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Abstract

This thesis addresses the problem of image matching and retrieval using local descriptors
and studies various aspects of their construction. In particular, we focus on the
measurements used to describe pixels and their neighborhood and the encoding of their
position. We also address post-processing of the derived descriptors, which is learned with
or without supervision.

The best performing handcrafted descriptors, such as SIFT and its derivatives, measure
patch similarity through modelling discrete spatial distribution of gradient directions. We
extend this approach and design a multiple-kernel local descriptor based on efficient match
kernels of gradient directions. Gradient positions and directions are encoded by explicitly
defined kernels, that combine two parametrizations of gradient position and direction,
each parametrization provides robustness to a different type of patch mis-registration:
polar parametrization for noise in the patch dominant orientation detection, Cartesian for
imprecise location of the feature point. We visually demonstrate the effect and semantic
meaning of the parametrization and a post-processing on patch similarity.

The performance of local descriptors was significantly boosted by moving from intensity
gradient measurements, which are simple convolutional operators, to deep convolutional
network activations. We analyze how the conventional architecture for deep local
descriptors, i.e. CNN followed by a fully connected layer, provides an encoding that
depends on the position of the activations within the patch. We propose to replace the
FC layer by explicit spatial encoding as introduced for the handcrafted descriptor, which
reduces the number of parameters and makes it independent of the patch resolution. Both
descriptors, handcrafted and CNN-based, achieved state-of-the-art performance at the time
of publication. Our unsupervised variant is the best performing descriptor constructed
without the need of labeled data, while the deep local variant consistently outperformed
other deep local descriptors on standard and modern benchmarks.

Finally, we study the problem of correlation with regards to entries of high-dimensional
vectors, such as global image descriptors or local descriptors, which leads to a bias in
similarity estimation, necessitating a post-processing step, such as data whitening. We
analyze robust estimation of the whitening transformation in the presence of outliers.
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Inspired by the Iteratively Re-weighted Least Squares (IRLS) approach, we propose an
approach that iterates between centering and applying a transformation matrix, a process
which is shown to converge for robust class of cost functions. The approach is developed
for unsupervised scenarios, and further extend to supervised cases. We demonstrate the
robustness of our method to outliers on synthetic 2D data and also show improvements
compared to conventional whitening on real data for image retrieval with CNN-based
representation. Our robust estimation is not limited to data whitening, but can be used
for robust patch rectification too.



Abstrakt

Práce se zabývá problémem párováńı a vyhledáváńı obrázk̊u pomoćı lokálńıch deskriptor̊u
a studuje r̊uzné aspekty jejich konstrukce. Předevš́ım se zaměřuje na mı́ry použ́ıvané
pro popis pixel̊u a jejich okoĺı a na kódováńı jejich pozice. Práce se také zabývá post-
processingem odvozených deskriptor̊u, který je učen s učitelem nebo bez učitele.

Nejvýkonněǰśı ručně navržené deskriptory, jako např. SIFT a jeho odvozeniny, měř́ı
podobnost oblast́ı modelováńım diskrétńıch prostorových rozděleńı směr̊u gradient̊u. Tento
př́ıstup rozšǐrujeme a navrhujeme lokálńı deskriptory s v́ıce jádry, založené na efektivńıch
jádrech pro párováńı směr̊u gradient̊u. Pozice a směry gradient jsou kódovány explicitně
definovanými jádry, která kombinuj́ı dvě parametrizace směru a pozice gradientu, kde
každá parametrizace nab́ıźı robustnost v̊uči jinému typu chyby při registraci: polárńı
parametrizace v̊uči šumu v detekci dominantńı orientace oblasti, Kartézská v̊uči nepřesné
lokalizaci významného bodu. Vizuálně demonstrujeme efekt a sémantický význam této
parametrizace a post-processing podobnosti oblaśı.

Výsledky lokálńıch deskriptor̊u se výrazně zlepšily posunem od měřeńı gradient̊u
intenzity, tedy jednoduchých konvolučńıch operátor̊u, k aktivaćım hlubokých konvolučńıch
śıt́ı. Analyzujeme, jak konvenčńı architektura pro hluboké lokálńı deskriptory, tj.
konvolučńı śı̌t ukončená plně propojenou vrstvou, poskytuje kódováńı, které záviśı na pozici
aktivaćı uvnitř dané oblasti. Navrhujeme nahradit plně propojenou vrstvu explicitńım
prostorovým kódováńım, jako je tomu u ručně navržených deskriptor̊u, což snižuje množstv́ı
parametr̊u a čińı kódováńı nezávislým na rozlǐseńı oblasti. Oba deskriptory, ručně navržený
i hluboce naučený, dosáhly v době publikace nejlepš́ıch výsledk̊u. Naše varianta učená
bez učitele je nejvýkonněǰśım deskriptorem konstruovaným bez potřeby označených dat,
zat́ımco hluboká lokálńı varianta konzistentně překonávala jiné hluboké lokálńı deskriptory
na standardńıch i moderńıch datových sadách.

Na konec se zabýváme problémem korelace položek vysoce-rozměrných vektor̊u,
jako globálńıch či lokálńıch deskriptor̊u, která vede k vychýleńı odhadu podobnosti,
vyžaduj́ıćımu daľśı zpracováńı jako data whitening. Analyzujeme robustnost odhadu
transformace whiteningu v př́ıtomnosti outlier̊u (vybočuj́ıćıch pozorováńı). Inspirováni
metodou Iteratively Re-weighted Least Squares (IRLS) navrhujeme př́ıstup, který iteruje
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mezi centrováńım a aplikaćı transformačńı matice, proces který konverguje pro robustńı
tř́ıdu ztrátových funkćı. Př́ıstup je vyvinut pro učeńı bez učitele, a dále rozš́ı̌ren pro učeńı
s učitelem. Robustnost naš́ı metody v̊uči outlier̊um demonstrujeme na syntetických 2D
datech a také ukazujeme zlepšeńı v̊uči konvenčńımu whiteningu na reálných datech pro
vyhledáváńı obrázk̊u s reprezentaćı založenou na konvolučńıch neuronových śıt́ıch. Náš
robustńı odhad neńı omezen jen na data whitening, ale může být použit také na robustńı
rektifikaci oblast́ı.



Chapter 1

Introduction

Computer vision is a research field that deals with extraction of high-level information
from images or videos, to perform tasks that require interpretation of visual stimuli.
Computer vision methods consist of acquisition, processing, analysis and interpretation of
such stimuli by construction of models based on physics, geometry, calculus, and statistics.
Representations of information contained in such stimuli are very high dimensional. For
example, a grayscale image of size 1024×1024 pixels already has a dimensionality of greater
than a million. Processing such vast information is expensive, however, progress in sheer
computational power has allowed computer vision methods to be applied to a wide variety
of tasks. Advances in instance recognition allow modern handheld devices today to offer
face recognition as a basic feature [1]. Commercial websites implement services to search for
visually similar images across collections numbering in the millions [2], which use standard
image retrieval methods. Stores entice the user to virtually try out clothes [3] or place
furniture [4], which is a product of the research on augmented reality. Applications that
run partly on handheld devices and partly on larger servers allow the user to finely localize
themselves based on images of surroundings [5], using complex systems for localization and
mapping, and matching across large databases of images. The explosion in the number of
publicly available images has enabled reconstruction of entire city scapes, and digitalization
of the topography of parts of the real world [6]. Tasks such as assembly line inspection and
processing are also widely automated, at the risk of even replacing the current workforce in
factories and distribution centres. Computer vision is also used for military purposes such
as surveillance and development of autonomous weapons. Critical tasks such as healthcare
are currently investing heavily in methods to automate diagnosis, allowing for care at
large scales. A critical problem in many of these applications is the need to establish
correspondences to match images. In this work, we attempt to address this problem and
focus on the tasks of image matching and retrieval.
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Many of the computer vision problems require matching of images of the natural world
captured on a wide variety of cameras, in various lighting conditions, and capture various
scenes. This poses significant challenges to image matching. Objects of interest may be
occluded by other irrelevant objects. The object of interest may be obscured by cluttered
backgrounds. There may be local deformations, or changes in textures. Illumination
conditions may change the appearance of relevant regions. Appearance may also be vastly
affected by changes in viewpoint. To mitigate many of these problems, popular approaches
describe the image as a collection of local neighborhoods or local features. These approaches
are successfully used in image matching [7], image retrieval [77], object detection [55],
simultaneous localization and mapping [91], 3D reconstruction [37], etc..

In particular, many classical approaches to image matching and retrieval [90, 75, 95]
are based on finding correspondences of local features between a pair of images. The
robustness of the approaches relies on detecting local image structures that are covariant
to viewpoint transformations, and representing them in a manner invariant to photometric
transformations [99]. A typical procedure of matching images begins with extraction of
local features, which consists of two parts, detection and description. Given an image,
a detector returns a list of regions, which are rectified to canonical forms called local-
patches. These local-patches are described by compact low-dimensional vectors called
local descriptors. Tentative correspondences are established using a similarity measure
to compare all pairs of descriptors extracted from each image, and may be refined by
constraining the geometries of the respective regions to model a valid transformation from
one image to the other. Finally, pairs of images which have more inliers than a given
threshold are deemed to be matching images depicting the same scene. This pipeline is
shown in Figure 1.1.

Figure 1.1: Image matching using local descriptors. Detectors detect local pixel
neighborhoods, indicated by the circled regions, and return rectified canonical patches
called local-patches. These patches are compactly described by vectors indicated by the
colored bars called local descriptors such that similar features have similar descriptors.
(Images taken from the Oxford5k dataset.)
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Detectors find local pixel neighborhoods that are distinctive and can be repeatably
detected. For each detected neighborhood, a rectified canonical form is computed using
geometries associated with these neighborhoods, e.g. size, shape, orientation, etc.. This
rectified canonical form is called a local-patch. The local-patch has a very useful property,
namely, measurements in the coordinate system of the local-patch are invariant with respect
to certain classes of image transformations. However, two rectified patches coming from
matching local features are far from being identical in general. The difference has two
sources, namely appearance change in imaging process and geometric misalignment. The
former comes from different light conditions, imaging artifacts, etc.. The latter is caused
by non-planarity of the surface, the detected feature covering slightly different area of
the 3D surface, or incorrect rectification of the patch. These are consequences of either
the appearance changes or of insufficient geometric invariance of the detector, i.e. affine
invariant detector acting on projectively transformed surface.

Descriptors start with the local-patch as input, and compute a vector representation
that robustly describes the patch and can be compared with other descriptors using a
defined similarity measure. Formally, given a rectified canonical patch, P ∈ RN×N , we seek
a description function, Ψ : RN×N → RD, and a similarity function, sim : RD × RD → R,
such that the scalar value sim(Ψ(P),Ψ(Q)) for a pair of patches P and Q is high if they
are they are corresponding patches, i.e. the local features are coming approximately from
the same surface of a 3D scene, and low if they are non-corresponding patches. A naive
solution could be to simply compare corresponding pixels by vectorizing the patch as
the descriptor. However, such a solution fails to account for variations in illumination,
geometric misalignment, etc..

Many successful methods can be described as extracting appearance information from
local pixel neighborhoods that compose the patch, and pooling this information into a
compact vector. These approaches are reviewed in Chapter 2. Based on whether the
features that describe these neighborhoods are explicitly specified, approaches to the
construction of local descriptors are largely divided into two categories, hand-crafted and
deep local descriptors. While hand-crafted approaches enjoy the advantages of being easy
to interpret and tune, and do not need large amounts of labeled training data, deep
local approaches capture rich information and achieve vastly superior performance from
leveraging the said data.

Hand-crafted design of local descriptors has been popular for more than two decades
with some widely used examples [55, 16, 60, 94, 25, 50]. Such descriptors do not require
any training data or supervision. This kind of approach allows to easily inject domain
expertise, prior knowledge or even the result of a thorough analysis [29]. Learning methods
have been also employed in order to learn parts of the hand-crafted design, e.g. the pooling
regions [103, 88], from the training data. Prior work on hand-crafted feature descriptors has
shown that it is beneficial to explicitly address the geometric misalignment. Some of the
approaches handling this are soft assignment of gradients to bins in SIFT and continuous
spatial encoding by kernel methods in different [23] or multiple coordinate systems.



12 CHAPTER 1. INTRODUCTION

In Chapter 4, we introduce a novel hand-crafted approach based on the so called kernel
descriptors [19, 17, 96]. They provide a quite flexible framework for matching sets, patches
in our case, by encoding different properties of the set elements, pixels in our case. In
particular, we build upon the hand-crafted kernel descriptor proposed by Bursuc et al. [23]
that is shown to have good performance, even compared to deep local alternatives. Its
few parameters are easily tuned on a validation set, while it is shown to perform well on
multiple tasks, as we confirm in our experiments. We combine our descriptor with post-
processing that is learned by the data in unsupervised or supervised ways. We show how to
reduce the estimation error and significantly improve results even without any supervision.

The hand-crafted nature and simplicity of our descriptor allows to visualize and analyze
its parametrization, and understand its advantages and disadvantages. It leads us to
propose a simple combination of parametrizations each offering robustness to different
types of patch mis-registrations. Interestingly, the same analysis is possible even for the
learned post-processing. We observe that its effect on the patch similarity is semantically
meaningful. The feasibility of such analysis and visualization is an advantage of our
approach, and hand-crafted approaches in general, compared to deep local methods, as it is
typically not straightforward to visualize and understand what the latter has learned. Deep
local approaches use complex multi-million parameter models and current visualization
techniques provide only partial views on their behavior over different visual patterns.

Descriptor post-processing is known to be essential to account for co-occurrences in
data. A typical post-processing method is the whitening transformation, which is a linear
transformation that performs correlation removal or suppression by mapping the data to
a different space such that the covariance matrix of the data in the transformed space
is identity. However, it has been shown [97] that an unsupervised approach based on
least squares minimization is likely to be affected by outliers: even a single outlier of high
magnitude can significantly deviate the solution.

In Chapter 6, we propose an unsupervised way to learn the whitening transformation
such that the estimation is robust to outliers. Inspired by the Iteratively Re-weighted Least
Squares approach [8], we employ robust M-estimators. We perform minimization of robust
cost functions such as `1 or Cauchy. Our approach iteratively alternates between two
minimizations, one to perform the centering of the data and one to perform the whitening.
In each step a weighted least squares problem is solved and is shown to minimize the sum
of the `2 norms of the training vectors. We demonstrate the effectiveness of this approach
on synthetic 2D data and on real data of convolutional neural network representations for
image search. The method is additionally extended to handle supervised cases, where we
show further improvements. Finally, our methodology is not limited to data whitening.
We provide a discussion on applying it for robust patch rectification of MSER features [58].

Deep local approaches use models based on Convolutional Neural Networks (CNNs).
CNNs are powerful in modeling the appearance variance, while weak in modeling
the geometric displacement (at least with a single FC layer). Fully Convolutional
Networks (FCN) take an image or a patch as input and produce a tensor, where a vector
at each spatial location can be seen as measurements over its receptive field. In the case of
variable-sized, or non-aligned input, such as images, the response tensor is transformed into
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a descriptor typically by some form of global pooling [78, 43, 76], which discards geometric
information. In the case of aligned input of fixed size, such as rectified local-patches,
the tensor is vectorized and further processed. Vectorization has similar interpretation
to vectorizing spatial bins in SIFT [55]. Commonly, the vectorized tensor is processed
by a single fully-connected (FC) layer [62, 93], that can be either interpreted as learned
affine (linear and bias) transformation of the space, e.g. whitening and dimensionality
reduction, or as spatially dependent embedding with efficient match kernels (EMK) [19,
23].

In Chapter 5, we propose to model the geometric misalignment by efficient match
kernels that explicitly encode the spatial positions of the responses. To encode the spatial
information, kernel-based explicit feature maps are used in a similar fashion to Chapter 4.
The key contribution of this work is a CNN module that explicitly models the spatial
information of a rectified patch. This can be seen as a transition from soft binning, i.e.
overlapping receptive fields, to continuous efficient match kernels. In contrast to models
with an FC layer, with efficient match kernels the number of model parameters does not
grow with increased resolution of the input patch, i.e. the models for 32× 32 patch input
has the same number of parameters as the model for 64 × 64. The applications of the
proposed descriptor go beyond that of local-patches, e.g. tasks where encoding spatial
position is essential [53, 70].

The success of deep local approaches, is critically dependent on the availability of
vast datasets with patch-level annotation. Such datasets are generated using information
from the Structure-from-Motion (SfM) pipeline. Adoption of these better descriptors,
however, has been limited, with old-school descriptors like SIFT [55] still seeing wide
usage. This is attributed to lack of large and diverse datasets, causing inconsistent
claims of performance, saturation of scores on prevalent benchmarks [13], and lack of
generalization to related tasks. Modern benchmarks propose expanding this to the realm
to other tasks such as image matching and patch retrieval, which act as proxy for real-
world applications of descriptors. They measure the ability of the descriptor to distinguish
between pairs of patches that are in correspondence and otherwise is using metrics such
as Receiver Operating Characteristics (ROC) and Precision and Recall (PR). Recent deep
local approaches also collect their own training sets using the SfM pipeline, allowing them
to supplement the training with supervision beyond positive and negative pairs. Standard
benchmarks and metrics for evaluation are described in Chapter 3.
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1.1 Contributions

The main contributions of the thesis:

• We propose a multiple-kernel local descriptor based on efficient match kernels
from pixel gradients. It combines two parametrizations of gradient position and
direction, each parametrization provides robustness to a different type of patch
mis-registration: polar parametrization for noise in the patch dominant orientation
detection, Cartesian for imprecise location of the feature point. Combined with
whitening of the descriptor space, that is learned with or without supervision, the
performance is significantly improved. We analyze the effect of the whitening on
patch similarity and demonstrate its semantic meaning. Our unsupervised variant
is the best performing descriptor constructed without the need of labeled data.
Despite the simplicity of the proposed descriptor, it competes well with deep learning
approaches on a number of different tasks.

• We propose a kernelized deep local descriptor based on efficient match kernels of
neural network activations. Response of each receptive field is encoded together
with its spatial location using explicit feature maps. Two location parametrizations,
Cartesian and polar, are used to provide robustness to a different types of canonical
patch misalignment. Additionally, we analyze how the conventional architecture,
i.e. a fully connected layer coming after the convolutional part, encodes responses
in a spatially variant way. This is replaced by explicit spatial encoding in our
descriptor, whose potential applications are not limited to local-patches. We evaluate
the descriptor on standard benchmarks. Both versions, encoding 32× 32 or 64× 64
patches, consistently outperform all other methods on all benchmarks. The number
of parameters of the model is independent of the patch resolution.

• We analyze robust estimation of the whitening transformation in the presence of
outliers. Inspired by the Iteratively Re-weighted Least Squares approach, we iterate
between centering and applying a transformation matrix, a process which is shown
to converge to a solution that minimizes the sum of `2 norms. The approach is
developed for unsupervised scenarios, but further extend to supervised cases. We
demonstrate the robustness of our method to outliers on synthetic 2D data and
also show improvements compared to conventional whitening on real data for image
retrieval with CNN-based representation. Finally, our robust estimation is not limited
to data whitening, but can be used for robust patch rectification, e.g. with MSER
features.
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1.2 Publications

Chronologically ordered list of author’s publications and corresponding bibliography
numbers used for the rest of the thesis:

[68] Mukundan, Arun and Tolias, Giorgos and Chum, Ondřej. Robust Data
Whitening as an Iteratively Re-weighted Least Squares Problem SCIA, 2017.
(citations: 0)

[67] Mukundan, Arun and Tolias, Giorgos and Chum, Ondřej. Multiple-kernel local-
patch descriptor BMVC, 2017. (citations: 12)

This publication won the Best Science Paper, Honoroble mention at BMVC, 2017.

[69] Mukundan, Arun and Tolias, Giorgos and Bursuc, Andrei and Jégou, Hervé and
Chum, Ondřej. Understanding and improving kernel local descriptors IJCV,
2018. (citations: 5)

[66] Mukundan, Arun and Tolias, Giorgos and Chum, Ondřej. Explicit Spatial
Encoding for Deep Local Descriptors CVPR, 2019. (citations: 9)

1.3 Structure of thesis

This thesis is organized as follows. Related work and state-of-the-art approaches in related
areas are described in Chapter 2. Standard benchmarks and evaluation protocols are
defined in Chapter 3. Multiple-kernel local descriptor is explained in Chapter 4. Our
state-of-the-art deep local descriptor MKDNet is described in Chapter 5. Our approach
for robust data whitening is presented in Chapter 6. Conclusions of this work are presented
in Chapter 7.

1.4 Authorship

I hereby certify that the results presented in this thesis were achieved during my own
research, in cooperation with my supervisor Ondřej Chum and co-supervisor Giorgos
Tolias.
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Chapter 2

Related Work

In this chapter, we briefly review prior work on designing local descriptors. Descriptors
often use local-patches extracted by local feature detectors as input. Many popular
detectors begin by detecting local features in scale-space. These local features may be
centred on corners [36, 92, 79, 80], saddle points [52, 9], blobs [54], etc.. These detectors
also estimate some rectification parameters, such as orientation or scale, which are used
to construct the rectified canonical form, i.e. local-patch. As noted in prior work [61],
affine transformation is sufficient to locally model image distortions arising from viewpoint
changes under two assumptions. The scene surface is assumed to be locally approximated
by a plane and perspective effects are assumed to be small on a local scale and are
ignored. Measurement regions which are covariant to affine transformations demonstrate
superior performance on standard benchmarks [61, 77]. The local-patches (their local
coordinate system) can be defined by the shape and scale of an ellipse and a dominant
orientation [61] or explicitly constructed as in LAF [57]. Recent work using Convolutional
Neural Network (CNN) based detectors demonstrates benefits from refining the geometry
of measurement regions using models learned on large training sets [63]. Examples of
popular detectors include ORB [80], SIFT [54], MSER [58] and HessianAffine [74], and are
illustrated in Figure 2.1 and Figure 2.2.

Descriptors may also be computed without explicitly constructing a local-patch. In
such cases, the descriptor must compensate for the parameters of rectification that the
detector does not estimate. For example, if the detector does not estimate rotation, then
the descriptor must be rotation invariant. Intensity moment invariants were introduced
to construct affine and photometric invariant descriptors [100]. Spin images [42] are a
general shape representation, and can be used instead of a rectified patch. They can
be used to construct intensity-based rotation invariant descriptors [47], by extracting a
2D histogram that depends only on intensity and distance from the centre. In practice
however, descriptors that use a rectified canonical form outperform the rest, and have
been the popular approach.
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Detector Image A Image B

ORB

SIFT

MSER

HessianAffine

Figure 2.1: Local features detected by four different detectors are shown, namely ORB [80],
SIFT [54], MSER [58] and HessianAffine [74]. Image A and Image B are images of the
same scene from different viewpoints. A subset of the detections for each case is shown, for
illustrative purposes, where the ellipse is representative of the shape of the local feature.
While ORB and SIFT rectify using scale and angle of dominant orientation, HessianAffine
and MSER use local affine frames for rectification.



21

In this work, we assume that the input to the description stage is the rectified
canonical form called local-patch (Figure 2.2). This allows for comparison of corresponding
pixel neighborhoods, as the coordinate system established by the local-patch ensures
such measurements are valid. Measurements that capture the appearance of these
neighborhoods may be specified explicitly, as in the case of hand-crafted descriptors, or
learned implicitly, as in the case of deep local descriptors. These measurements are pooled
into a compact vector in a manner that retains spatial information, e.g. concatenation,
spatial embedding, etc.. A post-processing step is common to both hand-crafted
and learned descriptors. This post-processing ranges from simple PCA dimensionality
reduction, to transformations learned on annotated data. Finally, the resulting vector
is `2-normalized, allowing for comparison using inner product. This procedure for hand-
crafted descriptors is shown in Figure 2.3 and for deep local descriptors in Figure 2.4. In the
following sections, we review prior literature on hand-crafted and deep local descriptors.

Detector Image A Local patch P Local patch Q Image B

ORB

SIFT

HessianAffine

MSER

Figure 2.2: Local-patches obtained by rectification of image regions, from local features
detected by four different detectors are shown, namely ORB [80], SIFT [54], MSER [58]
and HessianAffine [74]. Image A and Image B are images of the same scene from different
viewpoints. For illustrative purposes, a specific local feature is chosen, close to the eye of
the man in the graffiti. The red boxes in the images delimit the region of the image that
forms the local-patch.
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2.1 Hand-crafted descriptors

Hand-crafted descriptors have dominated the research landscape and a variety of
approaches and methodologies exists. A common, well performing approach is to compute
compact representations that capture local pixel neighborhoods and aggregate them while
being invariant to desired photometric or geometric transformations [54, 25, 15]. This
approach allows for injection of domain expertise and prior knowledge by explicitly
specifying the measurements to be considered. Proposed descriptors capture image
properties like pixel intensities, color, texture, edges and so forth. Some methods do
not use any training data [82, 54], while other methods use labeled or unlabeled data to
learn the parts of the model [44, 21, 88].

A generic pipeline for extracting a hand-crafted descriptor can be described as follows:
the input is a rectified canonical local-patch, which is typically preprocessed, e.g. gray value
normalization in view of tolerance to changes in illumination [23], smoothing in view of
robust feature maps [44] and so forth. Features are then extracted from pixel neighborhoods
of the preprocessed map, such as responses from a filter bank [54], outcomes of binary
tests [25] and others. The features are pooled, usually preserving the spatial information
using methods such as concatenation [54], spatial embedding [23]. The pooled descriptors
are post-processed, commonly by whitening [23] or dimensionality reduction [44], [54],
and finally `2-normalized. The resulting vector is the local descriptor. This pipeline
is illustrated in Figure 2.3. We follow a nomenclature introduced in literature [60] to
categorize descriptors into distribution-based descriptors, differential descriptors, spatial-
frequency methods, binary descriptors, and descriptors based on local binary patterns.
Additionally, we briefly introduce kernel descriptors as they are relevant to our work.

Figure 2.3: A generic pipeline for hand-crafted local descriptor extraction is shown. For
each stage, an example is shown and some other approaches are listed. The patch
undergoes preprocessing, followed by extraction of measurements describing local pixel
neighbourhoods. Hand-crafted approaches explicitly specify the measurements. These
measurements are pooled, In some cases, the descriptors are post-processed, using models
trained on some data. Finally to allow for comparison by inner product, the descriptor is
usually `2-normalized.
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Distribution-based descriptors. Local descriptors based on histograms of features
have been studied extensively [54, 15, 22, 46, 82]. Distribution-based descriptors are
dominated by the most widely known local descriptors are SIFT [54] and its variants.
SIFT has consistently performed well across many tasks as measured by its performance
on various benchmarks and tasks including image retrieval [77], stereo matching [60], 3D
reconstruction [83], etc. and its variants are competitive even on recent benchmarks [41].
The design of SIFT was inspired by an observation about biological vision. It was known
that neurons in the human eye respond to gradients at particular orientations and spatial
frequencies. Early attempts used these responses as measurements on the local-patch.
However, if the location of the gradient on the retina is allowed to shift over a small receptive
field rather than being precisely localized, the performance on recognition accuracy
improves tremendously [30]. The SIFT descriptor uses this observation by accumulating
image gradients into histograms corresponding to several spatial bins and orientations. This
allows for the shift of the gradients within the spatial and orientation bins as described
above, making the descriptor tolerant to inaccurate detections and minor deformations.
It also emphasizes the centre of the patch by weighting the gradients with a Gaussian
mask. The final descriptor is computed by concatenating the histograms, and clipping
them. Similarity of two given patches is computed as the Euclidean distance between their
respective descriptors. It can be shown that the resulting score is a comparison of the
gradient at each position in one patch with the gradient at every position in the other
patch, i.e. as a match kernel [19].

Many improvements to SIFT have been proposed, including adapting the feature space
to the data distribution using Principal Component Analysis (PCA) [44], improving the
similarity measure [11] or countering detection errors that result in misaligned canonical
patches [23]. PCA-SIFT [44] proposes to simply use the flattened gradients, which
are reduced to their principal components, learned in an unsupervised manner on a
diverse collection of patches. A simple and effective improvement of SIFT is brought by
RootSIFT [11], which notes that Hellinger measures outperform Euclidean distances when
comparing histograms. It is computed by l1-normalizing, element-wise square-rooting,
and finally l2-normalizing the SIFT descriptor. RootSIFT is frequently used as a reference
baseline for measuring performance on many tasks including patch verification [13], 3D
reconstruction [83] and image retrieval [77].

Some approaches suggested improvements to schemes used for spatial pooling. SIFT
uses a Cartesian grid to define spatial bins over which to pool gradients. DAISY [94]
proposes radial pooling bins to account for tolerance to rotational misalignments caused
by errors in the detection of the local feature. GLOH [60] proposes a log-polar binning
pattern, which emphasizes the centre of the patch, and also reduces the dimensionality
of the descriptor by using Principal Component Analysis (PCA). Among recent work,
DSP-SIFT [29] counters the aliasing effects caused by the binned quantization in SIFT by
pooling gradients over multiple scales.

Differential descriptors. A pixel neighborhood can also be described by a set of
derivatives upto a given order. The properties of these derivatives, also known as local
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jets are well studied [45, 33], and were are to describe local pixel neighborhoods. Steerable
filters [34] are an efficient method of synthesizing filters of arbitrary orientations from linear
combinations of basis filters. Steering derivatives in the direction of the gradient makes
them invariant to rotation.

Spatial-frequency methods. Some descriptors are designed to use features from
filter-bank responses other than image gradients. Typically, the local-patch is convolved
with a set of filters and the responses are pooled and normalized. SURF [15] uses
wavelet responses, and relies on integral images for image convolutions, thus significantly
reducing computation time. Patches can also described using wavelet transforms [22],
phase, orientation and amplitude features [46], and local gray value invariants, obtained
by convolution with Gaussian derivatives [82].

Binary descriptors. One approach to the improve efficiency of extraction and storage
of local descriptors is to compute binary representations. CARD [10] improves the
computational efficiency by using look-up tables to calculate histograms based on the
assumption that the principal gradients can be quantized, regardless of the binning pattern.
Improvements to efficiency of storage and computation were also introduced by the use
of binary descriptors. BRIEF [25] uses randomly defined pairwise intensity comparisons
as binary tests, and computes a binary vector of test responses. BRISK [50] improves
on BRIEF by first estimating an orientation, and proposed a hand-crafted sampling
pattern for the binary tests. ORB [80] was a descriptor proposed by a popular open
source organization, that chose to offer the method free of licensing restrictions that SIFT
and SURF had imposed. It improves on BRIEF by estimating rotation by ‘steering’ the
responses of the binary tests, and decorrelating the resulting responses by training over
the PASCAL [31] dataset.

Local binary patterns. Local binary patterns (LBP) are illumination invariant
textural primitives that are invariant to shifts in gray value [72, 39]. They are tolerant
to illumination changes and can be computed very efficiently. A histogram of the binary
patterns computed over a region is used as the feature descriptor. The operator describes
each pixel by the relative gray levels of its neighboring pixels. LBP-based approaches
perform especially well for classification of textures [71]. Another successful approach
focuses on capturing invariants based on pixel attributes like gray value intensity [82]. Some
approaches [86] note that images of the same object may not share image properties (colors,
textures, edges), and proposes using self-similarity for describing local regions.

Kernel descriptors. Kernel descriptors based on the idea of Efficient Match Kernels
(EMK) [19] encode entities inside a patch (such as gradient, color) in a continuous domain,
rather than as a histogram and form a flexible way to design descriptors with the desired
invariant properties. The kernels and their few parameters are often hand-picked and tuned
on a validation set. Kernel descriptors are commonly represented by a finite-dimensional
explicit feature maps [101]. Quantized descriptors, such as SIFT, can be also interpreted as
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kernel descriptor [23, 18]. Furthermore, the widely used RootSIFT descriptor [11] can be
also thought of as an explicit feature map from the original SIFT space to the RootSIFT
space, such that the Hellinger kernel is linearised, i.e. the linear kernel (dot product) in
RootSIFT space is equivalent to the Hellinger kernel in the original SIFT space. In this
case, the feature mapping is performed by `1-normalization and square-rooting, without
any expansion in dimensionality. Kernel descriptors have been proposed not only for local
patches [23] but also as a global image descriptor [18]. In Chapter 4 we build upon EMK
by integrating multiple pixel attributes in the patch descriptor. Unlike EMK which relies
on features from random projections that require subsequent learning, we leverage instead
explicit feature maps to approximate a kernel behavior directly. These representations can
be further improved by minimal learning.

Hand-crafted approaches are still in use today in commercial applications despite
the superior performance of deep local descriptors. They offer the advantages of
interpretability, efficient computation, semantically useful hyperparameters for tuning,
and simple post-processing methods to adapt the descriptors to the distribution of data.
Implementations are available through popular and free software [102, 20], and generally
do not need special hardware to run tractably. Further, recent benchmarks surprisingly
show that they are indeed competitive with the latest deep local methods on tasks such as
image matching when the matching pipeline is properly tuned [41].

2.2 Deep local descriptors

While hand-crafted features are designed by explicitly defining the measurements to
be used, modern approaches instead learn the features in an end to end manner, by
incorporating convolutional neural networks (CNNs) that are trained on large annotated
datasets. The proposed architectures mimic those that proved successful on full-image
tasks such as classification. They typically consist of a fully convolutional network (FCN)
connected to a fully connected (FC) layer [106, 14, 93, 62]. The FCN extracts a feature
map consisting of features corresponding to pixel neighbourhoods arranged on a regular
Cartesian grid. The FC layer transforms the features based on their position on the grid
and aggregates them into a single vector. This vector is `2-normalized to obtain the final
descriptor. The procedure is depicted in Figure 2.4.

Earliest attempts [32] directly used convolutional features trained on ImageNet [28].
These features were compared with traditional descriptors like SIFT, and showed
impressive results, though they were tuned on the task of image classification instead.
To optimize the feature descriptor directly for establishing matching pairs, training data
with patch-level annotation is required. These are in the form of pairs of corresponding
and non-corresponding patches, which are obtained from Structure-from-Motion (SfM)
pipeline or through synthetic transformations. Some approaches learned both the features
and the similarity measure [106]. Later works [14, 93] used features that could be compared
using Euclidean distances, thus allowing the use of traditional pipelines. The architectures
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Figure 2.4: A generic pipeline for extraction of deep local descriptors extraction is shown.
For each stage, an illustration is presented and some important points are listed. Deep local
descriptors are based on Convolutional Neural Networks (CNNs). The patch undergoes
preprocessing to ensure input values stay in a preferable range. Measurements are implicitly
specified by activations of a Fully Convolutional Network (FCN). This corresponds to
making measurements on overlapping receptive fields placed on a Cartesian grid. The
activations are vectorized and pooled using Fully Connected (FC) layer. Finally to allow
for comparison by inner product, the descriptor is usually `2-normalized.

proposed vary in the depth of the network [106, 87], the non-linearity layer [14] and pooling
layer [66].

Recent work in deep local descriptors use shallow networks with carefully designed
training strategies and loss functions. The networks typically use either pairs or triplets
of patches as input. Pairs are labeled as positives if they are corresponding patches and
negatives if they are non-corresponding patches. Triplets consist of an anchor and a positive
and negative example. The losses are designed such that negative pairs are pushed apart
such that the distance between them is increased, and the positive pairs are pulled closer
together such that their distances are decreased. It is observed that sampling training
examples, especially hard negatives is critical to good performance. Hard negatives which
refers to examples of non-corresponding pairs of patches whose descriptors were similar,
i.e. the network is likely to incorrectly classify them as positives. Recently, the larger focus
is on crafting better loss functions [93, 62, 56] and using better datasets [56, 65]. We
describe some of the approaches below.

DeepDESC [87] uses a hinge embedding loss, which penalizes the positive pairs by
their Euclidean distance, and the negative pairs by their distance from a margin, ensuring
that the loss is positive. The margin determines the ideal distance to every negative
sample. Additionally, descriptors are extracted from a randomly chosen set of pairs, and
only the ‘hardest’ subset is used to train the network. D2C [106] uses a hinge embedding
loss to train both the feature descriptor and a metric layer to compare a pair of patches.



2.2. DEEP LOCAL DESCRIPTORS 27

While the metric layer improves performance, the drawback is that the descriptors cannot
be used traditional pipelines that assume Euclidean distance as the similarity measure.
They augment the training samples by flipping both patches in pairs horizontally and
vertically and rotating by 90, 180, 270 degrees. They do not mention using any form of
hard negative mining. It is also noted that a multi-scale approach improves performance.
A novel 2-channel architecture that effectively describes the patch at two scales, which they
call centre and surround, is introduced. This approach shows good performance but comes
at the cost of increased computation. TFeat [14] improves on the hinge loss by introducing
triplet-based losses that take advantage of in-triplet hard negative mining. A training
example is a triplet of patches, consisting of an anchor, a positive and a negative patch.
The triplet loss is based on the distances between the positive and negative pairs and a
predefined margin. They note that losses are categorized as ranking-based losses and ratio-
based losses. Further, an anchor-swap strategy is introduced that defines the negative pair
as either query and negative example or positive example and negative example based on
whichever yields the hardest negative in the triplet. They provide a thorough comparison
of using such losses by measuring performance on standard benchmarks.

L2-Net [93], proposes a loss function composed of multiple terms, and incorporates
supervision on intermediate feature maps. Further, they propose a new training regime
that makes use of all pairs of patches in a batch. HardNet [62] improves on the training
strategy of L2-Net. They discard the use of auxiliary losses and instead define a single loss
that maximizes the distance between the farthest positive and closest negative example in
the batch. HardNet performs well on multiple benchmarks and tasks [7, 13]. In Chapter 5,
we improve on HardNet by interpreting them as efficient match kernels and design a
novel local descriptor that explicitly encodes the spatial information, which performs on
par with state-of-the-art descriptors with fewer parameters and outperforms on standard
benchmarks with the same number of parameters.

DOAP [38] observes that as the descriptors are finally used for matching, it is
advantageous to use a learning-to-rank formulation that optimizes local feature descriptors
for nearest neighbor matching. They argue that average precision evaluates the
performance of retrieval systems under the binary relevance assumption: retrieved results
are either “relevant” or “irrelevant” to the query, and formulate a loss that incorporates this
measure. Further, they compensate for errors in detection by using spatial transformers
to predict and correct geometric noise.

GeoDesc [56] proposes to leverage geometric information from the SfM framework to
improve the quality of supervision, though from the results presented, the improvement in
performance seems to stem from the introduction of a larger, curated dataset. Similarly,
in PhotoSync [65], a sampling technique for generating matching correspondences is used,
which proposes to ensure that the training dataset has sufficient variations in viewpoint
and scale. Such sampling strategies demonstrate considerable improvement in performance
on standard tasks [7].

Deep local approaches leverage the availability of large sets of annotated examples to
optimize their parameters. They demonstrate irrefutably superior performance on standard
benchmarks. There are many free implementations of frameworks that can be used to
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reproduce these methods. They benefit vastly from hardware acceleration. Further,
authors usually provide trained models, as the training is usually expensive. However,
adoption in real world applications is not as widespread despite the superior performance.
This may be due to the difficulty in tuning models, which usually requires many examples
to correct aberrant behaviour, or the difference in data distribution between training and
real world regimes.

In the next chapter, we describe standard benchmarks and evaluation protocols, based
upon which progress in the state of the art is defined.



Chapter 3

Datasets

Evaluation of local descriptors requires a sufficiently large dataset that captures variation
in appearance, viewpoint, etc. that are encountered in practice. Datasets commonly
used in literature include the PhotoTourism dataset [103], HPatches dataset [13], Rome
patches dataset [73, 51], Generated Matching dataset [32], Oxford matching dataset [60]
and WxBs dataset [64]. Datasets may include annotation at patch-level, i.e. each patch
has an associated label, and patches having the same label are in correspondence, or at
image-level i.e. images depicting the same scene are known but the corresponding regions
are unknown. Datasets that include patch-level annotation [103, 13] usually evaluate
descriptors on the task of patch correspondence, while those that include image-level
annotation [64, 60], evaluate on the task of image matching or retrieval. Datasets that
include patch-level annotation are used not only to evaluate, but also to train descriptors
that learn parameters of their model. Such datasets are derived from either Structure-
from-Motion (SfM) methods, or by the use of synthetic transformations. Datasets that
use SfM pipelines typically use images that are collected from a large public source with
weak annotation, i.e. returned images may not be relevant. Local features are extracted
from these images using detectors, and the extracted features are described using local
descriptors. Given the descriptors and the geometry of the features, pairs of images that
are in correspondence are identified. The transformations are calculated, from a reference
image, to all matching images. Finally, bundle adjustment is performed, and we obtain
a set of 3-dimensional points, called a point cloud, and the poses of the camera for each
image. For each such point, local-patches are extracted from associated images, and the
label and patch is stored. This gives us the correspondences we need for supervision used
for training and evaluation local descriptors. Freely available software [84, 85] for this
pipeline has facilitated augmenting supervision with the information from the pipeline.
Apart from selecting a better training set [65], learning methods [56] may even integrate
this information into the loss while training. Early datasets [103] propose use Receiver
Operating Characteristic (ROC) curve to measure performance. Modern datasets [13]
suggest using Precision-Recall and mean Average Precision (mAP) instead to account for
the imbalanced nature of some tasks, where the negatives far outnumber the positives.

29
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These datasets also propose tasks that are proxies for matching and retrieval.
In our evaluations, we use the PhotoTourism dataset and the HPatches dataset, which
are described in further detail in Section 3.1 and Section 3.2, and we briefly review other
popular datasets in the Section 3.3.

3.1 PhotoTourism

The PhotoTourism dataset was introduced by Winder et al. [103] in 2007. They argue
that there was an absence of a systematic exploration of the algorithms proposed to
design local descriptors. The prevailing performance evaluation, the Oxford matching
dataset [60] used natural images which were nearly planar and used camera motions which
could be approximated as homographies. Ground truth homographies were then obtained
semi-automatically, thus 3D effects were not adequately represented. To account for non-
planar effects around interest points, illumination changes and distortions typical of real life
scenarios, the PhotoTourism dataset uses correspondences from reconstructed 3D scenes.
This introduces 3D appearance variation around each interest point as it is captured in
multiple images of a 3D scene where the camera matrices and 3D point correspondences
can be accurately recovered. However, this does not guarantee that patches depicting
different 3D points do not contain the same object, as shown in figure 3.1. In the following
sections, we describe the collection of the dataset and the evaluation metrics used.

Figure 3.1: Samples of patches from the three PhotoTourism sets, Liberty (top),
NotreDame (middle), and Yosemite (bottom). The color of the box indicates the 3D
point label associated with the patch. It can be observed, from the first examples of the
Liberty dataset, that different labels may depict the same object, i.e. the torch of the
statue of Liberty.

Collection of dataset. The data is taken from SfM reconstructions from Trevi
Fountain (Rome), Notre Dame (Paris) and Half Dome (Yosemite). A large set of images are
captured from each scene. The 3D point cloud representing the scene is reconstructed using
the SfM pipeline. Local features were extracted using the SIFT detector. Local-patches
were extracted corresponding to these features, and described using the SIFT descriptor.
The descriptors were matched across all images using a symmetry criterion, and robust
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estimation of the fundamental matrices using RANSAC. Further, bundle adjustment was
applied to reconstruct 3D points. Sets of corresponding local features across different
images can be constructed, as each 3D point is associated with multiple local features.
Train and test ground truth are obtained by randomly choosing corresponding and non-
corresponding pairs from the extracted local-patches.

Evaluation protocol. The test set of the evaluation protocol consists of local-patch
pairs from one of the three sets, Liberty, NotreDame and Yosemite, and a label indicating
correspondence. Casting the evaluation in the framework of HPatches [13], supervision is
defined by a list T = ((Pi,Qi, yi), i = 1, . . . , N), where Pi,Qi ∈ R64×64 are a pair of patches
and labels yi ∈ {0, 1} indicate if the pair is in correspondence or not. Normalized local
patch descriptors, V̂P and V̂Q, are extracted from the patches. The similarity between
each pair is obtained as a confidence score by simple inner product, si(Pi,Qi) = V̂>PiV̂Qi .
The scores are sorted by permutation π such that the scores are in decreasing order,
i.e. sπ1 > sπ2 > · · · > sπn . The true positive rate is calculated as correctly detected
matches as a fraction of all true matches, and the false positive rate as incorrectly detected
matches as a fraction of all true non-matches.

tpri =

∑i
k=1 yπk∑N
k=1 yπk

(3.1)

fpri =

∑i
k=1 1− yπk∑N
k=1 1− yπk

(3.2)

Performance is measured in terms of the percentage of false matches present when 95%
of all correct matches are detected. This summary value is defined as the False Positive
Rate at 95% of true positive rate (FPR95), i.e.

FPR95 = fprI , (3.3)

where I is the least index for which tprI > .95. In the case of learned descriptors, the
protocol is to train on one of the three sets and test on the other two. The average over
all six combinations is reported.

3.2 HPatches

The HPatches dataset was introduced by Balntas, et al. [13] in 2017, ten years after the
introduction of PhotoTourism. HPatches dataset is a large dataset suitable for training and
testing modern descriptors, together with strictly defined evaluation protocols in several
tasks consisting of matching, retrieval and classification. They observe that results of the
time that compared descriptors were inconsistent due to ambiguously defined evaluation
protocols. Specifically, they attribute variations in different descriptor evaluations to the
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fact that there is no predefined set of regions to match. As a consequence, results depend
strongly on the choice of detector (method, implementation, parameters, measurement
regions), making the comparison of descriptors unreliable. Further, as the measurement
is on an imbalanced dataset (many more negatives than positives), they reject the use of
the ROC curve, and instead suggest the Precision-Recall and mean Average Precision as a
better choice for metrics. In the following sections, we describe the collection of the dataset
and the evaluation metrics used.

Figure 3.2: Samples of image sequences from HPatches dataset from the sequences
‘i construction’, ‘i tools’, ‘v home’ and ‘v machines’, respectively showing illumination and
viewpoint changes. It is noted that many viewpoint changes show images of planar scenes,
while illumination changes do not include any change in viewpoint.

Collection of dataset. Scenes are selected to be representative of different use cases
and captured under varying viewpoint, illumination, or temporal conditions, including
challenging nuisance factors often encountered in applications. A total of 116 image
sequences are collected, with 57 scenes where the main nuisance factors are photometric
changes and the remaining 59 sequences having significant geometric deformations due to
viewpoint change.

A sequence includes a reference image and 5 target images with varying photometric or
geometric changes. The sequences are captured such that the geometric transformations
between images can be well approximated by estimating a homography from the reference
image to each of the target images. Local features are extracted from the reference image,
and target images for each sequence. Scale invariant interest point detectors, i.e. DoG,
Hessian-Hessian and Harris-Laplace are used to detect features for scales larger than a
certain threshold. Near-duplicate regions are discarded based on their intersection-over-
union (IoU) overlap and one region per cluster is randomly retained.

A subset of approximately 1,300 regions per image are then randomly chosen. For each
sequence, patches are detected in the reference image and projected on the target images
using the estimated ground-truth homographies. In order to provide a deeper insight into
the effects of synthetic noise, noise in detection is simulated by perturbing the features
in 3 stages, Easy, Hard and Tough. In each region the dominant orientation angle is



3.2. HPATCHES 33

estimated using a histogram of gradient orientations. Rectified canonical local-patches are
extracted by normalizing the detected affine region to a circle using bilinear interpolation
and extracting a square of 65 × 65 pixels that circumscribes the circle. Examples of the
image sequences and the extracted local-patches are shown in Figures 3.2 and 3.3.

Figure 3.3: Samples of patches from HPatches dataset from the sequences ‘i castle’,
‘i tools’, ‘v home’ and ‘v machines’, respectively showing illumination and viewpoint
changes. Reference patch is shown in red, Easy in green, Hard in blue, Tough in
black.

Evaluation protocol and metrics. Three tasks, patch verification, image matching,
and patch retrieval are defined. The tasks are designed to imitate typical use cases of local
descriptors. Patch verification measures the ability of a descriptor to classify whether two
patches are coming approximately from the same surface of a 3D scene. Image matching
tests to what extent a descriptor can correctly identify correspondences in two images.
Finally, patch retrieval tests how well a descriptor can match a query patch to a pool of
patches extracted from many images, including many distractors, by returning a ranked
list. This is a proxy to local feature based image retrieval.

We describe the protocol that establishes the precision and recall evaluation metric used
in HPatches. Given a query patch, we compute a ranked list of patches retrieved based on
the similarity score. Let y = (y1, . . . , yN) ∈ {−1, 0,+1}N be labels of this list. The labels
indicate if the patch is in correspondence (positive, +1), is not in correspondence (negative,
−1) or if the patch is to be ignored (0).

Precision (Pi) and recall (Ri) at rank i are given by 1

1Here, [x]+ = max(0, x).
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Pi(y) =
i∑

k=1

[yk]+/
i∑

k=1

|yk| , (3.4)

Ri(y) =
i∑

k=1

[yk]+/
N∑
k=1

[yk]+ . (3.5)

Average precision (AP) is defined as

AP (y) =
∑

k:yk=+1

Pk(y)/
N∑
k=1

[yk]+ . (3.6)

It generalizes over standard definition of PR by allowing entries to be ignored. The
protocols for each of the three tasks patch verification, image matching, patch retrieval are
defined and are described below.

Patch verification. This task seeks to measure the discriminativeness of descriptors.
The task is to determine whether a pair of patches is in correspondence or not. This
task is similar to the evaluation scheme used by PhotoTourism [103]. Ground-truth
consists of a list of positive and negative patch pairs. The test set can be represented as
T = ((Pi,Q′i, yi), i = 1, . . . , N) where Pi,Q′i ∈ R65×65 are patches and yi = ±1 determines
if they are in correspondence or not. Local descriptors are extracted from these patches,
and the similarity si between a pair of patches Pi,Qi is defined as the inner product of
corresponding `2-normalized descriptors, si = V̂>PV̂Q. The scores are sorted in decreasing
order, (sπ1 ≥ sπ2 ≥ · · · ≥ sπn) by the permutation π. The performance of the descriptor is
measured by the average precision of the ranked patches, i.e. AP (yπ1 , . . . , yπN ) as defined
in equation 3.6. The test set is further divided based on the level of synthetic perturbation
into Easy, Hard and Tough, and based on whether negatives are taken from the same
scene or from different scenes (intra, inter). Each set consists 2× 105 positives and 106

negatives. The summary score is the mean average precision over the six sets. They claim
that the imbalanced nature of the test set makes AP a better metric than FPR95.

Image matching. This task is a proxy to the task of matching images using local
features. In this task, an image I is defined as a collection of N patches, i.e. I = {Pi, i =
1, . . . , N}. Given a pair of images T = (I0, I1) from the same sequence, the patches Pi ∈ I0

and Qi ∈ I1 must be in correspondence. Therefore, given descriptor VP from image I0,
the closest descriptor from image I1 must be VQ. The evaluation consists of assigning a
label yi = 2[σi == i] − 1 for each Pi ∈ I0, and the corresponding score sσi where the
index σi ∈ 1, . . . , N indicates the best match Qσi ∈ I1. As before, the scores are sorted in
decreasing order, (sπ1 ≥ sπ2 ≥ · · · ≥ sπn) by the permutation π. The performance of the
descriptor is measured by the average precision of the ranked patches, i.e. AP (yπ1 , . . . , yπN )
as defined in equation 3.6. The test set if further divided based on variation by viewpoint
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or illumination, and based on the level of synthetic perturbation Easy, Hard and Tough.
The summary score is the mean average precision over the six sets.

Patch retrieval. This task imitates the image retrieval, except retrieving patches
instead of images. The task is to find an ordered list of ‘relevant’ patches given a query
patch P0. The ground-truth is in the form of a collection T = (P0, (Pi, yi), i = 1, . . . , N),
which consists of labels yi and patches Pi. Assuming the query patch P0 is taken from
image I0, all patches Pk ∈ I0 are assigned a label yk = 0. This is to account for patches
extracted from such ‘innocuous errors’ as repeated structures, which are not considered
detrimental to the retrieval of a correct image, as they originate in the same image. Patches
Pk′ ∈ I0 are labelled such that yi = +1 if Pi and P0 are in correspondence (positives), and
yi = −1 if they are not in correspondence (negatives). As in the previous task, given a
query patch P0, we compute a ranked list of patches Pi retrieved based on the similarity
score si. The scores are sorted in decreasing order, (sπ1 ≥ sπ2 ≥ · · · ≥ sπn) by the
permutation π. The performance is given by AP (yπ1 , . . . , yπN ) as defined in equation 3.6,
which takes advantage of the provision to ignore entries. The test set consists of 1 × 104

queries and their corresponding patches, and 2 × 104 distractors randomly selected from
the entire dataset. It is further divided into Easy, Hard and Tough sets based on the
level of synthetic perturbation. The summary score is the mean average precision over all
queries in all three sets.

3.3 Others

Oxford matching dataset The Oxford matching set [60] was introduced in 2005, to
evaluate various local descriptors. They concentrate on specific geometric and photometric
transformations of six kinds: rotation, scale change, viewpoint change, image blur, JPEG
compression and illumination. For certain transformations, they also use different scene
types. One scene type contains structured scenes, that is homogeneous regions with
distinctive edge boundaries and the other contains repeated textures of different forms.
Figure 3.4 shows examples of scenes from the Oxford matching dataset.
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Figure 3.4: Samples of image sequences from Oxford matching dataset.

Evaluation criterion is based on recall. Two regions are matched if the distance
between their descriptors is below a threshold t. Each descriptor from the reference
image is compared with each descriptor from the transformed one and the number of
correct and false matches are noted. The value of t is varied to obtain the curves. The
results are presented with recall versus 1-precision. Recall is the number of correctly
matched regions with respect to the number of corresponding regions between two images
of the same scene, i.e. recall = #correct matches/#correspondences. The number of
correct matches and correspondences is determined with the overlap error. Typically,
there are very few regions with larger error that are correctly matched and these matches
are not used to compute the recall. The number of correspondences (possible correct
matches) are determined with the same criterion. The number of false matches relative
to the total number of matches is represented by 1-precision. Given recall, 1-precision
and the number of corresponding regions, the number of correct matches is matches
can be determined by #correspondences · recall and the number of false matches by
#correspondences · recall · (1−precision)/precision.

WxBS dataset WxBS [64] also follows a similar approach, by introducing sequences
that capture specific transformations, however, instead of only a single nuisance factor per
image pair, they capture complex environments that consist a combination of nuisance
factors. For the curious, the ‘x’ in ‘WxBS’ stands for the variety in acquisition conditions
of ‘wide baselines’ extending to geometry, illumination, sensor and appearance. They show
that state-of-the- art matchers fail on almost all image pairs from the set. Figure 3.5 shows
examples of scenes from the WxBS dataset.
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Figure 3.5: Samples of image sequences from WxBS dataset.

Evaluation criterion is based on recall. For each image pair, ground-truth is in form of a
manually annotated set of correspondences. Recall is computed as a function of a threshold
t, as a ratio of correspondences that satisfy a geometry model within the threshold t to the
total number of correspondences. Finally, for all pairs of each category, an overall recall
per category is defined.

Custom datasets Structure from Motion (SfM) methods have recently utilized large
image sets in the form of unordered Internet collections of popular landmarks to reconstruct
these landmarks in 3 dimensions, represented as point clouds. Of various methods,
incremental SfM is a sequential pipeline, which performs the reconstruction in an iterative
manner. COLMAP [84, 85] is an open-source software that implements this pipeline.
Specifically, given a large set of images, local features are extracted, followed by matching
and geometric verification. A two-view reconstruction is used as a seed and new images are
registered incrementally. The pipeline triangulates scene points, filters outliers, and refines
the model using bundle adjustment. The final model consists of a 3D point cloud, camera
parameters for each image, etc.. It also associates with each point a unique label, the
images it appears in, and the geometries of the local features in those images. This allows
collection of the training sets based on estimated viewpoint changes [65], or inclusion of
this information in the loss function [56] while training local descriptors.
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Figure 3.6: Sparse model of central Rome using 21K photos produced by COLMAP’s SfM
pipeline, taken from the software’s website.

Figure 3.7: Dense models of several landmarks produced by COLMAP’s MVS pipeline,
taken from the software’s website.



Chapter 4

Multiple-Kernel Local Descriptors

In this chapter, we describe a hand-crafted approach for local descriptors based on Efficient
Match Kernels (EMK) [19, 17, 96]. EMK provides a flexible framework for matching
sets, patches in our case, by encoding different properties of the set elements, pixels in
our case. In particular, we build upon the hand-crafted kernel descriptor proposed by
Bursuc et al. [23]. We extend our descriptor with post-processing that is learned from
the data in unsupervised or supervised manner. We visualize and analyze its effect,
and attempt to understand its advantages and disadvantages. Based on the analysis, we
propose a simple combination of parametrizations each offering robustness to different
types of patch mis-registrations. Interestingly, the same analysis is possible even for
the learned post-processing. We demonstrate that its effect on the patch similarity is
semantically meaningful. Finally, we evaluate the performance of the proposed descriptor
on the PhotoTourism and HPatches benchmarks.

4.1 Preliminaries

In this section, we introduce kernelized descriptors and explicit feature maps. Kernelized
descriptors allow us to approximate efficient match kernels. Following the formulation of
Bursuc et al. [23], we represent a patch P as a set of pixels p ∈ P and compare patches P
and Q by the match kernel

M(P ,Q) =
∑
p∈P

∑
q∈Q

k(p, q),

where kernel k : Rn×Rn → R is the kernel we wish to approximate. Explicit evaluation
involves |P| × |Q| comparisons, making it prohibitively expensive. Instead, we use the
explicit ψ : Rn → Rd feature map,

39
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M(P ,Q) =
∑
p∈P

∑
q∈Q

k(p, q) (4.1)

≈
∑
p∈P

∑
q∈Q

ψ(p)>ψ(q) (4.2)

=
∑
p∈P

ψ(p)>
∑
q∈Q

ψ(q). (4.3)

Vector V(P) =
∑

p∈P ψ(p) is called a kernelized descriptor (KD). V(P) is

`2-normalized by factor γ(P) = (V(P)TV(P))
1/2

to ensure unit self-similarity.

Explicit feature maps. As non-linear kernel for scalars we use the normalized
Von Mises probability density function1, which is used for image [96] and patch [23]
representations. It is parametrized by κ controlling the shape of the kernel, where lower
κ corresponds to wider kernel, i.e. less selective kernel. We use a stationary (shift
invariant) kernel that, by definition, depends only on the difference ∆n = pn − qn,
i.e. kVM(pn, qn) := kVM(∆n). We approximate this probability density function with Fourier
series with N frequencies that produces a feature map ψVM : R → R2N+1. It has the
property that

kVM(pn, qn) ≈ ψVM(pn)>ψVM(qn). (4.4)

In particular we approximate the Fourier series by the sum of the first N terms as

kVM(∆n) ≈
N∑
i=0

γi cos(i∆n). (4.5)

The feature map ψVM(pn) is designed as follows:

ψVM(pn) = (
√
γ0,
√
γ1 cos(pn), . . . ,

√
γN cos(Npn),

√
γ1 sin(pn), . . . ,

√
γN sin(Npn))>. (4.6)

1Also known as the periodic normal distribution
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This vector has 2N + 1 components. It is now easy to show that the inner product of
two feature maps is approximating the kernel. That is,

ψVM(pn)>ψVM(qn) = γ0 +
N∑
i=1

γi(cos(ipn) cos(iqn) (4.7)

+ sin(ipn) sin(iqn))

=
N∑
i=0

γi cos(i(pn − qn))

≈ kVM(∆n).

The reader is encouraged to read prior work for details on these feature maps [101, 27],
which are previously used in various contexts [96, 23].

4.2 Multiple-kernel joint encoding

In this section we consider different patch parametrizations and kernels that result in
different patch similarity. We discuss the benefits of each and propose how to combine
them. We further learn descriptor transformation with or without supervision and provide
useful insight on how patch similarity is affected.

Patch attributes. We consider a pixel p to be associated with coordinates px, py in
Cartesian coordinate system, coordinates pρ, pφ in polar coordinate system, pixel gradient
magnitude pm, and pixel gradient angle pθ. Angles pθ, pφ ∈ [0, 2π], distance from the center
pρ is normalized to [0, 1], while coordinates px, py ∈ {1, 2, . . . ,W} for W ×W patches. In
order to use feature map ψVM, attributes pρ, px, and py are linearly mapped to [0, π]. The
gradient angle is expressed w.r.t. the patch orientation, i.e. pθ directly, or w.r.t. to the
position of the pixel. The latter is given as pθ̃ = pθ − pφ.

Patch parametrizations. Composing patch kernel k as a product of kernels over
different attributes enables easy design of various patch similarities. Correspondingly, this
defines different KD. All attributes px, py, pρ, pθ, pφ, and pθ̃ are matched by the Von Mises
kernel, namely, kx, ky, kρ, kθ, kφ, and kθ̃ parameterized by κx, κy, κρ, κθ, κφ, and κθ̃,
respectively. In a similar manner to SIFT, we apply a Gaussian mask by pg = exp(−p2

ρ)
which gives more importance to central pixels.
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Figure 4.1: Image gradients for some sample patches (top) are shown. The middle
row shows the corresponding gradient magnitudes and the bottom row shows gradient
orientations (thresholded by mean of magnitudes). The colors are indicated by the colorbar
and colorwheel.

In this chapter we focus on the two following match kernels over patches. One in polar
coordinates (φρθ̃) and one in Cartesian (xyθ) coordinates

Mφρθ̃(P ,Q) =
∑
p∈P

∑
q∈Q

pgqg
√
pm
√
qmkφ(pφ, qφ)kρ(pρ, qρ)kθ̃(pθ̃, qθ̃) (4.8)

Mxyθ(P ,Q) =
∑
p∈P

∑
q∈Q

pgqg
√
pm
√
qmkx(px, qx)ky(py, qy)kθ(pθ, qθ). (4.9)

The KD for the two cases are given by

Vφρθ̃(P) =
∑
p∈P

pg
√
pmψφ(pφ)⊗ ψρ(pρ)⊗ ψθ̃(pθ̃) (4.10)

=
∑
p∈P

pg
√
pmψφρθ̃(p) (4.11)

Vxyθ(P) =
∑
p∈P

pg
√
pmψx(px)⊗ ψy(py)⊗ ψθ(pθ) (4.12)

=
∑
p∈P

pg
√
pmψxyθ(p). (4.13)
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Figure 4.2: Kernel approximations used for pixel attributes. Parameter κ and the number
of frequencies N define the final shape. The choice of kernel parameters is guided by [23].

The Vφρθ̃ variant is exactly the one proposed by Bursuc et al. [23], considered as a
baseline for the descriptors introduce in this chapter. Different parametrizations result in
different patch similarity, which is analyzed in the following. In Figure 4.2 we present the
approximation of kernels used per attribute.

4.3 Whitening

It is known that further descriptor post-processing [75, 12, 23] is beneficial. In particular,
KD is further centered and projected as

V̂(P) = A>(V̄(P)− µ), (4.14)

where µ ∈ Rd and A ∈ Rd×d are the mean vector and the projection matrix. These
are commonly learned by PCA [40] or with supervision [75]. The final descriptor is always
`2-normalized in the end.

We detail different ways to learn the projection matrix A of (4.14) to perform
the descriptor post-processing. Let us consider a learning set of patches P and the
corresponding set of descriptors VP = {V (P), P ∈ P}. Let C be the covariance matrix of
VP. Vector µ is the mean descriptor vector, and different ways to compute A are as follows.

Supervised whitening. We further assume that supervision is available in the form
of pairs of matching patches. This is given by set M = {(P ,Q) ∈ P× P, P ∼ Q}, where
∼ denotes matching patches. We follow the work of Mikolajczyk and Matas [59] to learn
discriminative projections using the available supervision. The discriminative projection
is composed of two parts, a whitening part and a rotation part. The whitening part is
obtained from the intraclass (matching pairs) covariance matrix CM, while the rotation
part is the PCA of the interclass (non-matching pairs) covariance matrix in the whitened
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Pixel p Patch Q
kφ kρ kθ kφ kρ kθ̃ kx ky kθ kx ky kθ̃pθ = 0 qθ = 0,∀q ∈ Q

pθ = 0 qθ = −π/8, ∀q ∈ Q

Figure 4.3: Patch maps for different parametrizations and kernels. Different
parametrizations are presented, two in polar (kφ kρ) and two in Cartesian
coordinates (kx ky), with absolute (kθ) or relative (kθ̃) gradient angle for each one. The
similarity between each pixel of patch Q and a single pixel p is shown over patch Q. All
pixels in Q have the same gradient angle, which is shown in red arrows. The position of
pixel p is shown with “×” on the patch maps. We show examples for ∆θ equal to 0 (top)
and π/8 (bottom). At the top of each column the kernels that are used (patch similarity)
are shown. The similarity is shown in a relative manner and, therefore, the absolute scale
is missing. Ten isocontours are sampled uniformly and shown in different color.

Pixel p Patch Q
kφ kρ kθ̃pθ = −π/4 qθ = −π/2,∀q ∈ Q

(0, 0)π/2

π/2

q(3)

q(2)

q(1)

q(3) q(2) q(1)

0

1

kθ̃
kφ
kθ̃kφ

Figure 4.4: Patch map with polar parametrization kφkρkθ̃ for ∆θ = π/4 and the pair of
toy pixel and patch on the left. The example explains why the kernel undergoes shifting
away from the position of pixel p. The diagram of the 4th column overlays pixel p and 3
pixels of patch Q with the same distance from the center as p. On the rightmost plot, we
illustrate kθ̃ (pθ̃, qθ̃), kφ (pφ, qφ) for pixels q with qρ = pρ (on the black dashed circle). kθ̃
is maximized at q(3), kφ at q(1), and their product at q(2).
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space. We set the interclass one to be equal to C as this is dominated by non-matching
pairs, while the intraclass one is given by

CM =
∑

(P,Q)∈M

(V (P)− V (Q)) (V (P)− V (Q))>. (4.15)

The projection matrix is now given by

A = C
−1/2
M eig(C

−1/2
M CC

−1/2
M ), (4.16)

where eig denotes the eigenvectors of a matrix into columns. To reduce the descriptor
dimensionality, only eigenvectors corresponding to the largest eigenvalues are used. The
same holds for all cases that we perform PCA in the rest of the paper. We refer to this
transformation as supervised whitening (WS).

Unsupervised whitening. There is no supervision in this case and the projection is
learned via PCA on set VP. In particular, projection matrix is given by

A = eig(C)diag(λ
−1/2
1 , . . . , λ

−1/2
d )

>
, (4.17)

where diag denotes a diagonal matrix with the given elements on its diagonal, and λi
is the i-th eigenvalue of matrix C. This method is called PCA whitening and we denote
simply by W [40].

Unsupervised whitening with attenuation. We extend the PCA whitening scheme
by introducing parameter t controlling the extent of whitening and the projection matrix
becomes

A = eig(C)diag(λ
−t/2
1 , . . . , λ

−t/2
d )

>
, (4.18)

where t ∈ [0, 1], with t = 1 corresponding to the standard PCA whitening and t = 0 to
simple rotation without whitening.

Equivalently, t = 0 imposes the covariance matrix to be identity. We call this method
attenuated PCA whitening and denote it by WUA.

Unsupervised whitening with shrinkage. The aforementioned process resembles
covariance estimation with shrinkage [49, 48]. The sample covariance matrix is known to
be a noise estimator, especially when the available samples are not sufficient relatively
to the number of dimensions [48]. Ledoit and Wolf [48] propose to replace this by a
linear combination of the sample covariance matrix and a structured estimator. Their
solution is well conditioned and is shown to reduce the effect of noisy estimation in eigen
decomposition. The imposed condition is simply that all variances are the same and all
covariances are zero. The shrunk covariance is

C̃ = (1− β)C + βId, (4.19)
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where Id is the identity matrix and β the shrinking parameter. This process “shrinks”
extreme (too large or too small) eigenvalues to intermediate ones. In our experiments
we show that a simple tuning of parameter β performs well across different context and
datasets. The projection matrix is now

A = eig(C)diag((αλ1 + β)−
1/2, . . . , (αλd + β)−

1/2)
>
, (4.20)

where α = 1 − β. We call this method PCA whitening with shrinkage and denote it
by WUS. We set parameter β equal to the i-th eigenvalue. A method similar to ours is
used in the work of Brown et al. [21], but does not allow dimensionality reduction since
descriptors are projected back to the original space after the eigenvalue clipping.

Learning affine transformation with Stochastic Gradient Descent (SGD).
We also learn the parameters of affine transform in a manner analogous to deep local
descriptors, by optimizing a complex loss function using SGD. We use the same training
procedure as HardNet [62], which is explained in further detail in Chapter 5. The results on
the PhotoTourism dataset are presented in Table 4.2, and we visualize the learned kernels
in Figure 4.8.

4.4 Visualization of kernels

We define pixel similarityM(p, q) as kernel response between pixels p and q, approximated
asM(p, q) ≈ ψ(p)>ψ(q). To show a spatial distribution of the influence of pixel p, we define
a patch map of pixel p (fixed px, py, and pθ). The patch map has the same size as the
image patches; for each pixel q of the patch, map M(p, q) is evaluated for some constant
value of qθ.

For example, in Figure 4.3 patch maps for different kernels are shown. The position of
p is denoted by × symbol. Then, pθ = 0, while qθ = 0 for all spatial locations of q in the
top row and qθ = −π/8 in the bottom row. This example shows the toy patches and their
gradient angles in arrows to be more explanatory. The toy patches are directly defined by
pθ, and qθ. Only pθ and qθ are used in later examples, while the toy patches are skipped
from the figures.

The example in Figure 4.3 reveals a discontinuity near the center of the patch when
pixel similarity is given by Vφρθ̃ descriptor. It is caused by the polar coordinate system
where a small difference in the position near the origin causes large difference in φ and
θ̃. The patch maps reveal weaknesses of kernel descriptors, such the aforementioned
discontinuity, but also advantages of each parametrization. It is easy to observe that
the kernel parametrized by Cartesian coordinates and absolute angle of the gradient (Vxyθ,
third column) is insensitive to small translations, i.e. feature point displacement. Moreover,
in the bottom row we see that using the relative gradient direction θ̃ allows to compensate
for imprecision caused by small patch rotation, i.e. the most similar pixel is not the one
at the location of p with different θ̃, but a rotated pixel with more similar value of θ̃.
This effect is further analyzed in Figure 4.4. The final similarity involves the product of
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two kernels that both depend on angle φ. They are both maximized at the same point if
∆θ = 0, otherwise not. The larger ∆θ is, the maximum value moves further (in the patch)
from p.

We additionally construct patch maps in the case of descriptor post-processing by
a linear transformation, e.g. descriptor whitening. For a patch of size W × W , the
contribution of a pixel pair is given by

M̂(p, q) = (A>(ψ̄(p)− µ̄))
>

(A>(ψ̄(q)− µ̄)) (4.21)

= (ψ̄(p)− µ̄)
>
AA>(ψ̄(q)− µ̄) (4.22)

= ψ̄(p)>AA>ψ̄(q)− ψ̄(p)>AA>µ̄

− ψ̄(q)>AA>µ̄+ µ̄>AA>µ̄, (4.23)

where µ̄ = µ
W 2 , and ψ̄(p) = ψ

γ
where γ accounts for the `2-normalization of the whole

patch. If A is a rotation matrix then the similarity is affected just by shifting by µ̄. After
the transformation, the similarity is no longer shift-invariant. Non-linear post-processing,
such as power-law normalization or simple `2 normalization cannot be visualized, as it acts
after the pixel aggregation.

Combining kernel descriptors. We propose to take advantage of both
parametrizations Vφρθ̃ and Vxyθ, by summing their contribution. This is performed by
simple concatenation of the two descriptors. Finally, whitening is jointly learned and
dimensionality reduction is performed.

In Figure 4.5 we show patch maps for the individual and combined representation, for
different pixels p. Observe how the combined one better behaves around the center. The
combined descriptor inherits reasonable behavior around the patch center and insensitivity
to position misalignment from the Cartesian parametrization, while insensitivity to
dominant orientation misalignment from the polar parametrization, as shown earlier.

When combining the descriptors of different parametrization by concatenation we use
both with equal contribution, i.e. the final similarity is equal to kφkρkθ̃ + kxkykθ. In the
case of the raw descriptors this is clearly suboptimal. One would rather regularize by
kφkρkθ̃ + wkxkykθ and search for the optimal value of scalar w. We prove that this is
not necessary in the case of post-processing by supervised whitening, where the optimal
regularization is included in the projection matrix.

We denote a set of descriptors without regularized concatenation by VP when w = 1,
while the V

(w)
P when w 6= 1. It holds that V

(w)
P = {WV (P), P ∈ P}, where W is a diagonal

matrix with ones on the dimensions corresponding to the first descriptors (for kφ kρ kθ̃),
and has all the rest elements of the diagonal equal to w. The covariance matrix of VP is
C, while of V

(w)
P it is C(w) = WCW>.

Learning the supervised whitening on VP as in (4.16) produces projection matrix

A = C
−1/2
M eig(C

−1/2
M CC

−1/2
M ), (4.24)
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kφ kρ kθ̃ kx ky kθ kφ kρ kθ̃ + kx ky kθ

Figure 4.5: Patch maps for different pixels and parametrizations and their concatenation.
Two parametrizations in polar and Cartesian coordinates, with relative and absolute
gradient angle, respectively are presented. ∆θ is fixed to be 0 (individual values of pθ and
qθ do not matter due to shift invariance) and pixel p is shown with “×”. Note the behaviour
around the centre in the concatenated case. Ten isocontours are sampled uniformly and
shown in different color.

while learning it on V
(w)
P produces projection matrix

A(w) = C
(w)
M
−1/2

eig(C
(w)
M
−1/2

C(w)C
(w)
M
−1/2

). (4.25)

Cholesky decomposition of C gives

C = U>U = LL>, (4.26)

which leads to the Cholesky decomposition

C(w) = WU>UW> = WLL>W>. (4.27)
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PC P+WS C+WS PC+WS PC+WUA PC+WUS

pθ = 0
qθ = 0, ∀q ∈ Q

pθ = π/4
qθ = π/4,∀q ∈ Q

pθ = π/2
qθ = π/2,∀q ∈ Q

pθ = 3π/4
qθ = 3π/4,∀q ∈ Q

pθ = π
qθ = π,∀q ∈ Q

Figure 4.6: Patch maps for different parametrizations, their concatenation, different post-
processing methods, and varying pθ and qθ, while ∆θ is always 0. Pixel p is shown with
“×”. P: polar parametrization, C: Cartesian parametrization, WS: supervised whitening,
WUA: unsupervised whitening (attenuation), WUS: unsupervised whitening (shrinkage).
WUA is shown for t = 0.7 and WUS for β = λ40. Whitening is learned on Liberty dataset.
Observe that the similarity is no more shift invariant after the whitening and how the shape
follows the angle of the gradients. Ten isocontours are sampled uniformly and shown in
different color.



50 CHAPTER 4. MULTIPLE-KERNEL LOCAL DESCRIPTORS

PC+W S

D
PC+W S

128
PC+WUS

D
PC+WUS

128
PC+WUA

D
PC+WUA

128

pθ = 0
qθ = 0, ∀q ∈ Q

pθ = π/4
qθ = π/4,∀q ∈ Q
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pθ = 3π/4
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pθ = π
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Figure 4.7: Patch maps for concatenated parametrization, different post-processing
methods, with and without dimensionality reduction. pθ and qθ are varying, while
∆θ is always 0. Pixel p is shown with “×”. P: polar parametrization, C:
Cartesian parametrization, WS: supervised whitening. Whitening is learned using WS:
supervised whitening, WUA: unsupervised whitening (attenuation), WUS: unsupervised
whitening (shrinkage) on Liberty dataset. ∆θ is fixed to be 0. Ten isocontours are sampled
uniformly and shown in different color.
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P+WS P+WSGD C+WS C+WSGD PC+WS PC+WSGD

pθ = 0
qθ = 0, ∀q ∈ Q

pθ = π/4
qθ = π/4,∀q ∈ Q

pθ = π/2
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pθ = 3π/4
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pθ = π
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Figure 4.8: Patch maps for different parametrizations, their concatenation, different post-
processing methods, and varying pθ and qθ, while ∆θ is always 0. Pixel p is shown with
“×”. P: polar parametrization, C: Cartesian parametrization, WS: supervised whitening.
Whitening is learned using Linear Discriminant Analysis (WS) or Stochastic Gradient
Descent (WSGD) on Liberty dataset. ∆θ is fixed to be 0. Ten isocontours are sampled
uniformly and shown in different color.
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Using (4.27) allows us to rewrite (4.25) as

A(w) = (L>W>)
−1
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−1
)
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M )

= (W>)
−1
A.

(4.28)

Whitening descriptor V (P) ∈ VP with matrix A is performed by

V̂ (P) = A>(V (P)− µ), (4.29)

while whitening descriptor V (P)(w) ∈ V (w)
P with matrix A(w) is performed by

V̂ (P)
(w)

= A(w)>(WV (P)−Wµ)

= A>W−1(WV (P)−Wµ)

= V̂ (P).

(4.30)

No matter what the regularization parameter is, the descriptor is identical after
whitening. We conclude that there is no need to perform such regularized concatenation.

Understanding the whitened patch similarity. We learn the different whitening
variants of Section 4.3 and visualize their patch maps in Figure 4.6. All examples shown
are for ∆θ = 0 but gradient angles pθ and qθ jointly vary. We initially observe that the
similarity is shift invariant only in the fist column of patch maps where no whitening
is applied. This is expected by definition. Projecting by matrix A does not allow to
reconstruct the shift invariant kernels anymore; the similarity does not only depend on
∆θ, which is 0, but also on pθ and qθ.

The patch similarity learned by whitening exhibits an interesting property. The shape
of the 2D similarity becomes anisotropic and gets aligned with the orientation of the
gradient. Equivalently, it becomes perpendicular to the edge on which the pixel lies. This
is a semantically meaningful effect. It prevents over-counting of pixel matching along
aligned edges of the two patches. In the case of a blob detector this can provide tolerance
to errors in the scale estimation, i.e. the similarity remains large towards the direction that
the blob edges shift in case of scale estimation error.

We presume that this is learned by pixels with similar gradient angle that co-occur
frequently. A similar effect is captured by both the supervised and the unsupervised
whitening with covariance shrinkage, it is, though, less evident in the case of WUS.
Moreover, we see that it is mostly the Cartesian parametrization that allows this kind
of deformation.

According to our interpretation, supervised whitening [59, 75] owes its success to
covariance estimation that is more noise free. The noise removal comes from supervision,
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but we show that standard approaches for well-conditioned and accurate covariance
estimation have similar effect on the patch similarity even without supervision. The
observation that different parametrizations allow for different types of co-occurrences to
be captured is related to other domains too. For instance. CNN-based image retrieval
exhibits improvements after whitening [12], but this is very unequal between average and
max pooling. However, observing the differences is not as easy as in our case with the
visualized patch similarity.

Patch maps are a way to visualize and study the general shape of the underlined
similarity function. In a similar manner, we visualize the kernel responses for a particular
pair of patches to reflect which are the pixels contributing the most to the patch similarity.
This is achieved by assigning strength

∑
q∈Q M̂(p, q) to pixel p. In cases without whitening,

M(p, q) is used. We present such heat maps in Figure 4.9. Whitening significantly affects
the contribution of most pixels. The over-counting phenomenon described in Section 4.4
is also visible; some of the long edges are suppressed.

Q P C PC PC+WS P P C PC PC+WS

Figure 4.9: Positive patch pairs (patches Q and P) and the corresponding heat
maps for polar (P), Cartesian (C), combined (PC), and whitened combined (PC+WS)
parametrization. Red (blue) corresponds to maximum (minimum) value. Heat maps on
the left side correspond to

∑
p∈PM(p, q), while the ones on the right side to

∑
q∈QM(p, q).

In the case of PC+WS, M̂(p, q) is used instead of M(p, q).

4.5 Experiments

As previously introduced in Chapter 3, we evaluate our descriptor on two benchmarks,
namely the widely used PhotoTourism (PT) dataset [103], and the recently released
HPatches (HP) dataset [13]. We first show the impact of the shrinkage parameters in
unsupervised whitening, and then compare with the baseline method of Bursuc et al. [23]
on top of which we build our descriptor. We examine the generalization properties of
whitening when learned on PT but tested on HP, and finally compare against state-of-the-
art descriptors on both benchmarks. In all our experiments with descriptor post-processing
the dimensionality is reduced to 128, while the combined descriptor original has 238
dimensions, except for the cases where the input descriptor is already of lower dimension.
Our experiments are conducted with a Matlab implementation of the descriptor, which
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takes 5.6 ms per patch for extraction on a single CPU on a 3.5GHz desktop machine. A
GPU implementation reduces time to 0.1 ms per patch on an Nvidia Titan X.

Datasets and protocols. We use the two publicly available patch datasets described
in Chapter 3. The Phototourism dataset contains three sets of patches, namely, Liberty
(Li), NotreDame (No) and Yosemite (Yo). Additionally, labels are provided to indicate
the 3D point that the patch corresponds to, thereby providing supervision. It has been
widely used for training and evaluating local descriptors. Performance is measured by the
false positive rate at 95% of recall (FPR95). The protocol is to train on one of the three
sets and test on the other two. An average over all six combinations is reported.

The HPatches dataset contains local patches of higher diversity, is more realistic, and
during evaluation the performance is measured on three tasks: verification, retrieval, and
matching. We follow the standard evaluation protocol [13] and report mean Average
Precision (mAP). We follow the common practice and use models learned on Liberty of
PT to compare descriptors that have not used HP during learning. We evaluate on all 3
train/test splits and report the average performance. All reported results on HP (our and
other descriptors) are produced by our own evaluation by using the provided framework,
and descriptors2.

Impact of the shrinkage parameter. We evaluate the impact of the shrinkage
parameter involved in the unsupervised whitening. It is t for WUA and β = λi for WUS.
Results are presented in Figure 4.11 for evaluation on PT and HP dataset, while the
whitening is learned on the same or different dataset. The performance is stable for a
range of values, which makes it easy to tune in a robust way across cases and datasets.
In the rest of our experiments we set t = 0.7 and β = λ40. In Figure 4.10 we show the
eigenvalues used by W, WUA, and WUS. The contrast between the larger and smaller
eigenvalues is decreased.
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W, λ

WUA, λt

WUS, (1− β)λ+ β

Figure 4.10: Eigenvalues for standard PCA whitening, attenuated whitening (t = 0.7)
and whitening with shrinkage (β = λ40). Values are normalized so that the maximum
eigenvalue is 1. First 120 eigenvalues (out of 238) are shown.

2L2Net and HardNet descriptors were provided by the authors of HardNet [62].
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Figure 4.11: Impact of the shrinkage parameter for unsupervised whitening when trained
on the same or different dataset. Performance is evaluated on PhotoTourism and HPatches
datasets versus shrinkage parameter t for the attenuated whitening WUA (top row), and
versus shrinkage parameter β = λi for whitening with shrinkage WUS (bottom row).

Comparison with the baseline. We compare the combined descriptor against the
different parametrizations when used alone. The experimental evaluation is shown in
Table 4.1 for the PT dataset. The baseline is followed by PCA and square-rooting, as
originally proposed in [23]. We did not consider the square-rooting variant in our analysis
in Section 4.2 because such non-linearity does not allow to visualize the underlined patch
similarity. Supervised whitening on top of the combined descriptor performs the best.
Unsupervised whitening significantly improves too, while it does not require any labeling
of the patches.

Polar parametrization with the relative gradient direction (polar) significantly
outperforms the Cartesian parametrization with the absolute gradient direction (cartes).
After the descriptor post-processing (polar + WS vs. cartes + WS), the gap is reduced. The
performance of the combined descriptor (polar + cartes) without descriptor post-processing
is worse than the baseline descriptor. That is caused by the fact, that the two descriptors
are combined with an equal weight, which is clearly suboptimal. No attempt is made to
estimate the mixing parameter explicitly. It is implicitly included in the post-processing
stage. Figure 4.13 presents patch similarity histograms for matching and non-matching
pairs, showing how their separation is improved by the final descriptor.

We perform an experiment with synthetic patch transformations to test the robustness
of different parametrizations. The whole patch is synthetically rotated or translated by
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Test Liberty Notredame Yosemite

Train D Mean No Yo Li Yo Li No

polar [23] 175 22.42 24.34 24.34 16.06 16.06 26.85 26.85
cartes 63 35.87 34.06 34.06 34.10 34.10 39.47 39.47
polar + cartes 238 25.37 26.16 26.16 20.04 20.04 29.91 29.91
polar +PCA+SQRT [23] 128 8.30 12.09 13.13 5.16 5.41 7.52 6.49
polar [23]+WS 128 7.06 8.55 10.48 4.40 3.94 8.86 6.12
cartes + WS 63 15.13 17.31 20.34 10.90 11.85 16.84 13.55
polar + cartes + WS 128 5.94 7.46 9.85 3.45 3.55 6.47 4.89
polar + cartes + WUA 128 6.79 10.59 11.17 3.80 4.36 5.58 5.16
polar + cartes + WUS 128 7.22 10.61 11.14 4.27 4.46 6.75 6.09

Table 4.1: Performance comparison on PhotoTourism dataset between the baseline
approach and our combined descriptor. The benefit of learned whitening (WS), over the
standard PCA followed by square-rooting, as well as the other variants that do additional
regularization (WUA, WUS) without supervision, is presented. FPR95 is reported for all
methods.

Test Liberty Notredame Yosemite

Train D Mean No Yo Li Yo Li No

P+WSGD 128 6.19 8.30 8.80 3.79 3.24 7.35 5.68
C+WSGD 128 13.68 16.32 16.63 10.06 9.42 15.77 13.89
PC+WSGD 128 5.76 7.52 8.42 3.45 2.83 6.80 5.53

Table 4.2: Performance on PhotoTourism dataset when using Stochastic Gradient
Descent (SGD) to train the whitening transform. P, C and PC are compared. FPR95
is reported for all methods.

appropriately transforming pixel position and gradient angle in the case of rotation. A
fixed amount of rotation/translation is performed for one patch of each pair of the PT
dataset and results are presented in Figure 4.12. It is indeed verified that the Cartesian
parametrization is more robust to translations, while the polar one to rotations. The joint
one finally partially enjoys the benefits of both.
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Figure 4.12: Performance on PT (training on Liberty, testing on NotreDame) when one
patch of each pair undergoes synthetic rotation or translation.
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Figure 4.13: Histograms of patch similarity for positive and negative patch pairs.
Histograms are constructed from 50K matching and 50K non-matching pairs from
NotreDame dataset.
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Figure 4.14: Patch maps for Cartesian parametrization with whitening transform learned
on synthetically generated correspondences from HPatches dataset that are translated
versions of local-patches detected using HessianAffine detector. ∆θ is fixed to be 0 and
pixel p is shown with “×”. Note the behaviour around the centre in the concatenated case.
Ten isocontours are sampled uniformly and shown in different color.

We perform an experiment with synthetically generated local patches to observe the
effect of whitening when learned on specific types of perturbations. Local features are
detected using the HessianAffine detector for a large number of images from the HPatches
dataset. For each feature, 5 corresponding local patches are extracted by translating the
centres of the features in either horizontal or vertical direction. These local patches are
used to randomly generate a large set of positives (matching pairs), and used to learn
the supervised whitening transform for the Cartesian variant. The resulting kernels are
presented in Figure 4.14. It is observed that the kernels are accordingly aligned to different
axes, to account for the respective direction of translation.

Generalization of whitening. We learn the whitening on PT or HP (supervised
and unsupervised) and evaluate the performance on HP. We present results in Table 4.3.
Whitening always improves the performance of the raw descriptor. The unsupervised
variant is superior when learning it on an independent dataset. It generalizes better,
implying over-fitting of the supervised one (recall the observations of Figure ??). Learning
on HP (the corresponding training part per split) with supervision significantly helps. Note
that PT contains only patches detected by DoG, while HP uses a combination of detectors.
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Name Train Sup. R M V

polar + cartes N/A N/A 45.23 29.68 77.78

polar + cartes + WUA PT No 52.78 36.46 77.31
polar + cartes + WUS PT No 53.50 37.16 78.81
polar + cartes + WS PT Yes 49.66 32.58 75.82

polar + cartes + WUA HP No 56.36 39.88 80.06
polar + cartes + WUS HP No 56.71 40.13 80.70
polar + cartes + WS HP Yes 61.79 44.40 83.50

Table 4.3: Generalization of different whitening approaches. Mean Average
Precision (mAP) for 3 tasks of HP, namely Retrieval (R), Matching (M), and
Verification (V). The whitening is learned on PT or HP. We denote supervised by Sup.

Comparison with the State of the Art. We compare the performance of
the proposed descriptor with previously published results on PhotoTourism dataset.
Results are shown in Table 4.4. Our method obtains the best performance among the
unsupervised/hand-crafted approaches by a large margin. Overall, it comes right after
the two very recent CNN-based descriptors, namely L2Net [93] and HardNet [62]. The
advantage of our approach is the low cost of the learning. It takes less than a minute;
about 45 seconds to extract descriptors of Liberty and about 10 seconds to compute the
projection matrix. CNN-based competitors require several hours or days of training.

The comparison on the HPatches dataset is reported in Figure 4.15. We use the
provided descriptors and framework to evaluate all approaches by ourselves. For the
descriptors that require learning, the model that is learned on Liberty-PT is used.
Our unsupervised descriptor is the top performing hand-crafted variant by a large
margin. Overall, it is always outperformed by HardNet, L2Net, while on verification is
it additionally outperformed by DDesc and TF-M. Verification is closer to the learning
task (loss) involved in the learning of these CNN-based methods.

Finally, we learn supervised whitening WS for all other descriptors, post-process them,
and present results in Figure 4.16. The projection matrix is learned on HP, in particular the
training part of each split. Supervised whitening WS consistently boosts the performance
of all descriptors, while this comes at a minimal extra cost compared to the initial training
of a CNN descriptor. Our descriptor comes 3rd at 2 out of 3 tasks. Note that it uses
the whitening learned on HP (similarly to all other descriptors of this comparison), but
does not use the PT dataset at all. All CNN-based descriptors train their parameters on
Liberty-PT which is costly, while the overall learning of our descriptor is again in the order
of a single minute.
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Supervised

Name D FPR@95

Brown et al. [21] 29-36 15.36
Trzcinski et al. [98] 128 17.08
Simonyan et al. [88] 73-77 10.38
DC-S2S [106] 512 9.67
DDESC [87] 128 9.85
Matchnet [35] 4096 7.75
TF-M [14] 128 6.47
L2Net+ [93] 128 2.22
HardNet+ [62] 128 1.51
polar + cartes + WS (our) 128 5.98

Unsupervised

Name D FPR@95

RootSIFT 128 26.14
RootSIFT + PCA + SQRT [23] 80 17.51
polar + PCA + SQRT [23] 128 8.30
polar + cartes + WUA (our) 128 6.79
polar + cartes + WUS (our) 128 7.21

Table 4.4: Performance comparison with the state of the art on PhotoTourism dataset.
We report FPR@95 averaged over 6 dataset combinations for supervised (left) and
unsupervised (right) approaches. The whitening for our descriptor is learned on the
corresponding training part of PT for each combination.
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Figure 4.15: Performance comparison on HP benchmark. The learning, whenever
applicable, is performed on Liberty of PT dataset. Descriptors that do not require any
supervision in the form of labeled patches, i.e. hand-crafted or unsupervised, are shown in
striped bars. Our descriptor is denoted by PCWUS (P=polar, C=cartes).
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Figure 4.16: Performance comparison on HP benchmark when post-processing all
descriptors with supervised whitening WS which is learned on HP. The initial learning of
the descriptor, whenever applicable, is performed on Liberty of PT dataset. Our descriptor
uses the whitening learned on HP and does not use the PT dataset at all. Our descriptor
is denoted by PCWS (P=polar, C=cartes).

4.6 Discussion

In this chapter, we have proposed a multiple-kernel local-patch descriptor based on
efficient match kernels from pixel gradients. We investigated descriptor whitening as post-
processing in supervised and unsupervised settings. We have shown that tolerance to
different types of mis-registration can be achieved by combining two parametrizations of
gradient position and direction. Polar parametrization accounts for noise in the patch
dominant orientation detection while Cartesian parametrization accounts for imprecise
location of the feature point. We have shown how the learned post-processing finds
the optimal mixing ratio when combining the two parametrizations. We visualized the
kernels that were learned and showed that its effect on patch similarity is semantically
meaningful. We showed that it is beneficial to learn the whitening in a robust manner
in the unsupervised case. Interestingly, the unsupervised variant generalizes better and is
the best performing unsupervised hand-crafted descriptor so far. Despite the simplicity
of the proposed descriptor, it competes well with deep learning approaches on a number
of different tasks. The lessons learned from analyzing the similarity after whitening are
applied for further improvements of local-patch descriptors in the succeeding chapter.





Chapter 5

Explicitly Spatially Encoded Deep Local
Descriptors

In this chapter, we extend the approach using multiple-kernel efficient match kernels to deep
local descriptors. The descriptors previously introduced encoded simple gradients, which
describe a very small neighbourhood. We propose to encode the appearance of larger
neighbourhoods using CNNs, which are powerful in modeling the appearance variance,
while weak in modeling the geometric displacement (at least with a single FC layer).
We perform pooling of these features using efficient match kernels that explicitly encode
the spatial positions of the responses. This can be seen as a transition from soft binning,
i.e. overlapping receptive fields, to continuous efficient match kernels. In contrast to models
with an FC layer, with efficient match kernels the number of model parameters does not
grow with increased resolution of the input patch, i.e. the models for 32× 32 patch input
has the same number of parameters as the model for 64 × 64. The proposed method
consistently outperform other approaches at both resolutions, as we show by evaluation on
the PhotoTourism and HPatches benchmarks. The applications of the proposed descriptor
go beyond that of local-patches, e.g. tasks where encoding spatial position is essential [53,
70].

5.1 Deep local descriptors

Conventional architectures for deep local descriptors consist of a sequence of fully
convolutional layers and a final FC layer. We denote the descriptor extraction process by
function ψ : RN×N → RD, where N is the size of the input patch and D the dimensionality
of the final descriptor. Descriptor for patch P ∈ RN×N is given by ψ(P) ∈ RD or
equivalently ψP to simplify the notation.

63
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Figure 5.1: Architecture of the fully convolutional network (FCN) used in the proposed
descriptor is shown. The input consists of a patch P of size N × N . The gray boxes
represent the intermediate feature maps, which correspond to successively larger receptive
fields. The final activations φP (shown in blue) are the measurements which are encoded
along with their position in the proposed descriptor.

We denote the convolutional part of the network, i.e. a Fully Convolutional Network
(FCN), by function φ : RN×N → Rn×n×d. Size n of the resulting feature map is related to
input size N and the architecture of the network. Feature map φ(P), equivalently denoted
by φP , is a 3D tensor of activations, which we also view as a 2D grid of d-dimensional
vectors. We call these vectors convolutional descriptors and use φpP to denote the vector
with coordinates p = (i, j) on the n× n grid, i.e. p ∈ [n]2 1. Each convolutional descriptor
corresponds to a region of the input patch P that is equal to the receptive field size of the
feature map. The 3D tensor, φP , for our architecture is illustrated in Figure 5.1.

The standard practice is to vectorize 3D tensor φP and feed it to an FC layer with
parameters that consist of matrix W ∈ RD×(n×n×d) and bias w ∈ RD. The final descriptor
is constructed as

ψP = W vec(φP) + w, (5.1)

where vec denotes tensor vectorization. A local descriptor is typically `2-normalized,
which is equivalently achieved by introducing a normalization factor γP = 1/

√
ψ>PψP

producing descriptor ψ̂P = γPψP .
Similarity (or distance) between patches P and Q is estimated with inner product

(or Euclidean distance) ψ̂
>
Pψ̂Q. The `2-normalized descriptor is always used to compare

patches, but we often use ψP (and not ψ̂P) simply to specify which descriptor variant
is used. Several deep local descriptors in the recent literature, namely L2Net [93],
HardNet [62], and GeoDesc [56] follow such an architecture and can be formulated in the
same way. The architecture described is powerful in modeling the appearance variance,
while weak in modeling the geometric displacement. In the following sections, we use
cast deep local descriptors in the framework of match kernels. This allows us to model
the geometric misalignment by efficient match kernels that explicitly encode the spatial
positions of the responses.

1[i] = {1 . . . i} and [i]
2

= [i]× [i]
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5.2 A match-kernel perspective

We provide an alternative, but equivalent, construction of deep local descriptors. We
consider matrix W as a concatenation of n2 matrices, i.e.

W =


W>

(1,1)
...

W>
(i,j)
...

W>
(n,n)



>

, (5.2)

where Wp ∈ RD×d. Descriptor in (5.1) can be now written as

ψP =
∑
p∈[n]2

Wpφ
p
P + w′, (5.3)

where w′ = w/n2. Moreover, patch similarity becomes

ψ̂
>
Pψ̂Q ∝

∑
p,q∈[n]2

(Wpφ
p
P + w′)

> (
Wqφ

q
Q + w′

)
=
∑

p,q∈[n]2

gfc(φ
p
P , p)

>gfc(φ
q
Q, q), (5.4)

where gfc : Rd × [n]2 → RD is a function that encodes a convolutional descriptor in
a translation variant way, depending on its position in the n × n grid. The match kernel
formulation in (5.4) interprets deep local descriptor similarity as similarity accumulation
for all pairs of positions on the n× n grid. It reveals that matching between convolutional
descriptors in φa and φb is performed in a translation variant way. The encoding function
g in the case of conventional deep local descriptors is

gfc(v, p) = Wpv + w′, (5.5)

where matrix Wp and w′ come from the parameters of the FC layer. Figure 5.2
illustrates this match-kernel perspective. We propose a new encoding function g, not
restricted to standard CNN architecture (layers), that explicitly encodes position p on the
2D grid.
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Figure 5.2: A match-kernel perspective of typical deep local descriptors such as
HardNet [62] is illustrated. φP is a tensor of convolutional activations, and W is the
matrix representing the weights of the Fully Connected (FC) layer. The matrix W is
interpreted as a concatenation of n2 matrices, i.e. Wp ∀p ∈ [n]2. The feature map at each
position p is transformed by Wp and aggregated.

Position encoding. We use explicit feature maps [101], described in Section 4.2 to
encode the position. Let f : R → R2s+1 be a feature map, where s is a design choice
defining the dimensionality of the embedding. Such a feature map defines a shift invariant
kernel K : R× R→ R with kernel signature k, so that K(α, β) = k(α− β)

f(α)>f(β) = K(α, β) = k(α− β). (5.6)

The kernel K (or the feature map f) is constructed to approximate the Von Mises
kernel [96].

We propose encoding function gxy : Rd × [n]2 → RD(2s+1)2 given by

gxy(φ
p
P , p) = φpP ⊗ f(xp)⊗ f(yp), (5.7)

where ⊗ is the Kronecker product and xp and yp provide the coordinates of position p
in a Cartesian coordinate system 2. It is a joint encoding of the convolutional descriptor
and the explicit representation of its position. Similarity of two such encodings is given by

gxy(φ
p
P , p)

>gxy(φ
q
Q, q) = φpP

>φqQ ·k(xp−xq)·k(yp−yq). (5.8)

It is equivalent to the product of descriptor similarity and similarity of positions on the
Cartesian grid.

2For p = (i, j), xp = i and yp = j.
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Following the paradigm of descriptor whitening of hand-crafted descriptors [69, 13], we
propose the final local descriptor

ψxy
P =

∑
p∈[n]2

wpMxygxy(φ
p
P , p) + mxy (5.9)

= Mxy

∑
p∈[n]2

wpgxy(φ
p
P , p)

+ n2mxy, (5.10)

where Mxy ∈ RD×d(2s+1)2 and mxy ∈ RD are parameters to be learned during training,
while wp = exp(−ρ2

p) is a weight giving importance according to the distance ρp from the
center of the patch. Note that in contrast to (5.3) the same matrix, i.e. Mxy, is used for all
convolutional descriptors. As a result the number of required parameters is reduced and
multiplication by Mxy can be efficiently performed after the summation (5.9). In analogy
to the encoding of position in a Cartesian coordinate system, we additionally propose the
encoding w.r.t. a polar coordinate system3 by

gρθ(φ
p
P , p) = φpP ⊗ f(ρp)⊗ f(θp), (5.11)

and the corresponding descriptor

ψρθ
P =

∑
p∈[n]2

wpMρθgρθ(φ
p
P , p) + mρθ. (5.12)

Different parameterizations, i.e. using different coordinate system, provide tolerance to
different kinds of misalignment between patches. Cartesian offers tolerance to translation
misalignment, while polar offers tolerance to rotation and scale misalignment. To benefit
from both types of tolerance, we further use the combined encoding that uses the two
coordinate systems and is produced by concatenation of the previous encoding. It is
defined as function gc : Rd × Rd × [n]2 → R2D(2s+1)2 given by

gc(φ
p
P , φ̃

p
P , p) =

(
(φpP⊗f(xp)⊗f(yp))

>
, (φ̃pP⊗f(ρp)⊗f(θp))

>)>
(5.13)

where φ̃ is used to show that the two encodings do not need to rely on the same FCN
φ. Subscript c refers to the combined coordinate system, but we skip xyρθ to simplify the
notation. The final descriptor proposed is

?ψc
P =

∑
p∈[n]2

wpMcgc(φ
p
P , φ̃

p
P , p) + mc (5.14)

where Mc ∈ RD×2d(2s+1)2 , and left superscript ? is used to denote that a separate FCN
is used for each encoding, correspondingly coordinate system.

3For p = (i, j), ρp =

√
(i− c)2 + (j − c)2 and θp = tan−1 j−c

i−c , where c = (n+ 1)/2.
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Figure 5.3: Patch maps for different parametrizations and kernels. Two parametrizations
in polar and Cartesian coordinates are presented. The position p of feature map is shown
with “×” on the patch maps. Observe that the Cartesian kernel is tolerant to translation
misalignment, while the polar kernel is tolerant to rotational misalignment. Ten isocontours
are sampled uniformly and shown in different color. Red indicates maximum similarity and
blue indicates minimum similarity.

Figure 5.4: The match-kernel perspective of our proposed deep local descriptor is shown.
φP is a tensor of convolutional activations, and wpf(xp)⊗ f(yp) is the matrix representing
the pre-computed position embedding. The Kronecker product of the activations and the
embedding is shown as wpg(φp, p). Similarity is decomposed into influence of appearance

and position wpg(φp, p)
>wqg(φq, q) = wpwqφ

>
p φq · k(xp − xq) · k(yp − yq). The feature

map at each position p is transformed by the same whitening transform (M,m′) and
aggregated to give the descriptor ψ(P). Comparison of a pair of patches therefore is
equivalent to comparison of transformed feature maps at each position, allowing a match-
kernel interpretation.
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5.3 Implementation details

In this section, we provide implementation details that concern the efficiency of the
aggregation, describe the different architectures and their required number of parameters,
and finally discuss the training procedure.

Efficient aggregation. We describe the implementation details for variant ψxyP , but

these hold for other variants too in the same way. Vectors wpf(xp)⊗ f(yp) ∈ R(2s+1)2 that
encode positions p ∈ [n]2 are fixed for the 2D grid of size n×n. Thus, we pre-compute and

store them in matrix F ∈ Rn2×(2s+1)2 . We reshape 3D tensor φa into matrix Φ ∈ Rn2×d.
Given these two matrices and due to the linearity of matrix to vector multiplication we
can re-write the descriptor as

ψxy
P =

∑
p∈[n]2

wpMxygxy(φ
p
P , p) + mxy,

= Mxy

∑
p∈[n]2

wpgxy(φ
p
P , p)

+ n2mxy, (5.15)

= Mxy

∑
p∈[n]2

wpφ
p
P ⊗ f(xp)⊗ f(yp)

+ n2mxy,

= Mxy vec(Φ>F ) + n2mxy. (5.16)

Multiplication Φ>F makes the computation memory efficient because it avoids explicit
storing of the Kronecker product for each p. To evaluate (5.15), the memory requirements
are n2d(2s+ 1)2 numbers, while to evaluate (5.16), only n2(d + (2s+ 1)2) numbers are
allocated. Using setup d = 128 and s = 2 in our experiments, the memory requirements
are reduced by a factor of 20.9.

Architecture. We use the HardNet+ [62] architecture for the convolution part, since
HardNet+ achieves state-of-the-art performance on all benchmarks. We also use it a
baseline to compare with.

The statistics of the convolutional part φ are described in Table 5.1 (left). Each
convolutional layer is followed by batch normalization and ReLU, while no bias is used.
Table 5.1 (right) provides the total number of parameters for HardNet+ and our networks,
namely, plain polar or Cartesian encoding with different dimensionality of the explicit
feature maps (s = 1 and s = 2 frequencies used), and the joint encoding with a common
(φ) or separate (φ and φ̃) convolutional part. Note that for the joint encoding with separate
convolutional parts and s = 2 frequencies, the proposed network needs roughly the same
number of parameters as HardNet+ with input patch of size 32 × 32 pixels (N = 32). In
all other settings of the proposed architecture, the number of parameters is significantly
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reduced. Importantly, the number of parameters for larger patch sizes (such as 64 × 64),
that provide better performance, the number of parameters stays fixed for the proposed
architecture. For Hardnet+, the number of parameters of the FC layer increases by a factor
of 4 for 64× 64 input patches.

Convolutional part φ

Conv. layer Param. matrix shape # Parameters

1 [ 1, 32, 3, 3 ] 288

2 [ 32, 32, 3, 3 ] 9,216

3 [ 32, 64, 3, 3 ] 18,432

4 [ 64, 64, 3, 3 ] 36,864

5 [ 64, 128, 3, 3 ] 73,728

6 [ 128, 128, 3, 3 ] 147,456

Total 285,984

HardNet N = 32 N = 64

φ 285,984 285,984

FC 1,048,576 4,194,304

Total 1,334,560 4,480,288

ψxy N={32, 64}
s=1 s=2

φ 285,984 285,984

M , m 147,584 409,728

Total 433,568 695,712

ψc N={32, 64}
s=1 s=2

φ 285,984 285,984

M , m 295,040 819,328

Total 581,024 1,105,312

?ψc N={32, 64}
s=1 s=2

φ 285,984 285,984

φ̃ 285,984 285,984

M , m 295,040 819,328

Total 867,008 1,391,296

Table 5.1: Number of parameters for different models. The convolutional part φ has
identical architecture for all models. Cases where both φ and φ̃ appear use a separate
convolutional part for the Cartesian and the polar descriptor. These specifications
correspond to d = 128, and D = 128. The resulting n is equal to 8 and 16 for N equal to
32 and 64, respectively. Descriptor ψρθ has identical requirements as descriptor ψxy. The
parameter requirements of our descriptor remain unchanged for different patch size N .
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Training. We would like to highlight the contribution of the explicit spatial encoding
and to provide direct comparison to the current state-of-the-art descriptor construction.
To avoid changing many things at the same time, we follow exactly the same training
procedure as HardNet+, which we briefly review below.

The network is trained with the triplet loss defined as

`(ψ̂an, ψ̂pos, ψ̂neg) = [1− ||ψ̂an − ψ̂pos||+ ||ψ̂an − ψ̂neg||]+, (5.17)

acting on a triplet formed by an anchor, a positive (matching to the anchor), and
a negative (non-matching to the anchor) descriptor. A batch of size 1024 patches is
constructed from 512 pairs of anchor-positive descriptors. Regarding a particular pair in
the batch, the positive descriptors of all other pairs are considered as candidate negatives.
Finally, the one with the smallest Euclidean distance to the anchor within the batch is
chosen as a hard negative to form a triplet.

We use Stochastic Gradient Descent (SGD) to perform the training. The total training
set consists of 2 million anchor-positive pairs and the training lasts 10 epochs. The learning
rate is set to 10, and linearly decays to zero withing 10 epochs. Momentum is equal to 0.9
and weight decay to 10−4. Random orthogonal initialization is used for the weights of the
network [81]. The method is implemented in the PyTorch framework.

Visualization of kernels. We construct encodings g(v, p), before aggregation, for our
descriptors and for the conventional case and construct a similarity map to analyze the
impact of the position encoding. We present such visualization in Figure 5.5. We pick a
position p and compute similarity

M(q|p, gfc) = gfc(φ
p
P , p)

>gfc(φ
q
Q, q),∀q ∈ [n]2,

for the conventional case, and

M(q|p, gc) = (Mcgc(φ
p
P , p) + mc/n2)>(Mcgc(φ

q
Q, q) + mc/n2), ∀q ∈ [n]2,

for ours in the case of the combined descriptor, where P = Q. We observe how all
architectures, including the conventional one, result in large similarity values near p.
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RF of p ψxy ψρθ ψc HardNet+

Figure 5.5: Visualization of similarity between a position p of the n × n grid (rows) on a
patch and the whole patch itself for different methods (columns). Heat-maps are normalized
to [0, 1] with red corresponding to the maximum similarity. Red box is used to depict the
receptive field (RF) of p.

Figure 5.6: The visualization of similarity in the case of a synthetic patch is shown, to
illustrate the effect of appearance and spatial dependence. Similarity is measured between
a position p of the n × n grid (rows) on a patch and the whole patch itself for different
methods (columns). Heat-maps are normalized to [0, 1] with red corresponding to the
maximum similarity. Red is used to depict the appearance of q, and its position in the
patch depicts the spatial position encoded.
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5.4 Experiments

We first describe the datasets used in our experiments and the evaluation protocols used,
then present qualitative results showing the impact of the training on patch similarity,
and finally present the results achieved by different variants of our descriptor and show a
comparison with the state of the art.

Datasets and protocols. We use the two publicly available patch datasets described
in Chapter 3, namely PhotoTourism (PT) [103] and HPatches (HP) [13]. We use the
former for both training and evaluation, while the latter only for evaluation when training
on PT to show the generalization ability of the descriptor.

The PT dataset consists of following 3 separate sets, Liberty, Notredame and Yosemite.
Each consists of local features detected with the Difference-of-Gaussians (DoG) detector
and verified through an SfM pipeline. Each set comprises about half a million 64 × 64
patches, associated with a discrete label which is the outcome of SfM verification. The test
set consists of 100k pairs of patches corresponding to the same (positive) 3D point, and an
equal number corresponding to different (negative) 3D points. The metric used to measure
performance is the false positive rate at 95% of recall (FPR@95). Models are trained on
one set and tested on the other two, and the mean of 6 scores is reported.

The HP dataset contains patches of higher diversity and is more realistic. Evaluation
is performed on three different tasks, namely verification, retrieval, and matching. Despite
the fact that we do not train on HP, we evaluate on all 3 train/test splits and report the
average performance to allow future comparisons. We follow the common practice and
train our descriptor on Liberty of PT to evaluate on HP.

We repeat each experiment three times, with different random seeds to initialize the
parameters, and report mean and standard deviation of the 3 runs. We followed this policy
for all variants and datasets.

Recently, larger and more diverse datasets [65, 56] have been introduced to improve
local descriptor training. These are shown to improve the performance of state-of-the-art
descriptors even by simply replacing the training dataset. We have not included them in
our experiments but expect the impact to be similar on our descriptor too.

We train and evaluate different variants of the proposed descriptor. If not otherwise
stated, we use input patches of size equal to 32 × 32, which is the standard practice for
deep local descriptors. We further examine the case of 64× 64 input patches. We always
set d = 128 and D = 128. The dimensionality of the feature maps is controlled by s which
we set equal to 1 or 2 in our experiments.

Reproducing HardNet+. Our implementation, training procedure, and training
hyper-parameters are based on HardNet+ 4. We reproduce its training and report our own
results, proving that our benefit is not an outcome of implementation details. We report
both the achieved performed in the original publication and our reproduced ones in all the
comparisons.

4https://github.com/DagnyT/hardnet

https://github.com/DagnyT/hardnet
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Baselines for ablation study. We train and test the following two baselines to see the
impact of the position encoding. First, we train a descriptor that encodes convolutional
descriptors in φP in a translation invariant way, i.e. no position encoding at all. It is
implemented by spatial sum pooling on φP and given by

ψsum
P =

∑
p∈[n]2

ψp
P . (5.18)

The dimensionality of ψsum
a is equal to d and not D in this case. However, d = D = 128,

making this descriptor directly comparable to all others.
Second, we train a descriptor that encodes the spatial information simply by

concatenation, i.e. vectorization of φP , which does not provide any tolerance to position
misalignments. It is given by

ψcat
P = vecψP (5.19)

Impact of position encoding. We compare our descriptor with HardNet+ on PT
and show results in Table 5.2. Conceptually it is a comparison between the conventional
architecture that uses an FC layer to “feed” the convolutional descriptors to, and our
kernel-based approach to explicitly encode the spatial information. Our descriptors (with
s = 2) slightly outperforms HardNet+ while it has roughly the same number of parameters.
Even the variant with fewer parameters (s = 1) performs similarly.

A more thorough comparison, examining the impact of the explicit spatial encoding,
is performed on HP and presented in Figure 5.7. Firstly, we evaluate ψsum as part of an
ablation study. It is translation invariant that totally discards the spatial information. It
does not require additional parameters other than the ones for FCN φ. It has significantly
lower performance compared to all the other descriptors. We additionally tried including
multiplication by matrix Msum in (5.18) and did not notice performance improvements.
Descriptor ψcat is another case not requiring additional parameters. It is translation
variant in a “rigid” way, whose tolerance to translation misalignment is restricted to the
amount that the large receptive field offers. Despite the very large dimensionality, it is not
a top performer. Even our light-weight variant with as few as 127k additional parameters
(excluding φ) recovers most of the performance loss due to lack of spatial information,
i.e. w.r.t. ψsum . This result suggests that the common choice of an FC layer for deep local
descriptors might be over-parametrized. It is not the best performing either. Our variant
?ψc2 is consistently the top performing one on all tasks.
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Test Liberty Notredame Yosemite

Train Params Mean No Yo Li Yo Li No

HardNet+ † 1,334,560 1.51±0.00 1.49±0.00 2.51±0.00 0.53±0.00 0.78±0.00 1.96±0.00 1.84±0.00

HardNet+ 1,334,560 1.43±0.02 1.25±0.03 2.35±0.03 0.48±0.01 0.74±0.02 2.15±0.01 1.61±0.10

?ψc1 867,008 1.53±0.03 1.27±0.03 2.31±0.08 0.48±0.02 0.82±0.05 2.58±0.08 1.72±0.09

?ψc2 1,391,296 1.36±0.01 1.14±0.03 2.16±0.10 0.42±0.01 0.73±0.02 2.18±0.07 1.51±0.12

Table 5.2: Performance comparison of the proposed descriptors with the state-of-the-art
descriptor HardNet+ on the PhotoTourism dataset. Performance is measured via FPR@95.
We repeat each experiment/training 3 times and report mean performance and standard
deviation. Patch size is N = 32. †: Reported in the original work.
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Figure 5.7: Performance comparison on the HPatches benchmark. The training is
performed on the Liberty set of PhotoTourism dataset for all descriptors and with identical
setup. Performance is measured via mean Average Precision (mAP). We repeat each
experiment/training 3 times and report mean performance and standard deviation (with
the exception of ψcat that due to very high dimensionality was trained only once). All
descriptors have 128 dimensions, with the exception of ψcat which has 8192. The methods
are sorted w.r.t. the required number of parameters (top is the least demanding, i.e. less
parameters). All methods are trained and tested with patch size N = 32 unless when (64)
is reported.

Comparison with the state of the art. We finally present a comparison to the state
of the art on HP in Figure 5.8. The comparison includes a set of hand-crafted and learned
local descriptors, namely RSIFT [11], SIFT [54], BRIEF [25], BBoost [98], ORB [80],
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MKD [69], DeepCompare [106], DDesc [87], TFeat [14], L2Net [93] and HardNet [62]. The
proposed descriptor achieves the best performance with a 128D descriptor on all 3 tasks
consistently.
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Figure 5.8: Performance comparison with the state of the art on the HPatches benchmark.
The learning for learned descriptors is performed on the Liberty set of PhotoTourism
dataset. Hand-crafted descriptors are shown with striped bars. Performance is measured
via mean Average Precision (mAP). The performance of our descriptor is the mean of 3
repetitions of each experiment/training. All methods are trained and tested with patch
size N = 32 unless when (64) is reported. †: Reported in the original work.

5.5 Discussion

In this chapter, we proposed a kernelized deep local descriptor based on efficient match
kernels of neural network activations. We showed that the FC layer can be interpreted
as encoding spatial relations between the activations of the CNN, and cast conventional
convolutional local descriptors in the framework efficient match kernels. We build upon
the descriptor proposed in Chapter 4 by moving from intensity gradient measurements to
complex multilayer convolutional network activations. We showed that replacing the FC
layer by explicit spatial encoding as introduced for the hand-crafted descriptor reduces the
number of parameters and makes it independent of the patch resolution. We visualized
the similarly maps for conventional and proposed architectures, and showed the effect of
appearance and spatial dependence. The applications of our approach goes beyond that
of local-patches, e.g. tasks where spatial encoding is essential.



Chapter 6

Robust Data Whitening

In this chapter, we propose a robust estimator of the whitening transformation in the
presence of outliers. Local descriptors are high-dimensional vectors, and their entries are
often correlated, which leads to a bias in similarity estimation. To remove the correlation,
a linear transformation, called whitening, is commonly used. We have described the
whitening procedure used for the local descriptors introduced in Chapter 4 and Chapter 5.
However, in the presence of outliers, this estimation is inaccurate, leading to a suboptimal
solution. We propose a novel algorithm, inspired by the Iteratively Re-weighted Least
Squares (IRLS) approach, that iterates between centering and applying a transformation
matrix, a process which is shown to converge for robust class of cost functions [8]. The
approach is developed for unsupervised scenarios, and extended to supervised cases. We
demonstrate the robustness of our method to outliers on synthetic 2D data and also show
improvements compared to conventional whitening on real data for image retrieval with
CNN-based representation. Finally, our robust estimation is not limited to data whitening,
but can be used for robust patch rectification, e.g. with MSER features. In the following
sections, we first briefly review the background of data whitening and then give a geometric
interpretation, which forms our motivation for the proposed approach.

6.1 Background on whitening

A whitening transformation is a linear transformation that transforms a vector of random
variables with a known covariance matrix into a set of new variables whose covariance is
the identity matrix. The transformation is called “whitening” because it changes the input
vector into a white noise vector.

We consider the case where this transformation is applied on a set of zero centered
vectors X = {e[x]1, . . . , e[x]i, . . . , e[x]N}, with e[x]i ∈ Rd, where Σ =

∑
i e[x]ie[x]>i . The

whitening transformation P is given by

P>P = Σ−1. (6.1)

77
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Original data points Whitened data points

Figure 6.1: Left: Points in 2D and their covariance shown with an ellipse. Right: The
corresponding whitened 2D point set.

In Figure 6.1 we show a toy example of 2D points and their whitened counterpart.

Assumption. In the following text, we assume that the points of X do not lie in a
linear subspace of dimensionality d′ < d. If this is the case, a solution is to first identify
the d′-dimensional subspace and perform the proposed algorithms on this subspace. The
direct consequence of the assumption is that the sample covariance matrix Σ is full rank,
in particular det (Σ) > 0.

It is clear from (6.1) that the whitening transformation is given up to an arbitrary
rotation R ∈ Rd×d, with R>R = I. The transformation matrix P of the whitening is thus
given by

P = RΣ−
1/2. (6.2)

Geometric interpretation. Assuming zero-mean points, the whitening transform P
in equation 6.2 minimizes the sum of squared `2 norms among all linear transforms T with
det(T ) = det(Σ)−1/2.

C`2(P ) =
∑
i

||Pe[x]i||2 (6.3)

=
∑
i

tr
(
e[x]>i P

>Pe[x]i
)

(6.4)

=
∑
i

tr
((

e[x]ie[x]>i
)
P>P

)
(6.5)

= tr

((∑
i

e[x]ie[x]>i

)
P>P

)
(6.6)

= tr
(
ΣP>P

)
(6.7)

=
d∑
j=1

λj, (6.8)

where λi are the eigenvalues of ΣP>P and || · || is denoting `2 norm.
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Upon imposing the condition det(T ) = det(Σ)−1/2, we get that det(ΣP>P ) =
∏d

j=1 λj is
constant with respect to P . It follows from the arithmetic and geometric mean inequality,
that the sum in (6.3) is minimized when λi = λj,∀i = j. Equality of all eigenvalues allows
us to show that

ΣP>P = I (6.9)

P>P = Σ−1 (6.10)

P = RΣ−
1/2 (6.11)

which is exactly the solution in (6.2) that also minimizes (6.3). The need for the
existence of Σ−1 justifies the stated full rank assumption.

6.2 Background on IRLS

In the context of distance minimization the IRLS method minimizes the cost function

Ch(e[θ]) =
N∑
i=1

h ◦ f(e[θ], e[x]i), (6.12)

where f is a distance function that is defined on some domain, h is a function that makes
the cost less sensitive to outliers, and e[x]i ∈ X . Some examples of robust h functions are
`1, Huber, pseudo-Huber, etc. as described in prior literature [8]. For instance, assume the
case of the geometric median of the points in X . Setting f(µ, e[x]i) = ||µ − e[x]i|| and
h(z) = z, we get the cost (6.12) as the sum of `2 norms. The minimum of this cost is
attained when µ is equal to the geometric median.

It is shown [8] that a solution for argmine[θ] Ch(e[θ]) may be found by solving a sequence
of weighted least squares problems. Given some initial estimate e[θ]0, the parameters e[θ]
are iteratively estimated

e[θ]t+1 = argmin
e[θ]

N∑
i=1

w(e[θ]t, e[x]i)f(e[θ], e[x]i)
2, (6.13)

where for brevity w(e[θ]t, e[x]i) is denoted wti in the following. Provided h(
√
z) is

differentiable at all points and concave, for certain values of wti and conditions on f this
solution minimizes Ch(e[θ]). In some cases, it may even be possible to find a simple and
analytic solution.
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Given that the iterative procedure indeed converges to a minimum cost of (6.12), we
get the following condition on the weights:

∇e[θ](h ◦ f(e[θ], e[x]i)) = 0, (6.14)

∇e[θ](w
t
if(e[θ], e[x]i)

2) = 0. (6.15)

This results in the following weights

wti =
h′(f(e[θ]t, e[x]i))

2f(e[θ]t, e[x]i)
. (6.16)

6.3 Robust transformation estimation

From the observation in Section 6.2, we know that there is a closed-form solution to the
problem of finding a linear transformation P so that

∑
i ||Pei||2 is minimized subject to

a fixed determinant det(P ). The idea of the robust whitening is to use this least squares
minimizer in a framework similar to the iterative re-weighted least squares to minimize a
robust cost.

In contrast to the conventional whitening and the minimization of (6.3), we now propose
the estimation of a whitening transform (transformation matrix P ) in a way that is robust
to outliers. We assume zero mean points and seek the whitening transformation that
minimizes the robust cost function of (6.12). We set f(P, e[x]i) = ||Pe[x]i|| and use the `1

cost function h(z) = z. Other robust cost functions can be used, too1.
We seek to minimize the sum of `2 norms in the whitened space

C`1(P ) =
N∑
i=1

f(P, e[x]i) =
N∑
i=1

||Pe[x]i||. (6.17)

The corresponding iteratively re-weighted least squares solution is given by

P t+1 = argmin
P

N∑
i=1

wti||Pe[y]ti||2, (6.18)

where e[y]ti = P te[y]t−1
i and e[y]0i = e[x]i. This means that each time transformation

P t is estimated and applied to whiten the data points. In the following iteration, the
estimation is performed on data points in the whitened space. The effective transformation
at iteration t with respect to the initial points e[x]i is given by

P̂ t =
t∏
i=1

P i. (6.19)

1We also use Cauchy cost in our experiments. It is defined as h(z) = b2log(1 + z2/b2).
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Along the lines of proof (6.3) we find a closed form solution that minimizes (6.17) as

∑
i

wti||Pe[y]ti||2 (6.20)

= tr

((∑
i

wtie[y]tie[y]ti
>

)
P>P

)
(6.21)

= tr
(

Σ̃P>P
)

(6.22)

(6.23)

where Σ̃ =
∑

iw
t
ie[y]tie[y]ti

>
is a weighted covariance. Therefore, P is given, up to a

rotation, as

P = RΣ̃−
1/2. (6.24)

6.4 Joint centering and transformation matrix

estimation.

In this section we describe the proposed approach for data whitening. We propose to
jointly estimate a robust mean µ and a robust transformation matrix P by alternating
between the two previously described procedures: estimating the geometric median and
estimating the robust transformation. In other words, in each iteration, we first find µ
keeping P fixed and then find P keeping µ fixed. In this way the assumption for centered
points when finding P is satisfied. Given that each iteration of the method outlined above
reduces the cost, and that the cost must be non-negative, we are assured convergence to a
local minimum. We propose to minimize cost

C`1(P,µ) =
N∑
i=1

||P (e[x]i − µ)||. (6.25)

In order to reformulate this as an IRLS problem, we use h(z) = z, and f(P,µ, e[x]i) =
||P (e[x]i − µ)||. Now, at iteration t the minimization is performed on points e[y]ti =
P̂ t(e[x]i−µ̂t) and the conditions for convergence with respect to µ (skipping t and notation
for effective parameters for brevity) are
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∇µ(h ◦ f) = ∇µ||P (e[x]i − µ)|| (6.26)

= ∇µ
√

(e[y]i − µ)>P>P (e[y]i − µ) (6.27)

=
1

2||P (e[y]i − µ)||
· ∇µM (6.28)

(6.29)

∇µ(wi · f 2) = wi · ∇µM (6.30)

(6.31)

where we have M = (e[y]i − µ)>P>P (e[y]i − µ). This gives the expression for the
weight

wti =
1

2||P̂ t(e[x]i − µ̂t)||
. (6.32)

A similar derivation gives us the weights for the iteration step of P . Therefore in each
iteration, we find the solutions to the following weighted least squares problems,

µt+1 = argmin
µ

N∑
i=1

wi(P
t,µt)||P t(e[y]i − µ)||2, (6.33)

P t+1 = argmin
P

N∑
i=1

wi(P
t,µt+1)||P (e[y]ti − µt+1)||2. (6.34)

The effective centering and transformation matrix at iteration t are given by

µ̂t =
t∑
i=1

(
i−1∏
j=1

P−1
j

)
µi , P̂ t =

t∏
i=1

P i. (6.35)

The whole procedure is summarized in Algorithm 1, where chol is used to denote the
Cholesky decomposition.
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Algorithm 1 Robust Whitening
1: procedure Robust Whitening(X )
2: e[z]0 ← X
3: µ0 ← Initialize centre to mean of e[z]0
4: P0 ← Initialize transform to identity matrix
5: for t≤niter do
6: µt ← 1

N

∑N
i=1wi(P

t−1,µt−1)e[z]t−1
i

7: Σ̃t ←
N∑
i=1

wi(P
t−1,µt)(e[z]t−1

i − µt)(e[z]t−1
i − µt)>

8: P t ← chol(Σ̃t)

det(chol(Σ̃t))
1/d

9: e[z]t ← P t
(
e[z]t−1 − µt

)
10: µ̂t ←

∑t
i=1

(∏i−1
j=1 P

j−1
)
µi

11: P̂ t ←
∏t
i=0 P

i

12: end for
13: return µ̂t, P̂ t

14: end procedure

6.5 Extension with supervision

We firstly review the work of Cai et al. [24] who perform supervised descriptor whitening
and then present our extension for robust supervised whitening.

Background on linear discriminant projections [24]. The linear discriminant
projections (LDP) are learned via supervision of pairs of similar and dissimilar descriptors.
A pair (i, j) is similar if (i, j) ∈ S while dissimilar if (i, j) ∈ D. The projections are learned
in two parts. Firstly, the whitening part is obtained as the square-root of the intra-class
covariance matrix C

−1/2
S , where

CS =
∑

(i,j∈S)

(xi − xj)(xi − xj)>. (6.36)

Then, the rotation part is given by the PCA of the inter-class covariance matrix which is

computed in the space of the whitened descriptors. It is computed as eig
(
C
−1/2
S CDC

−1/2
S

)
,

where

CD =
∑

(i,j∈D)

(xi − xj)(xi − xj)>. (6.37)

The final whitening is performed by P>SD(x−m), where m is the mean descriptor and

PSD = C
−1/2
S · eig

(
C
−1/2
S CDC

−1/2
S

)
.

It is noted [24] that, if the number of descriptors is large compared to the number of
classes (two in this case), then CD ≈ CS∪D since |S| � |D|. This is the approach we follow.
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Algorithm 2 Supervised Robust Whitening
1: procedure Supervised Robust Whitening(X ,S)
2: XS = {d : d = xi − xj , xi ∈ X , xj ∈ X , (i, j) ∈ S}
3: XS = {XS ∪ −XS}
4: µ1, P1 ← Robust Whitening(XS)
5: µ← Geometric Median(X )
6: X̄ ← X − µ
7: µ2, P2 ← Robust Whitening(P1X̄ )
8: R2 ← eig((P>2 P2)−1)
9: µ̂← µ+ µ2

10: P̂ ← P1R2

11: return P̂ , µ̂
12: end procedure

Robust linear discriminant projections. The proposed method uses the provided
supervision in a robust manner by employing the method introduced in Section 6.4. The
whitening is estimated in a robust manner by Algorithm 1 on the intra-class covariance.
In this manner, small weights are assigned to pairs of descriptors that are found to be
outliers. Then, the mean and covariance are estimated in a robust manner in the whitened
space. The whole procedure is summarized in Algorithm 2. Mean µ1 is zero due to the
including the pairs in a symmetric manner.

6.6 Examples on synthetic data

We compare the proposed and the conventional whitening approaches on synthetic 2D
data in order to demonstrate the robustness of our method to outliers. We sample a
set of 2D points from a normal distribution, which is shown in Figure 6.2 (a) and then
add an outlier and show the result in Figure 6.2 (b). In the absence of outliers, both
methods provide a similar estimation as shown in Figure 6.3. It is also shown how the
iterative approach reduces the cost at each iteration. With the presence of an outlier, the
estimation of the conventional approach is largely affected, while the robust method gives
a much better estimation, as shown in Figure 6.3. Using the Cauchy cost function the
estimated covariance is very close to that of the ground truth. The weights assigned to
each point with the robust approach are visualized in Figure 6.2 and show how the outlier
is discarded in the final estimation. Finally, in Figure 6.4, we compare the conventional
way with our approach for outlier of increasing distance.
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(a) (b) (c) (d)

Figure 6.2: (a) Set of 2D points drawn from a Gaussian distribution with zero mean. (b)
Same set as (a) with an additional point (outlier) placed at a distance equal to 2 times
the maximum distance from the center of the initial set. (c) Visualization of the weights
assigned in the set of (b) with the robust whitening which uses the `1 cost function. Note
that the size of the circles is inversely proportional to the weight. (d) Same as (c), but
using the Cauchy cost.

Ground Truth: 165.43
t = 1 : 167.05
t = 2 : 164.53
t = 3 : 164.38
t = 10 : 164.36
Conventional : 164.47

Ground Truth: 267.73
t = 1 : 255.54
t = 2 : 251.81
t = 3 : 251.35
t = 10 : 251.29
Conventional : 359.51

Ground Truth: 32.885
t = 1 : 33.792
t = 2 : 32.898
t = 3 : 32.715
t = 10 : 32.654
Conventional : 44.698

(a) (b) (c)

Figure 6.3: Visualization of the covariance (ellipse) and center (cross) of the estimated
whitening transformation at iteration t and the conventional estimate. The example is
performed using the set of 2D points of Figure 6.2. The ground truth distribution that
created the data points is shown in black. The conventional estimate is shown in cyan. We
show the effective estimate of the tth iteration. The two approaches are compared without
an outlier in (a) or with an outlier using `1 in (b) or Cauchy cost function in (c). The
outlier is placed at a distance equal to 10 times the maximum inlier distance. The outlier
is not plotted to keep the scale of the figure reasonable. The `1 (or Cauchy) cost is shown
in the legend.
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Conventional
L1
Cauchy
Ground Truth

Conventional

L1

Cauchy

Ground Truth

Conventional

L1

Cauchy

Ground Truth

(a) (b) (c)

Figure 6.4: Visualization of the covariance (ellipse) and center (cross) of the estimated
whitening transformation using the conventional approach and ours. The example is
performed using the set of 2D points of Figure 6.2. The two approaches are compared
for the case of an outlier placed at distance equal to 3 (a), 5 (b) and 10 (c) times the
maximum inlier distance. The outlier is not shown to keep the resolution high.

6.7 Experiments

In this section, the robust whitening is applied to real-application data. In particular,
we apply the whitening transformation on global image descriptors, i.e. a single vector
representation per image, derived from CNN. We test on SPOC [12] descriptors, which
are CNN-based image descriptors constructed via sum pooling of network activations in
the internal convolutional layers. We evaluate on 3 popular retrieval benchmarks, namely
Oxford5k, Paris6k and Holidays (the upright version), and use around 25k training images
to learn the whitening. We use VGG network [89] to extract the descriptors and, in
contrast to the work of Babenko and Lempitsky [12], we do not `2-normalize the input
vectors. The final ranking is obtained using Euclidean distance between the query and
the database vectors. Evaluation is performed by measuring mean Average Precision
(mAP). As in the case of conventional whitening, the dimension reduction is performed
by preserving those dimensions that have the highest variance. This is done by finding
an eigenvalue decomposition of the estimated covariance and ordering the eigenvectors
according to decreasing eigenvalue.

There are many approaches performing robust PCA [26, 104, 105] by assuming that
the data matrix can be decomposed into the sum of a low rank matrix and a sparse matrix
corresponding to the outliers. We employ the robust PCA (RPCA) method by Candès et
al. [26] to perform a comparison. The low rank matrix is recovered and PCA whitening is
learned on this.

We present results in Table 6.1, where the robust approach offers a consistent
improvement over the conventional PCA whitening [12]. Especially in the case where
the whitening is learned on few training vectors, the improvement is larger as outliers
will heavily influence the conventional whitening, as shown in Figure 6.5. Our approach
is also better than RPCA whitening for large dimensionalities. It seems that RPCA
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underestimates the rank of the matrix and does not offer any further improvements for
large dimensions.
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Figure 6.5: Retrieval performance comparison using mAP on 3 common benchmarks.
Comparison of the conventional PCA whitening, RPCA whitening and our approach for
descriptors of varying dimensionality. The training set contains a small subset of 512
vectors randomly selected. The experiment is performed 10 times and mean performance
is reported while standard deviation is shown on the curves. Descriptors extracted using
VGG.

Dataset Oxford5k Paris6k Holidays

Method S 32D 128D 512D 32D 128D 512D 32D 128D 512D
Raw - - 51.4 - - 61.6 - - 78.8
PCA whitening 44.7 56.6 66.7 53.4 67.0 77.1 69.6 78.4 80.6
RPCA whitening 44.0 52.4 55.6 55.9 61.1 65.1 70.5 75.8 77.4
Ours 45.8 58.5 67.7 50.0 68.3 78.4 70.7 78.8 81.8
LDP × 39.4 59.9 68.8 56.1 70.2 76.6 67.5 77.7 80.8
Ours × 49.9 62.3 70.3 57.6 72.0 78.0 69.0 78.6 82.1

Table 6.1: Retrieval performance comparison using mAP on 3 common benchmarks.
Comparison of retrieval using the initial sum-pooled CNN activations, post-processing
using the baselines and our methods for unsupervised and supervised whitening. Results for
descriptors of varying dimensionality. The full training set is used. Descriptors extracted
using VGG. S: indicates the use of supervision.

6.8 Discussion

In this chapter, we cast the problem of data whitening as minimization of robust cost
functions. We showed how geometric interpretation is equivalent to a minimization of
the sum of squared `2 norms over a set of linear transforms. We briefly introduced the
framework of Iteratively Re-weighted Least Squares (IRLS), and showed that it can be used
to minimize a large family of cost functions. We proposed a novel method to iteratively
estimate a whitening transformation that is robust to the presence of outliers. We proposed
a natural extension to the supervised case.
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The applicability of the proposed method goes beyond robust whitening. Consider,
for example, the task of affine-invariant descriptors of local features, such as MSERs [58].
A common approach is to transform the detected feature into a canonical frame prior
to computing a robust descriptor based on the gradient map of the normalized patch
(SIFT [55]). To remove the effect of an affine transformation, a centre of gravity and
centered second-order moment (covariance matrix) are used. It can be shown that both the
centre of gravity and the covariance matrix are affine-covariants, i.e. if the input point set
is transformed by an affine transformation A, they transform with the same transformation
A.

The proposed method searches µ and P by minimization over all possible affine
transformations with a fixed determinant. In turn, µ is fully affine covariant and P is
affine covariant up to an unknown scale (and rotation, P>P cancels the rotation). To the
best of our knowledge, this type of robust-to-outliers covariants have not been used.



Chapter 7

Conclusions

We studied construction of local descriptors for image matching and retrieval and proposed
novel solutions. We proposed two architectures and evaluated their performance on
standard and modern benchmarks. Both achieved state-of-the-art results when introduced.
We also address the robust estimation of whitening transforms in the presence of outliers,
and proposed a novel iterative algorithm for unsupervised and supervised cases.

In Chapter 4, we proposed a multiple-kernel local descriptor combining two
parametrizations of gradient position and direction. We have performed descriptor
whitening and have shown that its effect on patch similarity is semantically meaningful.
We show that learning the whitening in a supervised or unsupervised way boosts the
performance. We show that it is beneficial to learn the whitening in a robust manner in
the unsupervised case. Interestingly, the unsupervised variant generalizes better and is the
best performing performing unsupervised hand-crafted descriptor so far. As opposed to
deep local descriptors, we note that computation and training is much faster. The lessons
learned from analyzing the similarity after whitening were applied for further improvements
of local descriptors in the succeeding work.

In Chapter 5, we extend our approach to deep local descriptors and improve upon
conventional architectures, by interpreting conventional convolutional local descriptors as
efficient match kernels. We reveal that they learn spatially variant encoding through the
last FC layer. We proposed a novel local descriptor that uses measurements of fully
convolutional networks and explicitly encodes the spatial information. It achieves the
same performance as state-of-the-art descriptors with fewer parameters and consistently
outperforms on all standard patch benchmarks with the same number of parameters. The
number of parameters of our model is independent of the size of the input patch. This
approach is not limited to local descriptors, but can be extended to all use cases where
we have to spatially encode measurements on an established coordinate system, as a local
pooling method.

89
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In Chapter 6, we cast the problem of data whitening as minimization of robust cost
functions. We proposed algorithms to iteratively estimate a whitening transformation that
is robust to the presence of outliers, for both supervised and unsupervised case. With the
use of synthetic data, we show that our estimation is almost unaffected even with extreme
cases of outliers, while it also offers improvements when whitening CNN descriptors for
image retrieval. Our approach is not limited to estimation of whitening transforms, but
can be extended to other use cases, e.g. robust patch rectification.



Appendix A

Examples

We investigate the strengths and weaknesses of each architecture by identifying cases where
one succeeds and the other fails, on the task of patch retrieval. We use the test set provided
by the HPatches benchmark, specifically, the ‘hard’ subset of ‘view’ split. It consists 10K
queries from the reference image of each scene, which are matched against 20K distractors,
and the 5 correct correspondences in the other images from the scene. We show a subset of
retrievals for cases where the descriptor gets n correct retrievals within the first 5 retrievals,
for n ∈ {0, . . . , 5}. We hope to qualitatively guage what kind of behaviour each architecture
exhibits.

91
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A.1 HardNet

HardNet: n = 0

HardNet: n = 1

HardNet: n = 2
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HardNet: n = 3

HardNet: n = 4

HardNet: n = 5
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A.2 MKDNet

MKDNet: n = 0

MKDNet: n = 1

MKDNet: n = 2
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MKDNet: n = 3

MKDNet: n = 4

MKDNet: n = 5



96 APPENDIX A. EXAMPLES

A.3 Cartesian

Cartesian: n = 0

Cartesian: n = 1

Cartesian: n = 2
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Cartesian: n = 3

Cartesian: n = 4

Cartesian: n = 5
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A.4 Polar

Polar: n = 0

Polar: n = 1

Polar: n = 2
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Polar: n = 3

Polar: n = 4

Polar: n = 5
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[57] Jiri Matas, T Obdrzalek and Ondřej Chum. ‘Local affine frames for wide-baseline
stereo’. In:

[58] Jiri Matas et al. ‘Robust wide-baseline stereo from maximally stable extremal
regions’. In: Image and vision computing. 2004.

[59] Krystian Mikolajczyk and Jiri Matas. ‘Improving descriptors for fast tree
matching by optimal linear projection’. In: 2007 IEEE 11TH INTERNATIONAL
CONFERENCE ON COMPUTER VISION, VOLS 1-6. 2007, p. 122.

[60] Krystian Mikolajczyk and Cordelia Schmid. ‘A performance evaluation of local
descriptors’. In: IEEE transactions on pattern analysis and machine intelligence
(2005), p. 8857.



BIBLIOGRAPHY 105

[61] Krystian Mikolajczyk et al. ‘A comparison of affine region detectors’. In:
International journal of computer vision (2005).

[62] Anastasiia Mishchuk et al. ‘Working hard to know your neighbor’s margins: Local
descriptor learning loss’. In: Advances in Neural Information Processing Systems.
2017, p. 79.
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Selective match kernels for image search’. In: Proceedings of the IEEE International
Conference on Computer Vision. 2013, pp. 1401–1408.

[96] Giorgos Tolias et al. ‘Rotation and translation covariant match kernels for image
retrieval’. In: Computer Vision and Image Understanding (2015), p. 11.

[97] Fernando De la Torre and Michael J Black. ‘Robust principal component analysis
for computer vision’. In: International Conference on Computer Vision (ICCV).
2001.

[98] Tomasz Trzcinski et al. ‘Learning image descriptors with the boosting-trick’. In:
Advances in neural information processing systems. 2012, p. 85.

[99] Tinne Tuytelaars, Krystian Mikolajczyk et al. ‘Local invariant feature detectors:
a survey’. In: Foundations and trends R© in computer graphics and vision (2008),
p. 1843.

[100] Luc Van Gool, Theo Moons and Dorin Ungureanu. ‘Affine/photometric invariants
for planar intensity patterns’. In: European Conference on Computer Vision.
Springer. 1996, pp. 642–651.

[101] Andrea Vedaldi and Andrew Zisserman. ‘Efficient additive kernels via explicit
feature maps’. In: IEEE transactions on pattern analysis and machine intelligence
(2012), p. 1057.

[102] Pauli Virtanen et al. ‘SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python’. In: Nature Methods (2020).

[103] Simon AJ Winder and Matthew Brown. ‘Learning local image descriptors’. In: 2007
IEEE Conference on Computer Vision and Pattern Recognition. 2007, p. 411.

[104] John Wright et al. ‘Robust principal component analysis: Exact recovery of
corrupted low-rank matrices via convex optimization’. In: Advances in neural
information processing systems. 2009, p. 1387.

[105] Huan Xu, Constantine Caramanis and Sujay Sanghavi. ‘Robust PCA via outlier
pursuit’. In: Advances in neural information processing systems. 2010, p. 524.



108 BIBLIOGRAPHY

[106] Sergey Zagoruyko and Nikos Komodakis. ‘Learning to compare image patches via
convolutional neural networks’. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2015, p. 688.


	Abstract
	Abstrakt
	Introduction
	Contributions
	Publications
	Structure of thesis
	Authorship

	Related Work
	Hand-crafted descriptors
	Deep local descriptors

	Datasets
	PhotoTourism
	HPatches
	Others

	Multiple-Kernel Local Descriptors
	Preliminaries
	Multiple-kernel joint encoding
	Whitening
	Visualization of kernels
	Experiments
	Discussion

	Explicitly Spatially Encoded Deep Local Descriptors
	Deep local descriptors
	A match-kernel perspective
	Implementation details
	Experiments
	Discussion

	Robust Data Whitening
	Background on whitening
	Background on IRLS
	Robust transformation estimation
	Joint centering and transformation matrix estimation.
	Extension with supervision
	Examples on synthetic data
	Experiments
	Discussion

	Conclusions
	Examples
	HardNet
	MKDNet
	Cartesian
	Polar


