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Abstrakt

Tato bakalářská práce je obecné seznámení s pohonnými jednotkami v robo-
tice, jejich rozdíly, výhodami a nevýhodami. Práce se zaměřuje na DC mo-
tory, na jejich typy a na princip fungování. Následně jsou nastíněny možnosti
realizace řízení DC motorů.

Cílem praktické části je návrh a implementace řízení DC motoru Moore Reed
and Company Ltd 20 MPM 105 s repasovaným odměřováním. Řízení se
provádí pomocí modulu Beckhoff EL7342 a programech vytvořených v Twin-
CATu a MATLAB/Simulinku, kde je implementován jednoduchý autotuning
pro zaručení dobrých servo-vlastností pohonu.

Klíčová slova DC motor, H-můstek, Pulzně šířková modulace, PID regu-
lace, Autotuning, Řízení

vii



Abstract

This bachelor thesis is a general introduction to power units in robotics, their
differences, advantages, and disadvantages. This work focuses on DC mo-
tors, their types, and the principle of operation. Then, there are outlined
possibilities of realization of DC motors control.

The practical part aims to design and implement control of DC motor Moore
Reed and Company Ltd 20 MPM 105 with refurbished measuring. The control
is performed by module Beckhoff EL7342 and programs created in TwinCAT
and MATLAB/Simulink, where a simple autotuning is implemented in order
to assure good servo-drive properties.

Keywords DC motor, H-Bridge, Pulse Width Modulation, PID Control,
Autotuning, Control
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Introduction

Very fast development can be observed in robotics and automation. This im-
pacts not only many technological fields but the whole society. Consumers
demand more and more; therefore, the requirements are very high. The pro-
duction of quality goods is crucial and a well-functioning product is the norm.
When it comes to creating and manufacturing a robot, a great emphasis is
placed on the positioning. The demanding aspects are accuracy and repeata-
bility, which basically means to make the robot do the same thing over and
over again accurately.

What is an industrial robot? The industrial robot is a device that is pro-
grammed and controlled by a human to perform preprogrammed, repetitive,
and dangerous tasks with consistent precision and accuracy. These devices
can work 7 days a week because of their automated functionality. They can
be used in challenging and hazardous environments as well as increase pro-
ductivity. However, all of this is preceded by developing the right hardware
and software.

The whole world is driven to make everything faster, more effective, and
cheaper. Hence, sophisticated control and regulation of robots’ systems are
essential when a company wants to maintain a good market position. There
are a lot of different approaches to some kind of optimization, for example,
autotuning.
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Chapter 1
Motivation and goals

A motivation of this thesis is to broaden the knowledge of a robotics field,
mainly in electric drive technology, which is developing very quickly. However,
this work focuses more on DC motors and their controllers. Due to high
requirements for efficiency, reliability, and accuracy, optimization algorithms
are used to analyze a system and to find the right parameters to ensure the
desired operation of the robot. The goal of this bachelor thesis is to optimize
the control of DC motor Moore Reed and Company Ltd 20 MPM 105 by a
module from Beckhoff company using a method called autotuning. Autotuning
is a technique used to optimize an algorithm to find parameters to produce
the best performance, such as a fast setting time with zero overshoot to ensure
a highly dynamic running of the motor.

This thesis is divided into 7 chapters, including the introduction and the
conclusion. The work is organized as follows:

• A research on the use of drive technology in robotics, with a deeper focus
on electric drive technology, especially on DC motors.

• The basic principles of DC motors control, which requires to understand
the following terms:

– PID Controllers

– H-Bridge

– Pulze Width Modulation

• DC motor control using the Beckhoff module EL7342.

• A simple autotuning system.

• Critical evaluation of achieved results.
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1. Motivation and goals

In the theory section, different types of DC motors, their constructions, work-
ing principles, their advantages, and disadvantages over each other are de-
scribed. Also, the use and suitability of DC motors in particular systems are
mentioned there. The following part of the theory deals with servo-control
and DC motor control. In order to understand the controllers, essential key
technical terms, such as the PID controller, PWM, and H-Bridge, are ex-
plained.

To control the examined DC motor, the Beckhoff EL7342 EtherCAT terminal
is used.

Before approaching a practical part of this bachelor thesis, the motor’s mea-
suring must have been refurbished, which means that the damaged encoders
were replaced with new ones. After making sure that the motor works prop-
erly, the practical part was started.

The practical part aims to develop and implement the optimizing autotuning
algorithm created in MATLAB/Simulink. First, the motor along with the
encoder is connected to a PC through the Beckhoff module EL7342. In order
to control the DC motor, a project in TwinCAT is developed. It is desired to
control the motors’ parameters via MATLAB/Simulink where automatic servo
tuning algorithm based on the gradient descent method is programmed. When
both the TwinCAT and the Simulink programs are finished, it is possible to
link these programs. Then, TwinCAT and MATLAB/Simulink are able to
interface, cooperate, and transfer data to each other.

4



Chapter 2
Theory

2.1 Drive Systems in Robotics

2.1.1 Pneumatic Drive (Pneumatics)
Pneumatic power is used to drive about one-third of industrial robots, includ-
ing the pneumatic-powered pick-and-place units; otherwise, the percentage is
a bit less. It is mainly used to control grippers and sometimes also manipulator
arms.

Pneu means “air” in Latin; therefore, pneumatic drives are air-driven, which
means that the medium used to generate the power is compressed air. The
compressed air (or similar gas) is used to transmit energy and force, to do so
a motor-driven compressor alongside with a tank is needed. The motor and
the compressor pressurize the air and store it inside the tank, from where the
pressurized air can be delivered through the hoses to cylinders to make the
robot or any other device move. Inside the cylinders, the mechanical energy
of the compressed air is turned into a linear motion, or it could be a rotary
motion as well. Valves play an important role, as they are used to regulate
the flow of the air.

A big advantage is that after the process is done, the air can be exhausted into
the atmosphere. However, it is quite challenging to remove the moisture out
of the air and keep the lines clean and dry. Probably the biggest limitation
of pneumatic drive systems is that the compressed air is a very expensive
medium and moreover the torque that can be generated is low. [1]

2.1.2 Hydraulic Drive (Hydraulics)
Almost about half of industrial robots use hydraulic power. It is mostly be-
cause of the fact that hydraulic systems are capable of transmitting high forces.

5



2. Theory

For this reason, they are used in robust machines, such as loaders, excavators,
and many other agricultural and construction machinery. Another example
of usage is a hydraulic system of braking in automobiles.

Hydraulic systems are very similar to pneumatic systems. Hydro comes from
Greek and means water. But instead of water, hydraulic systems use oil. There
is a pump, which is powered by an electric motor, that puts a fluid under the
pressure and pushes the liquid through the system. The pressurized liquid
moves through the piping until it reaches a cylinder. The cylinder is extended
to one or the other side by pressure of the fluid, which causes the movement
of the desired part.

However, hydraulics have some limitations as well. For example, leaking is the
main problem, the liquid is under big pressure and is seeking for a defect to
run out through it. Another unpleasant point is the price. When taking into
consideration the size, it is the most expensive technology out of the three
drive systems mentioned. [1]

2.1.3 Electric Drive
The power source of electric drive systems are electric motors. They can be
divided into two groups:

• DC 1 motors - operated by direct current

• AC 2 motors - operated by alternating current

Each type has its own pros and cons. Electric motors are controlled by a
microprocessor or a computer, so then the torque and speed can be easily
controlled.

Electric drive systems are not capable of lifting such big loads as hydraulic
drive systems and they are still not completely safe to use in spray-painting
atmospheres. However, they are very versatile and more importantly, they
are able of very smooth control in starting, accelerating, decelerating, and
stopping. Compared to the previous two types (hydraulics and pneumatics),
electric robots have a higher repeatability, accuracy, efficiency, and easy in-
stallation. Therefore, electric drives are used in welding, assembly operations,
machine loading, unloading, and simply in high-tech robots. Besides, elec-
tric actuators operate at a fraction of the cost of fluid-powered actuators. [1]

1DC = Direct Current
2AC = Alternating Current
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2.2. DC Motors

2.2 DC Motors

DC motors are used in many types of industrial equipment, home appliances
as well as in automobiles to drive electric seats and electric windows [2]. In
general, DC motors are widely used in robotics, particularly in mobile and
collaborative robots. The main reason for that is the possibility of the robot
to be battery-powered, which makes a great advantage.

DC motor converts electrical energy to mechanical energy (rotational move-
ment) and has two major parts [3]:

1. Stator - a static part

2. Rotor - a rotating part

DC motors have different designs with specific characteristics. The rotor does
not change in basically all DC motors, but what changes is the stator. It is
made of either permanent magnets or coil windings which divides DC motors
into two groups [4]:

• Permanent Magnet DC Motors

• Wound DC Motors - can be also differentiated according to the configu-
ration [5]:

– Shunt

– Series

– Compound

DC motors can be also divided into following three groups [1]:

• Brushed DC Motors

• Brushless DC Motors

• Stepper Motors

Let’s look at each type closely.

2.2.1 Shunt Wound DC Motor
A shunt wound DC motor has the armature (rotor) in parallel with the field
coil (stator), as shown in Fig. 2.1. Based on this figure, it is clear that the
total current is split into two parts [4]: the current through the armature Ia

and the current through the field windings If . These currents are independent
of each other and it is given that [4]:

Itotal = Ia + If (2.1)

7



2. Theory

Figure 2.1: Shunt wound DC motor [5]

This configuration provides good speed control, but the starting torque is very
low due to the low current at the startup. This is caused by the high resistance
of field windings that are made of a thin wire with many turns. Hence, these
motors are suitable for application where the constant speed characteristic is
crucial, but the required starting torque is relatively low. [4], [5]

2.2.2 Series Wound DC Motor
In a series wound motor, the armature is connected in series with field wind-
ings, as depicted in Fig. 2.2. This ensures that the current through both of
the parts in series is the same [4]:

Itotal = Ia = If (2.2)

Figure 2.2: Series wound DC motor [5]

Compared to the shunt DC motor, the series one has field windings made of
a thicker wire with fewer turns which provides lower resistance; therefore, the
starting torque is higher. DC motors with this configuration are used where
there is a need for a lot of torque at the startup, for instance, to lift or move
something heavy. But the speed regulation is difficult. [4], [5]

8



2.2. DC Motors

2.2.3 Compound Wound DC Motor
As shown in Fig. 2.3, compound wound motors are a combination of series
wound and shunt wound motors, which as well combines their characteristics
and qualities. They have higher torque than shunt wound DC motors while
providing better speed control than series wound DC motors. Their biggest
limitation is that the series winding works against the shunt winding. [4],
[5]

Figure 2.3: Compound wound DC motor [5]

2.2.4 Brushed DC Motor
Brushed DC (BDC) motors are widely available in all sizes and shapes. They
are not very expensive, easy to control, and quite efficient. That gives them
several advantages to ensure their future use.

Let’s first start with the simplest brushed DC motor possible, shown in Fig.
2.4. The stator consists of either a permanent magnet or an electromagnet. As
the name says, the permanent magnet provides a permanent magnetic field.
This means that there is always a magnetic field unlike with an electromagnet.
The electromagnet is made in a form of a coil. In order to create a magnetic
field, an electric current needs to pass through the coil.

In case of this thesis, the motors that will be dealt with are DC motors with
permanent magnets. Consequently, this design will be discussed in more de-
tail.

The armature connected with commutators form the rotating part, called
the rotor. The commutators are made from a copper separated by a mice
insulator. These DC motors have carbon brushes, as the name implies.

The direct current is fed to the armature through a pair of commutator rings
and brushes, it results into creating a magnetic field in the armature that in-
teracts with the permanent magnetic field of the stator. The static magnetic
field is created between South and North poles of the stator and has a set

9



2. Theory

Figure 2.4: DC motor - conceptual diagram [3]

direction. When the current flows through the coil, the magnetic field gener-
ated in the coil is attracted to the permanent magnetic field which causes the
armature to rotate. As the coil rotates, the commutators connect with the
power source of different polarity. This makes the electricity on the left side of
the coil always flow away and on the right side it flows towards. This provides
the motion in the same direction and keeps the coil rotating. However, if
taken into consideration only one armature loop, the motion will be irregular
because when the coil is perpendicular to the magnetic flux, the torque action
nears zero. To overcome this problem, more loops need to be added and the
more loops are added, the smoother will be the motor rotation. Each loop
has a pair of commutator rings. As the motor rotates, the following two com-
mutator rings move over to make contact with the brushes that magnetized
them. As a result, the next magnetized coil is attracted to the permanent
magnet. Simply, the commutators are a switching device that provides the
smooth motion and determines which coils are energized.[1], [2], [3]

The direction of rotation depends upon Fleming’s Left Hand Rule. This rule is
valid for electric motors, not generators, and is a mnemonic. It is a simple way
to find out the direction of motion, as depicted in Fig. 2.5. The thumb points
in the direction of the motion and also the direction of EMF 3. The middle
finger indicates the direction of the current and the forefinger represents the
direction of the magnetic field. [6]

Changing the direction of rotation can be done by simply flipping the polarity
of the electric current supplied. To control the speed of BDC motors, their

3EMF = Electomotive Force
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2.2. DC Motors

Figure 2.5: Fleming’s Left Hand Rule [6]

current or voltage or both can be regulated or it is also possible to insert a
variable resistor in series with the field and adjust it to increase or decrease
the voltage. [1]

2.2.5 Brushless DC Motor
As the name suggests, brushless DC (BLDC) motors do not have brushes.
They are basically the same as BDC motors but turned ”inside-out”. This
means that the windings are not located on the rotor, but they are moved
to the stator and remain stationary. Because the coils do not move, there is
no need for brushes and commutators. On the other hand, the rotor consists
of a permanent magnet that rotates. The rotor can be either inrunner or
outrunner. An inrunner BLDC motor has the rotor inside the stator and an
outrunner BLDC motor has the rotor outside of the stator. Inrunner BLDC
is shown in Fig. 2.6. Also, note that the coil arrangement is different from
BDC motors.

To move the rotor, direct current is fed to the coils on the stator which are
then energized and become an electromagnet. The coils are energized one by
one which attracts the permanent magnet and ensures that the rotor moves.
When only one coil is powered, the two other coils reduce the power output.
To make it more efficient, two coils can be energized at the same time with
the same polarity current, as depicted in Fig. 2.7. Also, it can be observed
that the BLDC motor depicted in this figure is the outrunner type.

In Fig. 2.7, the first coil attracts the poles of the rotor (marked with green
forces) and the second coil repels the poles of the rotor (marked with red
forces), which leads into a desired bigger torque. [8], [7]
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2. Theory

Figure 2.6: BLDC motor -
construction [7] Figure 2.7: BLDC motor -

working principle [8]

2.2.6 Brushed vs. Brushless DC Motor
This section is inspired by [7], [9].

Both of these types of DC motors are common and widely used in industrial
and robotics applications. Based on the requirements and specifications of the
desired application, it can be decided whether to use a brushed or brushless
DC motor. Let’s look at some advantages and drawbacks of BDC and BLDC
motors.

Brushed DC Motors

They have a simple design, they are cheap and easy to control. However, the
biggest drawback is that their brushes eventually wear out due to a continuous
movement which causes the need for regular maintenance and a replacement
of brushes. Also, the brushes may cause sparking, noise, and they limit the
maximum speed of the motor. The efficiency of BDC motors is usually only
75-80%.

Brushless DC Motors

BLDC motors are more reliable, more efficient (85-90%). Because of the lack
of brushes, they are less noisy, and there are no brushes to wear out which
means it requires less maintenance and no sparking is generated. Overall,
BLDC motors are lighter and smaller than BDC motors with the same power
output. Besides, since a computer is used to control the motor instead of
mechanical brushes, the delivered speed and torque are very precise, which
reduces the heat generation and energy consumption. But they are more
expensive.
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2.2. DC Motors

In conclusion, today, BLDC motors are more commonly used than BDC mo-
tors, especially due to a long life span, precision, and efficiency. However,
BDC motors can still be found in, for example, the automobile industry and
home appliances, where such high demands are not always required.

2.2.7 Stepper Motors
Stepper (STP) motors are brushless DC motors. They consist of 2 main
parts: a stator and a rotor. The rotor is a permanent magnet or created from
a ferromagnetic material, the stator is made of coils. STP motors can control
the angular position of the rotor without a closed feedback loop, which means
that they operate in an open-loop. The motor divides a full rotation into
several equal steps, that is where the name comes from.

Depending upon construction [10], there are three types of STP motors:

• Permanent Magnet Stepper Motor

• Variable Reluctance Stepper Motor

• Hybrid Stepper Motor - the most common

Not all the types of stepper motors will be discussed. Let’s look at one of
these types, for instance, Variable Reluctance Stepper motor, and describe
the working principle which is almost the same for all of them. Variable
Reluctance Stepper motor is one of the simplest types and is depicted in Fig.
2.8.

As can be seen in Fig. 2.8, this motor has 3 stator windings, which means 6
poles and 4 rotor teeth. When the coil ”a” is energized, the respective teeth are
attracted to it. Then if the coil ”a” is de-energized and the next winding ”b” is
energized, the rotor will rotate CW4. If keeping energizing and de-energizing
sequentially, the rotor will rotate continuously. At any point, only one pair of
rotor teeth is aligned with the energized coil. In that case, the one-step size
is 30°. To make it more precise, a method called half stepping can be used, it
changes the one-step size to 15°. The half stepping means that the two coils
next to each other are energized at the same time so as to move the rotor to a
position in between them. Then only one coil is powered and then again the
two next to each other. This ensures that the step angle is half of the size of
the original one. [10], [12]

Some advantages of STP motors to mention, according to [13], [14], are:

• High output torque at low angular velocity

• Precise positioning and repeatability of movement
4CW = clockwise
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2. Theory

Figure 2.8: Variable reluctance stepper motor [11]

• Simple and robust construction resulting in good mechanical reliability

• Great response to starting, stopping, and reversing

2.3 DC Motor Control and Servo-control
The ability to control a DC motor or any other motor is essential in creating
any mechatronics system, for example, a robot. There are many tasks which
concern the precise positioning and the speed of a certain mechanism. This
can be obtained by simple devices, such as H-Bridge, PID Controllers, and so
on. Let’s look at them closely in the following chapters.

2.3.1 H-Bridge
This chapter comes from [15] and [16].

H-Bridge allows us to drive a DC motor in both directions, meaning forward
and backward. In order to do that, the direction of a current must be con-
trolled. H-Bridge is a simple circuit containing four switches. Thus, there are
two to the four possible states but not all of them are relevant. The switches
are usually made of series of bipolar transistors that route the current. Let’s
look at the electric circuit of an H-Bridge in Fig. 2.9. In this picture, it can
be seen that the configuration resembles the letter H. The transistors on the
top of the circuit are PNP type and are connected to a power supply. The
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bottom ones are NPN types and are connected to the ground. When choosing
the right transistor, it must be ensured that the transistor can handle enough
current. For instance, if the motor takes 2 Amperes, the transistor needs to
withstand at least that value of current; otherwise, it will burn out. In the
middle, there is a motor that is desired to be controlled. The transistors in
Fig. 2.9 are represented in Figures 2.10 and 2.11 as switches.

Figure 2.9: H-Bridge [15]

Figure 2.10: H-Bridge - for-
ward movement [15]

Figure 2.11: H-Bridge - back-
ward movement [15]

Each of the switches can be closed or opened independently, but of course,
there are some limitations. If switches S1 and S4 are closed, the left lead is
connected to VCC and the right lead is grounded. This results in the motor
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starting to rotate in one direction, let’s say forward, as demonstrated in Fig.
2.10. On the contrary, if switches S2 and S3 are closed, the motor gets ener-
gized in the reverse direction; therefore, it will spin in the opposite direction,
meaning backward, which is illustrated in Fig. 2.11. If S1 and S3 or S2 and
S4 are closed at the same time, both sides of the motor are seeing the same
voltage, it is called a brake state, which means that the short circuit damping
is used to slow down the motor. If one or none of the switches are closed, it
is called a coast state, the voltage is whatever it wants to be, but no current
is provided. Thus, the motor does not spin. Either both S1 and S2 or both
S3 and S4 should never be closed simultaneously because it would be a short
circuit from a positive voltage to the ground which would cause the burnout
of the H-Bridge. Altogether, there are 9 possible states for an H-Bridge to be
in, shown in Table 2.1.

S1 S2 S3 S4
close open open close
open close close open
close open close open
open close open close
close open open open
open close open open
open open close open
open open open close
open open open open

Table 2.1: Allowed combination of switches

As expressed in Fig. 2.9, there are four diodes connected in the opposite
direction than transistors. The diodes are called snubber diodes and are used
to limit voltage transients in electrical systems running on DC current. While
the motor is running, there is no current flowing through the diodes. But
when the motor is turned off, there is a spike of voltage and then the current
starts to flow through the diodes in order to not destroy the transistors. This
means that the stored energy, that is generated by the motor, is dissipated
through the snubber diodes from the circuit. [17]

2.3.2 PWM

The resources used for this secion are [18], [19], [20].

PWM stands for Pulse Width Modulation. PWM is used to control the speed
of a DC motor by varying the width of the pulse while keeping a constant
frequency.
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If the power of the DC motor is turned on, the motor does not reach a full
speed immediately, but it takes some time before the motor runs at the full
speed. If the power is switched off, the motor will start to slow down. If
keeping switching the power on and off, the motor will run at some speed in
between 0 speed and the full speed. This is exactly how the PWM works.
PWM is a series of on and off pulses that create a square wave. Based on the
width of on pulses compared to off pulses, the motor will receive a respective
amount of voltage. As a consequence, the speed will change accordingly. The
ratio of the on time to the time of the whole period is called the duty cycle,
as demonstrated in Fig. 2.12. The duty cycle is always between 0 and 100 %
and can be calculated, based on [20] like:

D = ton

T
, (2.3)

where ton is a time for how long is the power on and T is the period. The
lower the duty cycle, the lower the power that the motor receives. Regarding
the switching speed, [18] states that the switching is usually done from a few
kHz to tens of kHz for a motor drive.

As can be observed in Fig. 2.13, the left side waveform has a low average
voltage because the width of on pulses is narrower than the width of off pulses.
The right side waveform is exactly the opposite case which results in a high
average voltage. Of course, the higher the average voltage, the bigger the
speed and likewise.

While transitioning between on and off states, the voltage and the current
change slightly; therefore, some power is dissipated. But since the time be-
tween on and off states is very small (in nanoseconds) compared to the fully
on and fully off states, the average power loss is low.

Figure 2.12: Duty cycles
[18]

Figure 2.13: Pulse width modulated
waveform [19]
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Figure 2.14: Operation of PWM [20]

PWM converts an analog signal to
a digital signal. If the control volt-
age Uctr is above the delta voltage
UD, then the power is switched on.
Likewise, if Uctr is below UD, the
power is switched off. This cre-
ates the sequence of square wave
pulses which is the output voltage
Uout. This can be observed in Fig.
2.14, where it is quite clearly de-
picted. Note that if Uout = 0, and
ton equals to toff , then the duty
cycle would be D = 0,5.

PWM is often paired together with
H-Bridge to form the basic building element of a motor to control the current
in the winding.

2.3.3 PID type Controllers
This chapter and the following subchapters about different types of controllers
are based on [21], [22].

Controllers, in general, can be divided [21]:

Based on:

• Energy supply

– Direct - no need of auxiliary energy

– Indirect - there is a need of auxiliary energy (hydraulic, pneumatic,
electric)

• Output waveform

– Continuous

– Discontinuous

• Linearity

– Linear

– Nonlinear

PID controllers are indirect (mostly electric), continuous, and linear. PID
consists of three parts: P means proportional, I stands for integral, and D is
derivative. Depends on which components the regulators consist of, there are
[21]:
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• P-Controller

• I-Controller

• PI-Controller

• PD-Controller

• PID-Controller

These variants of controllers are used for different applications to get the best
results. They are used to control a system. Let’s look separately at each type
of controllers in the following chapters.

Figure 2.15: A typical PID control system [22]

PID controllers are very widely used in various fields, also in automation and
robotics. A PID control system is illustrated in Fig. 2.15. Assuming that
the temperature in a room is to be controlled. The setpoint is the desired
value, the process variable is the actual value (temperature in the room). The
process variable is measured by a sensor, in this case, it would be probably a
thermocouple. An error is a difference between the setpoint and the process
variable that causes the actuator to act in a certain way, based on the type
of the regulator, so as to achieve the desired temperature in the room. This
whole system is known as a closed-loop feedback system.

2.3.3.1 Ideal P-Controller
An ideal P-controller or a proportional controller simply sets the control out-
put u proportional to the error e. The error is the difference between the
setpoint w and the process variable y:

e = w − y (2.4)

The behavior of the P-controller can be described by the relation:

u(t) = r0 · e(t), (2.5)
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where r0 is the proportional gain of the P-controller.

The transfer function R(s) of the ideal P-controller is

R(s) = U(s)
E(s)

= r0 (2.6)

Fig. 2.16 depicts the static characteristics of the P-controller. Since it has a
static characteristic, the whole system is static. Also, the P-controller cannot
provide zero error state. Hence, there will always be a steady state error in
the response of this controller. The response to a unit step change, which is
called a transient response or a step response, is shown in Fig. 2.17.

Figure 2.16: A static charac-
teristic of P-controller [21]

Figure 2.17: Transient re-
sponse of the ideal P-controller
[21]

2.3.3.2 Ideal D-Component
Only the D-controller on its own cannot be used because it reacts only to
changes of e. Hence, when the error stabilizes, the derivative term equals
zero. However, the derivative component is useful for predicting how fast the
process variable will change in time and based on that the controller can adjust
the output to the rate of change. The bigger the derivative constant is, the
more aggressively the controller reacts, which is not usually desired. Thus, the
derivative constant is mostly a small number as the derivative response is very
sensitive to the noise in the process variable. If a big derivative constant is
chosen, it leads to a very high output even for a small amount of noise.

The ideal D-component can be described by this equation where it is clear that
the output equals to a derivative constant multiplied by the rate of change of
error:

u(t) = rD · e′(t) (2.7)
or

u(t) = r0 · (TD · e′(t)), (2.8)
where TD is the time derivative constant and rD is the derivative constant.

The transfer function of the D-component is:

R(s) = rD · s. (2.9)
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2.3.3.3 Ideal I-Controller

An ideal I-controller or an integral controller sets the control output u pro-
portionately to the integral of the error e so the behavior is expressed like:

u(t) = 1
TI

·
∫ t

0
e(τ)dτ + u(0) (2.10)

or
u(t) = rI ·

∫ t

0
e(τ)dτ + u(0), (2.11)

where TI is the time integral constant and the inverse value of that, 1/TI , is
rI which is called the integral constant.

The transfer function R(s) of the ideal I-controller equals to:

R(s) = U(s)
E(s)

= rI

s
(2.12)

Figure 2.18: Transient response of
the ideal I-controller [21]

The I-controller is used to drive the
error towards zero. The integral
component sums the error over a pe-
riod of time until it is eliminated.
The controller responds even to a
small error.

When considering equation (2.10) or
(2.11), it is clear that the steady
state (u’(t) = 0) can be achieved only
if the steady state error equals to
zero. This system is astatic which means it does not have a static charac-
teristic, but it has a transient response, demonstrated in Fig. 2.18. When
comparing the transient response of the P and I-controller, it can be seen that
the P-controller responds immediately, but there is always a steady state er-
ror. On the other hand, the I-controller responds slowly but maintains a zero
steady state error.

2.3.3.4 Ideal PI-Controller

When combining P and I terms, the PI-controller is created which can be
described by:

u(t) = r0 · e(t) + rI ·
∫ t

0
e(τ)dτ + u(0) (2.13)

or
u(t) = r0 · (e(t) + 1

TI
·
∫ t

0
e(τ)dτ) + u(0). (2.14)
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The transfer functions of P and I controllers are known; therefore, the transfer
function of the PI-controller is:

R(s) = U(s)
E(s)

= r0 · s + rI

s
= r0 + rI

s
(2.15)

Figure 2.19: Transient response of
the ideal PI-controller [21]

The PI-controller is also an astatic
system. Hence, it does not have
a static characteristic, but the
zero steady state response can be
achieved. Since there is the P term
present, the response of this sys-
tem is faster than considering only
I-controller. The transient response
is depicted in Fig. 2.19. This type of
controller is used in many industrial
applications. To compare responses
of P, I, and PI-controller, see Fig.
2.20.

Figure 2.20: Responses of P-controller, I- controller, and PI-controller [22]

2.3.3.5 Ideal PD-Controller

A PD-controller contains the proportional and the derivative term. By derivat-
ing the error e in the actual time t, it can predict how will the error behave
in the future and based on that, it can change the controller output u.
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The ideal PD-controller can be described by this equation:
u(t) = r0 · e(t) + rD · e′(t) (2.16)

or
u(t) = r0 · (e(t) + TD · e′(t)), (2.17)

where TD is the time derivative constant and rD is the derivative constant.

The transfer function of the PD-controller is:
R(s) = r0 + rD · s. (2.18)

In steady state, the derivative equals to zero. For this reason, the D-term does
not affect it. Hence, the static response is the same as for the P-controller that
is shown in Fig. 2.16. This system is static since it has a static characteristic;
therefore, a zero steady state error cannot be achieved.

Figure 2.21: Transient response of an
ideal PD-controller [21]

When looking at the transient re-
sponse of the ideal PD-controller in
Fig. 2.21, it can be observed that
because of the D-term, there is a big
spike at t = 0. This spike goes ide-
ally to infinity and then comes back
to a constant value r0.

A lot of industrial applications use
very small derivative time TD be-
cause the derivative response is sensi-
tive to a noise in the process variable
signal. This can result in producing high and quick changes in the controller
output and leading to an unstable system. In order to prevent these undesired
fast changes, filters are used.

2.3.3.6 Ideal PID-Controller
By combining proportional, integral, and derivative terms, the PID-controller
is formed. It can be described by the following equation:

u(t) = r0 · e(t) + rI ·
∫ t

0
e(τ)dτ + rD · e′(t) + u(0) (2.19)

or
u(t) = r0 · (e(t) + 1

TI
·
∫ t

0
e(τ)dτ + TD · e′(t)) + u(0). (2.20)

When derivating the equation 2.19, it is easy to get the transfer function of
the PID-controller which is:

R(s) = r0 · s + rI + rD · s2

s
= r0 + rI

s
+ rD · s. (2.21)
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Figure 2.22: Transient response of
the ideal PID-controller [21]

Since the PID-controller contains
the I-term, the system is astatic;
thus, there is no static characteris-
tic. Again, the steady state error
equals zero. The transient response
is demonstrated in Fig. 2.22.

Another step in using the PID-
controller is to be able to tune it
properly. Tuning means finding the
right gains of proportional, integral,
and derivative parameters so as to
get the optimal response and achieve the desired value. There are differ-
ent methods of tuning, let’s talk about them closely in the following chapter.

2.4 Tuning of PID Controllers
A lot of different tuning methods for PID controllers have been developed in
the last couple of decades. All the methods have their pros and cons. But the
more information is known about the system, the easier and more precise the
tuning is.

The optimal PID controller is quickly responsive, has minimal overshoot, has
no steady state error, and is stable. Therefore, as said before, tuning methods
are used to find the optimal proportional, derivative, and integral constants in
order to get the desired response of the system. There is no one single way how
to tune the PID controller, it depends on the characteristics of the system.
Whether the system is linear or non-linear, whether it has a minimum or non-
minimum phase, and whether there is a big delay or a manageable amount of
delay. [23]

There are two general ways how to approach the tuning, either it is based on
a model or a real physical system (hardware). From physical hardware, it is
possible to develop a model.

In general, there are three methods of tuning [24]:

• Manual Tuning

• Heuristic Methods

• Automatic Tuning
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2.4.1 Manual Tuning
The gains can be tweaked manually, it is an intuitive process for well-behaved
systems since it is known how the P, I, and D terms affect the system. When
increasing the proportional constant, it reduces the rise time. When increas-
ing the derivative constant, it improves stability and decreases overshoot.
[23]

There are three approaches to manual tuning based on [23]:

• Trial and Error - This is the simplest method of tuning a PID controller.
It is based on the person, that tunes the controller, to guess the constants
and run the system and just keep guessing values until he or she gets the
desired response. Over the course of the time, some simple rules were
developed. The first step is to start with just a P term, this means that
the time integral constant is set to infinity (maximum), and the time
derivative constant is set to 0. After the ideal proportional constant is
found, the I term is added, and afterward, the D term is implemented
as well.

• Pole Placement Method - finding the right poles in order to get the desired
response. To make the system stable, all the poles must be on the left
side of the complex plane.

• Loop Shaping Method - This method uses an open loop transfer function
and the knowledge of Bode and Nyquist characteristics.

2.4.2 Heuristic Methods
Heuristic methods are slightly more sophisticated than the previous ones, but
they still belong to the manual tuning methods. There is no need for a model
when using heuristic methods. But these methods provide only an initial
guess.

The two well-known heuristic methods are [23]:

• Ziegler-Nichols Method

• Cohen-Coon Method

Let’s look only at the Ziegler-Nichols method since it is more used than the
other one and it was also invented earlier.

Ziegler-Nichols Method

This method is one of the oldest and best-known tuning methods. It was
developed by John G. Ziegler and Nathaniel B. Nichols in the year 1942.
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The aim is to bring the system to the edge of stability and then record the
critic values, such as the oscillation period Tu and the ultimate gain Ku.
Using these values, it is possible to calculate the parameters of the controller.
[25]

Ziegler-Nichols method follows these steps [25]:

1. First, let’s eliminate the derivative and integral terms and focus only on
the proportional term.

2. Bring the system to the oscillating stability limit by increasing the value
r0.

3. From the measured values, determine the period of oscillation, also called
the ultimate period, Tu, and the ultimate gain Ku. Then calculate the
optimal values for the type of the controller used, see table 2.2.

r0 TI TD

P 0,5 · Ku Inf 0
PI 0,45 · Ku Tu/1,2 0

PID 0,6 · Ku Tu/2 Tu/8

Table 2.2: Calculation of controller’s parameters using Ziegler-Nichols
method [26]

2.4.3 Automatic Tuning
Tuning, in general, depends on the operator’s understanding of how tuning
works and also on the dynamic behavior of the system and some other circum-
stances. Automatic tuning, also called autotuning, is a method that simplifies
it for the operator because it let the controllers choose their own optimal
parameters based on some sort of automated analysis of the controlled sys-
tem’s behavior. Autotuning basically works on the principle of satisfaction
with the response of the controller. There is no one single technique that
would be dominant. In most autotuning techniques, a mathematical model of
the system is included. Autotuning can even run real-time and be constantly
adjusting the gains. [23], [27]

Nowadays, most of the controllers have some kind of autotuning implemented
inside of them. What it does is that the PID controller observes how the
system behaves, responds to changes in setpoints and deals with disturbances.
Based on all this knowledge, the autotuning software calculates appropriate P,
I, and D constants and set them to the PID controller to get the optimal set of
controller’s parameters. One of the used autotuning methods is the gradient
descent technique. [24]
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2.4.4 Gradient Descent Method
In general, a gradient determines the direction of the greatest growth of a
function and it is a first partial derivative of the given function. In the case
of the gradient descent technique, as the name implies, the direction of the
greatest descent is important. Gradient descent method is an algorithm used
to reach a minimum point for the specific function because it is wanted to
minimize the difference between the actual value and the desired value. The
algorithm takes the starting point of the function and converts the solution to
the negative direction of the gradient in order to obtain the minimum point
of the function, as illustrated in Fig. 2.23. [26]

Figure 2.23: The steepest descent direction to reach a point of local minima
[26]

The gradient can be expressed as [28]:

grad f(x) = ∇f(x) = g⃗(x), (2.22)

where the g function is a vector that contains partial derivatives [28]:

g⃗(x) =
[

∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn

]T

. (2.23)

The gradient can be calculated analytically or if it is too time-consuming or
not possible at all, it can be calculated numerically as following [28]:

• Single-sided difference:
∂f

∂x1
= f(x1 + ∆x1, x2, . . . ) − f(x1, x2, . . . )

∆x1
(2.24)
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• Central difference:
∂f

∂x1
= f(x1 + ∆x1, x2, . . . ) − f(x1 − ∆x1, x2, . . . )

2∆x1
(2.25)

• And many other approches

The gradient method finds the minimum point faster than any other non-
gradient technique because it is applied in the steepest direction. Conse-
quently, the values of the function decrease at the fastest rate. It is an iterative
process according to the equation 2.26 [26]:

xi+1 = xi − λi · ∇f(x) = xi − λi · g(xi) (2.26)

at which λi > satisfies:

f(xi − λi · g(xi)) = min
λi>0

f(xi − λi · g(xi)), (2.27)

where λ is the step size, ∇ denotes the gradient operator of the function, and
g(xi) indicates the gradient at the current point.

The algorithm tries to find the minimum value using this directional derivative
[26]:

d

dλi
f(xi+1) = ∇f(xi+1)T · d

dλi
xi+1 = −∇f(xi+1)T · g(xi) (2.28)

When reaching the local minimum, the equation 2.28 equals to zero. By
applying the step size λ to the function ∇f(Xi+1) and g(Xi) at each iteration,
the magnitude and the direction of the gradient is every time updated. That
results in the directional function creating the zigzag pattern shown in Fig.
2.23.

It is important to make sure that the function diminishes at each iteration;
therefore, the step size λ needs to be chosen accordingly. The λ must be bigger
than zero. If a very small value for λ is chosen, then the optimization takes too
much time. If the value is too high, it might skip the minimum value and start
to diverge or oscillate. The right step size ensures stable conditions. There is
also the question of whether to choose a fixed step size or gradually adjust it
based on the algorithm progress. The parameters of the PID controller will
be transformed by the algorithm until the stopping criteria met.

However, the goal of this technique is to find a global minimum, but the
problem of the gradient descent method is that it may get caught in local
minima. This method proceeds towards the steepest direction, which does
not necessarily need to lead to the global minimum. Because in a local area,
there might be a steeper direction for the method to follow. But when the
system gets to a local minimum, it might get stuck in there and will not reach
the desired solution. [26], [29]
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2.4.5 PID Controller in the Laplace Domain
Let’s convert the equation 2.20 from time domain to s-domain (Laplace do-
main) [30]:

U(s) = r0 · E(s) + rI

s
· E(s) + rD · s · E(s)) (2.29)

U(s)
E(s)

= rD · s2 + r0 · s + rI

s
=

rD · (s2 + r0
rD

· s + rI
rD

)
s

(2.30)

From equation 2.30, it can be observed that the PID controller has one pole
at the origin (because of the single ”s” in the denominator). But that is just
the I part, that is integrated inside the PID controller. Let’s look at the
numerator. There are two zeros, their placement depends on the values of r0,
rI , and rD. The whole tuning problem is where to place the zeros and how
much gain to apply. But all of this applies to an ideal PID controller with the
ideal derivative term. In the real PID controller, there is not a pure D term
implemented, there is a filtered derivative instead. As a result, another pole
arises. So the equation of the D term [30]:

rD · s (2.31)

is replaced by the equation of the filtered derivative [30]:

rD · N

1 + N
s

= rD · N · s

s + N
, (2.32)

which makes it clear how the extra pole developed.

Now it is appropriate to use the methods that were mentioned in chapter 2.4.1,
the pole placement, or the loop shaping. If it is known where the dominant
poles should be in order to generate the desired response. It is possible to
devise a PID controller that places the poles exactly at the spot where it is
needed by adjusting the gains. This is the pole placement method. The loop
shaping method deals with the frequency response, especially with the Bode
plot. By adjusting the two zeros and the gains of the PID controller, it is pos-
sible to shape Bode plots to get the required frequency characteristics.

Both of these methods can be solved using math and the relevant equation.

2.4.6 Cascade Control
This chapter is based on [31] and [32].

Cascade control is a widely used approach to improve process performance by
reducing or eliminating a known disturbance. There are inner and outer loops
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and it is possible to distinguish them. They are called cascaded or nested
loops because of the structure. The structure is to nest one feedback loop
inside another feedback loop using two controllers. Let’s describe a system
with two cascaded loops, depicted in Fig. 2.24, but even more loops can be
nested.

Figure 2.24: Cascade control block diagram [32]

From Fig. 2.24, it is noticeable that there are two controllers, two sensors, one
actuator, and the processes are in series. The outer loop drives the setpoint
of the inner loop, it means that the primary (master) controller generates the
setpoint for the secondary (slave) controller. On the other hand, the inner
loop generates a PV5 that is the input of the primary process and affects the
feedback path of the outer loop.

The inner loop works like a classic feedback control loop, it consists of a
setpoint, a secondary controller, an actuator, and a process variable. The
outer loop is also a feedback loop, except it uses the entire inner loop as the
actuator.

Why design a system with cascaded loops and not a single loop [31]?

• It can be easier to isolate problems.

• The inner loop can be tuned to respond quickly to local disturbances.

• The outer loop can be tuned more conservatively to reject sensor’s noise
and increase stability.

The inner loop responds quickly and can detect the motor disturbances and
adjust them so that the outer loop would not be affected by that. This allows
the outer loop to be slower and respond to slow disturbances. Hence, when
noise is detected by the outer loop, the response is not so aggressive as it
would have been in a single loop system. It is much better to have a cascaded
system with more loops targeting different setpoints and disturbances than a
single loop system.

5PV = Process Variable
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When the inner loop is 5-7 times faster than the outer loop, the loops can be
tuned separately and the changes in the inner loop are so fast compared to
the outer loop that the outer loop takes them as instantaneous. If the inner
loop speed is about the same as the outer loop speed, then the tuning process
is slightly more complicated because the inner loop performance affects the
outer loop. The two controllers operating at the same speed might end up
competing and driving the system unstable. There are 3 different ways to
tune it [31]:

• Iterative approach - Tune the inner loop with a guess and then tune the
outer loop while the inner loop is running, change the inner loop guess
and tune the outer loop again, and keeps iterating back and forth until
the optimal response is found.

• Multi-input, Multi-output system - Both of the loops are tuned simulta-
neously.

• Using software to autotune the loops.

The cascade control system can be, for example, created in MATLAB/Simulink.

Cascade control has some downsides. The extra sensor and controller increase
the overall price. Also, there is twice as much tuning. However, cascade
control performs better than the single loop control, but it is not worth the
effort and costs for all applications.

2.5 TwinCAT 3
TwinCAT 3 is a PC-based control software developed by Beckhoff Automa-
tion. This company claims that almost every kind of control application can
be created with TwinCAT 3. To realize the applications, the user can access
different programming languages, including PLC programming languages, the
high-level languages C and C++ as well as MATLAB/Simulink. TwinCAT 3
philosophy is moved to modular control software which ensures that the com-
plexity of modern machines is mastered and the engineering effort needed is
decreased. It means that individual functions or machine units are considered
as modules. TwinCAT 3 is deemed to be an eXtended Automation because
it provides a combination of the latest IT technologies and scientific software
tools with automation technology. TwinCAT 3 can be integrated into some of
the existing software development environments such as Microsoft Visual Stu-
dio, which is used in the case of this thesis. Another feature that TwinCAT 3
provides is a real-time environment, where TwinCAT modules can be loaded,
executed, and administrated. Each of the modules can be developed using
different programming languages as mentioned above. Thus, this approach is
convenient for many users and developers. The TwinCAT Engineering Envi-
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ronment and the modular structure of the TwinCat 3 Runtime Environment
can be observed in Fig. 2.25 and Fig. 2.26 respectively. [33]

Figure 2.25: TwinCAT 3 Engineering Environment [33]

A further great feature of TwinCAT 3 is that it supports multi-core CPUs6.
Thus, different modules and their tasks can be assigned to different cores of
the CPU. This provides a great performance of the newest PCs that can be
used up to their limits. [33]

The requirement of TwinCAT 3 are [33]:

TwinCAT 3 XAE (Engineering):

• Windows XP with Service Pack 3 (x86) or Windows 7 (x86 or x64)

• Processor running at 1.6 GHz or higher

• 2 GB RAM

• 3 GB free hard disk space

• Graphics adapter supporting DirectX9, running at a minimum resolution
of 1024x768

TwinCAT 3 XAR (Runtime):

• x86-based Windows operating system: Windows XP with Service Pack
3, Windows 7, Windows Embedded Standard 2009, Windows Embedded
Standard 7

6CPU = Central Processing Unit
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Figure 2.26: Modular structure of the TwinCAT 3 Runtime Environment
[33]

2.5.1 Ethernet
Ethernet was created in the ’80s to connect computers and other devices in
a local environment. It is a communication standard IEE 802.3 that was
standardized in 1983 by the Institute of Electrical and Electronics Engineers
(IEEE). The local environment, also called LAN 7, could be an administrative
building, a home, or any other restricted area. LAN provides a space where
multiple devices can be connected to share information with each other. Eth-
ernet is a wired system. As a result, the devices are connected via cables. A
coaxial cable used to be used. Nowadays, the technology was shifted to using
twisted pair copper wiring and fiber optic wiring. The twisted pair cables,
specifically CAT6a and CAT7, can handle speed up to 10 Gbps. They can
work in either half or full-duplex mode. As the name suggests, the half-duplex
mode allows data to be transferred in only one direction, and on the other
hand, the full-duplex mode transmits data in both directions simultaneously.
A fiber optic cable helps Ethernet to travel further at a higher speed. Overall,

7LAN = Local Area Network
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Ethernet is affordable, easy to install, and if it is connected to the internet,
the possibilities are endless. [34]

2.5.2 EtherCAT
EtherCAT means Ethernet for Control Automation Technology. This tech-
nology is based on Ethernet but specifically targets an industrial automation.
Unlike Ethernet, EtherCAT focuses more on [35]:

• Quick response times => higher speed

• Minimal data requirements for each device => reduced data traffic

• Low costs of implementation

• More accurate data due to the distributed clock mechanism

Ethernet works in a master/slave configuration, which means that the data
are transferred only when the master or client requests it. It is not the most
practical solution since it sends the frame of data to and from most of the
devices, individually, even if it is meant to be only for a particular node, as
depicted in Fig. 2.27, where the data frame is relevant only to the Node 2,
but it reaches all the nodes. [35]

Figure 2.27: Ethernet - bus topology [35]

With EtherCAT, it works slightly different. Only the master is allowed to
send the data frame that goes through the whole node network, as could be
seen in Fig. 2.28. Each EtherCAT device can take and add some information
to the data frame, as it passes through the nodes, which ensures real-time
capability. Each device is equipped with two Ethernet ports, the first is the
receiving one. The second port connects to the following node to provide the
flow of the data. This approach assures the main advantage of EtherCAT
which is that the data are processed on the fly. Of course, there is still a small
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Figure 2.28: EtherCAT - ring topology [35]

delay, as the data frame passes through each node, but it is much faster than
sending multiple frames via Ethernet. The only problem that can occur is
that not all the devices can handle these high cycle times. Thus, the speed of
the data transmission might need to be decreased which is possible. [35]

Another feature that EtherCAT provides is a distributed clock system for
precise synchronization. As the data frame passes through devices, each node
adds its timestamp to the data so then the master can calculate a delay for each
node. With this mechanism, every single data transmission is very accurate.
[35]

Based on the desired application, different topology can be realized. Ether-
net’s star, line, or bus topology can be used. Other than that, a tree, ring, or
other topology could be implemented, see Fig. 2.29. The ring topology can
be observed in Fig. 2.28. [35]

Figure 2.29: EtherCAT’s network topology [35]

2.6 Beckhoff EL7342 Module
This chapter comes from the manual from the Beckhoff company [36], target-
ing the usage of the module EL7342.
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2.6.1 Introduction

The EL7342 EtherCAT terminal is depicted in Fig. 2.30 and it enables direct
operation of two DC motors. The speed and the position are determined by
a 16-bit value from the automation device. When an incremental encoder is
connected, a simple servo axis can be realized. There is also protection against
overload and short-circuit. In Fig. 2.30, it can be seen that there are several
LEDs 8 that indicate signal states of each of the two channels and provide a
local diagnosis.

Figure 2.30: The EL7342 EtherCAT terminal [36]

8LED = Light Emitting Diode
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2.6.2 Technical data

Technical data EL7342

Number of channels
2 DC motors,

2 digital inputs,
Encoder input

Rated load voltage 8 ... 50 V
Load type DC brush motors, inductive

Output current
without fan cartridge ZB8610

2 x 3.5 A
(overload- and short-circuit-proof)

Output current
with fan cartridge ZB8610

2 x 6.5 A
(overload- and short-circuit-proof)

PWM clock frequency 30kHz with 180° phase shift each
Duty factor 0 .. 100 % (voltage-controlled)

Distributed Clocks yes
Control resolution max. 10 bits current, 16 bits speed

Supply voltage for electronic via E-bus and power contacts
Electrical isolation 500 V (E-bus/field voltage)

Current consumption via E-bus typ. 140 mA
Current consumption power

contacts typ. 70 mA

Current consumption sensor supply typ. 20 mA

Encoder/input signal
Signal voltage ”0”:

-3 V ... 1.5 V
Signal voltage ”1”:

2.5 V ... 24 V

Nominal voltage of encoder signals 5 ... 24 V, 5 mA,
single ended

Pulse fraquency 400 000 increments/s,
4-fold evaluation

Weight approx. 90 g
Permissible ambient temperature

range during operation 0°C ... + 55°C

Permissible ambient temperature
range during storage - 25°C ... + 85°C

Permissible relative humidity 95 %, no condensation
Dimensions (W x H x D) approx. 27 mm x 100 mm x 70 mm

Table 2.3: Technical data of the module EL7342 [36]
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2.6.3 Technology
A compact Motion Control solution up to 200 W is integrated into the EL7342
DC motor terminal.

DC motor

Servo motors are more expensive than DC motors; therefore, when DC motors
are operated with a sophisticated controller, they can replace servo motors.
DC motors are easy to control because their speed is proportional to the
voltage.

Two DC motor output staged for optimum use

The EL7342 EtherCAT terminal has a compact design. Using the terminal,
a DC motor can be integrated simply into the control system and all the
parameters are changeable via the fieldbus. The speed can be adjusted via
the process data with the EL7342 terminal and it also contains a compensation
of the internal resistance. This compensation maintains the desired velocity
of the DC motor even for load changes.

Areas of application

There are two areas of application [36], both of these possibilities are depicted
in Fig.2.31:

1. A simple controller with inexpensive processor power and low demands
on the cycle time. By using the integrated travel distance control, the
terminal can perform positioning drives independently without the use
of NC 9.

2. High-end positioning with integration in TwinCAT NC. When connected
with the EtherCAT DC motor terminal, a DC motor is controlled under
TwinCAT analogous to a servo terminal.

In order to accomplish tasks that require precise positioning, it is necessary
to use a closed speed control loop with a feedback system.

Both of the approaches of possible applications that are expressed in Fig. 2.31
are implemented in the practical part to test them. For more information
about how successful the methods are and to see their results go to sections
3.3 and 3.4.

The length of the cable between two EtherCAT devices must not be longer
than 100 m because of the signal attenuation.

9NC = Numerical Control
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Figure 2.31: Possibilities to implement control loops using the EL7342 ter-
minal [36]

2.6.4 Basic Communication
EtherCAT State Machine

The accessibility of individual functions depends on the state of the EtherCAT
slaves, which is controlled via the EtherCAT State Machine. In each state
of the slave, the EtherCAT master needs to send specific commands to the
device.

Let’s look at the states and their differences [36]:

• Init - The EtherCAT slave is in this state right after switching on and
no communication is possible.

• Pre-Operational - When transitioning from Init state to Pre-Op, the
mailbox is initialized; thus, the mailbox communication is possible in
this state. Then the master initializes the sync channels for process
data.

• Safe-Operational - Here are both the mailbox and the process data com-
munication allowed. But only the input data are updated, the output
data stay at a safe state.

• Operational - Before accessing this state, the slave transfers the output
data of the master into its outputs. Again, process data and mailbox
communication is available.
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• Boot - This state can be reached through the Init state and is used for
updating the slave firmware.

The CoE Interface

The CoE Interface10 is utilized for managing and adjusting parameters of the
EtherCAT devices. These parameters are hierarchically arranged and can
have different types, including integer or unsigned integer numbers, Boolean
values, as well as string, and many others. The local CoE lists of slaves can
be entered via EtherCAT by the EtherCAT master, either in write or read
mode.

2.6.5 Commissioning
TwinCAT is an environment where things are controlled in real-time. This
environment maps the whole system and provides access to the controller.
All inputs and outputs, both digital and analog, can be written or read di-
rectly.

When considering the relationship from user PC to the individual control
elements, see Fig. 2.32

Figure 2.32: Relationship between user side (Commissioning) and installa-
tion [36]

The user can insert desired components, such as I/O11 device, terminal, etc..

10CoE = CANopen over EtherCAT
11I/O = Input/Output
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2.6.5.1 TwinCAT 3

TwinCAT together, with Microsoft Visual Studio, shapes the development
environment areas.

Once TwinCAT 3 is installed, it is possible to create a new project, which is
captured in Fig. 2.33.

Figure 2.33: New TwinCAT 3 project [36]

In general, there are two
ways on how to use Twin-
CAT, it can operate in lo-
cal or remote mode. In the
case of this thesis, TwinCAT
is used in local mode; hence,
the next step is to add de-
vices. This can be done
by expanding ”I/O” in the
project folder explorer and
then selecting ”Devices”. Af-
ter that, right-click on ”De-
vices” and select ”Scan”, the
whole process goes through
two stages. First, determine
the devices. Second, deter-
mine the connected elements
such as terminals, boxes, etc..

2.6.5.2 TwinCAT Development Environment

TwinCAT 3 is an improved version of TwinCAT 2, so it includes the features
that TwinCAT 2 has and also some additional ones.

Let’s look at the features [36]: TwinCAT 2

• Connects I/O to tasks in a variable-oriented manner

• Connects tasks to tasks in a variable-oriented manner

• Supports units at the bit level

• Supports synchronous or asynchronous relationships

• Exchange of consistent data areas and process images

• Integration of IEC 61131-3-Software-SPS, Software- NC and Software-
CNC within Windows NT/2000/XXP/Vista, Windows 7, NT/XP Em-
bedded, CE

• More…
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TwinCAT 3 (eXtended Automation) - additional features

• Visual-Studio-Integration

• Choice of the programming language

• Supports object oriented extension of IEC 61131-3

• Usage of C/C++ as programming language for real time applications

• Connection to MATLAB/Simulink

• Open interface for expandability

• Flexible run-time environment

• Active support of Multi-Core and 64-Bit-Operating system

• Automatic code generation and project creation with the TwinCAT Au-
tomation Interface
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Chapter 3
DC Motor Servocontrol

The DC motor 20 MPM 105 manufactured by company Moore Reed and
Company Ltd is used for the practical part. Moore Reed and Company Ltd
does not exist anymore, but the DC motor was dismounted from a robotic arm
Stäubli PUMA 200. Stäubli is a Swiss company and PUMA is an abbreviation
for ”Programmable Universal Machine for Assembly”, this robot can be seen
in a top left picture of Fig. 3.1.

3.1 Encoder Replacement
When beginning to approach the practical part of this thesis, some issues
regarding position measuring were observed. It has been found that the en-
coders, that are attached to DC motors, do not function properly. Thus, the
first step was to replace them with new ones which required some additional
steps, that are captured in Fig. 3.1. Since the new encoders were smaller and
had overall different dimensions, new holes for attaching encoders needed to
be drilled. Inside the holes, threads were manufactured and also shafts with 2
mm diameter for centering were produced. Then, the last step was to mount
the new encoders to the DC motors. All of the previously described steps are
depicted in Fig. 3.1 and the result is shown in Fig. 3.2.

After completing all the steps, the motors with new encoders are fully func-
tional again, meaning that the possibility of tracking the position is enabled.

Let’s look at the encoders’ type and parameters closely in the following section.
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3. DC Motor Servocontrol

Figure 3.1: The process of replacing damaged encoders with new ones

Figure 3.2: The new encoders (type AEDA - 3300 TAM) attached to DC
motors

3.1.1 Encoders AEDA - 3300 TAM

This section is based on the manual of AEDA-3300 encoders [37].

AEDA-3300 encoders are three-channel optical incremental encoders produced
by company Avago Technologies. Here are some features to be mentioned
[37]:

• Three channels output (quadrature A and B output with index channel)
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• Resolution options from 600 to 20000 CPR 12

• Cost effective

• -40°C to 125°C operating temperature

• Ultra miniature size - diameter: 17 mm

• Maximum 1 MHz operating frequency

• Maximum 12000 RPM 13 rotational speed

• Single 5V supply

• Integrated bearing stage for easy mounting

• Bottom-up or top-down mounting options

These encoders are said to be very reliable and easy to install. They can with-
stand high temperatures and high operating frequencies. For this reason, they
are used in many industrial automation and motion control applications.

The operation of the encoders is as follows. The LED emits light that goes
through the code wheel and analog signals are generated. The analog signals
are then converted to digital A, B, and index signals and their complements
Ā, B̄, and Ī. There is always a 90 degrees phase shift between A and B
signals. This phase difference can determine whether the motor rotates clock-
wise or counter-clockwise. When signal A leads signal B, the motor turns in a
clockwise direction and vice versa. The index signal just indicates a reference
position.

The encoder AEDA - 3300 TAM has its own specifications. T stands for
Top-down with coupling plate mounting option and AM defines 3000 CPR.

3.2 Project Description
The goal of the practical part of this thesis is to develop the autotuning
algorithm in MATLAB/Simulink to control the DC motor Moore Reed and
Company Ltd 20 MPM 105. The algorithm is based on a gradient descent
optimization in order to find ideal values of constants Kp, Ki, and Kd of the
PID-controller. Constants Kp, Ki, and Kd are equivalent to r0, rI , and rD,
that have been declared in chapter 2.3.3, respectively. Why is there a change
in naming constants? It is simply because the PID-controller in TwinCAT is
declared using Kp, Ki, and Kd values. Hence, from now on, the new names

12CPR = Cycles Per Revolution
13RPM = Revolutions Per Minute
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of constants will be used to be consistent with TwinCAT. But the constants
remain the same.

In order to transfer the data from the encoder to a PC, the EL7342 Beckhoff
terminal is used. The Beckhoff terminal can be connected to TwinCAT and
the aim of this third chapter is to create an interaction between TwinCAT
and Simulink to be able to control the motor from Simulink.

3.3 Connection of TwinCAT and
MATLAB/Simulink via the PLC

The first approach to implement control loops using the EL7342 Beckhoff
terminal is control of a DC motor with travel position control, as illustrated
in the top schema of Fig. 2.31. That means that all the controller’s loops
(position, velocity, and current) are inside the terminal. The current loop
(the fastest loop) ensures a sufficiently fast current increase and thus, torque
control. The speed loop regulates the velocity of the DC motor and the
position loop, which is the slowest, ensures that the axis is kept in the desired
position.

Figure 3.3: Diagram describing the project using 3 PLC programs

Fig. 3.3 shows relationships between all the main devices, their components,
and software.

Simulink, marked in Fig. 3.3 by number 4, is an extension of MATLAB used
for modeling and simulation of systems. The data can be then analyzed and
visualized using MATLAB. To create a program in Simulink, block diagrams
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are used. It is a very useful tool in control systems, electronics, robotics, signal
processing, and many other areas.

TwinCAT is another convenient software that is applied to many automation
applications, labeled by 5 in Fig. 3.3. To control the motor, PLC programs
can be developed or axis can be added to the MOTION section in TwinCAT
or it could be even a combination of both of them. TwinCAT communicates
with the EL7342 Beckhoff terminal via EtherCAT, as shown in the diagram.
It is important to mention that TwinCAT works in real-time.

When communicating between Simulink and TwinCAT, TE1400 TwinCAT
Target for MATLAB/Simulink is used, it works based on the generated C/C++
code from the model in Simulink. TcCOM 14 modules or objects are created if
the code generator works properly with TwinCAT Target. Special input and
output function blocks, that are to be found in Beckhoff TwinCAT Target Li-
brary in Simulink, are used in order to generate TcCOM objects in TwinCAT.
TcCOM objects are created when a project is built. [38]

Number 3 is used for marking EtherCAT slaves. There are three of them
EK1100, EL7342, and EL9011 labelled by 6, 7, and 8, respectively. Let’s
explain each of them.

• EK1100 - It is a coupler that connects the EtherCAT terminal EL7342
with EtherCAT. It is depicted in Fig. 3.4. [39]

• EL7342 - This terminal is described in detail in chapter 2.6.

• EL9011 - This is just a bus end cap demostrated in Fig. 3.5. [40]

After deciding about the type of implementation, a project in TwinCAT is
created. The EL7342 terminal is connected to the PC via the EtherCAT
cable. The DC motor and the new AEDA encoder are wired to the terminal.
Thus, the DC motor, the encoder, and the terminal can be added to the
TwinCAT project to the I/O section. Now, all the data measured by the
encoder and the terminal are provided to TwinCAT so the parameters can be
graphed and adjusted.

The second step is to set the controller to be a position controller and create
PLC programs needed for effective control of the DC motor. For the needs of
this project, 2 parameters (Kp, Ki) of the PI-controller are supposed to be con-
trolled; therefore, 3 PLC programs are created inside TwinCAT. The first PLC
program is called Read_write_CoE and is essential for setting parameters of
the PI-controller. The second one is very simple and is called PLC_R_W.
This program is responsible for taking the output from the EL7342 termi-
nal and placing it as an input to TwinCAT. The name of the third PLC is
EtherCAT_Slave which was created for the purpose of switching states of the

14TcCOM = TwinCAT Object Model
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EL7342 terminal, specifically between PREOP and OP states. For more infor-
mation about the EtherCAT State Machine see section 2.6.4. The main reason
for developing the third PLC program is that the Read_write_CoE program
can adjust parameters of the PI-controller only in the PREOP state and con-
versely, the DC motor can operate only in the OP mode. Consequently, there
is a need for both of them.

Figure 3.4: Beckhoff EK1100 EtherCAT
coupler [39]

Figure 3.5: Beck-
hoff EL9011 Bus
end cover [40]

In Fig. 3.6, one of the PLC programs and the whole TwinCAT environment
of the project can be observed.

Figure 3.6: Project created in TwinCAT

In order to fulfill the goal of being able to control the DC motor from Simulink,
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a Simulink program is created. The program in MATLAB/Simulink is cap-
tured in Fig. 3.7. There are two slider switches, one is for enabling and
disabling the motor and the second one is for changing states of the terminal
from PREOP to OP and for reset. The terminal needs to be reset after every
single transition between PREOP and OP in order to be able to get to the
next state and write parameters. It is so because the data are being written
initially to the terminal and not directly to the PC. To change between states
and reset, different numbers need to be inserted as a requested state and then
the slider is dragged to ”On” to write the data to the terminal and change
the state. The specific numbers for each state are declared in PLC program
EtherCAT_Slave.

The numbers are:

• OP - 8

• PREOP - 2

• reset - 69

The very top function block ensures that Simulink can communicate with
TwinCAT and vice versa. TC Module Input and Output blocks provide data
transfer between Simulink and TwinCAT. The only problem occurred because
of the restriction in the license of TE1400 TwinCAT Target where only 6
outputs or inputs to TwinCAT can be controlled via Simulink. Therefore, the
part of the program that is responsible for adjusting the two parameters is
disabled but can be seen in a light shade of gray.

As can be seen in Fig. 3.8 and in Fig. 3.9, the graphs are identical to each
other. That is an indicator that both of the programs work properly because
they are showing the same output curves. The regular rectangular pulse is
the pulse that is desired to be achieved and the other one is supposed to be
tuned to reach the set value. So far, it is clear that there is an overshoot and
a steady state error, and both are to be ideally eliminated or at least reduced.
The pulses oscillate around a value of 500 which was added in the Simulink
program in order to eliminate problems with the initial oscillation around 0.
There are possibilities to switch between states and to enable and disable the
motor in the Simulink program. However, it is not realizable to change the
parameters Kp and Ki via Simulink. Hence, this approach is not sufficient to
accomplish the given goal. If the license provided more than 6 inputs/outputs,
it would have been feasible to use this method.
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Figure 3.7: Program created in MATLAB/Simulink

Figure 3.8: Output graph from
MATLAB/Simulink Figure 3.9: Output graph from

TwinCAT

3.4 Connection of TwinCAT and
MATLAB/Simulink via the PLC and the
NC

Let’s address the task slightly differently and use the second application that
can be observed in Fig. 2.31. It is the bottom schema, called control of a
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DC motor with encoder feedback. The difference from the previous method
is that the controller is set to the velocity compact mode. Thus, instead of
affecting the position, the speed is controlled. Also, velocity and current con-
troller’s loops are again inside the terminal, but the position loop is included
in TwinCAT.

Another advantage is that unlike the previous technique, this one enables an
instant rewriting of parameters in the OP state of the terminal. Therefore,
there is no need for switching between PREOP and OP. And in addition, the
parameters are written directly to the PC.

A schema of the second try is shown in Fig. 3.10. All software and components
have already been described in the previous section, see 3.3.

Figure 3.10: Diagram describing the project using the NC configuration

For this approach, the project in TwinCAT needed to be changed because
it uses both the PLC and the NC. The 3 PLC programs, that were used
previously, are not used anymore. There is only one PLC program responsible
for setting parameters. An axis of the DC motor must be added to the NC
Configuration in the MOTION section of the TwinCAT project and linked
to the EL7342 terminal. When it is done so, the velocity and the angle of
rotation can be adjusted as required.

As can be observed in Fig. 3.10, the PLC program access the NC Configu-
ration via ADS 15, which is a transport layer inside TwinCAT. ADS provides
communication between the PLC and the NC. In the NC Configuration, the

15ADS = Automatic Device Specification
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parameters Kp, Ki, and Kd are set and then the data are transferred from the
MOTION section via EtherCAT to the EL7342 module.

After examinig which parameters affect the behavior of the DC motor the
most, it was found that constants Kp and Kd make the most significant
changes in the motor response. Also, the value of a reference velocity makes
a huge difference in the motor’s running; therefore, it needs to be set appro-
priately.

Based on information from Beckhoff, here’s how to set a reference speed
[41]:

1. Set the Kp value to 0 and begin an empirical evaluation of the reference
velocity.

2. Turn the motor and compare the setpoint velocity with the actual velocity.

3. Keep adjusting the reference velocity till the actual velocity is as identical
to the setpoint velocity as it can get. Then record the reference velocity
and set the final value as the reference velocity.

The reference velocity was determined to be 17 800 revolutions/sec.. After
that, the project is ready for tuning Kp and Kd values.

The new TwinCAT project is depicted in Fig. 3.11. On the left side of Fig.
3.11 under the tab PlcTask Inputs, it can be found that MAIN.user_Write,
MAIN.Kp_value, and MAIN.Kd_value have small green arrows beside them
which indicate that these values are linked to Simulink. Therefore, they can be
controlled from there. The declaration of variables of the only PLC program is
demonstrated in this picture as well. There is always the name of the variable,
type, and initial value. It is sometimes specified whether the variable is an
input or an output, which is declared by either AT%I* for input or AT%Q*
for output. Function blocks ADS_write_Kp and ADS_write_Kd are used
for writing parameters Kp and Kd, respectively. The NETID and the PORT
are included in order to know where the data are to be passed on.

Fig. 3.12 shows the actual code of the PLC program. At the top, there are
two IF conditions for enabling and disabling the motor. Then, there is a state
machine for writing the parameters. It starts with case 0 where ”user_Write =
69” is used for reset. Once ”user_Write = 1” and ”startWrite = TRUE”, CoE
interface for adjusting parameters is accessed. This is done via an ADS-Write
to the NETID of the device, PORT, IDXGRP (IndexGroup), and IDXOFFS
(IndexOffset). Then, it moves to the state 1 where the writing itself happens.
It keeps waiting there until the program is busy with adjusting parameters. If
the program is not busy and no errors occur, it goes back to the state 0 and
when it is reset, it is ready for writing new parameters. In case of an error,
the program falls into the state 100 and the error needs to be handled before
moving on.
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Figure 3.11: TwinCAT program using the PLC and the NC

Figure 3.12: Code of the PLC program in TwinCAT
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While developing the MATLAB/Simulink program for adjusting Kp and Kd,
a great emphasis was placed on reducing the number of TC Module Input and
Output blocks. The maximum allowed amount is 6 and, as can be seen in Fig.
3.13, only 4 TC Module blocks are used. Since the adjustment of parameters
is done directly in the OP state, the need for switching between states is
eliminated. Enabling and disabling options are also redundant because the
motor is automatically enabled once the program is activated. However, the
option for the motor to be disabled could have been added there from the
safety point of view.

Figure 3.13: Program created in MATLAB/Simulink for manual tuning

Fig. 3.13 depicts only two possibilities of ”Requested_state” in the top left
corner, they are ”Write params” and ”Reset” and are linked to the PLC code
in TwinCAT. Simulink can send to TwinCAT either ”user_Write = 1” for
writing parameters or ”user_Write = 69” for reset. The TC Module Input
called ”Pos_diff” records the difference between the actual position and the
set position. The difference, and its plot is discussed in the following chapter.
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Chapter 4
Automatic Servotuning

This chapter is dedicated to the development and testing of an autotuning
algorithm written in MATLAB/Simulink. The autotuning algorithm is sup-
posed to tune any function automatically when the user starts it off. Since
the goal is to minimize the difference between the actual value and the set
(desired) value, the algorithm is based on the gradient descent method. This
technique calculates a gradient, which is the steepest slope, of a function,
and then moves in the opposite direction in order to reduce the difference. It
keeps repeating this process until a global minimum of this function is reached.
When the global minimum is achieved, the actual value overlaps with the set
value.

In the previous chapter, MATLAB/Simulink was connected to TwinCAT.
Consequently, parameters of the PID-controller are able to be manually ad-
justed from Simulink. It has been determined that Kp and Kd constants
of PID-controller are the parameters that have the biggest influence on the
course of the response. Now, let’s look at the possibility of automatic tuning
of two variables.

4.1 Testing of Gradient Descent Method in
MATLAB

Since the aim is to tune two parameters of the PID-controller, the developed
gradient descent algorithm in MATLAB is tested on a random function with
two variables. The function with two variables is analogous to changing pa-
rameters Kp and Kd. Let’s take, for example, a following function:

f = x2 + y2 + sin(x) (4.1)
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4. Automatic Servotuning

It is a function of a surface, as Fig. 4.2 depicts. A MATLAB function called
gradient_desc, illustrated in Fig. 4.1 (right side), was created to find a point
of minima of a given function. The function has 2 inputs x_0, y_0, and two
outputs x and y. The algorithm is based on the gradient descent method,
described in section 2.4.4. First, the given function and its variables are de-
clared symbolically and the gradient is calculated. Then, the input values are
set as initial values. After that, the stopping criterion is declared. There is
a wide variety of stopping criteria, and the most commonly used is to stop
the search when the Euclidean norm of the gradient has reached certain small
pre-defined value, which is called the tolerance. Afterward, the gradient is cal-
culated again, but the symbolic values are substituted with the initial values
and the iterative process can begin. Every iteration the point moves in the
opposite direction to the gradient and the gradient is updated with new val-
ues. The algorithm repeats itself until the stopping criterion is satisfied. The
accuracy depends on the tolerance and the step size, also called the learning
rate. The smaller the step size, the more precise results are reached but the
longer it takes. In this algorithm, the step size was set to 0.1, it works well
and it is quite fast.

The left side of Fig. 4.1 shows a script where the function gradient_desc is
called and random integer values are generated as inputs of the function. It
could have been done more user-friendly by uncommenting the lines 9, 10 and
letting the user insert initial guesses.

Figure 4.1: Gradient descent MATLAB function

But for now, let’s examine the results with a random generation of the starting
point. The plot of how the initial point moves towards the point of minima
is demonstrated in Fig. 4.3. The darker the filling of the plot, the lower the

56



4.1. Testing of Gradient Descent Method in MATLAB

surface is getting. The movement of the points is marked by red circles. When
the point of minima is reached, the function stops and shows the coordinates of
the starting point and the coordinates of the point of minima in the Command
window, see Fig. 4.4. Just to make sure that the code is written correctly,
a gradient with symbolic values and with initial values is displayed in the
Command window as well.

Figure 4.2: Surface of the given
function

Figure 4.3: Point of minima of
the given function

Figure 4.4: MATLAB Command Window

As can be found in the Command window, the x-value of the point of minima
is -0.45 and the y-value is close to 0. By setting the tolerance equal to 10e-
12 and decreasing the step size to 0.001. The resulting point of minima is
[-0.4501836, 4.9943040e-13], which is more precise, but the iteration process
is very time-consuming. Thus, the step size and the stopping criterion must
be chosen reasonably based on the application and precision needs.
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4.2 Autotuning Algorithm in
MATLAB/Simulink

The autotuning algorithm is based on the gradient descent method. When
considering the real DC motor, a model of the DC motor’s behavior is not
provided. It is possible to track the functions of the actual position and the
set value of the position. Then, subtract them from each other so that a
difference of these functions is obtained. The difference, shown in Fig. 4.5,
has big peaks that are caused by a slight offset between the actual and the
set position functions, that are captured in Fig. 3.8. The difference must be
logically minimized in order to get as close to the set value of the position as
possible. To do that, an absolute value of the difference can be taken, which
results in a curve on the positive side of the y-axis. The area under the curve
can be calculated. To decrease the difference, the area needs to be reduced.
With this idea in mind, a MATLAB/Simulink program is developed and is
depicted in Fig. 4.6. Along with the Simulink program, there is also a final
optimization scope for Kp parameter, which will be discussed later in this
section.

As it has been examined earlier, the most significant effect on the motor’s
response have values Kp and Kd. After further experiments, it has been proven
that the only obvious change in the difference between the actual and the set
position shows Kp. Consequently, the system is tuned by only adjusting Kp,
it means that the P-controller is used for this application.

Figure 4.5: Difference between the actual position and the set value of the
position

Let’s explain what is happening in the Simulink program in Fig. 4.6. First
of all, the Simulink program is not connected to TwinCAT because the opti-
mization will be applied only to a simulation model to see if it works. On the
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very left side, there are defined 8 global variables, it is convenient to declare
the variables as global so that they can be accessed via any subsystem or func-
tion. The biggest function block is an embedded MATLAB function where
the whole gradient descent optimization algorithm is hidden. Then, there is a
triggered subsystem, which is the block that has Enable_write as input. And
on the bottom, the Kp value is tracked and plotted.

Figure 4.6: MATLAB/Simulink optimization program with scope

The triggered subsystem, demonstrated in Fig. 4.7, is where the set and the
actual positions are generated. The two pulses in Fig. 4.8 are supposed to
model the set value (yellow curve) and the actual position (blue curve). The
blue pulse has an offset equal to Kp that is added to the signal. The initial
value of Kp is 5, as can be observed in Fig. 4.8. Then, the two signals are
subtracted to obtain the difference and an absolute value of the difference
is taken to ensure that all values are positive. And the absolute value is the
output of the triggered subsystem. The triggered subsystem is activated using
some trigger, here the trigger is Enable_write variable on the input of this
subsystem. When Enable_write equals 1, the subsystem is activated.

When calculating the area, there was a problem before the triggered subsystem
was implemented. The problem was that the difference between the positions
keeps changing at each sample time and to get precise results, the calculation
of the area needs to be started always at the same point of the period. For this
reason, the trigger subsystem was added and is activated only when the area
is being determined and starts always at the same spot. The sample time and
the base rate of Simulink are set to 1 ms. As a result, the whole simulation
runs with a frequency of 1 kHz.

Let’s get to the embedded MATLAB function and the code that is inside it,
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Figure 4.7: Triggered subsystem
Figure 4.8: Generated
pulses for simulation of op-
timization

the algorithm is shown in Fig. 4.9. It is programmed as a state machine using
the ”switch” function that transitions between different states using ”cases”.
”Case 0” is only initialization and it moves right away to ”Case 10” where
Enable_write is set to 1; therefore, the triggered subsystem is activated and
the calculation of the area begins. The counter counts how many samples
are supposed to be taken, it works until a specific limit is reached. The limit
is an input of this function and can be adjusted in Simulink. The area is
calculated by summing all values of samples, it is the same as integration, and
is saved to optim_value variable. In ”Case 15”, the Kp is adjusted by 0.00001
(∆Kp) and the program moves to the following ”Case 20”. In the ”Case 20”,
a new area with the updated Kp value is calculated and then, a gradient is
determined. The gradient is calculated numerically by single-sided difference
as the following formula shows:

∇ = S(Kp + ∆Kp) − S(Kp)
∆Kp

, (4.2)

where S is the area. As the gradient descent method states, the direction
of movement is against the direction of the gradient (the steepest slope) be-
cause a point of minima is desirable. Thus, a new Kp value is obtained as
follows:

Kp = Kp − ∇ · 0.000007, (4.3)

where 0.000007 is the step size, also called the learning rate. The smaller the
learning rate, the more precise results are achieved.

After that, the program goes to ”Case 30” and writes the updated Kp value to
TwinCAT. This process keeps repeating until the optimal Kp value is reached
and then, it stays there.
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Figure 4.9: MATLAB function for optimization

When considering the generated pulses in Fig. 4.8, to make the actual position
same as the set position, Kp needs to reach 0. The inial value of Kp is 5.
While testing the MATLAB/Simulink program, the Kp value is recorded on
the graph in Fig. 4.6. It is clear that the value started at 5, then, it dropped
drastically, and afterward, it kept slowly moving towards zero. Once the Kp

value reaches zero, it keeps oscillating around zero within a very small range.
Hence, the predicted value of 0 was achieved.
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Chapter 5
Results

The autotuning algorithm based on the gradient descent method to find opti-
mal parameters of the PID-controller for the smooth running of the DC motor
has been developed. It is now capable of tuning only one parameter, namely
the value of Kp. Kp is the proportional constant of the PID-controller.

The autotuning algorithm has been tested in a simulation, and it works well. It
has been proven that the expected Kp parameter was reached by the autotun-
ing optimization. Therefore, it has been assumed that it would be applicable
to solve the real problem of PID-controller tuning as well. However, it has not
been applied to the real DC motor because the whole process of developing the
autotuning algorithm, which was preceded by finding the right way to be able
to adjust the parameters using MATLAB/Simulink, was too time-consuming.
However, all of this was achieved and tested in the simulation. The greatest
impact upon the computational time of the simulation have the values of the
learning rate, also called the step size, and counter limit. Both values can be
modified in the autotuning algorithm based on the user’s needs and wants for
accuracy and time consumption.

Apart from the autotuning algorithm in Simulink, a gradient descent opti-
mization for finding a point of minima for a function with two variables has
been introduced and successfully tested. Thus, expanding the autotuning al-
gorithm by one more parameter would not be a problem.

Besides, two approaches of connecting TwinCAT to MATLAB/Simulink have
been examined. But only the second one, where both the NC and the PLC
were implemented, was successful.
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Conclusion

The content of this thesis begins with an introduction to power units in
robotics with an emphasis on DC motors followed by an explanation of basic
key terms and DC motors control itself. Furthermore, relevant information
about the EL7342 Beckhoff terminal and TwinCAT 3 are covered.

The major target was to develop a simple autotuning algorithm that was
achieved. The process of getting there was not an easy task. Mainly because
the EL7342 Beckhoff module did not work consistently, as it was predicted.
But despite that, it was possible to connect the DC motor to TwinCAT via
the EL7342 terminal and create a MATLAB/Simulink program to be able
to control parameters of the DC motor from there. Finally, the autotuning
algorithm was created and applied to simulation. The performed simulation
yielded satisfying results; thus, it proved the sustainability of DC motor con-
trol and can be reliably used for automatic tuning of the Kp parameter.

There is certainly room for further modifications of the autotuning algorithm,
especially in expanding the number of possible tuneable parameters by adding
the remaining constants Ki and Kd. That would lead to eliminating a steady
state error and reducing or even getting rid of an overshoot. Simply, it would
make the transition smoother and faster. When tuning a PID-controller, ini-
tial values of Kp, Ki, and Kd have to be chosen reasonably. Otherwise, it may
result in an unstable system and damage the DC motor.
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