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Abstract

In this work we deal with instance recog-
nition using deep learning. For extracting
global descriptors we use neural network
model trained with metric learning ap-
proach. Various modifications to k-NN
classifiers to improve recognition quality
were created. We also experiment with
using multiple descriptors extracted from
rescaled images. To simulate real world
application we evaluate the model on cre-
ated dataset referred to as Tini GLD.
We achieved 0.84 Micro Average precision
when using multiple descriptors.

Keywords: deep learning, neural
networks, instance recognition, computer
vision

Supervisor: Giorgos Tolias, Ph.D

Abstrakt

V této práci se zabýváne rozpoznávání
instancí pomocí hlubokého učení. Získá-
váme deskriptory pomocí modelu neuro-
nové sítě, který byl naučený přístupem
metric learning. Vytvořili jsme různá upra-
vení k-NN klasifikátorů pro vylepšení kva-
lity rozpoznávání. Vyzkoušeli jsme pou-
žití více deskriptodů, získaných z různých
změn velikostí obrazu. Abychom simulo-
vali použití v reálném světě, k vyhodno-
cení přístupu používáme data, která jsme
vytvořili pod názvem Tini GLD. Pomocí
více deskiptorů jsme dosáhli 0,84 Micro
Average Precision.

Klíčová slova: hluboké učení,
neuronové sítě, rozpoznávání instance,
počítačové vidění

Překlad názvu: Rozpoznávání
orientačních bodů pomocí hlubokého
učení
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Chapter 1

Introduction

Computer vision (CV) is one of the most researched areas of artificial intel-
ligence. Most of the work was done in the image classification area. The
goal of classification task is to predict class label given a query image (Figure
1.1). Deep learning is wildly used for all CV tasks since the introduction
of AlexNet [8] in 2012 which won image classification competition. Deep
learning approach to classification is to train a neural network for the task
by showing it example images of each class. The model learns features that
distinguish classes.

Figure 1.1: Classification visualized. Given query image and defined set of
classes {Dog, Cat, Parrot, Mouse, etc.} the goal is to predict class label.

Images inside classes have typically low intra-class variance which class
based classification does not try to distinguish. However instance level
recognition needs to distinguish between examples of single class. In Figure
1.1 image with parrot was labeled from a set of animals (defined classes). In
Figure 1.2 we want to recognize the same image, however the set of classes
are instances of various classes.

One of the obstacles in such task is low intra-class variation. Because two
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1. Introduction .....................................

Figure 1.2: Instance recognition. Given query image and a set of instances
{"Hue" (dog), "Jack" (dog), "Ava" (parrot), "Jeffrey" (parrot), "Tom" (cat) and
"Jerry" (mouse)} the goal is to predict which instance is seen in query image.

instances of same class are very similar it is difficult to learn features that
differs instances. Moreover such features can differ in time, i.e., some animals
have winter and summer fur. Therefore instance recognition requires different
approach than classification. Deep learning method for instance recognition
is usually to train a model with metric learning approach. Training this way
requires to show image depicting an instance. The model needs an example of
image with the same and with different instance. Model learned with metric
learning approach does not output class scores, it outputs vector in Rp. This
vectors are created in a way that are similar output to vectors nearby each
other, different images are transformed to vectors further apart. Afterwards
the instance is recognized using, e.g., k-nearest neighbours classifiers.

In this thesis we focus on landmark recognition. Landmarks usually don’t
change in time and they differ. It does not directly have the obstacles we
presented before. However instance recognition became the approach for
landmark recognition. The first reason is that we want to recognize a lot
of instances and classification does not perform well for huge amount of
classes. The second reason, which is more important, is that there is usually
very imbalanced dataset. Some landmarks are popular and another have
only one image in the training set. Classification requires to show various
images from each class and it does not deal well with imbalanced dataset.
The third reason is because the landmark set can increase: some landmarks
can be added to the database. If there is a metric learning trained model
we can expect to be transformed new instance to a vector that is close to
similar images. Classification approach requires fine-tuning entire model when
added class. If a class with only one training image is added, fine-tuning
is practically impossible. Landmark recognition is therefore approached as
instance recognition task.

We follow up on the work of Radenovic et al. [13]. They trained a model
with metric learning approach. In this thesis various modifications to k-
nearest neighbours classifier are proposed. Every method is measured in well
established metric known as Micro Average Precision. We created subset

4



......................................1. Introduction

of Google Landmarks Dataset [5] referred to as Tiny GLD to simulate real
world conditions. The model we use didn’t use any images from the Tini
GLD during training.
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Chapter 2

Related work

Image retrieval is wildly a researched topic since 1990s. In 2004 David G. Lowe
published scale-invariant feature transform (SIFT) [14] and it became the
state-of-the-art for the next decade. After 2012 and the work of Krizhevsky
et al. [8], who won Large Scale Visual Recognition Challenge 2012 (ILSVRC,
known as ImageNet [15]) with the AlexNet, research area shifted to deep
learning and using convolution neural networks (CNN) for various computer
vision tasks, image retrieval being one of them.

2.1 Graph Based Methods

One of the very first works was done by Crowly and Parrker (1984) [16]. In
this work they proposed a graph based method for finding similarity between
grayscale images, or any other two-dimensional shape. They used Difference
of Low-Pass (DOLP) Transform to link peaks and ridges in a tree structure.
Afterwards two trees could be matched with each other, finding similarity
between the images.

In 1997 Wiskott et al. [17] created a system for recognizing human faces.
The basic representation was a graph structure with labeled vertices with
wavelet responses locally bundled in jets and weighted edges representing
distances. They also proposed several comparison functions. They achieved
state of the art results on ARPA/ARL FERET dataset created by US Army
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2. Related work.....................................
Research Laboratory. It is worth mentioning that unlike modern datasets
FERET consists of predefined lighting, poses and background of the images.

Shokoufande et al [1] (1999) proposed a saliency map graph (SMG). Using
multi-scale wavelet transform [18] saliency map, which can be represented
as SMG, is extracted. Region describing the object is called a scale-space
cell (SSC) [19]. They also propose two graph matching algorithms for finding
approximate topological and geometrical similarity. This approach achieved
a high level of scale, translation and rotation invariance.

Figure 2.1: From [1]: Extracting the most salient SSCs in an image: (a) original
image and its saliency map; (b) scale invariance; (c) translation invariance; (d)
image rotation invariance; (c) invariance to rotation in depth (illuminated left
side of face exhibits little change in its saliency map); and (f) the saliency map
graph (SMG) of the original image in (a).

2.2 SIFT based methods

According to the instance retrieval overview by Zheng et al. [20] SIFT based
methods are any methods that follow the pipeline: 1) Local feature extraction,
2) Codebook training, 3) Feature encoding

8



............................... 2.3. Local Feature Extraction

2.3 Local Feature Extraction

In the first part local descriptors are extracted given a feature detector. Each
feature is sometimes referred to as "visual word". For D detected features set
of descriptors is {fi}Di=1, fi ∈ Rp. Counter example is global feature extraction
which aims to extract single vector describing entire image. Feature extraction
consists of two steps: keypoint detection and feature extraction. There
are methods like corner detectors [21, 22], (Scale Invariant Feature Transform)
SWIFT [23], Speeded Up Robust Features (SURF) [24] and Oriented FAST
and Rotated BRIEF (ORB) [24].

2.3.1 Codebook Training

SIFT based methods use offline codebook training. Given a set of descriptors
{fi}Di=1, fi ∈ Rp we want to divide set into clusters. Visual words are usually
clustered using e.g., K-means. We partition descriptors into K clusters so we
get codebook of size K.

2.3.2 Feature Encoding

The Goal of feature encoding is to transform multiple descriptors from an
image to single vector, so that we can match images between each other.
Most wildly used encodings are Bag of Words (BoW [25]), Fisher Vectors
(FV) [26] and Vector for Locally Aggregated Descriptors (VLAD) [27]. One
can get basic understanding about FV and VLAD from [28].

2.3.3 Methods

Corner Detectors
Although these methods are not only detecting corners (corner is referred to
as area in image with strong gradient), they are based on Moravec corner
detectors introduced in 1980 [21]. He tried to find corners in image using
another image taken from slightly different position. Moravec corner detector
was improved by Harris and Stephens (1988) [22]. More recent comparison

9



2. Related work.....................................
between Harris and Moravec corner detection can be found [29]. Harris corner
detectors are still being researched and used [30], [31].

SWIFT
SIFT based methods are named after Scale Invariant Feature Transform
introduced by Lowe [32] in 1999 and was later improved in one of the most
influential papers in computer vision [23]. It has since became standard
benchmark for nearly a decade. SIFT algorithm consists of several steps
(from [23]):..1. Scale-space extrema detection: The first stage of computation searches

over all scales and image locations. It is implemented efficiently by using
a difference-of-Gaussian function to identify potential interest points that
are invariant to scale and orientation...2. Keypoint localization: At each candidate location, a detailed model is
fit to determine location and scale. Keypoints are selected based on
measures of their stability...3. Orientation assignment: One or more orientations are assigned to each
keypoint location based on local image gradient directions. All future
operations are performed on image data that has been transformed
relative to the assigned orientation, scale, and location for each feature,
thereby providing invariance to these transformations...4. Keypoint descriptor : The local image gradients are measured at the
selected scale in the region around each keypoint. These are transformed
into a representation that allows for significant levels of local shape
distortion and change in illumination.

Swift was improved in various works, i.e., [33], [34]. It was shown to be
superior in performance to SURF and ORB, however ORB was shown to be
faster than SIFT [35]. SIFT and SURF are patented [36], ORB is free to use.

Bag of Words
BoW method was developed for natural language processing. However in 2003
Sivic and Zisserman [25] introduced BoW to image retrieval community and
it has since became standard method. The basic idea is to create histogram
from an image. We consider centres of clusters created during codebook
training as bins and we create histogram of features belonging to specific bin.
Afterwards two such histograms are comparable.

10



................................2.4. CNN Based Recognition

2.4 CNN Based Recognition

Since introduction of AlexNet [8], convolutional neural networks (CNN)
became a wildly researched area in computer vision (CV).CNN showed results
in other areas than computer vision, i.e., speech recognition [37]. With image
classification being the most dominant area of CV, various architectures were
developed.

On ImageNet [38] dataset AlexNet achieved 16.4% top-5 error rate (ER).
In 2013 Zeiler and Fergus [37] achieved 14.8% top-5 ER. They developed
visualization of inner layers. Simonyan and Zisserman with VGGNet [9]
achieved 6.8% top-5 ER. With 16 layers deep model they showed that deeper
architecture is better. One year later GoogLeNet was introduced [39], achiev-
ing 6.67% top-5 ER. GoogLeNet consists of 22 layers. One of the most used
architecture is the Residual Network (ResNet) [12]. In this work He et al.
created multiple models with different depth (18, 34, 50, 101 and 152 layers).
With its 152 layers they proved correct Simonyan’s and Zisserman’s deeper is
better and achieved astounding 3.57% top-5 ER. ResNet performed better
than human with 5.1% top-5 ER, according to [15]. With rapidly increasing
performance on image classification CNN research expanded to other CV
tasks.

Most of CNNs use convolution and fully connected (FC) layers (as seen
of Fig ??). One can imagine, in a very simplified view, that convolution
layers extract features from previous activations, or input image, with keeping
spatial awareness. FC layer than takes such information and transforms it
into vector which should describe the image reasonably. This idea became
the motivation for experiments.
Babenko et. al [2] showed that activations within the network provide high-
level descriptor of an image. In their experiment they trained a model (shown
at Fig 2.2) for classification on ImageNet [38] dataset and extracted descriptors,
referred to as Neural codes, as inner layer activation. They evaluated retrieval
performance on such obtained descriptors on other datasets (INRIA Holidays
[40] , Oxford datasets [41]) and found that performance was relatively well
generalized on other datasets. Moreover when training on same dataset as
testing, results improved.

Similar approach was used by Razavian et al. [42] where they used last con-
volutional layer. Tollias et al. [43] proposed Maximum Activation Convolution
(MAC) and Regional MAC (R-MAC) layer that replace FC layer.

11



2. Related work.....................................

Figure 2.2: From [2]: Purple nodes correspond ti onput and output. Green
units correspond to outputs of convolution layer, red units correspond to output
of max pooling layer and blue units correspond to outputs of ReLU activation
function. Layers 5,6 and 7 were used in their experiment.

Convolutional layer outputs 3D tensor W ×H timesD where D refers to
the number of output feature channels and W,D are spatial dimensions. 3D
tensor can be seen as Xi

D
i=1, where Xi is 2D tensor representing activations

of ith channel. MAC vector f is created as

f = (f1, . . . , fi, . . . , fD)T , fi = maxXi (2.1)

R-MAC layer divides input images into various regions and calculates maxi-
mum for each channel and region. They also proposed how to choose regions.
With such layers there is no limit for dimension of input image, therefore
no transformation is needed to resize input. Using such created descriptors
they achieved state-of-the-art performance in image retrieval. R-MAC vectors
are being further researched, i.e., R-MAC+ [44]. Gordo et al. [45] showed
that R-MAC is differentiable architecture therefore model can be trained
end-to-end.

12



Chapter 3

Theory Background

3.1 Neural Network Basics

Neural Networks (NN) are computational systems inspired by the brain
structure. Basic building block of any NN is called neuron. Neuron is an unit
that inputs real valued vector and outputs a linear combination of the input
vector and a bias. Neuron can be expressed as f(x) = wTx + b where w, b
are parameters. Neurons are usually expressed with an activation function g.
Therefore, neuron can be seen as f(x) = g(wTx + b). Output of a neuron is
called activation. Neuron can be seen seen in Figure 3.1.
NN is a computational graph created from neurons. Most common graphs

Figure 3.1: Neuron visualization

being feed-forward neural network. In such, a network neurons are arranged
into layers, with each layer getting inputs only from the previous layer. Last
layer is called output layer. Every other in between input and output is called
hidden layer. Simple feed forward NN with one hidden layer can be seen at
Figure 3.2. There are other types of NN like Recurrent NN [46], Modular NN
[47] and many more. However for CV tasks feed forward architectures are

13



3. Theory Background ..................................

Figure 3.2: NN architecture with one hidden layer

the most wildly used.

3.1.1 Layers

Now that we established the basic structure of feed-forward neural networks,
we give descriptions of the most wildly used layers.

Fully Connected Layer
Also dense or linear layer. Fully connected (FC) layer is presented in Figure
3.2. Every neuron activation from layer n is consumed as the input of every
neuron in layer n + 1. FC layer takes a vector x as the input and outputs
Wx + b. Suppose layer n has kn neurons.

Convolutional Layer

Unlike FC layer, Convolutional layer uses multidimensional tensor as an
input ,i.e., image with shape (w × h× d). Convolution kernel with size k × k
slides across input and for every position it produces an output. We can
calculate every output as FC FC layer applied to inputs from receptive field
and apply this for every possible position. We can imagine that kernel is
able to detect local features in a small area. Moreover, one convolution
layer can extract more features, so convolution layer transforms the input
as w × h × d1 → w × h × d2 while extracting d2 features. There are more
parameters to convolution layer: padding expands size of input with zeros
so convolution does not reduce the size, stride is the number of pixels shifts
over input matrix.

Pooling Layer

14



................................ 3.1. Neural Network Basics

Figure 3.3: From [6]: Receptive field of convolution

Pooling layer is used to reduce the dimensions of data while keeping most of
the information. Input data is split into cells of size n× n and outputs only
one value for each cell. The most common versions, max pooling and average
pooling can be seen in Figure 3.4. Other pooling methods like Generalized-
mean pooling [13] were proposed. Other layers

Figure 3.4: Example of max and average pooling

More types of layers exists for different purposes.
Dropout layer [48] aims to prevent over-fitting. During training it sets
activations to zero with some probability, therefore next layer is not able to
train on this activation, thus it needs to learn its goal on other patterns.
Batch Normalization layer [49] aims to speed up the training process.

3.1.2 Activation functions

Activation functions are what makes NN such a powerful tool. Consider
model architecture from Fig 3.2. Without activation function (or with linear
activation function g(x) = αx) we can express pass through the model as
W2(W1x+ b1) + b2. No matter how many hidden layers would be added the
model, it would still be only a linear transformation. Activation functions is
what enables NN to approximate arbitrary function [50] an can be learned.
Any differentiable non-linear function can be used as activation function.

Tanh, Sigmoid

One of the very first activation functions were tanh and sigmoid (seen on Fig

15



3. Theory Background ..................................
3.6). Downsides of both functions are that exp(x) is expensive to compute
and both functions lead to wanishing gradient problem and are rarely used
any more.

σ(x) = 1
1 + e−x

tanh(x) = 2x
1 + e−2x + 1

(3.1)

Figure 3.5: Tanh and sigmoid function

ReLU

Rectified Linear Unit (ReLU), proposed in [8], is the default activation
function in most architectures.

ReLU(x) = max(0, x) (3.2)

Figure 3.6: Tanh and sigmoid function

It is much simpler to compute than tanh or sigmoid and ReLU is less likely
to have vanishing gradient. However ReLU can create dying ReLU problem
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................................ 3.1. Neural Network Basics

which happens when most of layer neurons output negative numbers, therefore
the ReLU outputs zeros and information is lost. Models with ReLU tend to
converge faster than with tanh or sigmoid. There exists a lot of modifications:
Leaky ReLU lReLU(x) = max(αx, x), PReLU and many more. Overview
can be found [51].

Softmax

Softmax function, defined as

S(x) = 1∑n
i=0 e

xi


ex1

ex2

. . .
exn

 (3.3)

is vector function. Its outputs a vector that sum to one. It is usually used as
an activation function of the output layer to classification task and values in
the vector are interpreted as class scores.

3.1.3 Training the NN

Now that we can set up architecture with layers and activation function, we
need to train the model. Training NN is optimization task with millions of
parameters. For example AlexNet [8] has 60,954,656 trainable parameters.

Loss

Loss is the objective function of optimization task. When training NN
we must choose one of possible loss functions. If wrong one is chosen, there is
little to no hope for any good results.

In classification tasks we want such a model that given input data the
model outputs correct probability distribution. One of the most used loss
function for one hot encoding distribution is Negative Log Likelihood (NLL).

L(y) = −log(yi) (3.4)

assuming i is a correctly predicted class. If we try to minimize NLL loss,
we also maximize our confidence in the correct prediction. Note that if
yi = 1, L(y) = 0.

17



3. Theory Background ..................................
Another example is Hinge loss:

L(y) = max(0, 1− yTyc) (3.5)

assuming yc is correct distribution. Shape is seen in Figure 3.7.

Figure 3.7: NLL and hinge loss

Deep metric learning is important approach for image retrieval and instance
recognition with deep learning.
Contrastive loss [52] and Triplet loss [53] are the most frequently used. Triplet
loss is defined as:

L(A,P,N) = max(0,m+D(A,P )−D(A,N)) (3.6)

where m is margin, D is distance function, A is an anchor, P is a positive
and N a negative, meaning that A,P is the same class and A,N is different
class. Note that loss is 0 when negative data are further away than margin m
from positive data. Other loss functions for metric learning like Quadruplet
loss [54] have been proposed.

Depending on tasks, we must choose the loss function. There are Mean
Square Error(MSE or l2 error), Mean Absolute Error (MAE or l1 error) for
regression. Allignment Error Rate is used in natural language processing.

Gradient Descent

Gradient descent is optimization algorithm for finding local minima of objec-
tive function. The goal is to find θ̃ so that

θ̃ = arg min
θ

∑
x∈Tm

L(h(x)) (3.7)

where h is NN and Tm is the entire training set.
Single step of basic gradient descent algorithm is

θt+1 = θt − α∇f(θt) (3.8)

18



................................ 3.1. Neural Network Basics

where α is the step size and f is the objective function. This process is
repeated until algorithm converges. Various versions of gradient descent are
studied in mathematical area known as Convex Optimization. Overview of
used gradient descents can be seen [55].

Backpropagation

We need to calculate ∇f(θ) for every step of gradient descent. Calculat-
ing the gradient is known as backpropagation. This is why we require to use
differentiable activation functions, to calculate partial derivative for every
parameter. We can do it by applying using chain rule:

∂L

∂x
= ∂L

∂y

∂y

∂x
(3.9)

After backpropagation we have partial derivative of every parameter w.r.t.
loss. This is repeated for every step of gradient descent.

3.1.4 Additional Techniques

We only scratched surface for reader to know basic idea of learning NN.
There goes much more to the process. One must prevent overfitting, what
is achievable by monitoring training and splitting data into training and
validation sets, using dropout [48] etc. Adjusting learning rate during training
was shown to be useful [9]. When using stochastic gradient descent one must
create mini-batches. Fine-tuning is wildly used method, where trained model
is taken and only last layers are retrained for another task.

3.1.5 Deep Metric Learning

Metric learning is approach where the goal is to find similarity between
different inputs. Output of NN is vector in Rp with defined distance function
(Euclidean, Mahalanobis). For such learning siamese architecture [56] is used.
Such architecture consists of multiple networks with shared weights, needs
distinct inputs and for every input calculate output. Metric learning aims
to reduce the distance between similar object while increasing the distance
between dissimilar objects in the output space. Basic idea is shown on Fig
3.8.

The model is trained on tuple inputs at the same time. In the dataset there
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3. Theory Background ..................................

Figure 3.8: Deep metric learning visualized. Training process shifts similar
images closer and negative farther

are usually a lot of tuples that yield loss 0. With loss 0 the network is not
training and it takes longer to train. Therefore when creating mini-batch for
training, we must generate tuples in better way than picking random images.
This process known as data mining. Wu et.al. [57] showed the importance of
data mining.

Data Mining

There are multiple approaches of how to generate training tuples...1. Random mining: Our algorithm finds random, positive or negative, image
pair. However many combinations yield loss 0. If the loss is 0, the model
is unable to train. Therefore it is not used...2. Hard negative mining: Given anchor image we need to find negative
image, which generates highest loss. Higher loss increases step size of
our training which might speed up the process. However, big step size
may cause the training to diverge and not be able to find reasonable
parameters...3. Hard positive mining: As expected, hard positive mining stands for
finding positive pair to anchor that maximizes loss. This can be hard
to achieve. Consider anchor with class c, we have n images to choose
from and in entire dataset with size m, there are k images with class
c. Suppose we can choose from entire dataset (m = n), than we have
(k − 1)/n options. However if we choose from mini-batch n� m than
we expect to choose from (k − 1)n/m2 possibilities...4. Semi-hard (positive or negative) mining is approach where we generate
data that are "good enough". There are multiple options of how to choose
such pairs therefore it is most wildly used and researched approach.
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Two approaches to generate data are offline and online mining. Comparison
of botch approaches has been done [58]. More types of mining are being
proposed, i.e., easy positive mining [59].

Offline Mining approach preprocesses data before training. We create
training tuples at the start of training and use them during entire process.
Advantage of such approach is because we have more data to select from.
Main disadvantage is that tuples are not updated to changing parameters of
the network.

Online Mining approach is to generate tuples during training. In each
training step we choose tuples from mini-batch. It allow us to create training
samples that helps network train faster, however we have smaller set from
which to choose.

3.1.6 PCA-whitening

PCA-whitening is preprocessing step for various machine learning tasks. Since
[60] it is wildly used for feature decorrelation. It is two step process.
Firstly we perform Principal Component Analysis (PCA): algorithm used
for dimensionality reduction. Given data set X = (x0, . . . ,xm) we estimate
covariance matrix:

Σ = 1
m

m∑
i=1

(x(i) − µ)(x(i) − µ)T = XXT (3.10)

where µ is the mean of the data:

µ = 1
m

m∑
i=1

x(i) (3.11)

Next we create matrix U containing eigenvectors of Σ. It can be done by ,
e.g., SVD. PCA is the projection on eigenvectors corresponding to the biggest
eigenvalues (when used for dimensionality reduction). When projected on
every eigenvector resulting data has diagonal covariance matrix: data becomes
decorrelated.

XPCA = UTX (3.12)
Second step is Whitening. We want each feature to have unit variance. XPCA
has diagonal covariance, therefore we need to rescale each vector as:

xPCA−whitened,i = xPCA,i√
λi

(3.13)
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3. Theory Background ..................................
, where λi is corresponding variance.

3.2 Popular Architectures

3.2.1 AlexNet

AlexNet [8] was created in 2012. It was the first architecture that achieved
major success in image classification. AlexNet consists of 5 convolutional
layers and 3 FC layers. They used 11× 11 kernel size for the first layer which
requires a lot of parameters: AlexNet has 60 million. They also shown that
the use of ReLU as the activation performs better than tanh or sigmoid.
AlexNet is seen in Figure 3.9 AlexNet was trained in over 5 days on two GTX

Figure 3.9: From [10] AlexNet architecture.

580 3GB GPUs. They also used dropout and data augmentation techniques.

3.2.2 VGGNet

Two years after introduction of AlexNet, Zisserman and Simonyan created
VGGNet [9]. Unlike AlexNet with 11× 11 kernel size, VGGNet used multiple
layers with kernel only 3 × 3. They show that, e.g., three convolutional
layers with kernel 3 × 3 outperforms one layer with kernel 7 × 7 in both
discriminative power and number of trainable parameters. VGGNet is seen in
Figure 3.10 Although VGGNet has 138 million parameters, training was done
in fewer epochs than AlexNet due to smaller kernel sizes and pre-initialization
of layers.
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................................. 3.2. Popular Architectures

Figure 3.10: From [11] VGGNet architecture.

3.2.3 ResNet

Residual Network (ResNet) [12] was the first model that outperformed human
in ImageNet classification. Their main contribution is the usage of identity
shortcuts(residual connections). The architecture is separated into building
blocks and there is identity connection over the block. It is seen in Figure
3.11 Stacking such blocks deals well with vanishing gradient therefore they

Figure 3.11: From [12] ResNet building block.

were able to build up to 152 layers deep model without vanishing gradient
problem.
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Chapter 4

An Approach to Instance-level Recognition

Instance recognition deals with data changing over time, i.e., people at a
workplace. This is challenging because the models need to recognize instances
that were not seen during training. In this thesis we simulate such setting
by testing a model on dataset which the model was not trained on. For this
purpose Tini GLD dataset was createt as a subset of Google Landmarks
Dataset (GLD) [61]. GLD poses a challenge for instance recognition and
image retrieval task because of its enormous size and for its imbalanced
representations of classes.
We expand on the work of Tolias et al. [13]. They trained model with
metric learning approach on Paris6k [62] and Oxford5k [41] datasets. We use
their model gl18-tl-resnet101-gem-w for extracting global descriptors from an
image. With such models we can use k-Nearest Neighbours (k-NN) classifiers
to recognize instances. Quality of method is measured in established Micro
Average Precision (µAP), also known as Global Average Precision (GAP).
Calculating µAP requires confidence score in addition to classification. We
experiment with various methods of how to get confidence score.
In the first part we experiment k-NN classifiers with non-linear similarity
transformation. Mean k-NN and α-Expanded Mean k-NN are proposed with
hope of dealing with imbalanced dataset. In the second part we rescale every
image to get multiple descriptors. With more descriptors we experiment with
finding distance from similarity matrix and multi-scale aggregation.

Micro Average Precision

µAP is measurement where ranking of predictions is also important. µAP
is calculated in two steps: Firstly sort predictions in descending order by
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4. An Approach to Instance-level Recognition........................
confidence. Secondly calculate

µAP = 1
m

m∑
i=1

P (i)rel(i) (4.1)

where P (i) is precision at i
P (i) = k

i
(4.2)

where k is number of correctly predicted from top i queries and rel(i) is 1 if
query i is predicted correctly, 0 otherwise.
When we want to maximize µAP we need to score high confidence on correct
predictions and low score on incorrect ones.

Tini-GLD

Because of computational limits Tini-GLD was created from Google Land-
marks Dataset [61] for testing. It consists of 10000 training images from 6090
classes. Most of the classes have only one image in the training set and only
a few classes have more than 10 images. Distribution of Tini-GLD is seen
at Figure 4.1. Test set is 1000 images where 135 are from 51 unique classes
and other 865 images do not have corresponding class in training set. One
must remember that used models were trained on different datasets and have
never seen images from Tini-GLD.

Figure 4.1: Tini-GLD train set distribution. Maximum training samples for a
class is 606 and 5616 classes have only one training image.

Classical Approach

In the fist part we evaluate simple approaches. For classification we use
variations of k-Nearest Neighbours (k-NN) classifiers. Basic k-NN classifier
works as follow:
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Firstly we need to create set of k-nearest neighbours. We sort our training
set in ascending order by euclidean distance from query vector q:

(x1, . . . ,xm), i < j → ||q− xi|| <= ||q− xj || (4.3)

Than we take the first (closest) k vectors from the set, we denote this set as
k(q). Secondly classify q as the mode of the neighbours classes. Classification
of query q images is done as follows:

c̃ = arg max
c∈C

|{x | cx = c, x ∈ k(q)}| (4.4)

where C is set of classes and cx is class of the vector x. Such classifier is seen
in Figure 4.2

Figure 4.2: Simple 5-NN: There are two classes (blue, green) and query (red).
Filled points are only considered in 5-NN. In this case query is classified as
green.

However this classification gives us limited possibilities for calculating scores
which we need for evaluating µAP. Therefore we use cosine similarity:

d(x,y) = xTy
||x||||y|| (4.5)

We classify as
c̃ = arg max

c∈C

∑
cx=c

x∈k(q)

f(d(q,x)) (4.6)

where f is distance non-linear transformation. This transformations are used
because dataset is highly imbalanced so we want to make the classifier more
top-heavy. We use the value of maximum as confidence score.

Second variation of k-NN classifier is Mean k-NN and its generalization
α-Expanded Mean k-NN. Mean k-NN is another attempt to deal with long-
tailed dataset. Here we calculate class-wise mean from k-nearest neighbours.
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4. An Approach to Instance-level Recognition........................
We reduce any number of vectors from class represented in k(q) into its mean
µc:

µc = 1
nc

∑
cx=c

x∈k(q)

x (4.7)

where nc is number of vectors in k(q) from class c. This approach is seen in
Figure 4.3. Classification is done as:

c̃ = arg max
c∈C

f(d(q, µc)) (4.8)

Figure 4.3: Mean 5-NN: In addition to before, crosses denote mean of considered
classes. For this classification we calculate only distance to query and means. In
this case classifier predicts green class.

α-Expanded Mean k-NN is generalization of Mean k-NN, It is inspired
by query expansion (QE) technique used in image retrieval. We expect
that training points from highly represented class are similar to each other.
Therefore the idea is to take all training vectors that are similar to vectors in
the k(q) and classify using class-wise mean of this bigger set. This is seen in
Figure 4.4. Here we calculate class-wise mean as:

µc = µc = 1
|Mc|

∑
cx=c

x∈Mc)

x (4.9)

where Mc is set of training vectors from class c that are closer to some vector
from k(q) from class c

Mc = {y | ∃x ∈ k(q), ||x− y|| < α, cy = cx} (4.10)

Classification is performed as in equation 4.3.
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........................ 4. An Approach to Instance-level Recognition

Figure 4.4: α-Expanded mean 5-NN: One blue vector is close to vector in 5-NN.
Therefore it is taken into the set of which mean for classification is calculated.

Distance from Similarity Matrix

We rescale every image x five times. For every scale si we extract descriptor
xs. Afterwards we perform PCA-whitening by each scale differently. Each
image is than represented as matrix:

X =

xs1. . .
xsn

 (4.11)

Afterwards we calculate distance matrix between two images as:

S = XY T (4.12)

Which is n× n matrix. Similarity of images x, y is calculated in various ways:..1. Max: Taking maximum of the matrix

d(S) = max
i,j

si,j (4.13)..2. Sum of max rows: Get vector row maximums and sum:

d(S) =
∑
i

max
j
si,j (4.14)..3. Sum of max cols: Get vector of column maximums and sum:

d(S) =
∑
j

max
i
si,j (4.15)
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4. An Approach to Instance-level Recognition..........................4. Squared of max rows(cols): Repeat 2 and 3 with squared distance

d(S) =
∑
i

(max
j
si,j)2

d(S) =
∑
j

(max
i
si,j)2 (4.16)

We denote X as descriptor matrix from test set and Y from training set
therefore, e.g., we must differ sum of max cols and sum of max rows. With
these distance metrics we use k-NN classifier without non-linear function.

Multi-Scale Aggregation

As in before, we extract multiple descriptors corresponding to scale s to
get set of descriptors {xsi}ni=1 Afterwards we create single vector

xw =
n∑
i=1

wixsi (4.17)

where wi ∈ {0, 1}. Afterwards we perform PCA-whitening and evaluate with
classifiers proposed in the first part.
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Chapter 5

Results

We experimented with k ∈ {1, 3, 7, 13, 17, 23}. For k = 1 (top-1 classifier)
non-linear transformations do not have any effect. For 1-NN classifier the
non-linear function does not have any effect. This classifier performed poorly
achieving only µAP of 0.65. Applying PCA-whitening for top-1 classifier
performance even worsened to µAP = 0.59. An example of the most similar
images for a query is seen in Figure 5.1.

Figure 5.1: 5 images of nearest neighbour from a the query image and their
similarity.

5.1 Distance Function Variation

Distance modification functions were chosen as f(x) ∈ {x, x2,
√
x, ln(x+ e)}.

Comparison of classifiers with distance modification is seen in Figure 5.2. Best
µAP was achieved for k = 3, without PCA-whitening and using no distance
transformation (identity function). Overall best results used k = 7 with
PCA-whitening and identity function, µAP of such combination is 0.81. With
increasing k performance of all classifiers with non-whitened data worsened,
however PCA-whitening seems to slightly increase. Exact values are in Table
5.1.
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5. Results .......................................
PCA-w method 1 3 7 13 17 23

True

sqrt 0.5893 0.7792 0.7913 0.7870 0.7712 0.7536
pow 2 0.5893 0.7308 0.7760 0.7881 0.7846 0.7847
identity 0.5893 0.7726 0.8106 0.8100 0.8054 0.7966
ln(x+ e) 0.5893 0.7791 0.7916 0.7862 0.7687 0.7455

False

sqrt 0.6493 0.8026 0.7432 0.6697 0.6428 0.5996
pow 2 0.6493 0.7950 0.7687 0.7182 0.6859 0.6660
identity 0.6493 0.8058 0.7522 0.6853 0.6639 0.6286
ln(x+ e) 0.6493 0.8027 0.7389 0.6583 0.6224 0.5760

Table 5.1: Performance of descriptor obtained from the original image.

Figure 5.2: Comparison of combinations with distance function and PCA-
whitning.

5.2 α-Expanded Mean k-NN

α-Expanded Mean k-NN was outdone by previous methods. This approach
only worsened performance. PCA-whitening increase final result up to 0.75
with k = 7. Comparison of α-Expanded Mean k-NN is seen in Figure 5.3,
exact values are in Table 5.2.
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Figure 5.3: α-Expanded Mean k-NN both on non-whitened and whitened data
PCA-w α 3 7 13 17 23

TRUE

Mean k-NN 0.7415 0.7524 0.7487 0.7455 0.7218
0.7 0.7383 0.7496 0.7465 0.7432 0.716
0.6 0.7286 0.7316 0.7362 0.7306 0.7168
0.5 0.7151 0.7163 0.7262 0.7294 0.7138
0.4 0.7066 0.7061 0.704 0.6978 0.6951
0.3 0.6875 0.6802 0.6775 0.6779 0.6827
0.2 0.6535 0.6374 0.6261 0.6298 0.6279

FALSE

Mean k-NN 0.6946 0.7284 0.7356 0.7357 0.7333
0.7 0.6932 0.728 0.7353 0.7336 0.732
0.6 0.6889 0.725 0.7331 0.7313 0.7301
0.5 0.6872 0.7225 0.7316 0.7302 0.7276
0.4 0.6869 0.7201 0.7287 0.7283 0.7244
0.3 0.6753 0.7037 0.7145 0.7148 0.7115
0.2 0.6624 0.6836 0.6808 0.6769 0.6707

Table 5.2: α-Expanded Mean k-NN results.

5.3 Similarity Matrix Based Distance

For calculating similarity matrix and afterwards multi-scale aggregation,
rescaling parameters (0.25, 0.5,

√
0.25, 1,

√
2) were chosen. PCA-whitening

has the biggest effect in this method. The highest µAP was achieved for
PCA-whitening, sum of max of rows and k = 7. Comparison is seen in Figure
5.5 and exact values are seen in Table 5.5. This approach requires to rescale
every input image 5 times, feed every scale through the network and calculate
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5. Results .......................................
PCA-whitening scale-wise. The computation is therefore expensive, however
it shows good results. Examples of similarity matrix between images from
Figure 5.4 are seen in Tables 5.3,5.4.

Figure 5.4: Images A, B, C (from left) from which similarity matrix are com-
puted.

Image B
s1 s2 s3 s4 s5

Image A

s1 0.144 0.129 0.095 0.075 0.071
s2 0.196 0.229 0.227 0.202 0.187
s3 0.226 0.27 0.287 0.267 0.257
s4 0.23 0.285 0.33 0.315 0.316
s5 0.237 0.279 0.33 0.335 0.348

Table 5.3: Similarity matrix between images A and B
Image B

s1 s2 s3 s4 s5

Image A

s1 -0.003 -0.012 0.041 0.064 0.053
s2 0.036 0.017 0.035 0.057 0.056
s3 0.012 0.037 0.033 0.057 0.060
s4 0.04 0.059 0.055 0.094 0.091
s5 0.041 0.064 0.052 0.093 0.095

Table 5.4: Similarity matrix between images A and C

Figure 5.5: Comparison of similarity matrix based methods.

5.4 Multi-scale Aggregation

Multi-scale aggregation revealed that upscaling images by a factor of
√

2
improves over originals. Upsampling achieved µAP of 0.83 for PCA-whitening,
no distance transformation and k = 13. Out of every aggregation combination
the best result yielded summing descriptors corresponding to original images
and upscaling by a factor of

√
2. This aggregation is seen in Figure 5.7, exact

values are in Table 5.6. With PCA-whitening, both identity and square root
functions and k = 13, k = 7 respectively, µAP = 0.84. In Figure 5.6 there are
the 5 most similar images to a query.
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PCA-w method 1 3 7 13 17 23

True

max 0.5088 0.7658 0.7869 0.7826 0.7714 0.7515
sum of max rows 0.5686 0.7868 0.8270 0.8203 0.8080 0.7782
sum of max cols 0.5696 0.7838 0.8303 0.8269 0.8097 0.7881
sum of squared max rows 0.5729 0.7294 0.7787 0.7892 0.7900 0.7803
sum of squared max cols 0.5729 0.7311 0.7820 0.7887 0.7913 0.7845

False

max 0.5584 0.7308 0.7048 0.6447 0.6298 0.5907
sum of max rows 0.5732 0.7712 0.7280 0.6657 0.6344 0.6123
sum of max cols 0.5809 0.7544 0.7238 0.6675 0.6451 0.6127
squared of max rows 0.5802 0.7650 0.7445 0.7050 0.6857 0.6499
squared of max cols 0.5811 0.7490 0.7433 0.6857 0.6694 0.6580

Table 5.5: Results of similarity matrix approach.

Figure 5.6: 5 nearest neighbours from a the query image and their similarity.

Figure 5.7: Comparison of methods for descriptor obtained from summing
descriptor from original image and from upscaled image by factor of

√
2.

PCA-w method 1 3 7 13 17 23

True

sqrt 0.6142 0.8113 0.8425 0.8156 0.7990 0.7783
pow 2 0.6142 0.7583 0.7984 0.8094 0.8024 0.8032
identity 0.6142 0.8168 0.8399 0.8428 0.8243 0.8088
ln(x+ e) 0.6142 0.8115 0.8413 0.8094 0.7917 0.7716

False

sqrt 0.6582 0.8153 0.7493 0.6794 0.6384 0.5902
pow 2 0.6582 0.8117 0.7736 0.7212 0.6915 0.6673
identity 0.6582 0.8177 0.7571 0.6982 0.6611 0.6226
ln(x+ e) 0.6582 0.8154 0.7453 0.6675 0.6181 0.5679

Table 5.6: Multi scale aggregation. Summation of descriptor from original image
and image upscaled by a factor of

√
2 yielded the overall best result.

35



36



Chapter 6

Conclusion

In this thesis we explored different possibilities of how to use k-NN classifiers
for instance recognition. We used descriptors obtained from a neural network
trained by metric learning approach. Evaluation was done on specifically
created dataset which the neural network did not use during training. The
dataset was created to be highly imbalanced. We proposed and evaluated
various methods of how to deal with such dataset.

In the first part we experimented with single descriptor obtained from
original image. Firstly we found that non-linear similarity transformations
do not improve performance. The best results with original descriptors are
for small k, i.e., 3. For 3-NN classifier we obtained µAP 0.8.
We found that in our small dataset small k perform and with larger k the
performance worsens drastically. However using PCA-whitening seems to
negate this effect and performance on PCA-whitened data does not decrease
with increasing k.
Secondly we used α-Expanded Mean k-NN which yielded disappointment
results. Moreover α-Expansion lowers µAP even more. Moreover calculating
α-Expansion is computationally very expensive. This approach failed and it
is not worth looking into the idea.

In the second part we extracted multiple descriptors from each image. We
rescaled every image five times and from each scale we extracted descriptor.
Firstly we considered calculating similarity from the similarity matrix. This
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6. Conclusion......................................
approach requires to calculate similarity between every two descriptors. In
our case it is 25 calculations for every two images. We extracted the similarity
value in various ways from this matrix. When used PCA-whitening it was
calculated scale-wise which is calculate PCA-whitening 5 times. This made
the approach the most expensive for calculating. However it outperformed
the basic approach. The best µAP was achieved 0.83.
Another method using multiple descriptors is to aggregate them into one.
We experimented with simple summing various scaled descriptors and with
this single descriptor evaluate the method as in the first part. This approach
achieved the best results of µAP 0.84.

We propose three ideas for future research.
Firstly we know that the similarity matrix approach contains a lot of infor-
mation. In our case we had 25 similarity values and we obtained the overall
similarity value in 5 different ways. It is very likely that there exists better
ways how to calculate overall similarity. This research might even consider
training neural network model to predict similarity score given the matrix.
However it would make the similarity matrix approach even more expensive.
Secondly when obtaining multi-scale descriptor we only summed descriptors
from different scales. The best results were achieved when summing the
descriptor from original image and the descriptor from image upscaled by
the factor of

√
2. This approach yielded the best results with only binary

weights. It will probably yield better µAP when we learn the weights of the
linear combination.
The last direction one might consider is to improve how to obtain multiple
descriptors from an image. We extracted a descriptor from every scale of an
image. However it is possible to use any transformation on the input image.
We might combine various affine transformations. Than it is possible to
repeat similarity matrix methods and creating multi-scale descriptor, however
it will probably not be called multi-scale descriptor.
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