Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Control Engineering

Best response computation for partially
observable stochastic games

Ondrej Kubicek

Supervisor: Mgr. Branislav Bosansky, Ph.D.
Field of study: Cybernetics and Robotics
May 2020

ii

Acknowledgements

I would like to thank my supervisor Mgr.
Branislav Bosansky, Ph.D. for his guid-
ance and expertise during the work on
this thesis. I would also like to thank Ing.
Karel Horak for his contribution to re-
search on Partially Observable Stochastic
Games. Without his research this thesis
may not be possible.

iii

Declaration

I declare that this thesis has been com-
posed solely by myself and that it has not
been submitted, in whole or in part, in
any previous application for a degree. Ex-
cept where stated otherwise by reference
or acknowledgement, the work presented
is entirely my own.

In Prague, 25. May 2020

Abstract

Solving Partially Observable Stochastic
games (POSG) is computationally hard
in general, therefore the research is fo-
cused on variants of POSGs. One-Sided
POSGs are played by two players, where
one has perfect information about the
game and the second does not. The algo-
rithm called PG-HSVI has been developed
for these games, but it has a limited scal-
ability. More scalable algorithms may be
used, but they might not have convergence
guarantees. To compare these computed
strategies, a scalable best response algo-
rithm may be used. The main goal of
this work is to study One-Sided POSGs
and their algorithms, formulate the best
response of strategies as the problem of
solving Partially Observable Markov De-
cision Process (POMDP), select appropri-
ate solver to solve POMDP, experimen-
tally evaluate the scalability, identify bot-
tlenecks, and propose possible improve-
ments to formulation/algorithm to im-
prove scalability.

Keywords: Game, Game Theory, Value
Iteration, HSVI, Monte Carlo Tree
Search, POMCP, Markov Decision
Process, Partially Observable MDP,
PG-HSVI, Partially Observable
Stochastic Games

Supervisor:
Ph.D.
Praha 2, Karlovo namésti 13, E-407

Mgr. Branislav Bosansky,

iv

Abstrakt

Resen{ ¢asteéné pozorovatelnych, stochas-
tickych her (POSG) je vypocetné narocné,
proto se vyzkum soustiedi na poddruhy
POSG. Jednostranné POSG jsou hry pro
dva hrace, jeden mé perfektni informaci o
hte, ale druhy ne. Algoritmus PG-HSVI
byl vytvoren pro feSeni téchto her, ale
mé pouze omezenou Skalovatelnost. Je
mozné pouzit 1épe skalovatelné algoritmy;,
ale ty negarantuji konvergenci. Pro po-
rovnavani vypoctenych strategii mtze byt
pouzit skadlovatelny algoritmus pro vypo-
cet nejlepsi odpovédi. Hlavni naplni této
prace je nastudovat Jednostranné POSG
a algoritmy pro jejich reseni, formulovat
hledani nejlepsi odpovédi na strategii jako
Céstecné pozorovatelny markovsky rozho-
dovaci proces (POMDP), vybrat vhodny
algoritmus pro feseni POMDP, experimen-
talné ovérit skalovatelnost tohoto algo-
ritmu, identifikovat prekazky a navrhnout
pripadné vylepseni formulace a algoritmy
pro lepsi skalovatelnost.

Klicova slova: Hra, Teorie Her, Value
Iteration, HSVI, Monte Carlo Tree
Search, POMCP, Markovské rozhodovaci
procesy, Césteéné pozorovatelné MRP,
PG-HSVI, Césteéné pozorovatelné
stochastické hry

Pteklad nazvu: Algoritmy vypoctu
nejlepsi odpovédi ve stochastickych hréch
s nedplnou informaci

Contents 3.4 Defining problem as POMDP ..
1 Introduction 1 4 Implementation

4.1 Partitions....................

2 Decision Making 3
4.2 Transition model

2.1 Markov Decision Processes 3
4.3 0utput

2.1.1 Rewards in larger MDPs
4.4 Experiment Domains

2.1.2 Discount Factor............. 5
4.4.1 Pursuit Evasion Games

2.1.3 Monte Carlo Tree Search. |

4.4.2 Patrolling Games
2.2 Partially Observable Markov

Decision Processes 8|
4.4.3 Blocking Games
2.2.1 Alpha Vectors
4.5 Example.....................
2.2.2 Heuristic Search Value
Tteration 5 Results

2.2.3 Partially Observable Monte
Carlo Planning (POMCP)

5.1 Pursuit Evasion Games

5.2 Patrolling Games
3 Solving One-Sided Partially

observable stochastic games 15|
5.3 Blocking Games

5.4 Issues with this approach

3.2 One-Sided Partially Observable

Stochastic Games 5.4.1 Actions without transition ..
3.3 Extracting strategy 5.4.2 Bug in POMCP with getting

possible actions

5.4.3 Missing transition for strategy
NOdesovvii i

6 Conclusions

6.1 Further work

A Game Definition

B Output from HSVI

C Bibliography

D Project Specification

39

&

k=

vi

Figures

2.1 Graphical representation of 1D
gridgame....................... [

2.2 Graphical representation of larger
1D grid game....................

2.3 Expected reward using 3

alpha-vectors...................
2.4 Expected reward after adding 1

alpha-vector....................
2.5 Tree before selection
2.6 Select an action and then receive

an observation for expanding
2.7 Expansion from current node. . .

2.8 Select random action and simulate

rest of the game
2.9 Backpropagate the reward for

current simulation 13
3.1 Example strategy with 2

alpha-vectors...................
4.1 Tree result from POMCP for

smaller game
4.2 Graph for blocking game with 3

rows and 4 children 26/

vii

4.3 Tree result from POMCP for

example
5.1 Rewards for Pursuit Evasion

Games . ..o 130)
5.2 Rewards for Patrolling Games . .
5.3 Rewards for Blocking Games . . .

Tables

5.1 Parameters for different Pursuit
Evasion Games, which were tested

5.2 Results from HSVI for Pursuit
Evasion Games 301

5.3 Results from POMCP for Pursuit
Evasion Games 301

5.4 Parameters for different Patrolling
games, which were tested

5.5 Results from HSVI for Patrolling
Gamest 31

5.6 Results from POMCP for
Patrolling Games

5.7 Parameters for different Blocking
games, which were tested

5.8 Definition of used Blocking Games

5.9 Results from HSVI for Blocking
Games . ..o 133l

5.10 Results from POMCP for
Blocking Games

viii

Chapter 1

Introduction

In most of the games, the main goal for each player is to win the game,
therefore finding the best strategy to follow. To find and evaluate strategies
based on given rules, games have to be mathematically defined. Dynamic
Games can model many recreational games [Bar22] and also some real-world
situations from fields of science like economics[Sam16], political science[Gut97],
biology [KSJ15], security[LX13][BBB*13| and more.

Markov Decision Processes are used to calculate a best response in these
games, but this model requires for the game to be fully observable. However,
Dynamic Games may often have only partial information. Markov Decision
Processes may be extended to Partially Observable Markov Decision Processes
(POMDPs), which corresponds to the type of Dynamic Games called Partially
Observable Stochastic Games (POSGs). Most of the current techniques to
solve these games focuses on games with only one player, which may, for
example, simulate robot movement.

Solving Partially Observable Stochastic Games for more players in a general
setting is intractable [HBP17], therefore the research focuses on subclasses
like One-Sided POSGs, which assumes that one player has perfect information
about the game, but the second one does not. These games may simulate
hacker attack, where the hacker knows about the whole network and some
defensive system periodically checks devices in this network. This subclass
of POSGs may be solved to arbitrary precision using algorithm PG-HSVI
[HBP17], which is a slightly modified version of the algorithm called Heuristic
Search Value Iteration. This algorithm approximates the upper and lower
bound, which may be systematically updated to reach the desired precision.
However, this algorithm has a poor scalability. For example, in a situation
where a hacker tries to invade network with 10 devices and some defensive
system checks only one device at a time, there are millions of strategies and
it may take a few days to find the optimal one. It is possible to modify

1

1. Introduction

the algorithm by changing the heuristics, but there may be no convergence
guarantees. Without these guarantees, it is necessary to evaluate strategies
independently on used heuristic.

The goal of this thesis is to extract strategies from the common interface
used to solve POSGs. Formulate the best response evaluation of strategies as
a problem of solving Partially Observable Markov Decision Process. Select
appropriate solver for solving this POMDP. Evaluate scalability through
experiments and also identify bottlenecks and propose possible improvements
to formulation or algorithm in order to improve the scalability.

Chapter 2 defines Markov Decision Processes and Partially Observable
Markov Decision Processes and shows ways to solve them. Chapter 3 describes
Game Theory and games, which are used in this thesis. In Chapter 4 it is
shown how to formulate POMDP, which would be used to compute a best
response for perfect information player while having a fixed strategy for
imperfect information player calculated by PG-HSVTI algorithm for the same
game. Chapter 5 contains implementation details of this approach and in
the last chapter are results of this thesis and also few problems which were
discovered during testing.

Chapter 2

Decision Making

Before defining games, which are usually played by more players, it is
necessary to define the decision making of a single agent. Decision making
for more players may be done if all players except one have fixed strategy,
therefore the strategy is calculated for only 1 player. This chapter mainly
focuses on Markov Decision Processes (MDPs), their extension Partially
Observable MDPs (POMDPs), which deals with imperfect information about
the game, and also the algorithms to solve them like Heuristic Search Value
Iteration and Partially Observable Monte Carlo Planning. POMDPs are used
to define a best response problem in Partially Observable Stochastic Games.

. 2.1 Markov Decision Processes

Markov decision process (MDP)[RN16] is a mathematical tool for stochastic
decision making in a given situation. The basic understanding is that for a
given situation, there are multiple actions to take, but each action may have
different results with some probability. Mathematical representation of MDP
is a tuple

(S, A, P(s'|a, s),R) (2.1)

where S are states, which defines the situation. A are all possible actions
actions, P(s|a, s) are probabilities, that taking action a from A in a state s
from S will result in a state s’ from S. An important point of this is that
probability only depends on state and action, which means that actions or
states, which came beforehand do not affect it in any way. R are all possible

3

2. Decision Making

rewards, which evaluates profit.

Some states may have varying actions, therefore A(s) is defined as a function
which for given state s returns possible actions. If the state does not have any
actions, it is called terminal. Also, the reward differs based on state, action
and state which is a result of this action. Function R(s',a, s) returns reward
from R, which is given after taking action a from A in state s from S, while
moving to state s’ from S.

A reward does not have to be dependent on all of these properties, sometimes
reward depends only on s’. For this text, we will assume rewards are given
after reaching a state. In this case, the average reward is

R(a,s) = R(s) + Z P(s'|a,s)- R(s') s€S,acA (2.2)
s'es

where R(s) is reward in current state, a is action, s is state.
Optimal action in state s is then

argmax R(a,s) se€ 8. (2.3)
acA
The average expected reward, which is not a guaranteed reward, but reward
given on average after playing the same action in a given state s may be
written as

V(s) = R(s) + max > P(s'|a,s)- R(s') s€S. (2.4)
s'esS

This updated value assumes, that player will take the best action. The
notation is changed to V'(s) because this calculated value is not a guaranteed
reward.

B 2.1.1 Rewards in larger MDPs

In the previous chapter, it was described how to calculate average rewards
for a given state, action and rewards, but these calculations only have depth
1, this implies that only rewards which are "close" to the state are taken into
account, this means it takes only 1 action to get this reward. In most of the
games, it is necessary to perform more actions to get some reward.

One of the possible solutions to this problem is to instead of calculating
with reward in a given state, to calculate with maximum average reward in
the same state.

V(s) = R(s) + max Z P(s|a,s)-V(s') se€8. (2.5)
s'eS

The difference between [2.5/and equation 2.4|is that reward V' (s) is a reward
in adjacent states calculated through the same equation. This means that

4

2.1. Markov Decision Processes

the calculation has to be done for all states. This method raises problem that
neighbouring states affect each other, that suggests their value may have not
been found exactly. It is proved that these values converge by simply repeating
this calculation[RN16]. This method is called Value Iteration. Pseudo-code
for possible implementation is in Algorithm 1

Algorithm 1 Value Iteration
Input
S states in game
A every possible action in every state
P probability of resulting state based on initial state and taken action
R rewards in all States
€ terminating condition, for change in 1 iteration

1: V&R

2: repeat

3: A0

4 for s € S do

5: Vo(s) «+ V(s)

6: V(s) < R(s)+ maxeeca > gecg P(s'|a,s) V()
7: A+ max (A, [Vo(s) = V(s)])

8: until A <e

It is important to note that Value Iteration returns the optimal action
for every given state. The reward value in Value Iteration is just expected
average reward, not the guaranteed reward after every playthrough.

B 2.1.2 Discount Factor

While Value Iteration finds the average reward by playing the best strategy,
it does not take into account that there may be one huge reward, which is
far away and it is not feasible to get there in an acceptable time. So closer
rewards should have more value than distant rewards. This may be done
by adding multiplication constant A, which is used to decrease the value of
distant rewards. Value Iteration would then be

V(s) = R(s)+)\121231(> P(s'a,s)-V(s') s€S, (2.6)
s’'eS

where 0 < A < 1. This constant is called the discount factor. If A = 1, you
get equation 2.5}, if A = 0, then

V(s)=R(s) se€S, (2.7)

2. Decision Making

which says that only reward in a given state will be taken into account while
calculating possible average reward.
MDP with discount factor becomes this tuple

(S, A, P(s'|a,s), R, \) (2.8)

B Grid world in 1D

Consider this one-player game where you are on a grid line with 3 states, left
(L), middle (M) and right (R) as seen in Figure [2.1 and your only movement
is to go left or right. You have 80% chance going the right way, 10% going the
wrong way and 10 % not moving at all. The starting point is in the middle.
Staying in middle will result in reward 0, going left has reward -10 a going
right has reward 10. The game has only 1 turn.

of oo

Figure 2.1: Graphical representation of 1D grid game

Probabilities are as given

P(L| <, M) =0,8 (2.9)
P(M| <, M) =0,1 (2.10)
PR| <, M) =0,1 (2.11)
PL| >, M) =0,1 (2.12)
P(M| —,M) =0, 1 (2.13)
PR| —,M) = 0,8 (2.14)

Average rewards are

R(+,M) = P(L| +-,M) - R(L) + P(M| <-,M) - R(M) + P(R| +-,M) - R(R)
=-0,8-10+0,1-0+0,1-10= -7
(2.15)
R(—,M) =P(L| -»,M) - R(L) + P(M| —,M) - R(M) + P(R| —,M) - R(R)
=-0,1-10+0,1-040,8-10=7
(2.16)
For this example it is obvious that —7 < 7, meaning that the best action is
moving right.

2.1. Markov Decision Processes

B Larger grid world

If the game has larger world like Figure 2.2}, then solving would be almost
the same as 2.3.3. It is easy to see, that it in every state the best action is to
move right.

1 2 3 4 5 6

-10| 0«00 | O | 10

Figure 2.2: Graphical representation of larger 1D grid game

B 2.1.3 Monte Carlo Tree Search

MDPs may be solved even without the knowledge of the actual model[KS].
Solving may be done by simply taking actions from the initial state until the
end, or to given finite horizon and keeping track on rewards. MDP is then
transformed into a tree, which has the initial state as root, actions are edges
leading to children nodes. For larger MDPs, the tree may be too large, so
instead of generating the whole tree at the beginning, only the root is created.
New nodes to the tree are added based on these steps.

1. Selection - Starting from root select childs according to heuristic, until
leaf is reached. Leaf is not necessarily terminal state, but it is state from
which the simulation was not yet started.

2. Expansion - If this leaf is not terminal, create child nodes for this state
based on transition model.

3. Simulation - Play the game until terminal state is reached or depth of
tree is reached. Simulation may be done according to some heuristic, or
by just randomly taking actions.

4. Backpropagation - Propagates the reward recieved from newly expanded
child up to the root with discount factor

Every node in the tree keeps the track on how often it was visited and the
average reward from continuing strategy onward. To find an optimal strategy
quickly, it is better to try actions which had previously the highest reward.

7

2. Decision Making

To avoid missing an optimal strategy, a heuristic may be applied to try some
actions which were not tried for a long time.

Algorithm 2 Monte Carlo Tree Search
Input
G game
I amount of simulations

sg < Initial State of Game
I. <0
Sy < Empty List
repeat

I.=1.+1

Se < SO

while s. € Sy do

S¢ <= SELECTCHILD(S,)

7 <= SIMULATEGAME(s,)

st < EXPAND(s,)

Se & Sf

12: BACKPROPAGATIONTOINITIALSTATE((s £, 7))
13: until I, < I

— =
= o

B 22 Partially Observable Markov Decision
Processes

MDPs mostly presents a way to find the optimal action and the average
reward in perfect information games. MDP may be extended for imperfect
information games. We will assume that this imperfect information is about
the current state, meaning player will not know in which state he is, but
he will have at least some information about it. This information is called
observation. POMDP is then tuple

(S, A, P(s'|a, s), R,\,Q,0(0ls,a, s')) (2.17)

where Q is set of all possible observations and O(ols, a, s") is probability of
recieving an observation o from €2 for given action a from A in state s from S
with result state s’ also from S. Observations may represent almost anything,
for example, observations in Example 2.3.4 might be, if a player is in an odd
or even-numbered state, or how far is he from the closest terminal state. For
this easy example, it is easy to see that if the probability of moving the right
way is bigger than moving the wrong way, it is always better to go right,
which is same as the strategy in perfect information case. Most of the time
the strategy for perfect information game will be different then its imperfect

8

2.2. Partially Observable Markov Decision Processes

information counterpart.

Every state has its set of observations and more states may have the
same observations. Based on this, the player will rarely have information in
which state he is, so he must assume all possible states based on observation.
Therefore, the probability distribution over possible states is used, instead
of states. This probability distribution is called belief and it is used instead
of regular states to calculate optimal strategy. Unlike original states, belief
depends on the history of previous actions and observations.

To solve this problem similarly to MDP, beliefs will be taken into account
instead of states. Probability for initial belief is

bo(s) = P(s) se€S (2.18)

meaning that initial belief is just probability that the game is in a given state,
without any additional information. The probability distribution over states
for belief in after playing action a and receiving observation o is

O(O‘aa 8/) Zses P(8/|a> S)bt—l(s)
Y ares(O(ola, ") 3ics P(s"|a, s)bi-1(s))

This says that new belief probability that game is in different state s’ depends
on taken action a in belief state before action b;_1 and received observation o.
Numerator is basically probability of getting observation times probability of
transition from all possible states, and their belief. Denominator is the same
probability but for all possible states, which may have the same observation.
This means that if game has only 1 state with given observation then

by(s') = ses. (2.19)

bi(s) = 1 (2.20)

Because beliefs may be seen as new states, transition model has to be
changed accordingly

O(ola,b) = Z <O(0|a, s') Z P(s|a, s)bt_1(5)> acA (2.21)

s'eS seSs

P(V|a,b) ZO ola,b) ac A (2.22)
0€Q
Observations o are only observations which are plausible to occur while
transitioning from belief state b to b’ after taking action a.
Value iteration will then be

= max SEX;R a,s)b(s) + 7%0(0\@, b) - V(r(b,a,0)) |, (2.23)

where 7(b, a, 0) is transition, which returns new belief state after taking action
a in belief state b and recieving observation o. The biggest problem with
solving this transformed MDP is that there are infinitely many belief states.

9

2. Decision Making

B 2.2.1 Alpha Vectors

Expected rewards in POMDP are based on belief. This means that expected
average reward differs continuously according to belief. Expected reward
function V'(s) is then continuous too based on belief. This function is convex
because it is made out of linear functions [SS73|, these functions are called
Alpha Vectors (a-vectors). Single a-vector represents a reward for fixed
strategy in a state based on belief. Therefore the value function V is

V ={ag,...,an} (2.24)

Expected highest reward for given action in some belief may then be written
as:

V(b) = max a(s)b(s) (2.25)
seS

This equation may then be used to create value iteration for POMDP

V(b) =

max R(s,a)b(s)) + max P(s'|a,s)O(o|a, s)a(s")b(s
na | X2 (RGs,)+ 3 mae 3 32 PI6os)OfolesJals)
(2.26)
Plots on Figure [2.3 and Figure [2.4] show how a-vectors may look for some
game. Also optimal reward is added as reference. Second plot has additional
1 a-vector to show changes to expected reward.

Optimal Reward for belief b approximated by alpha vectors Optimal Reward for belief b with additional alpha vector

Optimal reward
—— alphareetor 1
|~ alphaector 2
alpha vector

©
T

Reward v(b)
Reward V(b)

050 050
Belief b(s) Belief b(s)

Figure 2.3: Expected reward using Figure 2.4: Expected reward after
3 alpha-vectors adding 1 alpha-vector

B 2.2.2 Heuristic Search Value Iteration

Solving POMDPs by using simple Value iteration is not scalable enough.
More scalable algorithm is Heuristic Search Value Iteration (HSVI)[SS04]
which approximates value as an upper and lower estimate. Main Upper
estimate is made by using Value iteration from equation [2.23] The lower

10

2.2. Partially Observable Markov Decision Processes

estimate is then made by adding alpha-vectors and then using equation |2.26.
The algorithm also implements heuristic, which finds the largest gap between
lower and upper bound beliefs, and updates values there.

All alpha-vectors in lower bound are labelled as Vi,

Vi ={ao,...,an} (2.27)
All points in upper bound are labelled as V.
Vo ={V(b),..., V(bm)} (2.28)

When started, HSVI initializes Upper and Lower bounds. Lower Bound is
initialized by adding alpha-vectors which are just taking the same action over
and over again. This means that the worst reward to possibly get is to take the
same action every time. Upper bound is initialized by transforming POMDP
to MDP, where every state corresponds to Action-observation-state tuple.
After the initialization, the algorithm repeatedly calls a recursive method. In
this method action and observation are selected. Action is greedily selected
based on which action will have the highest expected reward. This may be
written as

a; = argmax Vi (b, a) (2.29)
acA
Observation is then selected based of probability it will occur and gap between
upper bound and lower bound for possible belief.

or = arg max (O(olag, b) (Vi (7(b, ar, 0)) — Vi.(1(b, ay, 0)) — ey~ 1)) (2.30)

Function 7(b, a,0) returns new belief based on current belief, taken action
and recieved observation.

Update for lower bound is then adding new alpha-vector, which is computed
for given belief b using these equations

Qg = arg max(ar (b, a,0)) (2.31)
aeVy,
aq(s) = R(s,a) + Z Z Qa,0(s)O(0la, s)P(s'|a, s) (2.32)
0eN s'eS
Vi = VL Uarg max(agb) (2.33)

Vo =W U max (Z R(a, s)b(s) + v Z O(ola,b) - V(7(b,a, o))) (2.34)

seS 0e)

Keeping all points and alpha-vectors is redundant, because some are dom-
inated by other ones, so these are continously removed. It is proved that
HSVI converges to the optimal value.[SS04]

11

2. Decision Making

Algorithm 3 Heuristic Search Value Iteration
Input
G game
€ terminating condition,
Initialize Vi, Viy
repeat
EXPLORE(D, €, t)
until VU(bo) — VL(bo) > €

function EXPLORE(D, €, 1)
if Viy(b) — Vi (b) > ey~! then
a, 0 <+ select action and observation according to heuristic
EXPLORE(T (b, at,04),€,t + 1)
UPDATEBOUNDS(b)

H
4

11: return

B 2.2.3 Partially Observable Monte Carlo Planning (POMCP)

MCTS is used to solve games without the knowledge of the actual model,
instead, it performs simulations of a given MDP. This approach may be used
for partially observable MDPs[SV10]. Because the actual states are unknown,
it is better to use histories as nodes of a tree. The root is just initial belief and
edges in odd-numbered rows represents actions and in even-numbered rows
represents observations. History of the child is then defined by the previous
history, taken action and observation. Belief about the state depends on
history. The algorithm then works as MCTS, where nodes use history instead
of states.

On Figures [2.5] 2.6, [2.7) 2.8 [2.9]it is shown how POMCP searches through
belief space. Every node in the tree contains value N, which is how many
times this action-observation history occurred during simulations. Action
nodes also contain average reward R after taking this action at this point
in the simulation. In the beginning, the node is selected according to the
heuristic. POMCP uses equation

Qh,a) = V(h,a) + c m (2.35)

to select the next nodes until it gets to the leaf of the tree. This equation
only takes actions into account, because POMCP cannot predict, which
observation it will receive. Nodes are not representing states in the game,
but the history of action and observation from the root. After POMCP gets
to the leaf, it expands this node, by getting all possible actions. After that
one action is taken and the game is simulated until the end. After reaching
the terminal state, the reward is backpropagated from the new leaf up to the

12

2.2. Partially Observable Markov Decision Processes

root. In this example there is no discount factor, otherwise, the reward is
backpropagated with discount factor. One thing to note is that every action
node has a higher N, then all sum of all its children N. When the new leaf is
expanded, all action nodes are added, but there are no observations for them.
From this new expansion, the game is finished, but only IV in action node
is updated, and not in observation. This means every time new observation
occurs its value IV is not updated.

POMCP usually needs a lot of iterations for the reward to converge.
Advantage of this method is that it does not need to know how the POMDP
is defined because it just simulates the actions. This means that size of state
space does not affect much how long is one simulation. On the other hand,
the longer the game lasts, the harder it is for the algorithm to find an optimal
strategy. Also, POMCP does not guarantee to find the optimal strategy,
but the found reward should at least be close to the optimal value. [SV10]
(Theorem 1).

While using the strategy of imperfect information player, the state space
gets exponentially larger. Compared to the HSVI, the POMCP is more
scalable, because one iteration of the algorithm is almost not affected by state
space, but only by the length of the game, this makes it for large state spaces
faster than HSVI.

Figure 2.6: Select an
action and then receive
Figure 2.5: Tree be- an observation for ex- Figure 2.7: Expansion
fore selection panding from current node

Figure 2.8: Select random action Figure 2.9: Backpropagate the re-
and simulate rest of the game ward for current simulation

13

14

Chapter 3

Solving One-Sided Partially observable
stochastic games

The focus of this chapter is on the definition of a game in general and also
a type of games used in this thesis which are Partially Observable Stochastic
Games (POSGs) and its subtype One-Sided Partially Observable Stochastic
Games (OS-POSGs), in which one player has perfect information and second
has only partial information. These games may be solved for a player with
imperfect information. This strategy accounts that the second player would
play the best strategy, so it is the worst-case scenario for a player with
imperfect information. Calculating this strategy is computationally difficult
and algorithms with convergence guarantees are not scalable enough. To
use more scalable algorithms, that do not have convergence guarantees, it is
necessary to evaluate computed strategies. In this chapter, we define how
to construct POMDP out of the original game and computed strategy for
imperfect information player. This POMDP may then be solved to evaluate
the computed strategy.

. 3.1 Game

Game is a mathematical description of strategic interactions, which are
the rules defining the game. Every game has players, which participate in it.
There may be one or more players in a single game, but usually games are
for more players. Depending on the game, players take turns or they play
simultaneously. The state is a description of a game in a given point, for

15

3. Solving One-Sided Partially observable stochastic games

example, in chess, it is a position of all figures and which player plays next.
Possible states may vary for different players. Action is a transition between
2 states (both states may be the same) which may result in some reward.
The goal in every game is to collect the highest reward. Stochastic Game is
defined as a tuple

(P,S,A,R,T(a,s),Ss, St) (3.1)

where P are players in the game, S states, A actions, R are rewards, T'(a, s)
is a function which returns new state with some probability after playing
action a from A in a state s from S, S is starting state, Sy are all terminal
states, where the game ends. Some games may require more parameters.

B 3.2 OneSided Partially Observable Stochastic
Games

In Partially Observable Stochastic Games players do not have the full
information about the game, so every player has to make a decision based on
some partial information, which he receives. POSGs are stochastic, so taking
one action in the same state, may have different results, this is similar to
MDPs. Because solving POSGs is generally intractable, the research focuses
on subclasses, which are not as general. In this thesis One-Sided POSGs
are used, these games are two-player and zero-sum, that means both players
play against each other and when one player receives a reward, second will
receive the same amount as a negative reward. Solving the game, while both
players would have only partial information would be difficult and maybe
even impossible, so another important property of these games is that one
player has perfect information about the game. These changes make solving
these POSGs much easier. In these games, both players choose actions to
play at once.

B 33 Extracting strategy

The game is defined as tuple
(SG7 Al, A27 Q? P(Sle 0|SG7 at, CLQ), R(SG7 ag, aQ)a 7) (32)

where Sg are all possible states, A; are actions for imperfect information
player, Ao are action for perfect information player, € are all possible ob-
servations for imperfect information player, P (s, o|sq, a1, az) is probability

16

3.4. Defining problem as POMDP

that after playing actions a1, as from Ay, As respectively in a state sg € Sg,
the resulting state would be si; € S and imperfect information player will
receive observation o from and R(sg, a1, a2) is reward given to imperfect
information player after playing actions a; and as from A; and A, in a state
sq from Sg and v is discount factor. When the game is solved, the strategy
for imperfect information player has to be extracted from the data structures
used by the PG-HSVTI algorithm. HSVI computes upper and lower bounds
separately. Only lower bound is extracted and its calculated strategy is made
out of alpha-vectors. Every alpha-vector contains probability distribution
over all possible actions in calculated strategy. Even though alpha-vectors are
linear functions, the probability distribution over actions in alpha-vector does
not change based on belief, this means that alpha-vectors may be viewed as
a single strategic point in the game and not as a function. These points are
called Strategy Nodes. Strategy node corresponds to the part of belief space
where single alpha-vector is selected to be played. Playing an action changes
belief, therefore it changes the Strategy Node. All Strategy Nodes with an
included probability distribution over actions and possible Strategy node
transitions have to be exported. Also, the initial belief, which corresponds to
exactly one Strategy Node, has to be exported.

B 34 Defining problem as POMDP

To find strategy for perfect information player, by using strategy for
imperfect information POMDP is created out of game definition and extracted
Strategy nodes from the calculated strategy for the same game. Extracted
Strategy is defined as a tuple

(SN, Ay(sn), p(ai|sn),o(sn’|o, a1, sn)) (3.3)

where SN are all possible Strategy Nodes, A;(sn) are all possible actions in
given Strategy Node sn from SN, p(ai|sn) are probabilities for taking action
a1 from A; in Strategy Node sn from SN taken from probability distribution
over actions in alpha-vector. o(sn'|o, a1, sn) is the transition model between
strategy nodes, which is probability that after taking action a; from A; in
Strategy Node sn from SN and receiving observation o from (2, the resulting
Strategy Node would be sn/ from SN.
POMDP is then defined as

S = {(81,82);81 S SG,SQ (S SN} (3.4)
A=Ay (3.5)
0= {81;81 € Sg} (36)

17

3. Solving One-Sided Partially observable stochastic games

P((S/I’SIZ)’av (81752)) = Z 20(5/2’3270’170) ’ P(8/170|817a7a1) ’ p(CLl’SQ)
a1 €A1 0€Q
51,87 € Sg, 82,85 € SN,a € A
(3.7)

R((s1,82),a) = R(s1,a1,a2) a,a2 € Aja; € Ay (3.8)

States of this POMDP are all possible combinations between original states
and strategy nodes from HSVI result. These new states are called the Joint
States and every Joint State is uniquely defined by the original state and
strategy node. Actions are just original actions for perfect information player
because for this player we try to find the optimal strategy. Strategy for
imperfect information player is already calculated. Observations in this
POMDP are states from the initial game. Probability of transitioning from
state S to state S’ after playing action A depends on the probability that
imperfect information player will take action a; in calculated strategy in
given strategy node and probability of this transition taken from original
game. Rewards are taken from original definition, but it requires to know
action taken by imperfect information player.

B Example

Assume a game for 2 players, in which both players have only two actions.
Player one receives a reward if both player play the same action, otherwise,
the player two receives a reward. Both players take their turns simultaneously.
The game lasts only one round. This game has only 2 states s1, s;, which are
the start of the game and the terminal state respectively. The game has only
1 observation o, which is given regardless of action. Strategy for the second
player may look like Figure |3.1

Reward based on belief with 2 alpha vectors

alpha vector 1
alpha vector 2

Reward V(b)
“«

000 025 050 075 100
Belief b(s)

Figure 3.1: Example strategy with 2 alpha-vectors

This strategy consists of 2 alpha-vectors. Every strategy node corresponds to
one alpha-vector, therefore the strategy contains 2 strategy nodes snq, sno.

18

3.4. Defining problem as POMDP

Probability distributions over actions in these nodes are

p(aplsni) = p(ayi|sng) = 0.8 (3.9)
p(ai]sni) = p(ap|sng) = 0.2 (3.10)

This game consists of only one round, therefore every action results in a
terminal state, which is also a strategy node sn;, that does not have any
actions available

o(sn|sni,a1,0) = o(sng|sne, ar,0) = o(sni|sni, az, 0) = o(snilsna, az,0) =1

(3.11)
POMDP which will be used to find a best response for player 1 is then defined
like

S ={(s1,sn1), (s1,5n2), (¢, sn¢) } (3.12)
A = {a1,a2} (3.13)
Q= {s1,s} (3.14)

P((st,sn¢)l|aq, (s1,8n1)) = P((s¢, sne)|aq, (s1,8n2)) =
P((s¢, sn¢)|ag, (s1,sn1)) = P((s¢, sne)|az, (s1,sn2)) =1 (3.15)
R(s1,a1,a1) = R(s1,a2,a2) =10 (3.16)
R(s1,a1,a2) = R(s1,a2,a1) = —10 (3.17)

In this game, it does not matter if the player has perfect information because
it lasts only one round.

19

20

Chapter 4

Implementation

In the previous chapter, it was proposed how to construct POMDP out of
generally defined OS-POSG and calculated strategy for imperfect information
player. Solving this POMDP should account for the optimal strategy for
perfect information player. However, the program for solving OS-POSGs,
which uses HSVI algorithm is already developed and the proposed solution has
to be implemented to work with this already developed interface. This newly
created POMDP was solved, by using an already implemented algorithm Par-
tially Observable Monte Carlo Planning from Stanford University [ESB¥17].
This solution is in programming language Julia and is part of official Julia
modules. This chapter contains specific details about the implementation of
the proposed solution and examples of OS-POSGs, which were then used for
testing. To reduce memory requirements in HSVI algorithm, sets of states
called partitions are used. Partitions reduce the number of transitions in the
game. Time requirements in POMCP were reduced by using model, which
for given state and action returned new state, observation and reward.

. 4.1 Partitions

Partition is a collection of states, which meets the requirement, that every
partition has at least one state and that every state must be in exactly
one partition. Both players know all the time in which partition they are.
Playable actions for Imperfect information player depend only on the current
partition. Lower and upper bounds solved by HSVI are then solved per
partition. Every State and Alpha-Vector contains information about in which

21

4. Implementation

partition they are, this reduces the number of possible states in POMDP,
because the additional requirement is

S ={(s1,52); 51 € Sg,s2 € SN, Pa(s1) = Pa(s2)} (4.1)

where Pa(sy) is partition for state s; and Pa(sg) is partition for strategy
node ss.

. 4.2 Transition model

Transition, observation and reward model were all merged into one in
method, which for given Joint State and action return resulting Joint State,
observation and reward. This function is defined as

(s',0, R) = Gen(s,a). (4.2)

For a given state s from S and action a from A a result state s’ from S,
Observation o from 2 and Reward R are returned based on transitions in
POMDP. Random Number Generator is used to choose which tuple to return
based on probabilities. Mersenne Twister is used for this random generation.
This model firstly iterates through all possible transitions for the state
from the original game, which are held in Joint State. It finds all transitions
for given action a. Then the algorithm iterates through all transitions in
a given strategy node. For all transitions, which have matching imperfect
information actions aq from A;, observation o from) the new Joint States
are created, which holds information about original state and strategy node
after possible transitions with probability, which is calculated as follows

(s']s,a) Z Z (sh|s2,a1,0)-P(s},0ls1,a,a1)-p(a1]|s2) s, € S,a€ A
a1€A1 0€Q)

(4.3)
where s; and s9 are game state and strategy node respectively taken from
joint state s. Sometimes these probabilities do not sum up to 1, so it is
necessary to normalize them

/
P(sls,a) s,s €S,ae A (4.4)

P,(s]s,a) = S P(]5.0)
S 9

22

4.3. Output

B a3 Output

The result from Julia is a whole Monte Carlo tree from POMCP, where
every even row represents taken action, which also contains average reward
for a given action and every odd row contains observations after the previous
action. This tree may look like Figure

O

o <roots
N: 1000000
ato a2
N 926593 V. 83.4 NTHTV 54

ot)
1028502 NeT3406

o o 0 o)

a5 210 P! P 2t P
N.614V: 95 N 98665 V. 88,1 N827313 V8T NoA7T24V: 385 N.23260V g84 N.32422V 883

Q O O O Q o O ©] Q Q

o074 o052 o 014 0% 051 oia o143 o o o052
() N36176 6287 N0 302228 W adar N0 () N 14704 [w1978

o0 0O 0O O O 00O O OO O O O O O 00O OO 0o o o o o o

aT0at2 al0 a1 210 a2 afatz a3 @6 &7 a0 @3 &8 a7 a9 alal slal2 a6 am a0 a2 a0 an
N:0VNOD V. (N 18085 VNGSG038 V. -95: 8984 V: 82.3N: 53503V: -91.3.0 WNOO V. . 17069 V. -79:817 VNGB13708 VTI932 V: NZBS51 V. 51279 V. 852484 V. S1EI V. G20 0W0O V.0 N:0VNDOV. I 13267 V. 888 N: 1417 V--91.6 N. 5337 V.-92.3 N: 15107 V. 91 5: 5988 V. 855968 V. 95

O 0 00 00 0O 0 0 0O 0O O O 0o 000 OO0 OO OO O O

014 018 0880143 o w5 0725 o3 oM9 ol o5 o3 ol ol 0020 14X 19 0L M5 0143088 01D IIS 013 0143
MO MO NSO N 25397 NTT0B N0 N218T07 NGS3N N:2550 N0 N.2483 1382 N20BCON 4681 NONGE N.ON-SSO NONTOSO N0 MO

Figure 4.1: Tree result from POMCP for smaller game

This tree has only 6 rows shown, just to make the image more clear, but
the tree is larger. Every action node has information about how many times
the action was taken, the index of this action and the average reward. On
the other hand, observation contains information about how many times it
occurred and observation index. The whole tree is transformed into an HTML
file and may be opened by any internet browser.

B a4 Experiment Domains

The used algorithm requires specifically designed games to be transformed
from a two-player game into POMDP. Every game has to be defined as a
tuple

(S, Pa, Ay, A2, Q, P(s',0ls,a1,a2), R(s,a1,as),7) (4.5)

where S are all possible states, Pa are partitions in the game. A; are actions
for player one, which has only imperfect information. Therefore his actions
are only dependent on a partition. Ay are actions for the player with perfect
information and differs according to state. €2 is set of all possible observations
O in the game. P(s',0|s,a1,a2) is transition and observation model merged
into one. It is the probability that for a given state s from S and actions
a1, as from Aj, As respectively the game will result in state s’ from S and
imperfect information player would get observation o from €. In most used
games for testing, this probability was equal to 1. R(s, ay, az) is reward model,

23

4. Implementation

that returns reward for the given state s from S and actions a1, as from A,
Asy. 7y is a discount factor of a game.

All used games are defined on the graph. It is easy to scale the game, by
just changing the graph on which the game is played.

There are no stochastic events in any of used domains, meaning

P(s',0|s,a1,a2) = 1 (4.6)

Because both players know in which partition they are, the initial belief is
defined as the initial partition and probability over states in this partition.

Games are created and saved using the Scala program, which also checks
if the game is valid. For example, if every possible transition has defined
reward, or if action-observation history results always in the same partition.

B 4.4.1 Pursuit Evasion Games

The first type of games used to test if algorithms worked properly was
Pursuit Evasion Games.JARS™03] Games of this type are for multiple players.
Players are distinguished as pursuers and evaders. Pursuer tries to catch
evader in a game, while evader tries to avoid being caught. All players
take actions simultaneously, and their possible actions may not be the same.
Games are played on graph and state depend on the position of both players.
Reward when the pursuer catches the evader is R = 95 otherwise, it is R = 0.

B 4.4.2 Patrolling Games

These games [RMY 05| are played by two players, defender and attacker.
While the defender moves through the graph, the attacker may invade any
vertex and attack it. When the attacker commits to attacking some vertex, he
cannot interrupt this attack and it lasts more than one round. If the defender
finds which vertex was attacked, he wins, otherwise the attacker wins. This
means the goal of the defender defender is to visit every vertex as often as
possible, but without any predictable pattern.

When the attack is successful, the defender receives a negative reward, other-
wise, the reward is

R=0 (4.7)

Every vertex may have a different reward if the attack is successful.
The defender does not know when and where the attacker starts the attack.
On the other hand, the attacker has perfect information about the game.

24

4.4. Experiment Domains

B 4.4.3 Blocking Games

Blocking games were specifically created for this thesis. Two players play
this game, where one moves through the graph and the second player is
outside the graph and tries to predict his movement and block it. To make
these games easy to generate and make general actions, game graphs follow
a specific structure. There is always a fixed starting point in the middle of
the graph. The graph is divided into rows, which are partitions in the game.
Every vertex in a row is connected to n vertices from the next row, which are
called children and exactly one vertex from the previous row, which is called
the parent. The graph has only m rows and vertices in the last row do not
have any children and vertex in the first row vertex does not have a parent.
To make more possible routes to the end, vertex in a row is connected with
two other neighbours in the same row.

If all vertices in the last row were terminal, the player would just take
random actions to move forward until he gets to the end, so only k vertices
in the last row are terminal and give the player some reward. There must be
more than one terminal state, otherwise, the game would be impossible to
complete.

Because every vertex, which is not in the last row, has n children, the
player who moves through graph has n possible actions to move forward, one
action to move backwards and two actions to move sideways in the same row.
The player who blocks movement, have n actions to block any possible move
forward, one action to block moving backwards to parent and one action to
block any movement in the same row.

The player with imperfect information is the one, who blocks movement
and his possible observations are: player moved to next row, the player moved
to the previous row, the player moved in the same row, the player was blocked,
the player moved to the terminal state.

It is easy to generate such games, but they scale fast by adding more rows
and children. The generator was created, which takes as input amount of
children n, the amount of row m and the number of terminal states k. Game
is generated with randomly spread terminal states in the last row.

25

4. Implementation

Figure 4.2: Graph for blocking game with 3 rows and 4 children

B a5 Example

Pursuit Evasion Game on a fully connected graph with three vertices is
defined by seven distinct states. Six of those states are for possible positions
for both players on the graph. The last state is when both players are in the
same vertex, which is the terminal state of the game. Both players have the
same actions, which are moves to any vertex. Partitions are defined as the
position of imperfect information player. Only two observations are in the
game, which only symbolizes if the game reached terminal state or not.

File with the definition of this game is shown in Appendix A. The game
was solved using HSVI algorithm and rewards in lower and upper bounds
were approximated as:

Vi, = 86.36364 (4.8)

Vi = 86.46228 (4.9)

The output text file with description is shown in Appendix B. Only four alpha-
vectors were used to approximate strategy, and all of them were taken from
HSVI. Every partition has only one strategy node. The first three strategy
nodes have the same probability for every action. This is an expected result
because there is no strategy, which is superior, so moving randomly yields in
highest average reward. Fourth strategy node is in a terminal state.

To use the POMCP, the original game and results have to be converted to
POMDP. This POMDP has state space is defined as the Cartesian product
of game states and strategy nodes. This number is reduced because states
and strategy nodes have to have matching partitions. For this particular
game, the state space is 7 -4 = 28 without taking partitions into account or 7
with partitions. Actions for this POMDP are actions of perfect information
player because its strategy we try to find. Observations are defined as game

26

4.5. Example

states, which does not contain strategy nodes. Transitions are separately
calculated for game state and strategy node. Game states have transitions
defined in original definition and strategy nodes have transitions defined as a
probability distribution over possible actions and a probability distribution
over different strategy nodes based on taken action. Rewards are defined in
the game definition, so they only take game states without strategy nodes
and actions into account. The initial state of this POMDP is one strategy
node taken from HSVI result and a probability distribution over states in one
partition used from the game definition. Discount factor remains the same
as for the original game. One million tree iterations are used to calculate
strategy. The average calculated reward is

V = 86.37188 (4.10)

Reward from POMCP has an opposite sign as a reward from HSVI because
it is calculated for the other player. Output tree from POMCP is shown at
Figure 4.3,

(@]

o oot
N 1000000

[e] O O

ot 52 53
341308V, 864, N304954 V-85 4 N2 V283

o 9 o o o o g o0 o9

7 o3 o5 ot P o2 o o7
o N 113420, Witazre N 101587 w0160 N Pz N/ 117609 No

(o9] (@] o] o O o O O o] [¢] o] (© o) o O o (@] (e9)

P a2 3 a a2 P a1 2 b a1 2 Py a2 b a1 2 Tm4
ME20IBDV: 853 N: 42065 V: 86,30 31966 V: -85 40768 V:-96.8 37400 V:-6.41: 35105 V: -26.4 N: 27661 V:-86.6: 40991 V. -85.3: 12935 V:-86.4 N: 33240 V: -85.4N: 22811 V- -85.4N: 2555510 0k 20854 V: 85,5 N: 47441 V: -S61E 41849\ -86.3 N: 37484 V: 96,3 N: 43542 :-96.3: 3667830 600

0090 Q0P QLOLRE YOO Q YOOOY QLY © QLY QOQ YDY'Q Q 9L Y LOY Y VO Y
ATt b L L LR TR L A L L R LR LS E B B b L R L O L B R LT L B B A T L B T

1235 e B2 B o ad Bl & A7 B A7 Ball B Ade Bil Neld WL b e Wil B L DD % 4 Lri Bald RAL Bald B & AL nald Hild B Lae Bad 0D & Gvd e 4
T30 S S 04 7207 3 T2 & A R T 7 750 A 4 A M 2 80T T 0 T B AR S T 0 DT AR 145

Figure 4.3: Tree result from POMCP for example

27

28

Chapter 5

Results

This chapter contains results of these tests and also states several problems
encountered during these tests. Because POMCP is stochastic solver, results
may vary everytime simulation is started, but after many iterations correct
strategy POMCP converges to optimal value. Every game was solved in
POMCP multiple times, but only values from the last tests are shown in this
work however, the values were less than 10° apart.

. 5.1 Pursuit Evasion Games

First games to be tested were Pursuit Evasion Games. Details of four used
games, ordered by size are shown in Table

Actions of Actions of

Game | States | Partitions | . 1mperfef:t . perfect. Transitions

information | information

player player

PEG1 143 21 145 13 2671
PEG2 363 37 290 18 8123
PEG3 731 57 485 23 18335
PEG4 | 1299 82 730 28 34807

Table 5.1: Parameters for different Pursuit Evasion Games, which were tested

29

5. Results

In Table 5.2 are shown results from HSVI and in Table [5.3] are results from

POMCP
Game Strategy | Lower HSVI | Upper HSVI HSVI
nodes Bound Bound Time
PEG1 3757 83,48894 83,5877 4 minutes
PEG2 | 16734 77,71581 77,81509 1 hours
PEG3 | 69087 71,90179 72,90118 7 hours
PEG4 | 199453 65,74002 70,73929 68 hours

Table 5.2: Results from HSVI for Pursuit Evasion Games

Game Tree POMCP POMCP
Iterations | Reward Time
PEG1 | 100 million | 83,19077 | 60 minutes
PEG2 | 100 million | 77,36696 | 95 minutes
PEG3 | 100 million | 70,95893 | 130 minutes
PEG4 | 100 million | 66,85947 | 165 minutes

Table 5.3: Results from POMCP for Pursuit Evasion Games

For all tests 100 million POMCP simulations were used, to ensure that
reward converges to the correct value, but 10 million might be sufficient
enough. POMCP rewards were negative, because HSVTI calculates reward
for imperfect information player and POMCP to perfect information player.
Expected results were that POMCP will converge to Lower bound from HSVI,
but they seem to differ a bit.

In Figure [5.1] are shown changes to expected reward based on number of
iterations.

Reward according to POMCRP iterations for Pursuit Evasion Game

|| PEGI
| PEG2

PEGS
PEGA

Reward R

10 10 10 10" 10
Iterations

Figure 5.1: Rewards for Pursuit Evasion Games

30

B 5.2 Patrolling Games

5.2. Patrolling Games

Patrolling games are usually shorter then Pursuit Evasion Games. Five
different Patrolling Games were used for tests and they are defined in Table

0.4
Actions of | Actions of
Game | States | Partitions | . 1mperfe?t) perfec‘F Transitions
information | information
player player

Patroll 1 134 8 16 8 599
Patroll 2 | 342 12 30 12 1975
Patroll 3 482 14 37 14 2951
Patroll 4 | 646 16 49 16 4699
Patroll 5 | 834 18 56 18 6139

Table 5.4: Parameters for different Patrolling games, which were tested

Tables 5.5/ and [5.6| contains information about results from HSVI for imperfect
information player and POMCP for perfect information player respectively

Game Strategy | Lower HSVI | Upper HSVI HSVI
nodes Bound Bound Time
Patroll 1 942 -51,79765 -51,69773 5 minutes
Patroll 2 1722 -49,30796 -48,31187 | 20 minutes
Patroll 3 2401 -57,57143 -56,57440 | 30 minutes
Patroll 4 3765 -60,9512 -59,90201 1 hour
Patroll 5 4539 -58,99490 -57,99520 3 hours

Table 5.5: Results from HSVI for Patrolling Games

Game Tree POMCP | POMCP
Iterations | Reward Time

Patroll 1 | 10 million | -51,74353 | 4 minutes

Patroll 2 | 10 million | -48,39643 | 4 minutes

Patroll 3 | 10 million | -56,63545 | 5 minutes

Patroll 4 | 10 million | -59,97149 | 5 minutes

Patroll 5 | 10 million | -58.09309 | 5 minutes

Table 5.6: Results from POMCP for Patrolling Games

31

Figure [5.2] shows changes to expected reward based on number of iterations.

5. Results

Reward according to POMCRP iterations for Patroling Games

100 NIE -
|
I 1] | |
[y ——— Patioll 1
i ‘l Ly —— Paroll 2
il | ——— Patoll 3
= e Fatroll 4
(1 5L A Patoll 5
/T 0. A [‘Pj}hw" .
o | | e e —
o I | : R lag o I
g wp J M y—
] "l
o /I
25
|
o ‘I i i
10° 10° RN 10°
Iterations

Figure 5.2: Rewards for Patrolling Games

B 53 Blocking Games

Three different blocking games were used for testing. Parameters of these
games are shown in 5.7 and

Actions of | Actions of
Game | States | Partitions | . 1mperfe.ct . perfec‘? Transitions
information | information
player player
Block 1 16 4 8 8 736
Block 2 35 5 7 7 1225
Block 3 26 6 6 6 626

Table 5.7: Parameters for different Blocking games, which were tested

Game | Rows | Children Terminal
States
Block 1 3 4 6
Block 2 4 3 6
Block 3 5 2 6

Table 5.8: Definition of used Blocking Games

In tables 5.9 and 5.10 are details from both HSVI and POMCP.
Figure displays how average reward changes based on POMCP iterations.

32

5.4. Issues with this approach

Game

nodes

Strategy

Lower HSVI
Bound

Upper HSVI
Bound

HSVI

Time

Block 1

942

-58,39558

-97,39725

4 minutes

Block 2

1722

-34,85746

-32,85776

3 days

Block 3

2401

2,80486

3,80027

6 hours

Table 5.9:

Results from HSVI for Blocking Games

Game

Tree
Tterations

POMCP
Reward

POMCP
Time

Block 1

10 million

-99,48058

9 minutes

Block 2

10 million

-36,56410

11 minutes

Block 3

10 million

2,27276

40 minutes

Table 5.10: Results from POMCP for Blocking Games

Reward according to POMCP iterations for Blocking Games

25 | I

Reward R

25 =

Block 1
Block 2
Block 2

n*
lterations

Figure 5.3: Rewards for Blocking Games

These games took longer time to finish the same amount of iterations as
Patrolling and Pursuit Evasion Games. This happens due to the nature of
these games, it usually takes more actions by perfect information player to
get to the terminal state, even after playing the perfect strategy.

B 54

Issues with this approach

Even though most of the results match expectations, there were few prob-
lems, which had to be solved out, to ensure, that program is working correctly
and results match the expectations.

33

5. Results

B 5.4.1 Actions without transition

POMCP chooses, which action to take from a sample of all possible actions.
This caused issues because possible actions depend on the state of the game.
The algorithm also has a method, which returns actions based on history,
but it has a bug, which causes it to call this method with only previous
action and observation. From this information, it is not possible to find new
possible actions. Because solver is implemented as an official Julia module,
the fix should not affect the original code. So the first possible solution was to
return terminal state with negative reward, which was smaller then the lowest
possible reward in the game if the transition model was called with action,
which was not possible for a given state. Other solution was to return the
same state, but with some negative reward. Both of these solutions did not
solve the problem, but just bypassed it. They also affected the final reward.
In every state, there are more impossible than possible actions, so in simula-
tions, the impossible action was chosen in more than 50% simulations. This
made the algorithm to converge slowly. So another solution has to be found.
Because both players know in which partition they are in any given point, the
transition model was changed to return partition as observation, but perfect
information player may have different actions in the same partition because
its actions depend on the state. This caused that the problem still occurred,
but it was reduced to happen in less than 20% simulations in large games. In
smaller games, it occurred in less than 5% simulations. So observations were
changed from partitions to states from the original game. The only state was
returned and not a joint state, so perfect information player still did not have
information about strategy node. This did not change the definition of game,
because perfect information player knows in which state the game is before
every action. Based on last action-observation pair, it was now possible to
return possible actions.

B 5.4.2 Bugin POMCP with getting possible actions

After changing the method to return possible actions from received action-
observation, another implementation bug was found, which caused that almost
every other method call was without action-observation pair. This caused the
program to crash. Problem was that the POMCP solver is part of a bigger
module in Julia, which is implemented for multiple solvers. Random policy,
which is used to explore new nodes, calls method without history, because
some solvers, which are used for MDPs, do not require it.

This was solved by saving the current state in the game after every transition.
This way even if the method was called without history, it was possible
to return possible actions. It would seem that returning current state as

34

5.4. Issues with this approach

observation is obsolete, but POMCP asks for possible actions only when
expanding node and then saves them into memory for time optimization.
This means that for the same history it does not find actions more than once.
For perfect information player action-observation history is not sufficient to
find possible actions, because they may differ for every state.

B 5.4.3 Missing transition for strategy nodes

Even after resolving two previous issues, sometimes transition function was
called with a joint state-action combination which had only one strategy node
transition. This issue occurred only one action before the end of the game.
This means that strategy for imperfect information player expected that the
game would end in next turn and therefore forced which action should perfect
information player play in POMCP. In Patrolling games this behaviour is
expected but in Pursuit Evasion and Blocking games not. This issue was
not resolved, but it was bypassed by moving player terminal state with a
lower reward than the lowest in the game. This ended the game even with
different action by perfect information player. This is not a correct solution,
but since this issue occurred on average on 1 in 100000 iterations, it did not
affect the final results. A possible solution which would be more optimal is
to have some default strategy for imperfect information player, which would
be followed in this case.

35

36

Chapter 6

Conclusions

In this work, we defined how to solve game for perfect information player,
while using compute strategy for imperfect information player in OS-POSGs.
We formulated this problem as POMDP. we used POMCP algorithm because
it is more scalable than HSVI, which may be seen in all three domains used
in testing, even though in POMCP is exponentially bigger state space. This
approach for solving the game for perfect information player was tested on
results from PG-HSVI, which has convergence guarantees. From testing both
Pursuit Evasion Games and Patrolling games, it is shown that the size of
these games almost does not affect the time required for POMCP to converge.
The largest PEG game had iterations almost 3 times longer the smallest, but
the state space was 10 times larger in the original game and 500 times larger
in POMDP with imperfect information player strategy. On the other hand
size of patrolling games did not affect the length of iteration, mostly because
all tested games had the same length of the attack. Blocking games which
are usually longer and may take more than 15 actions to reach terminal state
converged slower and iterations took longer. On average value converged after
107 iterations, whereas PEG and Patrolling games converged between 10°
and 105 POMCP iterations. Overall the results from POMCP corresponds
to results from HSVI, therefore the found strategy for imperfect information
player truly guarantees rewards between lower and upper bound.

In presented solutions, the most substantial bottleneck is in implementation
of POMCP itself, but for this work the speed of this implementation is
sufficient. To further increase the speed of POMCP it is possible to use
multi-threading or better POMCP constant tuning.

37

6. Conclusions

. 6.1 Further work

Using POMCP algorithm to evaluate strategies for imperfect information
player was successful however, only one version of HSVI, which guarantees
to find the optimal strategy, was used for testing. The main goal of this
approach was to evaluate strategies from different versions of HSVI while
using different heuristics without any convergence guarantees. These different
versions are yet to be tested in future.

This work may be extended by swapping which player has the perfect
information and calculate strategy for the second player. This results in two
different strategies, where either player 1 or 2 has the perfect information.
These strategies may then be compared to see how much average reward
changes based on which player has the perfect information.

38

Appendix A

Game Definition

744 4 2 5555 0.9500 //Game definition
Position 1 2 0 //State name - Partition index

Position_1_3 O

Position_2_1 1

Position_2_3 1

Position_3_1 2

Position_3_2 2

endState 3

moveTol_P1 //Actions for Imperfect
moveTo2_P1 //information player
moveTo3_P1

endAction_P1

moveTol P2 //Actions for Perfect
moveTo2_P2 //information player
moveTo3_P2

endAction_P2

game_continues //0Observations

endQObs

012 //Possible Perfect Information
012 //player Actions for state
012

012

012

012

3

012 //Possible Imperfect Information
012 //player Actions for partition
012

39

A. Game Definition

ON WNWF WO OO WOOUPNPIITOFR, WWE ONORE P UUINOWNNOPDOEFE WOORFND WW
OO NOFRF P P PP OFPOPFPRONONOWMNMNDNDDNOONEFEFNEFEFORFRPRNRPEPOEFRLPNMNNMEFEFNMNNMNEFL,ORL,ONM©ON
P N, ONNEONOF OEFRPRNNEPEOWOONDMNDNOELRNFPF P EPEPENE,EODNMNMNEDNONORL,ONDO
QOO P OO0 RFrRrO0OO0OFrrFPFFPPOFPLPOOPFPLROOFPRFOOOFRrR P FPOPFPOOOOFRr P OOHFH,H OOOOOoOODOoO
O, O1T OO W WOHONWOOSEOLH OI”EOIOOEEFRLR OO PP DPOFRPRE DOOGTOOOOUIWONOOO WOLITONEFEFNO B - b
P RrPR,r P RrR PP RRPRPPRPRPRPRRPRPRRPRPRPRRRPRPRRPRPRRPRPRPRPRRPRRPRPRRRPRPRRPRPERRPRRPRRPRRFRRBPE R

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

//Transitions defined as:

// Initial state

// Imperfect Information Player action
// Perfect Information Player action
// Recieved Observation

// Resulting State

// Probability

40

Wk, OO R, PP WP OO, ONPEPNDNERE, P ONPONWWOAONEFE,ONNDNPRL,ROOPPNDNPEPR,PORLOIOITE
NNNNOFRLDNEFEFONONEFEFEFELNNRPLOORPRNONMNEPFEFNNENRPRPOFPLPONOREPEPEE,OONNDDNDOO-R
OFPLP NP, OOONDMNMEFEFNNNONOOFRP,RFPNEFEPDNEFEFDNMNNEFE,OOONEFNNMONEFP,PONOOR, P, PP, OO

A. Game Definition

1.000000

1.000000

1.000000

1.000000

1.000000

1.000000

1.000000

1.000000

1.000000

1.000000

95.000000 //Rewards defined as:
0.000000 // Initial State
95.000000 // Imperfect Information Player action
95.000000 // Perfect Information Player action
0.000000 // Reward given to Imperfect Information player
95.000000

0.000000

0.000000

0.000000

0.000000

0.000000

95.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

95.000000

0.000000

0.000000

95.000000

.000000

.000000

.000000

.000000

.000000

.000000

95.000000

0.000000

95.000000

0.000000

0.000000

OO, P OOOOoOmrOo
N wWw o O ool 0 © O N

O O O O O O O o o

O O O O O O

41

A. Game Definition

OWP NOOF,r WU aN WO WL Ok, Oum

P P ONONOOORFP,R OO WHRrEFP,HONEFE O

0.000000
95.000000
95.000000
0.000000
0.000000
95.000000
95.000000
0.000000
0.000000
95.000000
95.000000
0.000000
95.000000
95.000000
95.000000
0.000000
0.000000
0.000000
0.000000

O FRrPr OFLPr NOOFR,r EFP,POF WFEFL,LDNOF ON

.0000 0.0000

Structure of the game definition is as follows:

1.

1 line contains information about the game as the number of states
S, number of partitions Pa, number of imperfect information player
actions A1, number of perfect information player actions As, number of
observation O, number of transitions P, number of rewards R, discount
factor ~.

S lines contain the definition of states. The first value is the name of
the state and the second one is a partition of the state.

A1 lines contain names of imperfect information player actions.
Ay lines contain names of perfect information player actions.
O lines contain names of possible observations.

S lines contain possible perfect information player action in the state.
The first line with this information corresponds to the first defined state
ete.

Pa lines contain possible imperfect information player action in the
partition. The first line with this information corresponds to partition
with index 0 etc.

42

A. Game Definition

8. P lines contain all possible transitions, which is in the format: the
initial state, the action played by imperfect information player, the
action played by perfect information player, the observation given to
imperfect information player, the resulting state and the probability of
this transition for given state and actions.

9. R lines contain all rewards, which are in the format: the initial state,
the action played by imperfect information player, the action played by
perfect information player, the reward given to imperfect information
player

10. Last row contains initial belief, the first value is the initial partition, and
other values are probability distribution over states in this partition.

Order within the file is important and always remains the same.

43

44

Appendix B

Output from HSVI

coords 0 0 //Strategy Node - Partition

policy 0.333333 0.333333 0.333333 //Probability Distribution over actions
ao 0 0 //Action - Observation

obs 0 1 //Resulting Strategy Node - Probability
ao 0 1

obs 3 1

ao 1 0

obs 11

ao 11

obs 3 1

ao 2 0

obs 2 1

ao 2 1

obs 3 1

end //Ending definition of Strategy Node
coords 1 1

policy 0.333333 0.333333 0.333333

ao 0 0

obs 0 1

ao 0 1

obs 3 1

ao 1 0

obs 11

ao 11

obs 3 1

ao 2 0

obs 2 1

ao 2 1

45

B. Output from HSVI

obs 3 1
end

coords 2 2
policy 0.333333 0.333333 0.333333
ao 0 O

obs 0 1

ao 0 1

obs 3 1

ao 1 0

obs 1 1

ao 1 1

obs 3 1

ao 2 0

obs 2 1

ao 2 1

obs 3 1
end

coords 3 3
policy 1
ao 3 1

obs 3 1
end

init O //Initial Strategy Node

Structure of the file is that if the line starts with the word "coords" it
describes a strategy node. The first number is the unique index of this
strategy node and second is the index of a partition. Lines with the word
"policy" describes probability distribution over possible actions in strategy
node. When the line starts with the word "ao", the first number is the index
of imperfect information action from game and the second number is the
index of observation. Lines starting with obs describes observation from
previous ao line. The first number is the index of the strategy node which
may result after action-observation pair from the previous line and the second
number is the probability of this strategy node. In this example, all of these
probabilities are 1, but in larger games, the same action-observation pair may
result in more different strategy nodes and then probability has to be lower
than 1. The last line in every output starts with word init, is an index of
strategy node, which is initial in the game.

46

Appendix C

Bibliography

[ARS*03]

[Bar22]

[BBB*13]

[ESB*17]

[Gut97]

[HBP17]

[KS]

Micah Adler, Harald Récke, Naveen Sivadasan, Christin Sohler,
and Berthold Vocking, Randomized pursuit-evasion in graphs,
Combinatorics, Probability and Computing 12 (2003), no. 3,
225-244.

E.N. Barron, Game theory, 2. ed., John Wiley & Sons, Inc,
Hoboken, NJ, USA, 2013-04-22.

Scott Backhaus, Russell Bent, James Bono, Ritchie Lee, Brendan
Tracey, David Wolpert, Dongping Xie, and Yildiray Yildiz, Cyber-
physical security, IEEE Transactions on Smart Grid 4 (2013),
no. 4, 2320-2327.

Maxim Egorov, Zachary N. Sunberg, Edward Balaban, Tim A.
Wheeler, Jayesh K. Gupta, and Mykel J. Kochenderfer, Pomdps.jl:
A framework for sequential decision making under uncertainty,
Journal of Machine Learning Research 2017 (2017), no. 18, 1-5.

Joel M. Guttman, The explanatory power of game theory in
international politics, Economics and Politics 9 (1997), no. 1,
71-85.

Karel Horak, Branislav Bosansky, and Michal Péchoucek, Heuris-
tic search value iteration for one-sided partially observable stochas-
tic games, Thirty-First AAAT Conference on Artificial Intelligence,
2017.

Levente Kocsis and Csaba Szepesvari, Bandit based monte-carlo
planning, Machine Learning: ECML 2006, Springer Berlin Hei-
delberg, Berlin, Heidelberg.

47

C. Bibliography

[KSJ15]

[LX13]

[RMYT05]

[RN16]

[Sam16]

[SS73]

[SS04]

[SV10]

Alihan Kabalak, Elena Smirnova, and Jiirgen Jost, Non-
cooperative game theory in biology and cooperative reasoning in
humans, Theory in Biosciences 134 (2015), no. 1-2, 17-46.

Xiannuan Liang and Yang Xiao, Game theory for network security,
IEEE Communications Surveys & Tutorials 15 (2013), no. 1, 472
486.

Sui Ruan, Candra Meirina, Feili Yu, Krishna Pattipati, and
Robert Popp, Patrolling in a stochastic environment, 28.

Stuart J. Russell and Peter Norvig, Artificial intelligence, third
edition ed., Pearson, Boston, [2016].

Larry Samuelson, Game theory in economics and beyond, Journal
of Economic Perspectives 30 (2016), no. 4, 107-130.

Richard D Smallwood and Edward J Sondik, The optimal control
of partially observable markov processes over a finite horizon,
Operations research 21 (1973), no. 5, 1071-1088.

Trey Smith and Reid Simmons, Heuristic search value iteration
for pomdps, Proceedings of the 20th Conference on Uncertainty
in Artificial Intelligence, AUAI Press, Arlington, Virginia, USA,
1. ed., 2004, pp. 520-528.

David Silver and Joel Veness, Monte-carlo planning in large
pomdps, Advances in Neural Information Processing Systems 23
(Vancouver, British Columbia, Canada), Curran Associates Inc.,
2010, pp. 1-9.

48

S BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details

4 ™
Student's name: Kubiéek Ondfiej Personal ID number: 474745
Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Control Engineering

L Study program: Cybernetics and Robotics

J

Il. Bachelor’s thesis details

N
Bachelor’s thesis title in English:
Best response computation for partially observable stochastic games
Bachelor’s thesis title in Czech:
Algoritmy vypoctu nejlepsi odpovédi ve stochastickych hrach s netplnou informaci
Guidelines:
Solving Partially Observable Stochastic Games (POSGs) is intractable in general and thus the research is focused on
subclasses of POSGs, such as One-Sided POSGs where only one player has imperfect information and the opponent
has full information. The first recently developed algorithm PG-HSVI [1] for this class of games has limited scalability and
there is a need for more scalable algorithms that do not have convergence guarantees. Comparison of such computed
strategies can be done using a scalable best response algorithm that is currently missing. The goal of the student is to:
1) study One-Sided POSGs and their algorithms
2) formulate the best response evaluation of strategies as problem of solving a Partially Observable Markov Decision
Process (POMDPs)
3) select an appropriate solver for solving the POMDP
4) experimentally evaluate the scalability, identify bottlenecks, and propose possible improvements to formulation/algorithm
in order to improve the scalability.
Bibliography / sources:
[1] Horak, K., BoSansky, B., & Péchoucek, M. (2017). Heuristic Search Value lteration for One-Sided Partially Observable
Stochastic Games. In AAAI (pp. 558-564).
[2] Silver D, Veness J. Monte-Carlo planning in large POMDPSs. InAdvances in neural information processing systems
2010 (pp. 2164-2172).
Name and workplace of bachelor’s thesis supervisor:
Mgr. Branislav BoSansky, Ph.D., Artificial Intelligence Center, FEE
Name and workplace of second bachelor’s thesis supervisor or consultant:
Date of bachelor’s thesis assignment: 10.01.2020 Deadline for bachelor thesis submission: 14.08.2020
Assignment valid until:
by the end of winter semester 2021/2022
Mgr. Branislav BoSansky, Ph.D. prof. Ing. Michael Sebek, DrSc. prof. Mgr. Petr Pata, Ph.D.
k Supervisor’s signature Head of department’s signature Dean’s signature)

lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

	Introduction
	Decision Making
	Markov Decision Processes
	Rewards in larger MDPs
	Discount Factor
	Monte Carlo Tree Search

	Partially Observable Markov Decision Processes
	Alpha Vectors
	Heuristic Search Value Iteration
	Partially Observable Monte Carlo Planning (POMCP)

	Solving One-Sided Partially observable stochastic games
	Game
	One-Sided Partially Observable Stochastic Games
	Extracting strategy
	Defining problem as POMDP

	Implementation
	Partitions
	Transition model
	Output
	Experiment Domains
	Pursuit Evasion Games
	Patrolling Games
	Blocking Games

	Example

	Results
	Pursuit Evasion Games
	Patrolling Games
	Blocking Games
	Issues with this approach
	Actions without transition
	Bug in POMCP with getting possible actions
	Missing transition for strategy nodes

	Conclusions
	Further work

	Game Definition
	Output from HSVI
	Bibliography
	Project Specification

