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platformy

Author: Juraj Lieskovský
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Chapter 1

Introduction

J-P. Merlet defines a generalized parallel manipulator as a “closed-loop kinematic

mechanism whose end-effector is linked to the base by several independent kinematic

chains” in [4]. Such manipulators are becoming advantageous in comparison to

their serial counterparts as negatives such as more complex kinematic relations

and the problem of regulating mechanisms with actuation redundancies are being

overcome.

Actuators of parallel mechanisms are most often fixed to the frame reducing the mass

of links manipulating the platform upon which the end-effector is mounted resulting

in high wrench-to-weight ratios. Cable-driven parallel manipulators (CDPMs) are

exceptional in this aspect with the mass of their cables often not being considered

in simulation models. They further appeal with large and adaptable workspaces as

well as low cost.

In this thesis we will focus on such manipulators with an emphasis on their workspace

restrictions, particularly singularities and self collisions. The extension of a spacial

CDPMs’ workspaces through adjustable platform geometry is also explored. For this

purpose a kinematic model with the added capabilities of detecting both singularities

and self collisions is created and a series of simulations performed.

10



CHAPTER 1. INTRODUCTION 11

1.1 Classification of CDPMs

A unique characteristic of CDPMs is the uni-directional nature of forces exerted by

the cables onto the platform. In consequence manipulators driven by cables only

are classified in [5], according to the number of cables k and the desired degrees of

freedom (DOF) of the end-effector N into:

• incompletely restrained positioning mechanisms (IRPMs): k ≤ N

• completely restrained positioning mechanisms (CRPMs): k = N + 1

• redundantly restrained positioning mechanisms (RRPMs): k > N + 1

While CRPMs and RRPMs are capable of exerting wrenches w spanning R6 in

all non-singular configurations (section 2.3.1), IRPMs rely on gravity and other

external forces to determine the resulting pose of the manipulator. This reliance

limits maximal acceleration of the manipulator as well as wrenches it is capable of

exerting.

1.2 Redundancy of parallel manipulators

Depending on the number of actuators m and the number of DOF of the mechanism

n two types of redundancy in parallel manipulators can be distinguished [4]:

• kinematic redundancy: n > N

• actuation redundancy: m > n

All CRPMs and RRPMs are by definition actuation redundant adding complexity to

the problem of direct kinematics and force distribution among the cables of CDPMs.

Kinematic redundancies on the other hand are rarely present in parallel manipulators

but can be generally used to extend their workspaces.



CHAPTER 1. INTRODUCTION 12

1.3 Aim and motivation

While planar CRPMs such as the SkyCam (figure 1.1), and spacial RRPMs operating

in singular configurations (see section 2.3.1) such as the CoGiRo [6] are finding use,

spacial RRPMs operating in non-singular configurations for example robots from

the IPAnema family (figure 1.2) are struggling to find an industry application largely

due to cable interference.

Figure 1.1: SkyCam - photo by Despeaux - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=7852833

Figure 1.2: IPAnema mini - example of a RRPM

operating in non-singular configurations [1]
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We will explore the possibility of extending the workspace of a RRPMs by adding

kinematic redundancy to their mechanisms. This will be done on a manipulator

of novel design, capable of exerting wrenches w spanning R6 outside of the typical

workspace delimited by points through which its cables exit the workspace, with

the kinematic redundancy being introduced in the form of a platform with adjustable

geometry. By such design cable interference with objects in the extended workspace

should be largely avoided.

1.4 Structure of the thesis

First we will overview kinematics and statics of CDPMs as well as explore the limiting

factors of their workspaces: singularities, joint limits and self collision, drawing from

literature.

Then in chapter 3 we will propose the manipulator subject to this thesis and describe

both its mechanical and collision model. The kinematic relations and equations of

static equilibrium will be derived allowing for the identification of singular configu-

rations. Further we will describe an applicable method of collision detection along

with a novel algorithm necessary for its execution.

In order to validate the extension of the manipulator’s workspace a simulation model

capable of detecting self collisions and singularities in a given pose will be created

in Matlab and described in chapter 4. The chapter will also contain the descriptions

and results of simulations performed on the model confirming the claim.



Chapter 2

Exploring the topic
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2.1 Kinematics of CDPMs

Let q ∈ Rm be a vector of actuated joint parameters and X ∈ Rn a vector of unique

parameters describing any particular pose of a manipulator.

Generally each cable of a CDPM is seperately actuated, therefore k = m. Most

CDPMs in application are CRPMs or RRPMs and therefore by definition actuation

redundant. If m > n, as for all acutation redundant manipulators, the systems

of equations describing direct kinematics of the mechanism mapping q → X and

q̇ → Ẋ are not functions. For this reason only inverse kinematics of CDPMs are

commonly described in literature [7], [8].

When determining inverse kinematics, acutated joint parameters qi , i ∈ 〈1, k〉 of

actuation redundant mechanisms are generally functions of X for all X ∈ Rn:

qi = f(X), i ∈〈1, k〉 (2.1.1)

While the map Ẋ → q̇ most often written in form:

q̇ = J(X) Ẋ (2.1.2)

where J(X) is the inverse kinematics Jacobian [8]:

J(X) =


∂q1
∂X1

. . . ∂q1
∂Xn

...
. . .

∂qm
∂X1

∂qm
∂Xn

 (2.1.3)

is a function only on a subset ofX ∈ Rn where rank(J) = n resulting in the occurence

of Jacobian singularities described in section 2.3.1.
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2.2 Statics of CDPMs

In [5],[7],[8] equations of static equilibrium of CDPMs are expressed in the form:

w = A(X) τ (2.2.1)

where τ is a vector of cable tension, w is the sum of external wrenches exerted onto

the end-effector and A(X) ∈ RN×k is the structure matrix of the CDPM.

Determining the tension vector τ to a given w is the core problem of dynamic

control of CDPMs. As CRPMs and RRPMs are actuation redundant there are

infinite tension vectors τ compensating the wrench w in all non-singular poses of

the manipulator X. Various methods of calculating a favourable vector τ exist,

considering such factors as cable elasticity [9] or slack [10]. In [8] Lamaury and

Gouttefarde describe the Mikelsons’ barycenter approach to calculating the vector τ

as:

τ = A+w +Nλ (2.2.2)

where A+ is the Moore-Penrose (pseudo-inverse) inverse matrix of A, providing

the least-square solution of a system of linear equations without a unique solution

[11],N = null(A) and λ =
[
λ1 λ2

]T
is an arbitrary vector using which the minimal

or maximal tension in the cables is adjusted.

For the purposes of this paper, the form of the structure matrix A will need to be

derived in order to analyse force-closure singularities described in section 2.3.1.
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2.3 Workspace restrictions

As desrcibed by J.-P. Merlet in [12], the workspace of a parallel manipulator is

restricted by three factors.

• singular configurations

• self collision

• joint limits

2.3.1 Singular configurations

Xiumin Diao and Ou Ma in [13] classify two types of singularities, occurring in

cable-driven parallel manipulators:

• Jacobian singularities

• force-closure singularities

Jacobian singularities

Jacobian singularities of CDPM occur in such configurations X of the manipulator

in which the inverse kinematics Jacobian:

J(X) =


∂q1
∂X1

. . . ∂q1
∂Xn

...
. . .

∂qm
∂X1

∂qm
∂Xn

 (2.3.1)

becomes rank-deficient [13] resulting in the loss of one or more DOF. In addition

near Jacobian singular configurations a small change in configuration Ẋ may require

almost infinite joint velocities q̇. Because of the aforementioned reasons avoiding

Jacobian singularities through both trajectory planning and manipulator design is

preferable.
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Force-closure singularities

CRPM and RRPM are able to resist all wrenches w ∈ RN applied to its platform,

under the condition that column vectors of the sturcture matrix A(X) span RN

and tensions in the calbes τi , i ∈〈1, k〉 are positive.

Following Xiumin Diao and Ou Ma in [7], we may express the force-closure condition

of a CDPM as:

∀ w∈ RN , ∃ τ > 0, 3 Aτ = w (2.3.2)

The condition 2.3.2 is satisfied if and only if positive linear combinations column

vectors of A, span RN [14]. Further we will refer to such property of a set of vectors

as positive span.

Let ai , i ∈ 〈1, N〉 be the row vectors of A(X) =
[
a1 . . . aN

]T
, column vectors

of A(X) positively span RN if:

rank(A) = N ∧ (min(ai) < 0 ∧ max(ai) > 0 ) , ∀ i ∈〈1, N〉 (2.3.3)

If the condition 2.3.3 is not satisfied, the manipulator is unable resist all wrenches

w ∈ RN and the pose of the manipulator X is considered force-closure singular.

An alternative method for verifying the force-closure condition is proposed in [7].

It is based on the calculation of V = Â−1p , where Âp ∈ RN×N consists of six

linearly independent column vectors of A and the consequent transformation of A

by multiplication with V T :

A′ = V TA , rank(A′) = rank(A) (2.3.4)

The resulting matrix A′ has a positive element in each row, eliminating the need

to verify: max(ai) > 0 , ∀ i ∈ 〈1, N〉, when confirming that column vectors of A′

positively span RN according to the condition 2.3.3.
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2.3.2 Self collision

Self collisions of CDPMs are a rarely discussed topic despite them greatly reducing

the workspaces of CRPMs and RRPMs. The issue of their occurrence is most

commonly avoided by the platform of the manipulator maintaining constant orien-

tation. In contrast we will create a collision model adaptable to all CDPMs exploring

the problematic in this thesis.

A practical form in which to represent solid bodies for collision detection are meshes.

This is particularly so when considering self collision in parallel manipulators as

they consist of closed kinematic chains. Cylindrical elements of mechanisms, for

example cables, can be modelled as capsules each characterised by a line segment

s and radius ρ as shown in figure 2.1. The problem of determining interference

among two capsules is at its core a question of calculating the minimal distance

between line segments si and sj at the core of the capsules, further referred to only

as the proximity of the two line segments δij. Consequently we may claim that

interference between the two capsules occurs when εij = δij − (ρi + ρj) ≤ 0. Due

to the simplicity of collision detection between capsules it is advantageous to model

solid bodies of small thickness’s as single layers of capsule mesh.

We will create and describe an algorithm for determining interference between

capsules in section 3.5 building upon an approach to detecting collisions of cylindrical

elements of a manipulator based on calculating the distance of skew lines running

through their centres, described by J.-P. Merlet in [12].

ϱ

s

Figure 2.1: Representation of a capsule



CHAPTER 2. EXPLORING THE TOPIC 20

2.3.3 Joint limits

As the joints through which the cables are connected to the platform generally satisfy

all interference free configurations and the required range of leads through which

the cable exits the workspace is reduced to approximitally one octant of cartesian

space by force-closure singularities the workspace of a CDPM is not commonly

further restricted by joint-limits.

Two types of leads are typically used for exit points of the cables: eyelets and pulleys

[1]. Eyelets, while causing excessive wear on the cable, have the distinct advantage

of providing an almost stationary point where the linearity of the cables ends.

Pulleys with a panning axis in the direction of the winch (figure 2.3) at least maintain

a predictable end-point of cable linearity while also reducing cable wear. For this

reason, even despite their inetria and a more complex mathematical model, pulleys

are used in the majority of existing CDPMs [1].

Figure 2.2: Cut CAD view of the eyelet in the pulley assembly [2]

Figure 2.3: Pulley assembly of the cable-robot demonstrator [3]



Chapter 3
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3.1 Proposed manipulator

Beside the platform with variable geometry the proposed manipulator will be similar

to other eight cable RRPMs such as in figure 1.2. It will be composed of a frame

with eight actuated winches, the platform consisting of two bodies with one degree

of relative motion facilitated by an actuated prismatic joint and k = 8 cables

connecting the platform to the frame. The resulting mechanism will therefore have

n = 7 DOF and m = 9 actuators.

There are many viable cable configurations of a spacial cable manipulator [15], [16]

with varying degrees of mobility and actuation properties. In [17] Kraus optimizes

where cables of an eight cable redundant manipulator attach to the platform based

on the condition number [18] of the structure matrix A. We will use a comparable

configuration for the purposes of this paper (figure 3.1).

Figure 3.1: Proposed configuration



CHAPTER 3. THEORY 23

3.1.1 Mechanical model

We will consider the frame of the manipulator as stationary assigning it the reference

coordinate system CS1 and attribute a local coordinate system to each of the two

platform’s bodies CS2 and CS3 (figure 3.2). Throughout this section we will use

upper left indices to denote in which coordinate system elements of a vector are

written.

Transformations, expressed using homogeneous transformation matrices, between

the reference coordinate system CS1 and the local coordinate systems CS2 and CS3

are:

T12 =

E3
1r12

0 1

R(x, φx12) 0

0 1

R(y, φy12) 0

0 1

R(z, φz12) 0

0 1

 (3.1.1)

T13 = T12T23 = T12

E3
2r23

0 1

 (3.1.2)

where E3 is the identity matrix, R are rotational matrices and r12, r23 are the radius

vectors describing translation between the origins of the two subscribed coordinate

systems. The particular form of r23 is:

2r23 = s23
2u23 = s23

[
0 0 1

]T
(3.1.3)

s23 being the distance between the origins of the two local coordinate systems CS2

and CS3.

The cables represented by vectors ci , i ∈〈1, 8〉 are spanned between points Ai, Bi:

ci = rAi
− rBi

(3.1.4)

where vectors rAi
, rBi

describe the position of points Ai, Bi in relation to the origin

of CS1. While values of rAi
are constant by design of the manipulator, vectors rBi

must be extracted from a set of equations:1rBi

1

 = T12

2bi

1

 , i ∈〈1, 8〉 (3.1.5)
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as they are dependant on the configuration of the manipulator, where:

2bi = 2ri i ∈〈1, 4〉 (3.1.6)

2bj = 3bj = 3r23 + 3rj j ∈〈5, 8〉 (3.1.7)

are vectors describing the position of anchoring points Bi and Bj in relation to the

origin of coordinate system CS2. Notably, vector 2r23 is variable while 2ri and 3rj

are constant vectors describing the position of anchoring points Bi and Bj in local

coordinate systems CS2 and CS3 of the two platform’s bodies.

Further we may define directional vectors of cables ui:

ui =
ci
‖ci‖

, i ∈〈1, 8〉 (3.1.8)

which will be used to derive the inverse kinematics Jacobian matrix J and structure

matrix A of the proposed manipulator in sections 3.2 and 3.3.
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Figure 3.2: Diagram of the mechanical model
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3.1.2 Collision model

The collision model of the manipulator will consist entirely of capsules mentioned

in section 2.3.2 greatly simplifying the process of interference checking.

As all cables of the manipulator should remain under tension, deviation of their

shape from a line should be small enough to be compensated by a radius ρ larger than

the radius of the physical cable, without a detrimental effect on the range of motion,

thus allowing them to be modelled as single capsules. The frame of the manipulator

may take various forms generally not restricting the workspace of the manipulator.

For this reason it will not be included in the collision model. Two possible approaches

for its incorporation in the model, both not increasing the complexity of the model,

would be to represent the frame by additional capsules or monitor that end-points

of the line-segments, at the core of capsules forming the platform, remain within

certain coordinates. The two bodies of the platform will be modelled as four capsules

forming a rectangle each and the column of the prismatic joint as a single capsule

moving in conjunction with the lower of the two bodies. This representation of

the platform is particularly suitable when cables of the manipulator are modelled

as single capsules, continuous with the mesh of the manipulator.

Collision detection between the two bodies of the platform is redundant as they

cannot interfere due to the limits of the prismatic joint. Therefore all possible

interference must occur either between two cables, cable and a body of the platform

or a cable and the column.



CHAPTER 3. THEORY 27

(a) without proximities visualized

(b) with proximities visualized

Figure 3.3: Collision model
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3.2 Kinematics

Let q ∈ Rm be a vector of actuated joint parameters and X ∈ Rn a vector of

unique parameters describing any particular configuration of a mechanism. In order

to derive the inverse kinematics Jacobian J we must derive the maps of X and it’s

derivates onto q and q̇:

• actuator position: X → q

• actuator velocity : Ẋ → q̇

3.2.1 Actuator position

From equations 3.1.1 and 3.1.2 describing homogenous tranformations between the

coordinate systems of the manipulator we may extract parameters Xi , i ∈ 〈1, 7〉
describing any particular configuration of the manipulator:

X =


r12

φ12

s23

 , X ∈ R7 (3.2.1)

where:

φ12 =
[
φx12 φy12 φz12

]T
(3.2.2)

Through the actuation of winches the lenght of individual cables is changed, therefore

we will define qi , i ∈〈1, 8〉 as:

qi = ‖ci‖, i ∈〈1, 8〉 (3.2.3)

and q9 as the distance between the origins of the two local coordinate systems of

the platform’s bodies:

q9 = s23 (3.2.4)

Resulting in nine equations describing qi , i ∈〈1, 9〉 as functions of X.
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3.2.2 Actuator velocity

Instead of differentiating the equations of actuator positions we will derive the map

of Ẋ:

Ẋ =


v12

ω12

ṡ23

 , Ẋ ∈ R7 (3.2.5)

onto q̇ ∈ R9 from the geometry of the manipulator (figure 3.4):

q̇i = (v12 + ω12 × bi) · ui i ∈〈1, 4〉 (3.2.6)

q̇j = (v12 + ω12 × bj + ṡ23 u23) · uj j ∈〈5, 8〉 (3.2.7)

q̇9 = ṡ23 (3.2.8)

where equations 3.2.6 and 3.2.7 can be manipulated into forms:

q̇i = uTi v12 + (bi × ui)Tω12 i ∈〈1, 4〉 (3.2.9)

q̇j = uTj v12 + (bj × uj)Tω12 + (uj · u23) ṡ23 j ∈〈5, 8〉 (3.2.10)

Figure 3.4: Velocity relations
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From equations 3.2.8, 3.2.9 and 3.2.10 we may construct the map of Ẋ onto q̇ in

the form:

q̇ = J(X) Ẋ J ∈ R9×7 (3.2.11)

where J(X) is the inverse kinematics Jacobian:

J(X) =



uT1 (b1 × u1)
T 0

uT2 (b2 × u2)
T 0

uT3 (b3 × u3)
T 0

uT4 (b4 × u4)
T 0

uT5 (b5 × u5)
T u23 · u5

uT6 (b6 × u6)
T u23 · u6

uT7 (b7 × u7)
T u23 · u7

uT8 (b8 × u8)
T u23 · u8

0 0 0 0 0 0 1



(3.2.12)
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3.3 Static Equilibrium

Let wl O2 ∈ R6 be the wrench of external forces and torques acting upon a body l

in refrence to point O2:

wl O2 =

∑
j F

E
j∑

jM
E
j

 (3.3.1)

and ζ ∈ Rk a vector containing scalar values of forces produced by actuators of

the manipulator.

We may define forces Fi , i ∈〈1, 8〉 exerted by the cables onto the platform as:

Fi = ζiui , i ∈〈1, 8〉 (3.3.2)

assuming they are co-linear with vectors ci. Further we may define forces and torques

acting between the two bodies of the platform as F23 = −F32 and M23 = −M32,

where ζ9 u23 = Fz23 · u23 = −Fz32 · u23.

Figure 3.5: Diagram of forces acting upon the platform
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3.3.1 Static equilibrium of the platform

The equations of static equilibrium for the two seperate bodies are: F1 . . . F4

M1 . . . M4

 +

 F32

M32

 +w3O2 = 0 (3.3.3)

 F5 . . . F8

M5 . . . M8

 +

 F23

M23

 +w2O2 = 0 (3.3.4)

By adding 3.3.3 and 3.3.4 we obtain the equations of static equilibrium for the platform

viewed as one body:  F1 . . . F8

M1 . . . M8

 +w = 0 (3.3.5)

where w is the sum of wrenches applied to the two platfrom’s bodies in reference

to point O2:

w = w2O2 +w3O2 (3.3.6)

Equation 3.3.5 can be manipulated into:

−

 u1 . . . u8

b1 × u1 . . . b8 × u8



ζ1
...

ζ8

 = w (3.3.7)

Equation 3.3.7 expresses the wrench w as a function of X and ζi , i ∈〈1, 8〉. It can

be rewritten into the common form described in 2.2:

w = A(X) τ (3.3.8)

where τ is the cable tension vector:

τ =
[
ζ1 . . . ζ8

]T
(3.3.9)

and A the structure matrix of the platform:

A(X) = −

 u1 . . . u8

b1 × u1 . . . b8 × u8

 (3.3.10)
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crucial for solving the problem of tension distriubition among cables and force-closure

singularities 2.3.1.

3.3.2 Actuation force in the prismatic joint

For the two bodies of the platform to remain in equilibrium ζ9 must compensate

the effect of cable forces Fi , i ∈ 〈1, 4〉 and Fi , i ∈ 〈5, 8〉 onto the respective bodies

of the platform in the direction of the vector u23:

ζ9 = −
4∑
i=1

Fi · u23 =
8∑
i=5

Fi · u23 (3.3.11)

We may therefore express ζ9 as a function of X and ζi , i ∈〈5, 8〉 in vector form as:

ζ9 = −
[
u1 · u23 . . . u4 · u23

]
ζ1
...

ζr

 (3.3.12)
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3.4 Collision detection

Self collision of the manipulator may occur when certain capsules of the collision

model interfere. In agreement with section 3.1.2 we will check for interference

between the capsules of the collision model in three phases.

• cable to cable

• cable to platform body

• cable to column

First step of each phase is calculating the proximity between line-segments at the core

of each cable’s capsule (rows) and all capsules of the platform (columns), producing

the matrix D ∈ R8×17:

D =
[
DI DII DIII

]
(3.4.1)

Matrix DI is the result of the first phase of proximity calculations. As proximity

δii = 0 and δij ≡ δji for i ∈ 〈1, 8〉, it is necessary to calculate only elements above

the matrix’s diagonal:

DI =



0 δ1 2 δ1 3 δ1 4 δ1 5 δ1 6 δ1 7 δ1 8

0 0 δ2 3 δ2 4 δ2 5 δ2 6 δ2 7 δ2 8

0 0 0 δ3 4 δ3 5 δ3 6 δ3 7 δ3 8

0 0 0 0 δ4 5 δ4 6 δ4 7 δ4 8

0 0 0 0 0 δ5 6 δ5 7 δ5 8

0 0 0 0 0 0 δ6 7 δ6 8

0 0 0 0 0 0 0 δ7 8

0 0 0 0 0 0 0 0



(3.4.2)
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Each line segment of a cable capsule shares an end-point with two line-segments of

the manipulator’s capsules. Therefore DII will take the form:

DII =



0 δ1 10 δ1 11 0 δ1 13 δ1 14 δ1 15 δ1 16

0 0 δ2 11 δ2 12 δ2 13 δ2 14 δ2 15 δ2 16

δ3 9 0 0 δ3 12 δ3 13 δ3 14 δ3 15 δ3 16

δ4 9 δ4 10 0 0 δ4 13 δ4 14 δ4 15 δ4 16

δ5 9 δ5 10 δ5 11 δ5 12 0 δ5 14 δ5 15 0

δ6 9 δ6 10 δ6 11 δ6 12 0 0 δ6 15 δ6 16

δ7 9 δ7 10 δ7 11 δ7 12 δ7 13 0 0 δ7 16

δ8 9 δ8 10 δ8 11 δ8 12 δ8 13 δ8 14 0 0



(3.4.3)

The product of the last phaseDIII expresses the proximity between the line-segments

representing each cable to the line-segment of the column:

DIII =
[
δ1 17 δ2 17 δ3 17 δ4 17 δ5 17 δ6 17 δ7 17 δ8 17

]T
(3.4.4)

The resulting matrix D consists of values δi j ≥ 0 and zero values that do not factor

in the problem of interference as it is safe to assume that a cable will not collide

with a platform’s segment, immediately proximal to its origin, while not colliding

with the remaining segments of the platform.
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Second step, after calculating the matrixD, is to determine the proximity of capsules

surrounding the segments. With such intent we will define E =
[
EI EII EIII

]
as:

E =



1 1 1 1 1 1 1 1

ε1 2 1 1 1 1 1 1 1

ε1 3 ε2 3 1 1 1 1 1 1

ε1 4 ε2 4 ε3 4 1 1 1 1 1

ε1 5 ε2 5 ε3 5 ε4 5 1 1 1 1

ε1 6 ε2 6 ε3 6 ε4 6 ε5 6 1 1 1

ε1 7 ε2 7 ε3 7 ε4 7 ε5 7 ε6 7 1 1

ε1 8 ε2 8 ε3 8 ε4 8 ε5 8 ε6 8 ε7 8 1

1 1 ε3 9 ε4 9 ε5 9 ε6 9 ε7 9 ε8 9

ε1 10 1 1 ε4 10 ε5 10 ε6 10 ε7 10 ε8 10

ε1 11 ε2 11 1 1 ε5 11 ε6 11 ε7 11 ε8 11

1 ε2 12 ε3 12 1 ε5 12 ε6 12 ε7 12 ε8 12

ε1 13 ε2 13 ε3 13 ε4 13 1 1 ε7 13 ε8 13

ε1 14 ε2 14 ε3 14 ε4 14 ε5 14 1 1 ε8 14

ε1 15 ε2 15 ε3 15 ε4 15 ε5 15 ε6 15 1 1

ε1 16 ε2 16 ε3 16 ε4 16 1 ε6 16 ε7 16 1

ε1 17 ε2 17 ε3 17 ε4 17 ε5 17 ε6 17 ε7 17 ε8 17



T

(3.4.5)

Where εij = δij − (ρi + ρj).

We may consider the pose of the manipulator interference free if all elements of E

are positive.
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3.5 Line segment proximity algorithm

In this section we will describe an algorithm used to calculate the proximity δij of

two line-segments si = AiBi, sj = AjBj, defined as the minimal distance between

two line-segments si, sj in section 3.1.2. For the purposes of proximity calculation

the relative position and length of the line-segments will be expressed by vectors

aij = Ai − Aj, vi = Bi − Ai, vj = Bj − Aj. We will also express where on

the line-segments proximity occurs using scalars ξi, ξj, where [ ξi ξj ] ∈ 〈0, 1〉2, and

determine vectors nij, dij = δijnij:

ξivi + dij = aij + ξjvj (3.5.1)

these are mostly by-products of calculations, necessary for determining δij, while

also allowing us to visualize the results.

Figure 3.6: diagram of the relation between vi, vj, ξi, ξj, nij and dij
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Line-segments in space can be either parallel or skew in relation to each other. Along

this distinction we will separate the algorithm into two parts.

• parallel proximity

• skew proximity

3.5.1 Parallel proximity

Parallel proximity between two line-segments occurs when vector vi and vj are

co-linear. The proposed algorithm recognises numerous configurations of parallel

line-segments (figure 3.7) based on the values of vi ·aij, vi ·vj, vi ·vi (table 3.1) and

determines vectors nij, dij and scalars δij, ξi, ξj appropriately (table 3.2).

In the case of parallel line-segments δij can be measured either between two of their

end-points or an infinite pairs of points on the line-segments (figures: 3.7b, 3.7e,

3.7i ). In the later case, the proposed algorithm determines a single pair of scalars

ξi and ξj, so that [ ξi ξj ] ∈〈0, 1〉2.

A more comprehensive algorithm, determining all values of ξi and ξj, where proximity

of si and sj occurs, could be derived as an extension of the proposed algorithm. Also

a more efficient algorithm, calculating δij while not producing ξi and ξj, could be

developed for real-time applications, sacrificing the option of visualization.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.7: Possible configurations of parallel line-segments
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Config. Conditions

a

vi · aij > 0

vi · vj < 0
vi · vi − vi · vj > vi · aij

vi · vi > vi · aij
b vi · vi < vi · aij
c vi · vi − vi · vj ≤ vi · aij
d

vi · vj > 0
vi · vi ≤ vi · aij

e vi · vi > vi · aij
f

vi · aij < 0
vi · vj > 0

vi · vj ≤ −vi · aij
g vi · vj > −vi · aij
h vi · vj < 0

i vi · aij = 0

Table 3.1: Parallel line-segment configuration conditions

Config. nij δij dij ξi ξj

a
(vi×aij)×vi

‖(vi×aij)×vi‖ aij · nij δijnij
vi·aij

vi·vi
0

b
(vi×aij)×vi

‖(vi×aij)×vi‖ aij · nij δijnij 1
vi·aij−vi·vi

−vi·vj

c 1
δij
dij ‖dij‖ Bj −Bi 1 1

d 1
δij
dij ‖dij‖ Aj −Bi 1 0

e
(vi×aij)×vi

‖(vi×aij)×vi‖ aij · nij δijnij
vi·aij

vi·vi
0

f 1
δij
dij ‖dij‖ Bj −Ai 0 1

g
(vi×aij)×vi

‖(vi×aij)×vi‖ aij · nij δijnij 0
vi·aij

−vi·vj

h 1
δij
dij ‖dij‖ Aj −Ai 0 0

i 1
δij
dij ‖dij‖ Aj −Ai 0 0

Table 3.2: nij, dij, δij, ξi, ξj depending on configuration
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3.5.2 Skew proximity

We will distinguish three types of proximity between skew line-segments si and sj:

• Unbound proximity

• Partially bound proximity

• Fully bound proximity

depending on the extent to which the proximity is limited, by their bounds (end-points:

Ai, Bi, Aj, Bj).

Unbound proximity

An approach to calculating δ′ij, ξ
′
i, ξ
′
j of two skew lines li and lj is described by J.-P.

Merlet in [12]. Let si ∈ li, sj ∈ lj and n′ij be the common perpendicular of skew

lines li and lj:

n′ij =
vi × vj
‖vi × vj‖

(3.5.2)

δ′ij = n′ij · aij (3.5.3)

d′ij = δ′ijn
′
ij (3.5.4)

The relation between ξ′i, vi, vj, n
′
ij, aij is determined in [12] as:

ξ′i‖vi‖
aij · (vj × n′ij)

=
‖vi‖

‖vi × vj‖
(3.5.5)

Equation 3.5.5 is then manipulated into:

ξ′i =
aij · (vj × n′ij)
‖vi × vj‖

(3.5.6)

and similarly ξ′j can be derived as:

ξ′j =
aij · (vi × n′ij)
‖vi × vj‖

(3.5.7)
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If [ ξ′i ξ
′
j ] ∈〈0, 1〉2, proximity of the two lines occurs in the bounds of the line-segments

si = AiBi, sj = AjBj and the proximity of the line-segments si, sj (as shown in

figure 3.6) is considered unbound and characterised by:

nij =
vi × vj
‖vi × vj‖

(3.5.8)

δij = nij · aij (3.5.9)

dij = δijnij (3.5.10)

ξi =
aij · (vj × nij)
‖vi × vj‖

(3.5.11)

ξj =
aij · (vi × nij)
‖vi × vj‖

(3.5.12)

sign correction of nij, in order that δij > 0, being omitted.

Partially bound proximity

If [ ξ′i ξ
′
j ] /∈ 〈0, 1〉2, the proximity δij of line-segments si, sj may be equivalent to

the smallest distance between an end-point of one the line-segments and the line

upon which lies the other.

Potential configurations (figure 3.8) of partially bound proximity are checked as

individual cases (a-d) of table 3.3 depending on the values of ξ′i and ξ′j producing

n′′ij, δ
′′
ij, d

′′
ij in sequence.

The algorithm is immediately stopped after a case satisfies [ ξ′′i ξ
′′
j ] ∈〈0, 1〉2. Where-

upon the proximity of the two line-segments si, sj is partially bound and nij = n′′ij,

δij = δ′′ij, dij = d′′ij, ξi = ξ′′i , ξj = ξ′′j
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Fully bound proximity

If neither approach yields such result, proximity of line-segments si, sij is fully bound

and δij is the minimal distance between two of their end-points:

δij = min(‖Aj −Ai‖, ‖Bj −Ai‖, ‖Aj −Bi‖, ‖Bj −Bi‖) (3.5.13)

with dij spanned between the two and scalars [ ξi ξj ] ∈ {0, 1}2. Vector nij can be

then determined as:

nij =
1

δij
dij (3.5.14)

Figure 3.9: Example of fully bound proximity (δij = ‖Aj −Bi‖)
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Application

The simulation model was created in Matlab and can be found in its entirety in

the digital attachment along with trajectories, console write-outs and videos of

performed simulations.

4.1 Program structure

In its entirety the simulation model consists of 41 purpose written .m functions their

detailed description being beyond the extent of the thesis. Therefore in this section

we will overview two functions: CONTROL.m and skew_model.m of the simulation

model and functions called inside them providing a rough outline of the model’s

structure.

45
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4.1.1 CONTROL.m

The main function of the program is CONTROL.m it first loads the setup of the mani-

pulator from manipulator_setup.m and desired trajectory in the form of an array

POS =
[
X1 . . . Xs

]
where s ∈ N is the number of discrete steps into which

the trajectory is divided.

In a for i=1:s cycle POS(:,i) along with the manipulator set-up is fed into the

function skew_model.m which returns matrices E (eqn. 3.4.5), J (eqn. 3.2.12) and

A (eqn. 3.3.10) as well as arrays necessary for the visualization of the manipulator at

each step s. Consequently collision detection and singularity detection are performed

in real-time by functions collision_detection.m and singularity_detection.m.

...

for i = 1:size(POS,2)

%tic

pos = POS(:,i);

% Skew model

[ CS_uu, CS_LAMB, UNI_AA, UNI_vv, UNI_ny, UNI_delta,

UNI_epsilon, UNI_n, UNI_Xi, PS_SEG, A, J ] =

skew_model ( AA, cs_rho, ps_rho, pc_rho, rr,

u_23, c_l, pos );

↪→

↪→

↪→

% Collision detection

[ epsilon_min, UNI_index, pair, pair_index ] =

collision_detection ( i, UNI_epsilon, UNI_ny );↪→

% Singularity detection

[ sig_J, sig_FC ] = singularity_detection ( i, A, J,

1e-3, 1e-3 );↪→

...

Listing 4.1: exert from function CONTROL.m

The arrays for visualization are stacked along an additional dimension into _s arrays

inside the cycle. After the trajectory is checked for singularities and self-collision the

_s arrays are loaded into the function plot_manipulation which plots the manipu-

lator along the trajectory POS.
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4.1.2 skew_model.m

We may divide the function skew_model.m into three distinct parts. In the first

part homogeneous transformation matrices T12 (eqn. 3.1.1) and T13 (eqn. 3.1.2)

are calculated as well as vectors ui , i ∈〈1, 8〉 described in section mechanical model

(3.1.1). This is done simultaneously with the calculation of vectors necessary for

the creation of the collision model 3.1.2.

In the second part of the function matrices J (eqn. 3.2.12) and A (eqn. 3.3.10) are

calculated using the function struct_n_Jacob_matrices.m for which the vectors

bi , i ∈〈1, 8〉 are created by function manipulator_vects.m.

The third part contains functions: cable2cable_prox.m, cable2platforms_prox.m,

cable2columns_prox.m where the line segment proximity algorithm (section 3.5) is

applied through the function segment_prox.m, creating matrices EI , EII , EIII as

well as arrays containing scalars ξi, ξj and vectors nij, dij which will be used in

plot_manipulation.m.
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4.2 Performed simulations

For the simulations we used an arbitrary manipulator set-up (listing 4.2).

function [ AA, cs_rho, ps_rho, pc_rho, rr, u_23, c_l ] =

manipulator_setup↪→

% Frame anchoring points

AA = [ 10 0 8;

10 10 8;

0 10 8;

0 0 8;

10 0 4;

10 10 4;

0 10 4;

0 0 4 ]';

% Manipulator anchoring points' vectors

rr = [ 3 -5 0;

3 5 0;

-3 5 0;

-3 -5 0;

5 -3 0;

5 3 0;

-5 3 0;

-5 -3 0 ]' / 4;

% Prismatic joint

u_23 = [0;0;1]; % axis

c_l = 4.5; % max lenght

% Capsule radii

cs_rho = 0.1; % cable capsule radius

ps_rho = 0.2; % platform segments capsule radius

pc_rho = 0.5; % platfrom columns capusle radius

Listing 4.2: function manipulator_setup.m
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4.2.1 Translation along z axis

The main advantage of the proposed manipulator in comparison to other RRPM

is its capability to operate below the plane delimited by the lower four cable exit

points.

Two simulations a) and b) of 200 steps were carried out to validate this claim.

In both of the simulations we start from identical configurations X1a = X1b (figure

4.1):

X1a = X1b =
[
5 5 4.5 0 0 0 2

]T
(4.2.1)

and start descending towards the desired configurations:

X201a =
[
5 5 0.5 0 0 0 4

]T
(4.2.2)

X201b =
[
5 5 0.5 0 0 0 2

]T
(4.2.3)

Figure 4.1: Configuration X1a = X1b
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After configurations X101a = X101b (figure 4.2):

X101a = X101b =
[
5 5 2.5 0 0 0 2

]T
(4.2.4)

the two simulations start to differ as in simulation a) we start extending the platform

at the rate of the descend while in simulation b) the geometry of the platform remains

constant.

Figure 4.2: Configuration X101a = X101b

Inevitably in the simulation b) configurations fromX126b (figure 4.3ii), where the lower

four cables lie in one plane:

X126b =
[
5 5 2 0 0 0 2

]T
(4.2.5)

toX201b (figure 4.3iv) are force-closure singular while simulation a) reaches the desired

configuration X201a (figure 4.3iii):

X201a =
[
5 5 0.5 0 0 0 4

]T
(4.2.6)

without the occurrence of singularities or self-collisions proving the claim.
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(i) Configuration X126a (ii) Configuration X126b

(iii) Configuration X201a (iv) Configuration X201b

Figure 4.3: Configurations of simulations a) and b)
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4.2.2 Rotation around x axis

It could be argued that the configuration X201a (figure 4.3iii) of the previous pair

of simulations could be achieved by a manipulator with constant platform geometry

equivalent to the geometry of the proposed manipulator when s23 = 4. While

this is true, configurations in which the platform is retracted are advantageous

when rotating along the x and y axis and could theoretically decrease strain on

the platform when resisting certain wrenches.

With the current simulation model we can prove the former advantage by comparing

two simulations c) and d) starting in configurations X1c (figure 4.4i) and X1d (figure

4.4ii):

X1c =
[
5 5 5 0 0 0 2

]T
(4.2.7)

X1d =
[
5 5 5 0 0 0 4

]T
(4.2.8)

and rotating along the x axis towards configurations X101c and X101d :

X101c =
[
5 5 5 π/8 0 0 2

]T
(4.2.9)

X101d =
[
5 5 5 π/8 0 0 4

]T
(4.2.10)

In simulation d) first self collision occurs at step num. 28 between cables 1&5 and

4&8 in configuration X28d (figure 4.4iv):

X28d =
[
5 5 5 0.10603 0 0 4

]T
(4.2.11)

making further rotation impossible, while in the simulation c) self collision occurs

at step num. 71 in configuration X71c (figure 4.4iii):

X71c =
[
5 5 5 0.27489 0 0 2

]T
(4.2.12)

Allowing for approximately further 10 degrees of rotation along the axis.
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(i) Configuration X1c (ii) Configuration X1d

(iii) Configuration X71c (iv) Configuration X28d

Figure 4.4: Configurations of simulations c) and d)



Chapter 5

Conclusion

First part of the thesis is dedicated to the overview of kinematics and the static

equilibrium of CDPMs as well as restrictions of their workspaces. Two types of

singularities effecting CDPMs are described: Jacobian singularities and force-closure

singularities derived from kinematic relations and equations of static equilibrium

respectively. Further a suitable approach to collision detection in CDPMs is identified

and the effect of joint limits is discussed.

The rest of the thesis is focused on a particular CDPM of novel design. Based

on typical eight cable RRPMs the manipulator differs by possessing a platform

with adjustable geometry. Such property of the platform introduces kinematic

redundancy to the mechanism, manifesting in changes to both kinematic relations

and equations of static equilibrium in comparison to typical CDPMs, requiring

them to be derived independently. The purpose of such design is the extension of

the manipulator’s workspace which is confirmed in section 4.2. Beside the mechanical

model a collision model had to be created for these purposes. It uses a novel

algorithm for calculating the minimal distance between two line-segments in space

which is in turn applied for the identification of interference between capsules forming

the model.

54
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The extension of the workspace as result of the adjustable platform geometry is

confirmed through a series of simulations. We prove that by scaling the platform

up the manipulator is able to operate in non-singular configurations outside of

the typical workspace delimited by points through which its cables exit the workspace

while scaling the platform down increases the range of rotation along certain axis.

The two sets of simulations also demonstrate the model’s capability of detecting

singular configurations as well as self collision in a given pose.

A significant improvement to collision detection could be achieved by developing

a method for identifying tunnelling a phenomenon during which a collision is not

registered as the objects in the simulation interfere only for a period in between

two steps of the manipulation. Progress on developing such method along with

algorithms for collision detection between capsules and other objects such as cuboids

has already been made in anticipation of further research into the topic.

Naturally the next step towards creating a functional physical CDPM would be

the inclusion of dynamics into the mechanical model as well as applying an approach

to force distribution among the cables of the manipulator. Some factors which should

be also considered in further modelling of the manipulator are the geometry of cable

exit points, cable elasticity and slack.
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