FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

ASSIGNMENT OF BACHELOR'’S THESIS

Title: Code refactoring using Codiscent's projective technologies
Student: Tomads Buriata

Supervisor: doc. Ing. Robert Pergl, Ph.D.

Study Programme: Informatics

Study Branch: Computer Science

Department: Department of Theoretical Computer Science

Validity: Until the end of summer semester 2020/21

Instructions

Refactoring became an everyday process of keeping the code clean, consistent and understandable. A
range of tools for a code refactoring exists, however they are tightly bound with concrete language and
IDE. The goal of this explorative thesis is to apply Projective Technologies of Codiscent for code refactoring.

1. Perform a review of current approaches and tools for refactoring and Reverse Engineering Studio (RES)
and Generative Engineering Studio (GES) of Codiscent.

2. Create a suitable format to define rules for refactoring.

3. Design templates for RES and GES to perform the refactoring.

4. Show your solution on a representative subset of typical code refactorings as discussed in [1].

5. Formulate conclusions.

References

[1] Fowler, M., Beck, K., Brant, J., Opdyke, W.,

Roberts, D., & Gamma, E. (1999). Refactoring: Improving the Design of Existing Code (1 edition). Reading, MA: Addison-
Wesley Professional.

[2] Cervenka, J. (2015). Aplikace projektivnich technologii pro objektové-orientovany névrh webového uZivatelského
rozhrani. Bakalaiska prace FIT CVUT. URL: https://dspace.cvut.cz/handle/10467/63020

doc. Ing. Jan Janousek, Ph.D. doc. RNDr. Ing. Marcel Jifina, Ph.D.
Head of Department Dean

Prague October 7, 2019

FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Bachelor’s thesis

Code refactoring using Codiscent’s
projective technologies

Tomas Burniata

Department of Computer science

Supervisor: doc. Ing. Robert Pergl, Ph.D.

June 4, 2020

Acknowledgements

I thank my thesis supervisor, doc. Ing. Robert Pergl, Ph.D., for guidance,
optimism and patience during my work. I also thank my family for their
support during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on June 4, 2020

Czech Technical University in Prague

Faculty of Information Technology

© 2020 Tomas Bunata. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Bunata, Tomas. Code refactoring using Codiscent’s projective technologies.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2020.

Abstrakt

Tato prace se zabyva refaktoringem kédu s vyuzitim projektivnich technologii
spolec¢nosti Codiscent. Teoretickd ¢ast obsahuje analyzu soucasnych pristupu
k refaktoringu a nastroju k udrzovani ¢istého koédu. Poskytuje ivod do refak-
toringu a testovani. Prakticka ¢ast je vénovana demonstraci vyuziti projek-
tivnich technologii na konkrétnich prikladech refaktoringu.

Klicova slova refaktoring, projektivni technologie, generovani kodu, testovani
softwaru, Java

Abstract

This thesis focuses on code refactoring with the use of projective technologies
developed by the company Codiscent. The theoretical part contains an anal-
ysis of current approaches and tools designed to keep the code clean. It also
provides an introduction to refactoring and testing. The practical part shows
how projective technologies could be used for refactoring on specific examples.

Keywords refactoring, projective technologies, code generation, software
testing, Java

vii

Contents

1
|1 State—of—the—ard 3
1.1 Technical debtl 3
1.2 Importance of writing testsl 4
1.3 Refactoring] 5
|2 Codiscent’s projective technologies{ 9
2.1 Projective Technologied 10
2.2 Benefits and drawbacksg 12
|3 Analysis and Desig‘d 13
3.1 Refactoring using IDESI 13
3.2 Types of refactoring and rules to implement therd 15
|4 Implementatiod 23
4.1 GES platform 23
1.2 Code sample&l 27
1.3 Designing refactoring templatesl 27
1.4 Refactorings] 28
1.5 Rearanging thecodqd 33
1.6 Formatting thecodd 35
37
B graphy 39
41
IB Screenshots of Codiscent’s IDEj 43

ix

k? Contents of enclosed Cd 47

ID Installation guidel 49
D.1 List of refactoringei 49
D.2 Requirementsl 49
D.3 Performing the refactorind 49

List of Figures

3.1 IntelliJ Idea refactoring exampld 14
3.2 Replace method with an objecd 18
3.3 Pull up ﬁeld 19
3.4 Pull up method 20
1.1 The RES meta formad 26
1.2 Configuration Template for Encapsulate Field 27
1.3 RES template for parsing of confieuration| 28
1.4 Definition of rearranging rules in IntelliJ IDEAI 34
B.1 Look at Codiscent’s IDH 43
B.2 RES in interactivemodd 44
B.3 GES in interactive modd 45

xi

List of Tables

13.1 Top 10 refactorings used in IntelliJ Ideaj 15
1.1 Useful keVEJ 24
1.2 Commands used to control executiod 24

xiii

Introduction

As many of us already know, developing new software is a complex process.
Project managers push the developers to add new features as fast as possible,
developers want to make the new code maintainable and bug-free and clients
want to keep the price low. This represents something called Triple constraint
of project management. It is composed of three elements - time, quality, price
- of which we only can choose two.

Refactoring is the process of changing a software system in such a way that
it does not alter the external behavior of the code yet it improves its internal
structure.

With refactoring, we save time in the long term, because adding new features
to a well-maintained code base is faster and easier. Because refactoring takes
time, which could be used for further development of the project, it is not so
worth in the short term. The goal of this thesis is to study different types
of refactorings found in the Martin Fowler’s book Refactoring|l] and then ex-
plore possibilities of using Codiscent’s projective technologies to perform those
refactorings and demonstrate it on examples.

Those technologies are Projector Template Generator (PTG), Reverse Engi-
neering Studio (RES) and Generative Engineering studio (GES). We could
think of this software like some kind of black box, which input is the source
code and a template describing the desired refactoring, and output is the
transformed code.

All code transformation will be shown in the Java programming language. 1
chose it because it is object-oriented and it tends to be a language that every-
one understands to some degree.

In the first part of the thesis, I will provide an introduction to refactoring,
testing and projective technologies. Then I will describe some types of refac-
torings with rules on how to perform them. In the following part, the usage of
projective technologies for refactoring purposes is shown on specific examples
alongside the explanation of the code. In the last part, I will ponder possible
future work and formulate a conclusion.

CHAPTER].

State-of-the-art

1.1 Technical debt

This is a metaphor that equates software development to financial debt. Imag-
ine taking a loan versus saving money to buy a car. You either have to wait
several months to save enough money, or take a loan and buy the car instantly,
but you have to also pay interest. Needless to say, the collected interest could
be so high, that it makes the repayment impossible.

The same can happen when developing software. By taking shortcuts, not
writing tests, delaying refactoring and so on, the development process could
be temporarily sped up. But with the initial time savings comes the interest
- the future work. And the same as the interest in the financial loan could be
so high it cannot be repaid, the technical debt could make the project unprof-
itable or even fail. A little debt could speed up the development, but must be
planned thoughtfully and promptly repaid.

Definition 1.1.1 (Technical debt) is a concept in programming that re-
flects the extra work that arises when shortcuts during development are taken
instead of applying the best solution/4].

For example, programmers skip writing tests to save time, but it will
gradually slow the project down until the tests are written - the debt is repaid.
Technical debt can have many causes. One of them is business pressure - even
the greatest programmers can create debt if they are working under unrealistic
project constraints. Rolling out features before they are finished could result
in many bugs and patches.

Another important cause is not understanding the technical debt. Sometimes
the management doesn’t understand, that with the technical debt comes the
interest too, which will slow down the development as the debt accumulates.
This could make it hard to dedicate time for refactoring because management

3

1. STATE-OF-THE-ART

doesn’t see the value of it.

Lack of documentation is another cause. It slows down the introduction of
new people to the new project and could pause the development if too many
people leave.

There could be other causes like incompetence of the developers or lack of
monitoring of the work, but the most important one (for the scope of this
thesis) is delayed refactoring. Because the project requirements are constantly
changing, some parts of the program may become obsolete, badly designed,
or bulky. On the other hand, programmers write code that interacts with
the obsolete parts every day. The longer the refactoring is delayed, the more
dependent code will have to be written in the future. Technical debt is often
associated with refactoring, because it is one of the most common practices
to repay it, along with writing tests.

1.2 Importance of writing tests

Before we dive into refactoring, let me mention one important part of it -
writing tests, especially unit tests.

Because we want to develop code in the fastest way possible, we need to
eliminate as many errors as possible. Tests are an easy way to check if the
code we wrote is working correctly. Testing our code also could lead to better
code design. Creating tests before the implementation also helps to specify
the particular code requirements, which could prevent bad design.

By compiling and running tests after every change to the code, many hours
could be saved by identifying errors early. Also, well-designed tests tell us
which functionality isn’t working and where the error could be located. They
need to be easy to run, otherwise, people will be discouraged from running
them often. Some build tools (like Maven for example) run tests automatically
with every build of the application if certain project structure is followed.
Because refactoring, by definition, changes the structure of already working
code, we need to be sure that we didn’t break anything.

1.2.1 Testing levels

There are four main levels of software testing: unit, integration, system, and
acceptance. These are performed in different stages of the development life-
cycle.

Unit testing is a level of software testing where individual components
(units) of software are tested. The purpose is to ensure that every unit of
software is working as designed. A unit is the smallest testable part of any
software, which only takes a few inputs and usually a single output. The unit
might be a procedure or a function in procedural programming, or a method
belonging to a class in an object-oriented one. Unit testing is often performed
by the developers themselves. The execution of these tests is often automated

4

1.3. Refactoring

with build tools or development environments.

There are many benefits of creating these tests. If the unit tests are properly
written and are executed as often as the code is changed, they will be able
to promptly catch any bugs introduced in the last software changes. Also
if the bugs are caught early, the cost of fixing them is cheaper than if they
are caught later during the development cycle. The resulting code is more
reusable because to make unit testing possible, it needs to be modular [3].

Integration testing tests how individual software modules work together.
Different software modules are combined together and are tested as a group.
This kind of testing is performed by developers or testers.

System testing is performed on a completely integrated system. It allows
checking the system’s compliance with the requirements. It involves load,
performance, reliability, and security testing. It evaluates both functional and
non-functional needs. It is typically performed by testers.

Acceptance testing is the final level of testing and is performed before
making the system ready for use. Internal acceptance testing is performed
by the members of the same organization that created the project but not by
the ones that were directly involved with it. External acceptance testing is
performed by the customers or the end-users [4].

From the description of the testing levels above, the most interesting lev-
els of testing for refactoring purposes are unit testing and to some degree
integration testing.

1.3 Refactoring

The main purpose of refactoring is to fight technical debt. M. Fowler defined
refactoring as follows[l, p. 46]:

Definition 1.3.1 (Refactoring) a change made to the internal structure
of software to make it easier to understand and cheaper to modify without
changing its observable behavior

It could be said that refactoring is just a process of cleaning the code.
But there is more to it. Refactoring offers patterns on how to effectively and
targetedly clean the code. This patterns then could be partially automated
by various IDEs or, in this case, Codiscent’s software.

1.3.1 Benefits and drawbacks

Without refactoring, the design of the program will decay. As the program
code is being changed. the code loses its structure. It starts to become hard
to understand, more bugs appear and due to the poor structure, development
is slower. The solution to these problems lies in refactoring, with the following
benefits:

1. STATE-OF-THE-ART

The first benefit is Readability. Programming is not only about telling
the computer what to do but because code is constantly changing (eg. bug
fixing, feature adding), the code needs to be easy to understand. It is common
that multiple people are working on the same parts of the program. Or maybe
I will want to change the code myself after a few months. The faster the code is
understood, the faster the work can begin. These time savings are well worth
the small price of refactoring. There is one other benefit to understandability
- because the code is more clear, it is easier to spot new things about the
design of the program, which could lead to further refactorings.

The next benefit is Faster bug finding. This goes hand in hand with the
previous benefit. Because code is easier to read, bugs could be spotted faster.
Another thing is, bugs could be found during the process of refactoring.

Another of the benefits is Extensibility. Due to the good design of the
program, it’s easier to extend its capabilities and the application could be
more flexible towards future changes.

The last benefit of refactoring is Faster development. This point may

seem somewhat counterintuitive because from the definition of refactoring it
seems it is mainly about improving the quality of the program without adding
any new features.
But the point of having a quality design is to allow rapid development. With
poor design, we can progress faster for a while, but then the bad choices will
start to slow the development process. More time is spent to find and fix bugs.
New features need more coding and all changes take more time due to worse
understanding of the code.

There is one main drawback to refactoring - Resources. Because by defi-
nition, refactoring doesn’t change observable behavior of the code (no features
are being added), it could be hard to justify spending resources on it. In the
long term, refactoring pays itself off. In the first place, adding features to
a well-maintained program takes much less time than to a badly maintained
one. In the second place, developers are able to understand code more quickly,
which leads to better productivity. And in the third place, it helps find bugs
faster.

In the short term, refactoring doesn’t offer that many benefits, because if a
project has a tight deadline or is running out of money, the time is better
spent on development.

Many of the refactorings can be automated. In this thesis I will use Codiscent’s
RES technology to load the original source code into an inner representation
and the use the GES to modify that structure and generate refactored code.

1.3.2 Code Smells

Before we can refactor, we first need to identify which part of the program
needs to be changed. Those parts are called code smells.

6

1.3. Refactoring

Definition 1.3.2 (Code smell) a piece od code that violates fundamental
design principles and negatively impacts design quality.

Some examples of code smells are:
e Code duplicates

e Long methods

e Complex conditions

e Dead code

e Switch statements

Today’s IDEs offer various tools to ease the refactoring process. They

often offer real-time code analysis, which is useful for detecting code smells
as soon as possible. IDEs are especially good at founding code duplicates or
code that is never executed.
The sooner the code smell is discovered the better - it is much easier and
cheaper to remove. Other refactoring tools range from renaming variables,
extracting methods to generating code. It is as simple as selecting a piece
of code and choosing the operation that will be performed and add a few
arguments. The goal is to make the process as much automated as possible,
so the refactoring is faster and fewer errors are made.

1.3.3 When to refactor?

After seeing all the refactoring benefits, you may start to wonder when the
refactoring should be performed. In almost all cases, it should be done during
code development in small bursts. When working on something, you notice
some code smell and remove it, and in turn, the refactoring helps you to do
the original work. There are a few cases which can help you tell when you
should refactor[f]:

e Rule of three
Rule of three is a simple guideline consisting of three steps. When you
do something for the first time, you just do it. When the same thing
is done for the second time, you think about the duplication, but do it
anyway. But when you encounter it for the third time, you refactor.

e Adding a feature
This is the most common time to refactor. As you think about the piece
of code you are modifying, refactoring it will help you understand it bet-
ter and you can make it more readable. This will also help some future
developers working on the same piece of code.
Another thing is, it will be easier to add the new function to the refac-
tored code.

1. STATE-OF-THE-ART

o Fixing a bug
Most bugs are found in the dirtiest parts of the code. By refactoring
them, you almost make them discover themselves. Some bugs could even
be fixed by the refactoring itself.

e Code review
Code review is a nice way of checking and tidying up the code before
it becomes available to the public. It is a good idea to perform a code
review with a partner - the original author and a reviewer make a good
pair. The reviewer suggests changes which are then discussed together.
This way it is more effective to spot code smells and the consultation
leads to a better solution.

¢ When facing legacy code

The launch of a project is no reason for development to stop. As the
project grows, more bugs are introduced, the code is slower or maybe
we want to add new functionality.

When we get to the legacy code it is important to not start refactoring
right away and fix it. Firstly we need to get acquainted with the code
and understand it because there might be dependencies we are unaware
of.

There are other techniques and approaches to code refactoring. One of
them is the widely used Red-Green-Refactor approach used in Agile test-driven
development. This way the refactoring is divided into three steps. [6]

The Red phase is always the starting point of the cycle. In this phase, the
tests are written to inform the implementation of a feature. These tests pass
only when the feature’s expectations are met. Because the new feature has
not been implemented yet, the test statistics typically glow red, hence the Red
name.

The Green phase is about the implementation of the new feature and making
the tests written in the red phase pass. The goal of this phase is to find a
solution without worrying about the speed and optimization of the implemen-
tation. Once we are in the green (the typical color of passed tests), the work
on optimizing the implementation can start.

In the Refactor phase, we can think about better implementations of our code
and refactor the code to make it more readable.

CHAPTER 2

Codiscent’s projective
technologies

Codiscent Ltd. is a consulting and software development company that spe-
cializes in software for code generation. They offer various levels of cooperation
and tools and methods usage according to the situation and the estimated
frequency of updates to the generated system. Codiscent claims that their
software helps their customers to improve every measurable dimension of soft-
ware development, also called The Triple constraint [[7]. Codiscent managed
to do this by identifying and removing the common sources of inefficiencies
frequently encountered in the software development process:

« Repetitive coding - increases the defect rate

e Writing more code - introduces more defects and fixing them takes
more time

e More time spent on programming and debugging - Because more
time needs to be spent on programing (as opposed to code generation),
there is less time for design and architecture, if we want to preserve the
same cost of the solution

Their solution to these problems is Agile Model-Driven Development.

Definition 2.0.1 (Model-Driven Development) Model-Driven Develop-
ment (MDD) is a technique in which a problem space is modeled and code
to perform a function is generated across the domain of the problem.

Let’s demonstrate the MDD on example. We are facing a problem where we
need to read and import tables from the database. To solve this we need
to conform to their structure - column names, data types, and so on. Be-
cause doing this manually is tedious and time-consuming, we apply the MDD.
Firstly, we create a template containing the code to perform the read, define

9

2. CODISCENT’S PROJECTIVE TECHNOLOGIES

the structure of the database as input and then generate the code needed to
perform the task.

Agile Model-Driven Development in Codiscent’s version employs their tem-
plating language and work-bench, which supports iterative generative pro-
gramming. MDD combats previously mentioned inefficiencies with the ability
to work at a raised level of problem abstraction, resulting in a smaller code
base to build and manage, accelerated development and reduced cost and the
ability to focus on business and software architecture instead of spending more
time on programming the solution.

2.1 Projective Technologies

Projective technologies is a term invented by Codiscent to describe it’s Reverse
Engineering Studio (RES) and Generative engineering studio (GES). Cur-
rently, these technologies are still under development. The main Codiscent
product (for the scope of this thesis) is Generative Engineering Studio.
This is an IDE created by Codiscent that employs the usage of the projective
technologies. GES facilitates the building and managing of the assets associ-
ated with generative development projects. Working with GES is designed to
be completely consistent with CodiScent’s methodology and can reduce the
development costs by as much as 60% [8].

2.1.1 Generative Engineering Studio

Many generative engineering tools support a limited range of languages. Be-
cause they use to be tightly integrated with specific IDEs, their usage for code
generation is limited. If our requirements aren’t satisfied, these tools tend to
be of little value for us. Codiscent’s generative engineering solutions are dif-
ferent. GES supports numerous specification data sources (XML, database
tables...) and supports generating source code of any programming language
or anything which can be written as text. All of the interactions between
specification data and templates are managed by GES.

GES processes the transformation of objects, from one form to another us-
ing orchestration commands as well as generative (resp. reverse) engineering
framework functionality. It manages all artifacts needed for the code genera-
tion - models, specification data sources, templates, and extensions. Related
artifacts are then grouped into a solution.

This platform consists of several components:

e Reverse engineering part - which extracts information from the source
text and creates a model representing the data.

10

2.1. Projective Technologies

e Transformation commands - which are used to modify the model created
with RES through a series of transformations.

e Forward engineering part - generative engineering technologies that are
used to generate code out of these models.

The core of the generative engineering technology is Projector Template Gen-
erator (PTG). It is a text generator that employs clear, intuitive and flexible
templates, which can be used to generate output in any format - code, text,
or data. PTG’s output is independent oofn the rest of the CodiScent plat-
form. These templates are written in language developed by Codicent, which
I describe in the implementation chapter of this thesis H.

2.1.2 Reverse engineering studio

Reverse Engineering involves reading the source code of an application and
decomposing it and using the result to generate a new version of the appli-
cation, possibly in a different language. The Codiscent Reverse Engineering
Studio provides the ability to interactively configure, test and refine parsing
templates, which uses similar syntax to the generative ones, and then pass the
extracted data to the Generative Engineering Studio.

RES technology is used to tokenize source code, identify the linguistic pat-
terns in it, and create a token structure representing the elements of the source
code and their relationship to one another. This structure could be further
passed to GES where it could be transformed and used to generate new out-
put. The tokens produced by RES could range from something small as a
variable to whole function bodies, this depends on how the user designs the
reverse engineering templates.

Example transformation: the RES can create an object set from Java
source code, identify common fields among the classes that were extended from
a superclass, move those fields to the superclass and generate corresponding
source code using the GES templates.

2.1.3 Other Codicent products

Apart from Generative engineering studio and Reverse engineering studio,
other Codicent tools contains: Graphical toolkit used to define, create and use
diagrams to represent model requirements, Solution Modeling and Integrity
Support with the components that support defining, populating and managing
solution models and Control Center Generator that generates solution-specific
management applications that allow users to manage their own solutions. [J]

11

2. CODISCENT’S PROJECTIVE TECHNOLOGIES

2.2 Benefits and drawbacks

The main benefit of projective technologies is obvious - programmers have to
write less code, which results in uniform code, fewer bugs are introduced and
more time could be spent on designing and architecting. When properly de-
signed, the PT templates could also be reused with another set of specification
data with almost no effort or little changes to them. Codiscent states that
they were able to redeploy a second instance of a C# solution, which took a
week to build, in under 30 minutes [[10].
Another big benefit is reduced cost of maintainabality because when the spec-
ification changes, the only thing needed is to regenerate the solution.

The main drawback of projective technologies is that they are not suitable
for every problem. A significant part of the solution needs to be generated to
justify the time investment into design of the templates and transformations[l1]

12

CHAPTER 3

Analysis and Design

3.1 Refactoring using IDEs

Current IDEs offer numerous ways to refactor our code, varying from a simple
renaming of objects to a complex restructuring of classes. The main benefit of
using the IDE refactoring methods is their simple user interface, which allows
performing desired operations easily, quickly, and with immediate feedback.
This is a very important feature because the key to refactoring frequently is
the ease of use. Example of how IntelliJ IDEA handles refactoring can be
seen in figure El! Other advantages of IDEs is the possibility to preview the
output and simple rollbacking when the refactoring is not successful. Some
environments are clever enough to predict code conflicts before the changes
are made and offering means to resolve them[12]. But the simple interface
might not be able to provide the refactoring capabilities needed, and this is
where we might find a use for Codiscent’s projective technologies.

The Codiscent’s technologies provide us with tools to produce a set of scripts,
which can be executed and run any time we need them to transform the source
code.

The main benefit of taking this approach is the ability to tailor it to the prob-
lem we are solving. But there is one big drawback of using this tool to solve
the refactoring problem we are facing - the time commitment to create the
process. There are several questions we should ask ourselves before working
on the automation of our solution:

Is the problem we are facing unique, or are there multiple occurrences, which
could be solved with the same template? Would be the refactorings templates
future proof? Are there any better other ways suited to solving our problem?
With answers to these questions, we can consider if creating the scripts is
worth it. When we are encountering the same code smells frequently, apart
from reflecting on our code design choices, the automation of refactoring could
be the solution we are looking for. We need to keep in mind that it is vital

13

3. ANALYSIS AND DESIGN

Change Signature *
Visibility: Return type: MNarne:
public ~ | | boolean hasPermissicn

Parameters | Exceptions

String permission

Method calls: @) Modify (O Delegate via overloading method

Signature Preview

public boolean hasPermission{String permission)

(7] Preview Cancel

Figure 3.1: IntelliJ Idea refactoring example

to design the solution to be universal, only needing small changes to be able
to be used to solve our current problem. We don’t want to spend more time
automating the solution then what it would take to change the code manually.
Another thing to keep in mind is we need to test these scripts thoroughly, as
well as the transformed source code because we want an effective, easy to use
solution, not introducing more bugs to the system.

There is one more challenge we face when we refactor via scripts and this is
code selection (we need to identify which blocks of code are intended to be
moved and so on). This is the area where integrated development environ-
ments truly shine. Because of their user interface, there are many ways to
mark the code intended for refactoring. One of them is simply right-clicking
the target object and selecting the desired operation, the other is selecting a
block of code. When writing scripts, these blocks of code need to be passed
to GES, and this is possible in two ways. The first is to identify the code with
the indexes of the start and end of the code block. This approach is faster and
easier to implement, but requires more reading time, and is not very future
proof - one small change to the source code could shift the refactored block
and then the indexes are pointing to invalid positions.

The better way to handle this is with the usage of a regular expressions. This
approach is not as easy to implement as the first one, because we need to
create the regular expression uniquely describing the target code block. The
simplest way is to identify the code block by some unique name or expression.

14

3.2. Types of refactoring and rules to implement them

The other way to do this is to use some dummy tokens - for example, some
unique comment in code describing the start and the end of the block.

The table @ lists the most popular refactorings used in IntelliJ IDEA
[12]. As we can see, the IDEs are most frequetly used to do the simplest
refactorings.

Name Keyboard shortcut
Safe delete Alt+Delete
Copy /Move F5 / F6

Extract Method Ctrl+Alt+M
Extract Constant Ctrl+Alt+C
Extract Field Ctrl+Alt+F
Extract Parameter Ctrl+Alt+P
Introduce Variable Ctrl+Alt+V
Rename Shift+F6

Inline Ctrl+Alt+N
Change Signature Ctrl+F6

Table 3.1: Top 10 refactorings used in IntelliJ Idea.

3.2 Types of refactoring and rules to implement
them

In this section, I will describe several types of refactorings and explain the
motivation behind them and list examples as well as rules to use them. The
rules follow refactoring patterns based in [[l]

3.2.0.1 Extract method

This is one of the most frequently used refactorings. It is used for moving a
part of code, which forms a logical group to a new method.

Typically it’s used to divide long methods to more sub-methods to increase
readability and prevent duplicities. Because long methods are harder to un-
derstand, we increase the readability by dividing the code into smaller parts.
Also if the names of the new methods exactly describe their purpose, we may
decrease the need for comments.

Unfortunately, there are some complications we can encounter - local vari-
ables. If we refactor without accessing local variables, the deed is trivial. If
the variables are read-only, they are passed as a parameter to the new method.
But if the local variables are changed, the refactoring couldn’t be done in some
cases.

Temporary variables, which are used only within the code block that is ex-
tracted are extracted too. But if the variable is used further after the block,

15

3. ANALYSIS AND DESIGN

the new method must return its value and then assign it back to the corre-
sponding variable.
How to refactor:

1. Create a new method and name it in a way that makes its purpose
self-evident.

2. Copy the relevant code fragment to the new method. Delete the frag-
ment from its old location and put a call for the new method there
instead.

3. If the variables declared before the extracted code are changed and used
afterward, the result needs to be returned to those variables (for simpli-
fication, let’s assume, that no more than one variable used later in the
code is changed in the method, otherwise the problem could be solved by
returning an object and assigning the values or pass addresses of those
variables to the new method).

Let’s see a practical example:

public void printMovieDetails(int pricePerTicket, int visitors){
int profit = pricePerTicket * visitors;
System.out.println("Name: " + this.name);
System.out.println("Released: " + this.yearOfRelease);
System.out.println("Profit: " + profit);

}

The calculation of profit was moved to a new method:

public void printMovieDetails(int pricePerTicket, int visitors){
int profit = getProfit(pricePerTicket, visitors);
System.out.println("Name: " + this.name);
System.out.println("Released: " + this.yearOfRelease);
System.out.println("Profit: " + profit);

private int getProfit(int pricePerTicket, int visitors) {
return pricePerTicket * visitors;

}

3.2.1 Replace temporary variable with function call

The problem with temporary variables is that they are temporary and local.
They are only visible from the current scope, which leads to the writing of
long methods. The solution to this lies in moving the expression calculating
the value of the variable to a new method and any time the old variable is

16

3.2. Types of refactoring and rules to implement them

used, we call the new method.

Another benefit of this refactoring is that the new method could be called
from other parts of the program. Replacing variable with a function call is
often a necessary step before Extracting a method.

Let’s see a practical example:

double calculateTotal() {
double basePrice = quantity * itemPrice;
if (basePrice > 1000) {
return basePrice * 0.95;
} else {
return basePrice * 0.98;
+
}

Now a function is created for the calculation of base price and it could be
reused somewhere else in the code

double calculateTotal() {
if (basePrice() > 1000) {
return basePrice() * 0.95;
} else {
return basePrice() * 0.98;
}
}

double basePrice() {
return quantity * itemPrice;

}

3.2.2 Divide temporary variable

Many temporary variables serve to store the result of some calculations. If
they are assigned value more than once, it could mean they are being used
for multiple purposes. Because this is confusing for the reader, these variables
should be replaced with multiple variables, each serving its dedicated purpose.

double temp = 2 * (_height + _width);
System.out.println (temp);

temp = _height * _width;
System.out.println (temp);

By splitting the variable temp into new self-explaining ones, the code is much
more readable.

17

3. ANALYSIS AND DESIGN

final double perimeter = 2 * (_height + _width);

System.out.println (perimeter) ;
final double area = _height * _width;
System.out.println (area);

3.2.3 Replace method with an object

This type of refactoring is used when we have a long method with many local

variables, which make using the Extract method impossible.

The principle is, we replace the whole method with an object - variables that
the method was using are now passed as an argument to the constructor of
the new object and a method compute () is created, which contains the body

of the original method.

Now all local variables are the new object’s attributes, we can use the Extract
method as we like without worrying about passing parameters to the new
method. In the place where the original calculation was located, we create a

new object and call its method compute ().

class Order...{
double price() {
double primaryBasePrice;
double secondaryBasePrice;
double tertiaryBasePrice;
// long computation;

Order

price()

PriceCalculator
primaryBase Price
secondaryBasePrice
tertiaryEBasePrice

computel)

return new PriceCalculator(this).compute() Il\‘

Figure 3.2: Replace method with an object

18

3.2. Types of refactoring and rules to implement them

3.2.4 Move method

Moving a method is used when a method uses elements of a different object
more than its own. Along with the Extract method, this is one of the building
blocks of refactoring.

When we design the program, we hardly get it right from the start. Then when
we notice that a class does many more things than what it was designed for,
the corresponding methods are moved to the appropriate class. Refactoring
Move field is also used often with Move method because some of the original
fields are used by the moved method and it makes sense to move them to the
new class too, otherwise, they have to be accessed by other means.

3.2.5 Pull up field

When multiple people work on one project, they sometimes develop subclasses
of one superclass separately. As those subclasses grow on their own, new fields
appear, which can be duplicates in both classes. As soon as they are identi-
fied, they can be pulled up to their superclass.

In order to perform this refactoring, these fields need to serve identical pur-

poses.
Person | Person

A A
[) [)

Student Teacher Student Teacher

Figure 3.3: Pull up field

How to refactor:

1. If the fields have different names, choose a suitable name and rename
them

2. Create the field in the superclass. If the original fields were private, now
the field needs to be protected, so the subclasses can access it.

3. Remove the field from the subclasses

3.2.6 Pull up method

This refactoring is used in the same scenario as the previous one. When there
are duplicate methods in subclasses, it is suitable to move them to their parent.

19

3. ANALYSIS AND DESIGN

But there could be few things that will block this refactoring.

Firstly, the method uses attributes located only in the subclasses - the solution
is to pull up those attributes.

And secondly, the method uses other methods located only in the subclasses.
We solve this by pulling this method up first, or the pulled up method could
be defined abstract (this will make the superclass abstract if it isn’t).

It’s important to consider which option is the best or if it is even possible, to
perform the refactoring.

Person Person
+geiSchedule

[1 []

Student Teacher Student Teacher

w

o

w
T
i

Figure 3.4: Pull up method

How to refactor:

1. Investigate similar methods in superclasses. If they aren’t identical,
format them to match each other.

2. Copy the method to the superclass If this method uses attributes or
methods from subclasses - solve this by pulling those attributes or meth-
ods from subclasses. If those methods can’t be pulled up, the superclass
could be made abstract

3. Remove the methods from the subclasses.

3.2.7 Encapsulate field

This refactoring is used to change a public field to a private one and provide
accessors to it.

Encapsulation, the ability to conceal object data, is one of the pillars of object-
oriented programming. Without encapsulation, all objects would be able to
get and modify the data of other objects without the owner’s knowledge. This
reduces the modularity of the program. When the data and behavior are
clustered together, it is easier to modify the code - the changed code is in one
place.

public String name;

20

3.2. Types of refactoring and rules to implement them

Encapsulating the field name will result to the following code:

private String name;
public String getName(){
return name;

}
public void setName(String name){
this.name = name;

}

How to refactor:
1. Create getter and setter methods for the field

2. Find all objects that reference this field. Use the setter method instead
of assigning a value to this field and getter when accessing the field’s
value.

3. Declare the field as private

21

CHAPTER 4

Implementation

4.1 GES platform

GES is a generative software development platform used to create generative
solutions like application generation, software conversion, and refactoring. Its
strength lies in providing a platform to quickly reverse engineer and generate
code while minimizing the amount of code written for these transformations.
An example of how this IDE looks like can be seen in figure Ell

In the first part, I list some of the frequently used commands used to
work with GES and then show how the GES platform could be used on a
representative subset of refactorings with code examples and explanation.

4.1.1 Working with GES

The transformations we are working with are called processes (or scripts).
The processing of these scripts is divided into two phases - compilation and
execution. The scripts are compiled into a set of compilation objects and then
they are executed by processing the compilation objects.

4.1.1.1 Useful editor keys

In the following table @ are listed useful keys for working with GES. These
keys are primarily used to run and compile the transformation scripts. It is
very beneficial for the development process to get familiar with them, espe-
cially the one for compiling and running the process and the one presenting
the object’s data to the user.

23

4. IMPLEMENTATION

Key Description

F2 Presents the object compilation space

F5 Starts a process compilation and execution

F6 Presents the current objects with their attributes.
This is a very useful tool for debugging the scripts,
especially with the Stop command.

F11 Recompiles the process and executes

Table 4.1: Useful keys

4.1.1.2 Controlling the execution

The execution can be controlled by the following commands @ They are used
primarily for the creation of new processes, for example, pausing the execution
to look into the contents of the data structures to ensure they contain the
desired information or during the debugging process.

Name Description
Stop Completely stops the execution of the process
Pause Pauses the execution of the process.
By pressing Fb the execution will proceed.
Show Prepares selected object to be shown after the show data

command (F6). Otherwise all objects are shown.
Message Prints a message to the message pane

Table 4.2: Commands used to control execution

4.1.2 Manipulation with objects

One of the essential parts of the GES transformations is manipulation with
objects (along with templates for working with the file structure and gener-
ating output). To be able to generate the desired source code, we transform
and extend the original objects until we get the result object, from which we
can generate the code we wanted.

GES provides two main ways to create a new object. The first one is
defining a new object and the second one is projecting it from an existing one.
The main keyword for creating new objects is Define. Define is used to create
an entirely new object with predefined attributes and values. Because of its
flexibility, we can create objects with as many fields as we would like and set
their values all in one line of code.

Define(a, b, c)=(1, 2, 3);

The second way of creating new objects is by using the Project keyword.
This command creates a new model by copying it from an existing one. The
process of projecting a new object is very often modified with the Extend

24

4.1. GES platform

keyword. What happens is that the GES takes the original object, adds new
attributes specified with the extend command, and then projects a new object
from it. Using Extend as a standalone command will edit the original object,
but if it is used in combination with Project, only the result object will have
the new attribute.

Project CONTENT from SOURCE extend sourceCode=
ReadFile(fileName) ;

4.1.3 RES and GES projective technologies

The RES functions are used to reverse engineer data from a given code. When
called, the function returns an array of variables containing the code fragments
that were defined in the RES template. The elements that will be extracted
are marked with @ or $ sign and can be accessed by the name specified in
the template. The templates work similarly like regular expressions, but with
more features. The RES projective technology is used by calling the function
ERES with the right arguments.

ERES (configuration, >);

The first argument of the RES function is the source - the object we will
extract the data from. The second one is the RES template that will be
applied to the source. The RES template can be defined inline in a simple
string, or if it is more complex, a separate file containing the template can be
referenced, like in this case.

The next attribute is the view name to extract out of RES if the default one
is not right.

The last attribute is the edit flag, if it is set to true, RES editor will be opened
at run time.

[@eCodeBlock

[$Accessor: (private)$ $DataType: ([\w<>]1+)$ $AttributeName$
$Rest: [7;{}] ;8]

]

Let’s take a look at the example of a RES template (the one in the example is
used to extract a private field from a code fragment). The template itself can
contain several types of variables (tokens). The first type is defined by the @
sign. It is used to capture whole code blocks and the compiler will calculate
meta information of this block, which could be used later for locating this
certain code block in the code snippet (useful for editing it later).

The next type of variables is defined by the $ sign. The name of the token
can be followed by a colon sign and a regular expression that defines how the
input text should be matched.

25

4. IMPLEMENTATION

id~~~1location:length:rel_location
example: I10000~~~292:39:292~~~0

Figure 4.1: The RES meta format

Using the _meta suffix with variable name captures the location of the
code fragment extracted by RES in the original source code. This location
is stored in_the RES meta format. The RES meta format is in the following
structure @

The GES templates are very similar to the RES templates. But instead of
content being extracted from tokens marked with $ sign, the data is inserted
into them, before generating the output.

4.1.4 Interactive modes of PTs

Codiscent’s studio provides another important tool for writing processes for
code transformations which is called interactive mode for GES and RES. This
feature must be invoked manually from the code when calling specific trans-
formation. It will open a new window allowing to experiment with the chosen
technology and providing great help with debugging the templates.

ERES (configuration, >);

The code sample above shows how to call RES in the interactive mode, by
choosing the value Y (value N will suppress the interactive mode) in the
method call. When the compiler encounters the line with this code, a new
window will be opened in the studio and the user will be able to debug the
template. When the user is done with their work, the compiler will continue
executing the code from the next line. In figure you can see how the
interactive mode looks like,

In the first text area, there is a preview of the input text to which the template
will be applied. In the text area below is the RES template. Both can be edited
here and by clicking on the RE button, the studio will recompile the code and
show the result in the table below.

Interactive GES mode could be invoked the same way as the RES one. The
studio will open another new window , which presents all the variables that
are ready to be used in the template and two main text areas - the upper one
for the template itself and the lower one for previewing the output. Clicking
on the element will paste it into the template area, providing an easy way to
construct the template.

26

4.2. Code samples

4.2 Code samples

Before I was able to work on the refactorings, I needed to create code exam-
ples on which the refactorings will be performed. Depending on the type of
refactoring, I wrote a code sample on which it will be easy to demonstrate the
key aspects of each refactoring. For example, for the pull up members refac-
toring, I designed a structure of multiple subclasses that are using duplicate
methods and fields. When the code samples were ready, the next step was
writing tests - unit tests. As I mentioned before, writing tests is an important
part of refactoring the code. For testing of my work, I chose to incorporate
the jUnit framework because it is easy to work with and has good integration
with current development environments.

4.3 Designing refactoring templates

One of the goals of the thesis is to define templates to configure the refac-
torings. I designed simple templates to configure the refactoring, so the user
doesn’t need to edit the code in the GES platform IDE. These templates help
to reuse the implemented refactorings because it is easier and faster to edit
the configuration template. The second benefit is that the user doesn’t need
to know the Codiscent’s language, they only need to follow the instructions
written in the description block. In the next sample the general structure
of the template could be seen.

/* This is a configuration template for ENCAPSULATE FIELD

*

* It will generate getter and setter methods and make the
* chosen field private

*

* Insert /*encapsulate*/ comment before the declaration
* of the field you want to encapsulate. Multiple fields
* can be selected this way.

*

* inputFile: specify the full path to the input file

* outputFile: specify the full path to the output file
*/

inputFileName: "C:/Abosulte/Path/To/File. java"
outputFileName: "C:/Abosulte/Path/To/File.out.java"

Figure 4.2: Configuration Template for Encapsulate Field

The structure is always in the following format. It starts with the de-

27

4. IMPLEMENTATION

scription block, which consists of name of the refactoring, followed by a
description of the expected result, special instuctions - if there are any
- in this case, it is the identification of the fields that will be encapsulated,
and format of the input fields. The description block is ended by the
configuration fields themselves.

The next step was to determine how to parse these configuration templates.
Fortunately, because the template is structured, the RES technology is of great
use here. All I needed to do was to create a RES template that would fit the
configuration file 4.3. Because the configuration templates for each refactoring
contains different fields, I needed to create a parsing template for each of them.

$Commentary: \/*.+*\/$
inputFileName: "$inputFileName: .+$"
outputFileName: "$outputFileName:.+$"

Figure 4.3: RES template for parsing of configuration

RES technology tries to match the template to the input object. The tem-
plate is a combination of variables and plain text. The variables are enclosed
in the dollar signs and they are the ones that will be extracted from the config-
uration file. You can notice that those variable names are followed by a colon
and a regular expression. These tell us how to match the variables from the
source file. If there is no regular expression, RES will try to match a simple
string ending with whitespace.

With the source code samples and configuration files prepared, I could
start working on implementing the refactoring transformations themselves.

4.4 Refactorings

In this section, I will describe a representative subset of refactorings imple-
mented alongside the implementation process, which I believe are the most
suitable ones to show how the projective technologies could be used for code
transformations.

4.4.1 Extract method

The first refactoring explained is an extraction of a method from an expression.
Because extracting a method belongs to the most commonly used transforma-
tions, it was my first choice of implementation. Unfortunately, as we will see
from the implementation process, this is not an ideal one for the usage with
projective technologies.

Firstly, we need to parse the input data from the configuration file and
read the file containing the source code

28

4.4. Refactorings

/*Parse configuration templatex/
Define CONFIG(configlLocation)=[src-data/extract-method/
configuration-template.txt];

Extend CONFIG configuration=ReadFile(configlocation);
Extend CONFIG [inputFileName,outputFileNamel]=

ERES (configuration, , 0,)
Project X from CONFIG extend content=

ReadFile (inputFileName) ;

Firstly, we create a new object CONFIG with one field containing the
location of the configuration template. Notice that the path to the file is
unquoted and in the Unix format. The ReadFile method will then expand
the path to an absolute one and read the contents of the file into the variable
configuration. Then we make a call to the RES technology and parse the
configuration file. The content of the source file is read in the same fashion.

With the source data ready, we can start the code transformation process.
Again we use the reverse engineering technology to identify the relevant data
that will be extracted, in this case, the relevant code block is identified with
the token /*extract*/. Also, you can notice that in this case, we use an
inline RES template instead of an external one, which was used to parse the
configuration.

The variable @ExpressionBlock which starts with the @ sign allows us to
capture the whole code block matched with the template. When this syntax
is used, RES will implicitly create a new variable @ExpressionBlock_meta,
that could be used to locate the extracted code fragment in the input object.

Project Y from X extend
[Type, Element ,Expression,@ExpressionBlock_metal=
ERES (content,
S DN

After that, we create new object Y from the X with several new attributes(the
name of the attributes must match the one from the RES template), which
values are taken from the function ERES, which is called to further parse the
expression we extracted earlier.

In the next step, we create the function body. We process the result of
the reverse engineering. The name of the variable is capitalized, so it could
be used to create the function name. The attribute [ExpressionVariable]
is an array reverse-engineered from the original expression, which contains all
the variables from it. Next, GES is used to generate the body of the function.
Finally, we can construct the function definition with GES using the previous
variables and the function call.

29

4. IMPLEMENTATION

/* Make a function call body */
Extend Y ElementCapitalized=CapitalIlnitial (Element)”
[ExpressionVariable]=
ERES (Expression, '$ExpressionVariable$','','N"')"~
FunctionBody=
GES('@ExtractMethodGesFunctionBody','','N')"
FunctionCall=
GES('$Type$ $Element$=get$ElementCapitalized$
([$ExpressionVariable$ ~,1);',"'','N")
present [-ExpressionVariablel];

The next step changes the original expression to call the newly created
function:

/* Call the newly created function x*/
Extend Y xcnt=RSBI(cnt,Q@ExpressionBlock_meta,
FunctionCall) [];

The RSBI function(replace set by index location) replaces the original
code block with the new one containing the call to the created function. Its
arguments are - text to change, starting position - this could be an index or the
RES meta format(here we are using the variable @ExpressionBlock_meta) -
and the new value. The final step is to append the function definition to the
end of the original class:

Project 0 from Y extend
[ClassHeader ,ClassBody]=ERES (updatedContent,
'public class $ClassHeader$ {[$ClassBody:.+$ 11}',
PULINT) T
OQutput = GES('G@ExtractMethodGesOutput',"'','V")
outputFile = WriteFile(outputFileName , Qutput);

~

Using RES we capture the class header and body from the updated class,
which are used by GES to generate the new class file. The output is then
written to the file.

4.4.1.1 Extract method summary

The biggest benefit of the reverse engineering technology is that it is very
general and the usage could be tailored to solve many specific problems, in-
dependent of the language of the source code. But this is also its biggest
drawback in this refactoring. To create the function signature in this refac-
toring we need to know the correct data types of the variables that are found
in the extracted expression. In this case, we can safely assume that the data

30

4.4. Refactorings

types are the same as the type of the result, but it always doesn’t have to be
that easy.

To correctly identify the types of the variables and whether the variables are
local or not we would need something stronger than a reverse engineering tem-
plate, for example, parser of the used language. This is the biggest advantage
for refactoring purposes that specific development environments have over us-
ing projective technologies, especially for this type of refactoring where the
context of the code is very important.

4.4.2 Pull up members

The following example recognizes common fields and functions from child
classes and moves them to a parent class. As we will see from this exam-
ple, the projective technologies are much better suited to perform this kind of
refactoring.

We start the transformation in the same fashion as the previous example
by parsing the configuration file. In this case, it is a little different, the child
classes are defined in a field named subClass, which we need to process as
a list. The processing is done using RES technology, which will extract the
name of the classes and save it to a variable as a type List. In the next step,
we create the path to those subclasses. The compiler correctly identifies our
variable fileList as a list and iterates over its values to create the desired
paths to the files, which contents are then read.

/*Read files using listx*/
Extend A [fileList]=
ERES (subClass, '[@ListBlock $filelList$; ~J1','"','N');
Project B from A extend files=
inputFolder+'/'+filelList+'. java';
Extend B content=ReadFile(files);

When we have the file contents ready, we create new object D containing
the instances of the derived elements and parse out the fields and methods
using @QExtractElementsRes RES template. The present directive tells the
compiler which of the attributes we want in the projected object, or we want
to omit (we use a minus sign to exclude them).

/*Extract elements from the sub classes*/
Project D from B present [filelList,content];
Extend D [@CodeBlock_meta,CodeBlock,Accessor,DataType,
MethodName ,AttributeName ,ParameterSet ,Body,Rest]=
ERES (content, 'CExtractElementsRes','', 'N')~
Element=MethodName | MethodName<>'"'"
Element=AttributeName | AttributeName<>"'";

The RES method call references an external template. This template serves
to parse the elements from the subclasses, so we can decide if they need to

31

4. IMPLEMENTATION

be pulled up or not. The elements can be of two types, either methods or
fields. The part of the template to capture the methods is different - we need
to extract their parameter sets and bodies too.

[@@CodeBlock

[$Accessor: (private|public)$ $DataType: [\w<>]+$
$MethodName$ ([$ParameterSet:.+$ 1) {[$Body:.+$ 11}]

[$Accessor: (private|public)$ $DataType: [\w<>]+$
$AttributeName$ $Rest:[~;]1+;$]

]

Then we find the common elements to be pulled up. We create two new
objects, D1 containing the unique names of all the elements from the child
classes, and D2 containing names of all the common fields and methods.

This is done by joining the D1 object with itself defined by the mapping rules.
Because D1 contains only two columns - the name of the element itself and the
name of the class, where it is declared, this results in filtering the elements
that are common.

/*filter common elementsx*/

Project D1 from D where
Element<>'' present [fileList,Element];

Project D2 from a<D1> join b<D1>
link a.Element=b.Element map *:a.x*
bfl:b.filelList filter fileList<>bfl and
Element<>'toString' present [Element];

Once the common elements are identified, the next step is to remove them
from the sub-classes by replacing each occurrence of the corresponding code
block with an empty string. When this is finished, the updated classes are
ready to be saved to a file.

Project D3 from a<D> join b<D2>
link a.Element=b.Element map *:a.x*;
/* Update the body of sub classes x*/
Extend D3 updatedContent=
RSBI (content ,@CodeBlock meta,'')[fileList]
present [fileList ,updatedContent];
/* Write the updated files */
Project Bl from B present[outputFolder];
Project 01 from D3 cross B1l;
Extend 01 outputFileName=
outputFolder+'/'+fileList+'.out.java'”
o = WriteFile(outputFileName ,updatedContent) ;

32

4.5. Rearanging the code

When the sub-classes are updated we start working on changing the superclass.
We need to add the extracted common fields and methods to the parent class.
First, we parse the class headers and body using RES into the new object E.

/* Add the moved code to the superclass */
Extend B parentPath=inputFolder+'/'+parentClass+'. java';
Extend B parentContent=ReadFile(parentPath);
Project E from B extend[Imports,ClassHeader,ClassBodyl=
ERES (parentContent,
'"$Imports:.*$
public class $ClassHeader$ <
[$ClassBody:.+$]
P Y

New object D4 is prepared for the purpose of generating the code block with
the extracted elements.

But before the code could be generated, there needs to be performed one last
important step. The extracted elements which were private in the subclasses
could no longer be private and needs to be protected now. This is done
with the ReplaceByPattern function. Afterward, the code block could be
generated. We then generate the result class in the same way as in the Extract
method example using the GES technology.

Project D4 from a<D> join b<D2>
link a.Element=b.Element map *:a.x*
present [Element,CodeBlock];
Extend D4 CodeBlock=
ReplaceByPattern(CodeBlock,P'private', 'protected');
Extend D4 FunctionBody=
GES('$CodeBlock$!','','N")
present [FunctionBody];

4.4.2.1 Summary of pull up elements

As can be seen from the implementation process of this refactoring, the use
of the projective technologies is much more beneficial here. This kind of
transformation is ready to be automated and doesn’t suffer from the same
problems as the Extract Method. Another benefit is that it doesn’t require
much input from the user, all they need to do is specify the parent and child
classes in the configuration template.

4.5 Rearanging the code

Predefined class structure helps us reaching what we are looking for more
quickly. Because there is a consistent pattern, we know where to look for the

33

4. IMPLEMENTATION

code fragments we need. Code rearranging is a practice that can provide great
help when used right. All we need to do is define a structure of how elements
should be organized. The general idea is to keep similar code fragments to-
gether - to have one group with setter and getter, another with overridden
methods, and so on. Another set of rules could be created for setting the or-
der of fields and methods. For example, public fields will take the first place,
protected fields will be in second place... IDEs also support the definition of
rearranging rules, that keeps the code structured. On the picture @ below
you can see the default rules. The rules are applied to our code when the
formatting is run.

Grouping rules
[“Keep getters and setters together
[IKeep overridden methods together

[CIKeep dependent methods together

Matching rules + 4+ e
field public static final
field protected static final
field package private static final
field private static final
field public static
field protected static

Figure 4.4: Definition of rearranging rules in IntelliJ IDEA

The rearranging of code could also be done using the projective technolo-
gies. I created a script that will find all class fields in a class and then regroup
them above method declarations, protected fields first, private fields second,
and public fields last. Although the IDE version offers more customization, I
think this script is still very useful, because it could be easily automated and
doesn’t need much input from the user, except specifying the source file.

The user needs to specify an input and an output file in the configuration
template and then the source class will be transformed.

Similarly as in the Pull up members refactoring, we extract the mem-
ber fields using the RES technology. The RES template is the following:

[@@CodeBlock
[$Accessor: (public|private|protected)$

$DataType: ([\w<>]+)$ $AttributeName$ $Rest: [7;{}]1*;$]
]

The CodeBlock annotations define that the whole block will be saved to a

34

4.6. Formatting the code

variable, with meta information like the location of the code block. Then fol-
lows the description of the element we are looking to extract.

When the elements are ready, all we need to do is to remove them from the
class body, group them together, and then generate a new class file. The
generation of the file is defined in the following GES template:

$*xImports$

public $ClassHeader$ {
$*xprotectedBlock$
$*xprivateBlock$
$*xpublicBlock$
$updatedClassBody$

}

In this example, the names of the respective code blocks are preceded
by the asterisk sign. It serves to tell the GES compiler that these elements
are optional and may be null. If there are any unhandled null elements in
the template, the generation of the code will result in an empty string. The
grouping of the elements can be easily changed by reordering them in the
template.

Unfortunately, the output of this script is not formatted at all. I will address
solving this issue in the next section.

4.6 Formatting the code

After the GES generates the desired source code, the result is rarely formatted.
Although the formatting of the result could be solved with clever placement
of whitespaces in the GES template when developing the scripts, it is not a
good thing to do, and in some cases, it is impossible to do it right. It makes
the templates unreadable and is very time consuming because the whitespaces
need to be edited with trial end error.

This is a major drawback. The goal of code refactoring is to make code cleaner
and more readable. As you can see from the output files of the refactorings,
it takes much more time to read than when the code we look at is formatted.
Fortunately, we could solve this issue far more easily and elegantly than editing
whitespaces in the templates - with the use of code formatting programs,
although we need to use another third party software.

The formatting of the code could be done manually, and although if could
be quite fast when the target code is small enough, it defeats the purpose of
the automated refactoring - allowing us to introduce new errors to the code.

There are a few ways it can be done. The first one is using an online
tool like Code Beautify [13]. This is useful when we are working with small
projects when copy-pasting the code into the browser is not a problem, but it
is not optimal. Another solution is to use plugin for our favorite text editor
or there is a possibility that the IDE supports it by itself. Then it could be

35

4. IMPLEMENTATION

configured to run the code formatter with every saving of the file or build of
the application, which is very convenient. This practice helps us ensure the
code formatting is the same across our application, it is faster when more than
a few lines of code need to be changed and could be done just by pressing a
keyboard shortcut.

4.6.1 Formatting code using IDE

In IntelliJ IDEA we can use the CTRL+ALT+L keyboard shortcut format
the selected text, or CTRL+SHIFT+ALT+L to format the whole file that
is being edited. IDEA also supports the reformatting of whole directories or
modules.

IDEA offers many ways to customize the reformatter settings. We can
use marker comments to prevent the reformatter from formatting the code
fragment encapsulated in them.

Another useful setting is the preferred line endings and indentation. If we are
not careful, developers may be uploading files with different line endings and
different indentations.

After the reformatter is set to our liking, it could be exported to a file. The
export feature is very valuable because it allows us to simply share it with other
coworkers, enforcing the same code style across the project we are working
on.[[14]

Another option, if we don’t want to run fully equipped IDE, is to use text
editor with some sort of plugin to format the code. My personal choice of the
text editor is Sublime Text 3 and I had great success using the plugin For-
matter [15], which is fully customizable and supports multiple programming
languages. In this case, the reformatting is done when the source file is opened
and could be configured to run on shortcuts too.

36

Conclusion

The goals of this thesis were to perform a review on current approaches and
tools for refactoring, define rules for these refactorings, and demonstrate how
CodiScent’s projective technologies could be used to perform these refactor-
ings.

All of these goals were reached and with the help from CodiScent I was able
to demonstrate the use of projective technologies on a representative subset
of refactorings. As can be seen in these samples, some of the refactorings
are more suited to be used with the PTs than others. The ones that have
the potential to be used in practice are the ones that didn’t require frequent
interaction with the user and aren’t heavily dependent on the context of the
code.

The greatest obstacle I was facing when working on this thesis is that
the Codiscent’s projective technologies are still under development and I was
encountering bugs when working with them. Fortunately, I was able to report
these bugs and Codiscent was happy to fix them or provide a workaround.

In the future, it would be possible to make the refactoring scripts more
universal, to better suit practical use. Currently, it is much more efficient to
perform refactorings directly through IDE(after all, this is one of the key rea-
sons for using an IDE) than to take the time to write and test the refactoring
scripts. Another point is, that the Java programming language is very widely
used and is greatly supported in various development environments. There-
fore it may be beneficial to use the projective technologies for refactoring in
different languages with lesser IDE support.

37

Bibliography

Fowler, M. Refactoring: improving the design of existing code. Addison-
Wesley signature series, Boston: Addison-Wesley, second edition edition,
2019, ISBN 978-0-13-475759-9, oCLC: on1064139838.

Technical debt. [Online; accessed 27-April-2019]. Available from: https:
//refactoring.guru/refactoring/technical-debt

Unit Testing. Mar 2018, [Online; accessed 22-December-2019]. Available
from: http://softwaretestingfundamentals.com/unit-testing/

Testing levels. Mar 2018, [Online; accessed 22-December-2019]. Avail-
able from: http://softwaretestingfundamentals.com/software-
testing-levels/

When to refactor. [Online; accessed 27-April-2019]. Available from:
https://refactoring.guru/refactoring/when

Code Refactoring Best Practices: ~ When (and When Not) to
Do It. [Online; accessed 12-December-2019]. Available from:
https://www.altexsoft.com/blog/engineering/code-refactoring-
best-practices-when-and-when-not-to-do-it/

Codiscent.com — Better, Cheaper, Faster Technology from Codis-
cent. [Online; accessed 21-April-2019]. Available from: http://
codiscent.com/

Codiscent Ltd. Application Development Using Codiscent Generative
Technology and Methodology [online]. 2013, [Online; accessed 12-
December-2019]. Available from: http://ccm.fit.cvut.cz/wp-content/
uploads/2013/10/CodiScent-Technology-and-Methodology.pdf

Codiscent Ltd. Codiscent Tools [online|. [Online; accessed 12-December-
2019]. Available from: http://codiscent.com/?page_id=296

39

https://refactoring.guru/refactoring/technical-debt
https://refactoring.guru/refactoring/technical-debt
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/software-testing-levels/
http://softwaretestingfundamentals.com/software-testing-levels/
https://refactoring.guru/refactoring/when
https://www.altexsoft.com/blog/engineering/code-refactoring-best-practices-when-and-when-not-to-do-it/
https://www.altexsoft.com/blog/engineering/code-refactoring-best-practices-when-and-when-not-to-do-it/
http://codiscent.com/
http://codiscent.com/
http://ccm.fit.cvut.cz/wp-content/uploads/2013/10/CodiScent-Technology-and-Methodology.pdf
http://ccm.fit.cvut.cz/wp-content/uploads/2013/10/CodiScent-Technology-and-Methodology.pdf
http://codiscent.com/?page_id=296

BIBLIOGRAPHY

[10]

[11]

[12]

40

Codiscent Ltd. About Generative Software Engineering [online]. [Online;
accessed 03-June-2020]. Available from: http://codiscent.com/?page_
id=296

Cervenka, J. Utilising projective technologies for object-oriented develop-
ment of WEB Ul Master’s thesis, Czech Technical University in Prague,
Faculty of Information Technology, 2015, an optional note.

The most popular refactorings supported in IntelliJ IDEA. [Online; ac-
cessed 06-January-2020]. Available from: https://www.jetbrains.com/
help/idea/refactoring-source-code.html

Code Beautify. http://https://codebeautify.org/, accessed: 2010-06-
01.

Reformat and rearrange code. [Online; accessed 08-January-2019]. Avail-
able from: https://www.jetbrains.com/help/idea/reformat-and-
rearrange-code.html

Sublime Text 3, Formatter plugin. https://packagecontrol.io/
packages/Formatter, accessed: 2010-06-01.

http://codiscent.com/?page_id=296
http://codiscent.com/?page_id=296
https://www.jetbrains.com/help/idea/refactoring-source-code.html
https://www.jetbrains.com/help/idea/refactoring-source-code.html
http://https://codebeautify.org/
https://www.jetbrains.com/help/idea/reformat-and-rearrange-code.html
https://www.jetbrains.com/help/idea/reformat-and-rearrange-code.html
https://packagecontrol.io/packages/Formatter
https://packagecontrol.io/packages/Formatter

APPENDIX A

GES Generative Engineering studio

IDE Integrated development environment
MDD Model-Driven development

PTG Projector Template Generator

PTs Projective technologies

RES Reverse Engineering studio

41

Acronyms

APPENDIX

Screenshots of Codiscent’s IDE

S CodiScent GES Platform o x

Bl Edt View Tools Windows Help Run

DEH RS
9 Process: ExtactMithodProc
Tools] Conpieonty [Tab <] ety @ Sotons
Parse configuration template’ - Earaciichod
Define CONFIG(configLocation) = template.] EutacithodGesfunctionBody
[Extend CONFIG configuration = ReadFile(configLocation); :‘mi“:ﬁﬂdfﬁ‘ Qo
[Extend CONFIG [inpt , outp)= ‘@ParseC LN Pt
Project X from CONFIG extend content = ReadFile(nputFileName); PullpenbenPo
* pick the expression that we want to change into a function call* SiaciBemertses
PullpMenbenGesOupit
Project Y from X extend [Type, Element Expression, meta] rextract'/§Type$ SElements = SExpression: +75 1" /N); & e PemGrtaraeniin
R e
PaseConfiguraionRERes
 Make a function call body ekl
Extend Y ElementCapitalized=Capitalinital(Element) ~ Dehmngepee
= 3 EactublcRes
F = GES(EuracPotecedies
FunctionCall = GES($Type$ $Element$ = | A :-"Z‘ﬂ-g-‘muﬁ-'
present [-ExpressionVariable]. [
ParseConfiuraionRARes
Change the expression in the function body = Encapsulaterield
[Extend Y updatedContent = RSBI(content @ExpressionBlock_meta, FunctionCall]; EEERRE
WethodGes
Add the function body to the end of the class * GenerteClastes
Project O from Y extend
[ClassHeaderCl tent,public diass $CI $ {[$ClassBody. +$ Jf,",N) *
Output = GES(@ExtractMethodGesOutput,”,) *
outputFile = WiiteFile(outputFileName, Output),
stop; o

Figure B.1: Look at Codiscent’s IDE

43

B. SCREENSHOTS OF CODISCENT’S IDE

@& RES Control Center

Action

e

v

Show Code | | | | [Apsly Regex

SaveDataB | [res | | Check Input

Save Close

i

RE | | Quit
|

| SaveEscel

I
P lle|la o

[] ShowRegex
‘ [ShowTree

package com.tbunata;

public class Person {
f*encapsulate*/public String name:
ffencapsulate*/public int age;
public int ssn;

public Person{String name) {
this.name = name:

i

a -

pubrliz: class $ClassHeader[\w]+$ {[$ClassBody +$ 1}

DefauttView

Imports ClassHeader 32459 ClazsBody

@ClazsBody_meta @Imports_meta @ClassHeader_meta

|{ fen |/‘encapmlale‘!pub\ 110003~45:156:5~1 | 110000~~~0:23:0~~~0 |110001~~~36:7:36~~"0

44

Figure B.2: RES in interactive mode

st FGESEditor

Generate

@CodeBlock_meta
_ filter

Class

ClassBody
ClassHeader
CodeBlock
configlocation
configuration
content

Element
BementCapitalized
Encapsulation
Imports

input FleMame
Methods
outputFileMame
Type
updatedBody
updatedClass

Simports$

public $ClassHeaders {
SupdatedBody$
iil‘v'lethods 5

package com.tbunata;

public Person {

private String name
priwvate int age
public int ssn;

public Person(String name) {
this . name = name;

}

public int getRgei){
return this.age;

1

public woid sethge (int wvalue) |
this_age = walue;

jpublic String getHame ()
return this.name;

1

public woid setMame (String walue) |
this _name = walue;

}

}

Figure B.3: GES in interactive mode

45

APPENDIX C

Contents of enclosed CD

readme.txt the file with CD contents and installation description
= ol o the directory of source codes
tthesis the directory of IXTEX source codes of the thesis
ReleaseCodecovvviunueeennnn. implementation and GES platform
src-data.............. refactoring configuration, input and output

FileSetoooiiiiiiiiiiiiiinninnnnn refactoring scripts
ObjectSet.xmlovvvnnnieviinnnn. GES settings and templates
MetaObjectSet.xml ...ooviiiiiniiiiii i GES data

CaCh t ittt e vital GES platform data
WorkFlowOrchestrator.exe.......... executable of GES platform
OrchestratorDocumentation.doc......... documentation of GES

I =3 AP P the thesis text directory
Lthesis.pdf the thesis text in PDF format

APPENDIX D

Installation guide

D.1 List of refactorings

The attached CD contains the following refactoring examples:
« Encapsulate field
o Extract method
e Pull up members
e Rearrange fields

¢ Rename element

D.2 Requirements

e Windows OS 7 or later

D.3 Performing the refactoring

1. Start the GES platform by executing the file:
src/ReleaseCode/WorkFlowOrchestrator.exe

2. The Solution Explorer (right column) contains an overview of available
refactorings.

3. Choose the desired refactoring in the Solution Explorer and double click
on its RefactoringNameProc file (colored in green)

4. The refactorings could be customized by editing the configuration tem-
plate - src/ReleaseCode/src-data/refactoring-name/configuration-
template.txt

49

D. INSTALLATION GUIDE

5. Change the source and output file paths in the configuration template -
the absolute path is needed

6. Return to the refactoring’s process in the GES platform and click on
Run — Recompile and Run or hit F11 to execute the refactoring.

7. The result will be written to the output file specified in the configuration
file.

20

	Introduction
	State-of-the-art
	Technical debt
	Importance of writing tests
	Refactoring

	Codiscent's projective technologies
	Projective Technologies
	Benefits and drawbacks

	Analysis and Design
	Refactoring using IDEs
	Types of refactoring and rules to implement them

	Implementation
	GES platform
	Code samples
	Designing refactoring templates
	Refactorings
	Rearanging the code
	Formatting the code

	Conclusion
	Bibliography
	Acronyms
	Screenshots of Codiscent's IDE
	Contents of enclosed CD
	Installation guide
	List of refactorings
	Requirements
	Performing the refactoring

