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Abstract This paper presents the effects of bearing preload
mechanisms on the dynamic performance of high speed
spindles. The comparisons of two main types of bearing
preload—“constant” and “rigid”—mechanisms are provided
using a mathematical model as well as experiments. Based on
the Timoshenko beam element theory coupled with a
nonlinear model of angular contact ball bearings, the
dynamics of the spindle shaft, housing, and bearings system
is modeled as a nonlinear function of preload mechanism and
amplitude, spindle speed, and external cutting loads. The
mathematical model of the spindle is experimentally validated
by comparing the predicted and measured static displace-
ments, mode shapes, frequency response functions, and
natural frequencies under different conditions. The perfor-
mance of spindles under rigid and constant force preload is
investigated systematically using a mathematical model under
various conditions. It is shown, among other things, that at
high speeds and under cutting loads the rigid preload
mechanism is more efficient in maintaining the dynamic
stiffness of spindles than constant preload.
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Nomenclature
xf g; �xf g; ��xf g Displacement velocity and acceleration

vectors
qf g Motion vector of the node

δ, γ Translational and rotational
displacements

M½ �; K½ �; C½ �; G½ � Mass stiffness, damping and gyroscopic
matrices

Ω Spindle rotating speed
Ff g; Rf g External and unbalance forces,

respectively
Δxf g Incremental displacement vector

ΔE Unbalance energy of the system

Superscript
i,o Inner ring and outer ring
s,h Shaft and housing

Subscript
S,B Shaft and bearing
C Centrifugal effects
D Structural damping
x, y, z Cartesian coordinates

1 Introduction

High speed spindles are widely used in the aerospace industry
for machining aluminum alloys, and in the die and mold
industry for finishing hardened steel alloys. Apart from
excessive tool wear, which can be minimized by selecting
suitable cutting speeds and tool materials, chatter vibrations are
the biggest obstacle in increasing material removal rates in high
speed machining. The spindle is one of the key components that
limit the overall dynamic stiffness of the machine tool. If the
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system’s frequency response function (FRF) is known at the tool
tip, the chatter free cutting conditions can be predicted to achieve
optimal metal removal rates without damaging the machine tool
and the workpiece [1]. In order to design, analyze, and test
spindles in a virtual environment before resorting to costly
physical trials, accurate modeling of spindle dynamics is
essential [2].

The rotating shaft is attached to the housing with angular
contact ball bearings, which constitute the most critical compo-
nents of the spindle system. Proper preload of angular contact
bearings is very important for the rigidity, rotating accuracy, and
bearing life of spindles. There are three main types of bearing
preload mechanisms used in practice: rigid preload, stiff spring
preload,andconstantpreload[3]. Rigid preload, also called lock-
ring preload or fixed position preload, is applied by inducing a
constant relative displacement between the inner ring and the
outer ring by using unevenly ground spacers or match-ground
bearings. However, thermal deformation of spindle parts can
change the relative position of bearing rings and severely affect
the preload of bearings. In order to mitigate the thermal effects
on bearing preload, springs can be used to absorb the thermal
expansion. If the spring stiffness cannot be ignored (stiff spring
preload case), the extra preload force is equal to the product of
spring stiffness and outer ring thermal displacement. Further-
more, to maintain the preload constant, corresponding designs
—so-called constant preload or constant-force preload mecha-
nism using hydraulic systems or soft springs—have been
developed [4, 5]. The dynamic behavior of the spindle system
is quite different under various bearing preload mechanisms.
The rigid preload mechanism is simple and practical to
implement. However, the preload force can change significantly
due to relative thermal deformation between the spindle shaft
and housing, which may result in excessive preload and seizure
of the bearings during high-speed cutting. Although over-
preload can be avoided effectively in stiff spring preload or
constant preload mechanisms, the spindle rigidity may not be
maintained at desired levels for heavy cutting operations [5, 6].
As a result, designers mostly rely on their experience when
selecting the preload mechanism and magnitude for safe and
optimal operations of spindles in industry.

Considerable research related to bearing preload issues
have been carried out, which includes thermally induced
bearing preload [7–9], bearing preload monitoring [10, 11],
control [6, 12], and optimization [13]. However, few
investigations have been performed on sensitivity of
spindle dynamics to different bearing preload mechanisms.
Li and Shin presented the effects of bearing configuration
on the dynamic stiffness and thermal behavior of high
speed spindles, using numerical simulations [3]. Similarly,
Lin et al. used their model to predict the properties of a
spindle with bearings preloaded by two different mecha-
nisms [14]. Cao and Altintas [15] presented a dynamic
model of spindles with constant preload; the effects of

preload magnitude on bearing stiffness and spindle dynamics
have been investigated in detail. However, they did not
consider the rigid preload case.

This paper presents a coupled model of spindle-bearing
systems improved by adding the rigid preload mechanism
to the previous model developed by Cao and Altintas [15].
Various results such as bearing contact forces, angles and
stiffness matrices, spindle static deformations, natural
frequencies, and FRFs can be obtained as output of the
model under specified preload, spindle speed, and cutting
loads. The model is verified on an experimental spindle
under static as well as rotating conditions. Subsequently,
the dynamic behavior of spindle with rigid and constant
preload mechanisms is compared systematically under
various operating conditions.

2 Modeling a spindle-bearing system

The spindle shaft/housing and the angular contact ball bearing
are modeled separately, and new possibilities of their
integration allow considering different preload mechanisms
other than constant preload.

2.1 Spindle shaft/housing model

The spindle shaft/housing is modeled using the Timoshenko
beam element-based finite element (FE) method. The motion
of each FE node is described by three translational (dx; dy; dz)
and two rotational (gy; gz) degrees of freedom:

qf g ¼ dx; dy; dz; gy; gz
� �T ð1Þ

where torsional motion is not included. The equation of
motion for the spindle shaft and housing is expressed by
including the centrifugal force and gyroscopic effects as

M½ �S ��xf g � 4 G½ �S �xf g þ K½ �S � 42 M½ �C
� �

xf g ¼ Ff g ð2Þ
where K½ �S, M½ �S and G½ �S are the stiffness, mass and skew-
symmetric gyroscopic matrices of the spindle shaft and
housing. M½ �C is the mass matrix for the centrifugal force
effect, and Ff g is the external force vector. The damping
matrix is not included in the FE model of the shaft/housing.
The rotating speed Ω is set to zero when modeling the
spindle housing. Besides, pulleys or other disk-like accesso-
ries are modeled as rigid mass elements.

2.2 A coupled bearing model with different preload
mechanisms

The coupling between the spindle shaft/housing and
bearing structures is modeled as shown in Fig. 1, where
the bearing, shaft, and housing are integrated into a single
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elastic system. The black dots represent nodes. Each
bearing element consists of two nodes—the inner ring node
and the outer ring node—which are coincident with the
nodes on the shaft and housing, respectively. As a result,
the rings have the same qi

� �
(inner ring and shaft) and

qof g (outer ring and housing) motions. The nodes
representing the spindle housing can be either left free for
modeling the spindle in a free–free state or connected to
structures representing the dynamics of the machine tool;
details have been published by Cao and Altintas [16].
Furthermore, the dynamic model of the spindle can be
extended to include thermal deformations once these are
computed separately by a specialized model of heat transfer
and thermal deformations.

The displacement relations among the spindle shaft,
bearings, and the housing correspond to the configuration
and preload mechanism of bearings. Given the same
bearing configuration, the only difference among these
three preload mechanisms, i.e., rigid preload, constant
preload, and stiff spring preload, is the boundary condition
in the axial direction. Since the stiff spring preload system
is the least common of the three, only rigid preload and
constant preload are studied in detail.

An O-type bearing configuration with rigid and constant
preload mechanisms is shown in Fig. 2 as an example. The
two bearings belong to one force chain and the system is
self-balanced in the axial direction under the preload.
Regardless of the preload type used, all the inner rings are
fixed to the shaft in this two-bearing system:

qi
� � ¼ qsf g ð3Þ

The connections between the outer rings and the housing
are different in the two preload cases. In the rigid preload
case, the outer rings of both front and rear bearings are
fixed to the housing with a constraint equation including a
constant term da0 in the axial direction. The constant term

corresponds to the designed preloading difference in outer/
inner assembly lengths. The displacement relation of the
outer ring and a corresponding housing node is coupled
using the equation:

qof g ¼ qh
� �þ da0; 0; 0; 0; 0f gT ð4Þ

Correspondingly, constant preload provided by a soft
spring acts on the outer ring of the rear bearing in the
constant preload case. The constant preload force is used as
an input boundary condition. Contrary to rigid preload, the
outer ring of the rear bearing is free in the axial direction
and the displacement relationship between the rear bearing
and the housing is:

doy ¼ dhy doz ¼ dhz goy ¼ ghy goz ¼ ghz ð5Þ

The coupled bearing model allows the inclusion of
additional deformations related to the spindle shaft and
housing (e.g., radial press-fit mounting, thermal expansion
if known) by using Eqs. 3, 4, and 5. The displacements of
the shaft and housing due to external forces can be obtained
by solving the global equation of motion which is presented
in the following section.

2.3 Global equations of motion of the spindle-bearing
system

By assembling the equations of spindle shaft/housing and
bearings, the following general nonlinear equilibrium
equation for the spindle-bearing system is obtained:

M½ � ��xf g þ C½ � �xf g þ KðxÞ½ � xf g ¼ Ff g ð6Þ

inner ring

ball

outer ring

shaft

housing
{qh}

{qo}

{qi}

{qs}

Fig. 1 Coupled shaft–bearing–housing model

Fig. 2 Bearing preload mechanisms
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where, M½ � ¼ M½ �S, C½ � ¼ C½ �D � 4 G½ �S, KðxÞ½ � ¼ K½ �S þ
KðxÞ½ �B�42 M½ �C are the mass, damping, and stiffness
matrices. C½ �D is the structural damping matrix constructed
from modal damping ratios identified experimentally from
similar spindles. The bearing stiffness matrix KðxÞ½ �Bdepends
on displacement xf g, among other factors. In turn, the
displacement is affected by the system stiffness and the
external force. Therefore, the dependency of bearing stiffness
matrices on displacement is the root cause of the nonlinearity
in the spindle system model. The external force Ff g is
determined by the cutting conditions. The details of the FE
matrices and formulations have been previously presented in
[15], and will not be repeated here. The noted contribution is
the identification of the bearing stiffness matrix KðxÞ½ �B
which is found iteratively using the Newton–Raphson
method as follows.

The static external force case is considered first and the
iteration equations are given as

M½ � ��xf gi þ C½ � �xf gi þ K½ �i xf gi ¼ Ff g ð7Þ

K½ �i ¼ K½ �S þ K½ �iB�42 M½ �C ð8Þ

xf gi ¼ xf gi�1 þ Δxf gi ð9Þ
where, i is the iteration index.

The iteration starts with an initially assumed bearing
stiffness K½ �0B; the initial stiffness of the spindle system is
then obtained as:

K½ �0 ¼ K½ �S þ K½ �0B�42 M½ �C ð10Þ
Under static external loads, the velocity �xf giand accelera-

tion ��xf giare both 0. The initial displacement vector xf g0of
the iteration depends on the preload type. For rigid preload,
the initial displacement of the spindle system is the sum of
the displacement caused by the static external force Ff g0
and a constant vector xf gprewhich includes information
about the position preload of bearings:

xf g0 ¼ K½ �0
� ��1

Ff g0 þ xf gpre ð11Þ

In the constant preload case, the initial displacement
xf g0is obtained using the initial system stiffness K½ �0 and

the resultant load of the external force Ff g0 and the preload
force Ff gpre:

xf g0 ¼ K½ �0
� ��1

Ff g0 þ Ff gpre
� �

ð12Þ

In the ith i � 1; i 2 Zð Þ step of the iteration, the bearing
stiffness K½ �iB is evaluated through Jones’ bearing model
[17] by using the displacement xf gi�1 of the previous step,

and the system stiffness matrix K½ �i is then updated by
using Eq. 8. The unbalance force Rf gi of the ith iteration
step is evaluated as:

Rf gi ¼ Ff g � K½ �i xf gi�1 ð13Þ
where, Ff g ¼ Ff g0 in the rigid preload case, while
Ff g ¼ Ff g0 þ Ff gpre in the constant preload case. The

unbalance force creates the incremental displacement:

Δxf gi ¼ K½ �i� ��1
Rf gi ð14Þ

Adding the incremental displacement Δxf gi to the
displacement xf gi�1, the displacement vector xf gi is
updated by using Eq. 9. The updated displacement vector
xf gi is used to obtain the new bearing stiffness matrices of

the next iteration. The unbalance energy of the system at
the ith step is defined as,

ΔEi ¼ Rf gi� �T
Δxf gi ð15Þ

which is used as a convergence criterion for the iteration.
The iteration process is repeated until the unbalance
energyΔEi is smaller than or equal to a set limit value.

The effects of time-varying external loads FðtÞf g, e.g.,
periodic milling forces, on the bearing stiffness can also be
considered. Then the system responses and the bearing
stiffness are time varying and the equation of motion at
time t+Δt is.

M½ � ��xf gtþΔt þ C½ � �xf gtþΔt þ KðxÞ½ �tþΔt xf gtþΔt ¼ Ff gtþΔt

ð16Þ
Assuming that the displacement, velocity, and accelera-

tion vectors at time t(t≥0) are known, the time history
responses of the spindle system (i.e., displacement xf gtþΔt,
velocity �xf gtþΔt and acceleration xf gtþΔt) at time t+Δt can
be evaluated numerically using the Newmark integration
method. Then the bearing stiffness of each time step can be
found using the same iteration method (Eqs. 7, 8, and 9) as
described above.

3 Experimental verification

The dynamic model of the spindle-bearing system has been
validated through static and dynamic response tests on an
experimental spindle shown in Fig. 3. The spindle has two
front bearings GMN-HYKH61914 and three rear bearings
GMN-HYKH61911 in an O-type configuration. Constant
and rigid bearing preloads are applied as follows. The
constant preload mechanism is implemented by applying
hydraulic oil pressure on the floating hydraulic sleeve of the
rear bearing. The hydraulic force is then transferred to the
rear bearings, shaft, and front bearings. After the whole
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system reaches a self-balanced state in the axial direction,
both front and rear bearings are preloaded. This constant
preload system can be switched to the rigid preload
mechanism easily on the test spindle: the hydraulic sleeve
is first pushed to the desired position by hydraulic oil, and
then fastened gently to the rear spindle cover using lock
screws. The hydraulic force is released in the end; the force
chain is the same as in the constant preload case.

Static test Axial preload forces were applied to the hydraulic
sleeve incrementally while the spindle housing was fixed to a
bench. The axial displacements of the spindle nose and
hydraulic sleeve were measured by a laser displacement
sensor and a contact LVDT displacement sensor, respectively,
starting with an initial preload of 280N. The experimental
displacement measurements confirm the proposed FE model
of the spindle as shown in Fig. 4. The displacement of the
hydraulic sleeve is approximately twice as large as the
displacement of the spindle nose.

Dynamic response test The pulley and the clamping units
were disassembled during the modal tests to focus on the
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shaft–bearing–housing assembly. The FRFs of the spindle in
the radial directions were measured by applying an impact
force on the spindle nose and recording the vibration response
at the opposite part of the nose. The measurements were made
at the spindle nose under free–free conditions by CutPro-
MalTF® Fourier Analyzer. The hydraulic preload was set to
815 N for the constant preload mechanism, and an equivalent
preload value was ensured in the rigid preload case. The
simulated and experimentally measured FRFs at the spindle
nose are shown in Fig. 5. The modal damping ratios in
different preload cases were borrowed from experimental data
and used in the FE simulations. From the simulated FRFs, the
first mode (ws

n1 ¼ 965 Hz) and fourth mode (ws
n4 ¼

2; 722 Hz) have been found to be the most dominant, having
the greatest effect on the stability of machining operations.
Corresponding to these two main modes, experimental model
damping ratios of 1.6% (wx

n1 ¼ 955 Hz) and 2.9% (wx
n4 ¼

2; 745 Hz) were used in the simulation of the constant
preload case, while 1.4% (wx

n1 ¼ 955 Hz) and 2.0%
(wx

n4 ¼ 2; 778 Hz) damping ratios were used in the rigid
preload case. Damping ratios of other modes were set to 3%.

Theoretically, the radial FRFs are almost identical, even
though the mathematical models are slightly different for
the rigid and constant preload of the spindle bearings when
the equivalent preload forces are the same and the nonlinear
effects caused by the impact force are neglected. However,
with the sleeve fastened to the spindle cover plate with lock
screws, it is difficult to obtain a totally equivalent rigid

connection; therefore, the fourth mode of the rigid preload
case shifts slightly to a higher frequency with decreased
system damping ratios during the experiments. Generally,
the simulated and experimental FRFs are in reasonable
agreement, which indicates the validity of the proposed
bearing preload models.

Modal analysis Mode shape tests of the spindle under free–
free conditions have been carried out to identify the vibration
modes. The excitation point was placed at the rear part of the
spindle shaft, while multiple measurement points were
distributed on the shaft and housing, as shown in Fig. 6.

The mode shapes are shown to be identical for both
constant and rigid preload mechanisms. The simulated and
experimentally measured mode shapes of the two dominant
modes are shown in Fig. 7. The mode at 965 Hz is
dominated by the first flexural mode of the shaft with little
influence from the bearings, while the fourth bending mode
at 2,722 Hz reflects the influence of bearings and the
flexural mode of the shaft. This observation has also been
demonstrated by Cao and Altintas [15], where the increased
preload has been shown not to affect the first mode, while

Measured point Excited point

Fig. 6 Layout of the modal tests

Undeformed shape of experiment

Deformed shape of simulation Deformed shape of experiment

Undeformed shape of simulation

(a) 1st mode (965Hz)

(b) 4th mode (2722Hz)

Fig. 7 Simulated and experi-
mental mode shapes
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Spindle head 
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I/O box 
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Y Z 

Fig. 8 Experimental setup
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shifting the fourth mode upward. The simulations match
well with the experimental results, which confirm the
accuracy of the proposed dynamic model of the spindle.

Dynamic test after mounting on the machine tool Due to the
effects of the machine tool, the dynamics of the spindle
changes after mounting. Detailed modeling of the spindle and
machine tool system is described in [16]. There, the FE model
of the full spindle assembly including the pulley, the
clamping unit, and the spindle head has been verified in
both stationary and running states. The experimental setup is
shown in Fig. 8. The FRFs at the tip of the dummy tool were
measured using a laser vibrometer and a modal hammer.

Due to the unsymmetric shape of the spindle head, the
dynamics of the spindle system in both the X and Y directions
need to be validated. Figure 9 shows the FRFs at the tool tip
in the stationary state where a constant hydraulic preload of
1,728 N is applied. It can be seen that the simulations match
with the experimental results very well in both the X
(Fig. 9a) and Y (Fig. 9b) directions and the rigidity of the
spindle system is higher in the Y direction.

Tests were also conducted to measure the FRFs at the
dummy tool tip under various spindle speeds. The rotating
speed was increased from 0 to 12,000 rev/min with an
increment of 1,000 rev/min and the same constant hydraulic
preload of 1,728 N was kept in each speed step. Since the
hydraulic preloaded bearings can accommodate thermally
induced preload and the measurement time is very short at

each rotational speed step, the thermal effects have been
assumed to be negligible during the experiment. In order to
simplify the problem, only the spindle dynamics in the X
direction are presented here. From Fig. 9a, it can be seen
that the three dominant frequencies below 3,500 Hz are
around 565, 960, and 2,320 Hz. However, under high-speed
rotating conditions, the peaks at 2,320 Hz are too small to
observe. The natural frequencies of the first two dominant
modes (565, 960 Hz) over the speed range of 0–12,000 rev/
min are shown in Fig. 10. Due to the influence of the
centrifugal force and the gyroscopic moment acting on the
spindle shaft and bearings, the natural frequencies of both
modes decrease with spindle speed [15]. “Simulation 1”
and “simulation 2” are the forward and backward natural
frequencies caused by the gyroscopic effect of the spindle
shaft, respectively. However, the experimental natural
frequencies do not have these two branches. One possible
reason is that the existing out-of-balance excitation can
only excite resonance in a forward whirl mode due to the

500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

Frequency [Hz]

M
ag

ni
tu

de
.[m

/N
] Experiment

Simulation

(a) X direction

500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

Frequency [Hz]

M
ag

ni
tu

de
.[m

/N
] Experiment

Simulation

(b) Y direction

x 10-6

x 10-6

Fig. 9 Simulated and experimental FRFs at the dummy tool tip in the
stationary condition (constant preload: 1,728 N)

0 2000 4000 6000 8000 10000 12000
540

550

560

570

580

590

600

Rotating speed [r/min]

F
re

qu
en

cy
[H

z]

Simulation 1
Simulation 2
Experiment

Forward

Backward

(a) The first dominant mode

0 2000 4000 6000 8000 10000 12000
900

920

940

960

980

1000

Rotating speed [r/min]

F
re

qu
en

cy
[H

z]

Simulation 1
Simulation 2
ExperimentForward

Backward

(b) The second dominant mode

Fig. 10 The natural frequencies of the spindle under various speeds
(constant preload: 1,728 N)

Int J Adv Manuf Technol (2011) 57:871–883 877



symmetrical properties of all the bearings [18]; another
reason may be that the forward and backward modes are
closely coupled and the average of the two frequencies is
obtained from multiple measurements [19]. Overall, the
comparison in Fig. 10 shows that predicted natural
frequencies agree very well with the experimental results
over the entire speed range.

4 Analytical comparisons of preload mechanisms

The static and dynamic properties of the experimental
spindle with both constant and rigid preload mechanisms
have been predicted using the presented analytical model
and compared under various operating conditions. The
results are summarized as follows.

4.1 Axial load effects

The external axial loads are applied at the spindle nose in the X
direction (seen in Fig. 3) and the initial preload forces for

both preload cases are set to 720 N. For the experimental
spindle with an O-configuration, the load on the front
bearings increases with external forces in both preload cases.
The preload of the rear bearings decreases in the rigid
preload case, while they maintain the stiffness in the constant
preload case, since the outer ring can slide with the shaft.
The motions of the shaft and the bearing rings due to the
axial load are demonstrated using a two-bearing system as
shown in Fig. 11.

The displacements of the spindle nose under external
axial loads are shown in Fig. 12. The displacements in both
preload cases increase with the axial loads, and the
displacement of the constant preload system is much larger.

The variation of axial rigidity with increasing external
axial load in the stationary state is shown in Fig. 13. As
only the front bearings contribute to the axial stiffness of
the whole spindle system in the constant preload case, the
overall axial rigidity of the rigid preload system is about
twice as large as that of the constant preload system when
the external axial load is absent. As the load increases, the
axial rigidity of the constant preload system increases,
while the rigid preload case shows an opposite trend.
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Fig. 11 A two-bearing example—motions of shaft and bearings due to axial load
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The FRFs at the spindle nose in the radial direction are
predicted in Fig. 14 with an external axial load of 750 N.
Without external loads, FRFs of both preload cases are
almost identical. When the axial load increases, natural
frequencies of the spindle in both preload cases increase
due to the increased stiffness of the front bearings;
however, the external axial load has smaller effect on the
rigid preload system.

4.2 Radial load effects

As spindle systems are axisymmetric, the external radial
load has only been applied in one direction at the spindle
nose during simulations. In both cases, the initial preload
forces have been set to 720 N. Besides radial displacement,
the radial force also causes axial and tilting deflection of the
spindle system as shown in Fig. 15.

While the axial displacements change differently, the
radial displacements have an identical close-to-linear
relationship with radial loads, as shown in Fig. 16.
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Fig. 16 Displacements at the spindle nose under radial loads (bearing
preload: 720 N)

Fig. 15 A two-bearing example—motions of shaft and bearings due to radial load
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As the radial load is increased, the bearing stiffness is
reduced, and the static radial stiffness of the spindle drops.
The effect is more significant under constant preload as
shown in Fig. 17.

A constant radial load of 750 N has been applied at the
spindle nose in the radial Y direction and the FRFs are
predicted in the load (Y) and orthogonal (Z) directions in
Fig. 18. The bearing stiffness changes because of variation
in ball bearing contact deformations around the applied
radial load; therefore, the FRFs in the two perpendicular
directions vary slightly. The changes in FRFs are similar in
both preload cases, while the rigid preload system loses less
rigidity with radial loads. If the FRFs change significantly
under large radial cutting forces, the chatter stability of the
spindle system depends on the cutting conditions, which is
not desirable for process-planning purposes.

4.3 Speed effect

During high-speed machining, the mechanical (centrifugal
forces and gyroscopic moments) and thermal effects on
spindle dynamics exist at the same time. It is beneficial to
separate the high-speed rotation-induced changes from ther-
mally induced preload, so that the bearing preload control
strategy can be more efficient and better targeted. Thermal
effects have not been considered, since they involve more
complicated issues not covered in this paper. Since the speed
effects from both shaft and bearing have been investigated
thoroughly [14, 15], the main objective of this section is to
compare the different preload mechanisms in terms of high-
speed effects, including bearing stiffness and, the overall
spindle dynamics, without considering thermal effects.

During high-speed rotation, rolling elements of bearings
are subjected to extra speed-dependent loads such as

centrifugal forces and gyroscopic moments, which change
the bearing contact angles/loads and subsequently the
bearing stiffness. The motions of the shaft and the bearing
rings due to the high speed are illustrated schematically in
Fig. 19.

The preload forces of both constant and rigid cases have
been set to 1,900 N. The stiffness of the bearings decreases
with spindle speed rapidly, as it exceeds a certain threshold;
an example for the front bearings is shown in Fig. 20. The
threshold speed (5,000 rev/min in this example) depends
mainly on the value of mounting preload. The bearing
stiffness in both cases decreases due to the speed effects as
observed by other researchers [15, 19–21] while the rigid
preload system maintains its stiffness better.

The axial displacements of the spindle nose are also
investigated as shown in Fig. 21. In the constant preload
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case, the axial displacement increases significantly after a
threshold speed (10,000 rev/min), which can explain the
observed step changes of the axial displacement at different
speeds on a high-speed machine center [22]. Bearing systems
with constant preload allow rings to change their relative
axial position and this is the reason why the bearing stiffness
drops so dramatically. For rigid preload, the relative axial
position is determined by rigid mating parts; the shaft moves
slightly due to the unsymmetrical design of the spindle.

Simulated FRFs in the radial direction at the spindle nose
are displayed in Fig. 22 where the rotating speed is
20,000 rev/min. As the speed increases, the fourth modes
are softened largely in both constant and rigid preload cases.

The chatter stability lobes are predicted using the
simulated FRF at the spindle nose. The analytical chatter
prediction theory of Altintas and Budak [23] is used; the
results are shown in Fig. 23 using the FRF values obtained
at zero spindle speed. A peak with a spindle speed of
15,320 rev/min and a depth of cut of 105.2 mm is chosen as
a reference point to investigate the change of stability lobes

with the spindle speeds. When the spindle speed is below
10,000 rev/min, the bearing stiffness in both preload cases
hardly changes; the speed effects on the stability lobes can
therefore be neglected. The stability lobes are calculated for
each speed ranging from 10,000 to 20,000 rev/min, with
1,000 rev/min increments. The changes in the stability
lobes relative to the reference point are listed in Table 1 for
the constant and rigid preload cases. In both preload cases,
chatter-free stability pockets are shifted from high to lower
spindle speeds due to the speed effect and rigid preload
behaves better in maintaining the position of the reference
point.

In practice, the FRFs measured in the stationary state are
used to predict the stability lobes which are assumed to be
speed independent. However, this assumption will cause
chatter stability prediction errors in the high-speed range
where the natural frequencies change. During process
planning, there are two solutions to improve the prediction
accuracy of the stability lobes when the speed effect cannot
be neglected. The first, active, way is to increase the
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preload value according to the speed and basically force the
desired lobe to maintain its position with speed. However,
this is done at the expenses of increased friction, decreased
damping, and shorter life of bearings. Also, only special-
ized spindle designs with hydraulic systems allow preload
modifications during rotation. The second, passive, solution
is to recalculate the stability lobes and adjust process
planning according to the FRFs which are identified as
functions of spindle speed [24, 25].

5 Conclusions

Both main types of preload mechanisms for bearings—rigid
and constant—have been modeled and integrated into an
experimentally validated mechanical finite element model of
the overall spindle system. Static and dynamic properties of
spindles with both preload mechanisms have been predicted
and compared analytically under various conditions. It has
been shown that the overall axial rigidity of the spindle system
is determined by the front bearings in the constant preload
case, while the radial rigidity is similar in both preload cases.

The external axial/radial loads have a smaller effect on
systems with rigid preload than on systems with constant
preload. As the spindle speed increases, lower bearing
stiffness results in less stiff spindles in both preload cases
and subsequently shifts chatter-free stability pockets from
high to lower spindle speeds. However, the spindle system
with rigid preload shows higher stiffness than the system with
constant preload at high speeds; therefore, this type of preload
can be preferred for high-speed spindles providing the
thermally induced preload is controlled well. The speed-
dependent axial displacements at the spindle nose explain the
step response phenomenon observed on spindles with
constant preload when changing their speed.

The proposed analytical model makes it possible to predict
the overall spindle dynamics and carry out detailed studies of
internal displacements and bearing properties under various
operating conditions. The model can be used to optimize the
design of new spindles as well as to estimate the properties of
already existing spindles during process planning.
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Table 1 The change of the reference point with spindle speed in
stability lobes

Spindle speed [rev/min] Speed at the reference point [rev/min]

Constant preload Rigid preload

0 15,320 15,320

10,000 15,080 15,090

11,000 14,950 14,990

12,000 14,790 14,860

13,000 14,550 14,680

14,000 14,330 14,470

15,000 14,100 14,320

16,000 13,840 14,160

17,000 13,540 14,000

18,000 13,280 13,820

19,000 12,990 13,630

20,000 12,680 13,450
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Fig. 23 Predicted stability lobes
without speed effects
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