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Abstract
Dimensionality reduction algorithms are
great for a deeper understanding of the
dataset. In recent years we saw grow of
feature selection algorithms more specifi-
cally subclass of neighbor graphs. In this
work, we focused on the state of the art
algorithm UMAP and applicated for the
state of the art fMoW dataset. We then
compare UMAP results, with older com-
peting method t-SNE. We look at there
strengths and weaknesses of both methods
and possible difficulties in the application
on the complex fMoW dataset. Based on
these results, we implement and trained
EfficientNet neural network on the fMoW
dataset.

Keywords: Dimensionality Reduction,
t-SNE, UMAP, fMoW, Convolutional
Neural Network, Machine Learning,
Python, Keras, TensorFlow, EfficientNet

Supervisor: Ing. Michal Reinštein,
Ph.D
Karlovo náměstí 13,
121 35 Prague 2,
Czech Republic
room E225b

Abstrakt
Algoritmy redukce dimenze jsou skvělé
pro hlubší pochopení datového souboru.
V posledních letech jsme viděli růst algo-
ritmů pro výběr prvků, konkrétně pod-
třídy sousedních grafů. V této práci jsme
se zaměřili na nejmodernější algoritmus
UMAP a aplikovali jsme na nejmodernější
datový soubor fMoW. Poté porovnáme
výsledky UMAP se starší konkurenční
metodou t-SNE. Podíváme se na silné a
slabé stránky obou metod a možné obtíže
při aplikaci na komplexní datový soubor
fMoW. Na základě těchto výsledků im-
plementujeme a školíme neuronovou síť
EfficientNet na datovém souboru fMoW.

Klíčová slova: Redukce Dimenze,
t-SNE, UMAP, fMoW, Konvoluční
Neuronová Sít, Strojové Učení, Python,
Keras, TensorFlow, EfficientNet
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Chapter 1
Introduction

This section focuses on basic introduction of this work.

This work is focused on experimenting with dimensionality reduction
algorithms and neural networks. It is intended to find new approaches and
ways to differentiate complex structures in the fMoW dataset and use these
new approaches to design a neural network to this dataset.

1.1 Motivation

Main motivation for experimenting with new dimensionality reduction algo-
rithm is deeper understanding of datasets. Which is further used in machine
learning for training neural networks.

With increasing usages of neural networks in numerous scientific fields, we
can observe increasing needs for BigData. In raw form, these datasets can be
used in an unsupervised way, or a more efficient approach is adding labels to
data, which can be later used in supervised learning. Supervised learning can
have better accuracy, with fewer samples of data and computing time needed
for training.

Dimensionality reduction algorithms used in this work can be divided into
two main categories: Matrix Factorization and Neighbour Graphs. This work
is mainly focused on Neighbour Graphs, more precisely on the difference
between t-SNE[30] and UMAP[33] , which are two most of recent algorithms
in this field.
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Chapter 2
Related Work

This section focuses on related work in the areas of Dimensionality reduction
methods, Image datasets, and Deep Neural Networks classification.

2.1 Dimensionality reduction methods

Most famous method from Matrix Factorization is principal component
analysis (PCA)[47] from year 1987 which is widely used and is relatively
computationally cheap. For instance as analysis method for association
between bioactive compounds and functional properties in foods[18] or for
analysis EEG data[4].

Newer method from Neighbour Graphs is T-distributed Stochastic Neigh-
bour Embedding (t-SNE)[30] from year 2008. t-SNE is more computationally
demanding but is also more accurate in grouping data into classes. Uses can
be improved visualization of single-cell RNA-seq data[28] published in Nature,
application to human genetic data[27] or identification of prognostic tumor
subpopulations[2]. Multicore implementation of t-SNE exist on GitHub[45].

Newest method from Neighbour Graphs is (UMAP)[33] from year 2018.
UMAP is more versatile than t-SNE and is computationally faster in com-
parison, UMAP is also more accurate in representing spaces between data
groups. Uses can be visualizing single-cell data[6] published in Nature and to
visualize physical and genetic interactions[16].

2.2 Image datasets

MNIST dataset[26] from year 1998 is most famous image dataset of hand-
written digits and it is equivalent of "hello world" in image recognition. Dataset
was later extended as EMNIST dataset[11] from year 2017 which includes
hand-written digits and letters. In both datasets images are black and white.

3



2. Related Work.....................................
Fashion-MNIST dataset[48] from 2017 is newer famous version composed

of black and white images of clothing and shoes. Dataset is used in training
of convolutional neural networks[40].

CIFAR dataset[24] from year 2009 is harder than MNIST-like datasets.
Images are in RGB spectrum and each class can have subclass in more
detailed version of dataset. Dataset is used in training of convolutional neural
networks[43]. CIFAR can be seen as simpler version of ImageNet dataset[15].

fMoW dataset[10] from year 2017 is newest dataset composed of high-
definition satelite images. Dataset was used in IARPA challenge[21], which
took place in 2017. Good example as how hard is fMoW dataset, is HYDRA
Ensemble of Convolutional Neural Networks[34] from third winner solution.

2.3 Deep neural networks classification

2.3.1 IARPA challenge

Here is closer look at each 3 best participant fMoW IARPA challenge[21]
from year 2017.

Third winner solution is from usf-bulls[39] and it is HYDRA or Ensemble
of Convolutional Neural Networks[34] which is composed of multiple instances
of ResNet[19] and DenseNet[20] convolutional network architectures.

Second winner solution is from jianminsun[22] and it is using MXNet
Framework[8] and ensemble of models as ResNet[19] and ResNeXt[49].

First winner solution is from pfr[37] and it is using ensemble of 12 deep
convolutional network classifiers tuned from generic Dual Path Networks[9].

2.3.2 EfficientNet

EfficientNet[41] from year 2019 is a new approach to convolutional neural
architecture, with a scaling method of depth, width and resolution dimensions
in the convolutional neural network.

Repository implementing EfficientNet in Keras exist on GitHub[50].
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Chapter 3
Theory

This section focuses on theoretical background in the areas of Dimensionality
reduction and Artificial Intelligence.

3.1 Dimensonality reduction

Dimensionality reduction is process of reducing dimension in multi dimensional
set of data. This process can be further divided into two categories: Feature
selection and Feature projection. Main usages can be found in statistics,
machine learning, clustering and anomaly detection.

3.1.1 Feature Selection

Feature selection is process of selecting specific set of features. This set is then
used to distinguished data points between themselves in set of data. Main
approaches for feature selection are filler, wrapper and embedded methods,
which can be used for classification[13], regression and data analysis.

3.1.2 Feature Projection

Feature projection or extraction is process of generating new features from
old set of features. Main two approaches for feature projection are Matrix
Factorization and Neighbour Graphs.

3.2 Matrix Factorization

Matrix factorization is group of feature projection algorithms working with
matrix operations in multi dimensional vector space. Most famous methods
are PCA[47], Sparse PCA[14], Linear Auto-encoder, Latent Dirichent Allo-
cation, Non-negative Matrix Factorization, Generalised Low Rank Models,
Word2Vec[17], GLoVe[36] and Probalistic PCA[25].

5



3. Theory .......................................
The goal of Matrix Factorization is generally to find two matrices which

product is approximately given matrix. Given matrix X is data and two
searched matrices U and V are representation and archetypes.

X ≈ UV

X is an N x D matrix
U is an N x d matrix
V is an n x D matrix

Adopted from [31]

In the equation below, the goal is to minimize loss between X and UV,
with some constraints. This representation is fundamental to all Matrix
Factorization techniques.

N∑
i=1

D∑
j=1

Loss(Xij , (UV )ij)

Adopted from [31]

3.2.1 PCA

Principal Component Analysis[47] is method for reducing dimensionality of
dataset, by reducing number of variables in the dataset and simultaneously
preserving as much information as possible in linear projection. Process can
be broken down into five steps:..1. Standardization of variables..2. Computation of covariance matrix..3. Computation of eigenvectors and eigenvalues of the covariance matrix..4. Construction of feature vector..5. Reorient the data by multiplying feature vector with transpose dataset

Equation

The queation goal is minimalization of square error loss.

N∑
i=1

D∑
j=1

(Xij − (UV )ij)2

Adopted from [31]
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.................................. 3.3. Neighbour Graphs

3.3 Neighbour Graphs

Neighbour Graphs is based on measuring distance between data points by
defined metric and finding number of closest neighbours. Data points is
then recreated in lower dimensional space with same neighbours relationships
as in higher dimensional space before. Neighbour Graphs Most famous
methods are Laplacian Eigenmaps, Spectral Embedding, Hessian Eigenmaps,
Local Tangent Space Aligment, JSE, Isomap[5], t-SNE[30], Locally Linear
Embedding, LargeVis[42], NerV[46] and UMAP[33].

3.3.1 t-SNE

T-distributed Stochastic Neighbor Embedding[30] is method for reducing
dimensionality of dataset, by using local relationships between data points to
create low-dimensional space with captured non-linear structure. Process can
be broken down into two steps:..1. Creation of probability distribution which compute relationships between

neighboring data points..2. Recreation of a low-dimensional space with probability distribution

Equation

G is set of all data points
w(e) is weight of data point e in dimensional graph
h in wh(e) indicate high dimensional graph
` in w`(e) indicate low dimensional graph

Adopted from [32]

The equation goal is minimalization of error between high and low dimen-
sionality representation of graphs, which results as optimizing of clumping
data points together.

∑
e∈G

wh(e) log
(

wh(e)
w`(e)

)

Adopted from [32]
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3. Theory .......................................
3.3.2 UMAP

Uniform Manifold Approximation and Projection for Dimension Reduction[33]
is method for reducing dimensionality of dataset, by manifold approximation,
fuzzy cover and union cross-entropy. Process can be broken down into six
steps:..1. Finding nearest neighbours, creating simplices and approximating mani-

fold..2. Defining a Reimannian metric on the manifold..3. Applicating fuzzy cover..4. Calculating fuzzy union..5. Optimizing embedding by fuzzy set cross-entropy and stochastic gradient
descent..6. Constructing topological representation of the high dimensional data

Equation

G is set of all data points
w(e) is weight of data point e in dimensional graph
h in wh(e) indicate high dimensional graph
` in w`(e) indicate low dimensional graph

Adopted from [32]

The equation goal is minimalization of error between high and low dimen-
sionality representation of graphs. Equation can be broken down to two
parts. The first part is same as in t-SNE equation, which is responsible for
optimizing of clumping data points together. The second part is responsible
for optimizing of gaps between data points, which results in more meaning
sparsing between data points in the graph.

∑
e∈G

wh(e) log
(

wh(e)
w`(e)

)
+ (1− wh(e)) log

(1− wh(e)
1− w`(e)

)

Adopted from [32]

Hyperparameters

UMAP has 4 main hyperparameters. It is number of neighbours around data
point, minimal distance between data points, metrics of data and number of
components which is dimensionality of output data.
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................................. 3.4. Artificial Intelligence

Number of neighbours

Number of neighbours control balance between local and global structures in
the data. Default value of neighbours is set to 15. Recommended range is
generally between 2 and 200, but it can be set higher if needed.

Minimal distance

Minimal distance regulate how much neighbouring points can be packed
together. Which can be useful for finer topological structures or preservation
of global structure. Default value is set to 0.1 and recommended range of
values is between 0.0 and 0.99.

Number of components

Number of components define dimensionality of output data. Which can
be useful for 3D graphs or as intermediate step for another data analysis.
Default state is set to 2 and recommended range of values is between 2 and
100.

Supervision

Supervised is non-default state in which algorithm use data and their labels
for more precise dimension reduction. Supervision can be used for clearer
separation of data, but it can be also biased by incorrect or too simplistic
labels.

Data metrics

Metrics is used to compute distance in the ambient space of dataset. Default
metric is set to euclidean, other prepared metrics are listed bellow:

Category Metric
Minkowski style metrics euclidean, manhattan, chebyshev, minkowski
Miscellaneous spatial metrics canberra, braycurtis, haversine
Normalized spatial metrics mahalanobis, wminkowski, seuclidean
Angular and correlation metrics cosine, correlation

Metrics for binary data hamming, jaccard, dice, russellrao, kulsinski,
rogerstanimoto, sokalmichener, sokalsneath, yule

Table 3.1: UMAP data metrics

3.4 Artificial Intelligence

Artificial Intelligence is a field in Computer Science focused on finding algo-
rithms to intelligence. Approaches can range from only mimicking inteligence
to complex simulation of biological processes and evolution itself.
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3. Theory .......................................
3.4.1 Machine Learning

Machine learning is a subfield of Artificial intelligence focused on self-learning
approach. Algorithms can learn from specific datasets with predefined out-
put in labels or iteratively interact with dynamic environment with reward
feedback.

3.4.2 Deep Learning

Deep Learning is a subfield of Machine Learning specialized in Artificial
Neural Networks.

3.5 Artificial Neural Networks

Artificial Neural Networks are computer recreation of biological Neural Net-
works. Simplest ANN have 3 types of layers (Input, Hidden and Output
layer).

3.5.1 Deep Neural Networks

Deep Neural Networks are ANN with more hidden layers.

3.5.2 Convolutional Neural Networks

Convolutional Neural Networks are DNN with 2 repeating layers. Input data
is usually images in 2D or 3D format.

Convolutional layers

Convolutional layers act as a filter which generate new dimension of data,
that is called convolution features. Feature is calculated through iteration of
filter. Filter is matrix which is multiplied with all data points on filter and
sum of multiplication is a new point in feature. Each feature is calculated
from different filter. Features can be understood as perspectives to highlight
edges and other structures.

Pool layers

Pool layers is responsible for reducing size of input data. Data is reduced
through use of mask and calculation of max or average value of all points on
mask. Calculation of max value or Max Pooling is also noise suppressive and
it usually performs better than Average Pooling.

10



Chapter 4
Datasets

This section focuses on sets of data used in dimensionality reduction algorithms
(Chapter 3).

4.1 MNIST

The MNIST[26] dataset of handwritten digits consist of gray scale 28x28
images with pixel value range from 0 to 255. Dataset contains 60 000 training
and 10 000 test examples and have label from 10 classes, which represent
each different digit.

Figure 4.1: Examples of images in MNIST dataset

11



4. Datasets.......................................
4.2 Fashion-MNIST

Fashion-MNIST[48] dataset consist of gray scale 28x28 images with pixel
value range from 0 to 255. Dataset contains 60 000 training and 10 000
test examples and have label from 10 classes, which represent each different
fashion pieces:

Figure 4.2: Examples of images in Fashion-MNIST dataset

N. Classes
1. t-shirt/top
2. trouser/pants
3. pullover shirt
4. dress
5. coat
6. sandal
7. shirt
8. sneaker
9. bag
10. ankle boot

Table 4.1: Fashion-MNIST classes

12



....................................... 4.3. CIFAR

4.3 CIFAR

CIFAR[24] dataset consist of RGB 32x32 images with pixel value range from
0 to 255 for each RGB layer. Dataset contains 50 000 training and 10 000
test examples in two versions.

(a) : CIFAR-10

(b) : CIFAR-100

Figure 4.3: Examples of images from two versions of CIFAR dataset
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4. Datasets.......................................
4.3.1 CIFAR-10

CIFAR-10 is simpler version of dataset, with 10 classes.

N. Classes
1. airplane
2. automobile
3. bird
4. cat
5. deer
6. dog
7. frog
8. horse
9. ship
10. truck

Table 4.2: Cifar-10 classes

4.3.2 CIFAR-100

CIFAR-100 is more complex version of dataset have, with 100 classes grouped
in 20 superclasses.

N. Superclasses Classes
1. aquatic mammals beaver, dolphin, otter, seal, whale
2. fish aquarium fish, flatfish, ray, shark, trout
3. flowers orchids, poppies, roses, sunflowers, tulips
4. food containers bottles, bowls, cans, cups, plates

5. fruit and vegetables apples, mushrooms, oranges, pears, sweet pep-
pers

6. household electrical devices clock, computer keyboard, lamp, telephone, tele-
vision

7. household furniture bed, chair, couch, table, wardrobe
8. insects bee, beetle, butterfly, caterpillar, cockroach
9. large carnivores bear, leopard, lion, tiger, wolf
10. large man-made outdoor things bridge, castle, house, road, skyscraper
11. large natural outdoor scenes cloud, forest, mountain, plain, sea
12. large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo
13. medium-sized mammals fox, porcupine, possum, raccoon, skunk
14. non-insect invertebrates crab, lobster, snail, spider, worm
15. people baby, boy, girl, man, woman
16. reptiles crocodile, dinosaur, lizard, snake, turtle
17. small mammals hamster, mouse, rabbit, shrew, squirrel
18. trees maple, oak, palm, pine, willow
19. vehicles 1 bicycle, bus, motorcycle, pickup truck, train
20. vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

Table 4.3: Cifar-100 superclasses and classes

14



....................................... 4.4. fMoW

4.4 fMoW

Functional Map of the World[10] dataset consists of over 1 million satellite
images in multiple sizes. Dataset is split into 4 sections: train, val, test
and seq. Train and val sections are organized into folder structure by their
classes. Each image is in pair with JSON file, which besides classes contains
information about the location of the satellite image, positions of boxes
containing objectives in images, code of the country of origin, image timestamp,
the direction of scanning, cloud cover in image, and other extra data useful
for more precise classification. Images are classified in 62 distinct classes and
1 class for false detection. Dataset is split into 4 sections: train, val, test and
seq. Train and val sections are organized into folder structure by their classes.
Test and seq sections are organized in numbered folders, and JSON files don’t
contain information about class of the image.

Figure 4.4: Examples of images in fMoW dataset with resolution 1000x1000
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4. Datasets.......................................

N. Classes N. Classes
1. airport 32. office building
2. airport hangar 33. oil or gas facility
3. airport terminal 34. park
4. amusement park 35. parking lot or garage
5. aquaculture 36. place of worship
6. archaeological site 37. police station
7. barn 38. port
8. border checkpoint 39. prison
9. burial site 40. race track
10. car dealership 41. railway bridge
11. construction site 42. recreational facility
12. crop field 43. impoverished settlement
13. dam 44. road bridge
14. debris or rubble 45. runway
15. educational institution 46. shipyard
16. electric substation 47. shopping mall
17. factory or powerplant 48. single-unit residential
18. fire station 49. smokestack
19. flooded road 50. solar farm
20. fountain 51. space facility
21. gas station 52. stadium
22. golf course 53. storage tank
23. ground transportation station 54. surface mine
24. helipad 55. swimming pool
25. hospital 56. toll booth
26. interchange 57. tower
27. lake or pond 58. tunnel opening
28. lighthouse 59. waste disposal
29. military facility 60. water treatment facility
30. multi-unit residential 61. wind farm
31. nuclear powerplant 62. zoo

Table 4.4: fMoW classes
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Chapter 5
Methods

This section focuses on specific settings for dimensionality reduction algo-
rithms (Chapter 3).

5.1 Test computer HW

Test computer consist of:
- Intel 4 core CPU i5-4670, with 3.40GHz frequency
- 16 GB RAM
- Nvidia RTX 2070 GPU
- 2x 500 GB SSD and 1x 4 TB HDD
- OS Windows 10

5.2 Processing of datasets

MNIST and Fashion-MNIST are both imported through fetch_openml func-
tion from sklearn.datasets[12] python library.

CIFAR datasets are loaded from HDD, with a size of 340 MB for each
of 2 variations. Loading from files is completed through load function from
pickle[38] python library.

In both cases are data saved into the object of classes enveloping respective
dataset. This is possible thanks to size small enough to be fully loaded into
operational RAM memory.

5.2.1 fMoW

The processing of fMoW dataset is non-trivial due to of complex placement
of files in the folder structure. Data was used only from files in /train and
/val folders of fMoW dataset folder structure.

First step in processing is scan files in folder structure into a list, which is
then saved into fmow_file_list.hdf5 file onto a specified location. Saving to
the file is done with h5py python library[7].
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5. Methods.......................................
The next step after obtaining a file list is to through a multi-threaded

algorithm[44], is access, and transformation of each file. Each file have two
versions .jpg and .json.

Because jpg image files are different in width and height pixel size, resized
function from PIL.image python library[29] is used to uniform images size as
INT8 datatype. The array of image pixels is then reshaped to a more suitable
shape.

The string name of the class of the image is extracted from the JSON file
with json python library[23], and formatted into the number corresponding
position of a given class in an array of dataset classification classes as a label.

In the final step transformed images and labels are then saved into memmap
array from NumPy python library[35], which is entirely saved on HDD and
only access parts of the array are loaded into operational memory. This is
done to limit the excessive use of memory when working with data, which
in the case of fMoW dataset are in tens or hundreds of GB large. The
largest transformed size of images was 1000x1000 pixels, which resulted in
approximately 1,3 TB worth of data in memmap, generated this amount of
data took 7 days in total.

5.3 Calculation of dimensional reduction
algorithms

PCA, t-SNE experiments are processed only with default hyperparameters.

T-SNE algorithm is implemented in multicore variant, which makes a
noticeable save of time.

PCA in combination with t-SNE experiments uses PCA with dimensionality
parameter setup to number 50, t-SNE experiments are processed only with
default hyperparameters.

UMAP experiments are processed with multiple hyperparameters settings,
with a random state 42. The operational memory of the test computer is too
small for the use of UMAP on fMoW dataset. The problem with memory
is solved, by allocating one of 500 GB SSD as virtual operational memory.
The virtual operation memory is able to extend the boundary of possible
calculations to fMoW dataset, by sacrificing the shorter time of running graph
calculations.

PCA in combination with UMAP experiments uses PCA with dimensional-
ity parameter set up to number 50, UMAP experiments are processed with
default hyperparameters and in supervision mode.
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Chapter 6
Experiments evaluation

This section focuses on performed experiments with methods (Chapter 5) on
datasets (Chapter 4).

6.1 PCA

Figure 6.1: Comparison of PCA method

As can be seen in graph (Figure 6.1) the results with pca are quite fuzzy.
On simpler datasets such as mnist and fashion-mnist classification in results
can be fuzzy, but recognizable.

Thanks to this fuzziness it cannot be described as perfect. The results of
more complex datasets begin to merge into one spherical point, where classes
are overlapping each other and cannot be distinguished.
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6. Experiments evaluation ................................
6.1.1 fMoW

Figure 6.2: Comparison of PCA method on fMoW dataset

Application of PCA on fMoW dataset with scale down images shown no
noticeable difference (Figure 6.2).

6.1.2 Performance

The PCA method is in terms of performance very fast and moderately memory
intensive.

6.1.3 Conclusion

The PCA method alone seems only suitable for simpler datasets with easier
classification.

The method cannot be recommended in case of complex datasets analysis
or needs for clearer results.
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........................................6.2. t-SNE
6.2 t-SNE

Figure 6.3: Comparison of t-SNE method

As can be seen in graph (Figure 6.3) t-SNE results are more distinctive.
On simpler datasets such as mnist and fashion-mnist classification in results
create distinctive groups, each group represents a specific class.

Spaces between groups are consistent, with no correlation to data. In more
complex datasets results are rather scrambled and cannot be distinguished
into groups. Spaces between groups are incoherent or missing altogether.

6.2.1 Performance

The t-SNE Method is in terms of performance and memory very intensive,
which can be optimized with the multicore parallel version[45].

6.2.2 Conclusion

The t-SNE method is a reasonable test for distinctiveness of classes in dataset.

Result groups do not show a correlation between each other, therefore
classes similarity cannot be analyzed.
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6. Experiments evaluation ................................
6.3 UMAP

Figure 6.4: Comparison of UMAP method

As can be seen in graph (Figure 6.4) UMAP shows most promising results.
On simpler datasets such as mnist and fashion-mnist, classes are in distinct
groups with dynamic spacing. Spacing between groups visualize similarities
between classes. In more complex datasets results are more mixed together
in one group, with distinct subgroups inside.

6.3.1 Supervision

Figure 6.5: Comparison of UMAP method with supervision

A comparison in the graph (Figure 6.5) shows how results change with
UMAP supervision. On simpler datasets such as mnist and fashion-mnist,
classification with supervision end with clearly separated groups.
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....................................... 6.3. UMAP

The cifar-10 dataset results under supervision are no longer in one group,
but in separate groups, which overlap each other.

The cifar-100 dataset results on the other hand are still in one group and
the fMoW dataset is broken into two groups with overlapping classes and a
corona of points around them.

6.3.2 Neighbours and distance

The first set of experiments in the euclidean metric shows the relation between
a number of neighbors on the y-axis and minimal distance between points on
the x-axis. On simplest datasets like mnist (Figure umap_mnist_plot_metric=euclidean.png
on CD B) and fashion-mnist (Figure umap_fashion-mnist_plot_metric=euclidean.png
on CD B), change can be observed only in the minimal distance on the x-axis.

The second set of experiments shows the difference of the relation between
a number of neighbors on the y-axis and minimal distance between points
on the x-axis in euclidean and correlation metric. On the cifar-10 dataset in
euclidean metric (Figure umap_cifar-10_plot_metric=euclidean.png on CD
B) change can be observed in both axes.

The number of neighbors change how much are the graphs spread out and
minimal distance dictates spacing between points in the graph. On the cifar-10
dataset in correlation metric (Figure umap_cifar-10_plot_metric=correlation.png
on CD B) is group structure more separate, but the trend of change of axis
parameters is the same.

The cifar-100 dataset results in euclidean (Figure umap_cifar-100_plot_metric=euclidean.png
on CD B) and correlation (Figure umap_cifar-100_plot_metric=correlation.png
on CD B) metrics are less clear, but the overall trend is the same as in Cifar-10.

6.3.3 Metrics

The metric experiment (Figure 6.6) shows how can be dataset (cifar-10 on
this example) be differently interpreted with relation to different metrics.

With Minkovsky style metrics (euclidean, manhattan, chebyshev, minksovky),
Miscellaneous spatial metrics (canberra, braycurtis) and Angular and correla-
tion metrics (cosine, correlation) dataset graphs can be seen as classifiable.

In hamming metric data points are in horseshoe-like shape and classes are
scrambled. Finally fice and yule metrics shows completely scrambled data in
sphere shape.
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6. Experiments evaluation ................................

Figure 6.6: Comparison of UMAP method on CIFAR-10 with different metrics

6.3.4 fMoW

The experiment with the fMoW dataset (Figure 6.7) shows the increasing
categorization of classes in dependency of image resolution in the dataset,
which can collate with increasing pattern fidelity.

Cleaner categorization in higher dataset resolution can be seen as proof,
that increasing resolution of the fMoW dataset will lead to better UMAP
results. The fMoW resolution is limited to size of 75x75 pixels, due to
the heavy memory requirements result (which are discussed in Performance
section 6.3.5).
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....................................... 6.3. UMAP

Figure 6.7: Comparison of UMAP method on fMoW dataset

Figure 6.8: Comparison of UMAP method on fMoW dataset with supervision
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6. Experiments evaluation ................................
Supervision

The experiment of the supervision (Figure 6.8) shows the failure of a supervised
calculation approach of fMoW dataset, with small image resolution.

The graphs comparison of the unsupervised and supervised approach of the
fMoW dataset images in 50x50 resolution shows the increased categorization
without supervision, probable cause is due to too small image resolution,
which does not include all detailed patterns in data.

6.3.5 Performance

The UMAP method is in terms of performance and memory very intensive.
Poor performance is mainly caused by the inability to use multiple cores.

The high memory requirements can be solved by use the memory virtual-
ization of operational memory on SSD or HDD (preferred option is SSD due
to an order of magnitude lower response times).

Due to the exponentially large increase in memory requirements, related
to the more comprehensive size of the datasets as fMoW, the full potential of
the UMAP method could not be tested.

6.3.6 Conclusion

The UMAP is a very promising method for finding distinctiveness of known
classes or discovering hidden unlisted classes in the dataset.

The results of more complex datasets clearly show the need for the search
for untrivial UMAP parameter combinations.
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............................ 6.4. PCA in combination with t-SNE

6.4 PCA in combination with t-SNE

Figure 6.9: Comparison of PCA in combination with t-SNE method

As can be seen in graph (Figure 6.9) the PCA in combination with the
t-SNE method produced essentially the same results as use of the t-SNE
method alone.

This finding is very useful from a performance standpoint (which is discussed
in Performance section 6.4.1).

6.4.1 Performance

The PCA in combination with the t-SNE method is in terms of performance
and memory is essentially the t-SNE method with easier HW requirement
thanks to a reduced number of dimensions on input.

6.4.2 Conclusion

The PCA in combination with the t-SNE method seems like a good solution
for very big datasets thanks to the lower needed system requirement, but it
still has some form of downside in the form of a more complicated parameter
fine-tuning for ideal results.
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6. Experiments evaluation ................................
6.5 PCA in combination with UMAP

Figure 6.10: Comparison of PCA in combination with UMAP method

As can be seen in graph (Figure 6.10) the PCA in combination with the
UMAP method produced very similar results as the UMAP method alone,
with minimal differences.

6.5.1 Supervision

Figure 6.11: Comparison of PCA in combination with UMAP method with
supervision

A comparison in the graph (Figure ) shows very little difference between
the supervised and unsupervised versions of PCA in combination with the
UMAP method.
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............................ 6.5. PCA in combination with UMAP

Figure 6.12: Comparison of PCA in combination with UMAP method on fMoW
dataset

Figure 6.13: Comparison of PCA in combination with UMAP method on fMoW
dataset with supervision
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6. Experiments evaluation ................................
6.5.2 fMoW

The experiment with the fMoW dataset on the PCA in combination with
the UMAP method (Figure 6.12) shows surprising failure compared to result
with the UMAP method, which can indicate the loss of integral patterns
in data through the use of PCA. More fine-tuning of PCA output size and
parameters are needed for a more comprehensive answer.

Supervision

The experiment of the supervision with the fMoW dataset on the PCA in
combination with the UMAP method (Figure 6.13) shows similar results as
with the UMAP method.

6.5.3 Performance

The PCA in combination with the UMAP method is in terms of perfor-
mance and memory is significantly faster, because of the reduced number of
dimensions on the input of the UMAP method.

6.5.4 Conclusion

The PCA in combination with the UMAP method can be promising, but it
depends if failure with the fMoW dataset can be solved. More experiments
in that regard are needed, with wider scope of parameters.
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Chapter 7
Analysis

This section focuses on the analysis of the appropriate neural network for the
fMoW dataset, based on conducted experiments (Chapter 6).

7.1 Finding right CNN architecture

Figure 7.1: EfficientNet comparsion with different NN techniques on
ImageNet[15] dataset, adopted from [41]

The experiments with the UMAP method conducted on the fMoW dataset,
indicate the emerging classification in relation to increasing dataset resolution.
This leads to the conclusion, that maximization of possible dataset resolution
results in favor of using the deeper pattern in data.
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7. Analysis .......................................
Due to the limited computing power of test PC 5.1, a possible suitable

architecture must have as few number of parameters as possible. A short
search on the internet for CNN architectures shows EfficientNet state of art
neural network from the year 2019 [41] as a very promising choice.

After a deeper look at the comparison with other competing CNN archi-
tectures on Imagenet[15] dataset, which coincidentally loosely matched with
architectures (Figure 7.1) used in winning solutions of IARPA challenge. This
makes use of EfficientNet even more exciting and interesting for this work.

7.2 Basic description of EfficientNet

EfficientNet is essentially a model with the CNN compound scaling method,
which uniformly scale width, depth all CNN layers, and resolution of each
layer.

Basic building blocks (Figure 7.2) and modules (Figure 7.3) for layers in
EfficientNet contained convolutional layers, pooling, batch normalization,
rescaling, and dropout.

Figure 7.2: Stem and Final layers of EfficientNet, adopted from [3]

With these building blocks is then built whole EfficientNet network model,
which has overall 8 versions, differentiated by different dimensional data input
(Table 7.1).
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............................ 7.2. Basic description of EfficientNet

Figure 7.3: Module types of EfficientNet, adopted from [3]

Base model Resolution
EfficientNetB0 224
EfficientNetB1 240
EfficientNetB2 260
EfficientNetB3 300
EfficientNetB4 380
EfficientNetB5 456
EfficientNetB6 528
EfficientNetB7 600
Table 7.1: EfficientNet base models
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7. Analysis .......................................

Figure 7.4: Layers layout of type B0 of EfficientNet, adopted from [3]

The most suitable choice from EfficientNet base models seems to be Effi-
cientNet version B0 with the lowest input resolution 224x224.

Because of the lowest number of parameters, input resolution size, and
decent accuracy (Figure 7.1).
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Chapter 8
Implementation

This section focuses on implementation of chosen neural network architecture
in the analysis (Chapter 7).

8.1 Dimension reduction

The implementation of dimension reduction algorithm UMAP in a function.
def generate_umap_graph ( dataset_name , data , labels , r_state =42

, n_ngb=15 , m_dst=0.1, metric ="
euclidean ",

is_supervised =False , structure_name ="umap"):

if is_supervised :
file_string = path_graphs + " graphs /" + structure_name + "/"

+ dataset_name + "/" + "
supervised /" +\

structure_name + "_" + dataset_name + " _n_neighbors =" + str(
n_ngb) + " _min_dist =" + str(
m_dst)\

+ " _metric =" + str( metric ) + graph_format
else:

file_string = path_graphs + " graphs /" + structure_name + "/"
+ dataset_name + "/" + "

unsupervised /" +\
structure_name + "_" + dataset_name + " _n_neighbors =" + str(

n_ngb) + " _min_dist =" + str(
m_dst)\

+ " _metric =" + str( metric ) + graph_format

if os.path. isfile ( file_string ):
print("File already exist: "+ file_string )
return

reducer = umap.UMAP( random_state =r_state , n_neighbors =n_ngb ,
min_dist =m_dst , metric = metric )
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8. Implementation....................................
if is_supervised :

embedding = reducer . fit_transform (data , y= labels )
else:

embedding = reducer . fit_transform (data)

sns.set( context ="paper", style="white")

fig , ax = plt. subplots ( figsize =(12 , 10))
plt. scatter (
embedding [:, 0], embedding [:, 1], c=labels , cmap=" Spectral ",

s=0.1
)
plt.setp(ax , xticks =[], yticks =[])
plt.axis("off")

fig. savefig (
file_string ,
bbox_inches ="tight")

plt.close(fig)

print ("UMAP plot saved as " + file_string )

return
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..................................... 8.2. EfficientNet

8.2 EfficientNet

The implementation of EfficientNet is done through EfficientNet Keras python
library[50], which worked better than direct import from the TensorFlow.
Import error is probably caused by incompatible version, at the time of
writing this work.

def get_model_effnetB0 ( input_shape , num_classes ):
inputs = keras.Input(shape= input_shape )
outputs = efn. EfficientNetB0 ( include_top =True , weights =None ,

classes = num_classes )( inputs )

model = keras.Model(inputs , outputs )
model. compile (

optimizer ="adam",
loss=" categorical_crossentropy ",
metrics =[" accuracy "]

)
return model

The model is trained without pre-trained weights, with default settings con-
taining adam as an optimizer, categorical_crossentropy as loss, and accuracy
as a metric.

Before the fMoW dataset can be used for neural networks, it is necessary
to normalize data to specific data shapes. The array of image RGB pixels
in N format need to reshaped into (X, Y, 3) shape (final number 3 indicates
RGB layers in color images). Each image label then needs to be translated
from one number representing the position of a specific class in classes array
to new label array with a length of classes array and number 1 in the previous
position of classes array.

def __normalized_thread (self , data_normalized , data ,
labels_normalized , labels , i):

data_normalized [i] = np. reshape (data[i] / 255 , (self.
image_size , self.image_size , 3),

order="F")
labels_normalized [i][ labels [i]] = 1
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8. Implementation....................................

(a) : network script

(b) : fMoW envelope object

Figure 8.1: Workflow diagrams
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Chapter 9
Results

This section focused on description of results from implemented (Chapter 8)
neural network.

Figure 9.1: Training of fMoW dataset on EfficientNet B0 neural network

As can be seen in model accuracy graph (Figure 9.1) training the fMoW
train dataset on the EfficientNet B0 base model after 10 epochs is stuck on
approximately 50% accuracy metric. Training was set to only 10 epochs,
because a very long computing time per epoch. With data memory maps
saved, on HDD time per epoch is 3 hours and with SSD it is 1 hour per epoch.
Which makes training of 10 epochs 20 hours computing task.

Test l o s s : 2 .674571652876387
Test accuracy : 0.4991421699523926
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9. Results .......................................
The confusion matrix (Figure 9.2) is 2D grid with each point representing

amount of right prediction. Each axis has 62 steps for each class. Only 2
classes were easily predictable, classification report (Table 9.1) contains the
more fine analysis of the same data. This can probably indicates implicates
deeper issues in the chosen model, which can really generalize the fMoW
dataset. Due to limited HW capabilities, a bigger and deeper version of
EfficientNet was not trained and tested.

Figure 9.2: Confusion matrix

The more detailed analysis of the confusion matrix is in the classification
report (Table 9.1). Precision metric means how many percent was correct,
the lowest precise class is office_building and the highest precise class is
space_facility. The recall metric means how many positive cases were caught,
the lowest recall class is construction_site and the highest recall classes are
crop_field and port. The F1-score metric means how many positive cases
were correct, the class with the lowest F1-score is construction_site and the
classes with highest F1-score are crop_field and wind_farm. The support
metric means how many samples of that specific class is in the test dataset.

TN = True Negative TP = TruePositive

FN = False Negative FP = False Positive
Precision = TP/(TP + FP) Recall = TP/(TP+FN)
F1_score = 2*(Recall * Precision) / (Recall + Precision)
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........................................ 9. Results

Classes Precision Recall f1-score Support
airport 0.64 0.70 0.67 226
airport_hangar 0.62 0.40 0.49 703
airport_terminal 0.60 0.62 0.61 597
amusement_park 0.77 0.68 0.72 827
aquaculture 0.65 0.74 0.69 243
archaeological_site 0.34 0.20 0.25 372
barn 0.41 0.54 0.47 840
border_checkpoint 0.34 0.25 0.29 247
burial_site 0.35 0.46 0.40 626
car_dealership 0.48 0.49 0.48 781
construction_site 0.14 0.07 0.09 502
crop_field 0.81 0.83 0.82 3607
dam 0.70 0.78 0.74 603
debris_or_rubble 0.17 0.07 0.10 335
educational_institution 0.29 0.14 0.19 1668
electric_substation 0.40 0.53 0.45 860
factory_or_powerplant 0.32 0.19 0.24 547
fire_station 0.14 0.23 0.18 736
flooded_road 0.35 0.35 0.35 326
fountain 0.39 0.35 0.37 852
gas_station 0.27 0.27 0.27 787
golf_course 0.84 0.42 0.56 567
ground_transportation_station 0.46 0.40 0.43 1535
helipad 0.32 0.39 0.35 720
hospital 0.16 0.16 0.16 778
interchange 0.63 0.72 0.67 570
lake_or_pond 0.54 0.31 0.40 105
lighthouse 0.64 0.65 0.64 499
military_facility 0.37 0.36 0.36 1961
multi-unit_residential 0.32 0.27 0.30 1182
nuclear_powerplant 0.25 0.22 0.23 32
office_building 0.04 0.03 0.03 819
oil_or_gas_facility 0.53 0.54 0.54 642
park 0.35 0.40 0.37 723
parking_lot_or_garage 0.29 0.40 0.34 1950
place_of_worship 0.40 0.46 0.42 2913
police_station 0.10 0.14 0.11 770
port 0.69 0.83 0.75 266
prison 0.44 0.34 0.38 637
race_track 0.51 0.53 0.52 845
railway_bridge 0.48 0.67 0.56 702
recreational_facility 0.75 0.71 0.73 4231
impoverished_settlement 0.91 0.55 0.69 193
road_bridge 0.65 0.55 0.60 804
runway 0.86 0.64 0.73 374
shipyard 0.37 0.25 0.30 76
shopping_mall 0.47 0.38 0.42 901
single-unit_residential 0.48 0.53 0.50 1689
smokestack 0.43 0.36 0.39 661
solar_farm 0.68 0.66 0.67 632
space_facility 0.93 0.61 0.74 44
stadium 0.76 0.72 0.74 865
storage_tank 0.65 0.78 0.71 839
surface_mine 0.54 0.61 0.57 746
swimming_pool 0.70 0.68 0.69 1287
toll_booth 0.78 0.66 0.72 831
tower 0.40 0.37 0.39 1056
tunnel_opening 0.75 0.76 0.76 940
waste_disposal 0.23 0.37 0.28 616
water_treatment_facility 0.52 0.55 0.54 746
wind_farm 0.87 0.78 0.82 765
zoo 0.25 0.17 0.20 244
Accuracy 0.50 53041
Macro avg 0.49 0.46 0.47 53041
Weighted avg 0.51 0.50 0.50 53041

Table 9.1: Classification Report
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Chapter 10
Conclusions

This section focuses on discussion about results (Chapter 9) from implemented
(Chapter 8) neural network and possible future use or work over this topic.

10.1 Conclusion

The following 4 paragraphs represent analysis of 4 points from the assignment
of this work.

The current state of the art solutions of dimension reduction is explored
from a theory perspective in Theory chapter 3 and from practical use in
Experiments evaluation chapter 6. The current state of the art solutions of
deep learning algorithms is applied partly in one solution within Analysis
chapter 7.

The fMoW dataset is explored using the UMAP in Experiments evaluation
chapter 6. During exploration was found, that with increasing the fMoW
dataset resolution of images, increased UMAP performance in differentiating
data by class. The resolution of the dataset is limited by increasing memory
requirements, for the biggest resolutions were SSD used as virtual operational
memory. Because of these limitations, experiments with UMAP alone were
limited to 75x75 image resolution. The PCA in combination with UMAP
reduced memory requirements so much, that 100x100 image resolution was
used, but results were worse than without PCA so further fine-tuning of
parameters is needed. The UMAP supervised mode with fMoW dataset was
also explored, but it had no real desired results.

The new solution to the fMoW dataset in Python using TensorFlow [1]
framework is implemented in Implementation chapter 8, but due to solution
using CNN compound scaling method and predefined layout the solution is
not designed.

The new solution to the fMoW dataset has approximately 50% success
rate with accuracy as performance metric which is inadequate, and cannot
be compared to other state-of-the-art solutions of the fMoW dataset, due to
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10. Conclusions.....................................
the different and unknown scoring rules on topcoder.com site referenced from
IARPA challenge[21]. The confusion matrix (Figure 9.2) and classification
report (Table 9.1) is in the Results9 chapter, with more in depth class analysis
on the test dataset of fMoW dataset.

10.2 Future work

For the future work continuing in these steps, would be advisable to have
bigger parameters scope for Dimensionality reduction algorithms, and with
the help of better HW equipment train bigger EfficientNet models on more
epochs. The use of cloud computing or other similarly powerful method is well
recommended. The UMAP method with big dataset like the fMoW datasets
has also increasing HW requirements. During the time of experimentation
with UMAP, multicore parallel version was not available, if in the future
parallelized version will be available, run time can be better.
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Appendix A
Dictionary

A.1 HW Terminology

CPU Central Processing Unit
GPU Graphics Processing Unit
RAM Random Access Memory
SSD Solid State Drive

HDD Hard Disk Drive
CD Compact Disk

RGB Red Green Blue

A.2 Dimensionality reduction terminology

PCA Principal Component Analysis
t-SNE t-distributed stochastic neighbour embedding
UMAP Uniform Manifold Approximation and Projection for Dimension Reduction
MNIST Modified National Institute of Standards and Technology
CIFAR Canadian Institute For Advanced Research
fMoW Functional Map of the World

A.3 AI and SW terminology

AI Artificial Intelligence
NN Neural Network

ANN Artificial Neural Network
CNN Convolutional Neural Network

JSON JavaScript Object Notation
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Appendix B
Tree of CD directories

CD
dim-reduce-generator

data
dataset_preview.py
datasets.py

graph_algortihms
compare_graphs.py
generate_graph_pca.py
generate_graph_pca_tsne.py
generate_graph_pca_umap.py
generate_graph_tsne.py
generate_graph_umap.py

conda_env.yml
params.py

fmow-solution
data

fmow.py
network

network.py
weights

conda_env.yml
params.py

graphs-cifar10
umap_cifar-10_plot_metric=correlation.png
umap_cifar-10_plot_metric=euclidean.png

graphs-cifar100
umap_cifar-100_plot_metric=correlation.png
umap_cifar-100_plot_metric=euclidean.png

graphs-fashion-mnist
umap_fashion-mnist_plot_metric=euclidean.png

graphs-mnist
umap_mnist_plot_metric=euclidean.png

graphs-comparisons
...
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