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Instructions

*Get familiar with the literature on
a) physics simulation systems for autonomous driving,
b) autonomous driving for other vehicles (or trajectory) tracking,
c) 3d detection of objects in a vehicle surrounding.
*In Carla, create a scenario with two vehicles: followee, follower. The followee will be driven by an
automatic agent on a pre-programmed trajectory. The follower will have an on-board stereo-camera.
*Design and test an algorithm controlling the follower to track the other vehicle and keep the predefined
distance as close as possible. The input will be
a) 3D position of the followee,
b) detection of the followee in the camera image,
c) raw camera image.
In cases (a-b) evaluate the algorithm with both exact and perturbed data.
*(Optional). Test the algorithm on the RC platform developed in the department of cybernetics FEE. The
followee (another manually driven RC car) can be equipped with a special target to ease the perception
part of the problem.
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Abstract
A car chase is a scenario that requires

dynamic maneuvers, fast reactions, and
strategic trajectory planning. It tests the
limits of an autonomous driving system.

We developed an autonomous driving
system that can chase another vehicle us-
ing only images from a single RGB cam-
era. At the core of the system is a novel
dual-task convolutional neural network ca-
pable of simultaneously performing object
detection as well as coarse semantic seg-
mentation. The system has been firstly
tested in CARLA simulation. We created
a new challenging publicly available chas-
ing dataset collected by manually driving
the chased car. Using the dataset, we
showed that the system benefits from us-
ing coarse semantic segmentation. The
system that uses the semantic segmenta-
tion was able to chase the pursued car on
average 10% longer than other versions of
the system.

Finally, we integrated the system into a
subscale vehicle platform built on a high-
speed RC car and demonstrated its capa-
bilities by autonomously chasing another
RC car.

Keywords: self-driving car, RC car,
multi-task learning, autonomous driving,
deep learning, CARLA, simulation

Supervisor: Ing. Jan Čech, Ph.D.
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Abstrakt
Pronásledování auta je situace, která vy-
žaduje dynamické manévry, rychlé reakce
a strategické plánování trajektorie. Záro-
veň nám umožňuje testovat limity auto-
nomního řízení.

Vytvořili jsme autonomní řídící sys-
tém, který dokáže pronásledovat další vo-
zidlo pouze na základě RGB obrazu z
jedné kamery. V jádru tohoto systému
je nová víceúlohová konvoluční neuronová
síť, která dokáže simultánně detekovat ob-
jekty a hrubě sémanticky segmentovat ob-
raz. Tento systém byl nejprve otestován v
simulátoru CARLA. Pro tyto účely jsme
vytvořili nový veřejně dostupný pronásle-
dovací dataset. Dataset byl vytvořen ma-
nuální jízdou pronásledovaného vozidla.
Za použití tohoto datasetu jsme ukázali,
že systém funguje lépe když využívá hru-
bou sémantickou segmentaci. Takový sys-
tém dokázal pronásledovat druhé vozidlo
v průměru o 10% déle než verze systému
které sémantické segmentace nevyužívají.

Na závěr byl tento systém integrován
do platformy nazvané „subscale vehicle
platform“ připevněné na velmi rychlé RC
auto na kterém byl systém testován pro-
následováním dalšího RC vozidla.

Klíčová slova: samořídíci auto, RC
auto, víceúlohové učení, autonomní
řízení, hluboké učení, CARLA, simulace
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Chapter 1
Introduction

An autonomous car driving system capable of making fast and accurate
decisions is important for making car transportation a safer activity. The
reaction times of the system (especially in high speeds) have an impact on the
human trust and acceptance of automated vehicles. The key aspects of driving
autonomously include an understanding of the surrounding environment,
detecting other cars, and interacting with them on the road. In this paper,
we present a novel neural architecture that gives information about other
cars as well as the surrounding drivable surface. We then test an autonomous
driving system, that we developed, in these aspects by using a car chasing
scenario.

A similar scenario – car-following – has been studied for more than half
a century. Car-following models describe how vehicles should follow each
other in a traffic stream. Frequently these theoretical models assume having
precise data such as speed, distance, and acceleration at every timestamp [1].
However, with the advancements of machine learning and computer vision
more practical car-following models have been developed and tested. These
models use sensors such as LIDAR and camera to estimate the distance
between the two cars [2]. The estimated information is then used to maintain
a safe distance between the two cars while following the trajectory of the
front car. However, the car-following models have typically not been tested in
scenarios involving high speeds and sudden fast acceleration and deceleration.

On the other hand, a car chase – a vehicular hot pursuit of suspects
by law enforcers – typically involves high speeds and therefore dynamic
driving maneuvers are necessary. In our scenario, a vehicle being pursued is
driven by a person, while the vehicle that is chasing it is being controlled by
an artificial intelligence-based system. Solving an autonomous car chasing
problem requires a system that solves many sub-problems from computer
vision, planning, and control theory. The system is an integration of the
solutions to these sub-problems. The architecture of our system is similar to
the DARPA Urban Challenge vehicles [3, 4, 5] and consists of three parts:
perception and localization, trajectory planning, and a trajectory controller.

The thesis has the following structure. First, a theoretical background of
the chasing algorithm is outlined. This includes related work described in
Section 2 and also a description of each part of the system in Section 3. Then,
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1. Introduction .....................................
an experiment Section 4 follows. The section includes evaluation in CARLA –
an open-source simulator for autonomous driving research [6]. Additionally, it
has real-world testing of the system deployed in a radio-controlled (RC) car.
The real-world evaluation consists of two parts. First, it has an evaluation of
the novel neural network’s ability to detect objects and segment images. This
is done using a collected dataset that will be presented in the experiment
section. Second, it describes a live test chase in which the goal is to maintain
a determined distance between two RC cars. However, unlike in the car
following problem, following the same trajectory is not required. Finally,
Section 5 concludes the thesis.
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Chapter 2
Related Work

2.1 Path Following

A path is understood as a set of waypoints w0, . . . , wn. Given a path, a
moving vehicle with an initial position p = w0 and an initial vehicle heading
angle ψ. A path-following algorithm tries to change ψ at each timestamp
i ∈ 〈0, n〉 to minimize the sum of cross-track errors. The cross-track error is a
distance between the vehicle and the closest point on the path. Furthermore,
it attempts to minimize the differences between the heading angles ψi and
the angle formed by waypoints wi and wi+1 called the LOS angle φ [7].

In 1985, Carnegie Mellon University [8] demonstrated the first autonomous
path-following vehicle. It works by finding a look-ahead position on the path
and subsequently calculating the vehicle’s heading angle ψ as a curvature κ
of an arc as depicted in Figure 2.1. Using the Pythagorean theorem and the
fact that κ = 1

r , it can be deduced that κ = 2·x
p2 .

A year later after introducing the pure pursuit algorithm, Carnegie Mellon
University’s Navlab was able to follow road at a maximal speed of 28 km/h
[10]. Two decades later, autonomous cars were able to finish a 212 km off-road
course at the DARPA Grand Challenge. The winning team introduced a
novel path-following algorithm called Stanley method [11]. Stanley method
is a non-linear function that takes into account the difference between vehicle
heading angle ψ and the LOS angle φ, gain parameter k, as well as the
cross-track error e. Denoting the vehicle speed ui at time i, the steering
control is given by:

steer = (φ− ψ)i + arctan k · ei

ui
(2.1)

Solving the path-following problem is an important step to achieving a
fully autonomous driving system. We acknowledge that there are many
approaches and path following algorithms [12], but for the sake of brevity, we
have highlighted only two.

3



2. Related Work.....................................

Figure 2.1: The geometry of the pure pursuit path following algorithm, adopted
from [9]

2.2 Car Following and Chasing

The goal of a car following problem is to maintain a predefined distance to a
followed vehicle. Typically, the problem is solved with the goal of creating an
autonomous convoy or a system capable of autonomously driving in highway
traffic. Generally, in the car following problem it is expected that the leading
car drives smoothly without aggressive turning or sudden braking. On the
other hand, in the car chasing problem, the pursued car actively attempts to
get away from the chasing car. While the chasing car also tries to maintain a
certain distance between the two cars, the ultimate goal is not to lose the
pursued car. For this reason, car chasing is a much more challenging problem.

The first scientists who attempted to solve the car chasing/following prob-
lem realised that an autonomous system with such capabilities needs to be
able to perform many different tasks such as localization and planning. Many
attempts focused on solving different parts of the system independently.

In the 1990s, the first attempts of localization of the “lead” chased car were
made [13, 14, 15]. Schwarzinger et al. used a database of different car models
to match the tracked vehicle to a vehicle model [13]. This gives information
about the size of the pursued vehicle. Subsequently, this information is used
to estimate the distance and relative position of the pursued car.

In 1991, Kehtarnavaz et al. developed the first autonomous car following
system called BART [16]. The system was able to follow the leading car at
20 km/h speed. The system works by changing the velocity of the following
car based on the velocity and the distance of the followed car. The authors
stated that estimating the velocity of the lead car is a challenging problem.
While a new Radar/Lidar sensor fusion solution for velocity estimation has
been developed [2], we address the issue by proposing a solution that controls
the throttle based only on the distances between the two cars.

4



.................... 2.3. Target Following Using Unmanned Aerial Vehicles

2.2.1 Reinforcement Learning

Reinforcement learning is a subfield of machine learning. It deals with what
actions should an agent in an environment make to maximize some reward
function. An example would be an agent driving a car on a road. In this
scenario, the reward could be based on how long the agent is able to drive on
the road. The idea is that eventually, the agent would learn from trial and
error to match the correct responses (optimal steering value) based on the
perceived state (where it is on the road).

With the rise of reinforcement learning in recent years [17, 18, 19], rein-
forcement learning based solutions for autonomous following and driving have
been developed. Michels et al. developed an autonomous driving system
capable of driving an RC car in an unstructured environment [20]. They
used a supervised learning approach to estimate depth in an image. Then,
they used a simulator to learn a control policy to steer based on the depth
information from camera images. Zhu et al. developed a solution that imitates
human-like velocity control during highway car following [21, 22].

Reinforcement learning algorithms are often trained (at least partly) in
a simulator. This limits the ability of the system to drive based on the
quality of the simulator. Pan et al. acknowledge the problem and address it
by creating a network that converts non-realistic virtual image input into a
realistic image with a similar scene structure [23]. Furthermore, they prove
that a reinforcement learning agent benefits from training on more realistic
images.

We have decided not to use a reinforcement learning approach. A major
drawback of reinforcement learning is the black-box nature. On the other
hand, since our system has three parts, we can analyze issues and figure out
which part caused the issue, i.e., if it was caused by perception, planning, or
control. This might not be possible using reinforcement learning. We also
believe, that our approach is more suitable for possible hardware changes to
the subscale vehicle platform attached to the RC car.

2.3 Target Following Using Unmanned Aerial
Vehicles

Unmanned aerial vehicles (UAV) are used in contemporary military operations.
The use of UAVs has been steadily increasing for several years [24]. They
have been used for remote mapping, data acquisition, target selection, and
target chasing [24, 25]. Target chasing and target following using UAVs is a
similar problem to the car chasing problem. Generally, the architecture of an
autonomous UAV is similar to the architectures used in autonomous vehicles
[26, 27]. It is usually divided into three parts: perception and localization,
planning, and a controller.

There are two main differences between chasing a target with a UAV
compared to vehicle chase. Firstly, UAV moves in more directions, which
also means that altitude control is necessary. Secondly, frequently there is an

5



2. Related Work.....................................
assumption that no obstacles would prevent the UAV to move in all directions
[26, 27, 28].

As an example of an autonomous UAV target chasing, Telière et al. de-
veloped an autonomous quad-rotor UAV that chases a moving RC car [27].
They set the camera attached to the UAV in a way that the heading vector of
the camera is perpendicular to the ground. Then, they estimate the distance
error between the center of the image and the moving target. Finally, with
the assumption that there are no obstacles, the system moves the UAV to
minimize the measured error. This is similar to our approach as we also move
the chasing car based on estimated distance between the chasing and chased
car. On top of that, our system performs semantic segmentation and plans a
trajectory based on information about the surrounding environment.

6



Chapter 3
Method

3.1 Overview

The system architecture is divided into three parts: perception and local-
ization, trajectory planning, and a trajectory controller. The architecture is
depicted in Figure 3.1.

In the perception part, we introduce a novel neural network that detects
objects and segments an image at the same time. It is able to find a 2D
bounding box of the chased car. Furthermore, it segments an image into a
coarse grid of S × S cells and makes a classification about each cell whether
it is a drivable surface or not. The detection and segmentation are done with
a single pass of the image through the neural network.

Then, we estimate the angle and distance between the two cars based on
the detected bounding box of the chased car. In case no bounding box is
found we extrapolate the distance and angle.

After the perception and localization, the trajectory is planned. At this
stage, we take advantage of the image segmentation. If only a drivable surface
is between the two cars, we try to drive straight at the last position of the
chased car. Otherwise, we use the image segmentation and find a direction
where it is possible to drive and that is also closest to the position of the
chased car.

Finally, with the trajectory planned, we calculate the steer and throttle
to drive the vehicle. We use a PID controller [29] to control the throttle. It
takes into account the current as well as the previous distances between the
chasing and chased car. A Pure Pursuit [8] inspired algorithm is developed
to control the steering.

Details of the method will be described in the following sections.

3.2 Computer Vision

3.2.1 Dual-task Neural Network

In this section, we introduce a novel neural network that solves two problems
at once – object detection and semantic segmentation.

7



3. Method .......................................

Feed	Image	Into
NN

Grid	Segmented
Image

Chased	Car
Bounding	Box

Estimate	Distance
and	Angle

Compute	Steer
and	Throttle

Get	Image	from
Camera

Plan	Trajectory

Figure 3.1: Simplified overview of the autonomous driving system

The neural network shares the same backbone for both tasks – a 53 layer
feature extractor called Darknet-53 [30]. Attached to the feature extractor
are two sets of layers – one that gives the output for the object detection and
the other that gives an output for the image segmentation. The architecture
of the neural network is depicted in Figure 3.2.

The network is trained by alternating optimization – in every second
batch, the network is optimized only for detection, while the segmentation is
optimized in the remaining batches. The neural network uses different loss
functions depending on the batch. During training, when the network receives
a training batch of data for semantic segmentation, the output for the object
detection is ignored, and consequently, only the shared layers (the feature
extractor) and the segmentation layers are trained. Equivalently, when the
network gets a batch containing object detection data, it updates the weights
only on the shared layers and the detection layers.

During inference, the network works as follows. It is given an image, which
passes through the network just once. From this, we get an object detection
output as well as the semantic segmentation output. This means that while
the training is slightly slower than training a single-task neural network,
the extra cost is negligible during inference since the backbone features are

8



................................... 3.2. Computer Vision
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Input
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Residual
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Figure 3.2: Architecture of the novel dual-task convolutional neural network.
The three YOLO Feature Grids are used to predict bounding boxes at 3 different
scales (described in Section 3.2.2). The Segmentation Grid is the output of the
coarse semantic segmentation.

shared.
For autonomous driving, the neural network architecture has many ad-

vantages over using two separate networks. First, as was mentioned, it is
much faster. That is crucial when driving autonomously because we want to
process as many frames per second as possible and have fast reaction times
to ultimately prevent accidents and crashes. Second, it uses less memory,
because most of the network weights are shared. This is potentially beneficial
for the overall speed since more RAM is available, less disk swapping is
required. Finally, it makes integration of the detection and segmentation into
our autonomous RC car system, having limited computational power, a lot
simpler.

3.2.2 Bounding Box Detector

In our work, a bounding box is the smallest 2D axis-aligned rectangle that
encloses all pixels belonging to the chased RC car in an image. The detection
is performed by a convolutional neural network [31] with YOLOv3 neural
network architecture [30].

The first version of the YOLO published in 2015 [32], made a great im-
provement to the previous state-of-the-art object detection solutions with its
ability to predict bounding boxes of multiple object classes with incredible
inference speed. It works by reasoning globally about the whole images and

9



3. Method .......................................
all its object classes.

Figure 3.3: Diagram showing YOLO neural network mechanism, adopted from
[32]

The YOLO neural network divides an image into S × S grid of cells. Each
cell makes K bounding box predictions. Each prediction is a vector containing
width, height and the (x, y) coordinates of the center of the bounding box.
For each object in the image, the cell that has the center of the object inside
is responsible for predicting its bounding box. This can be seen in the top
middle image in the Figure 3.3. Concurrently, each cell outputs C values
where each value represents a predicted probability of whether an object
from a class Ci is in the cell. The resulting class map from these predicted
probabilities is seen in the bottom middle image in the Figure 3.3. Both of
these predictions – the class probabilities and the bounding box predictions –
are then used together to make detection and classification of the objects in
the image.

During training, YOLO optimizes a multi-task loss function. It concurrently
optimizes the bounding box regression as well as the class probabilities
predictions.

Two years after introducing YOLO, the second version of called YOLO9000
[33] was introduced. In the first version of YOLO, each cell makes K bounding
box predictions of a random size. This was improved by calculating the
expected bounding box sizes by clustering the bounding boxes of the training
set. These expected bounding boxes are called anchors or priors. Furthermore,
YOLO9000 also uses different network architecture called Darknet-19 and
enables detection on different image sizes.

The third version of the YOLO architecture [30] improves YOLO in two
main ways. Firstly, it adds more layers to the Darknet network architecture.
Secondly, inspired by Feature Pyramid Networks [34], it predicts boxes at 3
different scales. To be specific, instead of dividing the image into S × S grid
of cells, YOLOv3 divides it into S × S, (S · 2)× (S · 2) and a (S · 4)× (S · 4)
grid of cells. This helps the neural network to detect objects across a larger
range of scales.

10



................................... 3.2. Computer Vision

Figure 3.4: Angle and distance estimation: Blue chasing car on the left and
pursued car on the right. It shows the ground truth distance d and the angle ϕ
we are estimating using a camera mounted on the chasing car

In our work, we have used the YOLOv3 detector pre-trained on a COCO
dataset consisting of more than 330 000 images with objects from 80 different
classes [35]. The neural network was fine-tuned on our dataset that has
460 images of the chased RC car. The dataset is described in Section 4.2.1.
During fine-tuning, only the final layers that follow the Darknet-53 feature
extractor were updated.

3.2.3 Angle and Distance Estimation

One of the most crucial information when chasing another vehicle is its
relative angle and distance to the chasing car as sketched in Figure 3.4. In
our work, we are estimating the angle between the heading vector of the
chasing car and the vector pointing from the center-front of the chasing car
to the center of the back of the pursued car. Furthermore, we estimate the
distance between the two cars. To be specific, the distance d between the
front of the chasing car and the center of the back of the pursued car.

Figure 3.4 shows this problem in a simplified 2D view. To estimate the
distance and the angle of the car from an image, we took advantage of existing
solutions solving PnP (Perspective-n-Point) problem. The PnP is a problem
of estimating position and orientation of a camera from a set of n known 3D
points, their corresponding 2D projections in the image, and the calibrated
intrinsic camera parameters. This leads us to the following camera projection
equation:

spimage = K [ R |T ] pmodel (3.1)
Where s is a scaling parameter since pimage and pmodel are in homogeneous

coordinates. The pimage are the coordinates of the points in the image, pmodel

11



3. Method .......................................
are the 3D model coordinates, K is the matrix of intrinsic camera parameters
and R and T are the rotation and translation we are estimating. This can
be further rewritten as:

s

uv
1

 =

fx γ u0
0 fy v0
0 0 1


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



x
y
z
1

 (3.2)

In our case, the image points pimage are the bounding box corners of the
detected car. We also estimated the model coordinates pmodel by measuring
the width and height of the chased RC car. We assume that the bounding
box encloses only the corresponding image points, i.e., the back of the RC
car. We acknowledge that the assumption does not always hold true, but
we found the resulting inaccuracies to be negligible. Finally, the intrinsic
camera parameters such as focal lengths fx and fy were taken from the
manufacturer calibration of the ZED camera. Then, we plugged these values
into an OpenCV [36] library function SolvePnP (with CV_ITERATIVE flag)
which gave us the translation and rotation vectors. Afterwards, we calculated
the distance d by calculating the Euclidean distance between the translation
vector T and the origin. Similarly, we extracted the desired estimated angle ϕ
by calculating arc tangent between the negative values of x and z components
of the translation vector T.

Finally, since we are using a stereo camera and the camera lens which was
used is not in the center of the front of the car, we converted the calculated
angle and distance as if the camera was in the center of the front of the car.
We achieve this with a simple triangulation. Note that only monocular is
made. More precise estimation using stereo vision could be achieved, however,
for higher computational cost.

3.2.4 Angle and Distance Extrapolation

In the previous section, we have described how we estimate angle distance
based on the bounding box of the chased car. However, in some cases the
detector is unable to detect the object in the image due to poor lighting
conditions in the scene, or because the pursued vehicle is only partially
visible/non-visible due to some object occluding it. Furthermore, there are
cases when the chased car is out of the field of view. In these cases, we need
to make a reasonable prediction about the position of the chased car.

We extrapolate the angle and the distance of the chased car based on
the previous estimates. At the heart of the extrapolation algorithm is an
exponential moving average. In fact, we use just six variables to store
information about the whole history of estimated angles and distances. The
idea will be explained by the process of extrapolating distances. The angle
extrapolation is done similarly.

For every frame, we update the exponential moving average variable using
the following equation:
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êi =
{
α · di + (1− α) · êi−1, if bounding box found
α · dextrapolated + (1− α) · êi−1, otherwise

(3.3)

Where êi is the exponential moving average variable at ith frame, α is a
value in range [0,1] that sets the weight of the last predicted distance. In our
algorithm, we have chosen value α = 0.5.

If the chased car is detected at ith frame, we set di equal to the predicted
estimate received from the PnP solver. We then update the variable êi using
the estimate di and subsequently output the variable di as our estimate for ith
frame. In case no bounding box was detected, we update the êi variable with
dextrapolated variable that is computed using the following linear extrapolation
equation:

dextrapolated = 2 · di−1 − di−2 (3.4)

Afterwards, we output the variable êi as our estimate for ith frame in case
no bounding box was detected. Then, we set di = dextrapolated for future linear
extrapolation computations. Finally, each extrapolated angle is processed by
a saturation block that limits the output values. The saturation limits are
-175 and 175 degrees.

This method allows us to extrapolate the angle and the distance very fast
in a O(1) time and space complexity with almost no overhead.

3.2.5 Image Segmentation

In comparison to the semantic segmentation that links each pixel of the image
to a class label, we segment the image into a coarse grid of S × S cells. Each
cell linked with a class label. In our work, we have chosen S = 10 and only
two classes. The first class represents a drivable surface while the second
class is everything else.

To create a labeled dataset, we used semantic segmented images (an image
that has each pixel of the image linked to a class label). Then, we calculate
the number of pixels in a cell that belong to the class representing the drivable
surface. If the percentage of these pixels is higher than P percentage of all
the pixels in the cell, we assign the cell said label. In our work, we have
chosen P = 50%.

Since we have only two classes we can represent each cell label as binary 1
or 0. For this reason, we have chosen the logistic loss function to train the
network.

Llog = − 1
N

N∑
i=1

yi · log(ŷi) + (1− yi) · log(1− ŷi) (3.5)

Where N is the number of images per batch, ŷi are the predicted segmen-
tation values of the neural network for the ith image in the batch and yi are
its labels.
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Figure 3.5: Segmented image from the RC car’s camera. The image is segmented
into 10× 10 grid of cells where the green cells represent a drivable surface. The
image is taken from our test set

3.3 Control And Planning

In this section, we will explain how we control the steering and throttle of the
vehicle based on the extracted information from the camera. Conversely to
many algorithms [37, 38], we control steering and throttle separately. Steering
control is inspired by pure pursuit algorithm and throttle is controlled by a
PID controller.

3.3.1 Pure Pursuit Inspired Algorithm

Pure pursuit algorithm is a path tracking algorithm that moves a vehicle from
its current position to some look-ahead position on the path. The algorithm
was invented in the 1980s as it was used in the first demonstration of an
autonomous vehicle capable of following a road using imagery from a black
and white camera [8]. The goal of the demonstration was to keep the vehicle
centered on the road while it was driving at a constant speed.

The algorithm works as follows. Firstly, it finds the goal point on the
path. Then, it transforms the goal point to vehicle coordinates, and finally, it
calculates the curvature that will drive the vehicle to the look-ahead position
on the path.

In our work, we were inspired by the algorithm. As opposed to the
pure pursuit algorithm settings, our car does not move at a constant speed.
Secondly, we are not following a path, but rather chasing a moving RC car.
Therefore, every time we process an image from the camera, we update our
goal position. But unlike in the path-following algorithm, the target position
is updated with respect to the current position of the chased RC car rather
than to a position on a path.

Conversely to the pure pursuit algorithm, we do not calculate the curvature
to control the steering. That is because we need to update the steering every
frame based on the position of the chased RC car and take more aggressive
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(a) : First proposed path (b) : Second proposed path (c) : Third proposed path

Figure 3.6: Example of a coarse semantic segmentation based planning using
3× 3 grid of cells. First, the algorithm checks if it is possible to drive directly
after the car (a). This is not possible as the constructed line segment goes
through a non-drivable grid cell. Then, the remaining cells on the same row as
the detected car are checked (b,c). The algorithm finally proposes a direction
represented by a line segment that goes only through drivable surfaces and that
is closest to the direction of the chased car (c).

turns to chase the pursued vehicle. In our algorithm we calculate the steering
value with the following function:

steer = (
ϕ

180)2 (3.6)

Value ϕ represents the angle between the chasing and the chased car shown
in the Figure 3.4. The steer variable is in [-1, 1] range, where -1 and 1
represent the highest left-turn and right-turn steering angle the car can make
respectively. We square the result of the division because the steering control
on the RC car is non-linear. We do not square the division in the CARLA
simulation.

3.3.2 Semantic Segmentation Based Planning

During inference, we use the coarse segmented grid as depicted in Figure
3.6. First, we construct a line segment from the center of the bottom side
of the image to the bounding box of the detected car. If this line segment
goes only through cells that are drivable, the trajectory planning phase stays
unchanged and we try to follow the car directly as described in Section 3.3.1.
If that’s not the case, we repeat the line segment construction. This time,
however, the line segment goes from the center of the bottom side of the
image to other cells on the same horizontal line as the bounding box of the
car. When we find a line segment that goes only through cells with drivable
surfaces and that is closest to the RC car, we try to drive the car in this
direction until it is possible again to chase the car directly.
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3.3.3 PID Controller

Despite being introduced in the 1940s, the PID controller is the most common
control algorithm. In a 2002 survey of over 11 000 controllers from various
industries, it was found that 97% of regulatory controllers utilize PID feedback
[39].

In our work, we use a PID controller to control the throttle of the chasing
autonomous car. As the name suggests it can be described with the following
equation:

throttle = P + I +D (3.7)

Term P called the proportional term is equal to a value proportional to the
current error value εi. In our case, the error value is εi = di − ddesired, where
di is the estimated distance between the chasing and the chased car, and
ddesired is the desired distance between the two cars that we are trying to
maintain. Equivalently to the terms I and D, the term P is equal to a value
multiplied by a weight wp which indicates the influence and importance of
the term. Therefore, the term P is described as P = εi · wp

Term I refers to the integration term. It integrates the errors over time.
In our case, if the distance between the two cars continues to stay too
large for a prolonged period, this term increases its value. It is equal to
I = wi ·

∑i
j=(i−K) εj , where K is the number of frames representing the

time we want to consider from the current frame. We used K = 300, which
corresponds to the last 10 seconds.

The last component of the equation – D refers to the derivation term. Its
purpose is to decrease the rate of change and decrease oscillations of the error
value. In our work D = wd · (εi − εi−1).

To make the PID controller usable based on the dynamics of the system,
the weights of the three components must be set. We have picked different
weights for the CARLA simulation and the RC car. In the CARLA simulation,
we have analyzed over a hundred sets of weights and picked the one that
resulted in the lowest average error (ε = d − ddesired). These values were
wp = 0.1, wi = 0 and wd = 1. For the RC car, we have chosen the values
based on trial and error. They were wp = 0.25, wi = 0 and wd = 0.07. Finally,
we saturate the output to the [0, 1] range.

The reason for choosing wi = 0 is pretty simple. While higher value of
wi had a positive effect on the average error, it caused the car to crash into
the chased car. In many cases, if the car was not catching up it made the
car drive very fast and when it reached the desired distance, the car didn’t
slow fast enough resulting in a crash. Lowering the number of frames the
integration part considers, did slightly help this issue. However, we decided
not to take the risk of breaking a very expensive subscale vehicle platform
attached to the RC car.
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Chapter 4
Experiments

4.1 Simulation

4.1.1 CARLA Environment

All the simulation experiments were performed in CARLA – an open-source
simulator for autonomous driving research [6]. The experiments were done
in CARLA version 0.9.8. CARLA has a wide selection of sensors including
camera, segmentation camera, LIDAR on so on. It provides multiple maps
with an urban layout. Users can control the weather, as well as many different
actors (vehicles, pedestrians) at the same time.

4.1.2 Experiment Setup

In our work, we chose Tesla Model 3 as the chased car and Jeep Wrangler
Rubicon as the chasing car. In each experiment, the pursued Tesla Model
3 was placed in front of the autonomously driven Jeep, as shown in Figure
4.1. At each frame, we simulated a bounding box detection of the chased
car. We did this by projecting the ground truth world coordinates of the
chased vehicle bounding box to the camera image coordinates. Then, we
randomly perturbed the bounding box by adding random exponential noise
proportional to the size of the bounding box. Furthermore, we simulated
detection failure (false negative) in 10% of the frames. The detection was
also not provided when the chased car was out of the field of view.

All the experiments were performed in a synchronous mode in which
the simulation waits for the sensor data to be ready before sending the
measurements as well as halts each frame until a control message is received
[6].

Driving Dataset

To perform the experiments we first collected a driving dataset [40]. We used
the Tesla Model 3 and manually drove it around the city using connected
steering wheel and pedals Hama uRage GripZ 1. As the car was driven, its

1https://www.hama.com/00113754/urage-urage-gripz-racing-wheel
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(a) : View from the stereo camera
attached to the chasing car

(b) : View from above

Figure 4.1: Two images showing the beginning of a CARLA experiment from
two different perspectives

location and orientation were recorded at every frame. This way, we have
collected a database of 20 different drives with varying difficulty (in a sense of
chasing the car). We used this database to evaluate the autonomous driving
system. At the beginning of the following experiments, a chasing car was
placed half of a meter behind the chased car. Then, we updated every frame
the location and orientation of the chased car based on the saved coordinates
in the dataset. Meanwhile, the chasing vehicle was driven autonomously and
trying to maintain a desired distance from the pursued car. Figure 4.2 depicts
a full trajectory of an autonomous chase in CARLA.

We divide the dataset into two equal-sized sets based on difficulty. The
first set contains simple drives in which the car was driven slowly and without
sudden turning and braking. Any changes such as turns were slow. The
average speed in these drives is 35.01 km/h.

On the other hand, the second set aims to test the algorithm to its limits.
The drives include sudden braking, fast turns as well as cutting corners.
Sometimes even drifts were performed. The average speed in these drives is
49.68 km/h with the fastest drive having an average speed of 63.29 km/h.

4.1.3 Segmentation and Extrapolation Evaluation

In the first experiment, we compare different versions of the algorithm.
We evaluate the algorithm with its full functionality enabled as described
in Section 3, we also test the same algorithm without using coarse image
segmentation and finally evaluate the algorithm without the segmentation,
and distance and angle extrapolation. We compare these versions on both
of the easy and difficult sets described in Section 4.1.2. We evaluated these
versions using 5 indicators. Namely, an average root-mean-square error
(RMSE) of the desired distance between the two cars and the actual distance
between the two cars. The average mean absolute error (MAE) of the desired
and the actual distance. Note that the RMSE and MAE are averaged over
the drive trials of the test set. We also measure the average number of crashes
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Figure 4.2: Example of a difficult drive trajectory in the CARLA simulator.
The full blue line represents the trajectory of the chasing car and the dashed
black line represents the trajectory of the pursued car.

Finished Avg. Completion Crashes MAE RMSE
Full Algorithm 10 97.48% 0.1 9.28 10.91
W/o Segmentation 10 97.41% 0.1 9.26 10.90
W/o Segm. + Ex. 9 97.03% 0.11 9.34 11.23

Table 4.1: Comparison of the different algorithm versions on the easy driving set

per drive. A crash can be a collision with the environment (building for
example) or with the pursued car. Furthermore, we measure the average
drive completion, which is based on how long the autonomous system was
chasing the pursued car. To be specific, at the last position of the chasing car,
we calculated the closest point on the chased car path. Then, we calculated
the percentage that the part of the path from the beginning point to this
point accounts for. Finally, we evaluate the total number of finished drives.
We consider the chase to be finished if the drive was at least 95% completed.

Table 4.1 shows results on the easy test set. All three versions of the system
performed well with even the simplest version finishing most of the drives.

Table 4.2 compares the versions using the difficult driving set. We can see,
that the full versions of the algorithm performed significantly better than
the remaining two versions. It achieved almost 10% higher average drive
completion than the next best-evaluated version. We attribute this to the
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Finished Avg. Completion Crashes MAE RMSE

Full Algorithm 4 63.84% 1.5 14.39 18.30
W/o Segmentation 4 54.76% 1.25 14.30 18.22
W/o Segm. + Ex. 3 53.29% 1 14.49 18.89

Table 4.2: Comparison of the different algorithm versions on the difficult driving
set
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(b) : Car speed of the two cars
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(c) : Angle between the two cars
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(d) : Yaw rate of the two cars

Figure 4.3: Different metrics of the car chase shown in Figure 4.1 in time.

use of coarse semantic segmentation. Figure 4.3 depicts experimental results
of the full system during a difficult drive shown in Figure 4.1.

4.1.4 Impact of the Detector Quality on Chasing Success

As we can see in Table 4.3 the recall of the detector is significantly lower
than its precision. Therefore, in this experiment, we investigate the effects
of detectors recall on the ability of the autonomous driving system to chase
another vehicle. The failed detections had a uniform distribution over the
frames of the sequence. Furthermore, we investigate how each of the three
versions of the system copes with different detection recall levels. Figure 4.4
plots the average drive completion (of the 20 drives) described in Section
4.1.3 against the detection recall.

From Figure 4.4 we can see, that the average drive completion steadily
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Figure 4.4: Average drive completion plotted against detection recall. All drives
included

declines with decreasing detection recall and the system starts to fail once
the detection recall is at 25%. Out of the three versions of the algorithm, the
full version which uses coarse semantic segmentation and angle and distance
extrapolation of the pursued car performs the best. It maintains above 80%
drive completion until the detection recall gets below 25%. We attribute
this achievement to the use of coarse semantic segmentation. We base this
assumption on the fact, that the version of the system that uses extrapolation
but does not use segmentation performs similarly to the version which does
not use extrapolation nor the segmentation.

Figure 4.5 plots the average drive completion on the difficult driving set
against detection recall. On this driving set, the full version of the algorithm
performs even more significantly better than the other two versions. When
the recall is at 60% or lower, the average drive completion of the full version
is almost 20% higher than the average drive completion of the remaining two
versions.

4.1.5 Qualitative results

While performing the experiments, we saw that the use of coarse semantic
segmentation allowed the system to stay longer on the road in situations
when the pursued car was not detected for a prolonged period. For example,
when the pursued car drove behind a building, both versions of the algorithm
that use extrapolation correctly predicted the position of the pursued car.
However, the algorithm that did not use segmentation drove straight into the
building and collided as it did not have any information about its surrounding
environment. Only the full version of the algorithm drove around the building
and continued the chase.
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Figure 4.5: Average drive completion plotted against detection recall. Only
difficult drives included

4.2 Real Tests

4.2.1 Vehicle Detection

Dataset

In order to train and evaluate an object detector capable of predicting a 2D
bounding box around the chased RC car in an image, a dataset was needed.
The collected dataset [40] consists of 460 manually annotated images. All
image annotations are in the PASCAL VOC data format introduced in the
PASCAL Visual Object Classes Challenge [41]. Each image has its annotation
that contains pixel coordinates of the bounding box corners for each object in
the image. In our dataset, a single object per image is present – the chased
RC car. The data were collected from multiple locations around Czechia, on
various surfaces, and also under different lighting conditions. The majority of
images were collected by the ZED Stereo camera attached to the chasing RC
car. Around 5% of the collected images were taken with smartphone Xiaomi
Mi 8. A few images from the dataset are shown in Figure 4.6.

Detection Results

The collected dataset was split into three sets. The majority of 80% of the
images were randomly selected into a training set, 10% were randomly selected
into a validation set and the remaining images were used as a test set. To
evaluate the model, we calculated multiple statistics – recall, precision, XY
loss, and WH loss. To explain recall and precision we need to first define IoU
(Intersection over union). IoU measures how much the predicted bounding

22



......................................4.2. Real Tests

Figure 4.6: Detection dataset. Overview of the environment variability present
in the dataset

Precision Recall XY loss WH loss
Test set 99.8% 97.7% 0.066 0.227

Table 4.3: Evaluation of the detector on a test set

box overlaps with the ground truth (annotated bounding box). It is defined
as

IoU =
Area of overlap
Area of union (4.1)

We say that the prediction is true positive (tp) when IoU between the
predicted bounding box and the ground truth bounding box is greater than
0.5. We say that it is false positive (fp) if it is less or equal to 0.5. When
a ground truth bounding box is present in the image and the model failed
to detect the object, we classify it as false negative (fn). Finally, we define
recall as recall = tp

tp+fn and precision as precision = tp
tp+fp . We calculate

XY loss as a mean squared error (MSE) between the center of the predicted
bounding box and the center of the ground truth bounding box. WH loss, on
the other hand, is the difference between width and height of the predicted
bounding box and the ground truth bounding box. When calculating both of
these values, coordinates and image dimensions have been scaled to the [0, 1]
range.

During training, the model with the smallest sum of the WH and XY losses
on the validation dataset has been selected. The evaluation of the detector
on the test set is shown in Table 4.3. Results indicate that the pre-trained
model detects the chased car accurately. This is achieved with only a few
hundred training examples. Examples of the detection, together with angle
and distance estimates are shown in Figure 4.7.
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Figure 4.7: Detection bounding boxes, distance, and angle estimation performed
on images from the RC car camera. The images are part of the test split of the
collected dataset

4.2.2 Segmentation Results

To train and evaluate the coarse semantic segmentation part of the dual-task
neural network, we have annotated the collected detection dataset presented
in Section 4.2.1. As explained in Section 3.2.5, each image is segmented into
a 10× 10 grid of cells. Therefore, we treat this as a classification problem,
where the network performs 100 classifications per image. We report, that
the neural network achieved 94.4% classification accuracy on the test set.

4.2.3 Test Drive Using RC Cars

RC Cars Description

Chasing RC car. For the deployment of our autonomous chasing algorithm,
a subscale vehicle platform called Toyota Mini (ToMi) was used [42]. The
platform is built around a large 1:5 scale RC car “Losi Desert Buggy XL-E
4WD” 2. This electrically powered car has 0.9 x 0.5 meters length and width
dimensions with reported maximal speed of up to 80km/h. The platform has
a Raspberry Pi with a Navio-board3 that generates pulse width modulation
(PWM) signals for the throttle and steering to the servomotor. It is also
equipped with a ZED stereo camera4 for taking color images, NVIDIA Jetson
AGX Xavier graphics card5 for image processing and neural network inference.

2http://www.losi.com/Products/Default.aspx?ProdID=LOS05012T2
3https://emlid.com/navio/
4https://www.stereolabs.com/zed/
5https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-

xavier/
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Figure 4.8: Confusion matrix of the coarse segmentation predictions and class
distribution of the test set. The numbers represent the number of instances per
image, i.e., out of 100 cells in a single image

Finally, it is equipped with SSD to provide additional storage, GPS, and
IMU.

The whole simplified process flow is as follows. First, an image is taken
by a camera, which then goes to the graphics card where it is analyzed by
our algorithm. Then, based on the image analysis, both steer and throttle
values are updated. These values are transmitted from the graphics card to
the Raspberry Pi which then sends a signal to the servomotor that actuates
the vehicle.

Chased RC car. The RC car used as the chased vehicle is a 1:10 scale “Losi
XXX-SCT Brushless RTR”6. This electrically powered car has 0.55 x 0.29
meters length and width dimensions with reported maximal speed of up to
55 km/h. Both vehicles are shown in Figure 4.9.

Qualitative results

We have performed live tests using a version of the system that did not
have the dual-task neural network and therefore did not have the option
to perform coarse semantic segmentation. The system was tested on an
empty roundabout. During live tests, several safety measures were available.
Multiple software conditions were implemented to stop the system. For
example, in case the ZED camera stopped capturing images. We also limited
the maximum speed of the autonomous vehicle. This was done by limiting the
pulse width modulation (PWM) signals sent to the servo motor. On top of
that, a remote emergency relay that can return manual control was available.
We tested the system on multiple days during multiple weather conditions.
The chasing trajectories driven on a road leading to the roundabout included

6http://www.losi.com/Products/Default.aspx?ProdID=LOS03002
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(a) : Inside of the chasing RC car (b) : Chasing RC
in the back and the
chased RC car in the
front

Figure 4.9: The hardware inside of the autonomous chasing RC car on the left
and both RC cars used for testing on the right
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(b) : Throttle in time

Figure 4.10: Steer and throttle PWM signals during the live test. The time in
the graph corresponds to the time in the video of the live test [43]. The sudden
spike in the graph (a) is caused by a false positive detection in a single frame

a straight line and a U-turn. On the roundabout, the trajectories consisted
of arc segments and full circles.

The autonomous system followed the other car smoothly without jerky
movements. For the most part, it was able to successfully chase the other RC.
It was maintaining the desired distance when chasing the other car on the
roundabout as well as when the pursued car was driving in a straight line. If
the chased car stopped, so did the autonomous system. The only limitation
of the system comes from its current reactive nature, which in some instances
affected the system’s ability to perform U-turn on a narrow road.

The autonomous chase was documented and a highlight video is available
online [43].
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(a) : Image taken at t seconds

(b) : Image taken at t + 1.9 seconds

Figure 4.11: Drone photos of the live test. The RC car on the right is driven
autonomously, while the RC car on the left is manually controlled with a
transmitter. The person in the center of the image controls the chased car.
The person closest to the red Toyota holds an emergency device that can stop
the autonomous car and the third person controls the drone. Video of the
autonomous car chase is available online [43]
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Chapter 5
Conclusion

We have presented a novel dual-task convolutional neural network that con-
currently detects objects and predicts coarse semantic segmentation. The
network was trained using alternating optimization. We have developed a
system, capable of autonomously chasing another vehicle, that uses the dual-
task network. We have extensively evaluated different versions of the system
in CARLA simulator. We have created a new challenging publicly avail-
able chasing dataset collected by manually driving the chased car. We have
shown that the system benefits from using the coarse semantic segmentation.
Especially if the detector has low detection recall.

We have collected and annotated three new publicly available datasets [40].
In addition to the CARLA driving set, we have collected an object detection
dataset consisting of 460 images of a pursued RC car as well as a semantic
segmentation dataset consisting of 460 images segmented into drivable and
non-drivable parts.

Finally, we have implemented the system on a subscale vehicle platform
built on a high-speed RC car. We have demonstrated and documented [43]
the system’s ability to chase another car.

Currently, the system shows robust chasing capabilities despite using only
information from a single RGB camera. One of the system limitations is its
reactive nature. We believe that the system could improve by using a more
sophisticated trajectory planning algorithm that would include predictive
modeling of the chased car. In the future, we would also like to evaluate the
system more extensively with RC cars.
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