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Abstract—The portfolio of models offered by car manufac-
turing groups often includes many variants (i.e., different car
models and their versions). With such diversity in car models,
variant management becomes a formidable task. Thus, there is
an effort to keep the variants as close as possible. This simple
requirement forms a big challenge in the area of communication
protocols. When several vehicle variants use the same signal,
it is often required to simultaneously schedule such a signal
in all vehicle variants. Furthermore, new vehicle variants are
designed incrementally in such a way as to maintain backward
compatibility with the older vehicles. Backward compatibility
of time-triggered schedules reduces expenses relating to testing
and fine-tuning of the components that interact with physical
environment (e.g., electromagnetic compatibility issues). As this
requirement provides for using the same platform, it simplifies
signal traceability and diagnostics, across different vehicle vari-
ants, besides simplifying the reuse of components and tools.

This paper proposes an efficient and robust heuristic algo-
rithm, which creates the schedules for internal communication
of new vehicle variants. The algorithm provides for variant
management by ensuring compatibility among the new variants,
besides preserving backward compatibility with the preceding
vehicle variants. The proposed method can save about 20%
of the bandwidth with respect to the schedule common to all
variants. Based on the results of the proposed algorithm, the
impact of maintaining compatibility among new variants and of
preserving backward compatibility with the preceding variants on
the scheduling procedure is examined and discussed. Thanks to
the execution time of the algorithm, which is less than one second,
the network parameters like the frame length and cycle duration
are explored to find their best choice concerning the schedule
feasibility. Finally, the algorithm is tested on benchmark sets and
the concept proved on the FlexRay powered hardware system.

Keywords—FlexRay, Static segment, Automotive, Scheduling,
Incremental, Multi-variant, Real-time

I. INTRODUCTION

THE cars currently being produced by automotive industry
contain a lot of electronic control units (ECUs), which

are becoming progressively more important in the upcoming
vehicle models, where x-by-wire systems are replacing me-
chanic and hydraulic control systems. This trend has been
already proved by, for example, Nissan Infinity Q50 and its
Direct Adaptive Steering technology [1]. The spectrum of the
electronic systems used, however, varies from one model to
the other.

Fig. 1. Example of product lifetimes

A. Motivation

Nowadays, the car manufacturers have to manage a huge
number of model variants. For example, Volkswagen group
proclaimed in [2] that their product portfolio consists of 340
model variants already. Handling such a large number of
variants is indeed challenging for the car designers. The basic
approach adopted in dealing with such situations is by building
most vehicle models on a common technological platform.
The vehicle models, such as the Audi A3, SEAT Leon,
Volkswagen Golf and Škoda Octavia, for example, share a
modular construction of the MQB (Modularer QuerBaukasten)
platform [3]. Moreover, these vehicle models also have many
versions (e.g., a configuration with an adaptive LED frontlight
system or with common halogen lamps, etc.). Thus, an efficient
variant management can be a significant economical and
competitive factor [4].

Having the internal vehicle communication as similar as
possible for all the vehicle variants (referred to as variants
hereafter) is desirable to simplify the reuse of components and
decrease the development costs spent, for example, on fine
tuning of electromagnetic compatibility related parameters.
Creating just one communication schedule for all the signals
of different variants would be ideal from this perspective.
However, such a schedule results in low utilization of the bus,
because each variant uses only a subset of the signals. It is
important to have a bandwidth-efficient solution, because the
demand for communication bandwidth has, nowadays, been
increasing significantly, while transmission of messages from
a camera or a lidar becomes a part of safety-related systems
in modern vehicles. Therefore, some systematic solution will
have to be found to utilize the bandwidth efficiently. In the
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present case, the design practice, derived from the designer
requirements, has been followed, wherein the same signals are
placed at the same positions in all the schedules in which
they participate. This method facilitates the trade-off between
compatibility of the schedules among the variants and their
bandwidth efficiency. Consequently, each vehicle variant will
have a schedule, which differs only in the positions of specific
signals. Therefore, the objective of this study is to find a
multivariant schedule, which includes individual schedules for
all variants.

Furthermore, designing a car is an iterative process; while
the previous variant is in production, the new one is in the
design stage. An example of product lifetimes is depicted
in Fig. 1. While designing a new variant, the previous variants
cannot be changed, but the new variant should maintain
backward compatibility with the previous variants, to the extent
possible. This is called the incremental design process during
which the new variant is not built from scratch, but from its
predecessors. This implies that, if a new vehicle variant is
being developed, its schedule should be inherited from the
original variant.

It is also necessary to proactively enhance the extensibility
of the schedule, so that it can create compact schedules in
all the development iterations, because the schedule will be
probably considered as the original schedule (the schedule
on which the schedule for the new variant is based) for
successive iterations. This type of incremental problem is even
more challenging, because, for example, the inheritance from
more than one predecessor can entail conflicts that need to
be resolved with the least number of disruptions for ensuring
backward compatibility. Therefore, it is easier and cheaper
to develop diagnostic tools, because one tool can be used
for many variants. Also, it simplifies the configuration of
electronic control units (ECUs), typically supplied by third
parties, because one bus configuration of the ECU may fit
several variants. This eliminates many mistakes, (e.g., relating
to time dependent electromagnetic interference), and thus
reduces verification and certification expenses. Additionally,
it reduces the likelihood of failure during the verification
process, and hence likelihood of additional redesign costs and,
consequently, postponing the release date of the product [5].

In this paper, the focus is on the design and implementation
of the algorithm for solving the above described multi-variant
and incremental scheduling problems. For verification and
demonstration of the algorithm, the FlexRay static segment has
been chosen as the protocol for time-triggered communication.
The FlexRay standard has been designed to handle the safety
and criticality-related requirements on the complex intercon-
nected electronic system. A static segment of the FlexRay
protocol, with time division multiple access, can be used for
time-critical signals, which need to fulfill real-time constraints
as release date or deadline. The signals are to be transmitted
to the bus at exact time instants, as determined by a schedule,
which must be known in advance.

B. Related works
Product variant management is a problem faced by many

companies, because they have to fulfill the individual require-

ments of their customers. Bley and Zenger [6] investigated this
problem in the planning process of an assembly, whose final
product consists of many parts. According to Wallis et al. [7],
this problem is even more relevant to digital factories, wherein,
nowadays, digital manufacturing data provides the information
necessary for automatic planning of production. A similar
problem has been tackled in software development process.
Variants of the software product and their source codes need to
be managed carefully [8], [9] otherwise the product becomes
uncontrollable with smelly code [10]. Sagstetter et al. [4]
observe that, by rapidly increasing number of vehicle model
variants, variant management becomes an important and chal-
lenging problem for the fast evolving automotive industry.
They have shown that vehicle variant management is strongly
linked to the creation of time-triggered communication sched-
ules.

A significant effort has gone into developing a methodology
for finding a reliable, deterministic and bandwidth-efficient
communication schedule for suitable in-vehicle networks, such
as Ethernet, FlexRay or TTP.

For TTEthernet and Automotive Ethernet, Steiner et al. pro-
vide the whole scheduling and time analysis framework [11],
[12], [13], [14]. They used SMT Solver, Tabu Search and Net-
work calculus to create a schedule of time-triggered traffic and
evaluate the schedule from the event-triggered communication
point of view.

Several papers that focus on the FlexRay protocol, and
particularly the static segment scheduling problem, were pub-
lished during the last eight years. The mathematical basics
required for scheduling time-triggered and event-triggered
communication were laid down by Schmidt and Schmidt [15],
[16]. Their scheduling method was based on ILP formulations
for signal-to-frame packing and frame scheduling. In the
static segment scheduling area, Lukasiewycz et al. [17] are
the pioneers in introducing the method for transformation of
the basic static segment scheduling problem, without time
constraints, into a two-dimensional bin packing problem. Their
objective is primarily to minimize the number of the allocated
slots and, secondly, to obtain such a schedule that can ac-
commodate further signals with no need for allocation of new
slots. They also explain how their algorithm behaves in the
case of incremental scheduling, where no conflicts can occur.
Hanzalek et al. [18] propose the static segment scheduling
problem with real-time constraints. They present a two-stage
scheduling algorithm; in the first stage, the signals are packed
into the frames and in the second, the schedule is created by
a frame scheduling algorithm. The reliability of the broadcast
FlexRay communication was studied by Souto et al. [19].

The methods for an extensible TTP protocol scheduling,
based on the original schedule, are described by Pop et al. [20].
They first find the solution that satisfies the hard real-time
constraints, and then they try to improve the availability of the
resource for further use by the iterative algorithm.

Of late, some scientists have been focusing on cooperation
of the deterministic buses in automotive industry. The key
component of the reliable system, is the gateway that inter-
connects its constituent heterogeneous buses. After studying
the problem of time synchronization between FlexRay and
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Ethernet [21], Jeon et al. proposed a framework for reliable
gateway development [22].

A proposal for Multi-variant Scheduling was first presented
in [23], wherein schedules for more variants were created, all
at once. This was later followed up by Sagstetter et al. [4]
who have iteratively constructed a multi-schedule, in which
the signals common to all the variants are scheduled in the
first iteration, the shared signals in the intermediate iterations,
and the signals specific to just one variant in the last iteration.
To the best of the authors’ knowledge, all the published
methods for scheduling the time-triggered communication have
been built on greenfield, without considering previous/original
schedules.

The 2D bin packing problem is closely related to the time-
triggered scheduling, as observed by Lukasiewycz et al. [17].
The main problems of incremental scheduling for bin packing
was investigated by Gutin et al, who presented the lower bound
for the asymptotic competitive ratio of any algorithm [24].
Later, Ivković and Lloyd [25] described the algorithm and its
5
4 competitive ratio for the fully dynamic case of bin packing
problem, with Insert and Delete operations. They classified the
items into groups, according to their size.

C. FlexRay overview
The FlexRay bus, standardized in ISO 17458 - FlexRay

communications systems [26], is a modern bus that has been
developed to satisfy the performance and safety requirements
of the advanced driver assistance systems. This is often
coupled with the AUTOSAR Specification [27], [28] in the
automotive industry. The FlexRay communication is organized

Dynamic segmentStatic segment

SW NIT

Static 
Slot 1

Static 
Slot 2

Static 
Slot 3 ... ... ... ... ... ... ...

Communication cycle

Time

Comm. cycle 1 Comm. cycle 2 Comm. cycle 3 Comm. cycle 4 Comm. cycle 1
...

Fig. 2. FlexRay communication scheme

in cycles. Each communication cycle has its own six-bit id,
denoted as cycleID, and there can be up to 64 cycles. The
sequence of these cycles is denoted as a hyperperiod and
is periodically repeated. An example of the communication
scheme on the FlexRay bus is depicted in Fig. 2, wherein
the hyperperiod consists of four communication cycles. Each
communication cycle contains four segments:
• Static segment
• Dynamic segment
• Symbol window (SW)
• Network idle time (NIT)

The time-critical signals are exchanged, using a time-triggered
scheme, based on time division multiple access in the static
segment. The dynamic segment fulfills the requirements of

event-triggered communication. The other two segments, SW
and NIT, are used for network management and inner clock
synchronization. Among all these, only the static segment and
NIT are mandatory.

This paper deals only with the time-triggered communica-
tion in the static segment. The static segment is divided into
time intervals of same duration, called static slots (referred to
as just slots, hereafter). A given slot is reserved for a given
ECU (i.e., the frames transmitted to a given slot need to be
from the same ECU in all cycles)1. The data structure used
by the ECUs in transmitting the data is called a frame. Each
frame is identified by its cycle and slot number. The frame can
contain more than one signal, but the sum of payloads of these
signals must not exceed the duration of the slot. The signals
packed into the same frame can be distinguished by the offset
in the frame. The schedule determines in which instant the
frame is transmitted to the network.

D. Paper outline and contribution
The rest of the paper is organized as follows: Section II

describes the incremental static segment scheduling problem,
encompassing the real-time constraints and providing multi-
variant scheduling scheme, together with a brief example;
Section III introduces the data structures which support the
efficiency of the proposed algorithm and then proposes an
efficient heuristic algorithm for incremental scheduling; Sec-
tion IV presents the signal set and the experiments carried out
on the extensive benchmark set; finally, Section V concludes
the paper.
The following are the main contributions of this paper:

1) Formal formulation of the incremental multi-variant
FlexRay static segment scheduling problem, with real-
time constraints.

2) The heuristic algorithm, which includes
• the exact algorithm for resolving the conflicts

in the original schedule, while minimizing the
number of changes

• a new extensibility optimization method, which
can adapt to a particular input instance by utilizing
the probability distribution of the signal parame-
ters

• the graph coloring formulation of slot scheduling
sub-problem and its convenient ILP formulation

3) Examination and discussion of the impact of multi-
variant and incremental essence on scheduling.

4) Evaluation of the algorithm on the sets of both synthetic
and real-case inspired instances and of the significance
of the extensibility optimization.

The proposed algorithm can be used for non-incremental
scheduling too, and its results will be better than or comparable
to those presented in [23].

1The FlexRay standard 3.0 and later allow different nodes to transmit
frames within the same slot, on the same channel, in different communication
cycles. However, this feature was not used in this study, because it requires
different scheduling model which introduces extra complications with variant
management in subsequent incremental scheduling iterations, defeating the
idea of keeping the schedules easily manageable even in later scheduling
iterations without breaking backward compatibility.
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II. PROBLEM STATEMENT

A. Periodic scheduling with real-time constraints
The scheduling problem addressed in this paper is as fol-

lows: Let S be a set of all signals that must be exchanged.
Each signal si ∈ S has the following parameters:
• pi - period
• ci - payload length
• ni - identifier of the transmitting ECU
• ri - release date
• di - deadline

According to the AUTOSAR Specification, the period pi is a
multiple of power of two (i.e., pi ∈ {M · 2l | l = 0 . . . 6}),
where M is the duration of one communication cycle. The
payload ci of a signal must be in the range of 0 to 254 bytes.
The signal must be transmitted by the ECU as a whole, without
being fragmented. The unique identifier ni determines which
ECU transmits signal si. Real-time constraints are represented
by the release date ri and deadline di. Both the parameters
are considered to be relative to the beginning of the schedule
and it is supposed that di ≤ pi. In order to simplify the
problem, release date ri and deadline di are considered to
have been rounded to the length of the cycle (as in [18]). This
simplification is adequate, because the precise specification
of the release dates and deadlines will have influence only
if these values fall in the static segment. However, if they
fall in the dynamic segment, they are rounded to the length
of the cycle anyway. This rounding simplifies the scenario,
because the position of a signal within the static segment
of a particular cycle is insignificant, compared to that of the
signal within the hyperperiod. Rounding of the release dates
and deadlines allows the scheduling of each ECU separately
(because the position of the slots of the given ECU is not
important from the viewpoint of real-time constraints), which
reduces the combinatorial complexity of the problem.

The FlexRay network configuration consists of many param-
eters. The following parameters, which are assumed to have
been chosen by network designers, are not influenced by the
optimization algorithm:
• M - duration of the communication cycle,
• W - maximal frame payload length (duration of the slot).

We assume that the number of slots in the static segment of the
communication cycle does not exceed slots threshold (i.e., the
maximal number of slots that fits one communication cycle),
and, thus, is sufficient to accomodate the generated schedule.
Section III-E discusses how to deal with the case when the
number of the allocated slots exceeds the slots threshold.

The aim of the scheduling problem is to find a schedule -
an assignment si → [yi, ti, oi], where
• yi represents the identifier of the communication cycle

(cycleID) for the first signal occurrence (instance of the
signal in the hyperperiod),

• ti denotes the identifier of the slot (slotID),
• oi is the offset in the frame (offset) in which the first

occurrence of the signal si will be transmitted.
The signals are assumed to be strictly periodic (no jitter in
period pi is allowed). Thus, all the other signal occurrences

are scheduled at the same slotID and offset. The cycleID of
j-th signal occurrence is calculated from the cycleID of the
first occurrence and its period pi as yi+(j−1)pi. The goal is
to find such an assignment, in which maxi∈S ti is minimal.

Please note that the list of all globally used symbols and
abbreviations is located at the end of the paper.

B. Multi-variant scheduling
Considering the multi-variant scheduling, the following

holds:
• Each signal si can be used in one or more variants.
• Sharing constraint: If two or more variants use signal

si, the signal must be placed in the same position (cycle,
slot, even offset in the frame) of these schedules.

• The slots assigned to some ECU are assigned to this
ECU in all the variants in which the ECU is used.

These are the reasons why it is not possible to create
schedules for all variants independently. To identify which
variant uses which signals, the binary matrix V is introduced
as follows:

Vi,j =

{
1, if variant j contains signal si.
0, otherwise.

(1)

The resulting schedule must fulfill all the described con-
straints. Moreover, no two signals are allowed to overlap in
any variant.

C. Incremental scheduling
For incremental multi-variant scheduling problem, original

assignment si → [ỹi, t̃i, õi] is defined for the subset of signals
si ∈ S̃ where S̃ ⊂ S. The assignment si → [ỹi, t̃i, õi]|∀si ∈ S̃
is called the original schedule in this paper.

The aim of incremental scheduling is to find the assignment
for all the signals from S, which fulfills all the constraints
of the multi-variant scheduling, minimizes max ti and where
the number of changes compared to the original schedule is
minimal.

It is to be noted that not only new signals, but even new
variants are introduced in incremental multi-variant scheduling.
It follows the real case, when a new vehicle variant is proposed.
This is the reason why even signals from the original schedule
could cause a violation of the constraints because a newly
introduced variant can use two signals that overlap in the
original schedule (because they were not used in any variant
together so far).

Example 1: A simple example of incremental scheduling
A simple example is introduced for a better understanding

of the given problem statement. Here, the communication
cycle duration M is set to 5 ms and the frame payload W
to 16 bits. The original schedules for Variant I and Variant
II are depicted in the lower part of Fig. 3. In this figure,
the individual communication cycles are placed, one below
the other, in vertical rows, in contrast to those in Fig. 2,
where they are placed laterally, one next to the other, in the
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s1 s2

s5

s4

s8s6s3s7

Variant I Variant II
cy
cl
e

slot
1 2 3

1

2

3

4

slot
1 2 3

1

2

3

4

s2

s4s5

s6 s7 s8

s2

s3

s6

s3

s6

s6

Variant I Variant II

s1

s1

s1

s1

s2

s2

ECU 1 ECU 1 ECU 2 ECU 1 ECU 1 ECU 3

Fig. 3. Venn diagram for Variant I and Variant II, and its original schedules
for Example 1

timeline. Moreover, only the static slots of the communication
cycles are presented in Fig. 3. This visualization will be used
hereafter. In total, there are eight signals, s1 . . . s8, which are
to be transmitted from three ECUs. The identifier of the ECU,
assigned to a slot, is determined by the pale label above the
slot. Thus, one can derive from the figure that, for example,
signal s1 is to be sent by ECU 1 in Variant I only, it has
the period 5 ms and the payload 8 bits. The deadlines and
release dates of all the signals are ignored in this simple
case. Variant I uses signals s1, s2, s3, s6, s7 and Variant II
uses s2, s3, s4, s5, s6, s8, which means that signals s2, s3, s6
are shared and must be placed in the same position in both the
variant schedules (Venn diagram for the variants is depicted in
the upper part of Fig. 3).

Now, the task is to create the new variant - Variant III,
which should use all the signals of Variant I and Variant II
and, furthermore, it should also accommodate new signals s9
and s10. Signal s9 has the period of 5 ms and is transmitted by
ECU 2. Signal s10 has the period of 10 ms and is transmitted
by ECU 1. The Venn diagram for all the three variants and the
resulting schedule are presented in Fig. 4.

s1

s2

s5

s4
s8

s6s3s7

Variant I Variant II

Variant III
s10 s9

cy
cl
e

slot
1 2 3

1

2

3

4

s4

s5

s6 s7

s3

s6

Variant III

s1

s1

s1

s1

s2

s2

s10

s10

s8s9

s9

s9

s9

4

ECU 1 ECU 1 ECU 2 ECU 3

Fig. 4. Venn diagram for all the three variants, and a feasible schedule for
the new Variant III

All the common signals of the new variant should be placed
in the same positions as those in Variants I and II. However,
it is not always possible to satisfy this backward compatibility
constraint in incremental multi-variant scheduling, and some
signals, signals s5 and s8 in this example, must be rescheduled
to prevent collisions. However, it is not always possible to sat-
isfy this backward compatibility constraint in the incremental
multi-variant scheduling, and a necessary amount of signals
must be rescheduled to prevent collisions. In the case of s8,

not only the signal had to be moved, but the entire slot from
the third slot to the fourth slot and failing this both ECU 2
and ECU 3 would operate in slot 3, which is not allowed.

III. ALGORITHM

In this section, the main data structures used in the proposed
algorithm are introduced first and then the components of the
proposed algorithm explained.

A. Multischedule

For schedule representation, choosing the right data structure
is crucial to the efficiency of algorithm. The most natural
way is to have different schedules for different variants (as
in Fig. 3), which are called here as native schedules. However,
this representation renders the algorithm inefficient, because
the checking of the sharing constraint and the allocation of
signals in native schedules introduce significant overhead,
when the common signals increase in number. It is enough
if their position is known just in one schedule, because the
position must be the same for all the variants.

cy
cl
e

slot1 2 3

1

2

3

4

s2

s4s5

s6
s8

s7s1

s2

s3

s6s1

s1

s1

ECU 1 ECU 1
3
2

ECU

Fig. 5. Feasible original multischedule for Example 1

Therefore, a more efficient representation is used by cre-
ating just one shared schedule, called multischedule, for all
the variants, instead of separate native schedules for each
variant. The common signals are placed once, and there is
no redundancy caused by checking the constraints. Native
schedules are derived from the multischedule by removing the
signals that have not been used in the particular variant. In the
multischedule, two or more signals may be scheduled at the
same position (this situation is denoted as overlapping). Just as
the native schedule consists of frames, the multischedule (MS)
consists of multiframes, which are denoted as MSi,j , where i
is the cycle number and j is the slot number. The original
multischedule (the multischedule derived from the original
schedules) from Example 1 is presented in Fig. 5, where
the lower half of each multiframe represents the first variant
and the upper half the second variant. An example of signal
overlapping can be seen in MS2,1 where signal s5 shares its
position with that of signal s1.
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B. Mutual exclusion matrices
For placing signals in the multischedule, one needs to know

the signals that may be overlapped. Overlapping can arise
only when two signals are not scheduled in the same variant;
otherwise, it would result in an infeasible native schedule for
a variant that uses both the signals. Information relating to
two given signals that can overlap is stored in a Signal Mutual
Exclusion Matrix (SEM), which is a symmetric binary matrix,
generated from matrix V. SEMi,j is equal to 1 if, and only if,
signals si and sj are to be scheduled together in some variant,
otherwise, 0. Thus, two signals si and sj can overlap only if

s1
s2
s3
s4
s5
s6
s7
s8

s s s s s s s s

1 1 1 0 0 1 1 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 1 1 1 1 1 0 1

0 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1

1 1 1 0 0 1 1 0

0 1 1 1 1 1 0 1

1 2 3 4 5 6 7 8

TABLE I. SIGNAL MUTUAL EXCLUSION MATRIX FOR EXAMPLE 1

SEMi,j = 0. This holds only for the pairs {s1, s4}; {s1, s5};
{s1, s8}; {s4, s7}; {s5, s7} and {s7; s8} in Variants I and II,
from Example 1 shown in Table I.

The multischedule has one extra feature in addition to the
native schedule. As can be seen in Fig. 5, one slot in the
multischedule can be occupied by more than one ECU. In the
present case, signals s7 and s8 are scheduled in multiframe
MS1,3. Signal s7 is from ECU 2 and signal s8 is from ECU 3.
This results in a feasible multischedule only if the signals
from these two ECUs do not appear in the same variant.
The information is represented by the ECU Mutual Exclusion
Matrix (EEM). EEMi,j is equal to 1 if, and only if, ECUs i
and j appear in some variant together, otherwise, 0. The EEM
matrix for Variant I and Variant II of Example 1 is shown in
Table. II.

ECU 1    ECU 2     ECU 3

ECU 1

ECU 2

ECU 3

1  1  1

1  1  0

1  0  1

TABLE II. ECU MUTUAL EXCLUSION MATRIX FOR EXAMPLE 1

C. Conflict graph
New variants are added to the multischedule during the

incremental scheduling. These new variants can cause an
unavoidable violation of backward compatibility because two
signals that were placed in the same position can appear in
the new variant together. To minimize the number of such
violations, tracking of these signal conflicts is necessary. The
conflict graph CG is introduced for the purpose.

Each node from the set of nodes from the conflict graph
NCG represents a signal that conflicts. The undirected edges

ECG then represents the conflicts itself. Moreover, the nodes
can be marked by the weighting function to express the
significance of backward compatibility violation when the
position of the signal, represented by the node, is changed.
The used weighting function will be described in detail later
in the paper.

D. Incremental scheduling algorithm
The main idea of incremental multi-variant scheduling algo-

rithm, depicted in Fig. 6, is to place a signal in the multisched-
ule, according to a given order (described in Sec. III-D1). The
algorithm is divided into three stages, A, B and C. In Stage A,
algorithm initialization and signal sorting are performed.

In Stage B, the signals are placed in unit multischedules (one
per-ECU). Because the entire slot is reserved for a particular
ECU, and no two slots can overlap in a native schedule,
a unit multischedule is made for each ECU separately. The
unit multischedule decides the cycleID and the offset in the
frame from which a particular signal will be sent. Moreover,
for each ECU it is known as to how many slots are to be
allocated by the algorithm in the final multischedule, at the
end of Stage B. While Stage B is executed on per-ECU
basis, the computational complexity of the algorithm is reduced
following the divide-and-conquer paradigm.

During Stage C, the slots from unit multischedules are
merged into the final multischedule. The following is the
detailed explanation for each part of the algorithm:

Fig. 6. Flow chart of the algorithm

1) Ordering of the Signal set: Order of signals is important,
because the signals are placed into the multischedule, one
by one. In [17], the authors have shown that the 2D bin-
packing problem and the static segment scheduling problem
have similar features. They propose to organize the signals in
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the order of their increasing period. This ordering works well
when no time constraints are defined. Therefore, the proposed
algorithm uses a combination of multiple orderings. The signal
set is sorted in three steps (i.e. the sorting criteria are applied
one after the other while a stable sorting algorithm is used),
according to the decreasing payload, increasing window (gap
between the release date and the deadline) and increasing
period.

Sorting according to the decreasing payload and the increas-
ing period ensures that most bandwidth-demanding signals
are scheduled first; less bandwidth-demanding signals, which
are more suitable for filling small gaps of the remaining
bandwidth, are scheduled later. Ordering according to the
increasing window ensures that the signals which are hard
to schedule (their placement in the multischedule is more
limited by the time constraints) are scheduled sooner. This
policy has been found to obtain the most efficient solutions for
non-incremental scheduling, as shown in [23], where different
scheduling policies were empirically examined.

2) Reading of the original multischedule: At the beginning
of Stage B, it is necessary to read the positions of the
signals from the original multischedule MSO and place all their
occurrences at the same position in the unit multischedule
MSECU of the currently scheduled ECU. If the signal is not
placed in the original schedule, it is added to the set of new
signals SLN that need to be scheduled later. The pseudocode
is shown in Alg. 1.

Input : Original multischedule MSO,
Ordered set of signals SL,
Signal Mututal Exclusion Matrix SEM

Output: Original unit multischedule MSECU ,
Conflict graph CG, Set of new signals SLN

for each signal si in SL transmited by the ECU do
if si is in MSO then

place signal si into MSECU at the same position as
in MSO;
CG←FINDCONFLICTINGSIGNALS(si, MSECU , SEM);

else
SLN = SLN ∪ si;

end
end

Algorithm 1: Reading of the original multischedule

The currently placed signal occurrence can violate a con-
straint which prevents the simultaneous transmission of two
signals. This happens if the newly introduced variant has two
signals that were never used together in any variant, and were
occupying overlapping positions in the original multischedule
(e.g., signals s1 and s5 in Example 1). Hence, it is important
to check this violation after placing each signal occurrence,
by using the method FINDCONFLICTINGSIGNALS. The SEM
matrix was used for this purpose. If two signals si and sj
overlap and the value of SEMi,j = 1, then the violation occurs.
If this violation arises, unordered pair(s) {si, sj} are added to
the conflict graph CG as new edge in ECG, where si is the
current signal and sj is the signal that conflicts with si. At the

end, the CG contains all signals with a conflict.
In Example 1, while scheduling unit multischedule in cycle 2

of ECU 1 for the new Variant III, the signal s5 conflicts with
signal s1.

3) Repairing of the original multischedule: After reading
of the original multischedule, the violations are still included
in the original unit multischedule, but they are represented by
CG. The only way to avoid the violation is to remove some
conflicting signals from the unit multischedule. It is beneficial,
as expressed by the objective, to keep as many signals (their
occurrences) in the original positions as possible to have the
minimal number of backward compatibility violations. This
sub-problem can be expressed as the maximal independent set
problem (MIS) in the conflict graph. The resulting subset of
signals is denoted as SMIS .

In Example 2, let a new set of original variants - Variant I
to Variant III as shown in the upper part of Fig. 7, to be
considered. In the current scheduling iteration, what is needed
is the creation of new Variant IV that contains all the signals
from all the original variants (Variants I to III). The graph that
represents CG for ECU 1 of the given Example 2 is shown in
the lower part of Fig. 7. This example is rather simple, but it

s2

s7

s1

s8

s9

s3

s4

s5

s6

Fig. 7. Example 2 - The conflict graph CG for scheduling Variant IV
containing all the signals from variants I, II and III

can be much more complicated in real situations.
If the subset SMIS is the solution of MIS over the con-

flict graph, then NCG \ SMIS will be the minimal subset
of signals, whose removal would solve all the conflicts.
In the case of Fig. 7, the solutions {s3, s4, s5, s6, s7} =
SMIS and {s3, s6, s7, s8, s9} = SMIS are equivalent from
the viewpoint of the number of signals. However, solution
{s3, s4, s5, s6, s7} = SMIS is assumed to be better, because
signals s4 and s5 have two occurrences each, against signals
s8 and s9, which have just one occurrence. Considering this,
it is preferred to remove the signals with fewer occurrences.
Therefore, the algorithm uses priorities for solving this prob-
lem. The number of signals has a higher priority, compared
to the number of occurrences of the signal, which is achieved
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by using the proper conflict graph nodes weighting function
wi = |NCG| + 1

pi
. According to the formula, adding one

extra signal to SMIS increases the objective value by at least
|NCG|. Taking into account that pi ≥ 1, the sum of 1

pi
over

all nodes in the conflict graph cannot exceed the value |NCG|.
It ensures that any change in the number of signals used in
SMIS is more significant than the change in the number of
signal occurrences. Thus, the weight wi reflects the priorities.
The extension of MIS to the maximal weighted independent
set problem (MWIS) is needed for this purpose.

ILP model (2) is employed for solving MWIS thus:

max
~x

∑
i|si∈NCG

wixi

subject to xi + xj ≤ 1, ∀i, j | {si, sj} ∈ ECG
where wi = |NCG|+

1

pi
∀i ∈ NCG (2)

xi ∈ {0, 1} ∀i ∈ NCG
In the model, NCG represents the set of nodes in conflict

graph CG. Signal si belongs to the subset SMIS if, and only if,
xi = 1. Signals from NCG \SMIS are, consequently, removed
from the unit multischedule.

Input : Original unit multischedule MSECU ,
Ordered set of unscheduled/new signals SLN ,
Signal Mututal Exclusion Matrix SEM,
Conflict graph CG

Output: Unit multischedule MSECU

for each signal si in SLN do
infeasiblePosition ← true;
while infeasiblePosition = true do

placePosition =
FINDPOSITIONFORSIGNAL(MSECU, si, SEM);

if placePosition not found then
break;

end
(cycle, slot, offset) ← placePosition;
infeasiblePosition ← false;
while cycle < hyperperiod do

if (cycle, slot, offset) is not suitable for signal
then

infeasiblePosition ← true;
break;

end
cycle += pi;

end
end
if infeasiblePosition then

placePosition ←ALLOCATESLOT(MSECU, si);
end
place signal si into MSECU at placePosition;

end
Algorithm 2: Scheduling of unscheduled/new signals

4) Scheduling of unscheduled/new signals: New signals and
conflicting signals removed from the original multischedule

are put in an ordered set, called the signal list SLN (the list
contains {s1, s5} for ECU 1 in Example 1). This list is ordered
as explained in Sec. III-D1. Algorithm 2 takes the signals, one
by one, from the SLN and tries to place their first occurrence
in the first feasible position, in the unit multischedule, using
the FINDPOSITIONFORSIGNAL method. It checks all offsets
in the first frame (the frame in the first slot and in the cycle
of the signal’s release date) first. If it is not possible to place
the signal there, the algorithm keeps repeating this exercise
up to the cycle, determined by the signal’s deadline. If it is
still not possible to find a place in the first slot, the algorithm
continues trying to find a place in the second slot, third slot
and the subsequent ones. Once the feasible position for the first
occurrence is found, the other occurrences are also checked for
feasible placement.

If no position is available for the signal in the unit multi-
schedule, the algorithm calls for the ALLOCATESLOT method
to allocate a new slot and places the signal into it with the
cycleID equal to the release date and offset equal to 0. This
procedure is repeated until all the signals from the SLN are
scheduled.

Using this one-shot constructive heuristics for scheduling
instead of two-stage heuristics (e.g., the one introduced in [18])
has a significant benefit as it can schedule signals with a larger
period in frames with a shorter period.

5) Extensibility optimization: Now, the final number of slots
that the ECU will maintain is known. However, it is needed to
care about the future signals for the incremental scheduling and
proactively enable their insertion. Experiments with the non-
incremental problem have shown that the proposed scheduling
algorithm allocates a near optimal number of slots, when all
the signals are ordered according to the procedure outlined
under Sec. III-D1. This is not true in the case of incremental
scheduling, because, for example, a signal from the original
multischedule, with a larger period, will be scheduled before
some new signal with a shorter period. The reader can imagine
the case where the payload of the slot is 16 bits; there is
only one variant with 16 signals with the one bit payload,
the period equal to the hyperperiod and an empty original
multischedule. In that case, the first cycle of the first slot will
be filled completely, according to the first-fit policy of the
scheduling algorithm, while the other cycles remain unfilled.
In the second iteration, a new variant will have to be crated,
which uses all the signals and, furthermore, one signal with
a period equal to one communication cycle, and a payload of
one bit. The algorithm will have to allocate a new slot for
the new signal during the incremental scheduling, because the
first slot of the first cycle has already been filled completely.
However, one slot would have been enough even in the second
iteration of the incremental scheduling if the algorithm would
spread the signals smartly in the first iteration, and that is why
Extensibility optimization is introduced.

Extensibility optimization aims to restructure the multi-
schedule so that the multischedule remains ready for future
scheduling iterations (i.e., it can accommodate as many new
signals as possible) and the number of allocated slots is
preserved. One way to satisfy this requirement is to perform
the extensibility optimization on each slot separately. In the
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Fig. 8. Example 3 - Process of dummy signals generation

beginning, the algorithm computes the number of bits |freeBits|
in the slot (considering all cycles) that are not allocated to any
signal. It means that the sum of the payloads of the signal
occurrences that could be added to this slot in future is equal
to |freeBits| in the ideal case.

In Example 3, where only new signals s3, s4 and s5
are present in the slot currently being optimized, the value
|freeBits| is equal to 40 bits, which is counted from the hatched
part of the schedule (see Fig. 8.a). Moreover, the probability
distribution of these parameters in the schedule is known
from the pi and ci of the signals used in the schedule. This
probability distribution is represented by a contingency table
shown in Fig. 8.b. If the explicit parameters distribution for
future signals is not given by designers, the algorithm assumes
that the parameters of the future signals will follow this derived
distribution.

A set of dummy signals D, whose sum of the payloads
of all signal occurrences is equal to or slightly less than
|freeBits| and whose payloads and periods correspond to the
contingency table, is generated. The generated set of dummy
signals D for Example 3 is presented in Fig. 8.c. All signals
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Fig. 9. Example 3 - Slot rescheduling in the extensibility optimization

placed in the current iteration (those that were in the SLN list)
are, consequently, removed from the multischedule of the slot
and merged with those in set D to the ordered set SLS (see
Fig. 9.a). List SLS is also ordered according to the procedure
outlined under Sec. III-D1. Then the signals from SLS are
scheduled back to the slot according to the procedure given
under Sec. III-D4.

If the resulting multischedule has only one slot, as in the

one shown in Fig. 9.b, then the dummy signals are removed
from the slot, and the extensibility optimization for the given
slot is finished. Fig. 9.c shows the resulting structure of the
slot after the extensibility optimization of Example 3. Then the
algorithm goes to the next slot.

Otherwise, the new |freeBits| is calculated as |freeBitsnew| =
bW ·H−1.05 · (W ·H−|freeBits|)c, where W is the maximal
frame payload length and H is the height of the slot (i.e.,
number of cycles in the hyperperiod). This formula represents
the 5% decrease in the volume allocable by the new dummy
signal in the slot (i.e., the total number of free bits in the slot
over the entire hyperperiod). Then, the new dummy signals
are generated according to |freeBitsnew|, and the scheduling is
again started. This procedure is repeated until only one slot is
scheduled or |freeBitsnew| ≤ 0.

6) Slot scheduling: After completing Stage B for all the
ECUs, the values of yi and oi become known for all the
signals. Also, the number of slots allocated for each ECU
becomes known. Then, the last step is to find the positions
of the slots from the unit multischedules of the ECUs in the
final multischedule. According to the problem definition, slots
of no two ECUs can overlap in one variant, but those not
used in the same variant (ECU 2 and ECU 3 in the original
multischedule of Example 1) can overlap in the multischedule.

The slot scheduling problem is then to assign the slots, from
the unit multischedules to the final multischedule, so that the
number of allocated slots in the multischedule will be minimal.
The problem can be formulated in terms of graph theory.

The algorithm constructs graph GSLOT , where the nodes
are the slots of the unit multischedules. There is an undirected
edge between slots li and lj , if, and only if, their transmitting
ECUs ECU(li) = ei and ECU(lj) = ej are both used by
some variant - i.e., EEMei,ej = 1. It is to be noted that the
slots from one ECU form a clique in GSLOT . Moreover, the
slots that are to be scheduled in one variant together form a
clique. Now, graph coloring is used to solve the slot scheduling
sub-problem. Each color of the resulting graph corresponds to
one slot in the multischedule.

For Example 4, let it be assumed that there are five ECUs
(e1 . . . e5) and each ECU has scheduled only one slot in the
unit multischedule (let the slots be labeled as l1 . . . l5 where
ECU(l1) = e1, etc.) Furthermore, assume that there are three
variants. Variant I uses l1, l2, l3, Variant II uses l1, l3, l4, and
Variant III uses l1, l4, l5. The graph GSLOT for this problem
is depicted in Fig. 10. The resulting color/slotID in the final
multischedule is indicated by the colored number, next to the
node on the right side of the figure. In the example, the final
multischedule has three slots.

The graph coloring problem is known to be NP-hard, but
the heuristic algorithm can often find an optimal solution
in polynomial time for slot scheduling cases. The minimum
number of colors in the graph (chromatic number) must be
bigger than or equal to the number of nodes in the biggest
clique. It often so happens that the size of the biggest clique is
equal to the chromatic number of GSLOT , because in real cases
cliques in graph GSLOT are big. Finding the maximum graph
clique is also an NP-hard problem. Fortunately, it is possible to
use the number of slots in the variant, with the most slots as the
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Fig. 10. Example 4: Graph GSLOT coloring

lower bound, which is consequently a valid lower bound (LB)
for the chromatic number too. Then, sequential heuristics is
used to solve the graph coloring problem. The heuristics takes
all the nodes in an arbitrary order and tries to color them, one
by one, using the minimum possible number of colors. The
biggest used color number becomes the upper bound (UB)
for the coloring problem. If this upper bound is equal to the
lower bound, then it is considered that heuristics has found
an optimal solution, otherwise the bounded ILP model for the
graph coloring, presented by the system of equations (3), is
used. Note that the ILP model is accelerated by the knowledge
(i.e., LB and UB) obtained by the heuristics too.

min z

subject to k · wi,k ≤ z ∀i, k∑
k=1...UB

wi,k = Li ∀i

wi,k + wj,k ≤ 1 ∀i, j, k | EEMi,j = 1

wi,k = 1 ∀i, k | w̃i,k = 1

where wi,k ∈ {0, 1}; ∀i, k
z ∈ [LB,UB] (3)

Here z represents the biggest assigned color number (i.e.,
slotID). Variable wi,k = 1, if i-th ECU has the k-th slot of
the final multischedule. w̃i,k is equal to 1, if, and only if, the
i-th ECU has the k-th slot of the original multischedule and
if the slot is not a conflicting one according to the EEM. Li
is the number of slots in the unit multischedule of the i-th
ECU, and LB (UB) is the given lower bound (upper bound
respectively).

If there is a conflict (as in Variant III of Example 1), the
conflict is resolved by WMIS as explained in Sec. III-D3, with
the difference that now the vertices in the conflict graph are
slots rather than signals.

After slot scheduling, the full assignment si → [yi, ti, oi]
(final multischedule) becomes known for all the signals. It is
also decided, whether the resulting schedule is feasible. If the
number of allocated slots does not exceed the slots threshold,
the schedule is considered feasible.

E. Schedule feasibility

The provided algorithm tries to find the schedule with
the minimum number of allocated slots. However, for given
network parameters, the resulting schedule can be infeasible,
because it exceeds the slots threshold. Nevertheless, if the basic
network parameters are not strictly given, it could be possible
to find a feasible schedule with modified configuration of the
network parameters. Considering that the signal parameters are
immutable, the Exploration algorithm 3 can modify the length
of the frame or the duration of the communication cycle. The

Input : Benchmark instance
Output: Number of allocated slots for different frame

length and cycle duration
for each frame payload length
w ∈ {max ci,max ci + 16, · · · , 2048} do

for each duration of the communication cycle
m ∈ {min pi, · · · , min pi

32 , min pi
64 } do

Call scheduling algorithm with W = w, M = m;
end

end
Algorithm 3: Algorithm for the network parameters explo-
ration

exploration algorithm enumerates all possible combinations
of the network parameters and evaluates them by the above
described algorithm. The results are provided to the network
designer, who can choose the most suitable one. Thanks to the
small computation complexity of the scheduling algorithm (see
Table IV), the exploration can be accomplished in a reasonable
time.

It is important to note here, that exploration of the network
parameters is possible in the first iteration of the incremental
scheduling only. Tuning would introduce a significant back-
ward compatibility violation later on. Thus, if the resulting
schedule of some later incremental iteration is not feasible, it
is recommended to generate the new one by non-incremental
multi-variant scheduling. On one hand, this means the loss of
backward compatibility completely, but, on the other hand, it
saves both the number of allocated slots, as will be shown
in Sec. IV-D, and the bandwidth, as the result of parameters
tuning.

IV. EXPERIMENTAL RESULTS

The proposed algorithm was coded in C++ and tested on a
PC with an Intel R©CoreTM2 Duo CPU (2.8 GHz) and an 8 GB
RAM memory.

Eight different benchmark sets were used to evaluate the
algorithm and assess the impact of the used methodologies on
the resulting schedules. One of the instances used for testing
was obtained from an industrial partner, and that represents
a realistic case with 23 ECUs (11 ECUs are common to
all variants) and more than 5000 signals. This instance was
analyzed, and a probabilistic model derived to generate 30
instances, with parameters similar to those of the real case
instance.
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Fig. 11. Distribution of signal parameters in Synth sets

The distributions of payloads and periods in this set are
shown in Fig. 11. Neither release date nor deadline constraints
were imposed on the signals here. These synthesized instances
belong to the Synth benchmark set.

The remaining sets were based on the extended Society
of Automotive Engineers (SAE) benchmark set (originally
used [18] and generated by the Netcarbench tool [29]). The
signal parameters’ distributions of these sets are shown in
Fig. 12.

Fig. 12. Distribution of signal parameters in SAE sets

The parameters of the instances are shown in Table III,
where the second column presents the number of ECUs
included in the particular set. The third column presents the
duration of the communication cycle, and the fourth one
presents the maximum frame payload length. The fifth and
sixth columns present the percentage of the signals with
imposed real-time constraints. The seventh column presents
the slots threshold calculated for the network configuration
with the communication cycle containing only static segment
and NIT with duration of 50 µs. It can be observed, from the

Set ECUs [-] M [ms] W [bits] Release Deadline [%] Slots
dates [%] threshold [-]

Synth 23 5 64 0 0 176
SAE1 3 15 32 0 0 641
SAE2 3 15 32 25 0 641
SAE3 3 15 32 19 19 641
SAE4 3 15 32 40 0 641
SAE5 6 15 64 20 0 546
SAE6 6 15 32 20 20 641
SAE7 23 15 32 0 0 641

TABLE III. PARAMETERS OF INDIVIDUAL BENCHMARK SETS

table, that the benchmark sets SAE1 to SAE6 share the same
periods and payloads distributions, but they differ in the real-

time constraints imposed on them and the number of ECUs
used in the instance. While the instances SAE1 to SAE4

used just three ECUs, the instances SAE5 and SAE6 used
six ECUs. The instance SAE7 used 23 ECUs. The portion
of the signals, with imposed real-time constraints (i.e., release
dates or deadlines), varies from 0 % in set SAE1 to 40 % in set
SAE4. All the sets use FlexRay with 10 Mbit/s of bandwidth.

The SAE sets were designed for non-incremental, single-
variant scheduling only. Therefore, the multi-variant instances
for incremental scheduling iterations were generated artifi-
cially. A detailed description of the generation process can
be found in Appendix A. The benchmark generator and all its
configuration files (one for each benchmark set) used in this
study, are available in [30].

In the following subsections IV-A and IV-B, the focus would
be on non-incremental case instances, while subsections IV-C,
IV-D and IV-E deal with the investigation of incremental multi-
variant cases. Exploration of suitable network parameters is
investigated in subsection IV-F and subsection IV-G concludes
this section with the verification of the proposed schedules on
a real FlexRay network.

A. Evaluation of various scheduling techniques for non-
incremental scheduling

Different approaches to scheduling are proposed in the
introductory part of this paper. The first technique that com-
pletely prevents the problem of dissimilarities among particular
vehicle variants is to create one schedule for all variants, with
all the signals included. However, this technique needs the
most bandwidth (i.e., it allocates the highest number of static
slots). This explains why this technique is used as a reference
for other related investigations. It means that the number of
the allocated slots by such a common schedule (blue star)
represents 100 % in Fig. 13.

Fig. 13. Evaluation of different scheduling techniques

Creating independent schedules (aqua colored diamond in
Fig. 13) separately for each vehicle variant is the opposite
extreme. This technique provides an ideal solution from the
viewpoint of bandwidth utilization. However, this is the most
unacceptable solution from the viewpoint of compatibility of
variants, because one signal is placed in different positions in
different variants.
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The proposed multi-variant scheduling solution, which pre-
serves bandwidth utilization, besides sharing constraints to
the maximum extent possible, is depicted as blue triangles
in Fig. 13. The scheduling problem is NP-hard. Thus, the
algorithm (Fig. 6) can, sometimes, miss the optimal solution
as a trade-off for reduction in time complexity. That is why
the lower bound values are presented in the figure. The idea of
lower bound calculation is based on the lower bound algorithm
for 2D bin packing. The minimal number of slots ai,j needed
to exchange the required volume of the data through the
bus is calculated independently for each ECU i and each
variant j. Then, the minimal number of slots needed by ECU i
in the multischedule is equal to ai = maxj ai,j , because
the multischedule has to contain signals from all variants.
Consequently, the exact algorithm used for slot scheduling,
explained under Sec. III-D6, is utilized to compute the feasible
lower bound used here.

Moreover, the figure presents the volume of the messages
(i.e., the total number of bits used by all signals over the
hyperperiod, divided by the bit capacity of one slot and the
number of cycles in hyperperiod) as downward pointing green
triangles. Thus, the reader can evaluate the optimality gap of
the heuristic algorithm.

It can be seen that the multi-variant scheduling solution
needs just a little more bandwidth than independent schedul-
ing, while preserving the sharing constraint. Compared to the
common schedule, it can save about 10-30 % of the bandwidth.
Moreover, the scheduling algorithm provides the solutions that
are close to the lower bound (as many as 179 out of 240
solutions reached the lower bound value).

B. Evaluation of the influence of similarity on non-incremental
multi-variant schedule

The parameters of instances influence the result of multi-
variant scheduling. This evaluation aims to capture the sen-
sitivity of multi-variant scheduling to the similarity of the
variants. Benchmark instances, based on Synth set restricted to
four variants, were created for this experiment. Three different
coefficients were used to express the variants’ similarity.
Coefficient α represents the portion of the variant specific
signals, which are included in a single variant only. Coefficient
γ represents the portion of common signals, which form part
common to all variants. The percentage of the shared signals
(i.e., the remaining signals, which are common to two or more
variants, but not to all of them) is described by coefficient
β = 100− α− γ. The graph, showing the dependency of the
number of allocated slots on these coefficients, is shown in
Fig. 14.

If all signals are common to all variants (see left corner of
Fig. 14), then it is enough to create one common schedule. This
case naturally allocates the most slots. In the other extreme,
when all signals are specific (see right corner of Fig. 14), the
schedules can be created independently, and those schedules
overlap each other. Hence, in the case of four variants, the
schedules allocate almost one-quarter of bandwidth regarding
the common schedule. The central corner in Fig. 14 represents
the instances, whereβ = 100% (α = γ = 0%). Here, the

Fig. 14. Evaluation of the non-incremental multi-variant scheduling

number of used slots is close to one-half, as compared to
those of the common schedule. The rest of the space almost
represents the linear interpolation between those three extreme
cases.

C. Evaluation of the influence of similarity on the incremental
multi-variant schedule

So far, all the experiments were performed for non-
incremental scheduling scenarios to study the multi-variant
scheduling aspect first. Therefore, the next step is to investigate
how the increasing number of iterations influences the solution
in incremental scheduling.

For this, let extensibility optimization be set aside for now.
The multi-variant coefficients of the Synth benchmark set
were simplified for this experiment so that the result can be
visualized in a 3D graph. The number of common signals
is equal to the number of shared signals in the benchmark
set used here (mathematically expressed β = γ = 100−α

2 )
in the first iteration. For the later interations, instead of
trying to preserve the multi-variant coefficients as much as
possible, the new variants follow the more realistic scenario,
wherein the new variant is based on the randomly choosen
preceding variant. This new variant introduces new variant-
specific signals and ECUs, besides introducing changes in
shared signals. The common signals are preserved. This way,
the results follow the real case situation.

Fig. 15 presents the dependence of the number of allocated
slots in resulting multischedule on the portion of common and
shared signals and the iteration of the incremental scheduling.
The maximum increase in the number of used slots is between
the first and the second iteration. This increase is caused by the
density of the multischedule, created during the first iteration.
Often, the new signal does not suit any slot allocated for a
given ECU in the original schedule, and, therefore, a new
slot has to be allocated for such a signal. If such a situation
occurs for each ECU, the total number of slots will have to be
increased by 23 (it is to be noted that the Synth benchmark
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Fig. 15. Evaluation of incremental multi-variant scheduling

set contains 23 ECUs). Those new slots introduce porosity in
the multischedule, which reduces the need for allocation of
new slots in subsequent iterations. One can see that the slope,
which indicates the increase in the number of slots, correlates
with the slope after the first iteration in Fig. 14 (it equals the
line from α = 100, γ = 0 to α = 0, γ = 50). The slope
becomes progressively gentler during subsequent iterations of
incremental scheduling, because new variants cannot preserve
the multi-variant coefficients.

D. Evaluation of the extensibility optimization for the incre-
mental scheduling

The algorithm of extensibility optimization, introduced un-
der Section III-D5, tries to restructure the multischedule in
such a way that the probability of the algorithm needing
allocation of extra slots for new signals in future is small.
In the ideal case, when the extensibility optimization knows
the future, the resulting incremental multischedule would be
the same as the multischedule, created by non-incremental
scheduling. As the algorithm does not know the future, it
just tries to predict (as explained under Sec. III-D5). This
experiment evaluates the behavior of the extensibility opti-
mization in Fig. 16. In the upper part of the figure, four rows
are shown. Among these, the row with square marks refers
to the lower bound. The row with rhomboid marks denotes
the results of non-incremental scheduling for comparison of
incremental versus non-incremental solution. It is to be noted
that, in case of non-incremental scheduling, no backward
compatibility is preserved. The row marked by solid circles and
the one marked by triangles represent the results achieved for
incremental scheduling algorithm, the former with extensibility
optimization and the latter without it. The difference between
non-incremental and incremental scheduling cases is the cost
of preserving backward compatibility.

The results show that extensibility optimization is most suc-
cessful during the first iteration. It follows from the scope over

1 2 3 4 5 6 7 8 9 10
Iteration

100

110

120

130

140

A
ve

ra
ge

nu
m

be
r

of
al

lo
ca

te
d

sl
ot

s

Incremental scheduling without extensibility optimisation
Incremental scheduling with extensibility optimisation
Non-incremental scheduling
Lower bound

Fig. 16. Evaluation of extensibility optimization for the incremental schedul-
ing

which the optimization can operate. While the algorithm can
restructure the entire multischedule during the first iteration,
when all the signals are new, the scope becomes significantly
restricted during subsequent iterations. That explains why
during the last iteration, the upper two lines of the graph are
close to each other. The optimization is not able to suppress
the number of allocated slots to the number of allocated slots
by non-incremental scheduling. This is caused primarily by
two constraints: backward compatibility constraint that affects
mainly late iterations, and the constraint that restricts the
algorithm to keep the number of allocated slots equal to the
number of those allocated in the case without optimization
(recall that extensibility optimization affects the number of
allocated slots in subsequent iteration and not during the
current one). The second constraint is most significant in the
first iteration.

It is also an important observation that in later iterations,
the lines representing incremental scheduling are similar to
those representing non-incremental scheduling, in terms of
their slope. Thus, the scheduling can utilize the porosity in
the schedules efficiently.

E. Evaluation of Incremental Multi-variant scheduling algo-
rithm

This section focusses on a comprehensive evaluation of the
performance of the proposed algorithm, in contrast to previous
evaluations, which focused only on the behavior of incremental
and multi-variant scheduling, and aims to present the results
in a precise form.

The evaluation-sets follow the parameters’ distribution, as
described under the introduction of Sec. IV. The instances
contain more than 5000 signals in the first scheduling iteration
and more than 6000 in the last one.

The results of the algorithm are presented in Table IV. In this
table, the row of the cell determines the set, and the column
the iteration of incremental scheduling. Each cell presents the
number of allocated slots in the multischedule. The value is
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Iteration
Set 1 2 3 4 5 6 7 8 9 10

Synth 105.7 114.3 118.9 121.9 124.5 127.9 130.3 132.2 134.7 136.5
SAE 1 122.8 139.6 143.9 147.2 149.7 153.4 156.5 160.3 163.9 167.3
SAE 2 131.5 143.7 147.8 151.1 154.7 158.2 161.3 164.0 167.2 170.2
SAE 3 131.6 144.9 149.4 152.6 156.6 160.3 162.8 165.2 168.4 170.9
SAE 4 132.0 142.9 146.9 150.3 153.0 156.0 158.7 161.5 164.0 167.1
SAE 5 64.8 75.2 78.2 80.6 82.9 84.9 86.6 88.4 90.1 91.7
SAE 6 127.1 145.9 151.4 155.0 158.6 161.8 165.1 168.3 171.5 174.6
SAE 7 99.3 120.6 127.3 133.0 136.9 140.4 143.5 147.4 150.6 153.6

Ex. time [ms] 314.0 20.0 16.6 17.3 16.2 18.7 19.4 17.4 19.0 18.6

TABLE IV. NUMBER OF SLOTS AND EXECUTION TIME OF
INCREMENTAL MULTI-VARIANT SCHEDULING ALGORITHM ON DIFFERENT

SETS

averaged over all the instances in the set. The last row shows
the execution time of the algorithm, for the given iteration,
averaged over all the benchmark instances. The first iteration
has been the slowest one, because it has to place the biggest
number of signals; besides, the conflict graph also is mostly
much larger. Even though, the execution time in hundreds of
milliseconds for industrial sized instances is incomparable with
a development cycle of any vehicle variant.

F. Exploration of the network parameters
In order to evaluate the influence of the network parameters,

an extra benchmark instance, for which the number of allocated
slots in the resulting schedule reaches the slots threshold, was
created. The duration of the communication cycle is 8 ms in
the instance. Similarly, the minimum period min pi is also 8 ms
and, hence, the evaluated durations of the communication cycle
are 8, 4, 2 and so on down to 1

8 ms. The instance contains more
than 25000 signals. The signals follow the signal parameter
distribution as signals in the Synth benchmark set, but the
signal periods were changed from a 5 ms scale to an 8 ms
scale. The network parameters were enumerated and evaluated
by Algorithm 3 and the results are presented in Fig. 17.
In the figure, each point represents one combination of the
network parameters together with the resulting schedule. The

Fig. 17. Influence of the network parameters on the efficiency of the resulting
schedule

figure shows three data rows, where each data row represents
one configuration of the duration of the communication cycle.

Only three different values for communication cycle duration
are shown in the figure to simplify the readability. Note that
the modification of the network parameters does not only
influence the number of slots in the resulting schedule, but
it also influences the slots threshold. Thus, Fig. 17 presents
the number of allocated slots as a percentage of the slots
threshold rather than as a number directly. The percentage is
also represented by the color of each point, where all the points
with dark blue color are over 100 %. It loosely corresponds
to the portion of the communication cycle used by the static
segment, taking into account that NIT is minimal and the
Dynamic segment and Symbol window are not used.

The length of the frame is bounded from the bottom by the
payload of the longest signal (which is 32 bits in our case).
Similar limitation holds for the duration of the communication
cycle which is bounded from the top by the signal with the
smallest period.

It can be observed from Fig. 17 that the decrease in the
duration of the communication cycle causes the increase in
the allocated portion of the communication cycle. The signals
with the longest period (e.g., 512 ms in our case) must be
transmitted with the shorter period (e.g., 256 ms, if the duration
of the communication cycle was decreased from 8 ms to 4 ms),
which causes the signal retransmissions and, consequently, the
increase in the allocated portion of the communication cycle.
Thus, this modification often does not solve the problem with
the infeasibility of the resulting schedule.

On the other hand, the modification of the length of the
frame can significantly decrease the allocated portion of the
communication cycle. If the length of the frame is prolonged,
then the bandwidth of the bus is used more efficiently because
fewer macroticks are consumed by, for example, the inter-
ECU synchronization mechanisms (action points), etc. The
prolongation is efficient as long as the number of allocated
slots is strictly greater than the number of ECUs. If the
resulting number of allocated slots is small, the overhead of
the non-filled slots overwhelms the gained efficiency.

G. Verification of the resulting schedules on hardware
The last step in evaluation is to verify the feasibility of

the resulting schedules, for which, two methods were used.
The first method utilizes the feasibility validator, which goes
through all the hard constraints, derived from the commu-
nication protocol (in the present case FlexRay protocol),
multi-variant and incremental scheduling, and then checks the
validity of their results. The advantages of validator are its
versatility and efficiency, because they can handle a huge
number of instances in a matter of seconds. This algorithm was
used to check all the schedules used for the present evaluations.
However, the validator cannot check all the hardware-related
constraints and parameters, because its point of view is at too
high a level (it just checks the correctness of schedules with
respect to the mathematical model of the bus, and not the
real bus). While deploying the schedule to the real network,
the low-level parameters (such as duration of macrotick-
and microtick-relating to the bandwidth used, the number of
macroticks in communication cycle, duration of static slot in
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the number of macroticks, duration of static segment, static
slot, symbol window, and network idle time, besides more
than 80 other parameters - for more details the reader can
refer FlexRay specification [26]) will have to be properly set
to obtain the functional solution. For this reason, the second
method - verification of the resulting schedules on hardware -
was also included.

FlexRay bus

Fig. 18. The block diagram with wiring of the evaluation system

Fig. 19. FlexRay system with six Rapid Prototyping Platform boards

For the testing purpose, the authors used a system of six
ECUs, represented by Rapid Prototyping Platform boards,
constructed in their labs [31], which were interconnected with
FlexRay bus (see Fig. 18). The bus was connected to a note-
book with FlexRay analyzer and Vector CANoe software [32]
for capturing and examining the communication. Figure 19
presents a photograph of the system used.

The scheduling algorithm provides the resulting sched-
ules and all the network configuration parameters in FIBEX
database format [33]. CANoe can read the database and
accordingly parse the captured communication. Such a link
between scheduler and analyzer facilitates easy verification of
the communications happening on the bus. Moreover, CANoe
also provides the counters for erroneous frames (e.g., frames,
which do not follow the schedule as presented in FIBEX
database).

A new set of instances was used for verification, because the
number of ECUs was only six. The signal set was generated

in such a way that the communication in the static segment
almost covers the full bandwidth. The payload data was set
to ’1’ for each signal. It allows distinguishing the signals in a
plain stream from analyzer (the value ’1’ in the stream serves
as the delimiter of messages), even when the FIBEX database
is not used. The firmware generator, which takes the schedule
for a given iteration of given variant and generates the code in
C for each board involved, was implemented. The code was
compiled and uploaded to the corresponding board.

The second method is more rigorous, but is much more time-
demanding. As it is necessary to analyze the schedule for each
variant and each iteration, independently, this method takes
hours to go through the process for just one instance. More-
over, this method cannot check if the constraints, relating to
multi-variant and iterative scheduling (e.g., sharing constraint
and backward compatibility constraint) are satisfied. Therefore,
both methods were used to demonstrate the correctness of the
proposed algorithm.

V. CONCLUSION

This paper tackles the problem of scheduling of the time-
triggered internal vehicle communication for multiple vehicle
variants. It presents the solution where the shared constraint
among variants is preserved, while optimizing the utilization
of the bandwidth. Moreover, the proposed solution takes the
incremental iterations of variant development into account and
minimizes the number of backward compatibility violations.
It also uses an extensibility optimization heuristic, which tries
to predict future signals of the following design iteration and
enhances the schedule, such that it allocates less bandwidth
subsequently. The results of the algorithm were verified on the
FlexRay bus system to prove the validity of the concept. How-
ever, the described methodology is not restricted to FlexRay.

The experimental results are discussed, focusing on the
analysis of dependence of the bandwidth demands on the
multi-variant and incremental scheduling paradigm. Besides,
the bottlenecks and limitations are also pointed out. The linear
relation between the similarity parameters of variants and the
resulting number of allocated slots in the schedule shows
the advantages of the multi-variant approach. The relation
between bandwidth occupancy and the iteration of incremental
scheduling appears to be more complicated, which, among
others, is the consequence of the impossibility of correct
prediction. The algorithm was evaluated on SAE group with
real-case inspired instances, demonstrating that its performance
complexity is negligible. The used instances are accessible
in [30].

In future, the authors propose to focus their research on
multi-variant and incremental scheduling for Automotive Eth-
ernet, which appears to be a promising inner vehicle commu-
nication standard for future vehicle models. Pending settling of
Automotive Ethernet standard (the time-triggered features are
assumed to be accommodated in 2020), the already available
preliminary 802.3br Ethernet standard will most probably
be used for exchange of time-critical messages. The early
examination of the impact of multi-variant and incremental
scheduling paradigm on Ethernet communication scheduling
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allows for systematic use of its benefits, even in its initial
development stages.

ACKNOWLEDGEMENT

This work was supported by the European Unions Horizon
2020 research and innovation program under grant agreement
No. 688860 HERCULES.

APPENDIX A
BENCHMARK INSTANCE GENERATION PROCEDURE

In this section, the process of the multi-variant benchmark
instance generation is described. The process is depicted from
a high-level in Algorithm 4. At the beginning, the required

Input : Instance parameters
Output: Multivariant benchmark instance
Read the instance parameters;
for each signal si in S do

Generate the signal period;
Generate the signal payload;
Generate the signal deadline;
Generate the signal release date;

end
Assign the transmitting ECU to commom signals;
Assign the transmitting ECU to specific signals;
Assign the transmitting ECU to other signals;
Generate variant matrix Vi,j ;
Repair instance Vi,j ;

Algorithm 4: Scheduling of unscheduled/new signals

instance parameters are read. These parameters consist of
distributions presented in Fig. 11 or Fig. 12, parameters from
Table III, the number of signals and the number of variants to
generate, the multi-variant coefficients α and β for signals and
similar coefficients for ECUs. Note that ECUs can be common
to all variants (so-called common ECUs) or specific to just one
variant (so-called specific ECUs) in the same way as signals
can be.

Subsequently, the basic signal parameters are generated for
each signal. The periods and payloads follow the requested
distributions. Deadlines and release dates are generated only
for the requested portion of the signals determined by the
instance parameters. The deadline is set to the end of a
randomly chosen communication cycle from the last third of
the signal period. The release date is set to the beginning of
the communication cycle also randomly chosen from the first
six communication cycles.

After generation of basic signal parameters, the transmitting
ECUs are assigned to the signals. Firstly, the ECUs are
assigned to the common signals. The common signals can
be transmitted from the common ECUs only. The common
ECUs similar to the common signals have to be included in
all variants. Secondly, the ECUs are assigned to the specific
signals. Inversely to the case with common signals, specific
ECUs are allowed to transmit specific signals only. Otherwise,
the specific ECUs would be forced to appear in more than
one variant. In the end, the ECUs are assigned to the rest of

the signals that are shared, and it is assured that each ECU
transmits at least one signal.

The generation of variant matrix Vi,j is divided into two
steps. The first step is deciding which ECUs are used in
which variant. The common ECUs are used in all variants,
and the specific ECUs are used only in one randomly chosen
variant. The rest of the ECUs are distributed to the random
subset of variants. In the second step, the signals are assigned
to the variants. All the common signals are assigned to all
the variants. The specific signals that are transmitted by the
specific ECUs are assigned to the same variant as the specific
ECUs. The rest of the specific signals are assigned to randomly
chosen variants to which the transmitting ECU is assigned. For
the case of shared signals, random probability from 30 to 70 %
is chosen for each variant. This probability determines whether
it is rather luxurious or economy variant. With this probability,
the shared signals are assigned to the particular variant if the
transmitting ECU is used in the variant.

According to this strategy of assigning signals to variants,
situations can occur when some signal is not assigned to any
variant. Thus, it is necessary to repair such issues in matrix
Vi,j . Each signal in Vi,j is checked whether the signal is
assigned to some variants. If it is not, the signal is assigned to
a random subset of variants assigned to its transmitting ECU.
Finally, the admissible multi-variant instance is generated that
satisfies all the requested instance parameters.

However, the described process does not take into account
any predecessor benchmark instance and, thus, it is useful
only for the generation of the benchmark instance for the first
iteration of incremental scheduling. The generation of subse-
quent iterations follows a process depicted in Algorithm 5. The

Input : Instance parameters
Instance for the previous incremental iteration

Output: Incremental multivariant benchmark instance
Read the instance parameters;
Read the instance for the previous incremental iteration;
for each new signal si in S \ S̃ do

Generate the signal period;
Generate the signal payload;
Generate the signal deadline;
Generate the signal release date;

end
Assign the transmitting ECU to the new signals ;
Add the new variant to variant matrix Vi,j ;

Algorithm 5: Scheduling of unscheduled/new signals

generation starts with the reading of the requested instance
parameters. Then, the instance of the previous incremental
iteration is read. The new instance is going to be based on this
so-called original instance. All the signals and ECUs from the
original instance will be present in the new instance with the
unchanged basic parameters.

Then the basic parameters are generated for each new
signal. The generation process is the same as in case of non-
incremental instance generation. However, in this case, it can-
not be assured that the new instance will follow the requested
instance parameters because the parameters distribution in the
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original instance can vary significantly from the requested
instance parameters.

In the next step, the new signals are assigned to its trans-
mitting ECUs. If there is no new ECU, then the signals are
uniformly distributed among all ECUs. However, if there are
some new ECUs, 70 % of the new signals are distributed
among these new ECUs, and the rest is uniformly distributed
among all the ECUs. Moreover, it is assured that all new ECUs
are used in the new instance.

Finally, a new variant is added to the variant matrix Vi,j .
No variant used in the original instance is changed. The
new variant is based on a randomly chosen variant (so-called
original variant) from the original instance, and all new signals
and new ECUs are assigned to it. Because it is not often the
case, in practice, that the new variant just adds new signals
and ECUs to the original one, part of the variant matrix Vi,j
copied from the original variant is mutated. The signals from
the original instance are processed one by one. Each signal
has a 70 % chance that it will not be passed to the mutation
stage at all. Once the signal reaches the mutation stage, the
following mutation rules are employed:
• If the signal appears in the original variant, it has a 35 %

chance that it will not appear in the new variant.
• If the signal does not appear in the original variant and

its transmitting ECU appears in original variant, it has
65 % chance that it will appear in the new variant.

• If the signal and its transmitting ECU does not appear in
the original variant, it has 1

3 % chance that it will appear
in the new variant. In this case, the transmitting ECU is
added to the original variant also.

After all these steps, the new incremental multi-variant bench-
mark instance is ready.
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[30] J. Dvořák and Z. Hanzálek. (2018) Incremental Multi-Variant Flexray
Static Segment Scheduler. [Online]. Available: https://github.com/
CTU-IIG/FlexRaySSScheduler

[31] Z. Hanzalek and T. Pacha, “Use of the fieldbus systems in academic
setting,” in Proceedings on real-time systems education III, 1999, pp.
93–97.

[32] Vector Informatik GmbH. (2016) ECU Development & Test with
CANoe. [Online]. Available: http://vector.com/vi canoe en.html

[33] Association for Standardisation of Automation and Measuring Systems.
(2014) ASAM MCD-2 NET standard (FIBEX). [Online]. Available:
http://www.asam.net
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