Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Control Engineering

Design of Control System for an
Autonomous Racecar

Marek Bohac

Supervisor: doc. Ing. Martin Hromcik, Ph.D.
August 2020

ii

S BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details
e N
Student's name: Bohac¢ Marek Personal ID number: 465967

Faculty / Institute: ~ Faculty of Electrical Engineering

Department / Institute: Department of Control Engineering

L Study program: Cybernetics and Robotics

Il. Bachelor’s thesis details

Bachelor’s thesis title in English:

Design of a Control System for an Autonomous Racecar

Bachelor’s thesis title in Czech:

Navrh fidiciho systému autonomniho zavodniho vozidla

Guidelines:

The goal is to develop new functionalities for the upcoming auton omous racing car of the eForce team of the FEE CVUT,
related to trajectory planning and vehicle control. Specific tasks follow below.

1) Create a mathematical model capturing key features of the kinematics and dynamics of racecar.

2) Create a simulation environment for design and verification of the control system.

3) Design a control system for longitudinal and lateral trajectory tracking.

4) Implement the control system on the racecar operating system.

5)Verify the controller experimentally.

Bibliography / sources:

[1] Dieter Schramm, Manfred Hiller, Roberto Bardini — Vehicle Dynamics — Duisburg 2014

[2] Hans B. Pacejka - Tire and Vehicle Dynamics — The Netherlands 2012

[3] Robert Bosch GmbH - Bosch automotive handbook - Plochingen, Germany : Robet Bosch GmbH ; Cambridge, Mass.
: Bentley Publishers

[4] Franklin, Gene F.; Powell, J. David; Emami-Naeini, Abbas, Feedback Control of Dynamic Systems, Global Edition,
Pearson Education Limited, 2019, ISBN: 9781292274522

Name and workplace of bachelor’s thesis supervisor:

doc. Ing. Martin Hrom¢ik, Ph.D., Department of Control Engineering, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Date of bachelor’s thesis assignment: 31.01.2020 Deadline for bachelor thesis submission: 14.08.2020

Assignment valid until:
by the end of winter semester 2021/2022

doc. Ing. Martin Hrom¢€ik, Ph.D. prof. Ing. Michael Sebek, DrSc. prof. Mgr. Petr Pata, Ph.D.
Supervisor’s signature Head of department’s signature Dean’s signature

\ J
lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others, h
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

iv

Acknowledgements

Firstly, I would like to express my sin-
cere gratitude to my supervisor, doc. Ing.
Martin Hromc¢ik, Ph.D., for his advice
while writing this thesis. Special thanks
belong to Ing. Jan Cech, Ph.D. for his
work for eForce Driverless as Faculty Ad-
visor. Without his advice and guidance
of the team, this thesis would not be pos-
sible. Also, my thanks go to Ing. Tomés
Hanis, Ph.D. for initial guidance on the
topic and his advice and help with adapt-
ing car for RC car as the last step of this
thesis.

Secondly, I would like to express my
gratitude to all my previous lecturers and
the Czech Technical University itself for
helping me gain invaluable academic and
practical experience. Last but not least, I
would like to thank the eForce Driverless
team for their hard work and collabora-
tion with me on this project.

Declaration

I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, August 13, 2020

Prohlasuji, ze jsem predlozenou praci
vypracoval samostatné a ze jsem uvedl
veskerou pouzitou literaturu.

V Praze, 13. srpna 2020

Abstract

This thesis describes the design, develop-
ment, and implementation of the first au-
tonomous racecar of team eForce Driver-
less for Formula Student competition. It
is mainly focused on motion planning algo-
rithms and trajectory tracking algorithms
and related topics such as vehicle dynam-
ics, but it describes other systems as well.
The motion planning algorithm consists
of a path planning algorithm and a speed
reference generator. Trajectory tracking
uses Stanley control laws for lateral con-
trol and PI regulator for longitudinal con-
trol. As part of the thesis, the simulation
environment was designed as well. The
solution designed in this thesis was then
used in Formula Student Online competi-
tion and implemented on a smaller plat-
form than the actual racecar to safely test
its behavior.

Keywords: autonomous vehicle,
autonomous racing, trajectory tracking,
motion planning, vehicle dynamics,
lateral control, longitudinal control,
formula student, formula student
driverless

Supervisor:
Ph.D.

doc. Ing. Martin Hroméik,

vi

Abstract

V této praci se zabyvam popisem navrhu,
vyvoje a implementace fidicho systému
pro prvni autonomni zévodni formuli
tymu eForce Driverless pro soutéz For-
mula Student. Prace se zamétuje ze-
jména na planovani pohybu, fizeni vaci
planované trajektorii a s tim souvisejici
témata jako je jizdni dynamika vozidel,
nicméné popisuje i jiné Casti systému.
Planovani pohybu spoéiva v nalezeni
cesty a nasledném vygenerovani reference
rychlosti pro kazdy bod. Podélné rizeni
je poté zajisténo pomoci PI regulatoru
a pricné rizeni zajistuje implementovany
fidici zdkon vyvinuty na Stanfordské uni-
verzité pro DARPA Challenge a auto poj-
menované Stanley.

Keywords: autonomni vozidlo,
autonomni zavodéni, sledovani
trajektorie, planovani pohybu, dynamika
vozidla, pri¢né rizeni, podélné rizeni,
formula student, formula student
driverless

Title translation: Navrh ridiciho
systému autonomniho zadvodniho vozidla

Contents

1 Introduction 1l
1.1 Platforms.....................
1.1.1DV.O1 ... 2l
1.12RCecarcoviiii. .. 3l

1.2 Formula Student Driverless

Challenges
2 Objectives 7|
3 Vehicle dynamics 9
3.1 Nonlinear single-track model [9
3.2 Tire modeling
3.3 Friction circle
3.4 Model verification 13
4 Motion Planning 15
4.1 Path planning
4.2 Speed reference generator
4.3 Simulation scenarios
5 Trajectory Tracking 21
5.1 Lateral control 21]
5.2 Longitudinal control
6 System architecture 25|
7 ROS based simulator 27|
7.1 Steering simulation
7.2 Vision simulation
7.3 Vehicle simulation 28]
7.4 Experiment with track
8 Formula Student Driverless
Simulator 33
8.1 System adaptation
82 Results 135
9 Radio-controlled Car 37
9.1 System adaptation

9.1.1 Cone detection 37

9.1.2 Motion planning and trajectory

tracking L
9.2 Experiments

vii

10 Results

11 Conclusions

Acronyms

Bibliography

A DV.01 car parameters

B ROS Simulator Parameters
C FSDS Parameters

D RC Car Experiments

E Content of the CD

SesgEREB E

Figures

1.1 FSE.07 car being rebuilt into
DV.01 [1]
1.2 Sensors placement - Top view 1, 2 -
Realsense; 3 - OS-64; 4 - ZED
1.3 Adapted Radio-controlled (RC)| car
Losi Desert Buggy [2]

]

[y

3.1 Single track model coordinates .
32 Tiremodel...................
3.3 Friction ellipse for normalized

forces ... i

3.4 Car position with respect to global

coordinates 13
3.5 Torque command for each wheel
and velocity response............

3.6 Steering step command and yaw
rate response

4.1 Motion planning algortihm results
under different conditions

6.1 Base system architecture as used in

DV.Ol......oo 26
7.1 ROS based simulator high-level

architecture 28]
7.2 Steering simulation
7.3 Autocross track and logged

position of the car

7.4 Car speed and torque command
7.5 Car steering angle and command

8.1 [Formula Student Driverless

| Simulator (FSDS) high-level
architecture

8.2 FSDS simulator 35

8.3 Rviz visualization............. [36]

9.1 OpenLabeling open-source labeler
9.2 Setup and picture used to obtain

coordinates in picture
9.3 Motion planning validation

viii

Tables

1.1 DV.01 hardware 4
1.2 RC car hardware 5l
A.1 DV.01 model parameters
A.2 DV.01 drivetrain limitation
A.3 DV.01 tire parameters
B.1 ROS simulator parameters for
trajectory tracking and motion
planning
B.2 Noise standard deviations used in
simulation 52|
C.1 FSDS parameters for trajectory
tracking and motion planning
D.1 World-image correspondences . .
E.1CD Content 57

Chapter 1

Introduction

This thesis describes the development of a control system for the first fully
autonomous racing car for the Formula Student team eForce Driverless.
Formula Student competition is an international competition founded in
1981 by [Society of Automotive Engineers (SAE). Since the foundation, the
competition spread all over the world. It was first held in Europe in 1998. In
2017, a new vehicle class was added to the competition introducing Driverless
Vehicle. In 2019, team eForce Driverless was founded as the second [Formula
Student (FS) team on the Faculty of Electrical Engineering. Later that year
the biggest competition in Europe, Formula Student Germany (FSG), made a
strategic announcement about merging all three classes (Combustion Vehicles,
Electric Vehicles, and Driverless Vehicles) to a single class, meaning every
team willing to attend [F'SG|competition will need to be capable of autonomous
racing otherwise there will be penalization. This announcement enhanced a
need for an autonomous racecar capable of attending [F'SG| competition on
the Faculty of Electrical Engineering.

. 1.1 Platforms

For multiple reasons, the developed system was adapted for multiple platforms.
The eForce driverless ancestor, eForce FEE Prague Formula, provided FSE.07
car, which is the 7th generation of formula racecar that has been built together
with a knowledge the team had already gathered to speed up the development
process. eForce Driverless can only focus on adapting the car and developing
the autonomous system. The new car is named DV.01.

Unfortunately, due to the world pandemic in 2020, DV.01 was not finished
on time, and algorithms could not be validated on the racecar. However, as the
whole world adapted to the pandemic, so did Formula Student competition.
Formula Student Online (FSO) was founded and developed its own simulator
[3]. Furthermore, because the entire system is running on Robot Operating
System (ROS), thus the entire autonomous system can be easily adapted
and validated on another platform. The suitable platform was found in
the Department of Control Engineering, |RC| car Losi Desert Buggy adapted
for autonomous driving with the identical computational unit and primary
camera.

1. Introduction

Figure 1.1: FSE.07 car being rebuilt into DV.01 [I]

B 1.1.1 DV.01

The main control unit for the autonomous system is NVIDIA Jetson Xavier
with as a high-level framework [4]. NVIDIA Jetson Xavier is used solely
for the autonomous system. Other systems (safety systems and fundamental
systems) use their Microcontroller Unit (MCU), either adapted or developed.
Additional two NVIDIA Jetson Nano computational units are used for higher
computational performance.

The car is equipped with multiple sensors. The main sensors for the
perception are three stereo-cameras - a Stereolab ZED and two Intel Realsense
D435. The car is also equipped with an Ouster OS1-64 LiDAR. Stereolab
ZED stereo-camera is mounted on the top of the main hoop, and two Intel
Realsense D435 are mounted on sides of the front wing to provide a more
detailed view of cones closer to the car and those in tight corners. The Ouster
0S1-64 LiDAR is used for the more precise location of the cones used to mark
the track. Figure The odometry is provided by SBG systems Ellipse-N
Inertial Navigation System (INS)

As stated in the rules [5] car must be equipped with [Emergency Braking
for safety reasons. is a pneumatic system attached to
the brake pedal. Two Lenze Schmidhauser DCU 60/60 motor controllers are
used. Each controller has two channels for the two motors, thus allowing
all-wheel drive. Controllers are connected via |Controller Area Network (CAN|
. Controllers can receive a set-point of torque for each motor. The
autonomous system will use the motor to break, but the car is also equipped
with redundancy to the Three SAVOX SB-2230SG servos connected to
the brake pedal. For steering, a universal power steering kit by Kartek was

2

1.2. Formula Student Driverless Challenges

Figure 1.2: Sensors placement - Top view
1, 2 - Realsense; 3 - OS-64; 4 - ZED

used. Table [1.7]

B 1.1.2 RC car

As well as DV.01, the [RC| car is equipped with NVIDIA Jetson Xavier. Only
a Stereolab ZED camera is used on this platform, and it lacks LiDAR as well.
Odometry is provided by the |Global Navigation Satellite System (GNSS)|
receiver and [inertial measurement unit (IMU)| Navio2. Raspberry Pi 3 is used
to control motors and steering. These are connected to the NVIDIA Jetson
Xavier via serial communication. Table 1.2]

B 1.2 Formula Student Driverless Challenges

In this thesis, I will focus on developing a system for the 2020 edition of
The competition consists of four main dynamic events. In general, it can be
stated that the track is marked with four types of cones - a blue, a yellow, an
orange, and a big orange. Blue cones are used to mark the left side of the
track; yellow cones are used to mark the right side of the track, orange (both
small and big) are used to mark the start or the end of the track. Details
about cones can be find in [6, p. 12-14]. has almost the same rules as
The difference is in the simplified state machine and only two but the
most challenging dynamic events (autocross and track-drive).

There are four main dynamic events - skid-pad, acceleration, autocross,
and track-drive. The skid-pad track consists of two pairs of concentric circles
whose outer diameter is 21.25 meters, and the inner diameter is 15.25 meters.

3

1. Introduction

’ Name ‘ Manufacturer Description
Jetson AGX Xavier NVIDIA The main computa-
tional unit
Jetson Nano NVIDIA Two additional compu-

tational units used to
preprocess images

ZED Stereo Camera Stereolabs Main camera placed
on the top of the car
(mainhoop)

Realsense D435 Intel Two additional cam-

eras on outer sides of
the front wing

0S1-64 Ouster LiDAR placed in the
middle of the front
wing

Ellipse-N SBG Odometry sensor

DCU 60/60 Lenze Schmidhauser Two dual channel
motor-controllers

Universal Power Steer- | Kartek Steering servo

ing Kit

SB-2230SG SAVOX Redundancy break for

EBS|, can be used by
the autonomous sys-
tem

Table 1.1: DV.01 hardware

The two of the pair are placed 18.25m apart from each other. The car makes
two turns on each side, starting on the right side. Only the second turn
on each side is timed [5, p. 120-122]. The acceleration track is a straight
line with a length of 75 meters from the starting line to the finish line [5)],
p. 122]. The autocross and the track-drive track layout are not known in
advance. It is the hardest part of the driverless challenge. However, there are
some constraints to the track. It is always closed-looped track consisting of
straight sections with a maximum length of 80 m, constant turns up to the
diameter of 50 m, or hairpin turns with minimum outer diameter of 9m. One
lap is approximately 200 to 500 m. Autocross and track-drive use the same
track; the only difference is that autocross consists of one lap, and track-drive
consists of ten laps.

Because the track of skid-pad and acceleration is known in advance, these
are considered a minor issue. A defined path can be used, and the trajectory
tracking algorithm can remain unchanged. Most of this thesis and efforts will
be inserted into navigating trough an unknown environment as it is in the
autocross and track-drive.

1.2. Formula Student Driverless Challenges

Figure 1.3: Adapted RC|car Losi Desert Buggy [2]

] Name ‘ Manufacturer Description ‘
Jetson AGX Xavier NVIDIA The main computa-
tional unit
ZED Stereo Camera Stereolabs Main camera placed on

the top of the car

Raspberry Pi 3

Raspberry Pi

Motor controller and
base for Navio2

Navio2

Emlid

Odometry sensor

Table 1.2: RC car hardware

Chapter 2
Objectives

Based on the problem definition in the previous chapter, these objectives
arise.

The main goal for the first system developed is the capability to finish
the race and stability on all tracks. With respect to the results in previous
seasons, the hardest challenge for most teams is to finish the race. This thesis,
neither the team efforts are focused on the development of a highly optimized
system. Main goals can be summarized as

8 Implementation of the motion planning algorithm

Implementation of path planning algorithm

Development of speed reference generator
® Design and implementation of the trajectory tracking algorithm

Design and implementation of lateral controller

Design and implementation of longitudinal controller
B8 Development of the testing framework in |ROS

Vehicle dynamics simulation
Perception simulation
Steering mechanism simulation

All simulations must include noise in its output
8 Verification of the system using ROS| framework using simulation

Verify all simulation parts individually

Verify trajectory tracking using full simulation framework
® Adaptation of the system for [FSO| competition

Adaptation of the system for the FSDS
Adaptation to the rules changes
Validation of the system architecture using [FSDS

7

2. Objectives

® Adaptation of the system for car and validate it under real-world
conditions

Adaptation of the system to the HW of the RC| car

Validation of the system with experiments in the real world

Chapter 3

Vehicle dynamics

Vehicle dynamics is a well-described problem that has been studied for many
decades. Multiple mathematical models were derived throughout the years,
varying in complexity and fidelity. Multiple simulators with high fidelity
models already exist as well.

In this thesis, nonlinear single-track model with 3 |degrees of freedom (DOF)
is used [7]. Although more complex models with higher fidelity exist and can
be implemented for the sake of this thesis more complex model is not necessary.
Also, a more complex model requires higher computational performance or
specialized software, which is contradictory to the objective of creating simple
real-time simulation inside of the framework.

Tire dynamics will be modeled using simplified Pacejka Magic Formula [g].

B 3.1 Nonlinear single-track model

A classical single track model is used. Car has two single axes. Front axis has
distance from the (Center of Gravity (CoG)|l, respectively [, is used for the
rear axis. Only front axis can be steered by steering angle of 4. Motion of the
vehicle is considered planar and the vehicle is assumed to be rigid body. The
vehicle has a mass m and a moment of inertia I, and it is represented as a
single point in its [CoGl Both tires on single axis are assumed to act same and
are virtually represented by tire in the center of axis. The aligning torque
is neglected. This 3 model is expressed in Newton-Euler equations as
follows.

Fp=Fyr+F,pcosd —F, ¢sind — Fy gero (3.1)
Fy=F,,+F,fcosd+ F, ¢sind .
M, =1;F, ysind + lpF, fcosd — 1. Fy., (3.3)

F, /)y, p/r 1s force acting on the f front or r rear axis in direction of axis x or
y with respect to the tire coordinate frame. These forces are transformed
using steering angle § to the car coordinate frame resulting in combined forces
F, and F; forces acting on the |[CoG] of the car in direction of axis x and y
respectively with respect to the car coordinate frame. M, represent torque

9

3. Vehicle dynamics

Figure 3.1: Single track model coordinates

Figure 3.2: Tire model

about z-axis. Fj gero is aerodynamic drag of the vehicle.

Fz,aero = pAArefC(D/U2 (34)

p is the air density, A, is the aerodynamic area, Cp is the drag coefficient
and v is the velocity of the vehicle.

10

3.2. Tire modeling

The equations are then further transformed to following state-space

Fy
= ? (3.5)
j= T (36)
g="= (3.7)
W =L _fF“’f (3.8)
G = % (3.9)

where 7¢ and 7, is torque on front and rear wheel respectively. Additional
two states are added to represent state of each wheel. These are used to
calculate slip ratio. Vehicle slip angle S is calculated as follows

g = arctang (3.10)
&

Magnitude of vehicle’s velocity and velocity with respect to the world

coordinates
v=1/32+ 3?2 (3.11)

X =wvcos(¢ + p) (3.12)

Y =wvsin(y + B) (3.13)

B 32 Tire modeling

Mathematical description of the force interaction between the surface and
the tire is a major challenge in vehicle modeling. Due to the elasticity of the
tire, a mathematical description is very complicated. Hans B. Pacejka was
studying the tire dynamics his entire life. As a result, he invented the Pacejka
magic formula [8]. The formula is based on pure empirical methods and has
no connection to the actual physics of the tire. However, it is reasonably
accurate and commonly used in complex high-fidelity models as well as in
the games industry for its low processing time.

There are two models differing in the number of parameters used to describe
the tire. In this thesis, tires are represented by four parameters A, B, C' and
D. Pacejka magic formula in this case is

F(F,,a) = F,Dsin{Ctan™! [Ba — E(Ba — tan™! Ba)}} (3.14)

where « is slip parameter and F), is downforce acting on the tire. The base
formula is same for both longitudinal and lateral dynamics but parameters
for each of them differ.
Slip parameter for longitudinal variant is called slip ratio and it is calculated
as follows
Ao Wl (3.15)

||

11

3. Vehicle dynamics

D,
1 F,
F, co&zbz’ned
_Dy Fy g ‘Dy
-D,

Figure 3.3: Friction ellipse for normalized forces

where w represents angular speed of wheel, v, is velocity of tire in direction
of axis x with respect to the tire coordinate frame and R is wheel radius.
The calculation of the wheel slip ratio is a major issue with Pacejka magic
formula when it comes to lower speeds. As seen in the equation, slip ratio
has a singular value of v, = 0 thus being unreliable for low speeds. This
is avoided using another method to calculate slip ratio which is applied for
velocities near zero. For velocities v < € following is applied

5= 2(wR — vy)

2 (3.16)
€

The slip parameter for lateral variant is called slip angle and it is calculated
as follows :
_yvsin B+ 1y

e (3.17)

o =4 — tan
Since rear axis is not steerable, first element of the sum is always zero for

calculation of the slip angle of the rear tire. There is no singularity in this
case thus this equation is valid all the time.

. 3.3 Friction circle

The friction circle, also referenced as Kamm’s circle or Friction ellipse or circle
of forces, is an ellipse expressing maximum tire traction. The magnitude of
combined forces of traction is limited by the vertical force acting on the tire.

F, =mg + pAyesCrv? (3.18)

(3.19)

3.4. Model verification

Cars postion
14 T T

12t .

10 A

y [m]

0 Il 1 1
490 495 500 505 510

x [m]

Figure 3.4: Car position with respect to global coordinates

b is friction coefficient for tire-road interaction, D is a parameter from Pacejka

magic formula. Vertical force is calculated using vehicle mass and aerodynamic
lift.
When combined force

(3.20)

exceeds friction circle, longitudinal force and lateral force must be scaled to
match actual tire performance. Forces are scaled using algorithm described

in [9].
. 3.4 Model verification

To verify simulation, a simple experiment is proposed. The steady car receives
a step of torque command. The command is constant for a few seconds, and
then torque request is reset. After a few seconds, step command is sent to

the steering. Results are in Figures and
Based on these results, it is verified that the car behaves as expected.

13

3. Vehicle dynamics

18

Velocity and torque command

16

—_ —_
N &~
T T

=y
o
T

Speed [ms '1]

25

0 10 20 30
Time [s]

Figure 3.5: Torque command for each wheel and velocity response

Steering angle command and yaw rate
T T T T

12 0.7
L 106
105
0.8 I
Q-
- 104
06
o
= 103
©
>
0.4 |
102
0.2 1 {0.1
0 | | | O
0 10 20 30 60

Time [s]

Figure 3.6: Steering step command and yaw rate response

14

Torque [Nm]

Steering angle command [rad]

Chapter 4

Motion Planning

The motion planning algorithm is used to generate path and speed reference
for the trajectory tracking algorithm. As stated in [1.2 some of the tracks
are known in advance. These are not to be planned by this algorithm, but
the trajectory will be precomputed and using related topics published by
the motion planning node. |[ROS| allows this diversity inside the motion
planning node without causing trouble to the rest of the pipeline. Also in
1.2/ were specified constraints to the unknown tracks [5]. For the clarity, let
me summarize the constraints here again It is always closed-looped track
consisting of straight sections with a maximum length of 80 meters, constant
turns up to a diameter of 50 meters, or hairpin turns with a minimum outer
diameter of 9 meters. One lap is approximately 200 to 500 meters. Autocross
and track-drive use the same track; the only difference is that autocross
consists of one lap, and track-drive consists of ten laps.

8 The track is a closed-loop

® The length of one lap is 200 meters to 500 meters

B Straight segments are no longer than 80 meters

® Constant turns have a diameter up to 50 meters

®8 Hairpin turns have a minimum outside diameter of 9 meters
8 Minimum track width is 3 meters

® Right side is marked with yellow cones

® Left side is marked with blue cones

Many algorithms were designed and described in different papers, but we
have decided to develop our own algorithm. The algorithm was developed
with respect to these objectives.

® The path must always be found on tracks defined by the rules and
summarized at the beginning of this chapter

® The path must be found based on cones coordinates

15

4. Motion Planning

® The number of cones on each side can differ

® The path must be found on any number of cones (full track or just one
frame)

B The speed reference must ensure that the car is able to track the path
precisely

The current implementation of the motion planning does not generate race
track in terms of the fastest way through the track. The motion planning
has two steps. First, it finds an approximation of the center-line, thus
creating path. Second, it assigns reference speed to each waypoint base on
the dynamics of the vehicle creating trajectory. In the |[ROS, the motion
planning algorithm is implemented in motion_ plannning node. It receives the
autonomous mission and status, detected cones in the car-fixed coordinates,
and the information about the pose of the vehicle at the moment when the
cones were captured. It publishes trajectory expressed as waypoints and
speed and heading reference at each of them in the global coordinates.

B 41 Path planning

In this section, the path planning algorithm is described. The algorithm was
not developed by the author of the thesis, but it must be introduced to let
the reader understand the system. Also, implementation in the |[ROS| was
made by the author as well as some adjustments to the algorithm itself. The
algorithm is written in |1

It can be seen that the algorithm can be run properly only when at least
one blue cone and one yellow cone are detected. This was later found an
issue when tested on real data using only the primary camera (ZED). In
tight turns, the algorithm was never activated due to the limited [field of
view (FOV)| of the primary camera, which was capturing only one side of the
track. To improve the path planning behavior and to enable it to find the
path in these tight corners when only one side of the cones is visible, we took
advantage of the track constraints. Virtual cones were added to the other
side of the track in the distance of 3m to the paired cone.

In order to correctly add cones, at least three cones of one color were
required. When only yellow cones were seen, virtual cones were added to
the left side. When only blue cones were seen, virtual cones were added to
the right side. The first virtual cone was added in the direction of a vector
perpendicular to the vector from the first actual cone to the second actual
cone. The second cone was added in the direction of the sum of the vector
from the second actual cone to the first and third. The third cone was added
similarly to the first cone in the direction of the perpendicular vector from
the second actual cone to the third one. While using these virtual cones, the
path planning algorithm successfully created the path, and the car was able
to navigate through the corner to the point where it detected both colors
again.

16

4.1. Path planning

Algorithm 1: Path planning algorithm
Result: Path
B + set of points in 2D representing blue cones;
Y < set of yellow in 2D representing yellow cones;
k <+ 1;
Path(k) < starting point;
while True do
if £k =1 then
b < B (argmin (|| B — Path(k)||));
y < Y (argmin (Y — Path(k)|);
else
p < line defined by normal vector (Path(k) — Path(k — 1))
and point Path(k);
p < half-plane defined by line p and direction of vector
(Path(k) — Path(k — 1));
B+ Bn 0;
Y+ Yn 0;
if B=0 orY =0 then
‘ break;
else

b+ B (argmin (

y<+—Y (argmin (

end

end

Path(k + 1) + mean(b+ y);
k<+—k+1;

end

Another improvement discovered during the testing is keeping only the
longest path. The trajectory is only generated when it has more waypoints
than few last iterations had. The trajectory tracking does not delete its
reference until it receives a new one. Because the trajectory is in the global
coordinate system, the car will navigate on the last sent trajectory. Because
of the limited [FOV|, car has a better view of the corner before it enters the
corner. Keeping the longer trajectory improves speed reference generation
and its tracking. Another effect is that the car does not receive slightly
different path too often. Due to the imperfection of the detection algorithms,
even when the car is in a steady-state, the reference trajectory differs on
every frame.

When the path was successfully determined, it was generated only on
one frame, and it had at least four waypoints, it is interpolated using third-
order B-spline to smoothen curvature and create more points that improved
behavior of the speed reference generator and trajectory tracking algorithm.

17

4. Motion Planning

B a2 Speed reference generator

An existing speed reference generator, as well as slight changes to it, are
presented in this chapter. The speed reference has to be generated for every
point of the path. The challenge is to maximize speed while keeping the car
stable and safely navigating through the track. In this thesis, I utilize the
algorithm from [I0]. The generator makes two passes through the path. The
first pass starts at the end of the path. It determines speed for every previous
point as the minimum of maximum cornering speed and the maximum speed
for the car to safely decelerate to the current point. The second pass goes
through the path in a forward direction, and it can only lower speeds from
the previous pass. At each point, it is determined if the speed in the following
point is kept or it is lowered so that the car can safely accelerate to that point.
This method is maximizing tire traction by reaching the limit of Kamm’s
circle at each point but not exceeding it. Backward pass algorithm can be
found in [2| and forward pass algorithm can be found in [3|

Algorithm 2: Speed reference generator - backward pass
Data: s(k), viim, As(k)
Result: vpq(k)
k < length(N);
Q}bdef) — min(ﬁ, vlim) 3
while £ > 1 do
VUmaz (b — 1) < min(ﬁ,vlim) :
tim — [omas (k = 1) — vpua(k)?]/[285(K)]
a(k - 1) «— min(_h(k(ﬁ)v vbwd(k)a _1)7 Alim ;
Ubwd(k — 1) — \/'Ubwd(k)Q + 2a(k — 1)A8 ;
k< k+1;
end

Algorithm 3: Speed reference generator - forward pass

Data: x(k), vpwd, As(k)

Result: vy,q(k)

k<+1;

Vwd(k) < vpwa(k) ;

while £ > 1 do
Alim [Ubwd(k + 1)2 — ’Ubwd(k)2]/[2AS(k)} ;
a(k) A mln(h(k(K)v Ubwd(k)’ 1)7 QAlim 5
Viwd(k + 1) <= /vrwd(k)? + 2a(k — 1)As ;
k< k+1;

end

The function h(v, k,d) for calculating maximum acceleration respectively

18

4.3. Simulation scenarios

deceleration is given by

. F2(v, .
% [_Fdis + imln <\//~"2F22(U) - yg%n) , Facc,max)] , ifd=+1

% [_Fdis - imln (\/NZF,ZQ(U) - Fggg’ﬁ)) Fdec,ma$>:| , ifd=-1

(4.1)
This adaptation makes full advantage of friction ellipse as described in |3
instead of simple circle. D, and D, constants are usually greater than one
for racecars and simplifying this would neglect effect of racing tires. It also
models limitation of braking force which improves behaviour in tight corners.
Another advantage is in lowering overall acceleration and deceleration thus
giving maneuver capability for used feedback control as it will always react
later and will tend to brake harder than planned.

The speed reference generator calculates speed accordingly to the friction
coefficient y. Team eForce FEE Prague Formula already designed a system
that calculates the friction coefficient during the race based on data from
IMU| and information about RPM of the wheels. An autonomous vehicle gave
an excellent opportunity for this system to further improve its performance.
Most of the autonomous vehicles are equipped with a camera as it is in the
case of eForce Driverless. Using deep-learning and other image processing
techniques, a newly developed algorithm can be based on images from camera
identifying segments of the road such as wet tarmac with the different friction
coefficient and providing this information to the speed reference generator to
further improve its reliability.

. 4.3 Simulation scenarios

The motion planning was validated on simulated scenarios. These scenarios
were designed to validate that system achieved specified objectives in the
beginning. Both single frame detection and full-track were tested. Also single
frame detection with missing cones was tested. Results are in Figure 4.1.

19

4. Motion Planning

Trajectory generation on a single frame Trajectory generation on a single frame
5.75
354 .8 354
5.50
3.0 .6 3.0
- 525
254 % aa’ 2.5 A
£ 500 £
2.0 a2 g 2.0 g
]]
o 475 3
1.5 x 408 15 S
3 3
$ 450 §
1.0 38 & Lo &
x X
X Blue cones X Blue cones 425
051 Yellow cones 3.6 0.5 Yellow cones
X Path waypoints X Path waypoints 4.00
0.0 ® Smothened path 34 0.0 ® Smothened path .
-25 -20 -15 -10 -05 00 05 -25 -20 -15 -10 -05 00 05
(a) : Single frame without missing cones (b) : Single frame with missing cones

Trajectory generation on full track

20 A
12
10 _,
T
%))
E
]
8 ¢
g
Q
X g
% 3
6 2
0
X Blue cones
—20 1 Yellow cones 4
® Path waypoints with Speed reference

-40 -30 -20 -10 O 10 20 30 40

(c) : Full track

Figure 4.1: Motion planning algortihm results under different conditions

20

Chapter 5
Trajectory Tracking

Trajectory tracking or control system is divided into two parts according to
the axis in which the system acts. These categories are longitudinal and
lateral control. Already existing algorithms are implemented for both. Lateral
control is a geometrically based law acting as feedback control. Longitudinal
control is done with a simple feedback PI regulator.

Controllers are implemented as two individual nodes, thus two individual
processes. Both subscribe to the trajectory and the pose of the car. Their
output topic and message types differ in each application. It can be found in |6
where full graph is shown or is described in chapters related to platforms used
(7, [8| and |9). In general, lateral controller outputs steering angle set-point
and longitudinal controller outputs desired torque, which is then distributed
evenly over all motors.

Both of these controllers will be part of the future development to be
converted to more complex laws for improved performance. Although, as
defined in chapter [2, it is not a subject to this season development nor this
thesis. Both lateral and longitudinal control is implemented with respect to
objectives defined in chapter [2,

. 5.1 Lateral control

In 2005 Standford university won DARPA Grand Challenge with its au-
tonomous car named Stanley. As the only car in the competition, Stanley
was able to pass all gates in all runs. The car was controlled based on newly
developed lateral control laws described in [IT]. It is a geometric control law,
and its stability was proven by the authors in [I1]. Full control law follows

0= (eh — k‘ssv2l{‘,) + arctan kec + kayaw (¢ — vm) (5.1)

soft+v
en = — Prey (5.2)
(5.3

where § is the steering angle, 1 is the vehicle’s yaw angle (heading), & is the
curvature of the trajectory at the reference point, v is the vehicle speed and

21

5. Trajectory Tracking

ec is the crosstrack error. Constants k, ks and kg yq. are tunable. Constant
kss is derived from simplified tire model as

hgs = —— (5.4)

Cy(1+ 1)

The first member of the sum performs heading control. Direct input of the
heading error steers the car parallel to the curvature while member kg 0%k
improves performance on curvy tracks by setting non zero yaw reference to lead
the vehicle more towards the center of the curve. The second member performs
offset control. When cross-track error is high, arctan function saturates at +7.
When the cross-track error is small solution is approximately e.(t) = e~ **
resulting in exponential converging to the trajectory. The last member of the
sum is yaw damper. It is a simple feedback yaw damper that compensates
for the diminishing damping effect of the tires at high speeds.

The control law was proven stable by the authors in the original paper [11],
and it was proven as well in our simulation on different platforms, which will
be described in the following chapters. In future development, a non-linear
controller might be tested, but Stanley control laws met objectives for this
season and are considered a strong baseline for future development.

B 52 Longitudinal control

For longitudinal control, feedback PI regulator was implemented. Control
law is

2
torque = kpé + gkie (5.5)
€= Vpef —V (5.6)

where k, and k; is tunable.

The DV.01 is an electric vehicle, thus allowing regenerative braking. Nega-
tive torque requests can then be used directly to the motors causing motors
to break the car and regenerating power at the same time. However, it must
be taken into account that we are rebuilding the FSE.07 car, which was not
build to withstand full-time braking using its powertrain. The powertrain
cooling system is able to keep the powertrain cool when used only for an
acceleration. For safety reasons, the car would not be pushed to its limits
lowering cooling requirements, but at the same time lowering speed will
result in lower airflow, thus lower cooling efficiency. If it is necessary, the
longitudinal controller can be adapted such that torque reference will be
normalized and then transformed into torque command if torque reference is
positive (acceleration) else it will be translated into a braking command for
the hydraulic brake system.

Neither |Anti-lock braking system (ABS) nor Traction control system (TCS)
was designed or implemented. The speed reference generator calculates speed
reference with respect to the tire traction capacity thus neglecting the need
for these systems when a longitudinal controller is tuned optimally. Because

22

5.2. Longitudinal control

the controller is designed only as feedback controller, in some situations
ABS| or [TCS| might be useful. However, this need is further lowered by
user-specified maximal (minimal) force artificially lowering friction ellipse,
thus giving maneuvering capability for the longitudinal controller.

23

24

Chapter 6

System architecture

In this chapter, the autonomous system architecture is derived. The base
autonomous system consists of multiple subsystems, and to fulfill its mission,
it must have access to the peripherals. |[ROS| was found to be the best choice
for our purpose.

ROS| [4] is a framework and set of libraries and state-of-the-art algorithms
created to ease robot development. The implementation of the ROS is a set
of so-called nodes and topics. Each node is a process which can subscribe or
publish data as a message to a topic. Receiving a message from the topic is
acting as an interrupt activating callback with the message as an argument.
A message is not a single value or an array. A message can consist of multiple
arrays or single values of multiple datatypes. ROS node can be written in
C++ or Python. All packages implemented are based on ROS 1 (commonly
referenced as ROS).

The base topology of the system, as used in car DV.01, can be found in
6.1. It is simplified ROS| graph. Each package is represented as a box, and
topics are simplified as arrows. Each package can consist of multiple nodes,
and each arrow may represent multiple topics. Arrow also represents the
direction of the communication.

Autonomous state machine implements the state machine described in [5,
p. 92-93], which is subscribed by most nodes, and it is superior to the car
operation. The state machine can accesses peripherals via CAN. It accepts
and sends system critical signals. This node will not be further described in
this thesis.

The cone detector publishes messages with cones’ positions with respect to
car-fixed coordinates at the moment of capturing it. For further processing,
the message also contains the pose of the car when cones where captured.
In the current implementation, only the camera image is processed. The
cone detector was not developed by the author of the thesis. However, for
real-world testing, another platform was used, and for this purpose, the image
processing algorithm must have been adapted by the author. Details about
this are in |9l

The motion planning subscribes cone positions published by the cone detec-
tor. Immediately upon receiving a message, it calculates a path and generates
a speed reference for each point. The generated path is an approximation

25

6. System architecture

Peripherals

Y y

Cone Detecto% [Odometry H Tltféigggy]

A A

A 4

Autonomous

State Machine

Figure 6.1: Base system architecture as used in DV.01

of the center-line. The path generating algorithm was not developed by the
author of the thesis. ROS| implementation, extrapolation, and speed reference
generator were created by the author. The node and related algorithms were
described in |4. The node publishes generated path and speed reference with
respect to the global coordinates. When path planning runs on a single frame,
transformation to the global coordinates is done with respect to the pose at
the moment of capturing the image.

The trajectory tracking subscribes to the trajectory and odometry topic.
Signals to steering mechanism are calculated based on the Stanley control
laws. The second output of this node is a torque set-point for each motor
generated by a PI controller. The development and functionalities of this
node are described in 5l

26

Chapter 7
ROS based simulator

ROS| framework was used to implement a vehicle simulator to validate motion
planning and trajectory tracking algorithm before deployed to the real car. It
is common and necessary to do these tests in a simulator for two main reasons.
First, when testing under real-world conditions, there is a probability of an
accident, possibly damaging property or hurting people. The second reason is
pure economics. It is less costly to run a simulation. However, the real-world
cannot be simulated precisely, and tests under real-world conditions are still
required before final deployment. High level architecture is in the Figure [7.1

For purposes of this thesis, the single-track model described in [3 was
implemented as a single node in simulating physics. It is assumed that
DV.01 steering will not reach the set-point immediately. To implement this
imperfection, steering simulation is implemented as a first-order system in
another node. Another issue withstands when trying to simulate dynamic
events with an unknown track. For this reason, a vision node is implemented
to provide information about visible cones.

B 71 Steering simulation

The steering simulation implements following law
5 = h(brer —) (.1

where ¢ is the steering angle, d,.y is set-point and £ is estimated gain but it
is to be identified to much actual system when it is finished.

Gaussian noise is added to the final steering angle and sent to the other
topics to simulate real-world inaccuracy in the measurements of the steering
angle.

. 7.2 Vision simulation

In this section, I will describe the vision simulation. In order to simulate
vision, I do not use any visual input to the cone detection algorithms. Based
on the knowledge of the car pose and information about the location of

27

7. ROS based simulator

ROS Basedw J Trajectory
Simulator J t Tracking
A

f Motion
'L Planning

Figure 7.1: ROS based simulator high-level architecture

all cones, simply cones in predefined range and field of view are considered
detected and output.

To model the imperfection of the real system, noise is added to both x
and y coordinates of the detected cones. Furthermore, real-world detections
are less precise when detecting objects further from the car. For this reason,
noise is scaled based on distance from the car.

This node could be further improved by implementing false positive and
false negative detections. For the sake of the simplicity of the simulator
environment, these are currently neglected because the character of false
detections is more complicated than just simple Gaussian noise. After further
investigation, the node can be modified to this behavior as a part of future
work.

In the future development, it can be used to simulate multiple sensors with
different accuracy for testing of the |Simultaneous Localization and Mapping
(SLAM)| and other mapping functionalities.

. 7.3 Vehicle simulation

The last part of the simulator is the vehicle dynamics simulation itself. The
simulator is based on the model introduced in 3. As in the previous part of
the simulation, Gaussian noise is added to the output of the node to model
the sensor’s imperfection. The output of the model is the pose of the car (x
coordinate, y coordinate, and heading), speed and yaw rate with respect to
the global coordinates.

28

7.4. Experiment with track

Steering simulation

0.7 T T
06 r
05 r
04
5 I
® '
° 0.3 1
>]
g 1
]
J Steering angle with noise
= = = Actual steering angle
Steering command
_01 Il Il Il
0 0.5 1 1.5

Time [s]

Figure 7.2: Steering simulation

. 7.4 Experiment with track

In this section, I will focus on the autocross track. All nodes from the previous
section are used in order to simulate vehicle and sensors behavior. During
the autocross mission, the car will drive in the track based on a single frame.
Although by proving system working in autocross mission, the system is
proven to be working in a track-drive mission as well. Both missions use the
same track constraints, and the only difference is the number of laps. When
[12] is implemented, teams can gain the advantage of the knowledge
of the track from the first track. This is not implemented in the DV.01
autonomous system yet. However, algorithms in |4/ are not dependent on the
length of the track, and it is assumed they will work on full track as well.
This was proven in and it is described further in this thesis in (8|

The motion planning and trajectory tracking were validated on track in
Fig. [7.3l The start and finish of the track are at the point (0,0), and the car
has the initial heading of zero. It is in the positive direction of the x-axis.
In the figure is visible ground truth for the cones positions and of the car
position. All simulations were running according to the description in this
chapter, so none of them had access to information plotted in the figure. The
noise was added to the odometry and cones detections. Even after this car

29

7. ROS based simulator

was able to successfully navigate through the track.

150 T T T T T T T

%
100 r i\ .
%

&
5
X
AN
%} R
\‘
//
* &

ol B sy g0 |
0

50

1 1 1 1 1 1

-80 -60 -40 -20 20 40 60 80

Figure 7.3: Autocross track and logged position of the car

However, it can be seen that it slightly overshot the last corner. The
hairpin corner has the smallest diameter allowed in the rules. Usually, in the
tight corners, the track gets wider, which would improve performance. For
simplicity of the track generation and to reach the best performance at any
time, the generated track has a constant track width. Relatively speaking,
with respect to the speed the car was able to navigate through the track, this
overshoot is okay.

As seen in Fig. [7.4, car exceeded the minimum average speed on the track.

The minimum average speed is defined in the rules as 4ms™?.

30

Steering angle [rad]

7.4. Experiment with track

Velocity and torque command during autocross

Speed [ms -]

T 25
7.2 -
120
7 L
6.8 115
6.6 110 T
Z
6.4 o
o
6.2 1° kS
61 40
5.8
45
56 |
54 1 1 1 1 1 1 1 1 _1 O
0 10 20 30 40 50 60 70 80 90
Time [s]
Figure 7.4: Car speed and torque command
08 Actual steering angle and command during autocross 08
10.6
104
©
\“ S
102 2
©
7 IS
1o g
o
I (0]
2
+1-0.2 S
(@]
£
1-04 @
Q
%)
+1-0.6
-0.8 1 1 1 1 1 1 1 1 -0.8
0 10 20 30 40 50 60 70 80 90

Time [s]

Figure 7.5: Car steering angle and command

31

32

Chapter 8

Formula Student Driverless Simulator

A concept of was introduced in March 2020 as a reaction to world
pandemic and cancellation of competitions all over the world. The goal was
to keep racing spirit alive even when teams could not meet and compete
physically. As platform for Driverless competition, team of students from
Delft University of Technology (TU Delft) and [Massachusetts Institute of|
Technology (MIT)| developed [3].

The organizers of the competition decided to use AirSim by Microsoft
Corporation [13], which is a simulator built on Unreal Engine 4 (UE4)| [14].
Rules for the Virtual Driverless Event were derived from rules [I5]. The
Virtual Driverless Event consists of only track-drive and autocross as the
most challenging dynamic events in the competition. Main constraints to the
tracks, as presented in remained unchanged.

B s.1 System adaptation

Each of the teams could have selected multiple cameras and LiDARs. Both
numbers and parameters of these sensors were limited by the rules. Team
eForce Driverless decided to use one camera on top of the car and one LiDAR
in the middle of the front wing.

Unfortunately, competitors could not upload their own parameters for
vehicles; thus, the only one provided by the organizers was used. Moreover,
not all of the parameters were shared with the competitors. As most critical
parameters were identified mass of the vehicle, the friction coefficient, the
maximum acceleration and deceleration as these are used in speed reference
generator 4. Out of these, only the mass of the vehicle was shared with
the teams. Because only limited outputs from the simulator were provided
- odometry and visual data, other parameters used by the speed reference
generator were simplified or neglected. The aerodynamics of the car was
neglected, and D, and D, parameters were simplified to one simplifying
friction ellipse into friction circle.

Adjustments had to be also made to the trajectory tracking algorithm. The
minor one was changing the maximum steering angle of the car. All other
coefficients used by the lateral controller had to be tuned experimentally in
accordance with Quite unrealistic behavior was spotted in the speed

33

8. Formula Student Driverless Simulator

Formula Student Driverless Simulator

Y y

Cone Detecto% [Odometry H Tltféigggy]

A A

A 4

Autonomous

State Machine

Figure 8.1: [FSDS| high-level architecture

and accuracy of the steering mechanism. After further investigation, it was
found that the steering mechanism reacts almost immediately to set-point
without overshooting it. This potentially improves the performance of the
lateral controller. Another minor change was normalizing the output into
range (—1,1).

The longitudinal controller had to be tuned experimentally for the [F'SDS|
Same as for lateral controller, requested output was in range (—1,1) where
negative values were used as normalized breaking, and positive were used as
torque command.

The perception was also changed. The LiDAR was used instead of the
camera as the main source for its more accurate detections. [SLAM] was not
implemented before the final submission of the code for the simulator, so only
one sensor was used. In order to improve performance on the track-drive, a
simplified method was used. It was found that odometry had near-zero error.
For the track-drive mission logged positions from the first lap were used as a
path in remaining laps instead of detecting cones and planning path on every
single frame. The speed reference generator remained unchanged.

This solution is not ideal, although it was easy to implement and it improved
results significantly. In the future, this should be done using |[SLAM]| algorithm
and sensor fusion.

Fully adjusted pipeline for the [F'SO| competition in the ROS| framework
can be found in the figure [8.1]

34

8.2. Results

Figure 8.2: FSDS simulator

B 8.2 Results

There were three competition days. Each day the difficulty of the track
increased as well as points awarded. The team was able to finish the autocross
mission every competition day. But due to the bug in the state machine, we
did not finish the track-drive mission because the car was unable to transition
to a different mission. Last day, the team finished all missions, and it was
the only team able to finish track-drive that day.

Example of the system can be found in Figures and The first one
captures the simulator itself. The second one captures visualization using
Rviz tool of what car sees and plans.

All days were live-streamed on the official FSO| YouTube channel and can
be still accessed [16].

35

8. Formula Student Driverless Simulator

Bia panels o

0N son ¥ P pont

DIRREl o camain - [1Samt. e Eomeit S Mo | D PwEE
2 iplays -
¥ Type: TopDownGetha i+ Zars

= Current Viaw TopDownOrtha (.-
Hast Chn Dk

Selact Light v
* ¥ Gobal Siatus: OK

o FedFrame o=
3 ¥ 583911

(¥

b W PoseiIC suam

Group

A containar for Daglays
) Duplicate | Remove. | Aaname Sar Remave Renama

i

ROS Tma: 1S9631247221 ROS Elamset wal Elsgsen: 14262 83 Exparimental

Bessl LaftiClicks Fatats Middla-Click: Moo 477 Right-Clicks Zsan Shifk More cotens N

Figure 8.3: Rviz visualization

36

Chapter 9

Radio-controlled Car

As a final platform used to validate the presented system and mainly control
algorithms, car was used. The framework had to be adapted to this
platform again. The goal was to prove current system architecture working
with a focus on motion planning and trajectory tracking algorithm, so only
minor changes to the architecture were done.

B a1 System adaptation

The system in this application lacks an autonomous state machine because
it is redundant. interface is replaced by interface for the car
which does not use [CAN busl For motion planning and trajectory tracking,
physical constants and tunable coefficients had to be changed. These were
done with respect to [2] where these were identified and tuned in simulation.

In the base architecture, cone detection is done using cameras and LIDAR.
The car is equipped only with one of the three cameras and has no LIDAR.
ZED camera, which is installed on both vehicles, is not at the same spot;
thus, the base system could not be used. Two significant changes had to be
made. The first was to gather images from the track from the new position of
the camera, label them, and train Neural Network (NN)| using these pictures.

B 9.1.1 Cone detection

Cone detection is done with the YOLOv3 [I7]. YOLOv3 offers a large number
of objects it detects. These are redundant in this specific use case, and desired
categories (blue, yellow, orange, and big orange cones) that are desired are
not part of the YOLOv3 output. As a standard procedure, the YOLOv3 was
changed, so it outputs only desired categories and then trained using a shared
database of labeled cones [18]. The approximate size of the training set is
8000 pictures. This is trained again using pictures obtained with RC car
to adapt to a new position, which is not represented in FSOCO database [1§].

Over 350 images were captured and then manually labeled using OpenLa-
beling open-source labeler as labeling environment [19]. An example of the
environment is in Fig.

37

9. Radio-controlled Car

Figure 9.1: OpenLabeling open-source labeler

When is running, it outputs bounding boxes of the cones in the
image. The cone coordinates in the image are transformed into the car-fixed
coordinates using homography. Homography project points from the image
plane to the x-y plane with respect to the car-fixed coordinates [20]. Cone’s
coordinates in the picture are obtained as the middle of the bottom line of
the bounding box. Because this point does not represent the center of the
cone, it makes this method slightly inaccurate.

Homography matrix is calculated as non-trivial solution h of

Ph =0 (9.1)

where h is vector of 9 elements then transformed to the 3x3 H matrix and
P is 2nx9 matrix from n corresponding points. P is a stack of following 2x9
matrices
—u —v —1 0 0 0 wur v =z
2

0O 0 0 —-u —v —1 wy vy vy (9-2)
where (u,v) are coordinates of the cone in the picture and (z,y) are coor-
dinates in the x-y plane with respect to the car-fixed coordinates. To solve
homography, matrix P is decomposed using [Singular Value Decomposition|
SVD). h is vector corresponding to the smallest singular value.

B 9.1.2 Motion planning and trajectory tracking

Both had to be adapted in terms of vehicle dynamics and tunable parameters.
Motion planning algorithm was validated and performed as expected base
on results in ROS| based simulator and [FSDS. Unfortunately, problems with
refactoring codes for odometry and controls of motors and steering were not
resolved on time thus trajectory tracking could not be validated.

38

9.2. Experiments

> > /" 1 A \

- — — - -— = o -— <~

Figure 9.2: Setup and picture used to obtain coordinates in picture

B o2 Experiments

As stated in previous section, system was not fully refactored to the RC| car
on time. However, cone detection and motion planning were validated while
the car was being controlled manually. Example of such output could be seen
in Fig. [9.3. Based on these result, the system was proven working. After
further work will be done on this platform, the trajectory tracking will be
validated as well.

39

9. Radio-controlled Car

(] suprcupr.rvizt - RViz

) Interact | 2 Move Camera @ ForusCamera = Measure .~ 2DPoseEstimate .~ 2DNavGoal @ Publish Point 4 o»

3@ Image

© Time [=]
ROS Time: 4136.53 | ROS Elapsed: |153.08 wall Time: |1597154136.55 | Wall Elapsed: |153.04 Experimental
Reset | Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click/Mouse Wheel:: Zoom. Shift: More options. 31fps

Figure 9.3: Motion planning validation

40

Chapter 10

Results

As part of this thesis in accordance with objectives stated in chapter |2}
multiple parts of the system were derived, developed, or implemented. The
following results were done by the author. The author of the thesis:

® as a founding member, core member, and leader for six months period of
eForce Driverless collaborated on the definition of the system architecture
as described in this thesis.

® developed |ROS| based simulator for motion planning and trajectory
tracking validation using vehicle dynamics described in Chapter 3l The
simulator, in addition to vehicle dynamics simulation, features simple
steering and vision simulation. The simulator outputs all data with
specified noise.

® collaborated on development and implementation of the motion planning
as described in Chapter 4| with the following roles

The author refactored path planning algorithm written as stan-
dalone python code by the other team member to the ROS| frame-
work

The author improved path planning algorithm by implementing
cones filling method, for a situation when only one side of the cones
is visible, and by implementing the smoothening process

The author developed the speed reference generator

® designed, implemented, and empirically tuned full trajectory tracking
algorithm, both lateral and longitudinal control, as described in Chapter
ol

B adapted and empirically tuned trajectory tracking algorithm used in
FSO| competition on [FSDS.

B in collaboration with faculty members adapted the system for |RC| car
and conducted experiments with [RC| car with the following roles:

The author conducted experiments and adapted a car’s perception.

41

10. Results

The author is actively working on the tuning of the trajectory
tracking.

The author found no need to change the motion planning algorithm.

42

Chapter 11

Conclusions

In this thesis, I have described the architecture of the autonomous system
for the DV.01 racecar. I have implemented motion planning and trajectory
tracking algorithms. Due to multiple reasons, this system could not be tested
on the racecar in real-world conditions. Although, as a part of this work
was developed ROS based simulator to verify motion planning and trajectory
tracking algorithms.

The system was, at the same time, adapted to two platforms where it
was successfully validated and proved working. The first platform was done
in a more complex simulator. The second platform was the RC| car, and
algorithms were tested in real-world conditions. Despite all the challenges,
there were no major issues discovered during extensive testing.

Despite all the work that was done until now, there is a lot of future work
that has to be done. Now, work will focus on finishing the rebuilding of
the FSE.07 car to DV.01 and the deployment of the final system that was
described and proven working in this thesis. After the deployed system is
extensively tested to ensure stability and safe operations under all conditions,
work can focus on improving algorithms or implementing more complex ones
while taking advantage of the [ROS| framework, thus keeping this proven
architecture.

43

44

Acronyms

ABS Anti-lock braking system.

CAN bus Controller Area Network.
CoG Center of Gravity. |9,

DOF degrees of freedom. [9|
EBS Emergency Braking System.

FOV field of view.
FS Formula Student. [I,

FSDS Formula Student Driverless Simulator. 7,
FSG Formula Student Germany.

FSO Formula Student Online. 29,

GNSS Global Navigation Satellite System.

IMU inertial measurement unit. |3,

INS Inertial Navigation System.

MCU Microcontroller Unit.

MIT Massachusetts Institute of Technology.

NN Neural Network.

RC Radio-controlled. [1, 3, 5,
ROS Robot Operating System. 9, 15l 34,

SAE Society of Automotive Engineers.

45

11. Conclusions
SLAM Simultaneous Localization and Mapping. [28] 29, |34
SVD Singular Value Decomposition. |38

TCS Traction control system. 22, |23

TU Delft Delft University of Technology. |33

UE4 Unreal Engine 4. [33

46

Bibliography

[1] “eforce fee prague formula.” https://eforce.cvut.cz/. Accessed on
August 13, 2020.

[2] D. Filyo, “Control laws for autonomous racing,” Master’s thesis, Czech
Technical University in Prague, 5 2020.

[3] FS-online, “Formula student driverless simulator.” https://github|
|com/FS-0Online/Formula-Student-Driverless-Simulator/, 2020.
Accessed on August 13, 2020.

[4] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Ng, “Ros: an open-source robot operating system,” vol. 3, 01
2009.

[5] Formula Student Germany, Formula Student Rules 2020, 13/09/2019.
https://www.formulastudent.de/fileadmin/user_upload/all/ |
[2020/rules/FS-Rules_2020_V1.0.pdf|

[6] Formula Student Germany, FSG Competition Handbook 2020,
23/01/2020. https://www.formulastudent.de/fileadmin/user_|
upload/all/2020/rules/FSG20_Competition_Handbook_v1.0.pdfl

[7] D. Schramm, Vehicle dynamics : modeling and simulation. Heidelberg:
Springer, 2014.

[8] H. B. Pacejka, Tyre and vehicle dynamics. Oxford: Butterworth-
Heinemann, 2006.

[9] D. Efremov, T. Hanis, and M. Hrom¢éik, “Introduction of driving envelope
and full-time-full-authority control for vehicle stabilization systems,” in
2019 22nd International Conference on Process Control (PC19), pp. 173
178, 2019.

[10] J. Filip, “Trajectory tracking for autonomous vehicles,” Master’s thesis,
Czech Technical University in Prague, 6 2018.

[11] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun, “Au-
tonomous automobile trajectory tracking for off-road driving: Controller

47

https://eforce.cvut.cz/
https://github.com/FS-Online/Formula-Student-Driverless-Simulator/
https://github.com/FS-Online/Formula-Student-Driverless-Simulator/
https://www.formulastudent.de/fileadmin/user_upload/all/2020/rules/FS-Rules_2020_V1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2020/rules/FS-Rules_2020_V1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2020/rules/FSG20_Competition_Handbook_v1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2020/rules/FSG20_Competition_Handbook_v1.0.pdf

11. Conclusions

[20]

21]

design, experimental validation and racing,” in 2007 American Control
Conference, pp. 22962301, 2007.

M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al., “Fastslam 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges,” in IJCAI pp. 1151-1156, 2003.

S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual
and physical simulation for autonomous vehicles,”
robotics, pp. 621-635, Springer, 2018.

in Field and service

A. Sanders, An introduction to Unreal engine 4. CRC Press, 2016.

F. Online, “Virtual driverless event rules.” https
//fso-srv.sze.hu/wp-content/uploads/2020/06/
FS-Online-2020-Virtual-Driverless-Event-Rules_vol2.pdf|
Accessed on August 13, 2020.

“Formula student online youtube channel.” https://www.youtube.com/
channel/UCGZ9jX9aeGjeTY1lsyWI5zBg, note = Accessed on August 13,
2020.

A. F. Joseph Redmon, “Yolov3: An incremental improvement,” tech.
rep., University of Washington, 2018.

“Formula student objects in context.” https://github.com/ddavid/
fsocol note = Accessed on August 13, 2020.

J. Cartucho, R. Ventura, and M. Veloso, “Robust object recognition
through symbiotic deep learning in mobile robots,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp- 2336-2341, 2018.

E. Dubrofsky, “Homography estimation,” Master’s thesis, The University
OF British Columbia, 5 2009.

M. Laszlo, “Flight control solutions applied for improving vehicle dy-
namics,” Master’s thesis, Czech Technical University in Prague, 2 2019.

48

https://fso-srv.sze.hu/wp-content/uploads/2020/06/FS-Online-2020-Virtual-Driverless-Event-Rules_vol2.pdf
https://fso-srv.sze.hu/wp-content/uploads/2020/06/FS-Online-2020-Virtual-Driverless-Event-Rules_vol2.pdf
https://fso-srv.sze.hu/wp-content/uploads/2020/06/FS-Online-2020-Virtual-Driverless-Event-Rules_vol2.pdf
https://www.youtube.com/channel/UCGZ9jX9aeGjeTYlsyWI5zBg
https://www.youtube.com/channel/UCGZ9jX9aeGjeTYlsyWI5zBg
https://github.com/ddavid/fsoco
https://github.com/ddavid/fsoco

Appendix A

DV.01 car parameters

This section summarizes DV.01 parameters used for vehicle modeling.

Description ‘ Notation Value
Vehicle mass m 220 kg
Distance from the (CoGl | If 1.286 m
to the front axle

Distance from the|CoG! | I, 1.230m
to the rear axle

Moment of inertia I, 120 kg m?
Aerodynamic reference | A,.y 1.14m?
area

Drag coefficient Chb 1.3

Lift coefficient Cr, 3.5

Table A.1: DV.01 model parameters

The mass is distributed between axles with front to rear ration 0.5. Aero-
dynamic lift is distributed evenly across axles.

Description Value

Maximum rotates per minute of the | 1294
front motor

Maximum rotates per minute of the | 1490
rear motor
Maximum torque of the front motor | 322 Nm
Maximum torque of the rear motor | 113N m

Front motor to front wheel ratio 6.95

Rear motor to rear wheel ratio 6.71

Table A.2: DV.01 drivetrain limitation

For the tire modeling same parameters as in [2I] were used.

49

A. DV.01 car parameters

Description Notation Value
Lateral stiffness factor | B, 0.184
Lateral shape factor Cy 1.45
Lateral peak factor D, 1.4
Lateral curvature fac- | E, -0.3
tor

Longitudinal stiffness | B, 0.165
factor

Longitudinal shape fac- | C, 14
tor

Longitudinal peak fac- | D, 1.4
tor

Longitudinal curvature | E, -1
factor

Friction coefficient I 0.8
Tire radius R 0.2m

Table A.3: DV.01 tire parameters

50

Appendix B

ROS Simulator Parameters

Parameters for controllers and speed reference related parameters. For the
dynamics of the car, DV.01 parameters are used.

Description Notation Value
Yaw damper coefficient | kg yquw 1.5

for lateral control

Cross-track error coeffi- | kg 15
cient for lateral control

Cross-track error soft- | kgoft 0.5

ening coefficient for lat-
eral control

Proportional coefficient | k, 8

for longitudinal control

Integral coefficient for | k; 0.05
longitudinal control

Maximum speed for au- Sms~!
tocross

Maximum speed 25ms~!
Maximum longitudinal | Fyccmaz 880N
for speed planning

Maximum longitudinal | Fyecmaz 660 N
for speed planning

Maximum steering an- | §paz 1

gle

Table B.1: ROS simulator parameters for trajectory tracking and motion plan-
ning

Standard deviation of output parameters from the simulator. Mean of the
noise is always 0.

o1

B. ROS Simulator Parameters

Noise parameter Value
Standard deviation for position of | 0.05m
the car (coordinates)

Standard deviation for heading of | 1°

the car

Standard deviation for linear veloc- | 5ms™!
ity of the car

Standard deviation for angular ve- | 1° s1

locity of the car

Standard deviation for steering an- | 1° s~!

gle of the car

Standard deviation for position of | 0.03m

the cones

Table B.2: Noise standard deviations used in simulation

52

Appendix C

FSDS Parameters

Parameters for controllers and speed reference related parameters.

Description Notation Value
Yaw damper coefficient | kg yqw 0.2

for lateral control

Cross-track error coeffi- | kg 1.4
cient for lateral control

Cross-track error soft- | kgof¢ 0.2
ening coefficient for lat-

eral control

Proportional coefficient | &, 0.3

for longitudinal control

Integral coefficient for | k; 0.001
longitudinal control

Maximum speed for au- 5ms!
tocross

Maximum speed 25ms!
Maximum longitudinal | Fice maz 110N
for speed planning

Maximum longitudinal | Fyecmaqz 44 N
for speed planning

Maximum steering an- | §pqz 5

gle

Table C.1: FSDS parameters for trajectory tracking and motion planning

Parameters to calculate dynamics of the car. Only parameters used by
trajectory tracking and motion planning are described as others are not used.

53

C. FSDS Parameters

Description Notation Value
Vehicle mass m 110 kg
Tire-road friction coef- | u 0.2
ficient

Lateral peak factor D, 1
Longitudinal peak fac- | D, 1

tor

Aerodynamic reference | A,qy 1.14m?
area

Drag coefficient Ch 1.3
Lift coefficient Cr 3.5

o4

Appendix D

RC Car Experiments

Experiment results for homography matrix calculation.

Real world points

Image points

X y
2 1.78 30 600
2 0 645 595
2 -1.67 1260 580
4.5 3 203 524
4.5 0 660 515
4.5 -2.8 1100 510
7.38 3 384 500
7.38 1.25 543 494
7.38 -1.1 776 491
7.38 -2.8 936 489
10.38 2.1 928 483
10.38 -2.25 814 478

Table D.1: World-image correspondences

55

56

Appendix E
Content of the CD

File/Directory Description
bp__bohacml11.pdf Text of the thesis
src¢/motion_ planning/ Base directory of motion planning ROS package
src/trajectory _tracking/ | Base directory of trajectory tracking ROS package
src/motion__planning/ Base directory of simulation ROS package
competition.mp4 Video from FSO competition

Table E.1: CD Content

o7

	Introduction
	Platforms
	DV.01
	RC car

	Formula Student Driverless Challenges

	Objectives
	Vehicle dynamics
	Nonlinear single-track model
	Tire modeling
	Friction circle
	Model verification

	Motion Planning
	Path planning
	Speed reference generator
	Simulation scenarios

	Trajectory Tracking
	Lateral control
	Longitudinal control

	System architecture
	ROS based simulator
	Steering simulation
	Vision simulation
	Vehicle simulation
	Experiment with track

	Formula Student Driverless Simulator
	System adaptation
	Results

	Radio-controlled Car
	System adaptation
	Cone detection
	Motion planning and trajectory tracking

	Experiments

	Results
	Conclusions
	Acronyms
	Bibliography
	DV.01 car parameters
	ROS Simulator Parameters
	FSDS Parameters
	RC Car Experiments
	Content of the CD

