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Abstract

Urban greenery is extremely important for healthy urban environment. For this reason, the
greenery must be monitored. This thesis attempts to contribute to the geographic data of
the Prague municipality by proposing a method for single-crown-detection and single-crown-
delineation. Such data would provide a basis for vegetation-related studies on a single-
tree-level. Two methods were designed and implemented to provide a more reliable result.
The �rst method is based on rather traditional remote sensing techniques using Geographic
Information System. The other one uses deep learning techniques based on Mask R-CNN
neural network framework. Both models are compared using designed accuracy assessment.
Using the proposed Mask R-CNN-based method, tree crowns can be delineated with an
overall accuracy of 81%. It also proved to be more e�cient than the other �traditional�
remote sensing technique used in this study.

Keywords: remote sensing; deep learning; Mask R-CNN; single-crown-delineation

Abstrakt

M¥stská zele¬ je nesmírn¥ d·leºitá pro zdravé m¥stské prost°edí, a proto je d·leºité ji
monitorovat. Tato práce se snaºí p°isp¥t ke zp°esn¥ní geogra�ckých dat m¥sta Prahy návrhem
metody detekce jednotlivých korun strom·. Takováto data by poskytla základ pro r·zné
studie související s vegetací v m¥°ítku jednoho stromu. Byly navrºeny a implementovány dv¥
metody, aby byl poskytnut spolehliv¥j²í výsledek. První metoda je zaloºena na tradi£n¥j²ích
technikách dálkového pr·zkumu Zem¥ vyuºívajících geogra�cký informa£ní systém. Druhá
vyuºívá techniky hlubokého u£ení zaloºené na neuronové síti Mask R-CNN. Oba modely
jsou porovnány pomocí navrºeného posouzení p°esnosti. Metodou zaloºenou na Mask R-
CNN mohou být koruny strom· detekovány s celkovou p°esností 81%. Ukázalo se také, ºe
metoda Mask R-CNN je ú£inn¥j²í neº tradi£n¥j²í metoda zaloºená na dálkovém pr·zkumu
Zem¥ pouºitá v této studii.

Klí£ová slova: dálkový pr·zkum Zem¥; hluboké u£ení; Mask R-CNN; detekce koruny
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Chapter 1

Introduction

Urban greenery is an indispensable part of a city and servers as a natural resource. Greenery
reduces several environmental impacts on the city. For instance, it improves air quality,
retains water, and reduces overheating. Apart from the physical e�ects on the environment,
greenery has a positive psychological impact on people's health, aesthetic, and overall life
quality perception. The health of the greenery is crucial to future sustainable development
of the city in future; therefore, it must be monitored to provide reliable data for urban
management. This research aims to contribute to the United Nations' 17 Sustainable
Development Goals (SDG) towards sustainability [56]. More precisely, the thesis tackles
SGD 11, 13, and 15; regarding sustainable cities and communities, the life of the land, and
climate action.

In the context of urban management, the city is rather a complex organism with quite
a lot of laws, rules, or restrictions. Several professional services are needed to keep this
complex organism running. Each of these professions rely on each other while planning,
managing, or maintaining the city. Thus, there is a need to be as precise as possible for
mismanagement to be eliminated. So far, in the current data set for the municipality of
Prague, the vegetation is considered in the Digital technical map of Prague [32] in the form
of a polygonal representation. Each vector polygon represents a class with a certain type
of vegetation. There are types such as gardens, meadows, greenery in developed areas, and
others. The current state might be suitable for the delimitation of vegetation as a whole.
However, it does not provide any information about the vegetation itself. For instance the
number of trees in a particular area, their attributes, species, or the percentage of each
species are still missing. In other words, the current spatial de�nition of the vegetation in
Prague is pretty vague. There is indeed a desire for a more detailed vegetation data since the
city needs to keep up with other metropolitan cities. This is all the more true because the
municipality aims to ful�l a responsibility in resolving climate issues. How can one achieve
this data?

Geospatial information science, especially remote sensing, is solving such tasks on a daily
basis. A lot within this �eld has been accomplished already. So, it is evident that a solution
is available. We might generalize a bit and say, that in remote sensing there are per-pixel-
based approaches, and object-based approaches (a group of similar pixels, which are merged
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CHAPTER 1. INTRODUCTION 2

into objects). These two approaches are more traditional in remote sensing and they have
been used for decades. Even though they are still relevant, there are some other newer
approaches. Some of the new methods are slowly taking over newly developed techniques
which make some solutions more feasible. This involves arti�cial intelligence; more precisely
deep learning, and even more precisely Convolutional Neural Networks (CNN). The research
question is whether these "novel" methods are ready to become the right tool, or whether
the "traditional" methods can keep up with the current technology. The thesis presents
�ndings in a case study of the city of Prague. Both approaches are tested on performing
the single-crown-detection and single-crown-delineation task on top of high-resolution aerial
imagery with NIR band and the LiDAR DSM raster data.

1.1 Literature

There are many research topics focused on the vegetation with the use of remote sensing
techniques. One of them is vegetation health assessment, detection, classi�cation, or simply
just capturing its current state [24]. With reference to remote sensing, the data used in
such studies are remotely-sensed either from various carriers (aircrafts, satellites, RPAS
etc.) by measuring emitted or re�ected radiation of the Earth's surface. The data is sensed
in many wave bands of spectrum, recorded, and stored in multiple image bands. Another
application of remote sensing in vegetation studies is the airborne laser scanning (ALS). ALS
is mostly called light detection and ranging (LiDAR). LiDAR is a method that measures
the distance from the laser to the earth's surface by illuminating the object by radiation
and measuring the re�ected radiation using a sensor attached to an aircraft. Remotely-
sensed data dramatically reduces the load of �eldwork, likewise the time needed for data
processing. The result of LiDAR measurement is incomparably more accurate than the
ground measurement. Therefore, it is an inexpensive alternative to �eld-based measurements
[47]. In addition, there is a plenty of open-source data already available and easily accessible
sometimes even via web map service.

According to extensive review of studies on tree classi�cation in [24], which reviewed
more than a hundred studies. Approximately 30 percent studies used imaging spectroscopy
or hyperspectral imagery, ∼ 25 percent used high and very-high spatial resolution sensors, ∼
20 percent combined passive optical sensors and active sensor (LiDAR), ∼ 15 percent were
only LiDAR-based, and the rest used either thermal sensors or synthetic-aperture radar
(SAR). Approximately half of the studies used the object-based classi�cation and the other
half used the pixel-based classi�cation or compared the �eld spectra. The majority of the
studies were conducted on a single tree scale.

There are two fundamental types for using ALS to classify trees. The �rst is a cluster-
based approach usually providing broader scale. The other one is a single-tree approach,
which provides information on the scale of the tree as a unit, thus a more detailed classi�cation
[58]. The essential issue for the vegetation-related studies at the single tree scale is the spatial
de�nition of an instance. Most of the papers refer to terms such as single-crown-detection
and single-crown-delineation. Single-crown-detection is a process of detection of a single
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unit, usually represented by coordinates of a point regardless of the shape or size. The single-
crown-delineation, on the other hand, aims to describe the single unit as detailed as possible.
By referring to single-crown-delineation, it usually means the polygonal representation of
shape, size, and perimeter.

1.1.1 Per-pixel-based and object-based classi�cation methods

As far as the data, a vast majority of models used the LiDAR data, or a combination of
LiDAR data and optical or SAR imagery. The model can bene�t from the use of LiDAR
data because the data is less a�ected by shading and atmospheric conditions [60]. It has
also been proved that models based on LiDAR data tend to derive more correctly-detected
trees and more precisely-delineated crowns [15]. Method-wise, the single-crown-detection
and single-crown-delineation �eld of research are dominated by the local-maxima-�nding
(LMF)-based models. This is true in using ALS data at least. According to [22], six out of
eight reviewed papers based their models on the LMF approach, mostly in combination with
other techniques. More precisely, LMF in combination with �ltering, region growing, multi-
scale canopy height model (CHM), or watershed segmentation. Another reviewed approach,
which works directly with raw ALS data is a combination of segmentation and clustering.
The last technique reviewed in this paper was a polynomial �tting method in combination
with the watershed segmentation. This method �ts a polynomial of the second-degree to a
morphological pro�le of a potential crown. The majority of the papers used LMF, mostly in
combination with other techniques which are described further.

In [47], the authors focused mainly on both single-crown-detection and single-crown-
delineation in coniferous forest based on the high-resolution imagery with red (R), green
(G), blue (B) and near-infrared (NIR) bands. It is the sole representative of a model
using only aerial imagery. The paper describes the process of creating automated detection
and delineation algorithms. The detection algorithm is divided into several major phases.
Particularly, the preprocessing and the imagery re�nement, the local maximum moving
window for potential treetop detection, the transect sampling extraction from potential
treetop for the tree edge detection, scaling the length of transects to a single crown size,
analyzing the drops among transects signalizing the edge of a tree, �tting circular boundary
to the most signi�cant drops among transects, and �nally computing centroid position
representing the treetop. The delineation algorithm shares the same algorithm design, apart
from a slightly modi�ed input image. It also returns transects drop positions instead of a
distance. The crown delineation is then represented by an enclosing polygon.

A given example given from [47] might serve as a role model. Leastways, it can work to
some extent, since most of the researched models based on LMF follow a similar pattern of
phases. Generally, a template for an LMF-based model might look like the following set of
steps; (1) Pre-processing and re�nement where, for instance, high-pass �ltering or smoothing
is done; (2) LMF which involves kernel of given values and size, and thresholding the maxima
values; (3) Delineation of tree crown, usually based on treetop locations. Methods range from
already mentioned transect sampling, region growing, watershed segmentation to Thiessen
polygons; (4) Re�nement, which is usually done for both crown detection and delineation.
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The re�nement phase is very important since the models do not derive directly reliable
results. Such an issue is usually being resolved iteratively or on multiple scales for various
tree sizes. Therefore, the following text is more about the di�erences among models rather
than the similarities.

Model used in [16], in comparison with [47] works with masked vegetation, which is
further segmented into objects. Unlike the per-pixel model from [47], the model from [16] is
object-based. The pixels are merged into segments, or so-called superpixels based on similar
spectral values. Local height maxima of these segments are represented by points/pixels
creating potential treetops, which is just another way of LMF. The treetops are used as seed
points for region growing. These points expand to the crown boundaries, which are identi�ed
as a positive di�erence between the current and the next pixel. The algorithm determines
a value of threshold and new crown delineation is created. So instead of transect sampling,
the region growing method is used. The model works iteratively. Delineated crowns from
the �rst iteration are classi�ed into single crowns or crown cluster. Iteration then continues
on the clusters only, until split into single crowns reaches thresholds.

Another similar model is described in [52]. It is also based on the region-growing
algorithm using LMF. Unlike the method described in [16], the method from [52] retain only
the uppermost pixels in a grid which later a�ects the process of LMF. The crown delineation
was done the same way. In [15], the authors also proposed a model using the region-growing
algorithm. Novelty in this approach was a combination of both CHM and ALS data. Even
though CHM originated from ALS, they both can provide extra di�erentiating features. For
instance, the crown delineation is derived from the ALS data after the threshold was applied
to the points and these points were enclosed by 2D convex hull. The paper also describes
its-own way of algorithm functions and the use of thresholds. However, the main principle
remains the same in general.

In [35], the authors took a model based on LMF. In this case, a self-de�ned kernel window
was used for LMF. Delineation was based on the marker-controlled watershed segmentation.
To make the model more reliable, the model was extended to predict the size of a crown
based on the height of a particular pixel. The moving window di�ers from pixel to pixel
meaning the higher the pixel, the bigger the moving window. In [63], the author also works
with the relation between height and crown diameter. A simple local maxima searching
window of the chosen size was used in this model. The crown diameter was de�ned by a
circle of diameter dependent on the height of a tree. The same approach was used in [46],
however, the moving window was de�ned by an average size of crowns computed form �eld
data. The same value was then used as a representation of a crown diameter. An interesting
twist added on top of the LMF method was reviewed in [35]. They proposed a minimum
curvature-based model. The CHM was scaled by the curvature layer derived from a slope,
where the curvature smaller than zero represents gaps among trees and the positive curvature
represents treetops. Then the LMF is applied on the curvature instead and the delineation is
then calculated by the watershed segmentation. In [7], the authors followed a similar model
design, the only di�erence is the crown delineation, which is processed by Thiessen polygons
which are later simpli�ed to create a more natural look. It is necessary to emphasize, that
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this method is suitable only for continuous data.

Several papers tackled the issue of di�erent tree shapes, sizes, and heights, claiming,
that di�erent-sized trees should be extracted over di�erent scales. The term scale has many
meanings in the literature. In this context, scale refers to the level of the spatial detail.
When referring to the scale in vegetation-related studies, scaling usually implies low pass
�ltering on to achieve a di�erent level of detail. Scaling helps to reduce the amount of detail
which might cause over-segmentation of an image. Well balanced segmentation is therefore
crucial to such models. Mostly because of their object-based nature. The model proposed
in [34] incorporated the scale analysis as a �rst phase to determine dominant crown sizes.
Later, multiple Gaussian �lters are applied to �t all crown sizes form the smallest to the
largest. Next multiple watershed segmentation maps were generated with further re�nement.
Finally, the combination was done by integrating all scales to create one crown delineation
map. This was done by assuming that the tree crowns are more circular than the tree
clusters. Another model proposed in [62], is fairly similar, but more complex. Their model
extracts three geometric properties from the segmented CHM on multiple scales, namely the
size, convexity and circularity of a tree crown. The main idea is to approximate the crown
with an ellipsoid. Then, the best approximation of a crown is selected over all the scale
and combined together to create a tree crown map. Another representative is the multi-
scale Laplacian of Gaussian method published in [35] which used space-scale-based selection
combined into one layer. Multi-level scaling can be applied not only on the raster-based data
but also directly on the raw ALS data. Such an example can be found in [45]. The authors
use multiple-scale Gaussian �lters on a 3D CHM created from ALS data. They segmented
the points and the best one that �tted to the parabolic surface was selected.

In [35] the authors found in their benchmark that a simple LMF-based model has turned
out to be the overall best method. There were 14 models compared among various categories.
Most of the models used the same principles previously described. Additionally, the LMF-
based models also have the most straightforward implementation among several software that
makes them feasible for commercial purposes. The research for this thesis was data-driven
to some extent since there are ALS data already available as well as the CIR imagery with
NIR band. Therefore, studies which managed to combine both data sets together were the
most suitable. Most of the models in research had been tested on a continuous forest. The
result of the high value helped to clarify various principles which were combined together.
The main purpose was to derive the most reliable delineated crowns for further elaboration.

1.1.2 Deep-learning-based methods

Deep learning (DL), known also as deep structured learning, is a subset of broad machine
learning family. Machine learning (ML) is a sub�eld of even broader arti�cial intelligence (AI)
family. The term �learning machine� was �rst introduced in 1950s, proposing that machines
could develop into arti�cial intelligence [55]. DL was introduced in 1986, more precisely, the
de�nition and terminology was formed in [49]. The basic principles and concepts of deep
learning had already been around for decades. In 2000, the arti�cial neural networks (ANN)
were made [3]. Since then, the �eld was growing rapidly taking advantage of technological
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development. It became more feasible, thus more applicable in many �elds. In 2013, MIT
[41] listed DL as one of the ten biggest technological breakthroughs. The application areas
vary a lot, for instance: image recognition, computer vision, automatic speech recognition,
medicine, �nancial sector, etc. Fields of applications are those that have something to do
with arti�cial intelligence or big data. Geospatial information science belongs to one of them.
The amount of data that is being processed in this �eld makes it a perfect candidate for such
technology.

As the remote sensing �led is dominated by raster data, there was a desire for technology
that can extract information from such data. Over two hundred application papers were
listed and categorised in [10] in their comprehensive survey. They analysed papers related
to deep learning within remote sensing �eld. Therefore, there was a vast variety of di�erent
approaches and architectures. The DL-based approaches were namely: CNN, autoencoder
neural network, deep belief network and deep Boltzmann machine, recurrent neural network,
and deconvolutional neural network. The number of approaches and their possible implemen-
tations are endless. According to [65], CNN are highly e�ective in semantic segmentation
and object detection. The CNN are widely applied in a computer vision �eld. Since the
given task of this thesis �ts well into these categories, the research is further narrowed and
focused only on the CNN architecture. The CNN are a special kind of ANN. The fact that
CNN are capable of classi�cation and detection makes them quite convenient, especially,
because the classi�cation and detection are one of the major tasks of remote sensing.

In [38], the authors argue that CNN-based studies in the remote sensing �eld achieved
�ner performance than conventional methods. They supported the statement with several
papers solving the current tasks of remote sensing such as object detection, scene classi�cation,
large scale land classi�cation, or hyperspectral image classi�cation. There are some studies
relevant for this thesis in particular. In [11], the authors described the process of detecting
vehicles from high-resolution aerial imagery. Likewise, the application for automated building
detection was decribed in [57]. It might not seem as relevant at �rst, but since such
an algorithm could learn how to detect vehicles and buildings from high-resolution aerial
imagery, detecting trees should not be much di�erent. One of such examples is in [38], which
described a palm tree detection process. The main issue in the papers was the fact that
the architectures used were not able to deliver the exact shape of the object. The object
was commonly bounded by bounding box. A solution for this type of issue was proposed
by the Facebook AI Research (FAIR) team in [28]. The authors proposed a method called
Mask R-CNN, which is the fourth generation of region-based convolutional neural network
(R-CNN) capable of instance segmentation. The Mask R-CNN method is therefore capable
of deriving a precise shape of a detected object, frequently known as the mask extraction.
Hence, the Mask R-CNN method has great potential for single-crown delineation.



Chapter 2

Theoretical Background

2.1 Study Area

The Czech Republic is a landlocked country located in the middle of the temperate zone of
the northern hemisphere in the central part of Europe. The area of the country is 78 868
square kilometres. The existing districts are grouped into 14 regions, including the city of
Prague as an independent region with an area of 496 square kilometres, and a population of
1 308 632 (2018). The Vltava River �ows through Prague (433 km). The average altitude of
the Czech Republic is 430 meters AGL. The height and relief shape have a great in�uence
on the climate of the Czech Republic. The climate of the Czech Republic is characterized
by mutual penetration and mixing of oceanic and continental in�uences. Intense cyclonic
activity causes frequent changes of air masses and relatively abundant precipitation. The
average annual temperature is approximately 9°C [13].

Figure 2.1: Prague region of the Czech Republic

7
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The �ora and fauna of the Czech Republic follows a spread pattern similar to that of the
rest of Cental Europe. Forests are mostly coniferous, occupying approximately 34% of the
total area of the Czech Republic [13].

Figure 2.2: The overall land use percentage in the Czech Republic [14]

Figure 2.3: The overall tree species percentage in the Czech Republic [44]

According to [8], the last quantitative survey of vegetation in Prague was done in 1995.
Total green area in Prague consists of natural parks (20%), forests (10%), protected areas
(4%), street vegetation (NA%). The source could not be veri�ed, thus this information
must be taken with a pinch of salt, since there could not be found a newer quantitative
study of such a character. Even though, there is a general trend of coniferous forests in the
country. Cities are dominated by deciduous trees. According to the article written by the
municipality's forest administrator [37], the species composition for a�orestation is based on
the natural composition of the original forest areas. Therefore, in 2015 there were planted
approximately 180 000 trees, out of which 145 000 were deciduous and 35 000 coniferous.
The species that occur are winter oak, European beech, cherry, linden, maple, hornbeam,
elm, pine, larch, and �r. Assuming the initial trend, a rough estimation would be that 80%
of the trees in Prague are coniferous trees. This trend is evident even from aerial imagery.
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Figure 2.4: Di�erent study areas: (A) Prague Vinohrady, (B) Kralupy nad Vltavou, (C)
Beroun

2.2 Input

2.2.1 Color-infrared (CIR) imagery

The regular RGB image consists of three bands (channels). These are Red, Green, and Blue
(RGB) bands. All these bands are from the visible part of the electromagnetic spectrum.
Vegetation studies applying remote sensing use near-infrared (NIR) band with a wavelength
longer the Red band, which is not detectable by human eyes. However, it can be measured
by cameras and other instruments. Such extended information helps to distinguish the
vegetation from other objects, especially, when we use vegetation indices. The NIR band
in CIR imagery substitutes one of three colours from the visible spectrum to create a new
representation of reality in the RGB color composite. In this thesis, the CIR imagery uses
combination NIR, Red, Green. This means that Red is substituted by NIR, Green by Red,
and Blue by Green. Therefore, the Blue band is not used, because it would not provide us
with any piece of extra information. An example of the spectral behaviour of vegetation in
individual bands is shown in the Figure 2.5.

2.2.2 Digital Terrain Model (DTM)

DTM is a digital topographic model of the Earth which can be digitally processed and
visualised. The elevation information is stored either in a grid, or raster. The elevation is
georeferenced and provides information of absolute height in a reference system. DTM does
not include vegetation, buildings, or other manmade objects.
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Figure 2.5: Re�ectance in individual bands [4]

2.2.3 Digital Surface Model (DSM)

DSM is a digital topographic model of the Earth's surface. The de�nition is fairly similar to
the DTM. Apart from DTM, DSM includes vegetation and manmade objects. Temporary
objects such as cars are �ltered out. A special kind of DSM is the Canopy Height Model
(CHM). CHM is a digital topographic model of vegetation. Apart from DTM and DSM,
the CHM stores relative heights, therefore CHM is useful for tree height determination. It
is created by subtracting DSM and DTM. In urban areas, the DTM should include the
buildings as well, however, the CHM contains vegetation only.

2.2.4 Acquisition

The data were provided by the Prague Institute of Planning and Development [33]. The
acquisition was done by an external provider. The CIR imagery was acquired by an aircraft
with mounted camera Vexcel Ultracam Eagle M; detailed speci�cations can be found in
[1]. The layover was 60 meters/30 meters, and pixel size 0.1 meters. The DSM model was
acquired from the same aircraft by LiDAR sensor and provided in the raster format with
pixel size 0.25 meters. Both CIR and DSM were acquired on 31/8/2019. The month of
August was chosen deliberately to detect the highest vegetation volume of the year. CIR
imagery was later transformed into a true orthophoto (TO). The DTM was acquired in 2017
with 1 meter pixel size. The provider did not provide the exact approach.

Table 2.1: List of raster data and metadata
Name Type Resolution ∼ Scale

Color-infrared (CIR) raster 0.1 x 0.1 m 1 : 1 000
Digital Surface Model (DSM) raster 0.25 x 0.25 m 1 : 2 500
Digital Terrain Model (DTM) raster 1 x 1 m 1 : 10 000
Name Data Type Channel(s) Acquisition

Color-infrared (CIR) 8bit, uns. int NIR, Red, Green 31/8/2019
Digital Surface Model (DSM) 32bit, �oat Height 31/8/2019
Digital Terrain Model (DTM) 32bit, �oat Height 2017
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Figure 2.6: CIR

Figure 2.7: DSM
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Figure 2.8: DTM and Buildings

2.3 Remote Sensing Techniques

Prior knowledge of image processing of the remote sensing data is assumed. This section
does not attempt to replace the textbook, however, the following principles are explained
on a certain level. This is needed to be able to understand the Methodology Chapter. The
main source for this section was [27], therefore it is mentioned several times.

2.3.1 Spatial Filters

High-resolution imagery provides us with a high level of detail that is bene�cial for such a
study. However, the higher resolution does not provide us with better results in all cases. It is
not just the resolution of the imagery that can be the reason for better or worse classi�cation.
Misclassi�cation of pixels within an object can be caused by non-homogenous pixel values in
homogenous areas. The high amount of detail causes noise and inconsistent objects. Another
common issue raises the segmentation process. Too much detail in the imagery causes over-
segmentation. Since the goal is to form segments containing objects we are looking for, the
level of detail must be adjusted to a particular scale. By doing so, the objects should behave
more consistently, and the image should be better segmented. There are several ways how
to achieve such an adjustment. Some of them are pretty complex, some are fairly simple.
The �rst one and probably the most straight forward is to simply resample the resolution
of the raster data to lower pixel size. The resolution must be adapted to the size of the object.

A more sophisticated solution is the application of spatial �lters. There are various
reasons to �lter the image; for instance noise reduction, image blur reduction, contrast
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enhancement, or post-classi�cation �ltering. Filtering is a process by which the original pixel
value is recalculation based on the values from its neighbouring pixels. This is performed
by moving a window, also referred to as kernel, mask, or convolution matrix. Common
kernel sizes are either 3x3, or 5x5 [27]. Accordingly, the new pixel value of a particular
kernel is the value of the centre pixel from the kernel. Each type of kernel uses a speci�c
equation. Generally, there are two �lter groups. The �rst ones are low pass �lters. Low pass
�lters are suppressing high spatial frequency values, which �lters out outstanding details
creating a smoother appearance. Widely applied examples are median �lter, majority �lter,
or Gaussian �lter. The other ones are high pass �lters. On the contrary, the high pass �lters
are usually used for sharpening, often used for edge enhancement.

2.3.2 Fuzzy Membership

Fuzzy logic is based on the idea that there are not only logical TRUE or FALSE values, but
that something can also be partially true. It quanti�es how partially true it is. A fuzzy set
is a set of elements, which belong to a set with a certain probability. Each element has a
value which portrays the possibility of being a member of a speci�ed set, i.e. membership
value. The function that assigns the membership value is called membership function [27].
In remote sensing, the element is a pixel. A fuzzy set of pixels is a class. This means that
every pixel belongs to every class to a certain degree. For instance, grey colour in greyscale
is neither white (TRUE) nor black (FALSE). If there were just two classes, we would need
to decide which one is correct - TRUE or FALSE. Fuzzy membership is the way how to
distinguish uncertainty of the membership. Suppose the greyscale value of our grey is 127,
white is 255, and black is 0. The value 127 is closer to the value 0 and therefore the �nal
value would be equal to 0. The probability of grey colour belonging to the black class is
slightly higher, assuming a linear membership function. Such an example is the most basic
form of fuzzy classi�cation of one class. In the �rst step, the fuzzy membership normalized
data layer is created, i.e. 0 � 1 scale. In the second step, the membership function is
de�ned. When referring to the classi�cation among the fuzzy system for several classes, the
implementation is far more complex. Membership function used in the fuzzy classi�cation
de�nes the multi-dimensional space of image patterns. The dimensionality is given by the
number of membership functions. This case is not analysed in this thesis. However, the
concept of fuzziness is indeed interesting due to its nature, which is more realistic.

2.3.3 Thresholding

Thresholding is a process of transferring of the original set to a set with a lower number of
elements. The threshold value splits the set into two intervals with new values. It is a form of
a simple segmentation or the most basic classi�cation. Since the elements are divided into two
groups, or classes [27]. Thresholding is very often used to create a mask with values 0, and
1 in the map algebra. It helps to reduce the amount of redundant information. Accordingly,
it is easier to predict the spectral behaviour of a speci�c class because the statistics are not
a�ected by other classes. There is also a multiple thresholding called level slicing. The level
slicing is equivalent to the thresholding, however, for more than two classes. The set is then
divided into n+1 segments (classes).
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2.3.4 Segmentation

In segmentation, the scene is partitioned into non-overlapping segments, also referred to
as regions. The process has predetermined rules. The �rst example is the region growing.
The principle of this method is relatively simple. This method requires an input of pixels
(samples) of desired segments. These pixels or points are called seed points. The region
growing method is driven by a control function and threshold value. The function compares
neighbouring pixels with the value of a seed pixel and decides whether the new pixel belongs
to the region or not. For instance, the function can be the di�erence of spectral values
that is growing outwards until it reaches the threshold. Another widely used method in
remote sensing is multiresolution segmentation. This method is far more complex. The
segmentation is driven by spectral and spatial heterogeneity. The vital factor is a scale and
the desired level of detail. Segments are also sometimes called superpixels. One example of
segmentation is used in eCognition and is described in [9]. This method was revolutionary
and fundamental for Object-based Image Analysis (OBIA). The object-based approach is
essential for more advanced image analysis. The combination of vector representation with
raster values is very advantageous because it combines the best from both worlds.

Even though the OBIA is still perceived as a product of software eCognition [54]. The
OBIA principle can be applied in GIS as well. The term segmentation is quite loose,
therefore all the previously mentioned remote sensing principles like fuzzy membership,
or thresholding, can be turned into segmentation. There are many other ways how to
perform segmentation in GIS. One of them is distance allocation even though it was not
primarily intended as a segmentation tool. It uses pixel values to assess the neighbourhood
and decides to which segment it belongs. In GIS is quite common to repurpose tools and
functions an apply them to a di�erent task, as long as the math behind can derive the desired
result. Distance allocation, similarly to the region growing, uses seed points, or maybe more
precisely; destinations. The segments are created according to the distance among the
seed points (destinations). It can also take into account true surface distance, along with
horizontal and vertical cost factors. In such a manner, we can achieve a segmented image
by allocating distance over surface raster. Detailed description of how fuzzy membership,
thresholding, or distance allocation can be used for segmentation can be found in Chapter
3.

2.3.5 Morphology

While working with the imagery at the object (segment) level, the morphological behaviour
of an object is vital for a deeper understanding. Morphological properties like area, shape
length, minimum bounding geometry, compactness, rectangularity and circularity, helps us
to understand objects in a far broader perspective. Such properties can be easily calculated
from elemental geometry properties. In GIS, every object has at least a shape and an area.
Given a particular object, we might study its characteristic features to observe patterns in
its behaviour. Based on the behavioural patterns, it is much easier to determine the class of
a particular object.



CHAPTER 2. THEORETICAL BACKGROUND 15

2.4 Deep Learning

As mentioned earlier, DL is a subset of broad AI and ML family [51]. The hierarchy goes in
this particular order: AI, ML, DL, ANN, CNN, R-CNN. The �eld of DL is extremely broad.
Therefore, for this thesis, it is narrowed down to just CNN. More precisely, it is narrowed
down to R-CNN, even more precisely to the Mask R-CNN.

Figure 2.9: Hierarchy of Arti�cial Inteligence

2.4.1 Computer Vision and Convolutional Neural Networks

The following lines are devoted to the application of CNN on imagery in the computer
vision �eld, although CNN are applied in other �elds as well, for instance, natural language
processing, automatic speech recognition, or other �elds using data with grid-like topology.
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This thesis is focused on the implementation in remote sensing. Computer vision deals
with how the computer �sees� the information in imagery, unlike the human eye which
transfers the visual information to the brain where the brain analyses and perceive the visual
input as an outer environment with several categorised objects, the computer sees just an
array of meaningless pixel values. Computer vision must, therefore, train the computers to
understand and interpret the visual input. Using deep learning approaches, the computers
are capable of identifying and classifying objects. First, the computer is looking for low-level
features such as curves and edges, and afterwards it constructs higher abstract clue across
a series of convolutional layers [2]. A gneneralised scheme of computer vision using neural
network can be seen in Figure 2.11.

The fundamentals of CNN are biologically related. The inspiration comes from the visual
cortex of the brain. Biological fundaments of CNN are based on Hubel and Wiesel's research
on the vision of mammals [31]. The visual cortex has small groups of cells. Each group is
sensitive to a particular part of an object. What is more, it could also react to the pattern
of the visual input, i.e. orientation of the edges. They found that all neurons in the visual
cortex are organised into columns and the combination of information from each neuron
could produce visual interpretation. The principle of human vision can be seen in Figure
2.10.

Figure 2.10: Human vision [40]

Figure 2.11: Computer vision example, illustrative scheme of neural network. [6]
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The structure of CNN is organised into several layers. Each layer performs a di�erent
function. Layers are listed and brie�y described in the following section, as well as their
purpose and functions. Recommended source of more detailed literature can be found in [2].

2.4.1.1 Convolutional Layers

Convolution in geomatics is usually referred to as kernel which is a window of prede�ned
size. The kernel is sliding or convolving, over the input raster. Pixels in the kernel are called
the receptive �eld. The receptive �eld is multiplied by kernel �ler values and returns one
matrix element. This is done for every single location. The output array is called a feature
map, or activation map. Dimensionality depends on the number of channels, which means
that for the input with three channels, there are three feature maps [2]. If the original input
was of size X by X, the feature map output would be (X � kernel width + 1) by (X � kernel
height + 1) [43]. The reduced size also prevents the network from over�tting. This was the
�rst convolutional layer.

Figure 2.12: Kernel [43]

So far only one �lter has been applied. Each �lter is a feature identi�er for a single
purpose. The deeper we go, the more complex the �lter is. The most basic �lters are usually
edge-detecting �lers, etc. The output of the �rst layer is the feature map with low-level
features. This serves as an input for another layer. The output low-level features from the
�rst layer are connected through all channels. The output of the second layer is therefore
connected to all previously detected features [2]. So, the output of the second layer provides
us with higher-level features [25]. This goes on and on, depending on the number of di�erent
types of �lters. Again, the deeper the layer, the higher the level of a feature.

2.4.1.2 Recti�ed Linear Unit (ReLU) Layers

The output of the ReLU layer is a recti�ed feature map. It applies a non-saturating activation
function: f(x) = max(0,x). It removes negative values from the feature map by replacing
them with zero. It increases non-linear properties [42].
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2.4.1.3 Pooling layers

The pooling layer has nothing to do with learning. Its main purpose is to either down sample
or up sample the input size [2]. Therefore, they are also called subsampling layers. Again,
the kernel is used for this purpose. The level of sampling is dependent on two parameters:
the kernel size, and the stride (sliding step). The size reduction is usually done within the
convolutional layers as well, although, the use of pooling layers is still bene�cial because they
do not cause the growth of parameters and since the detail is reduced, they lower the threat
of over�tting [51]. A very common example of such a layer is the pooling with max-pooling
function. The function extracts the maximum value from the kernel over the receptive �eld.

2.4.1.4 Normalization layers

These layers tackle an issue with sensitivity of deeper layers since they are highly dependent
on the lower layers. Such an issue is called covariate shift. It could be resolved by lowering
the learning rate, but that would make the training drastically slower. The computation in
normalisation layers is done by using batches of training samples. This means that instead
of one sample, several samples are processed at the same time. Such improvement reduces
the computational steps and makes the training faster [43] because the learning rate can be
higher.

2.4.1.5 Fully connected layers

All the neuron layers are connected to the neurons from previous layers. The main purpose
of fully connected layers is to output classi�cation vector from a high-level feature map.
The classi�cation vector represents a level of belonging to every single class [2]. The fully
connected layer then backtracks every single neuron layer related to a particular high-level
feature map and looks for the highest correlations to classes. Based on the highest correlation,
the feature is assigned to a particular class.

2.4.2 Mask R-CNN

Mask R-CNN was proposed in 2017 by the FAIR team [28]. As previously mentioned,
Mask R-CNN is the fourth generation of region-based convolutional neural network (R-
CNN). It was built on top of the Faster R-CNN, which was the previous generation of
R-CNN. The latest version is capable of instance segmentation. The Mask R-CNN method
is therefore capable of deriving precise shapes of detected objects. It is also frequently known
as mask prediction. Hence, the Mask R-CNN method is a great candidate for remote sensing
application. The general architecture of CNN was described in the previous section. This
section aims to describe the architecture of Mask R-CNN in particular. The architecture
schema can be seen in the Figure 2.13. Further, the process within the network is described,
as well as the key components. This section is using FAIR's paper as main reference [28].
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Figure 2.13: Mask R-CNN scheme [28]

Before we dive deeper into the architecture, we need to understand the underlying
processes. Each such process is described, and the hierarchy is shown in Figure 2.14.
Semantic segmentation is probably the most important one. It was already mentioned
earlier as the biggest advantage of Mask R-CNN. It is a process composed of two di�erent
phases. The �rst phase is object detection. This means �nding and classifying objects in
an image within labelled bounding boxes. The other phase is a semantic segmentation. It
is a classi�cation approach on a pixel-to-pixel level. Thanks to the semantic segmentation,
we can delineate a precise boundary of each object [28]. Combing both phases, we get the
instance segmentation. The semantic segmentation is detection, classi�cation, and delination
simultaneously.

The object detection comes �rst and the instance segmentation afterwards. Region
proposal network (RPN) is the part of the network responsible for the bounding box of
an object. Since we have the bounding box of an object, we need to assign the class to the
object, otherwise, we would have a detected object without knowing what kind of object it
is. That is where the Region of interest Align (RoIAlign) takes place. Region of interest
(RoI) is the detected object with a bounding box and class label on it. The RoIAlign is
a pooling layer which takes RoIs from the feature map and down samples them into �xed
size feature map. Align in the name means that unlike other pooling layers, the RoIAlign
does not quantise the stride number. What usually happens is that the stride does have
a remainder after division by kernel size. In that case, the number would be rounded o�,
which would mean loss of an information [28]. RoIAlign simply does not do that.

The object is now detected and the label is assigned. What is left is the delineation of
the mask. A component used for that is the Fully Convolutional Network (FCN) described
in [39]. The FCN is responsible for the semantic segmentation of every single RoI. The
FCN uses CNN to transform image pixels into pixel categories. The key feature of the
convolutional layer in FCN is the ability to retain spatial information. It is a substitution of
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the fully connected layers.

Figure 2.14: Hierarchy of processes of Mask R-CNN. Stage1 is a backbone architecture, and
Stage2 is a head architecture [64]

In the network architecture, we di�erentiate between the convolutional backbone architec-
ture and network head. Because the backbone architecture is not given to the Mask-RCNN,
there are several possibilities on how to build up Mask-RCNN-based model. The backbone
architecture is used for feature extraction, example in Figure 2.14 (Stage 1). The head is
what makes the Mask R-CNN. The function of the head is to recognise the bounding box,
assign a label, and predict mask for each RoI. The head architecture can be seen in 2.15 or
in 2.14 (Stage 2).
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Figure 2.15: Head architecture of Mask R-CNN[28]

A backbone model in this thesis is the residual neural network (ResNet) described in [29].
More precisely, it is 34 layer deep model that was pre-trained on the ImageNET dataset with
more than a million images [21]. Therefore, it is a precon�gured neural network. The process
where the pre-trained model is used for training the new model is called transfer learning.

2.5 Software

The thesis proposes two di�erent models for single-crown-detection and single-crown-delineation.
The word model is used because both are using an input which is automatically processed
and the output is returned. Such models are widely used in GIS. You can think of the model
as a series of processes or self-standing tools combined in a hierarchical order. Since the
model does not have its own graphical interface, it requires a graphical interface form GIS.
This is in the form of either a code written in Python programming language, or diagram-
alike form editable in the model builder environment.

Although, the tasks are mainly remote-sensing-related, the models were created in GIS.
There is a variety of software specialising in remote sensing tasks. Some of these can deliver
high-quality results. It is the versatility of the tools and �uency of transfer between raster
and vector representation that make the GIS software advantageous. Plus, each year the
GIS tools are becoming more and more specialised in the remote sensing �eld, regardless of
the fact that strictly remote-sensing software provides �single� functionality. What is more,
the high-end remote sensing software is usually quite expensive. GIS can cover most of the
tasks of geomatics at once. Of course, this statement is greatly generalised and it depends
on each user. This thesis used an ArcGIS pro platform for both models, which in terms of
cost does not make much of a di�erence, but it is probably the most commonly used software
in geomatics out there. There are several third-party dependencies listed below.
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� ArcGIS pro 2.5 [17]
ArcGIS pro is Geographic Information System by Esri.

� Python 3 [48]
Python is a programming language.

� Conda [5]
Conda is an open-source package management system and environment management
system.

� Tensor�ow [53]
Tensor�ow is an end-to-end open-source machine learning platform.

� Keras [36]
Keras is a deep learning application programming interface.

� PyTorch [23]
PyTorch is an open-source machine learning framework.

� fastai [30]
Fastai is deep learning library.

� scikit-image [59]
Scikit-image is a collection of algorithms for image processing.

� Pillow [12]
Pillow is a Python imaging library.

� LibTIFF [61]
LibTIFF software provides support for the Tag Image File Format (TIFF).



Chapter 3

Methods

3.1 GIS-based Model

There are three general tree classes used in this section. The �rst one represents the self-
standing trees. The other two classes represent three clusters which were processed di�erently
than the �rst class. The cluster classes were dense vegetation, and inner yards and street
vegetation. Such a division was based on the most common forms of vegetation in the
urban environment. The GIS model is composed of six phases: pre-phase, delineation of
self-standing trees, delineation of dense vegetation and parks, delineation of inner yards and
street vegetation, re�nement, and classi�cation. Each phase is described in a detail in the
following section.

3.1.1 Pre-phase

Canopy Height Model
CHMwas used in most studies described in the Literature section. This thesis is no exception.
First, the DTM with buildings was resampled from 1 meter pixel size to 0.25 meters pixels
size. The reason was to match the resolution of the DSM. Second, the DTM was subtracted
from DSM (with buildings) using map algebra, see Figure 3.1.

Figure 3.1: Map algebra - Canopy Height Model

23
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Vegetation Mask
The vegetation mask took an advantage from the NIR band. It was extracted using a
combination of two vegetation indices. The �rst was normalised di�erential vegetation index
(NDVI), and the second was a modi�cation of Red-Edge Triangulated Vegetation Index [26].
Therefore, it is referred to just as vegetation index no 2 (VI2).

NDV I = NIR−Red
NIR+Red [50]

V I2 = 100 ∗ (NIR−Red)
10 ∗ (NIR−Green)

Both indices complement each other. The VI2 is more e�cient in areas where NDVI lags
behind, and vice versa. For instance, VI2 is generally less sensitive to shadows. Application
of both indices yielded in better results. Both indices combined performed better than just
one of them.

Figure 3.2: Comparison of vegetation indices. NDVI (up), VI2 (down)
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Both index rasters were transformed into 0 to 1 scale. Each raster represented fuzzy
membership, i.e. strength of membership in vegetation class. To achieve that, MSLarge
fuzzi�cation algorithm driven by u(x) function was used. This algorithm is useful when the
large input values have a higher membership [20]. This was the case in both rasters.

u(x) = 1 − b ∗ s
x− (a ∗m) + (b ∗ s) [20]

Where: x is a pixel value; m is the mean pixel value of the raster; s is the standard deviation
of all pixel values from the raster; a is a multiplier (parameter) of the mean; b is a multiplier
(parameter) of the standard deviation. Both multipliers were assigned to 1, so the weights
were equal

As the next step, the fuzzy overlay was used. Fuzzy overlay analyses the memberships
of multiple sets. This tool combines input data based on the selected fuzzy type. Fuzzy
type OR returns the maximum value of a particular cell from both fuzzy rasters. Setting
the threshold of a greater value or equal to 0 allowed to create a binary mask.

The mask was �ltered by the majority �lter to remove noisy pixels according to the
majority of values in their neighbourhood. The boundaries of the mask were cleaned by the
boundary clean tool. The result was a �ltered binary mask. The last step of the pre-phase
was to convert the �ltered binary mask raster into a polygon. Morphological closing was
performed to create a more circle-like shape representation. By simplifying the polygon,
we achieved a hole-less and less morphologically opened polygonal representation of the
vegetation.

Figure 3.3: Morphological closing

3.1.2 Self-standing Trees

First Delineation
When the vegetation mask was created, there were many trees already delineated, mostly in
the area of arti�cial surface. They were excluded from further processing. Such a polygon
was considered either a self-standing tree or a cluster of trees. The decision was based on
three morphological criteria: (a) compactness [27], (b) area, (c) average zonal height. In the
�rst step, the compactness attribute of each polygon was calculated.
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Compactness = shape length√
shape area

Threshold values were observed and set in the next step. Polygons below the threshold
value of compactness and area were excluded. In the other step, the average zonal height
was calculated for each polygon. Again, the threshold value was set and only polygons above
were considered. The following thesholds were used: compactness ≤ 4, area < 200 m2, zonal
height ≥ 1.5 m.

Second Delineation
The heights greater than 2 meters were extracted from the vegetation mask in this subphase.
It allowed to create the high vegetation mask. From this point, everything within the high
vegetation mask was considered the tree class. Further splitting was always done on top of
this mask. By excluding grassy areas and small shrubs, new potential self-standing trees were
delineated because the trees growing on the grassy area could not be detected before. The
second delineation was performed similarly to the �rst one except for a couple of changes.
The selection was based the minimum bounding rectangular geometry of each polygon. As
long as the side ratio of the bounding rectangle was within the threshold (≥ 0.8, ≤ 1.2),
the polygons passed through. The area was also then taken into account (< 200 m2 ). The
rectangularity attribute was a bit milder in terms of compactness, therefore it detected even
the crowns which did not go through the �rst subphase. The compactness with slightly
milder threshold (≤ 6) was used to exclude objects with inappropriate shapes.

Figure 3.4: Morphologically correct shape

Third Delineation
The third subphase was just an extension of the �rst and the second subphase. Its main
purpose was to detect remaining single trees which did not go through the previous subphases.
It was mostly the circle-like shapes, but with rough edges. Therefore, the attribute of
circularity was used in the third subphase. The circularity was de�ned as the percentage
ratio of the polygon feature and the area of a minimum bounding circle. Polygons with the
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circularity value lower than 65% were excluded, as well as the polygons with a greater area
than 200 square meters.

Figure 3.5: Circular shape with rough edges

3.1.3 Dense Vegetation

So far, only self-standing trees were delineated. This was the �rst phase focused on tree
clusters. It was focused on large areas with dense vegetation such as parks and urban
forests. The threshold value for a polygon to be treated as a dense vegetation cluster was
a minimum area of 3000 square meters. These were probably the most complicated areas
because there were various kinds of trees of various shapes and heights. The tree crowns were
often interconnected, what made the solution more complicated. The main idea behind the
GIS model in this thesis was to treat the single-crown-detection as a hydrological analysis
and single-crown-delineation as a segmentation based on distance allocation.

The treetops had to be detected �rst, therefore the CHM had to be converted into a
hydrological model where water cumulates in "pits". But �rst, the CHM had to be down
sampled because the resolution was too high and there was too much detail, otherwise it
would have caused over-segmentation in the next steps. Thus, it had to be resampled to
reduce the complexity of trees. Di�erent pixel sizes were tested. The best-�tting pixel size
was observed from statistics and it was empirically veri�ed. A pixel size of 0.75 meters was
selected for dense vegetation. The CHM model was then multiplied by (-1) to create negative
CHM (nCHM), i.e. hydrologically alike surface. Using the focal �ow tool, a raster with �ow
accumulation was created. The highest values (255) represented potential treetops. In some
places, the treetops were too close to each other, which would have caused over-segmentation,
therefore the points within a distance tolerance of 1.5 meters were removed. Only one point
for each potential crown was left.

The treetops were one of three inputs for the distance allocation segmentation (DAS).
The other two inputs were cluster polygons serving as a boundary for the segmentation, and
the CHM as a surface raster. The inclusion of CHM to DAS proved to be bene�cial as it
derived a more reliable representation of a crown shape.
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Figure 3.6: nCHM and the process of DAS

3.1.4 Inner Yards and Street Vegetation

The third phase was divided into two subcategories. Using zonal statistics, the standard
deviation was calculated for each cluster left. Based on the assumption that the street
vegetation (trees along streets) has a lower standard deviation because it is usually planted
at once, which means the trees tend to have similar heights and are more likely of similar
shape. On the other hand, trees within inner yards, di�ered from each other much more,
thus the standard deviation tended to be higher. Thanks to such division, each category
could be treated at a di�erent scale. For the street vegetation, the size of the resampled pixel
was set to 0.75 meters, and for the inner yards, the pixel size was set to 1.5 meters. Both
values were assigned empirically and tested afterwards. Apart from the di�erent scales, the
method follows the same design as the previous phase, i.e. creation of the resampled nCHM,
application of the focal �ow, application of the point distance tolerance of 1.5 meters, and
application of the DAS.

3.1.5 Re�nement

All the delineated crowns were merged and the polygons were smoothed. The morphological
attributes were veri�ed again and polygons that did not meet the conditions were removed.
For each crown, attributes of height and crown diameter were calculated. Each crown also
carries coordinates of the tree trunk. The height was calculated as the maximum height value
of each polygon using zonal statistics on top of the CHM. For the crown diameter, a circular
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shape was assumed and was calculated from the crown area. The tree trunk coordinates
were computed as centroids of each crown.

3.1.6 Classi�cation

In the last phase, classi�cation was performed. The classes were divided into Tree Crowns,
which were already classi�ed from the previous phases. Other classes were Shrubs, Grass
Areas and Non-vegetation areas. Non-vegetation areas were FALSE values of the vegetation
mask. The remaining classes were extracted from the vegetation mask using height threshold
values: ≤ 0.5 m (Grass Areas), < 0.5 m ≤ 2 m (Shrubs). The result was a classi�ed polygonal
layer.

Figure 3.7: Classi�cation
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3.1.7 Model scheme
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Figure 3.8: GIS Model scheme

3.2 Mask-RCNN-based Model

The problem with the training data set for the deep learning was that it did not exist. No
available image dataset contains masked tree crowns. That was an issue for the training of
the Mask R-CNN model, therefore the masks had to be created from scratch. One option was
to create tree masks manually and spend days or even weeks by doing so. The other option
was to create an automated model for tree-crown-delineation. This was a more reasonable
choice, since the primary functionality of this model was to delineate crowns for the whole
city. Masks from the GIS model were used as an input for the training of the Mask-RCNN
model. In addition, the GIS model and the Mask R-CNN mask could have been compared
to each other.

3.2.1 Pre-requirements

Deep learning, in general, is very demanding on computing power, therefore at least 6 GB
of graphics memory is highly recommended. Mask-RCNN model was trained on NVIDIA
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Quadro P1000 with 4 GB of graphics memory, 640 cuda cores, and compute capability 6.1.
Even though the graphics memory was only 4GB, 640 cuda cores were su�cient enough.
Cuda cores are capable of parallel processing, therefore GPU processing is much faster than
the CPU, which has signi�cantly fewer cores. The GPU processing is compatible only with
CUDA-enabled GPUs, at least, in the ArcGIS pro (version 2.5) environment. Apart from
the powerful GPU, the training requires several third-party dependencies. The dependencies
were already listed and described in the Software section. The training also must have a
working environment. It is a cloned python environment with all the dependencies in it.

3.2.2 Training data set

Training of the Mask R-CNN requires a lot of data, usually the more the better. The
training data set in the case of Mask R-CNN consists of class training samples, called image
chips. Each chip can contain one or more objects. Each chip has a raster label of the same
extent that contain mask on existing object/objects. The format of the output metadata
RCNN_Masks is based on Feature Pyramid Network (FPN) and a ResNet backbone [18].

Figure 3.9: Training chips (Left) and masks (Right), each object within one chip has its mask
and the di�erent shades of red represent di�erent objects. The training dataset consists of
training and validation samples.

The input raster for training set must be an 8bit raster with 3 bands and a polygon
or raster with masks representing the particular class [21]. In this thesis, the raster was
composed of three 8bit int unsigned bands: NDVI, VI2, and CHM (Figure 3.10). Such
a combination was chosen because it contained more information than a regular CIR. The
NDVI and VI2 were already created from three bands and on top of that, the CHM could have
been included as well. The polygon was derived from the GIS-based model. It is based on the
following sentence: �What you see is what you get�. This means band combinations where
the objects are easily distinguishable for the human eye, will more likely be distinguishable
for computer vision as well.
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Figure 3.10: Composite of NDVI, VI2, and CHM

The training data set consists of three areas from the entire city, see Figure 2.4. Each
area had a speci�c type of urban vegetation. The tree masks were delineated using the GIS
model. For each area, the training data sets were exported separately and then merged. The
reason was that the data had to be continuous within each data set. There were 38 510 of
trees on 68 780 image chips in the .TIFF format at the end. The parameters used were tile
size X = 256 pix, tile size Y = 256 pix, stride X = 128 pix, stride Y = 128 pix, rotation
angle = 0 degrees.

3.2.3 Training Mask-RCNN model

The training uses PyTorch deep learning framework [18]. The input is the training data
set from the previous section. There are several parameters which a�ect the training phase.
The maximum number of epochs a�ects how many times the dataset passes forward and
backwards through the neural network. The number of epochs was set to 20. Another
parameter which drastically a�ects the duration of training is a batch size. The batch size is
the number of training samples processed at the same time. The graphic card used for the
training could not apply a higher value than 2. With a more powerful GPU, the training
would have been much faster. The time needed for training was almost four days with the
ResNet 34 precon�gured backbone model. The other possible option for backbone model
was ResNet 50 which is 50 layers deep. The ResNet 34 is 34 layers deep [21]. Another
parameter is the learning rate, which is a rate of overwriting the old information with the
newly acquired information. The optimal learning parameter was extracted automatically
from the learning curve during training. The last parameter is the validation percentage.
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Based on the set value, the percentage of the training sample is used for validation. The
value was set to 10%. The output folder contains training statistics and model de�nition
JSON �le. A path to the trained binary deep learning model and a path to the Python
raster function for object processing is stored in the model de�nition �le. The parameters
used are listed below.

� Max epochs = 20

� Batch size = 2

� Backbone model = Resnet 34

� Validation = 10%

The model is considered trained usually after the training stops improving. The model is
gradually improving with the increase epochs to a certain point where the improvement is
no longer perceptible. It is also common that the improvement starts decreasing after some
time, which is not in our interest. In ArcGIS pro, the model is considered trained after the
validation loss stops improving for 5 epochs [18]. The validation loss is based on the 10% of
training samples which were set aside for validation. Validation loss is a function comparing
the training and validation set. ArcGIS pro documentation does not provide the exact loss
function used. The reached loss is drawn into a graph with processed batches, see Figure
3.11. The decision whether the model was properly trained or not had to be considered on
two levels since the training data is derived from the GIS model, i.e. not 100% accurate.
So the assessement form ArcGIS pro's graph had to be veri�ed on ground truth data. The
accuracy assessment is described in Section 3.3.

Figure 3.11: Output model statistics from ArcGIS pro's framework
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3.2.4 Running Mask-RCNN model

Since we have the trained model, it can be used for object detection. The input parameters
are input raster, a path to the �le where to store detected objects, model de�nition �le,
model arguments, and the non-maximum suppression. The output layer is a polygonal
representation of delineated tree crowns. Each crown has a con�dence attribute, i.e. from 0
to 1 of the membership probability. The non-maximum suppression chooses the object with
higher accuracy when two or more detected object overlap, the maximum overlap ratio can
be speci�ed. The model arguments are then padding size, batch size, con�dence threshold,
and return bounding box. The padding is the pixel window size added to an image chip
when processing by the kernel. The batch size is how many chips are being processed at
once. The con�dence threshold is the threshold value for each potential detected object.
The objects of lower con�dence than a threshold are not in the output. The bounding box
parameter (TRUE/FALSE) decides whether we want the output of bounding boxes or the
precise shape of an object [19]. The parameters used are listed below.

� Padding = 56

� Batch size = 4

� Con�dence threshold = 0.9

� Return bounding box = FALSE

� Non-maximum suppression = 0.2

3.3 Accuracy Assessment

The accuracy assessment was processed by the method from [38]. The methodology presented
by the authors used a combination of Precision and Recall assessment criteria. The assessment
in this thesis was extended for Quantity match criterion. The overall accuracy is then
calculated as an average of all three assessment criteria. The criteria were computed from
the following variables: (1) The number of crowns in the ground truth was the total number
of ground truth samples; (2) The number of all detected crowns was the total number of
detected crowns in a particular area; (3) The number of correctly detected crowns was based
on the centroid position of the ground truth crowns. If the detected crow was intersected by
just one centroid for the ground truth, the detected crown was considered correct.

Quantity Match = (2) The number of all detected crowns
(1) The number of crowns in the ground truth

Precision = (3) The number of correctly detected crowns
(2) The number of all detected crowns

Recall = (3) The number of correctly detected crowns
(1) The number of crowns in the ground truth
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Overall Accuracy = Quantity Match+ Precision+Recall
3

Because the accuracy assessment was based on validation with ground truth data, the
validation data was manually delineated from three representative areas. Each area represented
di�erent kind of urban vegetation: (A) Dense vegetation, (B) Parks, and (C) Street vegetation
and inner yard vegetation. There were over 1 300 manually delineated crowns.

Figure 3.12: Ground truth validation areas; (A) Dense vegetation, (B) Parks, and (C) Street
vegetation and inner yard vegetation
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Results

Delineated crowns from both models were compared with the ground truth data. The
comparison was based on the results from the accuracy assessment. Mask R-CNN Model
with crowns of con�dence higher than 80% was the best one. The overall accuracy reached
81%. The same model with crowns of con�dence higher than 90% �nished in the second
place. The overall accuracy reached 77%. GIS model ended up with 72% overall accuracy.
These values are an average value from the overall accuracies from all three validation areas,
see Table 4.3. The total number of detected crowns is in Table 4.1 and the overall accuracy
from each area in Table 4.2. Comparison of both models in all three areas can show Figures
4.1, 4.2, and 4.3. The results are further discussed in Chapter 5.

Table 4.1: Accuracy assessment: Number of detected trees
Dense Vegetation

Model Ground Truth Detected Corectly Detected

GIS 291 247 175
Mask R-CNN 90% 291 240 202
Mask R-CNN 80% 291 264 218

Park
Model Ground Truth Detected Corectly Detected

GIS 389 322 248
Mask R-CNN 90% 389 336 280
Mask R-CNN 80% 389 361 298

Inner Yards and Street Trees
Model Ground Truth Detected Corectly Detected

GIS 678 562 395
Mask R-CNN 90% 678 569 413
Mask R-CNN 80% 678 648 446

36
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Table 4.2: Accuracy assessment: Accuracy percentage

Dense Vegetation
Model Quantity Match Precission Recall Overall Accuracy [%]

GIS 0.85 0.71 0.60 72
Mask R-CNN 90% 0.82 0.84 0.69 79
Mask R-CNN 80% 0.91 0.83 0.75 83

Park
Model Quantity Match Precission Recall Overall Accuracy [%]

GIS 0.83 0.77 0.64 75
Mask R-CNN 90% 0.86 0.83 0.72 81
Mask R-CNN 80% 0.93 0.83 0.77 84

Inner Yards and Street Trees
Model Quantity Match Precission Recall Overall Accuracy [%]

GIS 0.83 0.70 0.58 70
Mask R-CNN 90% 0.84 0.73 0.61 72
Mask R-CNN 80% 0.96 0.69 0.66 77

Table 4.3: The average overall accuracy
Model Overall Accuracy [%]

GIS 72
Mask R-CNN 90% 77
Mask R-CNN 80% 81
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Figure 4.1: Ground truth (Orange) validation in the dense areas with the delineated cronws
(Black) from: (A) GIS Model, (B) Mask R-CNN 90%, and (C) Mask R-CNN 80%
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Figure 4.2: Ground truth (Orange) validation in the park areas with the delineated cronws
(Black) from: (A) GIS Model, (B) Mask R-CNN 90%, and (C) Mask R-CNN 80%
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Figure 4.3: Ground truth (Orange) validation in the street and inner yard areas with the
delineated cronws (Black) from: (A) GIS Model, (B) Mask R-CNN 90%, and (C) Mask
R-CNN 80%
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Discussion

The highest overall accuracy of 81% may not seem like the best at �rst sight. However, it is
especially important to mention factors that contributed to this result. First of all, the Mask
R-CNN model is based on training data that are already loaded with a certain error of the
GIS model. So, instead of 100% correct data, the training is based on a prediction of correct
data. This fact is not ideal, however, it is inevitable if we do not have a large data set with
100% correctly masked trees. This approach seemed to be the most feasible and con�rmed
the assumption that this method can produce more accurate results than the original data
that even if the training does not use 100% correct data. This is a very valuable �nding.

In general, if the data represents distorted reality, then the result will also be a partially
distorted representation of reality. An example of this phenomenon, and at the same time
another factor, were the input TO data. Because the process of their creation is automated,
sometimes the quality of the original input is signi�cantly reduced. The buildings that were
transferred to the TO left their original parts in their original locations, therefore a false
image parts and height data appeared. In some cases, some trees were partially or completely
�ltered out due to automated processing, i.e. Figure 5.1. As a result, the mentioned places
did not behave like trees anymore, thus, could not be detected. Sometimes, the building
"leftovers" cause a wrong representation of tree height as an attribute.

Another factor of assessing the accuracy was the human factor. The collection of validation
data was not based on �eld measurements. Regardless of the e�ort, it is theoretically possible
that in some cases the ground truth data was also burdened by human error. This factor
was not considered to make the assessment possible.

Understanding external in�uences have a major impact on understanding overall accuracy
as such. So it's not always just the �ne-tuned parameters and attributes that lead to the
correct result. Since the model was designed for detection of the trees of such a complex
and diverse nature, regardless of all the negative in�uences, the �nal score of 81% is indeed
success. In addition, it is a great starting point for further research.

41
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Figure 5.1: Mistakes in the DSM. Clearly visible trees from the CIR imagery (Left),
completely �ltered out trees form the DSM (Midle), and the image from the street (Right).

5.1 Improvements and further research

The main purpose of the models in this work was to be able to detect individual trees
throughout the city of Prague. It will be possible to train the model on more data and
deterrmined crowns with the incresing data volume, therefore the Mask R-CNN model can
be even more robust. It pays for the cases when a deep-learning-based model for a particular
purpose is processed. It can also be used as a base model for training of a model with similar
purpose.

Furthermore, a certain area could be mapped in more detail for better veri�cation. The
models' accuracy could then be judged more accurately.

The obtained tree crowns have great potential in long-term studies of vegetation condition
and development. With the help of detected crowns, it is possible to monitor, for example,
the state of vegetation during drought and its development in recent years. This study can
also be done retrospectively thanks to a huge amount of freely available satellite data. For
example, it would be possible to map Prague's vegetation and its development over the last
ten years in individual months. From the imagery, it would then be possible to observe trend
development and predict the future state.



Chapter 6

Conclusion

Author of this thesis designed and implemented two methods for single-crown-detection
and single-crown-delineation. The �rst method used GIS-based tools and remote sensing
techniques composed into an automated process. The other method was based on deep
learning techniques using Mask R-CNN neural network framework. The process of implemen-
tation and training was described. Both methods were tested in a case study delineating
crowns in the city of Prague, in the Dejvice district. The accuracy assessment using ground
truth data was designed and described. The Mask R-CNN based method achieved a higher
overall accuracy of a decent 81%. The GIS-base method achieved a 72% overall accuracy.
The Mask R-CNN based method proved its potential in vegetation-related studies and remote
sensing �eld in general because it outperformed the GIS Method, which represented a more
traditional approach in current remote sensing.
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Appendix B

GIS Model

The GIS model toolbox, as well as, the python code are stored on attached USB �ash drive.

GIS Model Toolbox:

� GIS Model Toolbox: GIS_Model_Toolbox\Detekce.apx

� GIS Model Script: GIS_Model_Toolbox_code\Detekce.py
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Appendix C

Deep Learning Environment Setup

The following lines of conda comands are necessary to be able to work in deep learning
environment. Following third-party dependencies are compatible with ArcGIS pro 2.5.

� conda create �pre�x %PATH%\deeplearning �clone arcgispro-py3

� activate %PATH%\deeplearning

� conda install tensor�ow-gpu=1.14.0

� conda install keras-gpu=2.2.4

� conda install scikit-image=0.15.0

� conda install Pillow=6.1.0

� conda install fastai=1.0.54

� conda install pytorch=1.1.0

� conda install libti�=4.0.10 �no-deps

� proswap deeplearning
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Appendix D

Mask R-CNN Model

The trained model is stored on attached USB �ash drive in model folder: Mask_RCNN.

Files:

� __pycache__\ArcGISInstanceDetector.cpython-36.pyc // Compiled python script

� ArcGISInstanceDetector.py // Python raster function

� Trained.DLPK // Trained Model

� Trained.EMD // Esri Model De�niton �le

� Trained.PTH // Path to the trained model
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