= 2ω dt .

And now unsurprisingly, our source 1-form is not zero. Of course this is
only possible because we purposefully ignored applying ψ∗ to our original
electromagnetic field. If we pullback the Minkowski inner product field, the
Hodge star acts in a compatible way and the codifferential produces zero.

This example is also presented in Notebook A.8.
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Chapter 5
Conclusion

In this thesis, we first gave an overview of the tools necessary for formulating
the theory of electrodynamics in the language of differential forms. Afterwards,
we discussed the laws of electromagnetism on the Minkowski spacetime both
in their general form and on concrete examples.

This text only scratches the surface of the tools available in differential
geometry. There are many ways in which we could continue our study, some
of which are summarized in the text below.

The most evident omission is the lack of integration on differential forms.
This is a crucial concept, allowing us to generalize the well known divergence,
Green’s and Kelvin-Stokes theorems into arbitrary dimensions. Any text on
differential geometry will be a sufficient resource for this topic.

Another missing topic is constructing differential forms on smooth manifolds
as opposed to the restriction on open subsets of Rn we have employed here.
This may seem overly general, but, as an example, we often deal in practice
with electromagnetic fields which are periodic in time or space. The circle
manifold is then a natural environment for such fields.

Altough not critical for the laws of physics, introducing material depen-
dencies would be convenient from a practical standpoint. See [Fra17], [Fla89]
or [con20] for hints as to how to implement these.

The Fourier transform can also be extended to work on certain smooth
manifolds, being interpreted as decomposition of differential forms into a sum
of of eigenvectors of the Laplace-de Rham operator, as explained in [Won].
This is a concept frequently employed in the study of waveguides.

From the perspective of numerical computations, discrete differential geom-
etry is an active area of research, serving as an analogy of differential geometry
performed on discrete meshes. A standard reference can be found in [Cra].
An implementation of discrete exterior calculus for the Julia programming
language can be found in [Sch], including an example computing the cavity
resonator modes of a rectangular box.
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Appendix A
Computer Algebra Systems

There are several computer algebra packages which have support for per-
forming various differential-geometric computations. We are going to focus
on SageMath, with its comprehensive built-in SageManifolds library [sag20].
Other options are available, such as SymPy [MSP+17] or Maple with its
DifferentialGeometry package.

For a complete explanation of the various functionality implemented in
SageManifolds, the reader is encouraged to visit the official tutorials and
examples.

The rest of this appendix is provided as a set of companion files for various
examples in this thesis.
Notebook A.1 (Polar). This notebook shows how to compute transformations
to polar coordinates as shown in Example 3.25.
Notebook A.2 (PolarCharts). This notebook is a version of Notebook A.1,
using the concept of charts available in SageManifolds as indicated in Re-
mark 3.21.
Notebook A.3 (Electrodynamics). This notebook shows basic computations
involving the electromagnetic field and the electromagnetic potential.
Notebook A.4 (LorentzBoosts). This notebook shows how to compute Lorentz
Boosts as per Example 4.17.
Notebook A.5 (Minkowski). This notebook computes various useful identities
for working in the Minkowski space.
Notebook A.6 (PlaneWave). This notebook computes the plane wave solu-
tion, including the Doppler effect.
Notebook A.7 (PointParticle). This notebook contains computations involv-
ing the field generated by a moving charged particle.
Notebook A.8 (HomopolarGenerator). This notebook contains computations
involving the homopolar generator.
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Appendix B
Identities

This appendix serves as a collection of useful identities. The necessary context
for these identities is contained in the main text. See [Wik20] for a more
comprehensive list.

Differential Forms

ω ∧ (τ 1 + τ 2) = ω ∧ τ 1 + ω ∧ τ 2

(ω ∧ τ ) ∧ λ = ω ∧ (τ ∧ λ)
ω ∧ τ = (−1)klτ ∧ ω where ω ∈ Ek(Ω), τ ∈ E l(Ω)
f(τ ∧ ω) = (fτ ) ∧ ω where f ∈ E0(Ω)
ω ∧ ω = 0 where ω ∈ Ek(Ω) and k is odd

ϕ∗(ω ∧ τ ) = ϕ∗ω ∧ ϕ∗τ
ϕ∗dω = dϕ∗ω

dω + τ = dω + dτ
d(ω ∧ τ ) = dω ∧ dτ + (−1)kω ∧ dτ where ω ∈ Ek(Ω)
d(dω) = 0

Hodge Star

?? = s(−1)k(n−k) id ?−1 = s(−1)k(n−k)?

? dx∅ = σ ?σ = s dx∅

α ∧ ?β = 〈α|β〉σ
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Minkowski Space

Hodge Star

?dx0 = −dx1 ∧ dx2 ∧ dx3 ?dx1 = −dx0 ∧ dx2 ∧ dx3

?dx2 = dx0 ∧ dx1 ∧ x3 ?dx3 = −dx0 ∧ dx1 ∧ dx2

?(dx0 ∧ dx1) = −dx2 ∧ dx3 ?(dx0 ∧ dx2) = dx1 ∧ dx3

?(dx0 ∧ dx3) = −dx1 ∧ dx2 ?(dx1 ∧ dx2) = dx0 ∧ dx3

?(dx1 ∧ dx3) = −dx0 ∧ dx2 ?(dx2 ∧ dx3) = dx0 ∧ dx1

?(dx0 ∧ dx1 ∧ dx2) = −dx3 ?(dx0 ∧ dx1 ∧ dx3) = dx3

?(dx0 ∧ dx2 ∧ dx3) = −dx1 ?(dx1 ∧ dx2 ∧ dx3) = −dx0

0-forms ?? = − id
1-forms ?? = id δ = ?d?
2-forms ?? = − id δ = ?d?
3-forms ?? = id δ = ?d?
4-forms ?? = − id δ = ?d?
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