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Instructions

The aim of the bachelor thesis is to create a web API that returns a set of possible solutions from the
available public external systems (Stack Overflow, MSDN, etc.) based on the inserted arbitrary error
message.

1. Analyze current methods for key phrases extraction from text.
2. Research available external systems that provide information about solving errors.
3. Design and create a web API that combines the analyzed approaches from section 1 and returns possible
solutions from chosen external systems from section 2.
4. Create a simple web application based on the API interface with following features:
  4.1 Enter a specified error message,
  4.2 Display the results clearly,
  4.3 Provide the API documentation.
5. Test implemented web application and API with test error datasets and evaluate used key phrases
extraction methods.
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Abstrakt

Řešeńı chyb, které vznikly v některé z aplikaćı použ́ıvaných v dnešńıch
společnostech, zab́ırá mnoho času. Dı́ky r̊uzným internetovým zdroj̊um mo-
hou vývojáři a správci těchto systémů jednoduše sd́ılet řešeńı k těmto chybám.
Tato bakalářská práce se zaměřuje na vyhledáńı řešeńı takové chyby, pokud
řešeńı existuje. Aby to bylo v̊ubec možné, jsou v této práci nejprve analy-
zovány systémy umožňuj́ıćı vyhledáńı informaćı a jejich vlastnosti. Poté jsou
analyzovány existuj́ıćı metody pro extrakci kĺıčových část́ı textu, konkrétně
z chybových hlášek. Nakonec jsou analyzovány systémy poskytuj́ıćı řešeńı
r̊uzných chyb. V implementačńı části práce je poté popsána implementace
systému, který je navržen na základě předchoźı analýzy. Vytvořený systém
by měl předevš́ım šetřit čas strávený řešeńım chyby t́ım, že minimalizuje čas
potřebný k vyhledáńı řešeńı na internetu.

Kĺıčová slova Extrakce kĺıčových fráźı, chyba, řešeńı, zpracováńı přirozeného
jazyka, strojové učeńı, webová aplikace

Abstract

Solving errors that occurred in some system used in today’s companies takes
a lot of time. Thanks to different internet sources developers and system
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administrators can easily share solutions to these errors. This bachelor thesis
aims to find a solution to such error if the solution exists. To make this possible
this bachelor thesis firstly analyses information retrieval systems and their
properties. Secondly it analyses existing methods for key phrase extraction
from text, specifically from error messages. Finally, it analyses systems that
provide solutions to different errors. In the implementation part of the thesis
the implementation of system which is designed based on previous analysis is
described. Created system should primarily save time spent solving an error
by minimizing the time needed to find a solution on the Internet.

Keywords Key phrases extraction, error, solution, natural language pro-
cessing, machine learning, web application
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Introduction

Errors are an everyday part of processes running in many companies or
institutions. An error can be caused by an error in data, error in the business
logic of the process or by users mistake. When an error occurs, the respective
error message is often automatically sent to an administrator of the informa-
tion system or to the first line support team. The person responsible for the
system should fix the error or delegate it to someone else. The person trying
to solve an error either knows immediately where the problem is or tries to
find the solution on the Internet.

The goal of this bachelor thesis is to create an application that extracts key
phrase from the error message and tries to find the solution in online systems
that provide solutions to errors. This applications task is to automate the
process of searching for solution and enable the automat that sends notification
about an error to include its solution. It should save time spent by searching
for a solution and by analysis of the error message possibly better understand
what the error is about and who should be chosen as the responsible person
to solve it.

The result of this thesis is designed for companies that have more processes
administrated by several different people. This application should simplify the
work of IT employees in the first line, whose task it is to decide how severe
the error is, which system it concerns and who should be assigned to solve it.

Aims of the thesis

The aim of the analysis part is to analyze current methods for key phrases
extraction from text. One of the aims is to analyze information retrieval
systems and the methods those systems use to search relevant documents.
Another aim is to become acquainted with basic principles of using the key
phrases extraction methods to extract important parts of text. Next aim is to
analyze public external systems that provide information about solving errors
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Introduction

and the possibility of using them in proposed application. Last aim is to
analyze user requirements for the resulting web application.

The aim of the implementation part is to design and implement web API,
that will use the key phrases extraction methods analyzed in the research part.
The API will use these methods to find a solution to given error using selected
public external systems. Another aim is to create a web application that will
use this API to provide user interface to search for solutions to error messages.
Final aim is to test implemented API and web application and evaluate used
key phrases extraction methods on test error dataset.
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Chapter 1
Analysis

The first chapter describes some of the basic concepts related to infor-
mation retrieval systems. It also describes properties of these systems and
methods these systems use for searching documents based on a user specified
query. Furthermore, it presents methods used for natural language process-
ing, key phrases extraction and selected information retrieval systems used by
programmers when looking for a solution to an error they are trying to solve.
Next section discusses some fundamental concepts of machine learning. In the
end requirements for the proposed application are specified.

1.1 Information retrieval systems

One of the most basic information retrieval systems is a catalogue in a
library, which helps people to find books by their author’s name, ISBN etc.
Today one of the most used information retrieval systems and systems that
programmers and IT specialists usually use are web search engines. Web
search engines are used worldwide to search information and almost everyone
knows how to use them. In this section the way these engines work will be
described in more detail.

1.1.1 Information retrieval

“Information retrieval (IR) is finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from
within large collections (usually stored on computers).” [1]

The goal of this bachelor thesis is to create an application that finds solu-
tion to a given error on the internet. Therefore, it is an information retrieval
system. However, unlike traditional information retrieval systems this appli-
cation has no direct access to the collection of documents. Consequently, it
must use a middleman in form of another information retrieval system - web
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1. Analysis

search engine. Some of the search engines used for this task are discussed in
section 1.5.

1.1.2 Basic concepts in information retrieval

Document

Document is any form of data, upon which the information retrieval system
is built. In the context of this bachelor thesis document will be a website.

Information need

The topic about which a person is searching for information. If someone
needs to solve an error, their information need is the solution to this error.

Query

Query is the text that the user of an IR system uses to specify his infor-
mation need. Specifying the correct query can sometimes be a difficult task
even for humans. To get the best results possible in an automat, we need to
extract the most important parts of an error message. This task is described
in section 1.3.

Relevance

Document returned by an IR system is relevant, if it contains the infor-
mation the user considers valuable according to his initial information need.

Precision

Precision is the number of retrieved relevant documents divided by the
total number of retrieved documents.

Precision = #ReturnedRelevantDocuments
#ReturnedDocuments

Recall

Number of returned relevant documents divided by the number of all rel-
evant documents.

Recall = #ReturnedRelevantDocuments
#AllRelevantDocuments
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1.1. Information retrieval systems

Effectiveness

The effectiveness of an IR system is connected to the ratio of precision
and recall. The bigger the recall a system has the lower the precision and vice
versa. [1]

As mentioned before, the proposed system will not have access to all the
documents, so it would be difficult to measure recall in this specific case.

On the other hand, precision can be measured relatively easily. The user
can always evaluate retrieved documents and specify which ones are relevant
to him and satisfy his information need. This bachelor thesis aims to save
time of the administrators responsible for correct functionality of a system.
Therefore, precision is very important metric because users are only interested
in relevant documents since inspecting irrelevant documents would only waste
their time. For this reason, it is crucial to maximize the precision.

1.1.3 Errors in information retrieval

Precision and recall are linked to classification of errors in the collection
of retrieved documents. A document retrieved by in IR system will be in one
of four categories.

• True positive – document is relevant and was retrieved

• True negative – document is not relevant a was not retrieved

• False positive (Type I error) – document is not relevant and was
retrieved

• False negative (Type II error) – document is relevant and was not
retrieved

The goal of information retrieval systems is to maximize the ratio of true
positives and true negatives and minimize the count of false positives and false
negatives. This goal is characterized by the precision/recall curve, which
shows the ratio between precision and recall for given IR system. An example
of precision/recall curve is in Figure 1.2. Usually a compromise works for the
precision and recall. For example, system which would return all documents
for any query would have recall close to 1, however its precision would be close
to 0 and vice versa.
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1. Analysis

True negatives

False negativesFalse positives True positives

Selected documents Relevant documents

Figure 1.1: Classification of retrieved documents

Figure 1.2: Precision vs. recall [2]

1.1.4 Existing solution

Chinese authors Fan Yang, Zhenghong Dong, Lihao Liu presented an inter-
esting article named Error Searching System with Keyword Extraction
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1.1. Information retrieval systems

Figure 1.3: System function diagram [3]

and Keyword Fuzzy Matching [3]. They proposed and implemented a sys-
tem focused on searching for solution to an error using key phrase extraction.

“Unified commanding platform mix-deployed software (UCPMD)
integrates 22 sub-system from 4 different institutes, including 92 different
software. Because of the differences of underlayer protocol and the differ-
ences of standard, there are many errors occurred during the stages of setup,
configuration, and operation, which seriously affect the usage. Moreover, be-
cause those errors are various, which may be happened in different operation
phases, stages, TCP/IP communication protocol layers, sub-sys-tem software,
it is necessary to design a database system which can manage those errors.”[3]

One drawback of this system is the need to fill a solution to all errors,
which had occurred, in one local database. If an error occurs for the first time
it is necessary to create the solution manually. This bachelor thesis aims to
remove this drawback by replacing one local database with module that is
able to find the solution on the internet using a web search engine without
the need to create the solution first.

1.1.5 Web search engines

”Web search engines are an important class of portals whose primary pur-
pose is to support searches on a wide variety of topics across a comprehensive
range of Web sites. Web search engines are a special form of information re-
trieval (IR) systems designed specifically for the hypermedia environment of
the Web.” [4]
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1. Analysis

Web search engines with the leading market share as of January 2020 are
Google (87.35%), Bing (5.53%) and Yahoo! (2.83%)[5]. These search engines
usually use crawlers. Crawler is a program, that goes through the web using
links on visited websites similarly to a user and returns the content and URL
address of visited websites. Subsequent part of web search engine is indexer,
which creates index from visited websites. Index is a database that contains
URL address of a website and its content. This index is used later by the web
search engine to search relevant websites according to users query.

Other search engines may only search websites inside one specific domain
and their index contains only websites from that domain. When a user hits
the search button, his query is at first split to terms and those terms are
being searched in the index. Documents that contain specified terms are
then returned to the user. For ranking the results search engines typically
use similarity score, which based on various (usually proprietary) algorithms
assigns score to each document. Documents are then ordered by this score.

Figure 1.4: Basic Web Search Engine Architecture and Process [4]

1.2 Natural language processing

In this section some of the methods used for natural language processing
and methods used by IR systems, for example web search engines, for pro-
cessing user queries and searching for documents based on those queries are
described.

• Token – sequence of characters in a document that carries some seman-
tic information

• Type – class of all the tokens that consist of the same sequence of
characters
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1.2. Natural language processing

• Term – token that is included in the vocabulary of IR system

1.2.1 Tokenization

Tokenization is a process, during which given document is split into indi-
vidual tokens. Concurrently it is possible to remove some special characters,
for example punctuation.

In ideal case the tokenization of the query and searched documents should
be done by the same tokenizer in order to get the same tokens for same
sequences of characters. In general tokenization is language specific. [1]

system.invalidcastexception: specified cast is not valid.

system castinvalidcastexception validnotisspecified

Figure 1.5: Tokenization of an example error message

1.2.2 Dropping common terms

Terms with little value for selecting matching documents, for instance
because they are very common and appear in most of the documents, are
usually removed from the dictionary of an IR system. These terms are called
stop words. Stop words can be identified by comparing the frequency of
occurrence of each term in the collection of documents.[1] Stop words are
usually not indexed by the IR system and there is no reason in including
them in the query.

1.2.3 Tagging

“Tags are descriptive terms users attach to online content, either their own
or other user’s. Tagging is the practice of attaching tags. Tagging has been
rapidly adopted on the Web, particularly by sites based on user-contributed
content, such as blogs and photo sharing sites.” [6]

Tags can be used in many different ways but usually they are used to
categorize, look up or filter content created by users on the Web. It is much
easier for an IR system to work with tags compared to feature extraction from
images, video or even text content.
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1.2.4 Stemming and Lemmatization

Documents generally use different forms of the same word (cat, cats, cat’s).
It can be useful to search for all the words because they are very similar. ”The
goal of both stemming and lemmatization is to reduce inflectional forms and
sometimes derivationally related forms of a word to a common base form.“

Stemming is a heuristic process that removes prefixes or suffixes. Lemma-
tization on the other hand uses vocabulary and morphological analysis.

”The most common algorithm for stemming English, and one that has re-
peatedly been shown to be empirically very effective, is Porter’s algorithm.“[1]

1.2.5 Case-folding

Case-folding is often used when processing text. It means converting all
characters to the same case, usually lower case. After the conversion it is
possible to easily compare words, which only differed in case of one or more
characters.

1.3 Key phrases extraction

In general error messages can be very long. There are two main problems
with long queries. First problem is that some web search engines limit the
maximum length of the query and therefore too long queries would have to be
trimmed. Second problem is related to the way search engines work. They try
to find a document in their index, that contains all the tokens in the query. If
the query is too long such document in most cases does not exist.

Error messages often contain many different dynamic parts. Those dy-
namic parts are different according to the environment, time, user etc. For
effective search of the solution it is needed to preprocess the error message
before using it as a query. We need to select small number of tokens, which
describe the content of the document. Those tokens are called key phrases.
Key phrase is made of multiple key words.

1.3.1 Key phrase

Key phrase is a small set of tokens, that describes the content of the
document well. Selection of the key phrase is usually done by a user based on
his knowledge of the document. For automated search we need to automate
the selection of key phrase as well.

1.3.2 Manual key phrase extraction

The task of extracting the key phrase from an error message is done daily
by almost every programmer. It is done using his knowledge of the system and
personal experience. However, there are also some patterns that are common
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1.3. Key phrases extraction

across a range of different systems. Defining and using these patterns to
perform this task automatically will be useful.

1.3.3 Pattern detection

If it is possible to identify repeating patterns in the document collection,
these patterns can be used to extract the key phrase.

1.3.4 Tf-idf

In vector model of information retrieval where the terms in a document
are viewed as vectors the metric tf-idf was implemented for calculation of the
weight of a term in a document. This metric if often used for evaluation if the
term is a key word.

• Term frequency
tfij = count of occurrences of term tj in document Di

• Inverse document frequency

idfj = log( d
dfj

)

where d is the number of documents

Calculation of the weight is as following:

dij = tfij ∗ idfj

Thus, the weight of the term increases if it occurs multiple times in a single
document and decreases if it occurs in multiple documents.

1.3.5 Machine learning approaches

Given a large collection of documents that have assigned their key words it
may be possible to train a machine learning model, which will predict models
for new documents. However, machine learning based key phrases extraction
methods are usually used on different types of data. Some of the most
common usages include articles, abstracts or even books.

This approach was well described by Anette Hulth in her dissertation
Combining machine learning and natural language processing for
automatic keyword extraction.

Hulth pre-processes the data by extracting candidate terms. This is done
by extracting uni-, bi and trigrams, excluding stop words like a, an and the
and extracting empirically defined patterns. Thereafter, natural language
processing methods like case-folding and stemming which are described in
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1. Analysis

section 1.2 are used. To create the model Hulth calculates features for each
term. The features include term frequency, inverse document frequency and
the position of first occurrence. These extracted features are then used to
train a learning algorithm. This algorithm outputs a regression value. [12]

1.3.6 Removal of non-keywords

Another way to look at the problem of key phrase extraction is to re-
move the words that are not key. These words may include stop words (see
subsection 1.2.2).

1.4 Evaluation of information retrieval system

One of the aims of this thesis is to evaluate used methods for key phrases
extraction. This aim will be addressed in this section.

1.4.1 Quality of a retrieval system

Previously in this chapter various methods used by IR systems for search-
ing relevant documents were described. We need to evaluate these methods
and determine, whether it is possible to use them for the purposes of this
bachelor thesis. In this section we will summarize ways of evaluating effec-
tivity of given method. The key is to satisfy users information need as closely
as possible.

1.4.2 Test collection

To measure the effectiveness of an IR system we need test collection made
of three objects:

• collection of documents,

• test suite of information needs that can be translated to queries,

• set of relevance judgements. [1]

Using these objects can be used to calculate the Precision and Recall.

1.4.3 Relevance feedback

Relevance feedback is a way of getting users feedback on the result of their
search. After the results are retrieved, user has the option to evaluate results
and tell if it was relevant for his information need. This feedback can be used
later to improve the quality of IR system.
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1.5. Webs providing solutions

1.4.4 Extrapolation assumption

For well-chosen set of test data it is possible to assume that if a system
works well for this small set of data it will also work well for an order of
magnitude larger set of data. Extrapolation assumption is sometimes used
when user interaction is needed or when training of machine learning models
takes too long.

1.5 Webs providing solutions

One of the goals of the research part of this thesis is to analyze systems,
that provide solutions for errors to programmers. These systems will be used
as the source information retrieval system. When deciding which system to
use the following factors should be considered.

• The quality of content,

• the existence and the quality of systems API and its documentation,

• costs - usage should be free.

1.5.1 StackExchange

StackExchange is a network of many websites, on which users can ask,
answer and rate questions on various topics. Both questions and answers can
be upvoted or downvoted by the community to rate their quality. The original
poster can mark the best answer as accepted answer. These options work
well for maintaining sustainable state of millions of questions and answers.
The most popular site on StackExchange network is StackOverflow1. It
was created to help programmers solve their problems while developing and
managing software. Large community is able to answer the vast majority of
questions asked. One of the types of questions relate to runtime errors, which
often contain an error message. Another useful site on this network may be
ServerFault2, which is focused on problems of server administrators.

StackExchange has the largest community of programmers and developers
in the world.

• 3.5M – Questions Asked,

• 4.7M – pageviews,

• 12M – comments. [7]
1https://stackoverflow.com/
2https://serverfault.com/
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1. Analysis

StackExchange provides well documented API3, which allows an appli-
cation to make all user actions. This API can be used as a source IR system
in the context of this thesis. The API is free to use but limited to 10000 calls
per day.

1.5.2 Microsoft developer network forums

Microsoft developer network forums MSDN4 is a forum focused on prod-
ucts from Microsoft. This forum works similarly to StackExchange, however it
does not provide an API for convenient access to its resources. Its advantage
is that it is supported by Microsoft. On the other hand the topics are limited
to Microsoft products.

1.5.3 Google Custom Search JSON API

Google search is the most popular tool for searching information on the
internet. Google provides Google Custom Search JSON API5 to support ap-
plication access to the search engine. Since Google search indexes the whole
web, this API could be used as a single interface for accessing data from
various sources.

1.6 Error messages

To understand the error messages from the perspective of key phrase ex-
traction, we need to describe how an error message usually looks like and how
we can use that knowledge to get the key phrase.

In section 1.3 we analyzed the methods for key phrases extraction. Sta-
tistical methods based on Tf-idf are however used mostly for key phrases
extraction from longer documents like articles or books as they work with
the frequency of occurrence of terms in documents. Machine learning based
methods using labeled training dataset require documents that have their key
words assigned for them to be trained.

Error messages however are often short texts in which the key words are
exactly once so the frequency of occurrence is not a good metric. Moreover,
it is not possible to assign key words to sufficient number of documents for
the purposes of machine learning. Methods mentioned above are therefore not
well suited for key phrase extraction in this specific case.

On the other hand, error messages often contain similar information and
have similar structure. This fact can be used to analyze them based on their
structure. The structure depends on many variables and every programmer

3https://api.stackexchange.com/docs
4https://social.msdn.microsoft.com/Forums/en-US/home
5https://developers.google.com/custom-search/v1/overview
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1.6. Error messages

can create his own unique error message in different languages and with dif-
ferent key information.

For simplicity I will assume only error messages written in English lan-
guage, that come from frameworks or applications, that are used by many
users. I will assume, that only these messages have a potential solution on the
internet.

Examples of error messages from different programming languages:

Java exception with stack trace

Exception in thread ”main”
java . lang . Nul lPo interExcept ion
at com . p r o j e c t . Book . g e t T i t l e (Book . java : 1 6 )
at com . p r o j e c t . Author . getBookTit l e s ( Author . java : 2 5 )
at com . p r o j e c t . Bootstrap . main ( Bootstrap . java : 1 4 )

SQL server job

Executed as user : NT SERVICE\SQLSERVERAGENT. Unclosed
quotat ion mark a f t e r the character s t r i n g ’
t o u s e j a 4 @ f i t . cvut . cz ’ . [SQLSTATE 42000 ] ( Error 105)
I n c o r r e c t syntax near ’ t o u s e j a 4 @ f i t . cvut . cz ’ . [
SQLSTATE 42000 ] ( Error 102) . The step f a i l e d .

MySql

ERROR 1045 (28000) : Access denied f o r user
’ b i l l ’@ ’ l o c a l h o s t ’ ( using password : YES)

1.6.1 Dynamic parts of error message

As mentioned in section 1.3 error messages contain dynamic parts, that
are specific for given run of the failed process. To get the key phrases of the
error message we need to be able to identify and remove these dynamic parts.
Some of the dynamic parts are:

• ID of the run, user, process

• date, eventually date and time of execution

• file path
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• class path

• username, email

• IP address

1.7 Machine learning

Lately machine learning became very popular in various fields of com-
puter science. In this section the term itself and some of the most important
properties of systems that use machine learning will be described.

”Machine learning usually refers to the changes in systems that perform
tasks associated with artificial intelligence (AI). Such tasks involve recognition,
diagnosis, planning, robot control, prediction, etc.“ [8]

There are many scenarios and tasks for which machine learning can be
useful. Some of the reasons to use a machine learning model introduced by
Nilsson (1998) are listed below.

• Machine learning methods can extract some relationships between data,
that are not obvious.

• It is difficult to define a task, but it is easy to provide examples with
paired input and expected output.

• There is too many information for human to process it.

• New information is being added to the system and it would be necessary
to constantly implement new rules. [8]

1.7.1 Training

The implementation of a machine learning model consists of combining
training data with training algorithm and creating the model. The general
schema of training and using a machine learning model is shown in Figure 1.6.
There are two main types of the training process. These types can even be
combined

Supervised learning - Each example in the training dataset is labeled.
Used to map input to output.

Unsupervised learning - The labels in training dataset are not known.
Used to identify structure in data.
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Training data

Machine learning
algorithm

Machine learning
modelTest data Prediction

Figure 1.6: Machine learning schema

1.7.2 Data

The quality of data is very important for the overall quality of the machine
learning model. In this bachelor thesis we will focus on the supervised learning
training approach. Therefore a labeled dataset must be used to train the
model. The datasets used for training must be big enough and the more
complex the task, the bigger dataset is needed. The obtained data is usually
divided into three datasets.

Training dataset - Used to trained the model, should be the biggest.

Validation dataset - Used to tune the model.

Test dataset - Used to evaluate how well the model was trained. [9]

1.7.3 Machine learning problems

In this section some of the tasks that can be solved using machine learning
are described.

Binary classification

Supervised learning method that predicts which of two classes given data
belongs to. The input is labeled and each label has Boolean value 0 or 1. The
output is also 0 or 1. [10]
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1. Analysis

Figure 1.7: Classification and regression problems [11]

Multiclass classification

Supervised learning method that can be implemented using a decision tree.
”A decision tree assigns a class number (or output) to an input pattern by
filtering the pattern down through the tests in the tree. Each test has mutually
exclusive and exhaustive outcomes.“[8]

Regression

Supervised learning method that predicts the value of label from set of
features. The output value is any real value and does not have to be from the
set of values as in classification tasks. [10]

Clustering

Clustering is an unsupervised learning method, that uses some measure
of similarity to group input data into clusters. The simplest approach would
be to define a distance for example Euclidean distance between two points in
n-dimensional space. [8]

1.7.4 Evaluation metrics of trained model

To evaluate the quality of a machine learning model several evaluation
metrics are used. Some of them are described in this section. Metrics precision
and recall were already mentioned in subsection 1.1.2.
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F-measure

F-measure or F-score combines the precision and recall metrics. Closer to
1 means better predictions. The F-measure is calculated as following:

Fβ = (1 + β2) ∗ Precision ∗Recall
β2 ∗ Precision+Recall

For β > 1 precision has more weight while for β < 1 recall has more weight
in calculating the F-measure. When β = 1 the precision and recall have the
same weight and the F1-measure is their harmonic mean. [1] The formula can
be simplified to:

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

Accuracy

Accuracy is the fraction of correct predictions to the total number of pre-
dictions. [1] Closer to 1 means better predictions.

Accuracy = #CorrectPredictions
#AllPredictions

Log-loss

The log-loss uses the probabilities of predictions to evaluate the model.
Closer to 0 means better predictions. Given p is the probability of prediction
for the correct class i Log-loss is calculated as:

LogLoss(pi) = − log(pi)

1.7.5 Use case for machine learning in this thesis

In this section machine learning was described in general. Further will be
discussed two use cases for this specific topic.

Key phrase extraction

One possible usage of a trained machine learning model is the extraction
of key words. This approach was described in subsection 1.3.5.

Tagging

Since the key phrase extraction approach presented by Hulth is quite com-
plicated to implement, a simpler usage of a machine learning model will be
implemented in this bachelor thesis. For a dataset having an error message and
its tag it is possible to train a model, that can predict a tag for an unknown
error message.
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1.8 Requirements

Important part of system design is the definition of requirements. Require-
ments for the implemented system will be discussed in this section.

1.8.1 Functional requirements

F1 - Find solution to an error - system must be able to find solution to an
error when given an error message

F2 - System must process given error message, assign correct tag and retrieve
useful results

F3 - For the purpose of tagging it is needed to train machine learning model,
it must be possible to retrain this model any time automatically or
manually

1.8.2 Non-Functional requirements

N1 - Web application - system must be accessible as a web page, which can
be viewed in modern web browsers

N2 - Web API - system will provide documented REST application interface

N3 - Optimization - web application should return results in a matter of
seconds

N4 - The result of the search will be clearly displayed on the web page
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Chapter 2
Design

2.1 Architecture

The application is made of four main parts. In this section the applications
architecture will be described.

As shown in Figure 2.1 at first the user enters an error message using
the website created in SolutionFinderWeb. After that the web application
calls the SolutionFinderAPI. The API first uses the SolutionFinderCore
library to get solutions and the correct tag for the specified error message.
The SolutionFinderCore first uses the SolutionFinderTagger to get the
tag and then uses an algorithm described in to get solutions for the error
message. Both tag and found solutions are then returned to the API and then
to web application where the user can view results.

Alternatively, the API can be called independently to provide another
application the same results.

2.1.1 SolutionFinderCore

The main component of the application is the SolutionFinder module,
which is built from the following parts.

• StackOverflowClient - communication with StackExchange API

• Tagger - uses trained machine learning model to assign tag to an error
message

• Key Phrases Extractor - contains implemented methods for process-
ing strings

• SolutionFinderUtil - the core of application, contains the algorithm
for finding solution to an error
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Error message

User

Tag + Solutions
SolutionFinderWeb

SolutionFinderAPI

Error message Tag + Solutions

SolutionFinderTagger

SolutionFinderCore

Error message

Tag

Solutions + Tag

Error message

Figure 2.1: Architecture of Solution Finder application

• Web Application - enables the user to comfortably insert the error
message and view retrieved results

2.1.2 SolutionFinderTagger

The SolutionFinderTagger module is responsible for assigning correct tag
to an error message. To implement the tagging module two approaches were
designed. Semantical and machine learning. However, soon it became obvious,
that the machine learning approach gives much better results. Therefore,
we will focus mainly on the machine learning approach. The design of used
machine learning model is described in section 2.3.

Machine learning library

For the implementation of machine learning model, we have decided to
use the ML.NET6 library written in .NET Core. “ML.NET is a free, cross-

6https://docs.microsoft.com/cs-cz/dotnet/machine-learning/
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2.2. Used technologies

platform, open source machine learning framework made specifically for .NET
developers.” [13]

2.1.3 SolutionFinderAPI

This module represents the server side of the application. It provides
REST API which is then used by the client side application that is described
in subsection 2.1.4. It provides an endpoint, that is used by the client to get
solutions to given error message.

2.1.4 SolutionFinderWeb

The client side of the application. It should provide simple website, that
enables users to enter an error message and view the search results clearly
on the website. The client side needs to communicate with API described in
subsection 2.1.3. The technology used to create the client must provide this
functionality.

2.2 Used technologies

This section describes technologies used for implementation of the system.

2.2.1 Platform

Microsoft Azure7 is a cloud platform, that gives developers the option
to deploy many different types of applications. It is natively compatible with
.NET Core framework and it is very easy to run created applications. Among
many other features it is possible to deploy web page, web API and container
for application. [23] Microsoft Azure therefore provides the possibility to
deploy all components implemented in this system.

2.2.2 Framework

For the implementation, the .NET Core8 framework was selected. Web
sites and web APIs can be implemented using the ASP.NET Core9 frame-
work which runs on .NET Core.

The framweork supports implementation of every part of the application
presented in section 2.1:

• library – SolutionFinderCore described in subsection 2.1.1,
7https://azure.microsoft.com/
8https://docs.microsoft.com/en-us/dotnet/core/
9https://docs.microsoft.com/en-us/aspnet/core
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• machine learning model – SolutionFinderTagger described in subsec-
tion 2.1.2,

• web API – SolutionFinderAPI described in subsection 2.1.3,

• web site – SolutionFinderWeb described in subsection 2.1.4.

The support of every module introduced in section 2.1 is one of the reasons
to use this framework. .NET Core is free, cross-platform, open source and
supported by Microsoft. [24] The framework is native for the Microsoft Azure
platform. Project types of each of the components are:

• SolutionFinderCore – Class library (.NET Core)

• SolutionFinderTagger – Class Library (.NET Core)

• SolutionFinderAPI – ASP.NET Core Web Application

• SolutionFinderWeb – ASP.NET Core Web Application

2.2.3 Programming language

.NET Core supports C#, Visual Basic and F# programming languages.
Based on personal preference and experience, C#10 was selected. C# is mod-
ern, object-oriented and type-safe programming language.

2.3 Machine learning model

The development of machine learning model is an iterative process. The
process of training, evaluating and using the trained model to make predictions
is visualized in the Figure 2.2.

2.3.1 Training of machine learning model

The ML.NET library supports various types of machine learning models.
For example, Binary classification, Multiclass classification, Regression, Clus-
tering etc. In this use case we need to assign the correct tag from predefined set
of tags to given error message. It is therefore the Multiclass classification
task.

The ML.NET documentation defines Multiclass classification task as fol-
lowing: “A supervised machine learning task that is used to predict the class
(category) of an instance of data. The input of a classification algorithm is
a set of labeled examples. Each label normally starts as text. It is then run
through the TermTransform, which converts it to the Key (numeric) type.
The output of a classification algorithm is a classifier, which you can use to
predict the class of new unlabeled instances.”[13]

10https://docs.microsoft.com/en-us/dotnet/csharp/
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2.3. Machine learning model

Figure 2.2: Machine learning model development process [14]
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2.3.2 Multiclass classification trainers

The next step after selecting the type of task is the selection of train-
ing algorithm. For multiclass classification task the following algorithms are
available:

Linear algorithms

The model produced by Linear algorithms is created by calculating scores
from linear combination of the input data and a set of weights. The weights
are estimated during training and passed as parameters to the model. Fea-
tures should be normalized before training with a linear algorithm. Linear
algorithms are usually fast and scalable.

• Averaged perceptron - best at text classification

• Stochastic dual coordinated ascent - good performance even with-
out tuning

• L-BFGS - useful forge large number of features, the output is logistic
regression training statistic, does not scale well compared to Averaged
perceptron

• Symbolic stochastic gradient descent - fastest, most accurate linear
binary classification trainer, scales well [15]

Decision tree algorithms

The model created by a decision tree algorithm contains a series of deci-
sions. Features do not need to be normalized. They do not scale as well as
linear algorithms and use more resources.

• Light gradient boosted machine - fastest, most accurate (from bi-
nary classification tree trainers), highly tunable

• Fast tree - featurized image data, resilient to unbalanced data, highly
tunable

• Fast forest - good for noisy data

• Generalized additive model (GAM) - for problems that are suited
for tree algorithms but explainability is important [15]
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2.3. Machine learning model

Meta algorithms

These algorithms turn a binary trainer into a multiclass trainer.

• One versus all - one binary classification model for each class, this
classifier differentiates that class from other classes,

• Pairwise coupling - trains a binary classification model for each com-
bination of classes. [15]

2.3.3 Metrics

ML.NET uses the following metrics to evaluate model quality for multiclass
classification tasks. Metrics are described in the documentation [16].

Micro-Accuracy

The fraction of correct predictions.

Macro-Accuracy

The average accuracy for all classes. classes of different sizes have the same
weights.

Log-loss

The log-loss is bigger as the predicted probability diverges from the correct
label.

Log-Loss Reduction

How much is the classifier better than a random prediction.

2.3.4 Cross-validation

Cross-validation is a technique that splits data into partitions for training
and model evaluation. Afterwards it trains multiple algorithms on created
partitions. By holding out data from the training process it improves the
robustness of the model. It can also be effective for training models when the
training dataset is small. [17]

2.3.5 AutoML

The ML.NET library contains AutoML API, which automates the pro-
cess of training machine learning model using given dataset. Using the Au-
toML API it is possible to create an experiment, which will then use all
available algorithms for training the model. It evaluates every used algorithm
based on specified metric and selects the best one.
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2.4 Used key phrases extraction methods

In this section selected methods for key phrases extraction will be de-
scribed.

2.4.1 No modification

Sometimes the error message does not need to be processed. In that case
the original string is used to find the solutions.

2.4.2 Error message templates

As mentioned in section 1.6, error messages often have similar structure.
If the error message comes from the same system it is often possible to identify
the key phrase based on its structure. Templates were implemented for some
of the most used programming languages, like C#, Java or SQL. Below is an
example of template implemented for SQL server errors and how it is used.

SQL server error

Executed as user: FITCVUT\jan.tousek.
CREATE TABLE permission denied in database ’DWH’.
[SQLSTATE 42000] (Error 262). The step failed.

Used regular expression

(?<=Executed as user:\s).*?\.\s(.*?)(?=\s\[SQLSTATE[\s[A-Z\d]*\])

Output

CREATE TABLE permission denied in database ’DWH’.

2.4.3 Removal of dynamic parts

Dynamic parts were described in subsection 1.6.1. To remove these dy-
namic parts several methods were implemented. These methods use regular
expression to remove the dynamic part from given error message. Regular
expressions in .NET are a powerful tool to process text flexibly and efficiently.
[18] The Listing 2.1 shows how numbers are removed from an error message
using regular expression.

Implemented methods for removal of dynamic parts with examples

• RemoveGuid – 28d4d44f-8cda-420a-a1f2-575f5bd0a0c9

• RemoveNumbers – 42
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public static string RemoveNumbers ( string errorMessage )
{

return Regex. Replace ( errorMessage , @"[\d-]",
string .Empty);

}

Listing 2.1: Remove numbers using regular expression

• RemoveSpecialCharacters – ?, !, %, :, . . .

• RemoveEmails – touseja4@fit.cvut.cz

• RemoveIP – 147.32.232.212

2.4.4 Remove stop words

Removes all stop words using predefined list of English stop words.

2.4.5 Get first N tokens

For some error messages the most important information is located in the
first few tokens. This approach returns first N tokens from the error message.
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Chapter 3
Implementation

3.1 Development environment

Visual Studio 2019 Community11 was used as the development environ-
ment in this project. It is an integrated development environment (IDE) from
Microsoft. Visual studio is used to edit, debug and build code. Compilers,
code completion tools and other useful features are included. [19]

Directory tree of the solution

Directory tree of the solution is displayed in the Figure 3.1

11https://visualstudio.microsoft.com/cs/vs/
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Figure 3.1: Directory tree of the application

.git........................................................Git folder
.vs....................................Visual studio configuration files
Data.............................Training, evaluation and test datasets
Models..........................Saved trained machine learning models
Packages.................Third party packages used by the application
SolutionFinderAPI...........................Project for the web API

Controllers ....................................... API controllers
Models ................................................ API models

SolutionFinderApp .. Project for evaluation and test console application
SolutionFinderCore ....................... Project for backend library

Crawler.....................Used to crawl data from StackOverflow
Extensions.......................................Extension classes
SolutionFinder..............................SolutionFinder classes
StackOverflow.............Communication with StackOverflow API
Tester..........Used during implementation to test various methods

SolutionFinderTagger.............Project for machine learning library
Tagger.....................................Classes used for tagging

SolutionFinderWeb ........................ Project for web application
Models................................................Web models
Pages...................................................Web pages

3.2 SolutionFinderCore

The SolutionFinderCore project represents the core of the application. It
contains the client to communicate with StackExchange API and the methods
used for the extraction of key phrases from error message.

3.2.1 StackOverflow client

The StackExchange API has some specific properties, which will be ad-
dressed in this section.

Response Wrapper

Responses from StackExchange API have the same format. Common
wrapper object is returned. The most important fields in the wrapper are
described below. Objects Wrapper, Question and Tag are displayed in the
Figure 3.2.

• backoff - if set the application must wait the specified number of seconds

• error id - only present when an error occurred during authentication
or during processing the request
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• has more - used for paging

• items - array of objects returned in the request

• quota max - maximum daily quota

• quota remaining - actual daily quota remaining

Decompressing API Responses

All responses from the API are compressed with GZIP 12 or DEFLATE
13 algorithms. According to the documentation: “The motivation for this is
simple, serving uncompressed content is a loss for all parties. Bandwidth is,
in comparison to CPU time, exceptionally expensive and severely limited on
many devices. It’s really a no-brainer to require compression accordingly.”
[20]

To properly consume the API response the Accept-Encoding header must
be set. If not set, the GZIP will be used as default compression algorithm.

It is possible to configure the HttpClient to automatically decompress re-
sponses by providing HttpClientHandler with set AutomaticDecompression
property as demonstrated in Listing 3.1.

var handler = new HttpClientHandler
{

AutomaticDecompression = DecompressionMethods .GZip
};
var client = new HttpClient ( handler );

Listing 3.1: Set AutomaticDecompression in HttpClient

Rate Limiting

There is a quota on the number of requests an application can send daily.
By default, the quota is 10000 requests per day for all application on the same
IP address. However, if access token header is sent, the quota is distinct for
user/application pair.

An access token can be obtained by registering the application on Stack
Apps 14.

The API documentation also states that: “Every application is subject to
an IP based concurrent request throttle. If a single IP is making more than 30
requests a second, new requests will be dropped.” [20] If the backoff field was
set, the application must wait the specified number of seconds before making
another request.

12https://www.gzip.org/
13https://tools.ietf.org/html/rfc1951
14https://stackapps.com/apps/oauth/register
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Wrapper<T>

+ Backoff: int?

+ ErrorId: int?

+ ErrorMessage: string

+ ErrorName: string

+ HasMore: bool

+ Items: T[]

+ QuotaMax: int

+ QuotaRemaining: int

Tag

+ Count: int

+ HasSynonyms: bool

+ IsModeratorOnly: bool

+ IsRequired: bool

+ Name: string

+ Synonyms: string[]

+ UserId: int

Question

+ Tags: string[]

+ IsAnswered: bool

+ ViewCount: int

+ AnswerCount: int

+ Score: int

+ LastActivityData: int

+ CreationDate: int

+ LastEditDate: int

+ QuestionId: int

+ Link: string

+ Title: string

+ AcceptedAnswerId: int?

+ ClosedDate: int?

+ ClosedReason: string

+ CommunityOwnedDate: int?

+ Body: string

+ BodyMarkDown: string

Figure 3.2: Wrapper, Question and Tag objects from StackExchange API
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Filters

To allow the applications using the API to exclude returned fields filters
are used. Filter can be created via the /filter/create 15 method and then
passed as a parameter in the request. Filters are used to exclude the fields
that are not needed. This decreases the size of the response and therefore
decreases the response time. Second use case is to include the fields, that are
not present in the default filter. The use of a filter can be seen in Listing 3.2.

Paging

Most of the methods in the API accept page and pagesize parameters.
If the application needs to fetch all items, the API returns the has more field.
The usage of this field is shown in Listing 3.2. The GetTagsAsync method is
used to asynchronously return all tags on the StackOverflow site ordered by
popularity and using a filter to only return necessary fields.

3.2.2 Crawler

This module is used to load data from StackExchange API and has two
main purposes. Firstly it is used to get all used tags. Second purpose is to
get as much questions, that contain an error message as possible.

GetTags method

This method uses the GetTagsAsync method shown in Listing 3.2 and saves
tags on disc in CSV file tags.csv. The /tags method of StackExchange API
returns the tags found on a site including their popularity - count of how
many times the tag has been used on the site.16. Table 3.1 shows part of the
generated file. The data in this file was used for the analysis of most used tags
and the selection of tagging strategy.

GetQuestions method

For training the machine learning model it is necessary to get enough
error messages for each of the selected tags listed in subsection 3.3.1. It is
possible to get this dataset directly from the StackOverflow site because users
who are looking for a solution to their error often include the whole error
message in their question. Crawler implements method GetQuestions that
uses the /search method in StackExchange API to get all questions that might

15https://api.stackexchange.com/docs/create-filter
16https://api.stackexchange.com/docs/tags
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public async Task <List <Tag >> GetTagsAsync ()
{

int page = 1;
Wrapper <Tag > wrapper ;
var tags = new List <Tag >();

do
{

var builder = new ApiUrlBuilder ("tags");

builder . AddParameter ("order", "desc");
builder . AddParameter ("sort", " popular ");
builder . AddParameter ("site", " stackoverflow ");
builder . AddParameter (" filter ", "!-* jbN* _Solyb ");
builder . AddParameter ("page", page. ToString ());
builder . AddParameter (" pagesize ", "100");

HttpResponseMessage response = await
GetResponse ( builder . ToString ());

wrapper = await GetWrapper <Tag >( response );
tags. AddRange ( wrapper .Items);

page ++;
} while ( wrapper . HasMore && page <= TAGS_PAGE_LIMIT );

return tags;
}

Listing 3.2: Example usage of StackExchange API

contain an error message. The GetQuestions method saves received questions
combined with their respective tags in CSV file taggedQuestions.csv.

3.2.3 SolutionFinder

The algorithm used to get solution for an error message is described in
this section.

Processing error message

1. Tagging - trained machine learning model predicts tag for given error
message

2. Key phrase extraction - various algorithms are used to extract key
phrase from the error message
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Table 3.1: tags.csv top 10 most used tags

Count HasSynonyms IsModeratorOnly IsRequired Name
1949497 True False False javascript
1637413 True False False java
1382438 True False False c#
1350408 True False False python
1333097 True False False php
1252295 True False False android
977458 True False False jquery
968323 True False False html
655303 True False False c++
647952 True False False css

3. StackOverflow search - extracted key phrases are used to find solution
by querying StackExchange API

4. Reranking - found solutions are ordered

3.3 SolutionFinderTagger

StackExchange API provides endpoint to get tags for questions. At the
same time is supports querying by tag. To get the best precision possible it is
fitting to assign tag to each query. Tagging is implemented using the ML.NET
library which was introduced in section 2.1.2.

3.3.1 Tag selection

There are thousands of different tags used on StackOverflow. Every user
can create a new tag when asking a question. However, it does not make sense
to train the machine learning model to recognize every tag. Training would
take too much time and the model would not have sufficient training data for
rarely used tags.

The count of uses of tags is displayed in the graph in Figure 3.3. As
the graph shows, the distribution is very uneven. After deeper analysis some
often used tags have been removed, since they are not directly connected to
runtime errors e.g. HTML and CSS. Further some tags were merged into one,
because they can be considered as synonyms. In the list below there are 10
selected tags, which will be used in training the machine learning model used
for tagging error messages.

• Javascript

• Java
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Figure 3.3: Count of tags usage on StackOverflow site

• C#

• Python

• Php

• C++

• Sql

• C

• Ruby

• Objective-C

• Swift

• Linux

• Vba
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3.3.2 Training dataset

Training dataset for the machine learning model was created using the
file taggedQuestions.csv described in subsection 3.2.2. However, there are
many different types of asked questions and a large number of them does not
contain the error message. Some questions are very long, they contain large
amount of text written by the user who is asking the question, samples of code
etc.

Nevertheless, neither the comments from user, nor code samples are rel-
evant in the context of tagging an error message. For the aforementioned
reasons questions need to be filtered only to those which contain an error
message. The body property of Question object is in HTML. This became
very useful for the extraction of error message from the question. The body
for question in Figure 3.4 is displayed in Listing 3.3. [21]

<p>
After installing <strong >Visual Studio 2012 </ strong >
and opening my solution I get a series of errors in
this form:

</p>
<blockquote >

<p>
The Web Application Project Foo is configured to use
<strong >IIS </ strong >.<br> Unable to access the
<strong >IIS Metabase </ strong >. You do not have
sufficient privilege to access <strong >IIS </ strong >
web sites on your machine .

</p>
</ blockquote >
<p>

I get this for each of our web applications .
</p><hr><p>Things I have tried:</p>
<ol>

<li>Running Visual Studio as Administrator </li>
<li>Running aspnet_regiis .exe -ga MyUserName </li>
<li>Running aspnet_regiis .exe -i</li>

</ol>
<p>

These seem to be common solutions for this problem
but I have not had any success with them.

</p>
<blockquote >

<p>
Is there anything else I can try to do?

</p>
</ blockquote >

Listing 3.3: body of StackOverflow question in HTML
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After analysis of many questions related to an error, the following ways
StackOverflow users use for highlighting an error message were discovered.

• error: “error message”
Text following “error:” or “exception:”

• HTML tag blockquotes

<blockquotes >"the error message "</ blockquotes >

• HTML tag code

<code >"the error message "</code >

The error messages were processed using regular expressions and other
conditions. The result dataset contains error messages and their respective
tag. This dataset was used for training the machine learning model.

3.3.3 Preprocessing question for tagging

The dataset described in subsection 3.3.2 can be further processed to im-
prove the performance and results of training. Below are the steps used for
preprocessing the questions for tagging.

• Remove HTML tags - several HTML tags are used in StackOverflow
questions, however only tags blockquotes and code mentioned in sub-
section 3.3.2 have semantic importance. All other HTML tags can be
removed. Removing unimportant HTML tags was done using library
HtmlAgilityPack 17

• Remove whitespaces - questions often contain large number of redun-
dant whitespaces, which can be removed

• CaseFolding - we can convert all characters to lower case, more about
the case folding can be found in subsection 1.2.5

3.3.4 Running AutoML experiment

The code sample Listing 3.4 shows how to create and run an AutoML
experiment, how to set experiment settings, specify optimization metric and
set the max time for experiment as MaxExperimentTimeInSeconds.

AutoML will train models as long as the training time is less than
MaxExperimentTimeInSeconds. Further we can specify CacheDirectory,
which is a directory that the library uses for caching trained models instead

17https://html-agility-pack.net/
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3.3. SolutionFinderTagger

of keeping them in memory. It is useful to specify CacheDirectory when
training on large datasets because the models cached in memory can take a
large amount of memory.

To run the experiment, we need to select the type of experiment
in this case for multiclass classification problem we use
MultiClassClassificationTrainingExperiment, training dataset and ex-
periment settings. Optionally we can pass ProgressHandler function, which
has a parameter of type RunDetail<MulticlassClassificationMetrics>,
that contains the name of the current trainer, training time and optimization
metric. ProgressHandler allows the observation of training in progress and
display interim results.

“Running the experiment triggers data pre-processing, learning algorithm
selection, and hyperparameter tuning. AutoML will continue to generate com-
binations of featurization, learning algorithms, and hyperparameters until the
MaxExperimentTimeInSeconds is reached or the experiment is terminated.”[22]

Finally the best model stored in experiment.BestRun.Model is saved on
disc in the Environment.CurrentDirectory, which is the current directory
the application is running in.

3.3.5 Training using AutoML

The training time and MicroAccuracy metric for various training algo-
rithms are significantly different. Training of the model is computationally
intensive operation and for large training datasets it also requires large amount
of memory. The selection of the training algorithm for the SolutionFinderTagger
was done in two rounds.

First round

In the first round of training the experiment trains models with all available
multiclass classification trainers. A reduced dataset was used to speed up the
process of training. Purpose of this step is to select training algorithms that
perform best for this task. The micro-precision measure was used to evaluate
models in this step. Second important measure is the training time in seconds.
Results of first round training are displayed in Table 3.2

Second round

Only the algorithms that had good MicroAccuracy and their training time
was not too long were used in the second round with the complete training
dataset. Results of second round training are displayed in Table 3.2
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public void RunAutoML ()
{

IDataView data = _mlContext .Data
. LoadFromTextFile <Test >(

_trainDataPath ,
separatorChar : ’;’,
hasHeader : true);

var settings = new MulticlassExperimentSettings ()
{

OptimizingMetric =
MulticlassClassificationMetric . MicroAccuracy

MaxExperimentTimeInSeconds = 7200
};

var experiment = _mlContext
.Auto ()
. CreateMulticlassClassificationExperiment ( settings )
. Execute (data , progressHandler : Progress );

_mlContext .Model.Save(
experiment . BestRun .Model ,
data.Schema ,
Path. Combine ($"{ Environment . CurrentDirectory }",

" AutoModel .zip"));
}

Listing 3.4: Create and run AutoML experiment

3.3.6 Final trained model

As the final training algorithm, the AveragedPerceptronOva trainer men-
tioned in subsection 2.3.2 was selected. It has good MicroAccuracy and its
training time is relatively short.

Cross validating the model

The model was validated using cross-validation (see subsection 2.3.4) using
5 folds, which splits data into 5 partitions. Average metrics of the evaluation
are listed below. These metrics were described in subsection 2.3.3.

• Micro accuracy = 0.808

• Macro accuracy = 0.798

• Log loss = 0.634

• Log loss reduction = 0.718
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3.3. SolutionFinderTagger

Table 3.2: AutoML all algorithms, reduced training dataset

Algorithm Duration Micro accuracy
SgdCalibratedOva 47,421s 0,758
LightGbmMulti 776,141s 0,749

LbfgsLogisticRegressionOva 59,361s 0,749
SdcaMaximumEntropyMulti 101,863s 0,738

FastTreeOva 1924,836s 0,736
AveragedPerceptronOva 26,090s 0,732

LinearSvmOva 19,603s 0,714
SymbolicSgdLogisticRegressionOva 29,685s 0,677

FastForestOva 1394,3s 0,686
LbfgsMaximumEntropy 16.662s 0.108

Table 3.3: AutoML selected algorithms, complete training dataset

Algorithm Duration Micro accuracy
AveragedPerceptronOva 69.470s 0,811

SgdCalibratedOva 92,388s 0,802
LbfgsLogisticRegressionOva 177,251s 0,794

LightGbmMulti 1766,852s 0,790
SdcaMaximumEntropyMulti 49,216s 0,769

Further the model was evaluated by splitting the data into training and
test datasets. Test dataset contains 20 % of all data. The confusion table of
the final model is displayed in Table 3.4.
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3.4. SolutionFinderAPI

Figure 3.4: Stackoverflow tags in question [21]

3.3.7 Using trained model

After the model was trained it is possible to use it to make predictions.
To make predictions with saved model we need to load it into memory, create
an instance of PredictionEngine and call its Predict method. The method
used for predicting a tag for an error message is displayed in Listing 3.5.

3.4 SolutionFinderAPI

This project implements REST application interface which is used by the
web application to display retrieved data. Currently two endpoints are im-
plemented. Documentation for this API was created using the Swashbuckle
library.

GET /api/solution?errorMessage=

This endpoint is used to retrieve the solutions to a given errorMessage
which is passed as parameter. The returned object SolutionFinderOutput
contains the following fields:

• TagMachineLearning
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3. Implementation

public static string PredictTag ( string errorMessage )
{

var trainedModel = LoadModel (_modelPath , _mlContext );

var predictionEngine = _mlContext
.Model
. CreatePredictionEngine <Question ,

QuestionPrediction >
( trainedModel );

var prediction = predictionEngine . Predict (
new Question
{

Message = errorMessage
});

return prediction .Label;
}

Listing 3.5: Create and run AutoML experiment

• TagSemantical

• Solutions

• SolutionFinderSteps

• TimeElapsed

GET /api/tag?errorMessage=

Returns TaggedError object for given errorMessage. This object con-
tains:

• ErrorMessage – original error message

• TagMachineLearning

• TagSemantical

API Documentation

The Swagger documentation is available on the /swagger endpoint. Ex-
ample of the generated documentation is displayed in Figure 3.5.
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Figure 3.5: API documentation generated by Swagger
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Figure 3.6: Example of finding a solution

3.4.1 Deployment

To deploy the API the .NET Core 3.1 SDK is needed. The SDK can
be downloaded on this website https://dotnet.microsoft.com/download/
dotnet-core/3.1

From the application root directory go to the SolutionFinderAPI directory

cd .\SolutionFinderAPI

To build and run the API in Release configuration use

dotnet run --configuration Release

The API is running on port 6060 (default http://localhost:6060)

3.5 SolutionFinderWeb

This section concerns the development of the client side of the application.

3.5.1 Website

The website has one form that enables users to insert an error message
and get solutions for it by clicking the Find solutions button. Example usage
of this form is displayed in Figure 3.6.

After the request is processed by SolutionFinderAPI the output is dis-
played on the same page. Example output is displayed is Figure 3.7.
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3.6. Reranking

Figure 3.7: Example output from solution finder

3.5.2 Deployment

To deploy the web application the .NET Core 3.1 SDK is needed. The
SDK can be downloaded on this website https://dotnet.microsoft.com/
download/dotnet-core/3.1

From the application root directory go to the SolutionFinderWeb directory

cd .\SolutionFinderWeb

To build and run the web application in Release configuration use

dotnet run --configuration Release

The web application is running on port 7070 (default http://localhost:
7070). API url address must be specified in the appSettings.json file, property
BaseUrl. Structure of the appSettings.json file is shown in Listing 3.6. The
value is then injected into the PageModel.

3.6 Reranking

In subsection 1.1.5 the ranking of retrieved results was mentioned. Since
reranking can be very useful to show the best results on top, simple reranking
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3. Implementation

{
" AppSettings ": {

" BaseUrl ": "http :// localhost :6060/ api/"
},

" Logging ": {
" LogLevel ": {

" Default ": " Information ",
" Microsoft ": " Warning ",
" Microsoft . Hosting . Lifetime ": " Information "

}
},
" AllowedHosts ": "*"

}

Listing 3.6: SolutionFinderWeb appsettings.json

was implemented. Two factors were considered when reranking the results. A
combination of these two factors gives us the measure which we can use to
rerank the results.

How much was the error changed before querying

The first score is based on how many information we needed to cut off
from the error message to get a result. The less changes, the higher score.
Assigned based on used key phrases extraction method.

The popularity score on StackOverflow site

Thanks to the possibility to upvote or downvote questions we can use
the score of the question to determine its quality based on the feedback by
StackOverflow community.
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Chapter 4
Evaluation

This chapter describes the evaluation of used methods for key phrases
extraction and evaluation of user testing.

4.1 Evaluation dataset

To make the evaluation possible, 50 error messages distributed equally in
all tags were selected. For these error messages key phrase was extracted
manually and compared to implemented key phrases extraction methods.

4.2 Edit distance from manually extracted key
phrase

Edit distance or Levenshtein distance between two strings s1 and s2 the
minimum number of edit operations needed to transform s1 into s2. Allowed
edit operations are:

• insert character,

• delete character,

• replace character. [1]

4.2.1 MatchTemplates

In the Figure 4.1 the MatchTemplate method is compared to Unmodi-
fied. If the template did not match the unmodified error message was used.
The graph shows significant improvement in context of edit distance to man-
ually extracted key phrase for error messages that fall into one of templated
categories.
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Figure 4.1: Edit distance between manually extracted key phrase, unmodified
message and matched template

4.2.2 Normalized edit distance

Edit distance is an absolute value and therefore to compare the effectivity
of methods used on error messages of different lengths it needs to be nor-
malized. The edit distance in Figure 4.2 was normalized by the maximum of
lengths of the two compared strings (manually extracted key phrase and the
output of each method).

4.2.3 Evaluation of measured results

Unmodified

Data for this method shows, that error messages do not need to be always
processed and sometimes the whole error message can be close to the key
phrase.

MatchTemplate

As expected, this method returns the best results when a template exists
for given error message. Since it is impossible to create a template for all
types of error messages, only the most common should be considered to be
implemented.
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Figure 4.2: Average normalized edit distance from manually extracted key
phrase for each method

RemoveAllVariables, RemoveGuidNumbers and
RemoveStopWords

When implementing these methods for removal of dynamic parts of error
messages and removal of stop words the amount of dynamic parts was overes-
timated. Even though these methods give better results than no modification
they are mostly useful in combination with other methods.

GetFirstNTokens

The extraction of first 3 tokens gives bad results. The reason is that the
key phrases are usually longer even when they are not at the beginning of the
error message. Extraction of first 5 tokens on the other hand might be useful.

4.3 Solution relevance

In this section the same evaluation dataset of 50 selected error messages
as in section 4.2 was used. However, the evaluation was done from the user’s
point of view. User is usually not interested in the edit distance from ideal
key phrase, but in the relevance of retrieved results. Results of this evalu-
ation are displayed in Figure 4.3. The difference between the total and the
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relevant number of solutions found is the number of False positives (see sub-
section 1.1.3).

The application was able to find a relevant solution to an error for 84 %
of queries. The method MatchTemplate only found a solution 5 times out of
50 error messages, but its Precision = 1. On the other hand, the method
GetFirst3Tokens found a solution 42 times and only 22 of them were consid-
ered relevant. Therefore, its Precision = 0.53 for this method.

During this test, the correctness of assigned tag was tested as well. The
predicted tag was correct for 92 % of messages.

4.4 Tagging effectiveness

Tagging was implemented to increase the precision of the system by lim-
iting the results only to StackOverflow questions that have assigned the same
tag as the predicted tag. To evaluate the increase of precision, unmodified
messages were sent directly to the StackExchange API. For untagged queries
Precision = 0.77. For tagged queries Precision = 0.89.
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Figure 4.3: Count of total and relevant solutions found for each method
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4.5 Performance

The average time for the web application to return retrieved results mea-
sured on 50 different queries is 5.30 s. This relatively long response time is
caused by long response times of the StackExchange API. The calls to this
API could be parallelized. However, as mentioned in section 3.2 the API al-
lows one application to send only 30 requests per second. Therefore another
measures preventing this limit to be exceeded would have to be implemented.

4.6 User testing

The target group for this application are programmers, developers or sys-
tem administrators, who are responsible for solving errors in various applica-
tions. This application was tested by three users. Each of them was instructed
to get solution for 10 error messages. They were also instructed to evaluate if
any of retrieved solutions satisfied their information need and if the assigned
tag was correct.

Selected users were programmers who each work with different technolo-
gies. They were briefly introduced to the application and since the function-
ality is very simple they started using it right away. All users understood how
the application works and did not need any assistance when finding solutions
to their error messages.

Database administrator

Works with SQL and Microsoft SQL Server.

• Correct tag assigned: 10/10

• Solution satisfied information need: 5/10

Business intelligence developer

Works with SQL Server Integration Services (SSIS)18.

• Correct tag assigned: 0/10

• Solution satisfied information need: 0/10

Web application programmer

Works with C# and JavaScript languages to create web applications.

• Correct tag assigned: 10/10
18https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-

services?view=sql-server-ver15
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• Solution satisfied information need: 8/10

4.6.1 Evaluation of user testing

Overall, the tag was predicted correctly in 67 % of queries and one of
retrieved solutions satisfied user’s information need in 43 % of queries.

The application performed the worst for SSIS error messages. This has
multiple reasons. SSIS is not in the list of selected tags, therefore the tagging
module was not trained to recognize this type of error messages. Moreover
since SSIS is not very commonly used on StackOverflow (not even in the
first hundred of most used tags) it does not have many questions asked and
answered. Last reason is that SSIS messages are unusually large and its harder
to extract the correct key phrase.

On the other hand, it performed well for C#, JavaScript and even SQL
errors. Retrieved solution satisfied user’s information need in 65 % in these
categories.
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Conclusion

In this bachelor thesis we have analyzed current methods for key phrases
extraction from text. Based on this analysis various key phrases extraction
methods were implemented and used to extract key phrases from error mes-
sages. Even though statistical measures like TF-IDF or measures based on
identifying uni-, bi- or tri-grams are commonly used for this task, the best
approach was to use predefined templates. This is caused by the nature of
error messages, which are usually short, contain many dynamic parts and are
relatively structured.

The thesis also analyzed systems that provide solutions to error messages.
StackOverflow was selected as the best source system for this thesis. It pro-
vides all the information needed, has big and active community, provides well
documented API and is completely free to use.

Finally, we have analyzed information retrieval systems. This was needed
to understand how they work to be able to use them as source of information.
As a result of this analysis we have implemented own information retrieval
system. This implemented system is focused on finding solution to an error
using the error message.

To make the searching for solution as precise as possible we have imple-
mented machine learning model, that predicts tag for error message. This
model works very well for defined list of tags and has good evaluation metrics.

Although the application has interesting results, in the end of the process
there must always be a professional who decides if the proposed solution is
relevant and if it could be applied to the specific situation.

Future improvements

Even though the tagging module works well, and the created machine
learning model has good metrics, it could be improved. This could be done by
increasing the size of training data for example by integrating another system
that contains tagged error messages.
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Conclusion

Using this module, a ticket classification application could be implemented
to automatically create bug reports and assign specific tag.

The key phrases extraction could be improved as well by implementing
more templates to extract the key phrase. Another way of improving this
module would be to implement an unsupervised machine learning model that
would use some statistical measures to select the key phrase.
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Appendix A
Used shortcuts

GUI Graphical user interface

NLP Natural language processing

API Application programming interface

MSDN Microsoft developer network

JSON Javascript object notation

ML Machine learning

AI Artificial intelligence

IR Information retrieval

Tf Term frequency

Idf Inverse document frequency

CSV Comma separated values

REST Representational state transfer

SDK Software development kit
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Appendix B
Contents of attached medium

Visualise the contents of enclosed media. Use of dirtree is recommended.
Note that directories src and text with appropriate contents are mandatory.

readme.txt...................the file with medium contents description
src.......................................the directory of source codes

SolutionFinder.............the directory of SolutionFinder solution
thesis..............the directory of LATEX source codes of the thesis

img...................................the thesis figures directory
*.tex.....................the LATEX source code file of the thesis
FITthesis.csl...................the LATEX class file of the thesis
zadani.pdf ............................. assignment of the thesis

text..........................................the thesis text directory
thesis.pdf............................... the thesis in PDF format
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