
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague September 19, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Sheepless - An Open-source 2D Adventure Game in Unity

 Student: Jan Klicpera

 Supervisor: Ing. Marek Skotnica

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2020/21

Instructions

Sheepless is an open-source art game about a Shepherdess from Prague. EbSynth is a state of the art image
synthesis technology developed at DCGI FEL CTU. This technology is intended to make a hand drawing
animation easier. A goal of this thesis is to explore how to take advantage of this technology to design a
prototype of a 2D game in Unity.

Steps to take:

• Review the EbSynth technology and Unity.

• Design game mechanics and game architecture.

• Create an open-source proof-of-concept implementation.

References

Will be provided by the supervisor.

Bachelor’s thesis

Sheepless – An Open-source 2D Adventure
Game in Unity

Jan Klicpera

Department of Software Engineering
Supervisor: Ing. Marek Skotnica

May 20, 2020

Acknowledgements

I would like to thank my supervisor, Ing. Marek Skotnica, for his patience,
guidance and persistent positive attitude. I would also like to thank Poli
Akhmetzhanova for her beautiful artwork, which was used throughout the
project. I am also grateful to the creators of EbSynth from DCGI at FEL CTU
for publicly sharing their great results and also answering all my questions
regarding it. My thanks also goes to everyone who has been working on the
Sheepless project. Last, but not least, my deep gratitude goes towards my
family and my partner Káťa for their endless support and encouragement.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work for non-profit purposes only, in any way that does not detract from
its value. This authorization is not limited in terms of time, location and
quantity.

In Prague on May 20, 2020 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Jan Klicpera. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Klicpera, Jan. Sheepless – An Open-source 2D Adventure Game in Unity.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2020.

Abstract

This thesis is dedicated to exploring the possibilities of creating a video game
in the Unity engine with a heavy emphasis on utilizing artistic style transfer
technology for all in-game 2D animations. A method to record and process
live-action footage is described and custom tools in the Blender editor, to
more effectively process the footage, are proposed and created. The processed
footage is then stylized using the EbSynth algorithm. A movement and ani-
mation system is created for the Unity game engine, utilizing the stylized an-
imations. The game components are then demonstrated in a proof-of-concept
implementation. The solution utilizes free software only and is fully available
in an online repository.

Keywords 2D animation, Blender, EbSynth, game development, style trans-
fer, Unity engine

vii

Abstrakt

Tato práce prozkoumává možnosti využití moderní technologie pro převod
uměleckého stylu v herním průmyslu. Zvolená technologie pro převod stylu,
EbSynth, je využita pro efektivní uměleckou stylizaci živě natočených záběrů.
V práci je nejprve popsán postup natočení, zpracování a stylizace záběrů. V
editačním programu Blender jsou vytvořeny nástroje, které částečně automa-
tizují proces zpracování záběrů. V herním engine Unity je následně vytvořen
animační a pohybový systém, využívající tyto stylizované animace. Vytvořené
herní komponenty jsou poté demonstrovány na jednoduché ukázce herního
světa. Veškerá výsledná řešení využívají výhradně bezplatný software a jsou
plně dostupná v online repozitáři.

Klíčová slova 2D animace, Blender, EbSynth, herní vývoj, převod stylu,
Unity engine

viii

Contents

Introduction 1

1 Artistic Style Transfer 3
1.1 StyLit . 3
1.2 StyleBlit . 4
1.3 EbSynth . 5

2 Blender 9
2.1 User Interface . 9
2.2 Scenes . 10
2.3 Editors . 11
2.4 Scripting . 14

3 Unity 17
3.1 Main Concepts . 17
3.2 Animation System . 19
3.3 Physics System . 20
3.4 Pathfinding . 20
3.5 Video Player . 22

4 Analysis and Design 23
4.1 Video Capture . 23
4.2 Processing the Footage . 25
4.3 Custom Blender Addon . 31
4.4 Asset File Formats & Compression 33
4.5 Animation System For Video Files 34
4.6 Navigation and Movement . 37

ix

5 Implementation 43
5.1 Blender Addon . 43
5.2 Unity Components . 46
5.3 Results and Future Work . 49

Conclusion 51

Bibliography 53

A Acronyms 57

B Contents of Enclosed SD Card 59

x

List of Figures

1.1 An example of images synthesized using StyLit 3
1.2 A comparison between StyLit and StyleBlit. 5
1.3 EbSynth Alpha for Windows. 7
1.4 An example of an original frame, mask, and keyframe. 7

2.1 The default screen layout of Blender. 10
2.2 A visual example of the affine transformations on a square. 13
2.3 An example of a graph view for multiple trackers. 14

3.1 An example of an animator controller. 19
3.2 An example of the navmesh components. 21

4.1 The setup used for recording the footage for the project. 24
4.2 An example of the processed and synthesized images. 26
4.3 The node setup for basic chroma keying in Blender. 27
4.4 Activity diagram describing the chroma keying workflow without

the use of custom scripts. 29
4.5 Activity diagram describing the workflow utilizing the proposed

custom functionality. 30
4.6 Class diagram of the state pattern implementation. 32
4.7 A visual example of the compression frame types and flow of data

used for predictions. 34
4.8 Class diagram describing the state animation structure. 39
4.9 Class diagram describing the animation controller structure. 40
4.10 Class diagram describing the movement system structure. 41

5.1 The output folder structure. 45
5.2 The custom UI panels created for the compositor editor. 46
5.3 Screenshot from the game demo. 47

xi

Introduction

Until quite recently, creating authentic animations in a specific art style was
possible only by painting every frame manually, which is very time consum-
ing and costly. According to the CBS news [1], a full feature hand-painted
film Loving Vincent took a team of 120 artists over 4 years to complete. The
movie consists of 64,000 frames, each one painted by hand. In the interview,
the director of the film, Hugh Welchman, has stated: “computers could never
replicate this kind of authenticity”. While that statement might stand true for
the foreseeable future, the image synthesis research field is evolving at an in-
credible pace. It is already possible to greatly expedite the animation process,
whilst preserving a large degree of authenticity. Using EbSynth, an artistic
style transfer software, the number of frames needed to be drawn by hand
can be significantly reduced – description of EbSynth and other approaches to
artistic style transfer can be found in chapter 1.

The aim of this thesis is to utilize EbSynth in game development using
the Unity game engine. That includes recording the live-action footage and
creating tools to efficiently process the footage in bulk. The next step is to
authentically control and display the stylized animations in the game engine.
These approaches and tools are then demonstrated in a proof-of-concept Unity
project. The main goal is to provide a general solution that is both efficient
and utilizes free software, not to develop a fully fleshed-out playable game.

The first three chapters introduce the reader to the software and tools used
in the project. Chapter 1 explores the current state-of-the-art style transfer
techniques, which could to some degree be utilized in game development. In
chapter 2, the tool used for processing the footage, Blender, is introduced.
The Unity game engine is presented in chapter 3. In chapter 4, the process of
recording and transforming the footage using the available tools is analyzed
and new tools to aid in the process are proposed. The method chosen to
import the processed footage is also described. Lastly, the movement and
animation systems in Unity are designed. In chapter 5, the features and tools,
implemented based on the analysis, are presented.

1

Introduction

The outcome of the thesis (or parts of it) will be utilized during the devel-
opment of a video game called Sheepless. Two of my colleagues, Ian Mustiats
and Robert Badronov, have also been developing other features for the game
in their theses [2, 3].

2

Chapter 1
Artistic Style Transfer

Style transfer algorithms are used to synthesize artistically stylized images
based on a set of input parameters. These input parameters vary based on
the approach of the specific implementation, but they generally consist of a
source style (the style example) and a source content (the image the style
of the exemplar gets applied to). In this chapter, certain types of state-of-
the-art style transfer algorithms, that could potentially be useful in game
development, are explored.

1.1 StyLit
StyLit is an approach to example-based stylization of 3D renderings intro-
duced in [4]. It focuses on preserving the rich expressiveness of hand-created
artwork, achieving this by being able to distinguish among context-dependent
illumination effects, rather than being guided only by colours and normals.
The algorithm also tackles disruptive artifacts that have been common in the
results of the previous approaches to guided texture synthesis.

(a) (b) (c) (d) (e)

Figure 1.1: An example of images synthesized using StyLit [4]. Exemplar
images: © Daichi Ito (b), Pavla Sýkorová (c, d), and Lukáš Vlček (e).

3

1. Artistic Style Transfer

The most common stylization workflow is to first create a simple 3D scene,
containing all important illumination effects. Typically, “a sphere on a ta-
ble” (see top insets in figure 1.1) is used as the reference scene. The scene
is then rendered and can be painted over by the artist in the desired style,
either digitally or physically by printing it onto a paper with special alignment
marks. The algorithm is then able to transfer the style from the exemplar im-
age onto a different rendered scene. If an exemplar image already exists, but
the reference 3D model does not, an approximate 3D reconstruction can be
created to roughly resemble the shape and illumination effects of the original
image.

StyLit can also be used to create animations or to auto-complete an image.
The user can stylize only a portion of the model and then use the algorithm
to transfer the style to the rest of the model.

While technically this specific implementation may no longer be consid-
ered as state-of-the-art, it is an important milestone in example-based style
transfer, providing a foundation for the approach described in the next section.

1.2 StyleBlit
StyleBlit, introduced in [5], is an example-based style algorithm, which is able
to produce results similar to the previously described StyLit (see figure 1.2 for
a comparison), whilst being able to produce the result orders of magnitude
faster.

The algorithm allows to stylize a one-megapixel image at 10 frames per
second on a single-core CPU (Core i7, 2.8GHz), while also being able to achieve
more than 100 frames per second at 4K resolution on a GPU (GeForce GTX
970). That creates a possibility to render stylized images in real-time, which
can be directly applied in game development.

Such approach has been explored in [6], with interesting results. A plugin
for the Unity game engine has been created, directly utilizing a modified ver-
sion of the StyleBlit algorithm. The plugin is capable of creating fully stylized
scenes, when provided with a sample texture of the desired style. Complex
models can also be seamlessly stylized using multiple sample textures. One of
the visual limitations is stylizing flat monotonous surfaces – the style texture
is applied in the form of small patches, creating a visibly repeating pattern
map. Due to the form of style input, the artist is also unable to precisely
control the stylization of more detailed parts of a model, as they can only
control the overall texture of the model.

4

1.3. EbSynth

(a)

(b)

(c)

Figure 1.2: A comparison between StyLit and StyleBlit: original style exem-
plar (a), the result of StyleBlit (b), and the result of StyLit (c) [5]. Style
exemplars: © Pavla Sýkorová.

1.3 EbSynth
EbSynth, as proposed in [7], is a powerful video synthesizer that is able to
apply an artistic style to a video sequence based on one or more keyframes,
which serve as a stylistic example for the synthesis. Because these keyframes
are a direct stylization of the source content, the artist can very precisely
control the overall stylized look and details of the synthesized video.

The synthesis is especially useful for stylizing live-action sequences, as
no tool that would provide such wide artistic control over the resulting video
previously existed. Using EbSynth, it is now possible to create smooth stylized
2D animations utilizing live-action footage, without the need to draw every
frame by hand, which was the most time consuming and expensive part of the
process.

1.3.1 Working With EbSynth
In its current version (Alpha as of writing this thesis), EbSynth allows to
synthesize images using a free GUI application for the Windows operating
system (see figure 1.3 for a screenshot of the GUI). The only mandatory inputs
are the original image sequence and at least one keyframe, based on which the
synthesis operates. The name of the keyframe must be named to numerically

5

1. Artistic Style Transfer

match with the corresponding original frame and, for the best result, should
structurally match the original video frame.

One keyframe is usually sufficient for simple shots, but if new information
is introduced into the scene, for example by out-of-plane rotation, multiple
keyframes are necessary. Additional keyframes might also be needed, when
sudden illumination changes happen in the scene, as the steep colour shift
might mislead the synthesis.

It is also possible to supply a mask, which defines the area to synthesize
and must be defined for every single input frame. The mask must be in a
standard black and white format (see figure 1.4 b).

Finally, the user can alter the following settings:

Keyframe and video weight The ratio of these two settings determines
how similar the final image will be to each respective input. The higher
the keyframe weight is, the more stylized the output will be. Intuitively,
going the other way will produce images more similar to the original
sequence.

Mapping If set to a low value, the synthesis can exchange sets of pixels be-
tween regions. Whilst useful at times, it can also lead to some unwanted
and unpredictable behaviour.

De-flicker Determines how similar a newly generated frame should be to the
previous one. If set to zero, each new frame is synthesized independently
to the previous ones and the final animation can flicker.

Diversity Controls how much diversity of the reference keyframe the syn-
thesis tries to transfer. The higher the value is, the more the synthesis
process tries to not highly reuse small portion of the reference, which
would create large monolithic blurry areas.

6

1.3. EbSynth

Figure 1.3: EbSynth Alpha for Windows [8].

a) b) c)

Figure 1.4: An example of an original frame (a), mask (b), and keyframe (c).
Keyframe (c) courtesy of © Polina Akhmetzhanova.

7

Chapter 2
Blender

Blender [9] is a free open-source software primarily used for 3D modelling
and animation. It also provides support for video editing, 2D animations,
VFX (Visual effects), tracking and more. Whilst being well over two decades
old [10], it is still being regularly updated and provides modern tools that are
more than adequate for the purposes of this project. If not explicitly stated
otherwise, the source of information for this chapter is the official Blender
reference manual [11].

2.1 User Interface
The UI can be divided into three parts (also shown in figure 2.1):

Topbar Located at the very top. Contains all option menus, open workspaces
and scenes.

Areas Located in the middle. Contains editors belonging to the currently
active workspace.

Status bar Located at the very bottom. Is used to display general infor-
mation, such as what action will mouse keys perform for the currently
chosen editor, or the current memory usage.

Key features of Blender are split up into editors, which are used for dis-
playing and editing different aspects of data. Some editors are further divided
into views. The layout of the editors on the screen is called a workspace. The
user is free to customize the workspace by adding editors to the desired place
on the screen. Blender also provides a group of predefined workspaces, which
are fully customizable as well.

9

2. Blender

Figure 2.1: The default screen layout of Blender, split into highlighted UI
parts: Topbar (blue), Areas (green) and Status bar (red) [12].

2.2 Scenes
Scenes are a way to organize data inside of a project. By default, all of the
data stored from each editor belongs to a scene, which means that the data
in a scene can be changed without affecting the other scenes. It is possible to
create data links between scenes, which means the linked data will always be
identical in those scenes, as they are “linked together” – they share the same
data source.

Creating new scenes and switching between them can be done using the
topbar. There are four options when creating a new scene:

New Creates an empty scene with default settings.

Copy settings Creates an empty scene with all of the editor settings copied
from the previous scene.

Linked copy Creates a new scene with all of the data contents being linked
from the previous scene (also known as a shallow copy). All the contents
of the new scene are linked to the objects in the source scene, which
means changes in one scene will result in changes in the other scene as
well.

Full copy Creates a new scene with all of the contents and settings being
fully copied from the previous scene (also knows as a deep copy). The
contents of the source scene are fully copied over, which means changes
in one scene will not result in changes in the other scene.

10

2.3. Editors

2.3 Editors
As described in section 2.1, features of Blender are split up into editors. This
section covers the editors that are relevant for the purposes of this project.

2.3.1 Properties Editor
Displays and allows editing of data relevant to the current scene – for example
the render settings or settings of the currently selected object. The settings
are divided into tabs based on the category the edited data belongs into. These
tabs are then further divided into panels which contain various UI elements
suitable for displaying and editing the given data type.

2.3.2 Composition Editor
Allows the user to assemble or edit movie clips using a set of control nodes,
which are sorted into categories by their functionality. Each node has a defined
number of input and output sockets, which are used to link nodes between each
other. The most common type of socket is an image socket, which is used to
transfer image data. The nodes can also contain inner parameters that can
be configured by the user. Below is a list of nodes useful for the purposes of
this project.

Movie clip node Used to load a movie clip into the compositor. It Contains
an inner clip parameter which is used to select the desired movie clip.

Keying node Is a node specialized for green/blue screen removal by con-
taining parameters for multiple useful chroma keying techniques, such
as defining a mask, despill balance, etc.

Mask node Allows to select a mask data-block, which can be then passed to
other nodes to selectively edit parts of the image. It can be for example
be connected to the Garbage Matte socket of the keying node to exclude
the area defined by the mask from the node’s output.

Stabilize 2D Allows to stabilize a clip using tracking data obtained from the
motion tracking editor (described in the next subsection).

Crop node Used to remove unwanted parts of the image by defining a rect-
angular region.

Transform node Allows to move, scale and rotate the image based on the
defined input parameters.

Composite node Serves as an output point of the compositor – image data
routed into this node will be rendered.

11

2. Blender

2.3.3 Motion Tracking
Motion tracking is a technique used to track the motion of objects and/or
camera in a 2D video sequence. The tracking data can then be applied to
3D objects, or to stabilize clips using the composition editor. An especially
important use case of the technique for this project is centering and stabilizing
a moving actor. It is possible to stabilize a moving object, so that its position
and scale stays fixed throughout the playback of the clip.

Most of the motion tracking features of Blender are located in the Movie
Clip Editor. The editor is further split up into three views, which each serve
for editing and viewing different aspects of the tracking data.

Clip View

It is the main part of the editor, as it contains almost all of the tools to edit
and create tracking data. First, the user must define the pattern to be tracked
by placing tracking markers over it. Blender then tries to track the position
of the patterns defined by the trackers throughout the playback of the clip.
The user can step in at any frame and adjust the tracker if it was not tracked
properly, or not tracked at all.

Each tracker has a defined pattern area and search area. The pattern area
determines the area on the screen, which will be tracked. The search area
determines an area, which will be searched for the tracked pattern during each
frame update. The search area should be set according to the approximate
velocity of the tracked pattern. If the search area size is too low, it will result
in the pattern not being tracked properly, as it will often move out of the
search bounds. On the other hand, if the search area size is unnecessarily
high, it will take a long time to compute the new positions of the trackers.

Another important parameter of a tracker is the motion model. It defines
in which ways can the tracked pattern be deformed. The options are:

Loc Only searches for translation (location on the screen) changes in the
pattern between frames.

LocRot Searches for rotation and translation changes of the pattern between
frames.

LocScale Searches for scale and translation changes of the pattern between
frames.

LocRotScale Searches for scale, rotation, and translation changes of the
pattern between frames.

Affine Searches for affine transformation changes (see figure 2.2) of the pat-
tern between frames. It can be used to approximate changes in perspec-
tive relative to the camera.

12

2.3. Editors

Rotation Translation Scaling Shearing Mirroring

Figure 2.2: A visual example of the affine transformations on a square. Image
reconstructed based on [13].

Perspective Searches for perspective transformation changes (homography)
of the pattern between frames. Enables the pattern to be tracked more
precisely in all dimensions, especially useful when the camera is freely
moving.

Each tracker also has a correlation value, which determines the minimal
correlation between matched pattern and reference (in percentage), for the
tracking to be marked as successful. The reference pattern can be set to be
used either from the keyframe, or the previous frame. Keyframe marker is
always defined by the user, whereas the marker of the previous frame might
be automatically generated. Setting it to compare with the previous frame
can reduce the tracking precision, as the tracker might get deformed and less
accurate over time.

If an object undergoes lighting changes during the playback (enters a
shadow for example), the normalize setting can be used, to normalize the
patterns by their average light intensity. This makes them invariant to illu-
mination changes at the cost of lower tracking computation speed.

Graph View

The graph view displays the speed of the tracking markers over time using a
line graph. Each tracker has two lines – green for vertical, red for horizontal
movement speed, with the currently selected tracker being highlighted. A
blue line can also be displayed after pressing camera solve, which displays the
average per-frame error.

The view is especially useful for reviewing automatically generated track-
ing data. If any major tracking error occurs a spike will be visible in the graph

13

2. Blender

Figure 2.3: An example of a graph view for multiple trackers. The selected
curve peaks high above the other curves between frames 20–25, which means
a tracking error has probably occurred.

(an example can be seen in figure 2.3). It is possible to edit the tracking data
directly in the graph view, by dragging the points of the graph.

Dope Sheet View

The dope sheet view provides an area to view and select all of the trackers in
a concise manner. The visualization allows the user to see how many frames
each tracker covers and where its keyframes are located. The view also allows
to sort the trackers based on their properties. The trackers can be selected,
but cannot be directly edited in this view (the user must switch to the graph
or clip view).

2.4 Scripting
Blender provides a versatile way to extend its functionality, by utilizing the
Python programming language. To interact with Blender, Python scripts can
make use of the tightly integrated Blender API (Application Programming
Interface).

14

2.4. Scripting

Using this API, it is possible to edit data, create new tools, run existing
ones, create user interface elements and much more. The scripts can be run
directly from the console, but Blender also provides a built-in editor.

2.4.1 Python
Python is an interpreted, object-oriented, high-level programming language
with dynamic semantics. It offers a wide variety of high-level libraries, which
can be used to speed up development. It is also often used as a way to easily
extend the functionality of a product, by implementing scripts. [14].

For the past years, Python users have been split between using two major
versions – Python 2 and Python 3. Python 3 was released in 2008 and it
focused on fixing a broad range of issues present in Python 2. However, due
to the nature of these changes, Python 3 is backwards incompatible with
Python 2, which means the code from the older version has to be rewritten in
order to be Python 3 compliant. In 2020 the version 2 officially reached the
EOL (End of Life) status and will no longer receive further updates. Blender
has been using Python 3 since 2011 (version 2.5). [15, 16]

2.4.2 Operators
Most buttons and key-strokes in Blender call an operator, which are written
in C, Python or macros. These operators can be directly called in scripts as
well. The API provides a base class to create a custom operator. The inherited
class can override a number of methods, the most important of them being
execute, which is the method that gets executed when calling the operator.

2.4.3 User Interface
The API also provides base classes, which allow insertion of custom UI ele-
ments into the existing layouts. The most common UI container elements are
panels (sidebar) and menus (dropdown). These can be placed into any editor
by overriding the inherited class properties defining its placement.

These container elements can then contain property elements or another
containers. In the module bpy.props a range of properties is provided, which
allow storing and displaying different data types. Depending on the datatype,
an appropriate UI element is displayed in the container (checkbox for boolean
property, slider for integer property, etc.).

A custom button can be placed by referencing an operator. When the
button is clicked by the user, the execute method of the operator is called.

2.4.4 Data Access
All of the Blender’s internal data can be accessed and modified using the
bpy.data module. While it is possible to access all data by name or by

15

2. Blender

collection, it is also common to access data by the current selection of the
user. The module bpy.context allows to access the currently active data
members (e.g., the currently active scene). The context is read-only, so for
data modification, the data module must be used.

16

Chapter 3
Unity

Unity [17] is a powerful multi-platform game engine, first introduced in 2005.
It is available completely for free, without limiting any essential features, as
long as the revenue generated from the project is not higher than $100,000 in
a year, making it a great choice for small games and learning projects. It offers
a large number of built-in features, as well as an asset store, which is used for
sharing community-made features. Thanks to its popularity, countless learn-
ing resources are available, many of them free of charge. Unity mainly focuses
on being a versatile tool – it offers development of both 2D and 3D games,
supports deployment to all major platforms (including internet browsers), and
allows to create fully customizable editor extensions. [18]

In this chapter, the basic elements of the game engine are briefly described,
as well as features and editors, which could be useful for the purposes of this
project. If not explicitly stated otherwise, the source of information for this
chapter is the official Unity manual [19].

3.1 Main Concepts
This section provides information about the key concepts of Unity, which are
essential for understanding the workflow of the game engine.

3.1.1 GameObjects & Components
GameObjects are the basic building stones of the game world. They serve
as containers for components, which determine all the logical behaviour and
properties of the object. They can be either pre-instantiated using the editor
or created and configured using scripts at runtime. GameObjects can also
be organized by nesting – defining a parent and child GameObjects. If a
GameObject does not move at runtime, it can be marked as static in order
to save on runtime computational resources, as many systems in Unity can
precompute the information about a static object.

17

3. Unity

The only mandatory component for every GameObject is the transform
component, as it is used to represent the object’s location, rotation and scale
in the game world. Components can be configured using the public properties,
which can either be values, or references to other structures (for example other
GameObjects, files, etc.). These properties can be edited either using the user
interface in the editor or by code at runtime using the scripting API.

3.1.2 Assets
An asset is an item, typically a file, that can be used in a project. It can be
imported from outside the project (3D models, audio files, video files, images,
etc.), or it can also be created inside of Unity (scenes, animation controllers,
etc.). Unity provides an official Asset store, which allows to easily share and
trade assets created by the community.

3.1.3 Scenes
Scenes are a way to logically separate all pre-instantiated GameObjects in the
game world. They could be thought of as levels of the game, although it is
possible to have the entire game in one scene, meaning they are more of a tool
for the designers to easily organize the GameObjects.

3.1.4 Prefabs
Prefabs allow to store GameObjects with all of their components as assets and
reuse them anywhere in the project as instances. The main benefit of using
prefabs is that all instances of a prefab can be synchronized. If changes are
done to the prefab asset, those changes propagate into all of the instances
of that prefab. If a specific instance is edited, then the changes done are
called overrides. Those edited fields will no longer be synchronized with the
prefab, which means that the instance of a prefab does not have to be fully
synchronized with the prefab.

For more complex objects, it is also possible to nest prefabs – place a
prefab into a prefab. A prefab can also be a variant of some other prefab,
which means all unedited properties will be inherited from the base prefab.

18

3.2. Animation System

Figure 3.1: An example of an animator controller.

3.2 Animation System
Unity provides a sophisticated animation system called Mecanim. It is mainly
designed for animating 3D objects but 2D sprite (PNG image format sequence)
and 2D skeletal animations are also supported.

3.2.1 Animation Clips
The basic elements of the system are animation clips, which should represent
a single linear action. The clip can be either imported from an external source
or created in the editor. Various properties of the clip can be edited either
using the editor, or the scripting API.

3.2.2 Animation Controllers
Animation controllers are used to create connections between animation clips
using transitions, forming a state machine. During runtime, the controller
keeps track of the current state and transitions to other states when the con-
ditions are met. The controllers are created visually inside of the editor (see
figure 3.1 for an example).

Parameters can be defined inside of the controller, which can serve as
conditions for the defined transitions. These parameters can be then edited
from outside the controller using the scripting API to control the flow of the
state machine.

19

3. Unity

3.3 Physics System
This section briefly describes the essential components that allow physical
interactions between objects.

3.3.1 Colliders
Collider components are used to define the shape which should be used for
collision detection for a given GameObject. It is possible to use mesh colliders
which are able to exactly match the shape of the GameObject’s mesh, however,
those are very computationally expensive and often not necessary. Primitive
shape colliders (box collider, capsule collider and sphere collider in 3D) can
be used to roughly approximate the shape of the mesh. A number of colliders
can also be added to a single GameObject to create a compound collider.

3.3.2 Rigidbody
Rigidbody is the main component of the physics system, which enables physical
behaviour of a GameObject when added to it. It allows the object to respond
to gravity and forces being added to it in a realistic way. If the object contains
a collider, then it can physically interact with other objects with colliders. The
behaviour of the rigidbody can be adjusted using its parameters (e.g., its mass
and drag).

3.4 Pathfinding
Unity offers a pathfinding system, which allows the game characters (agents)
to navigate around the game world by building a navigation mesh based on
the geometry of the scene. An overview of the system’s components can be
seen in figure 3.2.

3.4.1 NavMesh
NavMesh covers the area accessible by the agent and is used to compute the
navigation path. It is built according to the geometry of the scene by testing
where the agent can stand. The area is represented as a set of convex polygons.
Such representation is useful because there are always no obstructions between
two points of a convex polygon. The system stores the location of these
polygons as well as references to neighbours of the polygons and applies the
A* graph traversal algorithm to find the shortest paths.

3.4.2 NavMesh Agent
NavMesh agent components are added to the characters that supposed to move
and navigate around the game world. It is represented as a cylinder with a

20

3.4. Pathfinding

NavMeshAgent

NavMeshObstacle
NavMesh

O MeshLink

Figure 3.2: An example of the navmesh components. [21]

variable radius. When a valid target point is set to the agent, the system
finds a path using the navmesh and moves the agent towards the target. It
also attempts to avoid other agents and dynamic obstacles along the way by
adjusting the path if needed.

3.4.3 NavMesh Obstacle

Allows to define an obstacle for the agent to avoid. If the obstacle is static,
it gets carved directly into the navmesh. If it is dynamic, it is no longer
computed alongside the navmesh, as it would be too expensive to recalculate
the navmesh during every frame update. Instead, the agent tries to steer away
from the dynamic obstacle, if it gets too close to one.

3.4.4 OffMesh Link

Allows to define path points, which could not be represented by walkable
surface, for example jumping over a hole.

3.4.5 High-level NavMesh Building Components

Whilst not being officially built into Unity, refined navmesh building compo-
nents are available at [20]. These components provide a better UI for navmesh
building and allow to easily construct navmeshes at runtime.

21

3. Unity

3.5 Video Player
Unity allows to import and play video files inside the game using the video
player component. It supports a wide variety of video formats, including
formats with alpha channel (transparency support). It contains a number of
configurable parameters (e.g., playback speed, aspect ratio, etc.).

3.5.1 Video Clip Playback
The supported video formats can be directly imported as assets and used as
video clips for the video player component. Unity offers an option to transcode
(convert) the video file if the imported video file format is not supported on
the target platform. The only platform, where playback of video clips isn’t
supported is the WebGL platform, URL playback must be used instead.

3.5.2 Video URL Playback
The component also supports playback from URL (Uniform Resource Loca-
tor), which can be used to play video directly from the filesystem or web
resources. Unity provides a special folder, Streaming Assets, which can be
used for storing video files for direct streaming, as Unity does not modify files
in this folder in any way and is also able to access it on any specific target
platform.

22

Chapter 4
Analysis and Design

The first part of this chapter analyzes the necessary steps of recording the raw
footage and the current editing process in Blender. Based on the findings of
the analysis, a semi-automated custom tool to effectively process the footage
is proposed and designed. In the second half of the chapter, animation and
movement systems utilizing the synthesized animations are designed inside
the Unity engine, with an emphasis on preserving the authenticity and high
quality of the stylized footage.

4.1 Video Capture

As described in section 1.3, one of the greatest strengths of EbSynth is its
ability to very precisely stylize live-action sequences. This section contains all
of the technical requirements for producing the raw footage for the synthesis.
The recording setup used for recording the footage utilised in this project is
shown in figure 4.1.

4.1.1 Recording Device

The recording device does not have to be a fancy camera, any modern mobile
phone will do just fine, as long as it can record in Full HD (High Definition)
and has a decently wide colour range. The recording device should ideally be
placed on a tripod, as the footage needs to be as stable as possible.

For best results, the codec of the output movie file should be set to the
least compressed one available. If the footage were heavily compressed, the
compression artifacts would make it more difficult to properly remove the
background. For dynamic scenes, it is also recommended to increase the shut-
ter speed, in order to reduce the motion blur. [22]

23

4. Analysis and Design

Figure 4.1: The setup used for recording the footage for the project.

4.1.2 Green Screen

In order for the recorded footage to be usable in game development, the back-
ground needs to be easily removable in post-production. The most common
method to do so is using a green screen. By placing a green background behind
and below the actor (a green sheet or wall), the background can be easily re-
moved using an editing software. Technically, other solid colours would work,
but green is most suitable because it is far from human skin tones in the
colour spectrum (most camera sensors also capture more information on the
green channel). The actor should stand as far away from the background as
possible, to minimize colour reflection from the screen onto the actor. [23]

4.1.3 Lighting

Another important step is to properly light the scene. For best effect, the
background should be uniformly lit, so that it does not contain any distinctly
darker or lighter patches. It is recommended to use at least two lights to
illuminate the background, in order to eliminate shadows cast by the actor.
One light should also be illuminating the actor.

24

4.2. Processing the Footage

4.1.4 Motion Capturing

Recording animations that require motion, for example walking, can be tricky
because in the processed clip, the subject must stay centered at all times. Not
doing so would make it impossible to loop and connect the animations. There
are three possible approaches:

Walking in place The actor can create an illusion of walking without actu-
ally moving by sliding their feet on the ground. Whilst Michael Jackson
makes this look very easy, it is actually quite tricky to pull off. Having
green cloth on the ground also does not make the sliding any easier.

Motion tracking Using an editing software, it is possible to automatically
track the movement of an actor and transform the footage so that the
actor stays centered. It is even possible to scale the actor when they
move closer or further from the camera. For good tracking results, it
is recommended to place small trackers onto the actor, as they help to
produce consistent and accurate tracking. There are no specific require-
ments for the trackers, they can, for example, be a piece of coloured
tape. It is only important for it to be non-reflective and contrasting
with its surroundings.

Even with good tracking results, the animation will not loop perfectly,
because the angle of the actor in relation to the camera changes as they
move. The green screen also has to be wide enough, so that the actor
can take at least three steps, otherwise there would be no way of looping
the animation. This is the option chosen for this project.

Treadmill Having the actor walk on a treadmill would produce the best
results out of the three methods. However, it is not very budget-friendly
and it would also have to be completely painted green. For those reasons,
it was not used when recording the footage.

4.2 Processing the Footage
In order for the animations to be usable in Unity, they need to be pro-
cessed first. That means removing the background, cropping and aligning
the footage. If the actor physically moves, they also need to be stabilized,
so that their size and position is fixed throughout the animation. Keyframes
for the EbSynth algorithm are then selected and stylized by the artist. Using
the available EbSynth tool, the clips are then stylized (see figure 4.2 for an
example). In this section, the workflow using the current tools of Blender is
analyzed and an add-on is proposed, which simplifies and automates steps of
the process.

25

4. Analysis and Design

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.2: An example of the processed images (a–e) being used to create
synthesized images (g, h, i) based on two exemplar keyframes (f, j). Stylized
keyframes (f, j) courtesy of © Polina Akhmetzhanova.

4.2.1 Tracking and Stabilization

As described in subsection 2.3.3, Blender provides extensive tools for tracking
an object and stabilizing it. Using these tools, the footage of moving actors
can be adjusted, so that their position and scale relative to the camera stays
fixed throughout the playback. If the actor does not move in the footage, this
step can be skipped.

Exporting the Tracking Data

The data obtained from the tracking can be useful to synchronize the anima-
tion with the velocity of the actor. Blender does not provide a way to export
the tracking data in the user interface. However, by using the Python API,
the data can be extracted and exported into a csv (comma-separated values)
file format.

26

4.2. Processing the Footage

Figure 4.3: The node setup for basic chroma keying in Blender.

Rendering the Stabilized Clips

After tracking the actor, the footage needs to be further processed. The track-
ing data can be forwarded into the compositing editor and used to stabilize
the footage. It can then be further processed, as described in the next section.

4.2.2 Chroma Keying
Chroma key compositing is a technique of layering two images together based
on colour hues, removing a defined colour spectrum from the first image and
replacing it with the second image [22]. For the purposes of this project, the
colour will be replaced with full transparency, effectively creating a cutout of
the actor.

Preparing the Editor

Inside of the compositing editor, Blender provides extensive tools for this task
(described in subsection 2.3.2). Satisfactory chroma keying results can usually
be achieved easily using only the Keying node by appropriately adjusting the
node’s parameters. Additionally, the footage usually needs to be cropped and
scaled to the required size, which can be done using the Crop and Transform
nodes. Unwanted static objects in a scene (for example markers) can also be

27

4. Analysis and Design

removed with a mask. The mask is created in the Movie Clip Editor and then
input into the compositor using the Mask node. If the actor was moving and
has to be stabilized, the Stabilize 2D node can be used to utilize the tracking
data and stabilize the image. Finally, the Composite node is used for rendering
the sequence. The connections between the nodes are shown in figure 4.3.

Workflow Using Only the Built-in Tools

After preparing the nodes, the workflow using the Blender’s built-in tools can
be summarized as:

1. The user sets the clip parameter in the Movie Clip node to the next clip
file to be processed. If the actor is moving, the user must also manually
define the clip in the Stabilize 2D node.

2. The user edits the control nodes, so that the footage is correctly chroma
keyed, cropped and scaled. A mask can also be defined, to remove
unwanted objects.

3. The user sets the number of frames to be rendered, selects the output
folder and waits for the footage to finish rendering.

4. If a mask is also to be rendered, the user connects the Matte output
socket of the Keying node to the Image input socket of the Crop node.
The user must also edit the output image colour format to BW (black
and white) and specify the mask output folder. The user then waits for
the mask to finish rendering.

5. If there are more clips left, the process repeats from item 1.

The workflow is also shown in an activity diagram shown in figure 4.4.

Task Automatization

Whilst Blender provides all of the tools necessary to fully process the footage,
several tasks are repetitive and could be automated or simplified:

• Defining the input file for every individual clip could be reduced to
defining a folder containing all the clips to be processed.

• Defining the output folder for every footage and mask clip can be reduced
to defining a general folder, where the output folder structures will get
created automatically.

• Switching to the mask output (rerouting the node connections) could be
fully automated.

28

4.2. Processing the Footage

B lenderU ser

Manually
select input

clip

Edit
control
nodes

Manually enter
number of

frames to be
rendered

Select clip
rendering

folder

R ender
output

sequence

Render clip
mask?More clips to

process?

R ender
mask

Select mask
rendering

folder

Manually
edit control

nodes

N o

YesN o

Yes

Figure 4.4: Activity diagram describing the chroma keying workflow without
the use of custom scripts.

• The number of frames to be rendered could be set automatically to
match the clip’s length.

These tasks are not very time consuming on their own, but they have to
be done every time when processing a clip. When processing large amounts
of footage, these repetitive tasks can take up a sizeable portion of the total
time spent.

Probably the biggest problem with this approach, however, is the fact that
the user needs to wait for each clip to finish rendering before they can begin
processing the next clip. When rendering, the functionality of the editor is
limited, so the user cannot prepare the next clip in the meantime. This could
be bypassed by opening another instance of Blender, it would still, however,
cause performance issues, as rendering is very CPU intensive. Depending
on the hardware Blender is running on and the length of the clip, rendering
can on average take several minutes to complete. This issue could be solved
by sequentially rendering all of the clips automatically after the user is done
editing all of the footage.

Workflow Using a Custom Add-on

If the addressed tasks were automated by implementing an add-on with custom
functionality, the improved workflow could be summarized as:

29

4. Analysis and Design

Custom Scripts R endererU ser

Select clips
folder

Open next clip in
new scene, add
to render queue

Edit control
nodes and

scene
settings

Any
clips
left?

Select next
scene in

render queue

Apply user
defined
settings

R ender
output

sequence

Render
mask flag?

Select output
folder

R ender
mask

Edit control
nodes

Any
scene
left?

Yes

N o

N o

Yes

Figure 4.5: Activity diagram describing the workflow utilizing the proposed
custom functionality.

1. The user defines a folder, which contains all of the clips they want to
process. They also define a namespace of the current batch.

2. The user selects the next clip from the list.

3. The user edits the control nodes and custom script settings.

4. If there are more clips left, the process repeats from item 2. Otherwise,
the user defines an output folder and using the tool renders the clips as
a batch.

A simplified diagram describing the new workflow can be seen in figure 4.5.
The diagram includes a summary of the steps taken by the custom script when
rendering the batch. It is apparent from the diagram, that the user no longer
directly interacts with the Blender renderer, which eliminates the problem of
waiting for the individual clips to finish rendering.

30

4.3. Custom Blender Addon

4.3 Custom Blender Addon
Based on the observations in the previous section, a custom tool (add-on) can
be designed, which would automate or simplify the repetitive time-consuming
tasks. The extension can be integrated directly into the Blender user interface
using the Python API described in section 2.4.

4.3.1 Functional Requirements
1. Tracking data export The user should be able to export the data of

any tracker into a csv file.

2. Mass import The user should be able to import multiple video clips
to be processed by specifying only the folder they are located in. These
clips should then be displayed in an interactive list, which should allow
the user to switch between the clips. It should be visually indicated,
whether the user has already visited a clip in the list. Switching to a
clip should automatically set it as input in the Movie Clip and Stabilize
2D nodes.

3. Scene system When switching between clips, the changes done to the
compositing nodes should be saved independently. When switching to
a new clip, the settings of the nodes should be copied from the clip the
user switches from.

4. Namespace The user should be able to define a namespace for the cur-
rent batch, which would serve as an identifier between multiple batches
of clips having the same name.

5. Mask system The user should be able to specify, whether they want
to render a mask of the current clip. They should also be able to switch
to the mask preview, without having to directly modify the connections
between the nodes.

6. Automatic frame range The user should be able to specify, whether
they want the frame range set automatically when rendering. If they do,
then the frame range should be set to cover the duration of the entire
clip.

7. Output folder structure The user should be able to specify the output
folder, into which the rendered footage should be saved. The footage
should be further divided into folders named as the corresponding input
clip.

8. Batch render When the user is done editing the clips, the tool should
be able to render all of the edited clips as a batch, applying the user-
defined settings to each clip and rendering it into the output folder.

31

4. Analysis and Design

State Machine

+ render_queue: ClipCollection
+ rendering: Boolean

+ transition_to(State)
+ update(bpy.types.Context)

State

+ update(bpy.types.Context)

BeginState

+ update(bpy.types.Context)

PreparedImageState

+ update(bpy.types.Context)

RenderedImageState

+ update(bpy.types.Context)

RenderedMaskState

+ update(bpy.types.Context)

CancelledState

+ update(bpy.types.Context)

Figure 4.6: Class diagram of the state pattern implementation.

4.3.2 Batch rendering

When rendering the clips, they each have to go through several stages of
preparation. In order to avoid a large block of if-else statements, state design
pattern described in [24] can be used for the decision-making logic. The pat-
tern has been slightly modified for Python, inspired by [25]. A class diagram
describing the pattern is shown in figure 4.6. The update function is called
from the modal operator each timer cycle when not rendering.

The states have the following functionality:

Begin State Gets the next scene in the render queue and switches to it inside
the editor. It also transitions the state machine to Prepared Image State.
If the render queue is empty, then the update cycle is stopped.

Preparing Image State Configures the scene settings, sets the rendering
flag to true and launches the rendering of the image.

Rendered Image State If the user wishes to render mask for the given clip,
then it switches to the mask view, changes the output settings, sets
the rendering flag to true and launches the rendering of the mask.
Otherwise it transitions the state machine to the Begin State.

Rendered Mask State Changes the scene settings back to the previous con-
figuration and transitions the state machine to the Begin State.

32

4.4. Asset File Formats & Compression

Cancelled State transitioned to when the user cancels the rendering, stops
the update cycle.

It might seem that the Begin State and Preparing Image State should be
merged together, as their functionality could be run consecutively. The reason
for them being split is that when switching scenes, the context sometimes does
not update immediately, which might create problems when rendering. With
the “pause” between switching the scene and rendering, the context has time
to update properly.

4.4 Asset File Formats & Compression
This section explains why the animation formats supported by the built-in
Unity animation system are insufficient for the purposes of this project and
proposes a more space-efficient format. It also describes a compression method
suitable for static assets.

4.4.1 Animation File Format
The two 2D animation types supported by the Mecanim animation system
(described in section 3.2) are sprite animations and skeletal animations. The
skeletal system cannot be used, as it would produce an unnecessary step in
animation processing and would render the animations less authentic. The
animations could be imported as a sequence of sprites (images) without any
extra work and compromise of authenticity, however, that type of animation is
only viable for low-resolution, low-framecount animations due to the inefficient
compression of image sequences.

Video Compression

Unlike image compression, video compression can utilize the “extra dimension”
– progression in time, to encode parts of an image and reference to that
information if it does not change in the following frames.

Video encoders use I-frames as points of reference – those are fully encoded
images, compressed in a similar way as regular image files. The algorithm then
predicts the frames in between the I-frames. P-frames are predicted based on
how the data changes from the last I-frame, B-frames are bi-directionally
predicted based on both the last P-frame and next P-frame (see figure 4.7 for
a visual example). [26]

The efficiency and quality of the predictions then depend on the compres-
sion algorithm used, which is called a codec (coder and decoder). The encoded
information is then stored in a container (also called the video format), which
determines how the encoded data and metadata should be structured in the
file. [27]

33

4. Analysis and Design

I-frame P-frame B-frame I-frame

Figure 4.7: A visual example of the compression frame types and flow of data
used for predictions. [26]

Supported Video Format

Currently, the only combination of video container and codec compatible with
all Unity platforms, that also supports alpha channel, is the Webm container
with the VP8 codec [28]. The video file can be then played using the video
player component described in section 3.5.

Unfortunately, Blender does not allow to render using this combination of
container and codec. For that reason, the animations will be exported as a
PNG image sequence and converted using a conversion tool FFmpeg [29].

4.4.2 Image File Compression

In order to preserve the artistic look, many of the image assets are in very high
resolution, which means that they are quite large in terms of storage space. In
order to reduce the size of the images, it is possible to use image compression
tools. The compression should however not directly alter the patterns of the
image, in order to preserve the fine artistic details. The compression method
must also support alpha channel (transparency).

Pngquant [30] is a command-line utility for lossy compression of images in
the PNG format. It is able to significantly reduce the file size (on average by
around 70%), whilst preserving the alpha channel. It uses a modified version
of the Median cut quantization algorithm. The algorithm is able to compress
the image by reducing the size of its colour palette, effectively lowering the
number of bits needed to represent each pixel. This does mean that some finer
colour details of the image are lost, however, those changes are in most cases
indistinguishable by the human eye when viewing the image as a whole.

4.5 Animation System For Video Files
As described in section 4.4, the video format is the most suitable for importing
the animations in terms of optimal file size (the animation sets are on average
100 times more compact in video format). Unfortunately, the built-in ani-

34

4.5. Animation System For Video Files

mation system does not support video files. In this section, a new simplified
video animation system is designed.

4.5.1 Animating Moving Characters
In the traditional animation system, the animations of dynamic characters
are driven by the movement system of the character – they get adjusted and
transitioned using the incoming velocity data and have no control over the
movement of the character in the game world. That can be well executed for
3D models, as they can be directly controlled and blended to create seamless
transitions.

The video animations, however, do not have this advantage and have to
be fully played out. Otherwise, the transitions will be abrupt and noticeable.
The speed of the character must also proportionately match the frames of the
animation. Otherwise, the character will appear to be sliding when accelerated
at an incorrect rate. As all characters walk a bit differently, it would be very
difficult to correctly configure the acceleration and movement speed values for
all of them. The rest of this subsection proposes, how these issues could be
practically solved.

Animation Continuance

In order to be able to extend the movement animations, they can be split into
three parts:

Walking begin Contains the beginning of the animation and the first step.

Walking loop Contains the next two steps. This animation can be played
repeatedly, in order to expand the duration of the walking animation.

Walking end Contains the last step.

Animation Clip Velocity

In order to better synchronize the animations with the character’s speed, the
direction of the velocity data flow can be reversed. Using the motion tracking
data obtained from processing the dynamic clips, the animations can have a
defined distance travelled for each frame and directly control the speed of the
animated character in the game world. That way, the speed of the character
in the game world will be always correctly synchronized with the animation.

Adjustable Clip Velocity

As described earlier, the animation clips should fully play out for smooth tran-
sitions, which means that with a fixed playback rate, the travel range of the
animation would not be very flexible (could only be increased discretely by

35

4. Analysis and Design

increasing the number of loop clips played). This can be solved by adjust-
ing the velocity by a multiplier, so that the total distance travelled matches
the distance from the target. First, the closest base animation distance is
calculated:

nLoops = ⌊dTarget − dBegin − dEnd

dLoop
⌉

dAnim = dBegin + nLoops × dLoop + dEnd

The dBegin, dLoop, dEnd are the distances travelled during each respective
clip and dTarget is the distance from the target point. Knowing the closest
base animation distance, the ratio between the target distance and animation
distance can be obtained:

dRatio = dTarget

dAnim

By multiplying the base animation velocities and playback speed by this
ratio, the distance travelled can be adjusted to match the specific travel dis-
tance, whilst maintaining the same speed proportions between the individual
frames.

4.5.2 Components of the Video Animator

Similarly to the built-in Unity animator, the custom video animator will use
the state pattern [24] to structure and control different stages of animation.
This subsection describes the main components and concepts of the video
animator.

Clip Containers

The video clips are stored in an encapsulation class VClip, because the WebGL
platform only supports playback of videos using URL source, whilst the Video-
Clip source type is more appropriate for other platforms. The VClip class
contains both these fields and selects the source type based on the current
deployment platform.

For directional animations, the clips are stored in a VClips4D class, which
outputs a VClip based on the chosen direction. For directional movement
animations, the velocity data files are also stored in VClipsVelocity4D, which
allows to store and output velocities for specific clips. The structure of these
classes can be seen in figure 4.9.

36

4.6. Navigation and Movement

States

States represent the current animation phase and control the playback of video
files. For the more complex dynamic animations, they can also contain logic to
determine the animation speed multiplier and the number of loop animations,
before switching to the other phase.

The current animation state is stored and controlled in VStateMachine.
The basic structure with an example of the states used for character movement
can be seen in figure 4.8.

Controllers

Controllers serve as a control point for the animation – they keep track of the
current animation state and allow to switch to different animation states (their
base class is always the VStateMachine). They also store the clip containers
(to make it easier to define the clips from the editor UI). Every controller must
inherit from the abstract class VAnimController, which contains all of the
necessary logic to initialize and control video playback. The base controller
class has one generic parameter, which defines the owner of the animation
controller when specified. Figure 4.9 describes the abstract controller and two
examples of non-abstract controllers.

The VAnimCharacterController allows to control the more complex dy-
namic animations, split into three parts with the distances defined for every
clip frame. The animation playback directly controls the speed of the an-
imated GameObject, using the CharacterMovement owner class (described
further in the next section).

The VAnimSimpleCharacterController can be used for simpler dynamic
animation, for example when the velocity data is not available, or the anima-
tion cannot be split into three parts. The animation playback does not control
the speed of the animated GameObject.

4.6 Navigation and Movement
This section describes which form of navigation and movement has been chosen
to control the in-game characters. The built-in pathfinding system described
in section 3.4 can be utilized to automatically navigate the characters through
the game world.

4.6.1 Simple Movement
Simple character movement can be chosen, when the animation clips of the
character cannot be split into three parts, or when the animation distance data
is not available (or not necessary). This movement system directly controls
the playback of the animation by supplying the animation controller with

37

4. Analysis and Design

the current velocity value of the GameObject. For moving the controlled
GameObject towards the target point, the navigation system is directly uti-
lized.

The simple movement can be for example used for sheep movement, as the
current sheep animations are not complex enough to benefit from the more
advanced animation controlled movement. See figure 4.10 (right column) for
the detailed class structure.

4.6.2 Animation Controlled Movement
The more complex movement system utilizes the distance information avail-
able from the animation playback. The movement class supplies the animation
controller with the location of the target point. The velocity of the animated
GameObject is then directly controlled by the animation controller during
animation playback.

The class structure can be seen in figure 4.10 (left column). The base class
for this movement type is CharacterMovement. It contains all of the necessary
logic and methods to communicate with the animator.

CharacterNavMeshMovement is more specialized, as it utilizes the pathfind-
ing system to obtain the path points towards the target (however, the GameOb-
ject itself is not controlled by the navigation system). The child of that class is
the PlayerMovement, which allows setting the target point using player input.

38

4.6. Navigation and Movement

VCharacterIdle

+ EnterState(): void
+ ExitState(): void
+ FrameUpdated(VideoPlayer, long): void
+ LoopReached(VideoPlayer): void
+ UpdateState(): void
+ VCharacterIdle(VAnimCharacterController)

VCharacterWalkBegin

- CalculateDistanceMultiplier(): void
+ EnterState(): void
+ ExitState(): void
+ FrameUpdated(VideoPlayer, long): void
+ LoopReached(VideoPlayer): void
+ UpdateState(): void
+ VCharacterWalkBegin(VAnimCharacterController)

VCharacterWalkEnd

+ EnterState(): void
+ ExitState(): void
+ FrameUpdated(VideoPlayer, long): void
+ LoopReached(VideoPlayer): void
+ UpdateState(): void
+ VCharacterWalkEnd(VAnimCharacterController)

VCharacterWalkLoop

- validLoop: bool

- CheckRemainingDistance(): void
+ EnterState(): void
+ ExitState(): void
+ FrameUpdated(VideoPlayer, long): void
+ LoopReached(VideoPlayer): void
+ UpdateState(): void
+ VCharacterWalkLoop(VAnimCharacterController)

T

VDirectionalState

lookDirection: LookDirection

VDirectionalState(T)

State

T

VState

+ exitFlag: bool

+ FrameUpdated(VideoPlayer, long): void
+ LoopReached(VideoPlayer): void
VState(T)

MonoBehaviour

T

VStateMachine

+ ChangeState(VState<T>): void

«property»
+ currentState(): VState<T>

Figure 4.8: Class diagram describing the state animation structure.

39

4. Analysis and Design

VClip

+ clip: VideoClip
+ url: string

+ SetAnimationClip(VideoPlayer): void

VClips4D

+ clipDown: VClip
+ clipLeft: VClip
+ clipRight: VClip
+ clipUp: VClip

+ SetAnimationClip(VideoPlayer, LookDirection): void

VClipsVelocity4D

- downVelocityData: float ([])
- downVelocitySum: float
+ downVelocityText: TextAsset
+ fallbackConstant: float = 1.0f
- sideVelocityData: float ([])
- sideVelocitySum: float
+ sideVelocityText: TextAsset
- upVelocityData: float ([])
- upVelocitySum: float
+ upVelocityText: TextAsset

+ GetVelocityForFrame(LookDirection, long): float
- GetVelocityForFrame(TextAsset, float[]*, float*, long): float
+ GetVelocitySum(LookDirection): float
- GetVelocitySum(TextAsset, float[]*, float*, ulong): float
- ParseVelocityText(TextAsset, float*): float[]

VAnimCharacterController

+ idleClips: VClips4D
+ walkingEndClips: VClipsVelocity4D
+ walkingLoopClips: VClipsVelocity4D
+ walkingStartClips: VClipsVelocity4D

- Start(): void

«property»
+ characterMovement(): CharacterMovement
+ loopsLeft(): int

VAnimSimpleCharacterController

+ idleClips: VClips4D
+ walkingClips: VClips4D

+ SetLookDirection(float, float): void
- Start(): void

«property»
+ characterMovement(): CharacterSimpleMovement
+ velocity(): float

MonoBehaviour
CharacterMovement

MonoBehaviour
CharacterSimpleMovement

T

VAnimController

- mat: Material
- quad: GameObject
- renderTexture: RenderTexture
+ videoHeight: int
+ videoWidth: int

- FixedUpdate(): void
FrameUpdated(VideoPlayer, long): void
Initialize(bool): void
LoopReached(VideoPlayer): void
+ SetLookDirection(float, float): void

«property»
+ lookDirection(): LookDirection
+ videoPlayer(): VideoPlayer

MonoBehaviour

T

VStateMachine

Figure 4.9: Class diagram describing the animation controller structure.

40

4.6. Navigation and Movement

CharacterNavMeshMovement

agent: NavMeshAgent
currentCornerId: int
currentPath: NavMeshPath

Awake(): void
BeginWalkingAnimation(): void
CalculateNavmeshPath(Vector3): NavMeshPath
+ IsCurrentPathPointFinal(): bool
+ PathPointReached(): void
SetPathAndBeginAnimation(NavMeshPath): void

MonoBehaviour
CharacterSimpleMovement

agent: NavMeshAgent

FixedUpdate(): void
+ IsDestinationReached(): bool
+ SetNewTarget(Vector3, float): bool
Start(): void

«property»
+ animationController(): VAnimSimpleCharacterController

PlayerMovement

+ blockClickMask: LayerMask
+ clickMask: LayerMask
- lr: LineRenderer
- mainCamera: Camera

Awake(): void
- IsInLayerMask(int, LayerMask): bool
- OnDrawGizmosSelected(Vector3[]): void
- PlayerMoveInputUpdate(): void
- SetPositionToTravel(Vector2): void
- Update(): void

SheepMovement

- playerPos: Transform

+ DistanceFromPlayer(): float
FixedUpdate(): void
Start(): void

«property»
+ sheepBehaviour(): StateMachine<SheepMovement>

MonoBehaviour
CharacterMovement

animationController: VAnimCharacterController
currentTargetPoint: Vector3
+ drawDebugLine: bool = false
+ interpolate: bool = true
- lookDirection: Vector3
+ maxMovementMultiplier: float = 1.15f
+ minMovementMultiplier: float = 0.85f
+ playbackRateShift: float = 0.15f

+ AddTravelDistance(float): void
- FixedUpdate(): void
+ GetRemainingDistance(): float
- Interpolate(): void
+ PathPointReached(): void
+ SetAnimationPlaybackRate(float): void
+ SetMovementMultiplier(float): void
- UpdateCharacterMovement(): void
+ UpdateLookDirection(): void

«property»
distanceBuffer(): float
interpolatedDistance(): float
+ isMoving(): bool
movementMultiplier(): float
prevDistance(): float

VAnimController
VAnimCharacterController

VAnimController
VAnimSimpleCharacterController

Figure 4.10: Class diagram describing the movement system structure.

41

Chapter 5
Implementation

This chapter briefly describes the implementational details of both the Blender
extension and the Unity animation components proposed in the previous chap-
ter. It also explains solutions to issues, which have arisen during the imple-
mentation phase. Exemplar screenshots of the implementation products are
provided. Lastly, the results of the implementation are summarized.

5.1 Blender Addon

All of the features proposed in section 4.3 are implemented to work directly
inside of Blender using the Python API described in section 2.4. These fea-
tures are fully integrated into the user interface and can be easily installed
into Blender as an add-on.

5.1.1 Motion Tracking Extension

The extension for exporting the tracking data is located in the misc tab of
the movie clip editor. It allows to export the distance a defined tracker travels
during each frame. The distance is in pixels by default, but it can be modified
using the multiplier input. When exporting, the file is saved into the output
folder (defined in the compositor extension panel) in csv file format.

5.1.2 Compositor Extension

This subsection explains how the requirements for the compositor extension
have been met. The user interface is located in Render properties tab of the
Properties editor, split into two panels. The interface is shown in figure 5.2.

43

5. Implementation

Mass Import

The input folder is stored inside of a StringProperty with the class variable
subpath equal to DIR_PATH. This property is then displayed in the panel as a
folder input field.

When the user selects a folder, all valid movie clip files in that folder are
loaded into a custom collection and displayed using the UIList type. Each
row of the list contains the id, name and state (unvisited, visited, active) of
the clip record. The state of the clip is visually represented by icons.

The user can freely switch between the clips either using the Next clip and
Prev Clip buttons, or by selecting a clip inside of the list and clicking on the
Switch to Clip button. Internally, these button call operators which alter the
selected clip id and switch to the appropriate scene.

Scene System

When switching between clips, each clip has its own dedicated scene. If switch-
ing to an unvisited clip, a new scene is created by making a Full copy of the
scene the user was previously on. The user can then check, whether the pre-
vious settings apply for the new scene and if not, they can make adjustments
without affecting the settings in the other scenes.

Namespace

The user-defined property namespace serves as a batch identifier. The scenes
are named in the following format: namespace/clip-name. This makes it
easier for the user to distinguish between saved scenes and also allows them
to create experimental batches without altering the main batch’s settings.

The user can enter it in the namespace subpanel. The user can also delete
all the scenes of a given namespace using the Delete Namespace Scenes but-
ton, when they are no longer needed. As the button might be considered
“dangerous”, the user is prompted to confirm the action when clicking the
button.

Mask System

Mask of the image can be obtained from the Matte socket of the Keying node.
The user can switch between the image view and mask view using the Show
Mask button in the Scene Settings panel box, which reroutes the connections
into the output node.

Using the Render Mask checkbox, the user can also define whether they
want the mask to be rendered. Internally, the information is stored as a
BoolProperty inside of every scene independently.

44

5.1. Blender Addon

Automatic Frame Range

Another setting stored inside of each scene independently is the Auto Frame
Set checkbox. If checked, the range of frames to be rendered is set automat-
ically to correspond with the length of the clip. The information about the
length of the clip in frames is obtained using context, by accessing the clip
property inside of the Movie clip node.

Batch Render

When the user is done editing the clips, they can define the output folder and
click the Render All button. The script then sequentially renders all of the
clips previously visited by the user, using the defined settings.

The script utilizes callback functions and an event timer, being inspired
by [31]. The callback functions are responsible for raising a flag inside of the
operator when rendering is done or cancelled. To do so, they are registered to
render_complete and render_cancel handlers.

The batch render operator is registered as modal, which means it will
run in the background and that the Blender UI will not wait for it to finish
(otherwise it would become unresponsive while waiting). The modal function
is run every second by being registered as a timer event. It checks for flags
being raised by the callback functions and updates the inner logic accordingly.

Output Folder Structure

When rendering a batch of n clips, a folder structure is created inside of the
folder defined in the Output folder field. The structure is shown in figure 5.1.
An empty keyframes folder is created for every clip folder, to make later in-
sertion of keyframes easier for the user. By default, if a clip folder with a
given name already exists, the rendering for that clip is skipped. If the user
wants to instead overwrite the existing files, they can check the Force Render
checkbox.

output-folder-nameThe output folder defined by the user
clip-name1.............................Folder created for the 1st clip

video............................Folder containing the video clips
mask∗.............................Folder containing the mask clips
keyframesAn empty folder for the keyframes

...
clip-namen............................Folder created for the nth clip

...

Figure 5.1: The output folder structure. ∗Mask folder is created only if render
mask is checked.

45

5. Implementation

Figure 5.2: The custom UI panels created for the compositor editor.

5.2 Unity Components

The implemented animation and movement system are showcased in a proof-
of-concept game demo. Animation-wise, the demo contains a playable char-
acter (controlled by left mouse button), sheep (controlled by simple AI) and a
simple stationary animated character (controlled by key input). See figure 5.3
for a screenshot from the game demo.

The playable character is controlled using the more complex animation
controller VAnimCharacterController, combined with the PlayerMovement
movement class. It uses the tracking data obtained from Blender to directly
control the speed of the character. The sheep are controlled using the sim-
pler animation controller VAnimSimpleCharacterController, combined with
SheepMovement movement class.

New animation controllers can be easily implemented by inheriting from
the VAnimController and defining appropriate clips and states. The move-
ment system can be also easily expanded to support different control schemes
by extending the appropriate movement abstract class. In the rest of this
section, a few interesting code highlights are shown.

46

5.2. Unity Components

Figure 5.3: Screenshot from the game demo.

5.2.1 Movement Interpolation

An unexpected problem has arisen when implementing the movement sys-
tem – the animated GameObject was noticeably jittering when it was being
moved. The reason for the jitter was the frequency of movement update calls.
As the more complex movement system is linked directly to the animation
playback, the update rate was dependant on the playback rate of the video
(one update per frame of the video). GameObjects are however expected to
be moved consistently during each Update or FixedUpdate call (update rate
of the game loop). To solve this issue, a simple interpolation method has been
implemented, which more evenly distributes the movement increments (see
listing 1).

5.2.2 Inputting Velocity Data

The VClipsVelocity4D clip encapsulation class also contains the logic nec-
essary for parsing the velocity data and saving it to memory. The expected
format is a csv file with a single column of data containing the velocity data
for each frame (the Blender extensions outputs the data in this format). The
csv file is loaded in as a TextAsset and parsed using the method described
in listing 2.

47

5. Implementation

void Interpolate()
{

var updateRatio = Time.fixedDeltaTime
* animationController.videoPlayer.frameRate
* animationController.videoPlayer.playbackSpeed;

var interpolateVal = prevDistance * updateRatio;

if (distanceBuffer == 0.0f)
{

distanceBuffer += interpolateVal;
interpolatedDistance += interpolateVal;

}
//if the distance buffer is not empty, then a part is
//taken to balance out the interpolated value
else if (interpolateVal < distanceBuffer)
{

var valueToTake = distanceBuffer - interpolateVal;
if (valueToTake > interpolatedDistance)

valueToTake = interpolatedDistance;
distanceBuffer -= valueToTake;
interpolatedDistance -= valueToTake;

}
}

Listing 1: Method used for smoothing out the character movement.

float[] ParseVelocityText(TextAsset textAsset, ref float sum)
{

try
{

var lines = Regex.Split(textAsset.text, "\r\n|\r|\n")
.Where(s => s != string.Empty);

var parsed = lines.Select(line => float.Parse(line))
.ToArray();

sum = parsed.Sum();
return parsed;

}
catch (System.FormatException)
{

throw new VelocityDataBadFormatException();
}

}

Listing 2: Method used for parsing the velocity data.

48

5.3. Results and Future Work

5.3 Results and Future Work
All of the results of this thesis are fully available on GitHub, split into two
repositories, including a user manual – the Blender add-on [32] and the Unity
components [33]. They will also be further utilized and developed during the
development of an adventure video game Sheepless.

5.3.1 Future Work
In the future, the character animation system could be further improved to
support a wider range of movement (for example turning). An editor exten-
sion, similar to the official Unity animator, enabling visual creation of the
animation controllers could also be developed.

5.3.2 Testing
Due to the nature of the project, thorough user-testing was the main form
of testing. As the features of the Blender add-on are heavily UI-based and
tightly bundled with the Blender API, the resulting code coverage of the unit
tests would be low anyway. This applies to the Unity scripts as well, the unit
test code coverage would be low due to the nature of the game development
platform.

5.3.3 Limitations
One of the drawbacks of the chosen approach to the animation system in Unity
are the limited navigation possibilities. The characters animated using the
more complex animation system (in which animations drive the movement)
can utilize the navmesh components and navigate around static obstacles.
They are, however, unable to respond to dynamic obstacles, due to their pre-
computed animation speed when going towards a target, in order to fully
play out the animation. That is linked with the second limitation, which is
the difficulty of creating smooth transitions between animations, due to the
chosen animation format.

The video animations are also quite resource-intensive, if a high amount of
them is played in very high definition. That can be circumvented by playing
them at lower definition when viewed from far away and switching to higher
resolution when viewed up close.

49

Conclusion

The aim of this thesis was to create a proof-of-concept game implementation
to see if modern image synthesis tools can be used in game development. The
process of preparing and transforming the video footage has been analyzed
and partly automated using custom Blender scripts and other tools. The
image format for animations typically used in the Unity game engine has
been replaced with video files, due to the much more efficient compression
of the format. That has introduced a number of problems since the built-
in Unity animator does not support video file animations. A new solution
has been proposed and implemented using the video player component. The
system has been designed in a way, where the animation playback drives the
velocity of the animated object, in order to best preserve the authenticity of
the animations in the game world. The animations and movement system are
demonstrated in a proof-of-concept Unity project.

The techniques and features described will be used for the development
of an adventure artistic game Sheepless. The source code and created tools
along with a user manual are also freely accessible on GitHub [32, 33] for any
developers who might be interested.

Going forward, the animation system could be improved to be more easily
programmable using UI elements, similar to the built-in animator. A better
compromise between performance and file size for the animations could also
be designed, which would however introduce far greater complexity to the
project.

51

Bibliography

1. CBS NEWS. “Loving Vincent” Van Gogh: How the world’s first hand-
painted film was made [online]. CBS Interactive, 2017 [visited on 2020-
03-17]. Available from: https://www.cbsnews.com/news/loving-
vincent-entirely-hand-painted-film-about-vincent-van-goghs-
life/.

2. MUSTIATS, Ian. Sheepless – An Open-source 2D Adventure Game
in Unity. Praha, 2020. Bachelor thesis. Czech Technical University in
Prague, Faculty of Information Technology, Department of Software
Engineering. Supervisor: Marek Skotnica.

3. BADRONOV, Robert. Sheepless – An Open-source 2D Adventure Game
in Unity. Praha, 2020. Bachelor thesis. Czech Technical University in
Prague, Faculty of Information Technology, Department of Software En-
gineering. Supervisor: Marek Skotnica.

4. FIŠER, Jakub; JAMRIŠKA, Ondřej; LUKÁČ, Michal; SHECHTMAN,
Eli; ASENTE, Paul; LU, Jingwan; SÝKORA, Daniel. StyLit: Illumination-
Guided Example-Based Stylization of 3D Renderings. ACM Trans.
Graph. 2016, vol. 35, no. 4. ISSN 0730-0301. Available from DOI:
10.1145/2897824.2925948.

5. SÝKORA, Daniel; JAMRISKA, Ondrej; LU, Jingwan; SHECHTMAN,
Eli. StyleBlit: Fast Example-Based Stylization with Local Guidance.
CoRR. 2018, vol. abs/1807.03249. Available from arXiv: 1807.03249.

6. BURÝŠEK, Jiří. Example-based Non-photorealistic Rendering using
Game Engine. Praha, 2019. Available also from: https : / / dspace .
cvut.cz/handle/10467/82729. Master thesis. Czech Technical Uni-
versity in Prague, Faculty of Electrical Engineering, Department of
Computer Graphics and Interaction. Supervisor: Daniel Sýkora.

53

https://www.cbsnews.com/news/loving-vincent-entirely-hand-painted-film-about-vincent-van-goghs-life/
https://www.cbsnews.com/news/loving-vincent-entirely-hand-painted-film-about-vincent-van-goghs-life/
https://www.cbsnews.com/news/loving-vincent-entirely-hand-painted-film-about-vincent-van-goghs-life/
http://dx.doi.org/10.1145/2897824.2925948
https://arxiv.org/abs/1807.03249
https://dspace.cvut.cz/handle/10467/82729
https://dspace.cvut.cz/handle/10467/82729

Bibliography

7. JAMRIŠKA, Ondřej; SOCHOROVÁ, Šárka; TEXLER, Ondřej; LUKÁČ,
Michal; FIŠER, Jakub; LU, Jingwan; SHECHTMAN, Eli; SÝKORA,
Daniel. Stylizing Video by Example. ACM Trans. Graph. 2019, vol. 38,
no. 4. ISSN 0730-0301. Available from DOI: 10.1145/3306346.3323006.

8. SCRTWPNS. EbSynth Alpha [software] [visited on 2020-03-30]. Available
from: https://www.ebsynth.com/.

9. BLENDER FOUNDATION. Blender [software]. Version 2.81.16 [visited
on 2020-02-20]. Available from: https://www.blender.org/.

10. ROOSENDAAL, Ton. How Blender started, twenty years ago… [online]
[visited on 2020-02-09]. Available from: https://code.blender.org/
2013/12/how-blender-started-twenty-years-ago/.

11. BLENDER FOUNDATION. Blender 2.81 Reference Manual [online]
[visited on 2020-02-10]. Available from: https://docs.blender.org/
manual/en/latest/index.html.

12. BLENDER FOUNDATION. Window System Introduction [online] [vis-
ited on 2020-02-10]. Available from: https : / / docs . blender . org /
manual/en/latest/interface/window_system/introduction.html.

13. MATHWORKS. Linear mapping method using affine transformation [on-
line] [visited on 2020-04-26]. Available from: https://www.mathworks.
com/discovery/affine-transformation.html/.

14. PYTHON SOFTWARE FOUNDATION. What is Python? [online] [vis-
ited on 2020-02-10]. Available from: https://www.python.org/doc/
essays/blurb/.

15. PYTHON SOFTWARE FOUNDATION. Should I use Python 2 or
Python 3 for my development activity? [online] [visited on 2020-04-28].
Available from: https://wiki.python.org/moin/Python2orPython3.

16. BLENDER FOUNDATION. Blender 2.57 Release Notes [online] [visited
on 2020-04-28]. Available from: https://archive.blender.org/wiki/
index.php/Dev:Ref/Release_Notes/2.57.

17. UNITY TECHNOLOGIES. Blender [software]. 2019.2.9f1 [visited on
2020-05-03]. Available from: https://store.unity.com/.

18. PETTY, Josh. What is Unity 3D & What is it Used For? [online] [visited
on 2020-05-06]. Available from: https://conceptartempire.com/what-
is-unity/.

19. UNITY TECHNOLOGIES. Unity User Manual (2019.3) [online] [visited
on 2020-05-06]. Available from: https://docs.unity3d.com/Manual/.

20. UNITY TECHNOLOGIES. Components for Runtime NavMesh Building
[online] [visited on 2020-05-09]. Available from: https://github.com/
Unity-Technologies/NavMeshComponents.

54

http://dx.doi.org/10.1145/3306346.3323006
https://www.ebsynth.com/
https://www.blender.org/
https://code.blender.org/2013/12/how-blender-started-twenty-years-ago/
https://code.blender.org/2013/12/how-blender-started-twenty-years-ago/
https://docs.blender.org/manual/en/latest/index.html
https://docs.blender.org/manual/en/latest/index.html
https://docs.blender.org/manual/en/latest/interface/window_system/introduction.html
https://docs.blender.org/manual/en/latest/interface/window_system/introduction.html
https://www.mathworks.com/discovery/affine-transformation.html/
https://www.mathworks.com/discovery/affine-transformation.html/
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://wiki.python.org/moin/Python2orPython3
https://archive.blender.org/wiki/index.php/Dev:Ref/Release_Notes/2.57
https://archive.blender.org/wiki/index.php/Dev:Ref/Release_Notes/2.57
https://store.unity.com/
https://conceptartempire.com/what-is-unity/
https://conceptartempire.com/what-is-unity/
https://docs.unity3d.com/Manual/
https://github.com/Unity-Technologies/NavMeshComponents
https://github.com/Unity-Technologies/NavMeshComponents

Bibliography

21. UNITY TECHNOLOGIES. Navigation and Pathfinding [online] [visited
on 2020-05-07]. Available from: https://docs.unity3d.com/Manual/
Navigation.html.

22. YEAGER, Charles. Everything You Need to Know About Chroma Key
and Green Screen Footage [online]. 2019 [visited on 2020-04-04]. Available
from: https://www.premiumbeat.com/blog/chroma- key- green-
screen-guide/.

23. YEAGER, Charles. Blue Screen Vs. Green Screen: Which One Do You
Need? [online] [visited on 2020-03-02]. Available from: https://www.
premiumbeat.com/blog/blue-screen-vs-green-screen/.

24. FREEMAN, Eric. Head first design patterns. Beijing: O’Reilly, 2004.
ISBN 9780596007126.

25. REFACTORING GURU. State in Python [online] [visited on 2020-03-
23]. Available from: https://refactoring.guru/design-patterns/
state/python/example/.

26. FOX, Alexander. How Modern Video Compression Algorithms Actually
Work [online]. 2019 [visited on 2020-05-08]. Available from: https://
www.maketecheasier.com/how-video-compression-works/.

27. TECHSMITH. Video File Formats, Codecs, and Containers Explained
[online] [visited on 2020-05-08]. Available from: https://www.techsmith.
com/blog/video-file-formats/.

28. UNITY TECHNOLOGIES. Video Transparency Support [online] [visited
on 2020-05-08]. Available from: https://docs.unity3d.com/Manual/
VideoTransparency.html.

29. FFMPEG. FFmpeg [software] [visited on 2020-05-08]. Available from:
https://www.ffmpeg.org/.

30. PNGQUANT. PngQuant – lossy PNG compressor [software] [visited on
2020-02-10]. Available from: https://pngquant.org/.

31. KURZEMNIEKS, Gatis. User defined render queue [online] [visited on
2020-01-22]. Available from: https://www.rendereverything.com/
blender-multi-render-script/.

32. KLICPERA, Jan. Effective Image Processing for Blender. In: GitHub
[online] [visited on 2020-05-20]. Available from: https://github.com/
HonzaKlicpera/Effective-footage-processing-Blender.

33. KLICPERA, Jan. Unity Video Animator. In: GitHub [online] [visited on
2020-05-20]. Available from: https://github.com/HonzaKlicpera/
Unity-Video-Animator.

55

https://docs.unity3d.com/Manual/Navigation.html
https://docs.unity3d.com/Manual/Navigation.html
https://www.premiumbeat.com/blog/chroma-key-green-screen-guide/
https://www.premiumbeat.com/blog/chroma-key-green-screen-guide/
https://www.premiumbeat.com/blog/blue-screen-vs-green-screen/
https://www.premiumbeat.com/blog/blue-screen-vs-green-screen/
https://refactoring.guru/design-patterns/state/python/example/
https://refactoring.guru/design-patterns/state/python/example/
https://www.maketecheasier.com/how-video-compression-works/
https://www.maketecheasier.com/how-video-compression-works/
https://www.techsmith.com/blog/video-file-formats/
https://www.techsmith.com/blog/video-file-formats/
https://docs.unity3d.com/Manual/VideoTransparency.html
https://docs.unity3d.com/Manual/VideoTransparency.html
https://www.ffmpeg.org/
https://pngquant.org/
https://www.rendereverything.com/blender-multi-render-script/
https://www.rendereverything.com/blender-multi-render-script/
https://github.com/HonzaKlicpera/Effective-footage-processing-Blender
https://github.com/HonzaKlicpera/Effective-footage-processing-Blender
https://github.com/HonzaKlicpera/Unity-Video-Animator
https://github.com/HonzaKlicpera/Unity-Video-Animator

Appendix A
Acronyms

AI Artificial Intelligence

API Application Programming Interface

CPU Central Processing Unit

CSV Comma-separated Value

EOL End of Life

GPU Graphics Processing Unit

GUI Graphical User Interface

HD High Definition

UI User Interface

URL Uniform Resource Locator

VFX Visual Effects

57

Appendix B
Contents of Enclosed SD Card

readme.txt..........................file describing the SD card contents
manual.pdf..............................file containing the user manual
binaries............................directory containing the binary files

blender......directory containing the Blender add-on starter project
unity.....................directory containing the Unity game builds

src................................directory containing the source codes
blender..................the Blender add-on implementation sources
thesis......directory containing the LATEX source codes of the thesis
unity..............................the Unity implementation sources

text.................................directory containing the thesis text
thesis.pdf............................the thesis text in PDF format

59

	Introduction
	Artistic Style Transfer
	StyLit
	StyleBlit
	EbSynth

	Blender
	User Interface
	Scenes
	Editors
	Scripting

	Unity
	Main Concepts
	Animation System
	Physics System
	Pathfinding
	Video Player

	Analysis and Design
	Video Capture
	Processing the Footage
	Custom Blender Addon
	Asset File Formats & Compression
	Animation System For Video Files
	Navigation and Movement

	Implementation
	Blender Addon
	Unity Components
	Results and Future Work

	Conclusion
	Bibliography
	Acronyms
	Contents of Enclosed SD Card

