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Abstract 

PUZANKOVA, Anastasiia: HPC technologies for simulation of diffraction of electromagnetic waves by 

spherical obstacles. [Master’s  Thesis] – Czech Technical University in Prague. Faculty of Electrical 

Engineering, Department of Computer Science. Supervisor: Ing. Miroslav Bureš, Ph.D.

Various real objects are well approximated by spherical bodies. Maxwell's equations, in turn, are also one 

of the fundamental in physics, as they are used in a huge range of applied problems The problem of 

diffraction of electromagnetic waves by a sphere plays an essential role in the theory of wave propagation 

along the Earth's surface. The problem of diffraction of an electromagnetic wave by a sphere is a key 

problem in electrodynamics. A system of equations that describes the diffraction of an incident plane 

electromagnetic wave on a spherical surface of a given radius was obtained. In this work general solution 

to the Maxwell equations in spherical coordinates is implemented. Several different versions of the 

numerical solution were implemented using parallel technologies. Experiments were carried out, results 

obtained and analyzed.

Keywords: diffraction problems, parallel algorithms, high-performance computing, algorithms 

optimization
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Chapter 1: Introduction 

1.1. Problem description 

Various real objects are well approximated by spherical bodies. There is a large number of  works 
devoted to the study of  wave diffraction by spherical bodies. In particular, electromagnetic waves are 
considered. 

Maxwell's equations, in turn, are also one of  the fundamental in physics, as they are used in a huge 
range of  applied problems, such as plasma acceleration and photonic crystals. 

In this regard, boundary value problems for Maxwell's equations in spherical coordinates arise in 
various fields of  physics [1]. The classical problem is the diffraction of  a plane electromagnetic wave by a 
uniform sphere of  arbitrary size. The theory of  Mie, developed by G. Mie back in 1908, is devoted to it. 
This theory is widely used today. 

The problem of  diffraction of  electromagnetic waves by a sphere plays an essential role in the 
theory of  wave propagation along the Earth's surface [2]. At present, there is great interest in the 
problems of  the synthesis of  spherical antennas and in the problems of  scattering of  the electromagnetic 
field by biological objects [3]. 

The problem of  diffraction of  an electromagnetic wave by a sphere is a key problem in 
electrodynamics [4]. An analytical solution to this problem in the form of  a series of  spherical harmonics 
can be found in the book [5]. Specific solutions of  Maxwell's equations can be obtained by the method of  
separation of  variables after passing to the equations for Debye potentials or Hertz vectors [4]. 

Parallel algorithms and technologies are widely used in solving various problems of  
electrodynamics. Similar algorithms can be used to speed up the computation of  various parts of  the 
problem solution. The algorithm can be used to calculate the matrix elements for the numerical solution 
of  the diffraction problem on flat screens by the Rao-Wilton-Glisson method [6]. When solving the 
diffraction problem, parallel calculations can be applied to calculate auxiliary integrals over a spherical 
screen [7]. The problem of  diffraction on a conducting screen can be reduced to solving a 
pseudodifferential equation, the numerical method of  solving which is implemented using parallel 
computations [8, 9]. 

In this work, the general representation of  the electromagnetic field in spherical coordinates is built 
directly on the basis of  the analysis of  the Maxwell system of  equations. And parallel computations are 
used to calculate the expansion coefficients of  the components of  the electromagnetic field. 

The aim of  this work is to develop a set of  programs that simulate the problem of  diffraction of  a 
plane electromagnetic wave by a spherical surface using various parallel programming technologies and 
select the most efficient program. 

To achieve this goal, this work solves the following tasks: 

– study of  existing approaches to solving the problem of  diffraction of  electromagnetic waves; 

– study of  various technologies of  parallel computing, as well as the possibility of  their application 
for solving diffraction problems 

– obtaining a system of  equations describing the diffraction of  an incident plane electromagnetic 
wave onto a spherical surface of  a given radius; 
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– transformation of  the resulting system and obtaining expressions for calculating the expansion 
coefficients of  the components of  the electromagnetic field; 

– implementation of  a numerical solution, calculation of  decomposition components; 

– implementation of  several different versions of  a numerical solution using parallel computing 
technologies; 

– computational experiments. 

1.2. Thesis organization 

The Master's Thesis consists of  an introduction, problem statement, theoretical, algorithmic, and 
practical chapters and a conclusion. 

The first chapter gives a brief  overview of  existing methods and approaches to the  considering 
problem. 

The second chapter provides detailed statement of  the problem of  electromagnetic wave diffraction 
by spherical surface. This chapter provides all the necessary theoretical information regarding the 
considered problem. 

The third chapter describes as complete as possible analytical solution of  considered problem 
representing the considered system of  equations. 

The fourth chapter contains a description of  the development process together with the 
optimizations and decisions made and the description of  developed software. 

The fifth chapter contains a description of  the results obtained. 

The sixth chapter contains conclusions, conclusions and a description of  possible future work. 
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Chapter 2: Problem and tasks statement 
This work considers the spherical surface and the plane electromagnetic wave incident on this 

surface. This work addresses the problem of  electromagnetic wave diffraction by spherical surface in the 
spherical coordinates . 

 

Figure 1 – Model of  the spherical surface with incident wave 

The spherical surface with the radius  splits the space into two parts (Figure 1): the interior of  
the sphere ( ) and the exterior of  the sphere ( ).  

For the description of  waves uses a second-order linear partial differential equation – the wave 
equation (1), which has the following form: 

where  – Laplace operator, so 

The solution to this equation is in the form . And substituting it into equation 

(1) it turns out for an equation of  the form: 

where . This equation is called the Helmholtz equation. The fundamental solutions of  this 

equation are the Bessel functions in the one-dimensional case and the Hankel functions in the two-

dimensional case, respectively [10]. 

(r, θ, α)

r = R

r < R r > R

Δ

(1),
∂2U
∂t2

= v2ΔU

.ΔU =
∂2U
∂x2

+
∂2U
∂y2

+
∂2U
∂z2

U = e−iwtV(x, y, z)

k2 =
ω2

a2

,ΔV + k2V = 0
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2.1. Plane wave 

A plane wave is a wave whose front is flat (plane). The surface of  the constant phase is called the 
wave surface, or the wave front, in this case, the wave by the shape of  the wave front is called plane (there 
are also spherical, cylindrical, and other waves). The plane wave front is unlimited in size, the phase 
velocity vector is perpendicular to the front. So a plane wave is a special case of  wave: a physical quantity 
whose value, at any moment, is constant over any plane that is perpendicular to a fixed direction in space 
(Figure 2). 

The equation of  any wave is a solution to a differential equation called the wave equation (1). A 
plane wave is a particular solution of  the wave equation and a convenient theoretical model [14]. 

A plane wave is described by the following equation: 

where  – wave amplitude. 

 

Figure 2 – Model of  a plane wave 

The book [11] contains a derivation of  the expansion of  a plane wave in terms of  Legendre 
polynomials. This expansion has the following form 

where  – Bessel functions of  the first kind,  – Legendre polynomials. 

Thus, the expansion of  a plane wave in Legendre polynomials does not contain the associated 
Legendre polynomials [12] A plane electromagnetic wave irradiating a sphere can be thought of  as a 
superposition of  spherical waves emerging from the center of  the sphere. 

A0

,A(z) = A0eikz

jn( ⋅ ) Pn(cos θ )

(2),eikz = eikr cos θ =
∞

∑
n=0

in(2n + 1)jn(kr)Pn(cos θ )
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2.2. Electromagnetic field 

Maxwell equations set is a system of  equations in differential or integral form describing the 
electromagnetic field. This system has different forms of  representation. This work considers two Maxwell 
equations (3) for the complex amplitudes of  the harmonic electromagnetic field in the: 

in spherical coordinates (the time dependence has the form ). 

The  is the vector operator also known as , where  is a vector field. The  could be 

defined as following: , where  is a vector differential operator, such as 

. 

Considering that this work operates with the spherical coordinates, the set of  equations (3) could be 
written in the coordinate form in the following way: 

The spherical functions  form a complete orthogonal system of  

functions on the sphere, where ,  – associated Legendre 

polynomials. 

Denote , , besides, here and below, for the briefness of  

notation, the value m is reduced. 

Fourier coefficients of  the functions  in the series of  the following form: 

 are solutions of  the set of  equations: 

eiωt

(3).rot E = − iωμ0μH

,rot H = iωε0εE

rot F curl F F rot F

rot F ≡ ∇ × F ∇

∇ = ( ∂
∂x

,
∂

∂y
,

∂
∂z )

,
1
r

∂(rHθ)
∂r

−
1
r

∂Hr

∂θ
= iωε0εEα

,
1

r sin θ
∂(sin θ ⋅ Hα)

∂θ
−

1
r sin θ

∂Hθ

∂α
= iωε0εEr

,
1

r sin θ
∂(sin θ ⋅ Eα)

∂θ
−

1
r sin θ

∂Eθ

∂α
= − iωμ0μHr

,
1

r sin θ
∂Er

∂α
−

1
r

∂(rEα)
∂r

= − iωμ0μHθ

.
1
r

∂(rEθ)
∂r

−
1
r

∂Er

∂θ
= − iωμ0μHα

,
1

r sin θ
∂Hr

∂α
−

1
r

∂(rHα)
∂r

= iωε0εEθ

Sn,m(θ, α) = P(m)
n (cos θ )eimα

m = 0, ± 1,..., n = |m | , |m | + 1,... P(m)
n ( ⋅ )

φn(θ ) = P(m)
n (cos θ ) n = |m | , |m | + 1,...

Er, Eθ, Eα, Hr, Hθ, Hα

A(r, θ, α) =
+∞

∑
m=−∞

Am(r, θ )eimα

,
∂(sin θ ⋅ Hα)

∂θ
− im Hθ = iωε0εr sin θ ⋅ Er
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The general solution of  the set of  equations (4) in the case when  has the following form (The 
more detailed solution could be found in [1]): 

(4)

,
∂(sin θ ⋅ Eα)

∂θ
− im Eθ = − iωμ0μr sin θ ⋅ Hr

,
∂(rHθ)

∂r
−

∂Hr

∂θ
= iωε0εr ⋅ Eα

,im Er − sin θ
∂(rEα)

∂r
= − iωμ0μr sin θ ⋅ Hθ

.
∂(rEθ)

∂r
−

∂Er

∂θ
= − iωμ0μrHα

,im Hr − sin θ
∂(rHα)

∂r
= iωε0εr sin θ ⋅ Eθ

m ≠ 0

(5)

,Hr(r, θ ) =
1

im

+∞

∑
n=|m|

n(n + 1)
r

[anζ(1)
n (kr) + bnζ(2)

n (kr)]φn(θ )

 

,

Eα(r, θ ) =
ωμ0μ

m

+∞

∑
n=|m|

[anζ(1)
n (kr) + bnζ(2)

n (kr)]φ′ n(θ ) +

+
1

sin θ

+∞

∑
n=|m|

[cn
1
r

d
dr

(rζ(1)
n (kr)) + dn

1
r

d
dr

(rζ(2)
n (kr))] φn(θ )

 

,

Eθ(r, θ ) = −
iωμ0μ
sin θ

+∞

∑
n=|m|

[anζ(1)
n (kr) + bnζ(2)

n (kr)] φn(θ ) +

+
1

im

+∞

∑
n=|m|

[cn
1
r

d
dr

(rζ(1)
n (kr)) + dn

1
r

d
dr

(rζ(2)
n (kr))] φ′ n(θ )

,Er(r, θ ) =
1

im

+∞

∑
n=|m|

n(n + 1)
r [cnζ(1)

n (kr) + dnζ(2)
n (kr)] φn(θ )

 

,

Hθ(r, θ ) = −
iωε0ε
sin θ

+∞

∑
n=|m|

[cnζ(1)
n (kr) + dnζ(2)

n (kr)]φn(θ ) +

+
1

im

+∞

∑
n=|m|

[an
1
r

d
dr

(rζ(1)
n (kr)) + bn

1
r

d
dr

(rζ(2)
n (kr))] φ′ n(θ )
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where  – spherical Hankel functions of  the first and second kind, 

respectively (spherical Bessel functions of  the third kind),  – Hankel functions, and  –are 

arbitrary constants. 

In the particular case when , the system (4) splits into 2 independent systems of  equations and 
the general solution is the following (the derivation of  the solution is also considered in more detail in [1]): 

where  – spherical Hankel functions of  the first and second kind, 

respectively (spherical Bessel functions of  the third kind),  – Hankel functions, and  –are 

arbitrary constants. 

The general solution of  the Maxwell set of  equations (4) in the spherical coordinates has the 
following form: 

ζ( j)
n (z) =

π
2z

H ( j)
n+ 1

2
(z), j = 1,2

H ( j)
n an, bn, cn, dn

 

,

Hα(r, θ ) = −
ωε0ε

m

+∞

∑
n=|m|

[cnζ(1)
n (kr) + dnζ(2)

n (kr)]φ′ n(θ ) +

+
1

sin θ

+∞

∑
n=|m|

[an
1
r

d
dr

(rζ(1)
n (kr)) + bn

1
r

d
dr

(rζ(2)
n (kr))] φn(θ )

m = 0

ζ( j)
n (z) =

π
2z

H ( j)
n+ 1

2
(z), j = 1,2

H ( j)
n an, bn, cn, dn

,Eα(r, θ ) = iωμ0μ
+∞

∑
n=1

[anζ(1)
n (kr) + bnζ(2)

n (kr)]φ′ (θ )

,Hr(r, θ ) =
+∞

∑
n=1

n(n + 1)
r [anζ(1)

n (kr) + bnζ(2)
n (kr)] φ(θ )

,Hα(r, θ ) = − iωε0ε
+∞

∑
n=1

[cnζ(1)
n (kr) + dnζ(2)

n (kr)] φ′ (θ )

,Hθ(r, θ ) =
+∞

∑
n=1

[an
1
r

d
dr (rζ(1)

n (kr)) + bn
1
r

d
dr (rζ(2)

n (kr))] φ′ (θ )

,Er(r, θ ) =
+∞

∑
n=1

n(n + 1)
r [cnζ(1)

n (kr) + dnζ(2)
n (kr)] φ(θ )

,Eθ(r, θ ) =
+∞

∑
n=1

[cn
1
r

d
dr (rζ(1)

n (kr)) + dn
1
r

d
dr (rζ(2)

n (kr))] φ′ (θ )

(6)
,E(r, θ, α) =

+∞

∑
m=−∞

Em(r, θ )eimα

.H(r, θ, α) =
+∞

∑
m=−∞

Hm(r, θ )eimα
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where the components of  vector-functions  and  are 

defined by formulas (5). 

2.3. Boundary value problem 

Boundary conditions for an electromagnetic field are conditions that connect the values of  the 
intensities and inductions of  magnetic and electric fields on opposite sides of  surfaces characterized by a 
certain surface density of  electric charge and electric current. 

When a solution in a finite volume is considered, it is necessary to take into account the conditions 
at the boundaries of  the body with the surrounding infinite space. The boundary conditions are obtained 
from Maxwell's equations by passing to the limit. In cases where there is a boundary between two regions 
of  space, it is necessary to take into account that the tangential components of  the vectors of  the electric 
and magnetic fields  and  must be continuous. 

In this work, the latitude  and the longitude  are considered as the tangential variables. 

The solution of  the Maxwell set equations can be determined uniquely when considered the 
tangential components of  the vectors  and  on the sphere. 

A solution to the Maxwell set equations is called positively oriented if  the representation (6) consists 
of  summands with Hankel functions of  the second kind only ( ). A solution is called 
negatively oriented if  the representation (6) consists of  summands with Hankel functions of  the first kind 
only ( ). The sum of  two oppositely oriented solutions is a non-oriented solution. 

The boundary value problem for the system of  Maxwell equations in coordinate form is divided 
into an infinite set of  boundary value problems for the system of  equations (4). 

2.3.1. Exterior boundary value problem 

The tangential components of  vectors  and , such as  in 

the case of  a positively oriented solution and  have the following form: 

In the case when  the tangential components of  vectors  and  of  a positively oriented 
solution have the following form: 

Em = (Em,r, Em,θ, Em,α) Hm = (Hm,r, Hm,θ, Hm,α)

E H

θ α

E H

an = 0, cn = 0 ∀n

bn = 0, dn = 0 ∀n

E H Eθ(r, θ ), Eα(r, θ ), Hθ(r, θ ), Hα(r, θ )

m = 0

.Hα(r, θ ) = − iωε0ε
+∞

∑
n=1

dnζ(2)
n (kr)φ′ n(θ )

,Eθ(r, θ ) =
+∞

∑
n=1

dn
1
r

d
dr (rζ(2)

n (kr)) φ′ n(θ )

,Eα(r, θ ) = iωμ0μ
+∞

∑
n=1

bnζ(2)
n (kr)φ′ n(θ )

,Hθ(r, θ ) =
+∞

∑
n=1

bn
1
r

d
dr (rζ(2)

n (kr)) φ′ n(θ )

m ≠ 0 E H

,Eθ(r, θ ) = −
iωμ0μ
sin θ

+∞

∑
n=|m|

bnζ(2)
n (kr)φn(θ ) +

1
im

+∞

∑
n=|m|

dn
1
r

d
dr

(rζ(2)
n (kr))φ′ n(θ )
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where  – spherical Hankel functions of  the first and second kind, 

respectively (spherical Bessel functions of  the third kind),  – Hankel functions, and  –are 

arbitrary constants. This solution in the detail could be found in [1]. 

2.3.2. Interior boundary value problem 

If  there are no sources of  the electromagnetic field inside the sphere, then the class of  solutions 
must be changed. The coefficients in front of  the Hankel functions of  various kinds should be the same, 
since if  the term oriented in one way brings energy to the sphere, then the term oriented in a different 
way takes this energy from the sphere. In this case, only Bessel functions are used in the general solution 
and in each particular solution. 

The tangential components  of  vectors  and  in the 

center of  the sphere in the case when  have the following form: 

where  – spherical Bessel function of  the first kind and  – Bessel function of  the 

first kind respectively. 

In the case when  he tangential components  of  

vectors  and  o have the following form: 

ζ( j)
n (z) =

π
2z

H ( j)
n+ 1

2
(z), j = 1,2

H ( j)
n an, bn, cn, dn

(7)

,Hθ(r, θ ) =
1

im

+∞

∑
n=|m|

bn
1
r

d
dr (rζ(2)

n (kr)) φ′ n(θ ) +
iωε0ε
sin θ

+∞

∑
n=|m|

dnζ(2)
n (kr)φn(θ )

,Eα(r, θ ) =
ωμ0μ

m

+∞

∑
n=|m|

bnζ(2)
n (kr)φ′ n(θ ) +

1
sin θ

+∞

∑
n=|m|

dn
1
r

d
dr

(rζ(2)
n (kr))φn(θ )

.Hα(r, θ ) =
1

sin θ

+∞

∑
n=|m|

bn
1
r

d
dr (rζ(2)

n (kr)) φn(θ ) −
ωε0ε

m

+∞

∑
n=|m|

dnζ(2)
n (kr)φ′ n(θ )

Eθ(r, θ ), Eα(r, θ ), Hθ(r, θ ), Hα(r, θ ) E H

m = 0

jn(z) =
π
2z

Jn+ 1
2
(z) Jn

,Eθ(r, θ ) =
+∞

∑
n=1

cn
1
r

d
dr (r jn(kr)) φ′ (θ )

,Hα(r, θ ) = − iωε0ε
+∞

∑
n=1

cn jn(kr)φ′ (θ )

,Eα(r, θ ) = iωμ0μ
+∞

∑
n=1

an jn(kr)φ′ (θ )

,Hθ(r, θ ) =
+∞

∑
n=1

an
1
r

d
dr (r jn(kr)) φ′ (θ )

m ≠ 0 Eθ(r, θ ), Eα(r, θ ), Hθ(r, θ ), Hα(r, θ )
E H

,Eθ(r, θ ) = −
iωμ0μ
sin θ

+∞

∑
n=|m|

an jn(kr)φn(θ ) +
1

im

+∞

∑
n=|m|

cn
1
r

d
dr

(rζ(1)
n (kr))φ′ n(θ )
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where  – spherical Bessel function of  the first kind and  – Bessel function of  the 

first kind respectively. 

2.4. Incident wave 

In the considered formulation of  the problem, an electromagnetic wave falls on the surface of  the 
sphere. It is necessary to find the electromagnetic field generated as a result of  the diffraction of  this wave, 
namely, a negatively oriented wave inside the surface of  the sphere and positively oriented outside the 
sphere. 

As the notation for the dielectric constant and the wavenumber inside and outside the sphere used 

 respectively. 

This work considers the tangential components of  the vectors  and  of  the incident wave in the 
case when : 

And tangential components of  the vectors  and  of  the incident wave in the case when , 

respectively: 

jn(z) =
π
2z

Jn+ 1
2
(z) Jn

(8)
,Eα(r, θ ) =

ωμ0μ
m

+∞

∑
n=|m|

an jn(kr)φ′ n(θ ) +
1

sin θ

+∞

∑
n=|m|

cn
1
r

d
dr

(r jn(kr))φn(θ )

,Hθ(r, θ ) =
1

im

+∞

∑
n=|m|

an
1
r

d
dr

(r jn(kr))φ′ n(θ ) +
iωε0ε
sin θ

+∞

∑
n=|m|

cn jn(kr)φn(θ )

,Hα(r, θ ) =
1

sin θ

+∞

∑
n=|m|

an
1
r

d
dr

(r jn(kr))φn(θ ) −
ωε0ε

m

+∞

∑
n=|m|

cn jn(kr)φ′ n(θ )

ε+, k+, ε−, k−

E H
m = 0

(9)

,E0
θ (r, θ ) =

+∞

∑
n=1

c0
n

1
r

d
dr (rζ(1)

n (k+r)) φ′ (θ )

,E0
α(r, θ ) = iωμ0μ

+∞

∑
n=1

a0
n ζ(1)

n (k+r)φ′ (θ )

,H 0
θ (r, θ ) =

+∞

∑
n=1

a0
n

1
r

d
dr (rζ(1)

n (k+r)) φ′ (θ )

.H 0
α(r, θ ) = − iωε0ε+

+∞

∑
n=1

c0
n ζ(1)

n (k+r)φ′ (θ )

E H m ≠ 0

(10)
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sin θ
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This work considers the plane electromagnetic wave incident on the spherical surface with the 
radius . Regarding this and the fact that in the expansion (2) does not contain the associated 
Legendre polynomials, the tangential components (9,10) of  the vectors  and  of  the incident wave will 
contain only the summands with  and . 

2.5. Bessel functions 

Bessel functions are a family of  functions that are canonical solutions of  the Bessel differential 
equation: 

where  – an arbitrary number called the order[15]. 

Bessel functions of  the first kind, denoted by , are solutions that are finite at the point . It 

is possible to define these functions using the Taylor series expansion [15]: 

where  – Euler’s Gamma function. 

Bessel functions of  the second kind, also called Neumann functions, are solutions  of  the 

Bessel equation, infinite at the point , they are also related by a relation with Bessel functions of  the 
first kind [15]: 

2.5.1. Spherical Bessel functions 

The spherical Bessel functions of  the first and second kind (  and ) are related to the 

ordinary Bessel  and Neumann  functions by the following relations, according to 10.1.1 from 

[13]: 

.H 0
α(r, θ ) =

1
sin θ

+∞

∑
n=|m|

a0
n

1
r

d
dr

(rζ(1)
n (k+r))φn(θ ) −

ωε0ε+

m

+∞

∑
n=|m|

c0
n ζ(1)

n (k+r)φ′ n(θ )

H 0
θ (r, θ ) =

1
im

+∞

∑
n=|m|

a0
n

1
r

d
dr

(rζ(1)
n (k+r))φ′ n(θ ) +

iωε0ε+

sin θ

+∞

∑
n=|m|

c0
n ζ(1)

n (k+r)φn(θ )

r = R

E H
m = 1 m = − 1

α

,x2 d2y
d x2

+ x
d y
d x

+ (x2 − α2)y = 0

Jα(z) z = 0

Γ( ⋅ )

,Jα(z) =
∞

∑
m=0

(−1)m

m!Γ(m + α + 1) ( z
2 )

2m+α

Yα(z)
x = 0

.Yα(z) =
Jα(z)cos(απ) − J−α(z)

sin(απ)

jn(z) yn(z)
Jn(z) Yn(z)

,jn(z) =
π
2z

Jn+ 1
2
(z)

.yn(z) =
π
2z

Yn+ 1
2
(z)

12



2.5.2. Calculation methods of  spherical Bessel functions 

There are several ways to calculate spherical Bessel functions, in addition to using definition, in 
particular, there are generating functions, as well as the recurrence relation described in [14]: 

where  is a function that can take values of  , ,  and . 

Thus, this recurrence relation is valid for spherical Bessel functions of  the first and second kind, as 
well as for spherical Hankel functions of  the first and second kind. 

Let's perform some transformation on the recurrence relation given above: 

Thus, a recurrent formula for calculating spherical Bessel functions of  any order in terms of  its two 
previous values is obtained. In order to use it, it is necessary to calculate two initial values for these 
functions. 

There is an expression (in more details described in [14]) for the spherical Bessel functions in terms 
of  elementary functions. In particular, these expressions exist for functions with orders zero and one: 

Thus, any spherical Bessel function of  the first, second, and third kind of  any integer order can be 
numerically calculated using relations and initial values provided above. 

fn(z ) jn(z ) yn(z ) h (1)
n (z ) h (2)

n (z )

fn−1(z) + fn+1(z) =
(2n + 1)

z
fn(z),

.fn(z) =
(2n − 1)

z
fn−1(z) − fn−2(z)

,j0(z) =
sin z

z

,j1(z) =
sin z

z2
−

cos z
z

.y1(z) = −
cos z

z2
−

sin z
z

,y0(z) = −
cos z

z
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Chapter 3: Analytical solution 
This work considers two different cases of  the spherical surface. The dielectric surface and metal 

surface. Depending on it, there are two cases of  electromagnetic wave diffraction by the spherical surface. 
This work considers plane incident electromagnetic wave in the form (10). This work seeks the reflected 
wave in the form (7) and the wave in the region inside the sphere in the form (8), when it is relevant. 

3.1. The dielectric surface of  the sphere 

First let’s consider a case with dielectric spherical surface and plane electromagnetic wave incident 
to it. 

 

Figure 3 - The model of  diffraction in the case of  dielectric spherical surface 

In the case of  dielectric spherical surface the incident electromagnetic wave (electric and magnet 
components) should the sum of  reflected wave and wave in the region inside the sphere (Figure 3, please 
notice that the figure provides only schematic notation ). 

The tangential components of  electromagnetic wave have to be continuous on the spherical 
surface, regarding this let’s equate the tangential components of  the vectors  and  on the sphere 
( ) and will consider the fact that the incident wave will contain only the summands with  and 

. 

3.1.1. Derivation the equation set 

First let’s consider equations for one of  the components of  vector , for this equate corresponding 

components of  (7), (8) and (10): 

(11).H 0 = H− − H+

,E0 = E− − E+

E H

r = R m = 1

m = − 1

E

,E0
θ = E−

θ − E+
θ
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In this expansion in terms of  the associated Legendre polynomials (denoted as 

), the coefficients of  the corresponding function or its derivative must be equal, 

respectively, so this system  of   equations can be divided into two: 

Reduce the common coefficients and the functions  itself  and their derivatives: 

Now let’s consider another component of  vector , for this equate corresponding components of  
(7), (8) and (10), respectively: 

−
iωμ0μ
sin θ

+∞

∑
n=1
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im

+∞
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1
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+∞

∑
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R

d
dr

(rζ(2)
n (k+r))φ′ n(θ ) .

φn(θ ) = P(m)
n (cos θ )

n

,
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sin θ

+∞
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+∞
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sin θ

+∞

∑
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.

1
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+∞
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1
R

d
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1
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d
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−
1
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+∞

∑
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d
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n (k+r))φ′ n(θ )

φn(θ )

,a0
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n (k+R) = an jn(k−R) − bnζ(2)
n (k+R)

.c0
n

1
R

d
dr

(rζ(1)
n (k+r)) = cn

1
R

d
dr

(rζ(1)
n (k−r)) − dn

1
R

d
dr

(rζ(2)
n (k+r))

E

.

ωμ0μ
m

+∞

∑
n=|m|
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n ζ(1)

n (k+R)φ′ n(θ ) +
1

sin θ

+∞

∑
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1
R

d
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(rζ(1)
n (k+r))φn(θ ) =

=
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m

+∞

∑
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sin θ

+∞

∑
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1
R

d
dr
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+∞
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+∞
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,E0
α = E−

α − E+
α
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Perform similar transformations to split this system into two and reduce  the common coefficients 

and the functions  itself  and their derivatives: 

Thus, by consideration of  component  of  the vector , two similar duplicating equations were 
obtained. 

Now let’s consider the component  of  the vector : 

Similarly to the previous case with the vector , in this expansion in terms of  the associated 
Legendre polynomials the coefficients of  the corresponding function or its derivative must be equal, 
respectively, so this system  of   equations can be divided into two: 

Let’s reduce the common coefficients and the functions  itself  and their derivatives and write 
down the result. 

φn(θ )

(12)

,a0
n ζ(1)

n (k+R) = an jn(k−R) − bnζ(2)
n (k+R)

.c0
n

1
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d
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(rζ(1)
n (k+r)) = cn

1
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d
dr
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1
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d
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Eα E

Hθ H

,H 0
θ = H−

θ − H+
θ
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+∞

∑
n=1

bn
1
R

d
dr (rζ(2)

n (k+r)) φ′ n(θ ) −
iωε0ε+

sin θ

+∞
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d
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d
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1
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Consideration of   will get the duplicating equation set by this reason it is not provided in this 

work. 

The outcome of  performance under system (11) is two resulting systems (12) and (13) which is form 
an equation set for future consideration. 

Denote the following: 

where  is a function that can take values of   and , i.e. Bessel functions of  the first and third 

kind (Hankel functions). 

The result of  consideration of  continuity tangential components of  the vectors  and  on the 
sphere ( ) the following set of  equations was get: 

where  – spherical Hankel functions of  the first and second kind, respectively. 

3.1.2. Analytical solution of  the equation set in case dielectric surface 

This part of  the work considers analytical solution of  the equation set (15).  

FIrst lest change the notation for the spherical Hankel functions (Bessel functions of  the third kind) 
to more frequently used in these latter days: 

Applying this notation to the equation set (15), the result is the following: 

It is necessary to take into consideration this system with respect to unknown arbitrary constants 
. 

It is easy to see that in the system under consideration the equations are pairwise independent, i.e. 
each of  unknown arbitrary constants are only in two of  given equations, therefore let's consider them as 2 
independent systems of  2 equations: 

Hα

fn jn ζ(i)
n , i = 1,2

(14),{ fn}(k , R) =
1
R

d
dr (r fn(kr))

r=R

E H
r = R

ζ(i)
n , i = 1,2

(15)

,cn{jn}(k−, R) − dn{ζ(2)
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n{ζ(1)
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ζ(i)
n (z) = h (i)

n (z), i = 1,2

(16)

,an jn(k−R) − bnh (2)
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n h (1)
n (k+R)

.cn{jn}(k−, R) − dn{h (2)
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,ε−cn jn(k−R) − ε+dnh (2)
n (k+R) = ε+c0

n h (1)
n (k+R)

an, bn, cn, dn
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Let’s consider the first system firstly: 

The denotation (14) used here to short the system, but it makes it not perfectly clear. Let's reduce it 
and go back to the derivatives. To do so, let’s replace notation (14) with the complete form of  it and 
provide the whole system here: 

Now lets differentiate the second equation according to given formulas and after this let’s reduce the 

multiplicand : 

In the following step the formula 10.1.21 from the [13] considered and several transformations 
made of  it: 
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fn(z) = fn−1(z) −
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Thus, in the transformations above, a formula for differentiating the Bessel functions at the point is 
obtained: 

Let’s use this formula (18) to perform transformations under the second equation in the equation set 

(17) and represent it as a equation without derivatives in it: 

Subtract the first equation from the second one: 

The result is the system of   linear equations with  unknown constant coefficients. Denote short 
notation for the functions: 

d
dz
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k d

k dz
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The introduced notation (20) could be used to simplify the notation of  system (19). Thus, further 
system under consideration is the following: 

The resulting system is a simple system of   linear equations, which can be considered as  systems 

of  2 linear equations, because the coefficients are independent for each pair of  equations. Let's find the 

general solutions for this system. 

Thus, the solution of  system (21) was obtained in an explicit form, which means the explicit 
expressions can be written for the coefficients of  system (19). The resulting solution for the system (19), 
which is first part of  the equation set (16) is the following: 

where all used coefficients defined in (20). 
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=
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=
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(22)

,bn =
WnXn − ZnVn

TnXn − ZnYn

,an =
1
Xn (Vn − Yn

WnXn − ZnVn

TnXn − ZnYn )

20



Now let’s consider the second part of  the system (16), which is formed by a system of   equations 
and can de describe as following: 

Firstly let's divide the first equation on  and denote , in this way the system can be 

reduced to the previous one. 

The only difference between this system of  equations and the one already considered before, which 
is represents first part of  the system (16), is the coefficient  in front of  unknown arbitrary constant  in 
the first equation. 

To get the explicit solution the same steps needs to be applied. First let’s differentiate the second 

equation in the system (23) and reduce the multiplicand , then apply the formula (18) to perform 

transformations under the second equation in the system (23) and represent it as equation without 
derivatives in it. And then subtract one equation from another. The result is the system of   linear 
equations with  unknown constant coefficients, which can be represented in a general view as a system 
(21). 

Thus the explicit solution for the system (23) for the unknown arbitrary constant  is the 
following: 

where all used coefficients defined as following: 
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Thus, an explicit solution was obtained for the system (16). 

where all used coefficients are defined in (20) and (25). 

3.2. The metal surface of  the sphere 

Now let’s consider another case with metal spherical surface and plane electromagnetic wave 
incident to it. 

 

Figure 4 – The model of  diffraction in the case of  metal spherical surface 

In the case of  metal spherical surface the incident electromagnetic wave (electric and magnet 
components) should be equal to the reflected wave (Figure 4, please notice that the figure provides only 
schematic notation ). 
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The tangential components of  electromagnetic wave have to be continuous on the spherical 
surface, regarding this let’s equate the tangential components of  the vectors  and  on the sphere ( ) 
and will consider the fact that the incident wave will contain only the summands with  and . 

Exterior boundary value problem is formulating as following: 

The tangential components of  incident electromagnetic wave in the same time could be 
represented in the following way: 

3.2.1. Derivation the equation set 

Let’s consider equations for the components of  vector , regarding the fact that wave have to be 

continuous on the spherical surface, the following equations should hold: 

First let’s consider equation (29.1), for this let’s equate corresponding components of  (27) and (28) 
and write down the result: 
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In the following step the formula 8.5.4 from the [13] considered: 

As it was said above, the notation  used in the expressions. Regarding this 

notation the following could be considered: 

where . 

Considering all of  the above, the following expression could be used to simplify the equations set 

(29) and corresponding to it: 

Let’s continue consideration of  the equation (29.1): 
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To further simplification let's combine summands with the corresponding index of  he associated 

Legendre polynomials: 

Now let’s consider equation (29.2) and perform on it similar actions to simplify and lead to a similar 
form: 
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And finally to further simplification let's combine summands with the corresponding index of  the 

associated Legendre polynomials: 
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The result of  a consideration of  equations (29) for the tangential components of  the vector  is the 
following equation set: 

where . 

3.2.2. Analytical solution of  the equation set in case of  metal surface 

First let’s consider first equation from equation set (31): 
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And change the variables in the right part of  it, to make the indexes of  the associated Legendre 
polynomials are equal: 

The result is the following: 

Next let’s rewrite it and reduce the sums into one: 
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Regarding the fact that ,  and that in the considered 

system one of  the summand has the multiplicand , the corresponding summand do not exists in 

the context of  the given problem. Since that the system could be modified as following: 

Thus the functions  form a complete system, the coefficients of  the corresponding functions 

must be equal: 

Thus, a recurrent formula to find the coefficient  is obtained. 

Similarly, consideration of  the second equation from equation set (31) will obtain a recurrent 

formula for the coefficient . Which is enough to find the expansion of  the reflected wave on the metal 

sphere. 
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Chapter 4: Implementation 
This part of  the work considers implementation of  the electromagnetic wave diffraction by 

spherical surface. The applied development process, as well as all optimizations and parallelization 
algorithms are described in this part of  the work. 

4.1. Development process 

The development and testing process is one of  the most important aspects of  a software 
development. A process is a sequence of  actions that leads to a predictable result. Development without a 
process will be chaotic and will not always lead to the desired result. 

This work is not a large software product, but even here it is necessary to adhere to some stages of  
software development. Since this work is research project, its first (and significant in volume) stage is the 
theoretical study of  the problem. The first stage of  development process, in turn, is developing a 
prototype of  a future system.  

The prototype must be tested for reliability, according to the physical phenomena and laws. After 
that, the prototype is improving in terms of  performance and memory consumption. And various 
optimizations are applied, such as more advanced algorithms and other more complex data structures that 
allow the use of  other algorithms. 

Finally the resulting solution can be parallelized using various algorithms and technologies in order 
to improve computing performance. 

4.2. Implementation of  calculations of  spherical Bessel functions 

The first and simplest implementation of  calculating the functions described in the paragraph 2.5. 
and 2.5.2. in particular is the following functions containing recursion (hereinafter, the code provided in   
the C ++ programming language): 

double j_n(int n, double z) 
{ 
    if (n == 0) 
        return sin(z) / z; 
    if (n == 1) 
        return sin(z) / (z*z) - cos(z) / z; 

    return (2*n - 1)/z * j_n(n-1, z) - j_n(n-2, z); 
} 

double y_n(int n, double z) 
{ 
    if (n == 0) 
        return - cos(z) / z; 
    if (n == 1) 
        return - cos(z) / (z*z) - sin(z) / z; 

    return (2*n - 1)/z * y_n(n-1, z) - y_n(n-2, z); 
} 

std::complex< double > h_n(int n, double z, int i) 
{ 
    double j = j_n(n, z); 
    double y = y_n(n, z); 
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    std::complex< double > res( j, y ); 

    if (i == 1) 
        return res; 
    else if (i == 2) 
        return std::conj( res ); 
    else return 0; 
} 
This code snippet contains three functions that calculate the spherical Bessel functions of  the first, 

second and third kind, respectively. 

The arguments of  these functions are:  – function order,  – зthe value for which the function is 
calculated,  – kind of  the Hankel function (could only take 2 values: 0 or 1). 

Nota that this implementation does not work for complex values as arguments, which can be easily 
fixed by changing the data type of  the local variable . 

The main disadvantage of  this approach to the implementation of  calculations is the fact that in 
order to solve the initially posed problem (system of  equations), it is necessary to calculate not one 
function, but all functions with an order in the range from 0 to some. 

This implementation, with multiple sequential calls of  these functions, will recursively recalculate 
all values from the current to zero each time. These calculations take a lot of  time and memory. 

The solution to this problem is a creation of  data structure that stores the previous, already 
calculated, values. Thus, to calculate each subsequent value, it will be necessary to perform significantly 
fewer operations. 

Here is the data structure described above. For example, it can be a small structure containing two 
arrays: 

struct Data 
{ 
    double *j; 
    double *y; 
}; 

Only 2 arrays are needed, not 3 or 4, since the values of  the Hankel functions of  the first and 
second kind could be obtained from the already available data with the usage a small number of  
computational operations, using the following expression: 

It is also worth noting that, according to (20) and (25), functions are calculated only for two 
arguments; therefore, two similar structures with data must be stored in memory. In addition, for one of  
these arguments, only the Bessel function of  the first kind is calculated, respectively, the second array with 
data can also not be kept in memory. 

As a result, when calculating the Bessel functions of  the first and second kind, the call to the 
function j_n(n-1, z) can be replaced by a memory access 

n z

i

z

,h (1)
n (z) = jn(z) + iyn(z)

,h (2)
n (z) = jn(z) − iyn(z)

31



Here are the modified functions for calculating Hankel functions taking into account the use of  this 
data structure: 

std::complex<double> h_1(int n, Data &data) 
{ 
    double j = data.j[n]; 
    double y = data.y[n]; 

    std::complex<double> res(j,y); 

    return res; 
} 

std::complex<double> h_2(int n, Data &data) 
{ 
    double j = data.j[n]; 
    double y = data.y[n]; 

    std::complex<double> res(j,-y); 

    return res; 
} 

The arguments of  these functions are:  – function order,  – link to the structure which contain 
values of  the Bessel function of  the first and the second kind for the corresponding argument. 

4.3. Implementation of  the case of  the dielectric surface of  the sphere 

In order to use formula (26), which is an explicit solution to the system of  2n equations, it is 
necessary to calculate all 12 coefficients described in (20) and (25). 

Let's consider these coefficients. The expressions describing the coefficients (20) and (25) are simple 
linear functions containing, in addition to the coefficients, spherical Bessel functions of  the first and third 
kind. Besides that, the spherical Bessel functions of  the third kind (Hankel functions) are defined by the 
following expressions: 

where  and  – spherical Bessel functions of  the first and the second kind respectively, according to 

10.1.1. from [13]. 

Thus, the problem of  solving a system of   linear equations with  unknown variables is reduced 

to the problem of  calculating the first  Bessel functions of  the first and second kind. 

4.3.1. First implementation 

In order to increase the efficiency of  memory access, the calculations can be divided into 2 stages: 
filling the array data with the values of  the Bessel functions and the direct solution of  the system of  
equations using (26). 

After dividing the calculations into two stages, each of  them can be considered and optimized 
independently. 

n d a ta

jn(z ) yn(z )

,h (2)
n (z) = jn(z) − iyn(z)

,h (1)
n (z) = jn(z) + iyn(z)

2n 2n

n
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Let’s first consider the second stage, more specifically the direct solution of  the system of  equations. 

It is an iterative process where 4 values of  the parameters , ,  and . are calculated at each 

iteration. Taking into account the already calculated values of  the Bessel functions of  the first and second 
kind, each of  these iterations is independent from the previous ones and allows the usage of  parallel 
algorithms and technologies. 

Let's start with the code for the sequential implementation of  the calculation of  parameters , , 

 and . It is just simple arithmetic calculations: 

for (int i = 1; i < n; ++i) 
{ 
    double param = i+1; 
    X = data_minus.j[i]; 
    Y = -h_2(i, data_plus); 
    V = pr.a_0[i]*h_1(i,data_plus); 

    Z = pr.k_minus*pr.R*data_minus.j[i-1] - 
        param*data_minus.j[i]; 
    T = param*h_2(i,data_plus)- 
        pr.k_plus*pr.R*h_2(i-1,data_plus); 
    W = pr.a_0[i] * ( pr.k_plus*pr.R*h_1(i-1,data_plus) - 
        param*h_1(i,data_plus) ); 

    _X = pr.eps1/pr.eps2 * X; 
    _Y = Y; 
    _V = pr.c_0[i]*h_1(i,data_plus); 

    _Z = (1 - pr.eps1/pr.eps2) * data_minus.j[i] + Z; 
    _T = T; 
    _W = pr.c_0[i]*( pr.k_plus*pr.R*h_1(i-1,data_plus) - 
         param*h_1(i,data_plus)); 

    result.a_n[i] =  V/X - Y/X * ((W*X-V*Z)/(T*X-Y*Z)); 
    result.b_n[i] = (W*X-V*Z)/(T*X-Y*Z); 

    result.c_n[i] =  _V/_X - _Y/_X *  
                     ((_W*_X-_V*_Z)/(_T*_X-_Y*_Z)); 
    result.d_n[i] = (_W*_X-_V*_Z)/(_T*_X-_Y*_Z); 
} 

The data type for the calculated parameters described in (20), (25) is the complex number: 
std::complex<double>. 

Now let’s go back to the first stage of  the solution required to solve the problem posed, the 
computation of  the Bessel functions. The program code for the implementation of  these calculations in 
provided below: 

{ 
    double z = pr.k_minus*pr.R; 
    data_k_minus.j[0] = sin(z) / z; 
    data_k_minus.j[1] = sin(z)/ (z*z) - cos(z) / z; 

    for (int i = 1; i < n; ++i) 
    { 
        data_k_minus.j[i+1] = (2*i-1)/z *  data_k_minus.j[i] -  
                              data_k_minus.j[i-1]; 
    } 
} 

an bn cn dn

an bn

cn dn

33



{ 
    double z = pr.k_plus*pr.R; 
    data_k_plus.j[0] = sin(z) / z; 
    data_k_plus.j[1] = sin(z)/ (z*z) - cos(z) / z; 

    data_k_plus.y[0] = - cos(z) / z; 
    data_k_plus.y[1] = - cos(z)/ (z*z) - sin(z) / z; 

    for (int i = 1; i < n; ++i) 
    { 
        data_k_plus.j[i+1] = (2*i-1)/z *  data_k_plus.j[i] - 
                             data_k_plus.j[i-1]; 
        data_k_plus.y[i+1] = (2*i-1)/z *  data_k_plus.y[i] -  
                             data_k_plus.y[i-1]; 
    } 
} 

4.3.2. Simple testing 

The result of  the implemented simulation should be tested for reliability, according to the physical 
phenomena and laws, such as the law of  conservation of  incident and reflected energy (which is address 
the Poynting vector) and the fact the tangential component of   must be continuous on the sphere (the 
sum of  the total field  must be zero, or the same that the sum of  the tangent component of  the field on 
the sphere must be zero). 

To check these physical laws described above, it is enough to summarize the vector components 
obtained as a result of  the modeling. 

4.3.3. Optimization 

The first implementation has two parts, since the task assumes the existence of  two areas of  space: 
internal and external relative to the sphere. First, let's combine the calculations into one block in order to 
combine two loops into one: 

double z1 = pr.k_minus*pr.R; 
double z2 = pr.k_plus*pr.R; 

data_k_minus.j[0] = sin(z1) / z1; 
data_k_minus.j[1] = sin(z1)/ (z1*z1) - cos(z1) / z1; 

data_k_plus.j[0] = sin(z2) / z2; 
data_k_plus.j[1] = sin(z2)/ (z2*z2) - cos(z2) / z2; 

for (int i = 1; i < n; ++i) 
{ 
    data_k_minus.j[i+1] = (2*i-1)/z1 *  data_k_minus.j[i] - 
                          data_k_minus.j[i-1]; 
    data_k_plus.j[i+1] = (2*i-1)/z2 *  data_k_plus.j[i] - 
                         data_k_plus.j[i-1]; 
    data_k_plus.y[i+1] = (2*i-1)/z2 *  data_k_plus.y[i] - 
                         data_k_plus.y[i-1]; 
} 

Calculations in the above code fragment are implemented as a loop, but these calculations are 
recurrent, which does not allow direct application of  various parallel algorithms to calculate values. 

E
E
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However, calculations within this cycle perform absolutely identical operations on different data, which 
means that these calculations can be easily vectorized. 

With an increase in the amount of  computations, there is also a variant of  dividing these 
computations into three independent processes using MPI, however, further optimizations, more than 3 
times, are impossible when using this algorithm for calculating the values of  the Bessel functions. 

4.3.4. Other options for calculating Bessel functions 

For further optimization of  calculations within the framework of  the stated problem, it is necessary 
to use other methods for calculating the values of  the Bessel functions. 

There are several quick methods for calculating Bessel functions based on their various expansions. 
One of  them is presented in [16] and can be one of  the options for further optimizations within the 
framework of  this problem. 

4.3.5. OpenMP for the solution 

For a sequential implementation, the variables storing the values for intermediate calculations, 
specifically the parameters described in (20), (25) were reused for each subsequent implementation. To use 
the parallel algorithm, these variables must be local to each thread. 

To calculate parameters , ,  and  using OpenMP, the only which is need is to make small 

changes to the program code, specifically add the following line of  code before the loop that performs 
calculations: 

#pragma omp parallel for private(X,Y,V,Z,T,W,_X,_Y,_V,_Z,_T,_W): 

4.3.6. MPI for the solution 

Since each of  the loop iterations can be performed independently of  the previous and subsequent 
ones, it is possible to divide the data into several processes. And since the amount of  calculations at each 
of  the iterations is identical, it is advisable to divide it into equal parts. 

To perform the calculation of  the parameters on a separate process, the following data are 
required: the values of  the parameters of  the problem, such as the values of  the dielectric constant and 
the wavenumber, the radius of  the sphere and the initial values of  the incident wave. 

The task parameter data is stored in one data structure and can be easily sent to processes. Here is 
the described data structure: 

struct Parameters 
{ 
    double k_minus; // k_ 
    double k_plus; // k+ 
    double R; 
    double eps1; // eps_ 
    double eps2; // eps+ 

    double* a_0; 
    double* c_0; 
}; 

It is also worth noting that to calculate a specific iteration, not all initial values of  the incident wave 
are needed, but only those whose index coincides with the iteration number. Accordingly, it is not 

an bn cn dn
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necessary to store all the data of  the initial values in each of  the processes, they can be shared between the 
processes. 

In addition to the parameters described above, calculations also require Bessel values with the 
current and previous index, which means that it is also necessary to send the corresponding parts of  the 
data stored in the structure Data to the processes. 

Here are code snippets for sending the values of  Bessel functions across processes: 

MPI_Scatter(data_minus.j, n/ProcNum, MPI_DOUBLE, data_m_local.j, 
n/ProcNum, MPI_DOUBLE, 0, MPI_COMM_WORLD); 

MPI_Scatter(data_plus.j, n/ProcNum, MPI_DOUBLE, data_p_local.j, n/
ProcNum, MPI_DOUBLE, 0, MPI_COMM_WORLD); 

MPI_Scatter(data_plus.y, n/ProcNum, MPI_DOUBLE, data_p_local.y, 
in/ProcNum, MPI_DOUBLE, 0, MPI_COMM_WORLD); 

Similarly, the rest of  the necessary data is sent to the processes. As a result of  calculations, each of  

the processes locally has its own part of  the parameters , ,  and , which must be collected together 

on one of  the processes for subsequent output. In addition, since the data type of  the received parameters 
is complex numbers, to simplify the data transfer, it is necessary to replace the previously used data type 
std::complex<double> to double _Complex from the library <complex.h>. 

Here is a data structure for storing the results of  calculations, taking into account the changed data 
type: 

struct Result 
{ 
    double _Complex *a_n; 
    double _Complex *b_n; 
    double _Complex *c_n; 
    double _Complex *d_n; 
}; 

Here is a piece of  code that performs a data collection operation on one process: 

MPI_Gather(result_local.a_n, n/ProcNum, MPI_C_DOUBLE_COMPLEX, 
result.a_n, n/ProcNum, MPI_C_DOUBLE_COMPLEX, 0, MPI_COMM_WORLD); 

MPI_Gather(result_local.b_n, n/ProcNum, MPI_C_DOUBLE_COMPLEX, 
result.b_n, n/ProcNum, MPI_C_DOUBLE_COMPLEX, 0, MPI_COMM_WORLD); 

MPI_Gather(result_local.c_n, n/ProcNum, MPI_C_DOUBLE_COMPLEX, 
result.c_n, n/ProcNum, MPI_C_DOUBLE_COMPLEX, 0, MPI_COMM_WORLD); 

MPI_Gather(result_local.d_n, n/ProcNum, MPI_C_DOUBLE_COMPLEX, 
result.d_n, n/ProcNum, MPI_C_DOUBLE_COMPLEX, 0, MPI_COMM_WORLD); 

As a result of  executing this piece of  code, the result of  solving the original system of  equations will 
be saved in the Result data structure described above. 

4.3.7. Combining MPI and OpenMP to solve the system 

As a result of  using MPI, the code that calculates the parameters , ,  and , will look like 

this: 

int N = n/ProcNum 

an bn cn dn
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for (int i = 1; i < N; ++i) 
{ 
    double param = i+1; 
    X = data_m_local.j[i]; 
    Y = -h_2(i, data_p_local); 
    V = pr.a_0[i]*h_1(i,data_p_local); 

    Z = pr.k_minus*pr.R*data_m_local.j[i-1] - 
        param*data_m_local.j[i]; 
    T = param*h_2(i,data_p_local)- 
        pr.k_plus*pr.R*h_2(i-1,data_p_local); 
    W = pr.a_0[i]*( pr.k_plus*pr.R*h_1(i-1,data_p_local) – 
        param*h_1(i,data_p_local) ); 

    _X = pr.eps1/pr.eps2 * X; 
    _Y = Y; 
    _V = pr.c_0[i]*h_1(i,data_p_local); 

    _Z = (1 - pr.eps1/pr.eps2) * data_m_local.j[i] + Z; 
    _T = T; 
    _W =  pr.c_0[i]*( pr.k_plus*pr.R*h_1(i-1,data_p_local) – 
          param*h_1(i,data_p_local)); 

    result_local.a_n[i] =  V/X - Y/X * ((W*X-V*Z)/(T*X-Y*Z)); 
    result_local.b_n[i] = (W*X-V*Z)/(T*X-Y*Z); 

    result_local.c_n[i] = _V/_X - _Y/_X * 
                          ((_W*_X-_V*_Z)/(_T*_X-_Y*_Z)); 
    result_local.d_n[i] = (_W*_X-_V*_Z)/(_T*_X-_Y*_Z); 
} 

In this case, the calculations performed at each separate iteration are also independent, which 
allows usage of  the OpenMP technology inside the MPI process. To do this, it is necessary to add the 
following code fragment before the loop: 

#pragma omp parallel for private(X,Y,V,Z,T,W,_X,_Y,_V,_Z,_T,_W) 

Thus, the joint usage of  MPI and OpenMP technologies implemented in order to solve the system, 
described in this work. 
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Chapter 5: Results 
This part of  the work contains the results of  computational experiments for various versions of  the 

algorithm described above. 

Computational experiments were carried out for various values of  the parameter  (the number of  
spherical harmonics in the expansion) on the following hardware and software: 

Operating system: MacOS Catalina 10.15.5 (19F101); 

CPU: 2,3 GHz Quad-Core Intel Core i5; 

RAM: 8 GB 2133 MHz LPDDR3; 

Threads: 8; 

Processes: 8. 

Experiments were also carried out on other different configurations of  cluster-type hardware, but 
since the meaningful picture of  the experimental results does not differ, this work presents the results 
obtained on personal hardware, since they can be easily repeated by anyone. 

The measurements of  the running time of  the algorithm in milliseconds, obtained as a result of  the 
experiments, are presented in Table 1. 

Table 1 – Algorithms runtime 

The runtimes of  the program in milliseconds for sequential and various parallel implementations of  
the algorithm for different values of  the parameter , obtained as a result of  the experiments, are also 
presented in the form of  a graph in Figure 5. 

n

N Sequential OpenMP MPI OpenMP + MPI

1000000 1271 387 798 587

2000000 2550 756 1381 1070

3000000 3871 1143 1922 1491

4000000 5126 1519 2424 1889

5000000 6317 1878 2883 2259

6000000 7629 2256 3304 2603

7000000 8936 2610 3693 2915

n
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Figure 5 – . Algorithms runtime 

Table 2 presents data with the acceleration values obtained as a result of  the experiments 
performed. The same acceleration data is plotted in Figure 6. 

Table 2 – Achieved acceleration values 

N OpenMP MPI OpenMP + MPI

1000000 3.284237726 1.592731830 2.165247019

2000000 3.373015873 1.846488052 2.383177570

3000000 3.386701662 2.014047867 2.596244131

4000000 3.374588545 2.114686469 2.713605082

5000000 3.363684771 2.191120361 2.796370075

6000000 3.381648936 2.309019370 2.930849020

7000000 3.423754789 2.419712970 3.065523156
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Figure 6 – Achieved acceleration values 

Thus, when this algorithm is parallelized by 8 threads, the maximum acceleration obtained is 3.42 
times relative to the sequential implementation. 

Such results are explained by the fact that the operations performed in the parallel section of  the 
algorithm are the simplest arithmetic operations, in addition, the complexity of  the algorithm itself  is 
linear. 

It should also be noted that the greatest acceleration of  the algorithm was obtained when using only 
OpenMP technology. Implementations using MPI and sharing MPI with OpenMP are slower than the 
OpenMP implementation. This feature is also explained by the complexity of  the algorithm itself  and the 
nature of  the operations performed in the parallel domain. And since the use of  MPI technology carries 
additional overheads for transferring data between processes, therefore, these implementations work 
slower than without using MPI. With an increase in the number of  harmonics (parameter), the 
acceleration of  implementations with MPI approaches OpenMP, since at the same time the calculations 
begin to take up an increasing proportion of  the program runtime. 
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Chapter 6: Summary and conclusions 

6.1. Conclusions 

Within the framework of  this work, the existing approaches to solving the problem of  diffraction of  
electromagnetic waves were studied. Various technologies of  parallel computing were studied and 
considered, as well as the possibilities of  their application to solving diffraction problems. 

A system of  equations that describes the diffraction of  an incident plane electromagnetic wave on a 
spherical surface of  a given radius was obtained. The resulting system was transformed and expressions 
were obtained to calculate the expansion coefficients of  the components of  the electromagnetic field. A 
numerical solution was implemented that calculates these components. 

Three different versions of  the numerical solution were implemented using parallel computing 
technologies OpenMP, MPI and their joint use. 

Experiments were carried out as a result of  which an acceleration of  3.4 times was obtained using 8 
computational threads. 

Analysis of  the experimental results shows that with this approach to solving the problem, parallel 
technologies can be successfully applied, however, due to the specifics of  computations and the linear 
complexity of  the implemented algorithm, there are restrictions on the maximum achievable performance 
by methods of  parallel computations. 

In this work a new method is applied to calculate the coefficients of  the expansion in terms of  the 
Bessel functions of  the components of  the vectors of  the electromagnetic field. Also in this work a parallel 
solution of  this system is implemented, in addition, three different versions of  a parallel solution of  this 
problem are implemented using parallel computations. 

6.2. Future work 

The results enable to draw the following directions for further work: 

– Improvement of  the existing implementation of  the considered method in the way of  
implementation alternative data structured. 

– Implementation of  other parallel versions of  the provided solution, for example with the usage of  
TBB library or similar to it. 

– Consideration of  other methods for the solution of  the described problem. 

– Consideration of  a more complex problems, for example more complex surfaces. 

41



Bibliography 
1. Pleshchinskii, N.B., Tumakov, D.N. A new approach to investigation of  Maxwell 

equations in spherical coordinates. Lobachevskii J Math 36, 15–27, 2015.  

2. Andreas Kirsch, Frank Hettlich. The Mathematical Theory of  Maxwell’s Equations. 
Karlsruhe, Germany: Karlsruhe Institute of  Technology (KIT), 2014. 

3. I.T.Selezovand, Iu.G.Kryvonos, J.Aut.Inf.Sci. 45, 4–13, 2013. 

4. H.Honl, A.W.Maue, and K.Westpfahl,Theorie der Beugung, Springer-Verlag, 1961. 

5. J.A.Stratton, Electromagnetic Theory. McGraw-Hill, 1941. 

6. Medvedik, Mikhail & Smirnov, Yu. (2008). A subhierarchical parallel computational 
algorithm for solving problems of  diffraction by plane screens. Journal of  Communications 
Technology and Electronics - J COMMUN TECHNOL ELECTRON. 53. 415-420. 

7. Karchevskii E, Pleshchinskii N. Parallel Algorithm of  Solving the Electromagnetic 
Wave Diffraction Problem on the Spherical Screen, 2012. 

8. М. Ю. Медведик, Ю. Г. Смирнов, С. И. Соболев, “Параллельный алгоритм 
расчета поверхностных токов в электромагнитной задаче дифракции на экране”, Выч. 
мет. программирование, 6:1 (2005), 99–108. 

9. Medvedik, Mikhail & Moskaleva, Marina & Smirnov, Yury. (2019). Numerical Method 
for Solving a Diffraction Problem of  Electromagnetic Wave on a System of  Bodies and 
Screens: 4th Russian Supercomputing Days, RuSCDays 2018, Moscow, Russia, September 
24–25, 2018, Revised Selected Papers. 

10. Смирнов, В.И. Курс высшей математики : учебное пособие / В.И. Смирнов. – 
Изд. 9-е, стереотип. – Москва : Наука, 1974. – Т. 3. – Ч. 2. – 671 с. 

11. В. Смайт. Электростатика и электродинамика; пер. со второго американского 
изд. А. В. Гапонова и М. А. Миллера. - Москва : Изд-во иностранной лит., 1954. - 604 
с. 

12. Bessel Functions, Spherical Bessel Functions // Digital Library of  Mathematical 
Functions URL: https://dlmf.nist.gov/10.60#E7. 

13. Milton Abramowitz. 1974. Handbook of  Mathematical Functions, With Formulas, 
Graphs, and Mathematical Tables,. Dover Publications, Inc., USA. 

14. Plane wave // Wikipedia URL: https://en.wikipedia.org/wiki/Plane_wave  

15. Bessel function // Wikipedia URL: https://en.wikipedia.org/wiki/Bessel_function  

16. Tumakov, D.N. The Faster Methods for Computing Bessel Functions of  the First Kind 
of  an Integer Order with Application to Graphic Processors. Lobachevskii J Math 40, 1725–
1738, 2019. 

17. Jackson J. Classical Electrodynamics. — New York: Wiley, 1998. 

42



18. Electromagnetic waves and optics // Bauman Moscow State University URL: http://
fn.bmstu.ru/data-physics/library/physbook/tom4/ch1/texthtml/ch1_1.htm 

19. Legendre polynomials // Wikipedia URL: https://en.wikipedia.org/wiki/
Legendre_polynomials  

20. Associated Legendre polynomials // Wikipedia URL: https://en.wikipedia.org/wiki/
Associated_Legendre_polynomials  

21. MPICH URL: https://www.mpich.org  

22. Developer Documentation // MPICH URL: https://wiki.mpich.org/mpich/
index.php/Developer_Documentation

43


