
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 12, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Sheepless - An Open-source 2D Adventure Game in Unity

 Student: Robert Badronov

 Supervisor: Ing. Marek Skotnica

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

Sheepless is an open-source art game about a Shepherdess from Prague. EbSynth is a state of the art image
synthesis technology developed at DCGI FEL CTU. This technology is intended to make a hand drawing
animation easier. A goal of this thesis is to explore how to take advantage of this technology to design a
prototype of a 2D game in Unity.

Steps to take:

• Review the EbSynth technology and Unity.

• Design game mechanics and game architecture.

• Create an open-source proof-of-concept implementation.

References

Will be provided by the supervisor.

Bachelor’s thesis

Sheepless - An Open-source 2D
Adventure Game in Unity

Robert Badronov

Department of Software Engineering
Supervisor: Ing. Marek Skotnica

June 4, 2020

Acknowledgements

I would like to thank my supervisor, Ing. Marek Skotnica, for his invaluable
help, patience, and also for the opportunity to combine the topic of creating
games that is interesting for me with the writing of this work. I would like
to thank my family and friends for their moral support. I would also like to
thank my colleagues with whom the work on the Sheepless project is being
carried out.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adher-
ing to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended.
In accordance with Article 46(6) of the Act, I hereby grant a nonexclusive
authorization (license) to utilize this thesis, including any and all computer
programs incorporated therein or attached thereto and all corresponding
documentation (hereinafter collectively referred to as the “Work”), to any
and all persons that wish to utilize the Work. Such persons are entitled to
use the Work for non-profit purposes only, in any way that does not detract
from its value. This authorization is not limited in terms of time, location
and quantity.

In Prague on June 4, 2020

Czech Technical University in Prague
Faculty of Information Technology
c© 2020 Robert Badronov. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and
its usage without author’s permission is prohibited (with exceptions defined
by the Copyright Act).

Citation of this thesis
Badronov, Robert. Sheepless - An Open-source 2D Adventure Game in
Unity. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2020.

Abstrakt

Hlavńım ćılem této práce je zkoumáńı možnost́ı využit́ı technologie Eb-
Synth při vytvářeńı art her pomoćı Unity Engine. EbSynth se použ́ıvá
pro zpracováńı vidéı zaznamenaných ve hře, pro vytvářeńı stylizovaných
cutscén. Daľśım ćılem je analýza a navrh herńıch mechanik. Byly analy-
zovány a navrženy mechaniky, jako je pohyb, mapa, hrańı cutscén, stejně
jako hlavńı mechanika kresleńı na 2D spritech. Byl vytvořen prototyp ob-
sahuj́ıćı všechny výše uvedené mechaniky. Implementace je kompatibilńı s
operačńım systémem Android.

Kĺıčová slova Unity engine, EbSynth, Cutscéna, Mechanika kresleńı,
Vývoj her, Android, Prototyp

vii

Abstract

The main aim of this work is to study the possibilities of using EbSynth tech-
nology while creating art games on the Unity Engine. The EbSynth is used
for processing videos recorded in the game, for creating stylized cutscenes.
Another aim is to analyze and design the game mechanics. Mechanics such
as moving, map, playing cutscenes, as well as the main mechanics of drawing
on 2D sprites were analyzed and designed. A proof-of-concept implemen-
tation containing all of the mentioned above was created. Implementation
is compatible with the Android operating system.

Keywords Unity engine, EbSynth, Cutscene, Drawing mechanic, Game
development, Android, Prototype

viii

Contents

Introduction 1
Motivation and objectives . 1
Aims of the work . 2
Work structure . 2

1 Unity Engine 3
1.1 Unity editor . 3
1.2 GameObject . 4
1.3 Camera . 5
1.4 Asset . 5
1.5 Raycasting . 6
1.6 Unity animations . 6
1.7 Unity Timeline . 6
1.8 Unity VideoPlayer . 7
1.9 Unity Asset Store . 7

2 EbSynth 9
2.1 EbSynth work principles . 9
2.2 Workspace . 10
2.3 Processing video . 11
2.4 EbSynth usage . 11

3 Analysis and design 13
3.1 Before starting . 13
3.2 Functional requirements . 14

3.2.1 Drawing system . 14
3.2.2 GUI . 15

ix

3.2.3 Control . 16
3.2.4 Map . 17
3.2.5 Cutscenes . 17

3.3 Non-Functional requirements 19
3.4 Usecases . 21

3.4.1 Drawing system . 21
3.4.2 GUI . 22
3.4.3 Movement system . 25
3.4.4 Map . 25
3.4.5 Cutscenes system . 26
3.4.6 Actors . 26

3.5 Requirements fulfillment . 29
3.6 Drawing mechanic . 30

3.6.1 Main principle . 30
3.6.2 Click position detection 30
3.6.3 Brush . 30
3.6.4 Color palette . 30

3.7 Game design document . 31
3.7.1 Basic gameplay . 31
3.7.2 Level structure . 32
3.7.3 GUI . 33
3.7.4 Game menu . 33
3.7.5 Features . 34

3.8 UML class diagrams . 35
3.9 Component diagram . 41
3.10 Scene objects . 42
3.11 Activity diagram . 42
3.12 Conclusion . 44

4 Proof-of-concept implementation 45
4.1 Used assets . 45
4.2 Drawing system . 46

4.2.1 Brushes . 46
4.2.2 Brushes import . 46
4.2.3 Drawing position detection 47
4.2.4 Drawing/Erasing/Color picking 49

4.3 Map/minimap . 49
4.4 Movement . 50
4.5 GUI . 50

4.5.1 Joysticks . 50
4.5.2 Drawing palette . 50

x

4.6 Cutscene . 52
4.7 Conclusion . 53

Conclusion 55

Bibliography 57

A Acronyms 61

B Attachments 63

C Contents of enclosed USB disk 69

xi

List of Figures

2.1 EbSynth Workspace . 10

3.1 Functional requirements . 18
3.2 Non-functional requirements . 20
3.3 GUI usecase diagram . 27
3.4 Cutscenes system usecase diagram. Movement system usecase

diagram. Drawing system usecase diagram. Map usecase diagram. 28
3.5 Functional requirements fulfillment diagram 29
3.6 Drawing system class diagram 36
3.7 GUI class diagram . 38
3.8 Controls system class diagram 39
3.9 Cutscenes class diagram, Video class diagram, Map class diagram 40
3.10 Component diagram . 41
3.11 Game activity diagram . 43

4.1 World coordinates system . 49
4.2 Synthesized video frame demonstration 52

B.1 Scene objects . 64
B.2 Game view . 65
B.3 Drawing tools window . 65
B.4 Map view . 66
B.5 Main menu . 66
B.6 Setting menu . 67

xiii

Introduction

Motivation and objectives
In an interview with Time magazine [1], when discussing the scope of work
while creating hand-drawn animations, Cuphead’s game lead artist Chad
Moldenhauer said: ”over 25 minutes of work goes into one frame”. Taking
a cutscene, 10 seconds long, 30 frames per second, there are already 300
such frames, and this is only one cutscene. Using EbSynth technology, time
and effort that the process of creating cutscenes requires can be reduced.
One of the goals of this work is to consider this tool and its usage when
creating a cutscene for a game built on the Unity game engine.

Talking about art games in a hand-drawn style, it would be good to
add into the game some relatively new game mechanics that suit that style.
Such mechanics is the real-time drawing on sprites. Attempts to find games
with similar genre and mechanics were unsuccessful. For this reason, the
goal to design and implement this mechanic was set. Another goal, related
to the previous is to design and implement various drawing tools such as a
color picker and an eraser. Another goal is to implement drawing brushes.

To demonstrate the results of what is written above, a proof-of-concept
implementation of the game level will be made. A short video recorded in
the game and processed using EbSynth will be added to the game. Also, to
have basic functionality, essential game components such as the movement
mechanism, game map, and control settings will be designed and imple-
mented.

The mobile game market accounts for almost a third of the total number
[2]. For this reason, the Android OS version of the implementation will be
available.

The results of this work can be used in a game that has drawn style

1

Introduction

graphics or a theme related to drawing. One of these games can be a game
called Sheepless.

Only part of the possibilities of using EbSynth and creating game me-
chanics for such a game was covered in this work. Other opportunities were
covered by my colleagues Jan Klicpera [3] and Ian Mustiats [4], in their
works.

Aims of the work
The main goal of this work is to study the possibilities of using EbSynth
technology in creating art games. The first task is to study the Unity game
engine and EbSynth technology. Further, it is necessary to find out in which
specific areas of art games this technology can be applied. Next, the proof-
of-concept implementation should be made to demonstrate the application
of the technology. In addition, it is necessary to design and implement the
mechanics of drawing on sprites. Basic mechanics, such as movement, map,
and playing cutscenes, should also be implemented. Finally, it is necessary
to design and implement a graphical interface.

Work structure
The first step to take is to consider the Unity game engine crucial compo-
nents that would be necessary for further work. It will be done in Chapter
1.

The second step is to study how to synthesize the video using EbSynth
technology. In Chapter 2 it will be explained what EbSynth consists of, how
the graphical interface looks like and how to use it for video processing.

After that, in Chapter 3, the proof-of-concept game level requirements
analysis, documentation, and design will be made.

The last step is to implement a proof-of-concept game level implemen-
tation. The process of creating will be described in Chapter 4.

2

Chapter 1
Unity Engine

Unity is a cross-platform game engine. It supports more than 20 platforms,
such as PC, Android, iOS, and WebGL. In addition to its popularity in game
development, the engine has been also used in areas which are not focused
on games, such as movies, architecture, construction, and engineering.

Unity offers developers its main scripting API in C#. [5] For both
game and Unity editor, it is possible to write own scripts and use them as
plugins. Among other things, Unity offers the opportunity to import sprites,
textures, and to use an advanced world renderer. Another powerful thing
in Unity are the animation tools that make it simple to create cutscenes in
both 2D and 3D game worlds. [6]

In the year 2018 almost half of all the new mobile games were developed
on Unity. [7]

In this Chapter, the Unity game engine essential components that would
be necessary for further work will be considered.

1.1 Unity editor
The Project window The files related to the project can be found in the
Project window. The other thing that can be found in the Project window
is the browser toolbar, which can be used for assets searching.

The Hierarchy window One of the important places is the scene ob-
jects list. In the Unity editor, this place is the Hierarchy window which
contains all GameObjects of the scene that is currently opened.

If a game creates or removes some GameObject in runtime, it will ap-
pear or disappear in the Hierarchy window.

3

1. Unity Engine

The Inspector window Each object is made up of other components.
The place where the GameObject components can be found is the Inspec-
tor window. In addition to the components themselves, properties of the
particular component can be found and changed here.

Similarly, the Inspector window contains necessary information about
GameObject, such as name, tag, layer, visibility flag, and static flag.

The Scene view The scene view is the window where most of the work
is done. Here, the game objects are located the way they should be in the
game. Objects parameters, such as position or rotation, can be managed
here.

The Game view A game view is a demonstration of how the game will
look like when completed. The output image from the game cameras can
be found here.

The Toolbar The toolbar is not a separate window. Various tools can
be found here. Some of them are designed to work with the scene objects
— others, to control the demonstration playback of the game. There are
also tools to manage the Unity account and services.

1.2 GameObject
GameObject is the fundamental element in the Unity engine. Every object
that can be seen inside any scene is a GameObject. Game objects are made
up of various components. Let us consider some of them in more detail:

• Transform. Every GameObject contains a Transform component
which is used to configure object position, rotation and scale. [8]

• Sprite Sprite is a 2D object that contains some texture inside it. By
default, sprites are used in 2D game world, but it is possible to use
them in 3D game world as well.
In order to see sprite texture in the game, the SpriteRenderer
should be attached to sprite GameObject. [8] Sprites in Unity contain
two important things that are worth a close look:
2D texture. A texture consists of a set of pixels. Each pixel repre-
sents a specific color recorded in ARGB format, where A is the alpha
channel (pixel transparency), R, G, and B are the color components -
red, green, and blue, respectively. With the Texture2D class help it

4

1.3. Camera

is possible to get texture width and height. Methods such as GetPixel
and SetPixel can be used for getting or setting the pixel color. [9]
Pivot - is the conditional center of the sprite. The coordinates of the
Transform component are the coordinates of the pivot.

• RigidBody. Since Unity has a powerful physics 39 engine, using it
can save the time. For an object to be affected by the physics engine
it is necessary to add the RigidBody component to this object. As
soon as this is done Unity will add this object into the physics engine
and start applying forces and collisions on it.

• Collider is an object component which is an invisible shape that
defines object borders for collision detection. When a collision occurs,
callback methods are called.
If it is necessary to avoid the collision, but we still need to know if
a collider enters another one’s space, it is possible to configure the
collider as a Trigger. [10]

1.3 Camera
Camera is what the player sees during the game. The camera in Unity is
a game object that contains the Camera component. Let us consider two,
important for the present work, camera settings:

• Projection - camera projection mode. It includes two modes: Per-
spective (similar to real world) and Orthographic. [11]

• Target texture - here we can set up a texture into which the image
from the camera will be drawn.

1.4 Asset
Asset is any item that can be used in the project. This may be the thing
that is got from outside of Unity, for example some image, audio etc. Assets
can also be some items that are got from Unity, for example animation clips,
animation controllers etc. One of the special cases of assets is Prefab.

Prefab is an asset which can be created from some object with some
components and properties, and reused as much times as wanted. If we
want to make a change in all objects of this prefab we can just edit this
prefab and set this changes for all objects of this prefab. [6]

5

1. Unity Engine

1.5 Raycasting
Raycasting is the action of shooting with an invisible ray (line) from some
point, to a determined direction to detect if there are any colliders laying in
the path of the ray. When shooting with a ray, in case of a hit on a collider,
the hit information will be recorded into the RaycastHit object. Among
other things, this object contains a collision position in world coordinates
(coordinates relative to the beginning of the game world). [10]

1.6 Unity animations
Unity provides very convenient tools for creating animations. So, in order to
create and manage animations in Unity, it is necessary to learn two things:

1. Animation clip - is the basic element in Unity animation system.
The animation clip itself is an animation. Animation can be made
using two variants:
- An animation that is composed of several pre-drawn sprites that are
played one after another over time, forming an animation.
- An animation that is made by changing some of the sprite parame-
ters over time (for example object position can be changed to simulate
moving). [8]

2. Animator controller - is an instrument that can be used for ani-
mation management. It contains a state machine inside which every
state is an animation clip and every transition from one state to an-
other is a condition that must be met in order to move to another
state. [8]

1.7 Unity Timeline
Unity timeline is a tool in Unity that allows to create cutscenes using
in-game objects. The timeline object contains the PlayableDirectior com-
ponent. This component contains methods for controlling the playing of
the timeline.

One of the important parts of Unity Timeline is Animation track - a
track for playing animations.

For creating a cutscene using Unity Timeline, the Animation Track
should be created first. Next, a GameObject with the animator controller
component should be put into the track. Then, animation clips can be

6

1.8. Unity VideoPlayer

placed on the track line. [6] The totality of the animation clips placed on
the track line defines the timeline.

1.8 Unity VideoPlayer
A video player is a game object containing the Video Player component.
The Video player component allows to play a video. Let us consider some
of the video player important settings:

Video clip - is a video clip that will be played.
Wait for first frame - if this checkbox is enabled, video will be played

after the first game frame.
Camera - camera to which the video will be played.
Render mode - camera render modes. It allows to choose how the

camera will render the video.
For playing videos using Unity VideoPlayer, it is enough just to put the

VideoPlayer inside the scene and put the video asset into the VideoPlayer’s
”Video clip” parameter window. [6]

1.9 Unity Asset Store
Unity Asset Store is a big store where a lot of assets of different types, both
paid and free, can be found.

7

Chapter 2
EbSynth

EbSynth [12] is a state of the art video synthesis software developed at
DCGI FEL CTU. This technology makes it possible to style a sequence of
video frames using just a few stylized frames. EbSynth can significantly
reduce the time needed for the creation of a graphical part of the game. At
the time of writing, the technology is in the alpha version.

Firstly, here EbSynth work principles will be explained. Secondly, the
graphical interface of the program will be considered. After that, the usage
of EbSynth for the video processing process will be described. At the end
of this Chapter there is the analysis of where and how EbSynth technology
can be used in the game made using the Unity Engine.

2.1 EbSynth work principles

EbSynth does not use neural networks. It is an example-based video styliz-
ing software. The analogy-based approach allows to stylize the input video
into a style preferred by an artist. To stylize the entire video, one or more
stylized frames must be provided. This stylized frame is called a keyframe.
These keyframes should cover as many objects as possible. It has to be
specified manually for which frames the specific keyframes should be used.
Using these keyframes and other information, EbSynth algorithms stylize
all other frames of the video. If EbSynth encounters an object in the frame
that is not present in the related keyframe, it will figure out itself how to
synthesize this object. This fact may contribute to an incorrect output. [13]

9

2. EbSynth

2.2 Workspace
As we can see in the image 2.2, several elements need to be studied:

• Keyframes - here, we need to fit a directory containing stylized
frames, from which all other frames will be drawn.

• Video - here, we need to put a directory that contains a sequence of
video frames.

• Mask - is the directory where the frame masks might be placed.

• Weight - is the weight of the keyframe or video frame. The higher
the weight of the keyframe/video is, the more the processed frame
will look like a keyframe/video.

• Keyframes mapping - here, we specify for which frames a particular
keyframe should be used.

• Output - this is the directory where the synthesis results will be
added.

Figure 2.1: EbSynth Workspace

10

2.3. Processing video

2.3 Processing video
In order to synthesize a video, it should be split into frames using some
third-party software, for example, Blender. [14] The video frames should
be placed into the video folder. After that, the stylized keyframes should
be placed into the keyframes folder. In order to style only a particular area
of the frame, frame masks can be added into the mask folder. As soon as
all these things are done, the path to all these elements should be specified
inside the program. Optionally, the weight settings might be specified.
The last step is to map keyframes to the related frames. After doing that,
clicking on the synth button will start the video sequence synthesis process.
After some time, the synthesized frames will appear in the out folder. In
order to compile the video frames sequence into the final video, a third-party
software, such as Blender [14] can be used. [13]

2.4 EbSynth usage
Since video-game activities are quite closely related to graphics, EbSynth
could significantly reduce the resources spent on creating the graphic part of
the game. One of these areas is animation. The video of the movement of a
living creature or object can be recorded, split into the frames, synthesized
and added to the game. This approach is used by my colleague Jan Klicpera
in his work. [3] Another area are the cutscenes. There are different options.
One of them is, similarly as it is described above, to record and synthesize
the out-game video. The second option is to create, record, and synthesize
an in-game video. Unity Timeline can be used for creating a timeline that
can be recorded afterward.

11

Chapter 3
Analysis and design

In this Chapter, the preparation for the proof-of-concept game level imple-
mentation will be made. In the first half of this Chapter, the game demo
level mechanics analysis and documentation will be created. The require-
ments will be recorded, the usecases will be created, and the requirements
coverage will be controlled. The results of these actions will be recorded in
diagrams. In the second half of this Chapter, based on the requirements
and usecases from the first part, the game demo level design will be carried
out. Firstly, a design for the drawing system will be suggested. Secondly,
a simple game design document will be compiled. Based on this document,
a class diagram, a component diagram, as well as an activity diagram de-
scribing the implementation logic will be made up and described. The demo
game level objects will be shown and described. Also, there will be a design
for the graphical interface of the game. The result of this Chapter will be
the documented analysis and design of the game demo level mechanics.

3.1 Before starting
Due to the lack of 2D sprites suitable for the game, as well as by reason
of the desire to study and implement a 3D game creation, it was decided
to make the proof-of-concept implementation in 3D. However, the drawing
mechanics will still be implemented for 2D sprites. The possibilities of usage
of this mechanic in the 3D game world will be described in section 3.6.1.

13

3. Analysis and design

3.2 Functional requirements
Let us make a list of functional requirements for mechanics.

3.2.1 Drawing system
F1.1 - Drawing on sprite:

It should be possible to draw on 2D sprites. Drawing should be carried
out by clicking the mouse or clicking on the touch screen of the phone. Also,
continuous drawing should be possible without releasing the mouse/finger.
The picture should be displayed only on the sprite on which it was drawn
(sprites should not be interconnected). Pictures may not be saved on sprites
when restarting the game.

F1.2 - The choice of color:
The player must be able to choose the color with which they will draw.

The color should be selected in a separate game window (drawing tools
window). The choice of color in the color palette should be carried out by
clicking in the palette area.

F1.3 - Color picking:
The color picker tool has to be implemented. The tool should deter-

mine the pixel color at some point and set this color to the actual color of
drawing. The pixel for determining the color is selected by clicking on the
sprite. If the pixel is transparent, the color does not change.

F1.4 - Erasing drawing:
It should be possible to erase the drawing. Erasing the picture is carried

out by clicking the mouse or clicking on the touch screen of the phone. Also,
continuous erasing should be possible without releasing the mouse/finger.
Erasing is carried out by using a brush of a certain shape.

F1.5 - The choice of brush:
It should be possible to select a brush that implements a specific shape

for drawing. It is necessary to implement at least three brushes (circle,
square, triangular).

F1.6 - Drawing at an angle:
Drawing should be possible and should be correct for any Y axis rota-

tion of the sprite.

14

3.2. Functional requirements

F1.7 - Import of existing brushes:
It is necessary to implement a mechanism for importing brushes from

files in the file system. It is necessary to come up with a file structure that
contains a brush. Brushes import is available only for game developers.

3.2.2 GUI
F2.1 - Current tool icon on screen:

The currently selected drawing tool should be displayed on the game
screen.

F2.2 - Drawing tools window:
It is necessary to implement a window that will contain all the drawing

tools. There should be a color palette, an available brushes list, an eraser
switcher, and a color picker switcher in this window. The drawing menu
should be opened by clicking on the button in the right upper corner of the
screen.

F2.3 - Settings window:
It is necessary to implement a window with the game settings. The

settings window should be accessible from the main menu.

F2.4 - Joysticks inversion setting:
It is necessary to implement the possibility to swap joysticks (available

only for Android OS version).

F2.5 - Control sensitivity changing:
It is necessary to implement the ability to change the player speed from

the settings window.

F2.6 - Rotation sensitivity changing:
It is necessary to implement the ability to change the player rotation

speed from the settings window.

F2.7 - Map button on screen:
It is necessary to implement the map button. This button should be

visible only in Android OS version.

F2.8 - Current color on screen:

15

3. Analysis and design

The actual selected color should be visible on the game level view screen.

F2.9 - Joysticks for Android version:
It is necessary to implement graphic elements - joysticks. The joysticks

should be available only for the Android OS version.

F2.10 - Controls list:
The game settings window should contain a list of controls settings. It

should not be allowed to change the game settings, with the exception of a
few parameters described in other requirements.

F2.11 - Show minimap on screen setting:
It should be possible to enable/disable the minimap in the settings menu.

F2.12 - Game menu:
It is necessary to implement a game menu. It is necessary that the game

menu is available while the game is running.

3.2.3 Control
F3.1 - Movement acceleration:

It is necessary to implement the player movement (available only in the
PC version).

F3.2 - Movement controlling:
It is necessary to implement a system for controlling the movement of

an object.

F3.3 - Game pause:
There should be an option to pause the game.

F3.4 - Rotation controlling:
It is necessary to add the rotation of the object.

16

3.2. Functional requirements

3.2.4 Map
F4.1 - Player position on map: The position of the player should be
visible on the game map. The position mark must move with the player
and always correspond to the position of the player at the game level.

F4.2 - Minimap:
It is necessary to implement the minimap with the player position.

F4.3 - Minimap rotation: The minimap should rotate with the player
and correspond with the player view direction.

F4.4 - Map:
It is necessary to implement a game level map.

3.2.5 Cutscenes
F5.1 - Cutscenes playing:

It is necessary to implement a system that plays a certain, pre-implemented
cutscene. During the cutscene, control must be turned off. The cutscene
should be played only once per game.

F5.2 - Playing video:
It is necessary to add the possibility to play a short video at the begin-

ning of the game, before the start of the level.

17

3. Analysis and design

Figure 3.1: Functional requirements

18

3.3. Non-Functional requirements

3.3 Non-Functional requirements
Let us make a list of non-functional requirements that should be carried
out by mechanics.
N1 - Easy and intuitive controls:

The game controls should be simple and intuitive for the player.
N2 - Simple installation:

Installing of this mechanics (system) into an existing game, according
to certain conditions, should not be complicated.

N3 - Android OS Support:
Game should support Android OS.

N4 - Adaptation to different screen resolutions:
It is necessary to implement the game the way it can scale to different

screen resolutions (first of all, we are talking about mobile devices).

N5 - Level loading speed:
The loading of the game level should not be long. The maximum level

loading time is 15 seconds.

N6 - Wide choose of colors for drawing:
It is necessary to provide the player with a wide selection of colors for

drawing. The minimum number of colors is 20.

19

3. Analysis and design

Figure 3.2: Non-functional requirements

20

3.4. Usecases

3.4 Usecases
List of the usecases that should be implemented.

3.4.1 Drawing system
UC1.1 - Sprite point color pick

This usecase allows player to pick the color of some point on the sprite
in order to paint with that color in future.

The player opens the drawing tools window. The player clicks on the
color picker tool checkbox. The player closes the drawing tools window.
The player clicks on some point on a sprite. The color of this point will be
picked.

UC1.2 - Drawing on inclined surface
This usecase shows a possibility to draw on sprites that are not perpen-

dicular to the ground.
The player should find some inclined sprite. The player draws some-

thing on sprite the same way as it written in UC1.4.

UC1.3 - Sprite part erasing
This usecase allows the player to erase a specific area of the sprite.

This usecase may be necessary, for example, if the player wants to erase
something they painted before.

The player opens the drawing tools window. The player clicks on the
eraser tool checkbox. The player closes the drawing tools window. Holding
the left mouse button or finger on the phone screen, the player erases the
areas they want.
UC1.4 - Drawing on sprite

This usecase allows the player to draw something on a sprite.
The player opens the drawing tools window, chooses color, chooses

brush. The player closes the drawing items window. The player draws
something on sprite.

UC1.5 - Brushes importing from file
This usecase allows the game developer to import a brush from a file

in the file system. It is also necessary to come up with the brushes file
structure.

The developer writes brushes directory path into the special place. The
game will import brushes from the files from the directory at the game
start.

21

3. Analysis and design

3.4.2 GUI
UC2.1 - Starting game

This usecase gives the player an opportunity to enter the main game
level.

The player clicks on the start game button in the main menu. The game
will start.

UC2.2 - Exiting game
This usecase allows the player to exit the game.
The player clicks on the quit game button in the main menu. The game

will stop working.

UC2.3 - Changing moving sensitivity
This usecase gives the player the ability to change the moving speed

settings as they want. This usecase is necessary as it adds some diversity
to the control system.

The player opens the setting menu window. The player moves ”Move-
ment sensitivity” slider as they want. Movement speed will change.

UC2.4 - Changing rotation sensitivity
This usecase gives the player the ability to change the rotation speed

settings as they want. This usecase is necessary as it adds some diversity
to the control system.

The player opens the setting menu window. The player moves ”Rota-
tion sensitivity” slider as they want. Rotation speed will change.

UC2.5 - Picking color from color palette
This usecase allows player to pick the color from color palette in order

to paint with that color in future.
The player opens the drawing tools window. The player clicks on the

color palette. The color that is located at the player click position will be
picked.

UC2.6 - Actual instrument discovering
This usecase allows the player to discover which drawing instrument is

enabled at the moment.
The player can see the actual enabled instrument in the top right corner

of the game window.

UC2.7 - Player rotation in Android OS version

22

3.4. Usecases

This usecase gives the player an opportunity to rotate around the Y axis
in Android OS game version.

The player rotates around the Y axis using one of the two joysticks on
the screen.

UC2.8 - Menu window opening/closing
This usecase shows the opportunity to open/close the main menu win-

dow.
The player clicks on the ”Settings” button in the main menu. The set-

tings window will be opened. The player presses the Escape or Back button.
The settings window will be closed.

UC2.9 - Turning on/off color picker instrument
This usecase gives the player an opportunity to turn on/off the color

picker tool.
The player opens the drawing tools window. The player clicks on the color
picker tool checkbox. The color picker tool is enabled. The player clicks on
the color picker tool checkbox again. The color picker tool is disabled now.

UC2.10 - Player moving in Android OS version
This usecase gives the player an opportunity to explore the game level

in Android OS game version.
The player moves around the game level using joystick on the screen.

UC2.11 - Map opening/closing
This usecase shows the opportunity to open/close the map.
The player presses the ”M” keyboard button or clicks on the ”Map”

button (in Android OS version). The map window will be opened. The
player presses the Escape or Back button. The map window will be closed.

UC2.12 - Settings window opening/closing
This usecase shows the opportunity to open/close the settings menu.
The player clicks on the ”Settings” button in the main menu. The set-

tings window will be opened. The player presses the Escape or Back button.
The settings window will be closed.

UC2.13 - Actual color discovering
This usecase allows the player to discover which color is selected.
The player can see the actual color in the top right corner of the game

window.

23

3. Analysis and design

UC2.14 - Turning on/off eraser instrument
This usecase gives the player an opportunity to turn on/off the eraser

tool.
The player opens the drawing tools window. The player clicks on the

eraser tool checkbox. The eraser tool is enabled. The player clicks on the
eraser tool checkbox again. The eraser tool is disabled now.

UC2.15 - Controls settings discovering
This usecase gives the player an opportunity to discover the game con-

trols settings.
The player opens the setting menu window. The player discovers the

game controls settings.

UC2.16 - Minimap enabling/disabling
This usecase shows the opportunity to enable/disable the minimap.
The player opens the setting menu window. The player clicks on the

”Minimap enabled” checkbox. The minimap is enabled and visible in the
game view window. The player clicks on the ”Minimap enabled” checkbox
again. The minimap is disabled now.

UC2.17 - Drawing tools window opening/closing
This usecase allows the player to open/close the drawing tools window.

This window contains all drawing tools.
The player clicks on the button in the top right corner of the game view

window. The drawing tools window is opened. The player clicks on the
button again. The window is closed now.

UC2.18 - Joysticks inverting
This usecase shows the possibility to swap joysticks in Android OS ver-

sion. This usecase is necessary as it adds some diversity to the control
system.

The player opens the settings menu window. The player clicks on the
”Invert joysticks” checkbox. The joysticks are swapped now.

UC2.19 - Movement acceleration in Android OS version
This usecase shows the opportunity to accelerate moving speed of the

player in Androis OS game.
The player leads the joystick to the joystick border.

24

3.4. Usecases

3.4.3 Movement system
UC3.1 - Player rotation

This usecase gives the player an opportunity to rotate around the Y
axis.

The player rotates around the Y axis using QE keyboard buttons.

UC3.2 - Moving acceleration
This usecase shows the opportunity to accelerate moving speed of the

player.
The player holds the ”Left shift” keyboard button.

UC3.3 - Moving when map is enabled
This usecase shows the opportunity to move the player when the map

window is enabled.
The player opens map. The player moves the same way as described in
UC3.4.

UC3.4 - Player moving
This usecase gives the player an opportunity to explore the world using

movement system.
The player moves around the game level using WASD keyboard buttons.

3.4.4 Map
UC4.1 - Discovering player rotation using minimap

This usecase allows the player to discover their direction using the min-
imap.

The player can see their direction on the minimap that is located in the
top left corner.

UC4.2 - Discovering player position on map
This usecase allows the player to discover their position at the game

level using the map.
The player opens the map as described in UC2.11. The player discovers

their position. The player closes the map.

UC4.3 - Discovering player position on minimap
This usecase allows the player to discover their position at the game

level using the minimap.

25

3. Analysis and design

The player can see their position on the minimap that is located in the
top left corner.

3.4.5 Cutscenes system
UC5.1 - Playing video at the game start

This usecase allows the developer to play some video at the game start.
The developer puts some video into the special place. The video will be

played at the game start.

UC5.2 - Playing cutscene when reaching some trigger position
This usecase will play some cutscene when the player reaches some trig-

ger on the map.

3.4.6 Actors
Actors participating in usecases: Player, Developer. Using 3.3 and 3.4
usecase diagrams, let us consider which actors are participating in usecases.
As we can see, most of the usecases are made for the player.

26

3.4. Usecases

Figure 3.3: GUI usecase diagram

27

3. Analysis and design

Figure 3.4: Cutscenes system usecase diagram. Movement system usecase
diagram. Drawing system usecase diagram. Map usecase diagram.

28

3.5. Requirements fulfillment

3.5 Requirements fulfillment
As we can see in the table 3.5, all requirements were covered by usecases.

Figure 3.5: Functional requirements fulfillment diagram

29

3. Analysis and design

3.6 Drawing mechanic
This section will cover the main components and details of the drawing
system. The drawing principles will be described. Next, the problem of
finding the position of the pixel that the player clicked on will be considered.
Options for solving this problem will be proposed. Also, a graphic element
called ”Color palette”, and the problem of finding a player’s click position
on it will be formulated. Finally, the principle of the brush will be described.

3.6.1 Main principle
According to the information described in section 1.2, the texture is a two-
dimensional array of pixels. Based on this information, the drawing effect
can be achieved by changing the color of the pixel that the player clicked
on. At this stage, the issue of finding the position of the pixel that the
player clicked on arises.

Since there are no 2D sprites for drawing in this game, it was decided to
make an invisible (transparent) sprite on which it will be possible to draw.
This sprite will be placed on some buildings walls. Thus, the drawing on
the walls of 3D buildings effect will be achieved.

3.6.2 Click position detection
This problem can be divided into two stages. The first is to get the click
position in world coordinates. This stage can be performed using the Ray-
cast described in section 1.5. The second stage is to convert the position
into two-dimensional texture pixel array coordinates.

3.6.3 Brush
One way to implement a paintbrush is to create a pixel map. [15] A pixel
map can be implemented using a two-dimensional array of colors. However,
to simplify the task, a version using an array of bits - a bitmap - will be
used. [16]

3.6.4 Color palette
A color palette is a tool using which a color for drawing can be selected.
This tool consists of areas containing various colors. One of the ways to
implement the color palette is to place an image with colors on the UI
canvas component. When choosing this method, a click position detection

30

3.7. Game design document

problem, similar to what was mentioned above (in Chapter 3.6.2), comes up.
However, because the color picker element is a GUI element, the solution
will differ.

The solution is complicated because several elements and parameters
should be taken into account. The first thing to consider is that the image
of the color palette is on the canvas, which has its own scale value. The
image itself also has a certain scale. The position of the palette object is
set using the scale of the canvas. However, the values of the width and
height that we can get do not take into account the scale, so it is necessary
to make certain transformations and calculations.

3.7 Game design document
This section will describe the basic mechanics, structure, graphical interface,
as well as additional features of the demo level. The result will be the design
and documentation in the form of GDD.

Before proceeding to writing the GDD, it is worth noting that since
the demo level is not a full-fledged game, the structure and content of this
document will be simplified.

3.7.1 Basic gameplay
The gameplay of the demo level will consist of the player moving and rotat-
ing around the level using the keyboard or joysticks and studying various
objects at the level. When entering the level there will be shown a small
video showing the level. One of the main actions inside the level will be the
drawing on the walls of buildings.

• Movement. The movement will be carried out using the WASD
buttons or the joysticks (in the case of the version for Android). The
game movement will be carried out in four directions: forward (W or
joystick up), backward (S or joystick down), left (A or joystick left),
and right (or D or joystick right).
The game will have the opportunity to speed up the movement. For
doing this, the left shift key should be pressed. In the case of the
version for Android OS, the joystick should be moved to the edge in
the direction of movement.

• Rotation. Rotation is carried out using the QE buttons or, in the
case of the version for Android, using the joysticks. Rotation will be

31

3. Analysis and design

possible only in two directions: left (Q or joystick left) and right (E
or joystick right).

• Drawing. Drawing is carried out by holding the left mouse button
(or finger on the phone screen, in the case of the Android OS) and
drawing shapes on the sprite. Also, it will be possible to change the
paintbrush. A drop-down list of available brushes will be located in
the drawing tools window. Also, there will be an opportunity to erase
the drawings. For doing this, the eraser tool must be turned on.
Also, it is possible to take the color of a sprite point. For doing this,
the color picker tool should be turned on. Turning on and off the
eraser and color picker tools is possible in the drawing tools window.
Another element of the drawing tool window is a color palette that
allows to select a color. A color selection is carried out by clicking on
a specific color on the color palette.

Brushes will draw certain shapes (for example, a square or a smiley).
Brushes will not be able to resize.

• Cutscene. Before entering the level, a short video that partially
shows the objects at the level will be played. This video will be
made in a drawn style, using the EbSynth technology. After entering
the level, going forward and reaching a certain trigger point, another
cutscene which also shows parts of the level will be played.

3.7.2 Level structure

. The level will be a small town located in a sandy area surrounded by
mountains. There will be two types of objects inside the level:

1. Environment objects - these are objects that form the picture of
the city (houses, cars, traffic lights, etc.). The player cannot interact
with these objects.

2. Interaction objects - these are objects with which the player can
interact, for example, sprites on which they will draw. Also, there will
be invisible objects that will also interact with the player, for example,
an invisible timeline object that will start playing the cutscene when
the player will enter the trigger.

32

3.7. Game design document

3.7.3 GUI
• Drawing tools button - this button will open/close the drawing

toolbar. The button will be located in the top right corner of the
screen.

• Map button (available only for Android OS game version) - this
button will open/close the map. The button will be at the bottom of
the screen.

• Joysticks(available only for Android OS game version) - these are
joysticks for controlling the character’s movement and rotation. Joy-
sticks will be placed at the bottom, on the left and right sides of the
screen

• Drawing tools window - a panel containing drawing tools such as:

– Color palette - the color palette needed for color selection. The
palette will be placed on the left side of the toolbar.

– Available brushes list - available brushes list. There will be the
brush that is selected now at the first place of the list. The list
will be to the right of the color palette.

– Color picker checkbox - This checkbox turns on/off the color
picker tool. The item will be on the right side of the drawing
tools window.

– Eraser checkbox - This checkbox turns on/off the eraser tool.
The item will be on the right side of the drawing tools window.

• Actual instrument selected - the image with the currently selected
tool will be on the drawing tools button.

• Actual color selected - This is a small square containing the color
that is currently selected. This element will be located in the lower
right part of the drawing tools button.

Images with GUI design can be found in attachments.

3.7.4 Game menu
. The game menu consists of two windows, and the first is the main menu
window.

The game main menu is a window that contains three buttons:

33

3. Analysis and design

• Start game button - this button will start the new game level.

• Settings button - this button will open the settings window.

• Quit game button - this button will stop the game.

All buttons will be in the middle of the screen
The second window - is the settings window. This window contains

the following items:

• Movement sensitivity slider - this is a slider for changing the character
speed (the righter the slider, the greater the speed).

• Rotation sensitivity slider - this is a slider for changing the character
rotation speed (the right, the greater the speed).

• Invert joysticks checkbox (available only for Android OS game ver-
sion) - this is a checkbox, the choice of which swaps the joysticks on
the screen.

• Minimap enabled checkbox - selection of this checkbox turns on/off
the minimap displaying.

• Controls values - actual controls setting are shown here. (the settings
differ depends on platform).

Images of the game menu and the settings window design can be found in
attachments.

3.7.5 Features
• Map and minimap. On the game map (as well as on the min-

imap) the game level objects will be displayed. Also, there will be
the player’s position in the middle of the map. The minimap will be
located in the upper left corner and will rotate with the player. The
minimap can be turned on and off using the appropriate checkbox in
the game settings window. The map can be turned on and off using
the map button. In the case of a PC, this is the M button. In the
case of the Android OS, this button is at the bottom of the screen.

34

3.8. UML class diagrams

3.8 UML class diagrams
Before proceeding to the implementation, it is necessary to describe the
structure of the classes used to implement the mechanics, as well as describe
how they interact with each other.

Let us consider the structure of classes using the UML class diagram.
At the diagram 3.6 we can see a class diagram for drawing system. It

contains six classes:

1. DrawingController - This is the main class, the controller, for the
drawing system. This class implements the drawing on sprite. In
addition to drawing, this class is responsible for detecting a click on
a sprite, calculating the position of a click on the image (conversion
from 2D/3D coordinates of the click to 2D coordinates of the image).
Also, this class is responsible for the initial initialization of the sprite,
on which drawing will be possible. This class actively interacts with
the DrawingPalette class to obtain relevant brushes, tools and colors.

2. IdGenerator class is used for generating unique ID that will be used
in copied textures names in DrawingController class.

3. Brush - is a class that contains fields for storing paint brushes.

4. DrawingPalette - is the class containing the implementation of the
toolbar for drawing. The class contains getters and setters for var-
ious drawing tools, as well as brush switches. This class is used by
DrawingController class.

5. BrushImporter - class containing the implementation of the import
of brushes into the drawing toolbar(DrawingPalette).

6. DefaultBrushes is a class that contains that methods for three de-
fault brushes creating.

35

3. Analysis and design

Figure 3.6: Drawing system class diagram

36

3.8. UML class diagrams

Further, the 3.7 diagram contains the classes necessary to control the
GUI part. Let us take a closer look at these classes:

1. UIController - This is the central class (controller) for managing
GUI elements. This class has many direct links to GUI objects. The
class contains many functions for enabling, disabling, and initializing
various GUI elements. Almost all other components interact with this
class.

2. Class BrushesListController is the controller for the list of brushes
in the toolbar for painting. This class initializes a list of brushes, and
also responds to the selection of a brush from the list.

3. DrawingToolsButton - This is a class that implements the logic of
the drawing tools button. In this class we can turn on/off the drawing
tools button window. Also we can change the button image.

4. ColorPalette - the class contains the implementation of the logic of
taking colors from the color palette.

37

3. Analysis and design

Figure 3.7: GUI class diagram

38

3.8. UML class diagrams

The 3.8 diagram contains the classes responsible for the control system.

1. Movement the class is the central character controlls class. This
class contains the movement and rotation logic of the character for
both the PC version and the mobile version. This class interacts
directly with joysticks (in the game version for Android OS).

2. Class Settings responsible for the current settings of the game con-
trols.

3. ControlsController - This is a class that responds to keystrokes.

Figure 3.8: Controls system class diagram

39

3. Analysis and design

In the 3.9 diagram, class diagrams for components such as Video, Cutscenes,
and Map, can be seen.

1. TimelineController - This is a cutscene controller. This class reacts
to the player entering a specific cutscene area.

2. VideoPlayerController - A controller for playing video at the be-
ginning of the game level.

3. MapMoving - A class that moves and rotates (in the case of a min-
imap) a map and the player on it.

Figure 3.9: Cutscenes class diagram, Video class diagram, Map class dia-
gram

40

3.9. Component diagram

3.9 Component diagram
Let us consider how the components interact with each other using the 3.10
diagram.

Almost all components interact with the GUI component, because the
game constantly requires interaction with GUI elements. The Video and
Cutscenes components access the GUI to disable/enable UI elements while
playing the video or the cutscene. The Controls system component accesses
the GUI for various checks. The drawing system component accesses the
GUI to change the currently selected color on the screen. The GUI compo-
nent itself interacts with components such as the Drawing system (reaction
to actions in the drawing toolbar) and the Controls system (control set-
tings changing). The Map component interacts with the Controls system
component (since the movement of the camera depends on the movement
of the player).

Figure 3.10: Component diagram

41

3. Analysis and design

3.10 Scene objects
Let us take a look at some objects inside the scene. Figure B.1 shows a list
of scene objects.

• Environment - this is the object that contains all world objects that
are visible for the player (houses, traffic lights, cars, etc.).

• Drawables - this is an object that contains all the sprites that we
can use for drawing.

• MapCamera - this is the camera that is used for the map implemen-
tation.

• Canvas - the canvas on which all other GUI elements of the game
are located.

• MinimapCamera - this is the camera that is used for the minimap
implementation.

• VideoPlayer - an object that contains a video player, as well as the
controller for controlling video playback.

• Timeline - an object containing components for playing the cutscene.

3.11 Activity diagram
The game starts from the main menu, where it is possible to click on one of
the three graphic buttons or the Escape (Back) button. If a player clicks on
the game’s start button, the video will be played, after which the game will
start and the player will get to the game level. If the player presses the exit
button, the game will be stopped. If the the player clicks on the settings
button, a window with the settings will be opened. If the player presses
the Escape (Back) button, the further depends on whether the player has
started the game before (in other words, whether the game is paused). If
so, the player goes to where they were before. Also, it is possible to go to
the menu from any other screen by pressing the Escape (Back) button. The
transition from the window of the game level is carried out in two ways:
1) pressing a certain key, 2) achieving a trigger to start a cutscene. If the
transition was carried out by pressing a button, then it is possible to go
back to the game level window by pressing the same button. In the case of
a cutscene, the transition is automatic after the end of the cutscene.

42

3.11. Activity diagram

Figure 3.11: Game activity diagram

43

3. Analysis and design

3.12 Conclusion
In this Chapter, the analysis of the game mechanics for the demo level
was made. A list of requirements was compiled. The requirements were
covered by the usecases. Next, the game demo level mechanics design was
made. The game design document was created. Using this document,
various diagrams, such as the class diagram, the components diagram, and
the activity diagram were created and described. A GUI design was also
built. All documentation created in this Chapter will be available in the
folder containing this work. The results of this Chapter will be used for the
further implementation of the demo level.

44

Chapter 4
Proof-of-concept implementation

This Chapter provides an implementation of the mechanics analyzed and de-
signed in the previous Chapter. An implementation of the drawing system
will be described. Within the framework of this system, the explanation
of an implementation of brushes, as well as their import into the game,
will be presented. An implementation of the basic mechanics of movement
will be described. Also, there will be an implementation of the map. An
implementation of taking colors from a color palette will be represented.
An implementation of two cutscenes will be showed. The final part of this
Chapter will be a conclusion summarizing the results of the implementation
part.

4.1 Used assets
Before moving on to the implementation, it is necessary to list the assets
that were used. All assets are taken from the Unity Asset store.

• Low Poly Cars[17]

• Cartoon Buildings[18]

• Epyphany textures and materials[19]

• Free stylized garden asset[20]

• HousePack[21]

• Free Hut Pack[22]

• Joystick Pack[23]

45

4. Proof-of-concept implementation

• Low poly playable vehicles[24]

• My 3D Town[25]

• Polygon desert pack[26]

• Simple City pack[27]

• Stylized vehicles pack[28]

• Tarbo - City ’Traffic Lights’ Pack[29]

• The barn[30]

• Wires pack[31]

4.2 Drawing system
This section will discuss the implementation of the drawing system.

4.2.1 Brushes
Since the game brushes are simple and do not support resizing, it was
decided to implement them using a bitmap. Each of the bit tells whether
a given pixel is visible or not. The bitmap will be implemented using the
two-dimensional array with the Boolean values. The set of the visible pixels
forms the brush texture.

4.2.2 Brushes import
Brushes will be imported from files located in the file system (more specifi-
cally, in the game’s resources folder, which is located in the folder with the
game’s assets).

Files with brushes will store information in the form of a string of bits
and characters, for subsequent reading of this line and the conversion of the
received values into a brush. The string will have the following format:
1) The first 16 bits of the string form a short number showing the size of
the brush
2) The next 16 bits also form a short number and show the length of the
brush name.
3) The next n characters, where n is the length of the brush name, form
the name of the brush.
4) All further bits (the number of which should be equal to the size of the

46

4.2. Drawing system

brush squared) are bits for constructing the brush texture.
The construction of the brush texture from the bit string is carried out in
the following way: the bit string is divided into the number of parts equal
to the size of the brush (the length of each part is also equal to the size of
the brush). Each of these parts is a line in a two-dimensional array of brush
pixels. Therefore, we add values from the string to a two-dimensional array
of pixels.

4.2.3 Drawing position detection
In order to be able to determine the position of a click on a texture, the
following steps were taken:
1) The collider wass placed (since this mechanics will work in the 3D world,
the collider must be 3D) on the sprite and resized so that it matched the
size of the sprite.
2) An empty game object was placed in the lower left corner of the sprite
(the coordinates of this object had to correspond with the coordinates of
the lower left corner of the sprite in the game world). This object would be
a kind of pivot (hereinafter we will call this object pivot).
3) Next, it was necessary to implement the OnMouseDrag method that was
called while holding the left mouse button (or finger on the screen) in the
collider area. Part of this method is shown in listing 4.1.
4) For the reason that the fact of holding the click on the collider did not
carry any information about the position of the click, it was necessary to
get the coordinates of the mouse on the game screen and create a ray that
would shoot from the camera through a point having the received mouse
coordinates.
5) Next, it was necessary to shoot this ray at the collider and get the object
of contact of the ray with the collider (this object contains information
about the point of contact).
6) The next step was to convert the coordinates of the point of contact into
the 2D coordinate of the texture. Knowing the coordinates of the pivot, it
was possible to calculate the coordinate of the click on the texture. The
coordinates were calculated using the image 4.1. The red dot (hereinafter -
R) is the pivot, blue (hereinafter - B) is the click point on the sprite. The
distance between the two-dimensional points R (x, z) and B (x, z), which
is indicated by the pink line, is the X coordinate of the click. To determine
the Y coordinate, it is enough to subtract the Y value of the pivot from the
Y value of the click point. This value is indicated by the orange line.
7) Since the sprite object itself can have a scale different from the standard,
it was necessary to bring the obtained coordinates to a normal scale, thereby

47

4. Proof-of-concept implementation

obtaining the coordinates of the click on the texture.
8) The last step was to transfer the coordinates from the coordinates of the
game world to pixel coordinates.

Vector3 c l i c kPos = −Vector3 . one ;
// rayca s t i ng mouse c l i c k p o s i t i o n
Ray ray = mainCamera . ScreenPointToRay (Input . mousePosit ion) ;
RaycastHit hitData ;
// i f we ’ ve shot some c o l l i d e r
i f (Phys ics . Raycast (ray , out hitData , Mathf . I n f i n i t y))
{

// i f i t ’ s not c o l l i d e r with l a y e r Drawing (id = 8) or
i t ’ s not t r i g g e r

i f (hitData . c o l l i d e r . gameObject . l a y e r != 8 | | ! hitData .
c o l l i d e r . i s T r i g g e r)

{
re turn ;

}
// c a l c u l a t i n g coords o f the p i x e l on which the p laye r

had c l i c k e d
// c a l c u l a t i n g d i s t anc e from l e f t bottom point to the

po int where the p laye r c l i c k e d (we ’ re us ing x and z
axes)

c l i c kPos . x = GetDistance (new Vector2 (hitData . po int . x ,
hitData . po int . z) , new Vector2 (p ivot . trans form .
p o s i t i o n . x , p ivot . trans form . p o s i t i o n . z)) ;

// c a l c u l a t i n g d i s t anc e between l e f t bottom point y
ax i s and c l i c k p o s i t i o n po int y ax i s

c l i c kPos . y = Mathf . Abs (hitData . po int . y − pivot .
trans form . p o s i t i o n . y) ;

// apply ing s c a l e and t r a n s l a t i n g i t i n to p i x e l s
i n t x = (i n t) ((c l i c kPos . x / sca leX) ∗ ppu) ;
i n t y = (i n t) ((c l i c kPos . y / sca leY) ∗ ppu) ;
i f (drawingPalette . co lo rPickerEnab led)
{

// i f c l i c k e d p i x e l alpha i s not zero
i f (r endere r . s p r i t e . t ex ture . GetPixel (x , y) . a >

0 . 001)
u I C o n t r o l l e r . SetColor (r endere r . s p r i t e . t ex ture .

GetPixel (x , y)) ;
} else
{

DrawOnTexture (x , y , r endere r . s p r i t e . t ex ture) ;
}

}

Listing 4.1: Click position detection code listing

48

4.3. Map/minimap

Figure 4.1: World coordinates system

4.2.4 Drawing/Erasing/Color picking

Paint/erase operations are implemented by setting the color/transparency
of pixels that implement the brush texture at the player’s click point.

The color picking operation is implemented by taking the color of the
pixel that the player clicked on.

4.3 Map/minimap

To implement the map and minimap, we need two additional cameras (for
the map and minimap) that will present a view of the game level from
above. We have to set up the projection of cameras to orthographic. The
image from the minimap camera will not be displayed on the screen, but
to the texture. This texture will be displayed in the Image component of
the minimap game object. Turning on (off) the map is a simple activation
(deactivation) of the object with the camera.

49

4. Proof-of-concept implementation

4.4 Movement
To implement the movement, four empty objects were placed in front of,
behind, to the left and to the right of the player. All objects are at the
same distance from the player. To move the player, the player’s position
is changed to the position of the object located on the side to which the
movement takes place. The player’s speed is regulated by multiplying the
x and z coordinates of the object to whose position the player is moving by
a certain speed value.

The speeding up is implemented by multiplying the speed by some con-
stant.

4.5 GUI

4.5.1 Joysticks
The implementation of joysticks was taken from the Unity Asset Store. [23]

4.5.2 Drawing palette
Based on information written in this section 3.6.4, the implementation pro-
cess was divided into several steps:

1. The first thing to make was to calculate and preserve the scaling of
the original image, relative to the size of the object (not considering
the scale of the canvas).

2. Secondly, the real dimensions of the palette (the sizes of what we see
on the screen) were calculated.

3. The next step was to find the coordinates of the lower left point of
the palette.

4. The coordinates of the mouse click on the screen were obtained.

5. The coordinates of the lower left point of the palette were subtracted
from the coordinates of the mouse click, thereby obtaining the coordi-
nates of the click relative to the palette (in other words, we obtained
the distances from the click point to the lower left point along the x
and y axes).

50

4.5. GUI

6. The obtained coordinates were scaled back to the size of the original
image, thus obtaining the coordinates of the pixel that the player
clicked on.

The steps described above are shown in listing 4.2

// c a l c u l a t i n g image s c a l e
imageScaleX = image . s p r i t e . t ex tur e . width / image .

rectTransform . r e c t . width ;
imageScaleY = image . s p r i t e . t ex tur e . he ight / image .

rectTransform . r e c t . he ight ;
// c a l c u l a t i n g ac tua l v i s i b l e image s i z e
paletteWidth = image . rectTransform . r e c t . width ∗ canvas .

s c a l eFac to r ;
pa l e t t eHe igh t = image . rectTransform . r e c t . he ight ∗ canvas .

s c a l eFac to r ;
// c a l c u l a t i n g ac tua l image p o s i t i o n
paletteXPos = (image . trans form . p o s i t i o n . x − (paletteWidth /

2)) ;
paletteYPos = (image . trans form . p o s i t i o n . y − (pa l e t t eHe igh t

/ 2)) ;
Vector2 c l i c kPos = Input . mousePosit ion ;
// cheching i f the c l i c k p o s i t i o n i s i n s i d e the p a l e t t e
i f (c l i c kPos . x > paletteXPos + paletteWidth | | c l i c kPos . x <

paletteXPos | | c l i c kPos . y > paletteYPos + pa l e t t eHe igh t
| | c l i c kPos . y < paletteYPos)

{
re turn ;

}
// g e t t i n g c l i c k p o s i t i o n po int r e l a t i v e to image
c l i c kPos . x −= paletteXPos ;
c l i c kPos . y −= paletteYPos ;
// apply ing canvas s c a l e on c a l c u l a t e d p o s i t i o n s
c l i c kPos . x /= canvas . s c a l eFac to r ;
c l i c kPos . y /= canvas . s c a l eFac to r ;
// apply ing image s c a l e on c a l c u l a t e d p o s i t i o n s
c l i c kPos . x ∗= imageScaleX ;
c l i c kPos . y ∗= imageScaleY ;
i n t x = (i n t) c l i c kPos . x ;
i n t y = (i n t) c l i c kPos . y ;
// g e t t i n g c l i c k e d po int p i x e l c o l o r
Color c o l o r = image . s p r i t e . t ex tu re . GetPixel (x , y) ;
u I C o n t r o l l e r . SetColor (c o l o r) ;

Listing 4.2: Color palette code listing

51

4. Proof-of-concept implementation

4.6 Cutscene
The first cutscene is a pre-recorded video of the game world. This video was
processed using EbSynth following the steps described in the section 2.3 of
the EbSynth Chapter. An example frame from this video is shown in the
image 4.2. The video itself can be viewed by running the game level. The
implementation of the second cutscene consists of the trigger area, upon
entering which the Play() method of the PlayableDirector component is
called. After calling this method the cutscene starts playing.

Figure 4.2: Synthesized video frame demonstration

52

4.7. Conclusion

4.7 Conclusion
In this Chapter, the proof-of-concept implementation has been described.
All sources will be available on the GitHub. The results of this Chapter
can be seen in the demo game level.

The results of this work can be applied in the art game called Sheepless
or in any other game in a drawn style or having a theme of drawing.

The game implementation is fully compatible with the Android OS.
In future, the continuous drawing performance could be improved (for

example, using multithreading). Another useful addition that will make the
game developer’s job easier would be a brush editor.

53

Conclusion

In this work, the possibilities of using EbSynth technology in creating a
game on the Unity game engine were proposed. One of these features which
is creating stylized cutscenes, was chosen and, subsequently, implemented.

The analysis and design of the primary game mechanics, such as move-
ment, map, and playing cutscenes, were carried out. Also, the real-time
drawing on the sprites mechanics was analyzed and designed. Problems
that arose during the implementation of this mechanics were identified and
solved. In addition to the painting mechanics itself, various painting tools
such as the color picker, the eraser, and the color palette were also imple-
mented.

A proof-of-concept game level was created with the implementation of
all of the mentioned above. To demonstrate the EbSynth usage, a cutscene
of the processed video was placed into the game level.

The implementation of this game is fully compatible with the Android
OS.

This work could be useful for game developers having drawn stylistics
or having a drawing theme. Sheepless could be one of these games.

All source codes made during this work will be available on GitHub. All
documentation made while analyzing and designing the game mechanics
will be available in this thesis folder.

One of the things that could improve the performance of the drawing
system is the use of multithreading. A separate work might be devoted
to the study of multithreading when implementing such a drawing system.
Another improvement that might be implemented in future and will make
it easier to make brushes can be the brush editor.

55

Bibliography

[1] Matt Peckham. Time. See How Cuphead’s Incredible Cartoon Graph-
ics Are Made [online] TIME USA, 2017 [visited on 2020-30-05]. [Cited
2020-29-05]. Available from: https://time.com/4123150/cuphead-
preview/

[2] Omer Kaplan. Techcrunch - Mobile gaming is a $68.5 billion global
business, and investors are buying in [online]. [Cited 2020-29-05]. Avail-
able from: https://techcrunch.com/2019/08/22/mobile-gaming-
mints-money/

[3] Klicpera, Jan. Sheepless – An Open-source 2D Adventure Game in
Unity. Bachelor’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2020. Supervisor: Marek Skotnica.

[4] Mustiats, Ian. Sheepless – An Open-source 2D Adventure Game in
Unity. Bachelor’s thesis. Czech Technical University in Prague, Fac-
ulty of Information Technology, 2020. Supervisor: Marek Skotnica.

[5] Kevin Murphy. Game sparks. Unity Game Engine Review [online]
Game Sparks Technologies Ltd 2019 [visited on 2020-30-05]. [Cited
2020-30-05]. Available from: https://www.gamesparks.com/blog/
unity-game-engine-review/

[6] Unity Technologies. Unity engine manual [online]. [Cited 2020-10-04].
Available from: https://docs.unity3d.com/Manual/

[7] Romain Dillet. Techcrunch. Unity CEO says half of all games
are built on unity. 2018 [online], Verizon Media, 2013-2020
[visited on 2020-30-05]. [Cited 2020-29-05]. Available from:

57

https://time.com/4123150/cuphead-preview/
https://time.com/4123150/cuphead-preview/
https://techcrunch.com/2019/08/22/mobile-gaming-mints-money/
https://techcrunch.com/2019/08/22/mobile-gaming-mints-money/
https://www.gamesparks.com/blog/unity-game-engine-review/
https://www.gamesparks.com/blog/unity-game-engine-review/
https://docs.unity3d.com/Manual/

Bibliography

https://techcrunch.com/2018/09/05/unity-ceo-says-half-
of-all-games-are-built-on-unity/

[8] Ashley Godbold, S. J. Mastering Unity 2D Game Development. Sec-
ond edition. Livery Place, 35 Livery Street, Birmingham B3 2PB, UK:
Packt Publishing Ltd, 2016, ISBN 978-1-78646-345-6.

[9] Unity Technologies. Unity engine manual. Texture2D [online].
[Cited 2020-30-05]. Available from: https://docs.unity3d.com/
ScriptReference/Texture2D.html

[10] Unity Technologies. Unity engine documentation [online].
[Cited 2020-10-04]. Available from: https://docs.unity3d.com/
ScriptReference/

[11] Calabrese, D. Unity 2D game development. Livery Place, 35 Livery
Street, Birmingham B3 2PB, UK: Packt Publishing Ltd, 2014, ISBN
978-1-84969-256-4.

[12] SCRTWPNS. EbSynth. Alpha version [software] [visited on 2020-30-
05]. [Cited 2020-30-05]. Available from: https://ebsynth.com/

[13] Jamrǐska, O.; Sochorová, v.; et al. Stylizing Video by Example. ACM
Trans. Graph., volume 38, no. 4, July 2019, ISSN 0730-0301, doi:
10.1145/3306346.3323006. Available from: https://doi.org/10.1145/
3306346.3323006

[14] The Blender Foundation (2002). Blender [software] [visited on 2020-
30-05]. [Cited 2020-30-05]. Available from: https://www.blender.org/

[15] GIMP. Brushes. [online] [visited on 2020-30-05]. [Cited 2020-30-05].
Available from: https://docs.gimp.org/2.10/en/gimp-concepts-
brushes.html

[16] Common graphics. Pixmaps in Common Graphics. [online] [visited on
2020-30-05]. [Cited 2020-30-05]. Available from: https://franz.com/
support/documentation/current/doc/cg/cg-pixmaps.htm

[17] Broken Vector. Low Poly Cars [online]. [Cited 2020-27-05]. Avail-
able from: https://assetstore.unity.com/packages/3d/vehicles/
land/low-poly-cars-101798

[18] IDALGAME. Cartoon Buildings [online]. [Cited 2020-27-05].
Available from: https://assetstore.unity.com/packages/3d/
environments/urban/cartoon-buildings-161395

58

https://techcrunch.com/2018/09/05/unity-ceo-says-half-of-all-games-are-built-on-unity/
https://techcrunch.com/2018/09/05/unity-ceo-says-half-of-all-games-are-built-on-unity/
https://docs.unity3d.com/ScriptReference/Texture2D.html
https://docs.unity3d.com/ScriptReference/Texture2D.html
https://docs.unity3d.com/ScriptReference/
https://docs.unity3d.com/ScriptReference/
https://ebsynth.com/
https://doi.org/10.1145/3306346.3323006
https://doi.org/10.1145/3306346.3323006
https://www.blender.org/
https://docs.gimp.org/2.10/en/gimp-concepts-brushes.html
https://docs.gimp.org/2.10/en/gimp-concepts-brushes.html
https://franz.com/support/documentation/current/doc/cg/cg-pixmaps.htm
https://franz.com/support/documentation/current/doc/cg/cg-pixmaps.htm
https://assetstore.unity.com/packages/3d/vehicles/land/low-poly-cars-101798
https://assetstore.unity.com/packages/3d/vehicles/land/low-poly-cars-101798
https://assetstore.unity.com/packages/3d/environments/urban/cartoon-buildings-161395
https://assetstore.unity.com/packages/3d/environments/urban/cartoon-buildings-161395

Bibliography

[19] Epyphany games. 24 PBR Materials for Unity 5 [online]. [Cited 2020-
27-05]. Available from: https://assetstore.unity.com/packages/
2d/textures-materials/24-pbr-materials-for-unity-5-51991

[20] Easy3D. Free Stylized Garden Asset [online]. [Cited 2020-27-05]. Avail-
able from: https://assetstore.unity.com/packages/3d/props/
exterior/free-stylized-garden-asset-145896

[21] Mehdi Rabiee. House Pack [online]. [Cited 2020-27-05]. Available from:
https://assetstore.unity.com/packages/3d/environments/
house-pack-35346

[22] Storm Bringer Studios. Free Hut Pack [online]. [Cited 2020-27-
05]. Available from: https://assetstore.unity.com/packages/3d/
props/free-hut-pack-130776

[23] Fenerax Studios. Joystick Pack [online]. [Cited 2020-27-05]. Avail-
able from: https://assetstore.unity.com/packages/tools/input-
management/joystick-pack-107631

[24] gameDev Mode. Low Poly Playable Vehicles [online]. [Cited 2020-27-
05]. Available from: https://assetstore.unity.com/packages/3d/
vehicles/land/low-poly-playable-vehicles-154577

[25] Innovana Games. My 3D Town [online]. [Cited 2020-27-05].
Available from: https://assetstore.unity.com/packages/3d/
environments/urban/my-3d-town-150535

[26] Runemark Studio. POLYDesert [online]. [Cited 2020-27-05].
Available from: https://assetstore.unity.com/packages/3d/
environments/landscapes/polydesert-107196

[27] 255 pixel studios. Simple City pack plain [online]. [Cited 2020-27-
05]. Available from: https://assetstore.unity.com/packages/3d/
environments/urban/simple-city-pack-plain-100348

[28] ELRED. Stylized Vehicles Pack - FREE [online]. [Cited 2020-27-
05]. Available from: https://assetstore.unity.com/packages/3d/
vehicles/land/stylized-vehicles-pack-free-150318

[29] Tarbo Studio. Tarbo - City ’Traffic Lights’ Pack [FREE] [online].
[Cited 2020-27-05]. Available from: https://assetstore.unity.com/
packages/3d/environments/urban/tarbo-city-traffic-lights-
pack-free-154053

59

https://assetstore.unity.com/packages/2d/textures-materials/24-pbr-materials-for-unity-5-51991
https://assetstore.unity.com/packages/2d/textures-materials/24-pbr-materials-for-unity-5-51991
https://assetstore.unity.com/packages/3d/props/exterior/free-stylized-garden-asset-145896
https://assetstore.unity.com/packages/3d/props/exterior/free-stylized-garden-asset-145896
https://assetstore.unity.com/packages/3d/environments/house-pack-35346
https://assetstore.unity.com/packages/3d/environments/house-pack-35346
https://assetstore.unity.com/packages/3d/props/free-hut-pack-130776
https://assetstore.unity.com/packages/3d/props/free-hut-pack-130776
https://assetstore.unity.com/packages/tools/input-management/joystick-pack-107631
https://assetstore.unity.com/packages/tools/input-management/joystick-pack-107631
https://assetstore.unity.com/packages/3d/vehicles/land/low-poly-playable-vehicles-154577
https://assetstore.unity.com/packages/3d/vehicles/land/low-poly-playable-vehicles-154577
https://assetstore.unity.com/packages/3d/environments/urban/my-3d-town-150535
https://assetstore.unity.com/packages/3d/environments/urban/my-3d-town-150535
https://assetstore.unity.com/packages/3d/environments/landscapes/polydesert-107196
https://assetstore.unity.com/packages/3d/environments/landscapes/polydesert-107196
https://assetstore.unity.com/packages/3d/environments/urban/simple-city-pack-plain-100348
https://assetstore.unity.com/packages/3d/environments/urban/simple-city-pack-plain-100348
https://assetstore.unity.com/packages/3d/vehicles/land/stylized-vehicles-pack-free-150318
https://assetstore.unity.com/packages/3d/vehicles/land/stylized-vehicles-pack-free-150318
https://assetstore.unity.com/packages/3d/environments/urban/tarbo-city-traffic-lights-pack-free-154053
https://assetstore.unity.com/packages/3d/environments/urban/tarbo-city-traffic-lights-pack-free-154053
https://assetstore.unity.com/packages/3d/environments/urban/tarbo-city-traffic-lights-pack-free-154053

Bibliography

[30] AP3X Models. The Barns Free [online]. [Cited 2020-27-05].
Available from: https://assetstore.unity.com/packages/3d/
environments/the-barns-free-155403

[31] Mixaill. Wire Fence [online]. [Cited 2020-27-05]. Available from:
https://assetstore.unity.com/packages/3d/characters/wire-
fence-67846

60

https://assetstore.unity.com/packages/3d/environments/the-barns-free-155403
https://assetstore.unity.com/packages/3d/environments/the-barns-free-155403
https://assetstore.unity.com/packages/3d/characters/wire-fence-67846
https://assetstore.unity.com/packages/3d/characters/wire-fence-67846

Appendix A
Acronyms

GDD Game design document

GUI Graphical user interface

OS Operating system

UE Unity Engine

61

Appendix B
Attachments

63

B. Attachments

Figure B.1: Scene objects

64

Figure B.2: Game view

Figure B.3: Drawing tools window

65

B. Attachments

Figure B.4: Map view

Figure B.5: Main menu

66

Figure B.6: Setting menu

67

Appendix C
Contents of enclosed USB disk

readme.txt....................the file with USB contents description
build.......................the directory with the unity game builds

android.........the directory with the android game version build
PC...................the directory with the PC game version build

src the directory of source codes
thesis............the directory of LATEX source codes of the thesis
unity the directory with unity game sources

documentation....the directory with the Enterprise Architect project
text..the thesis text directory

thesis.pdf........................ the thesis text in PDF format

69

	Introduction
	Motivation and objectives
	Aims of the work
	Work structure

	Unity Engine
	Unity editor
	GameObject
	Camera
	Asset
	Raycasting
	Unity animations
	Unity Timeline
	Unity VideoPlayer
	Unity Asset Store

	EbSynth
	EbSynth work principles
	Workspace
	Processing video
	EbSynth usage

	Analysis and design
	Before starting
	Functional requirements
	Drawing system
	GUI
	Control
	Map
	Cutscenes

	Non-Functional requirements
	Usecases
	Drawing system
	GUI
	Movement system
	Map
	Cutscenes system
	Actors

	Requirements fulfillment
	Drawing mechanic
	Main principle
	Click position detection
	Brush
	Color palette

	Game design document
	Basic gameplay
	Level structure
	GUI
	Game menu
	Features

	UML class diagrams
	Component diagram
	Scene objects
	Activity diagram
	Conclusion

	Proof-of-concept implementation
	Used assets
	Drawing system
	Brushes
	Brushes import
	Drawing position detection
	Drawing/Erasing/Color picking

	Map/minimap
	Movement
	GUI
	Joysticks
	Drawing palette

	Cutscene
	Conclusion

	Conclusion
	Bibliography
	Acronyms
	Attachments
	Contents of enclosed USB disk

