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Abstract

The thesis contributes to fine-grained recognition of plant and fungi species from images,
ranging from scans and photos of leaves and bark taken in controlled conditions to un-
constrained observations of plants and fungi “in the wild” with complex background and
clutter in the scene. The constrained tasks of bark and leaf identification are approached
as a texture recognition problem. For more complex species recognition tasks with large
scale datasets available, we take a deep learning approach. In many instances of the
species recognition problem, test-time categorical priors differ from the training set. We
address the problems of adjusting outputs of probabilistic classifiers to new priors and
estimating the new priors. In particular, we note that training a neural network by cross
entropy minimization leads to a model whose outputs should be an estimate of the poste-
rior probabilities. We experimentally validate related statistical properties of the outputs
of Convolutional Neural Network (CNN) classifiers. For estimation of test-time categorical
priors, a Maximum Likelihood estimation approach is compared with a proposed Maxi-
mum a Posteriori estimation, adding a hyper-prior favouring dense prior distributions. We
show that adding such hyper-prior increases the reliability of the estimate and increases
the classification accuracy in several fine-grained classification tasks.

The proposed texture recognition method, Fast Features Invariant to Rotation and
Scale of Texture (Ffirst), achieved excellent results in leaf and bark classification, as well
as in standard texture classification. The deep learning approach presented in the thesis
has scored first in several species recognition competitions on “in the wild” plant and fungi
identification, where the views of the observed specimen vary significantly and the difficulty
is increased by occlusions and background clutter. The results confirm the benefits of
practices such as combining predictions from an ensemble of models, filtering potentially
noisy data, data augmentation, and using the moving averages of the trained variables.
An experimental comparison with human experts in plant identification shows that the
best ensembles of deep CNNs reach the human expert accuracy in image-based plant
identification. The competition-winning model for fungi recognition is applied in a citizen-
science project and assists the collection of fungi observations, valuable for several research
fields including mycology and biodiversity research.
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Abstrakt

Tato práce se zabývá rozpoznáváním druhů rostlin a hub z obrazu, od rozpoznávání skenů
a fotografií listů a kůry v kontrolovaných podmínkách až po neomezená pozorování rostlin
a hub “ve volné přírodě” s komplikovaným pozadím a změtí různých objektů ve scéně.
Rozpoznávání kůry a listů jsme řešili pomocí rozpoznávání textury. Ke složitějším úlo-
hám rozpoznávání druhů rostlin a hub s velkým množstvím trénovacích dat jsme použili
hluboké učení neuronových sítí. V úlohách rozpoznávání druhů se apriorní pravděpodob-
nosti tříd na trénovací a testovací sadě často liší. Věnujeme se problémům přizpůsobení výs-
tupů pravděpodobnostních klasifikátorů novým apriorním pravděpodobnostem a odhadu
těchto pravděpodobností. Poukazujeme, že učení neuronové sítě minimalizací křížové en-
tropie vytváří model, který by měl odhadovat aposteriorní pravděpodobnosti. Experimen-
tálně ověřujeme některé statistické vlastnosti takových modelů. Pro odhad nových apri-
orních pravděpodobností porovnáváme metodu maximální věrohodnosti (MLE) a navržený
přístup metodou Maximum a Posteriori (mAP), v níž přidáváme hyper-prior upřednostňu-
jící pravděpodobnostní rozdělení bližší rovnoměrnému rozdělení. Ukazujeme, že takový
hyper-prior zvyšuje spolehlivost odhadu a přesnost klasifikace na několika klasifikačních
úlohách. Navržená metoda pro rozpoznávání textury, Fast Features Invariant to Rota-
tion and Scale of Texture (Ffirst), dosáhla vynikajících výsledků v klasifikaci listů a kůry,
jakož i ve standardním rozpoznávání textur. Hluboké konvoluční sítě prezentované v této
práci se umístily na prvním místě v několika mezinárodních soutěžích v automatickém
rozpoznávání druhů rostlin a hub “ve volné přírodě”, s různorodými pohledy na sledované
jedince, často s překryvem a komplikovaným pozadím. Výsledky potvrzují výhodnost pos-
tupů jako jsou kombinace predikcí souboru několika modelů, filtrování potenciálně chybně
anotovaných dat, rozšiřování (augmentace) dat, nebo používání plovoucího průměru tréno-
vaných proměnných. Experimentální porovnání s lidskými experty v rozpoznávání rostlin
ukazuje, že nejlepší soubory hlubokých neuronových sítí dosahují v rozpoznávání ros-
tlin z obrazu přesnosti lidských expertů. Model, který vyhrál soutěž v automatickém
rozpoznávání hub, byl aplikován do projektu občanské vědy (citizen-science), kde asistuje
při sběru dat o pozorování hub, důležitých pro řadu oborů jako např. mykologie či výzkum
biodiverzity.
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CHAPTER 1

Introduction

The aim of this thesis is to study, develop, and apply computer vision and machine learning
algorithms for automating identification of plants and fungi from images – photos or scans.

Recognition of natural objects in their natural environment has been of great impor-
tance for the humankind since time immemorial. The skills of plant, fungi and animal
species identification were crucial for survival throughout the human history: Until ap-
proximately 12 000 years ago, virtually all humanity lived as hunters and gatherers [113]
for whom foraging was the only source of food. Recognizing edible species from poisonous
species or identification of dangerous predators was a matter of life and death. The transi-
tion from forager to producer societies, enabled by plant and animal domestication, known
as the Neolithic revolution, caused a major demographic shift [16]. Agriculture and its con-
tinuous improvement allowed demographic growth from around 6 million individuals [14]
at the beginning of the transition to agriculture to around 7.7 billion today [36]. Without
the basic human skill of plant and animal identification, the great shift towards producer
societies would never be possible.

Precise identification of plant and fungi species is still important for many areas of
human activity other than agriculture. For example, herbs have been used for medical
purposes since the prehistoric times. Chemicals derived from herbs and other plants, phy-
tochemicals, are commonly used by modern pharmaceutical industry. Textile and cosmetics
industries have traditionally heavily relied on specific plant species. More recently, species
incidence and biodiversity observations have been used to study different environmental
factors [24], including climate change [47]. Such studies heavily rely on the collection of
data on appearance and occurrence of species and annotations of such data, often with
the help of citizen scientist communities [46, 86]. Recent publications stress that tens of
thousands of plant species are currently threatened with extinction [38,191].

The scientific approach to describing living nature lead biologists to grouping indi-
viduals into species, organizing them hierarchically into larger groups, and giving those
groups names. This theory and practice form the field of biological taxonomy [92], and
the categorization into taxa, i.e. groups of organisms, is commonly denoted as biological
classification. The modern systematics for grouping organisms and naming them with bi-
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Examples of traditional species identification handbooks and encyclopedias
[21,105,143]

nomial nomenclature1 is based on the works of Carl von Linné - Species Plantarum [120]
and Systema Naturae [121]. Contemporary biological taxonomies include enormous num-
bers of categories and species. For illustration, while von Linné’s Species Plantarum [120]
describes 5 940 plant species, currently the number of published and accepted plant species
is over 310 000 [27]. The seven main taxonomic ranks are: kingdom, phylum, class, order,
family, genus and species.

Assigning an observed specimen (organism) a species name is called species identifi-
cation. The traditional form of species identification relied on guidebooks. For example,
books with an identification key (see Figure 1.2) represent a decision tree, where each
question offers several answers leading to a lower level of the decision tree or directly to
a (candidate) species. In dichotomous keys, each question about the organism has two
possible answers (therefore dichotomous). Other popular forms of traditional species iden-
tification literature include encyclopedias and atlases of species.

Figure 1.2: Examples from an identification key for woody plants [106]: The identification
process starts from level questions (left) and ends with species identification (right).

1Binomial nomenclature is the two-term naming system: The first term – the generic name – identifies
the genus and the second term – the specific name – identifies the species within the genus.
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Modern approaches to species identification include specialised mobile apps and citizen-
scientist community websites, such as Encyclopedia of Life (EoL) [2, 142], iNaturalist [5],
Pl@ntNet [7, 65], and Atlas of Danish Fungi [1]. Users of such services provide images of
the observed specimens, optionally supplemented with additional information such as GPS
location, to query for the matching species. The species recommendations are provided by
other users - citizen-scientists and biologists - or by a computer vision algorithm.

Through user observations, the aforementioned citizen-science projects bring valuable
data back to scientists: collection of data on appearance and occurrence of species and
annotations of such data are crucial pillars for biological research focusing on biodiversity,
climate change and species extinction [46, 86]. Involvement of citizen communities is a
cost effective approach to large scale data collection. Citizen science contributions provide
about 50% of all data accessible through the Global Biodiversity Information Facility [26].
This data has a strong taxonomic bias towards birds and mammals [192], leaving data gaps
in taxonomic groups such as fungi and insects where species identification is considered non
trivial. Species observation datasets collected by the broader public have already proven
to add significant value for understanding both basic and more applied aspects of biology
(e.g. [10,138,197]), and with growing participation in such programs the research potential
will increase.

Correct species identification is a challenge in citizen science projects focusing on bio-
diversity. Some projects handle the issue by simply reducing complexity in the species
identification process, e.g. by merging species into multitaxa indicator groups (e.g. [57]),
by focusing only on a subset of easily identifiable species or by involving human expert val-
idators in the identification process. Other projects involve the citizen science community
in the data validation process. For instance, iNaturalist regards observations as having
research grade if three independent users have verified a suggested taxon ID based on an
uploaded photo.

The task of species identification is difficult even for human experts with the support
of literature. Belhumeur et al. [11] note that the process of identifying a single organism
using dichotomous keys may take hours or days, even for specialists (especially in locations
with high biodiversity), and is exceedingly difficult to impossible for non-scientists. They
propose to assist and speed up the plant identification process with a computer vision
based search system.

We are interested in automatic visual identification of plants and fungi using
computer vision methodology. From the machine learning point of view, the tasks of
image-based plant and fungi recognition represent challenging cases of fine-grained clas-
sification2. Cui et al. [40] define fine-grained classification as distinguishing subordinate
categories within an entry-level category. While this definition is rather subjective, de-
pending on what we consider “entry-level”, recognition of species – the most specific major
taxonomic rank – is often used as an example of a fine-grained recognition task. Fine-
grained classification often deals with high intra-class variability and very small inter-class

2Note the inter-disciplinary discrepancy in terminology: In biology, the term classification is used for
the categorization (grouping) of living organisms, i.e. defining the classes and their hierarchy. In machine
learning, classification has a different meaning, and is defined [130] as the mapping from inputs x to
outputs y ∈ {1, . . . ,K}, i.e. the process of predicting a class (category) from a fixed set {1, . . . ,K}, given
data point(s) x – in our case image(s) of an organism. This thesis will by default use the term classification
in the later, machine learning, meaning.
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Figure 1.3: A shortlist of species suggestions in the Atlas of Danish Fungi mobile applica-
tion, using the recognition system described in Chapter 5.

differences. This holds in our case: the appearance of specimens of the same species may
vary significantly depending on age, genotype, local conditions, etc.; on the other hand,
two species may have similar visual characteristics.

1.1 Problem Formulation

The thesis deals with different species identification tasks: from constrained tasks of recog-
nizing a specific plant organ (leaf, bark) in controlled conditions (leaf on white background,
cropped photo of tree bark) to a more complex “in the wild” scenario with unspecified view
or organ type, natural background, possible clutter in the scene, etc.

We formulate each of the species identification tasks as a single-label classification
problem on a closed set of K classes (in our case, species) C = {1, 2, . . . ,K}. That means
we assume that each observation (photo) x belongs to exactly one class (single-label)
and that class belongs to C (closed set). Note that we are formulating the task as a
flat classification of species, not a hierarchical classification (e.g. following the taxonomic
hierarchy).

Given a training set T = {(x1, y1), (x2, y2), . . . , (xN , yN )} of images xi labeled with
corresponding class labels yi ∈ C, our goal is to train a classifier that predicts the unknown
class labels y ∈ C for new observations x. In cases where human supervision of the
result is possible (e.g. in a mobile field guide), the classifier can return a scored list
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of species recommendations, sorted from the most likely prediction. The user can then
display additional information for each species and choose the correct result. See Figure
1.3 for illustration.

We adopt the common metrics and loss functions used in machine learning and in the
species recognition benchmarks, such as the top-1 error or the top-k error, i.e. for how
many images in the test set is the correct species not among the top-k predictions. For all
the metrics used within this thesis, the losses are the same for every species.

Note that while the assumptions we make are quite common for machine-learning
definitions of classification problems, they introduce several limitations:

• The classifier does not recognize observations depicting a specimen of an unknown
species y′ 6∈ C, and returns the most “similar” species from C instead.

• The classifier does not recognize observations without a specimen (e.g. plant or
mushroom). In the practical application of the fungi recognition system, described
later in Chapter 5, we observe that many users test the system by uploading out-of-
domain images. See examples in Figure 1.4.

• In practical species recognition applications, the cost for misclassification may be
species-dependent. For example, misclassification of two decorative plants is probably
not as serious as misclassification of a poisonous fruit for an edible one, which may
have very serious consequences.

• In some applications, the loss may depend on the correctness of higher classification
ranks and may benefit from a hierarchical classification approach : e.g. if the species
is not recognized correctly, but at least the genus is correct, the loss may be lower
than when even a higher taxonomic rank is incorrect.

Figure 1.4: Examples of out-of-domain images users are submitting to the fungi recognition
service described in Chapter 5. A number of images contain scenes without a mushroom.
Some photos include mushrooms displayed on a computer screen or in a book.
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(a) Tree bark (b) Leaf scans/photos
on white background

(c) Plants in the wild (d) Fungi in the wild

Figure 1.5: Examples of inputs for the considered species recognition tasks.

With this formulation of species classification, this thesis deals with the following tasks,
differing in the considered set of species C and in the constraints on the content of images x:

1. Recognition of tree species from a photo of tree bark. We assume the input picture
is cropped so that it only captures the bark. See Figure 1.5a for illustration.

2. Recognition of plant species from images of leaves. We assume the input picture
contains a leaf scan or a photo of the leaf on white background. See Figure 1.5b for
illustration.

3. Recognition of plants species from photos “in the wild”. We only expect the plant or
its part (e.g. leaf, fruit, flower,...) is pictured in the photograph. The scenes may
contain complex natural background including different forms of clutter. See Figure
1.5c for illustration.

4. Recognition of fungi species from photos “in the wild”. Similarly to the previous task,
we only expect the fungus is pictured in the photograph and do not place any further
assumptions on the scene. See Figure 1.5d for illustration.
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The listed tasks can be further extended by providing a set images of the same specimen
observation, with or without the information about the view type (e.g. specifying the
photographed plant organ). Additional meta-information such as the GPS coordinates or
timestamp can bring useful information for plant identification. Mac Aodha et al. [125]
propose a spatio-temporal prior that estimates the probability that a given species occurs
a given geographical location and time.

We propose a texture recognition approach to the constrained tasks of leaf and bark
recognition; and a deep learning approach to species recognition from “in the wild” photos,
where a more complex model is needed. We focus on the problem of possible difference
between training- and test-time class categorical priors, where species identification serves
as an example of a challenging recognition task with highly unbalanced image datasets. For
instance, training examples - images labeled with a species name - can be downloaded from
an online encyclopedia, but the number of photographs of a species in the encyclopedia
may not correspond to the species incidence in a given geographical location or to the
frequency the species is queried in a plant identification service.

1.2 Contributions

The first contribution of the thesis relates to the problems of adjusting the outputs of prob-
abilistic classifiers to new categorical prior probabilities (different from the training set)
and estimating the new priors from an unlabeled set of images. In particular, the problem
is addressed in the context of deep Convolutional Neural Network (CNN) classifiers. We
discuss the interpretation of CNN classifiers trained by cross entropy minimization as esti-
mators of posterior probabilities and experimentally validate some of their properties. For
estimation of the new categorical priors, a Maximum Likelihood estimation approach is
compared with a proposed Maximum a Posteriori estimator, adding a hyper-prior favouring
dense prior distributions. We show that adding such hyper-prior increases the reliability
of the estimate and increases the classification accuracy in several fine-grained classifica-
tion tasks. The results suggest that calibration of over-confident classifiers by temperature
scaling impairs some statistical properties of the posterior estimate, decreasing the perfor-
mance of the prior estimation methods.

The second contribution is the development and evaluation of the state-of-the-art fine-
grained classifiers for visual identification of plants and fungi, achieving the best results
on several large scale datasets of recent international challenges: ExpertLifeCLEF 2018,
FGVCx Fungi 2018, FGVCx Flowers 2018, PlantCLEF 2019. The results confirm the
benefits of practices such as combining predictions from an ensemble of models, dealing
with noisy labels in the data, data augmentation, saving the moving averages of the trained
variables, and adjusting the predictions to new categorical priors. The accuracy of the
proposed automatic plant recognition system has been compared against human experts
in plant recognition. Experimental results show that the proposed classifiers achieve the
human expert level of accuracy.

The third contribution is the application of the competition-winning method in a
citizen-science project for fungi recognition, allowing users to get instant species recom-
mendations and increasing the involvement of users in biodiversity data collection.

The fourth contribution of this thesis are the Fast Features Invariant to Rotation and



8 CHAPTER 1. INTRODUCTION

Scale of Texture (Ffirst) - an extension of a texture recognition method proposed in the
author’s master thesis [175], introducing new rotational invariants, and additional exper-
iments on texture-based recognition. At the time of publication, the method achieved
state-of-the-art results in texture classification as well as in its applications to plant leaf-
scan and bark recognition.

As the fifth contribution of the thesis, we studied the importance of color in standard
texture-classification datasets and the color-bias of the textures. A proposed improvement
to the global color descriptors Color Names [196] and Discriminative Color Descriptors [101]
noticeably increased the classification accuracy.

1.3 Structure of the Thesis

The following chapters of the thesis describe different tasks and problems:
Chapter 2 focuses on the constrained tasks of plant species from leaf and bark. We

review and extend our previously proposed texture recognition method [174, 175], Fast
Features Invariant to Rotation and Scale, for recognition of tree bark and plant leaves.
Experiments showed state-of-the-art results among non-CNN-based methods on a number
of leaf and bark datasets. The performance of the method is also evaluated on texture
recognition datasets and the importance of missing color information is discussed and
validated. A comparison with our later deep learning approach shows that the texture-
based descriptor still provides competitive results for the constrained tasks of tree bark
and plant leaf recognition, as well as the standard texture recognition task.

Chapter 3 introduces a deep learning approach to fine-grained visual classification of
plants and fungi “in the wild” and studies the problem of adjusting the output of proba-
bilistic classifiers, including Convolutional Neural Networks, to new a-priori probabilities
on the tested data. Recent CNN classifier architectures are reviewed in Section 3.1. A
probabilistic interpretation of the classifier outputs and the calibration of over-confident
predictions are discussed in 3.2. Section 3.3.1 highlights the importance of adjusting the
classifiers in case the new categorical prior probabilities are known. Test-time class prior
estimation is addressed in Sections 3.3.2 and 3.3.3, describing an existing Maximum Like-
lihood approach and a proposed Maximum a Posteriori estimation using the Dirichlet
distribution as a hyperprior. The methods are used in our competition submissions in
Chapter 4 and evaluated in more detail in Chapter 6.

Our submissions to international challenges are described chronologically in Chapter 4,
including the best results in PlantCLEF 2018, FGVCx Flowers 2018, FGVCx Fungi 2018
and PlantCLEF 2019. Sections 4.3 and 4.4 contain a comparison against human experts,
showing that CNN classifiers are reaching the human expert level of accuracy in plant
identification. Chapter 5 describes the application of the competition-winning method in
a citizen-science project for fungi recognition, allowing users to get instant species recom-
mendations and increasing the involvement of users in biodiversity data collection.

The technical overlap between methods based on “hand-crafted” features and the recent
CNN classifiers is negligible. For the sake of clarity and readability of the thesis, the
related work is reviewed separately in the corresponding Chapters.



CHAPTER 2

Texture Recognition Approach
to Plant Recognition

We first focus on the recognition of specific plant organs1, namely tree trunk (bark) and
plant leaves. We choose to leverage the textured nature of these organs, and propose to
approach plant identification from bark and leaves by texture recognition. While the choice
of texture analysis is straightforward for tree bark recognition, it was rather uncommon
for the recognition of leaves, where - prior to our work - shape-based approaches were
dominating. Note that with uniform background, our texture descriptor also encodes the
shapes at the border of the leaf at multiple scales. Related works in leaf recognition, bark
recognition and in texture classification are reviewed in Section 2.1.

In order to describe texture independently of the size (distance) of the patterns and
of the orientation in the image, a description invariant to rotation and scale is needed.
For practical applications, we demand computational efficiency of the texture encoder and
classifier. To satisfy the requirements on the method, we first proposed a multi-scale texture
recognition method based on Local Binary Patterns and applied it to bark recognition [174],
and later further extended and improved it into Fast Features Invariant to Rotation
and Scale of Texture (Ffirst) [176,177]. The proposed method is described in detail in
Section 2.2.

2.1 Related Work

2.1.1 Leaf Recognition

Before the deep learning era opened the door to the more complex “in the wild” recognition
tasks, leaf recognition was by far the most popular approach to plant recognition and a wide
range of methods has been reported in the literature [8,11,53,93,94,95,96,97,104,112,132,
150,171,203,205]. Recognition of leaves usually refers only to recognition of broad leaves,
needles are treated separately. Several techniques have been proposed for leaf description,

1Plant organs include the leaf, stem, root, and reproductive structures.

9
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often based on combining features of different character (shape features, color features,
etc.).

A Bag of Words model with Scale Invariant Feature Transform (SIFT) [124] descriptors
was applied to leaf recognition by Fiel and Sablatnig [53]. Several shape methods have been
compared on leaf recognition by Kadir et al. [93]. Of the compared methods - geometric
features, moment invariants, Zernike moments and Polar Fourier Transform - the last
performed best on an unpublished dataset.

Kumar et al. [104] describe Leafsnap2, a computer vision system for automatic plant
species identification, which has been developed from the earlier plant identification system
by Agarwal et al. [8] and Belhumeur et al. [11]. Kumar et al. [104] introduced a pre-filter on
input images, numerous speed-ups and additional post-processing within the segmentation
algorithm, the use of a simpler and more efficient curvature-based recognition algorithm.
On the introduced Leafsnap database of 184 tree species, their recognition system finds
correct matches among the top 5 results for 96.8% queries from the dataset. The resulting
electronic Leafsnap field guide is available as a mobile app for iOS devices. The leaf images
are processed on a server, internet connection is thus required for recognition, which may
cause problems in natural areas with slow or no data connection. Another limit is the need
to take the photos of the leaves on a white background.

A publicly available plant leaf database named Flavia was collected by Wu et al. [205],
who designed a Probabilistic Neural Network for leaf recognition using 12 Digital Morpho-
logical Features, derived from 5 basic features (diameter, physiological length, physiological
width, leaf area, leaf perimeter).

Karuna et al. [97] claim that the most valuable features for object recognition are
shape and color, and design combination of hand-crafted shape and color features for leaf
recognition, achieving 96.5% recognition accuracy on the Flavia dataset.

The Foliage dataset collected by Kadir et al. [94] consists of 60 classes of leaves, each
containing 120 images. The best reported result on this dataset reported by Kadir et
al. [96] was achieved by a combination of shape, vein, texture and color features processed
by Principal Component Analysis before classification by a Probabilistic Neural Network.

Söderkvist [171] proposed a visual classification system of leaves and collected the so
called Swedish dataset containing scanned images of 15 classes of Swedish trees. Qi et
al. [6] achieve 99.38% accuracy on the Swedish dataset using a texture descriptor called
Pairwise Rotation Invariant Co-occurrence Local Binary Patterns [150] with Support Vec-
tor Machine (SVM) classification.

A leaf recognition system, using Fourier descriptors of the leaf contour normalised to
translation, rotation, scaling and starting point of the boundary, was designed by Novotný
and Suk [132]. The authors collected a large leaf dataset called Middle European Woods
(MEW) containing 153 classes of native or frequently cultivated trees and shrubs in Central
Europe. Their method achieves 84.92% accuracy when the dataset is split into equally
sized training and test set. MEW and Leafsnap are the most challenging leaf recognition
datasets.

One possible application of leaf description is the identification of a disease. Pydipati
et al. [149] proposed a system for citrus disease identification using Color Co-occurrence

2http://leafsnap.com/ Last accessed 2nd Apr 2020.

http://leafsnap.com/
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Method (CCM), achieving accuracies of over 95% for 4 classes (normal leaf samples and
samples with a greasy spot, melanose, and scab).

2.1.2 Tree Bark Recognition

The problem of automatic tree identification from photos of bark can be naturally formu-
lated as texture recognition.

Several methods have been evaluated on datasets which are not publicly available. Chi
et al. [30] proposed a method using Gabor filter banks. Wan et al. [200] performed a com-
parative study of bark texture features: the grey level run-length method, co-occurrence
matrices method, histogram method and auto-correlation method. The authors show that
the performance of all classifiers improved significantly when color information was added.
Song et al. [172] presented a feature-based method for bark recognition using a combi-
nation of Grey-Level Co-Occurrence Matrix (GLCM) and a binary texture feature called
Long Connection Length Emphasis. Huang et al. [82] relied on GLCM together with Frac-
tal Dimension Features for bark description. The classification was performed by artificial
neural networks.

Since the image data from in the experiments discussed above is not available, it is
difficult to assess the quality of the results and to perform comparative evaluation.

Fiel and Sablatnig [53] worked on automated identification of tree species from images of
the bark, leaves and needles. For bark description, they created a Bag of Words with SIFT
descriptors in combination with GLCM and wavelet features. The vectors were classified
by SVM with radial basis function kernel. The authors introduced the Österreichische
Bundesforste AG (Austrian Federal Forests) bark dataset consisting of 1182 photos from
11 classes. We refer to this dataset as the AFF (Austrian Federal Forests) bark dataset.
Recognition accuracy of 64.2% and 69.7% was achieved on this dataset for training sets
with 15 and 30 images per class respectively.

Fiel and Sablatnig describe an experiment with two human experts, a biologist and a
forest ranger, both employees of Österreichische Bundesforste AG. Their classification rate
on a subset of the dataset with 9 images per class, 99 images in total, was 56.6% (biologist)
and 77.8% (forest ranger). This means that the human experts, who probably have much
better recognition accuracy “in situ”, usually identify the species based on other features
than solely the bark texture.

Boudra et al. [19] review and compare different variants of multi-scale Local Binary
Patterns based texture descriptors and evaluate their performance in tree bark image
retrieval. The results show that multi-scale Local Binary Patterns (LBP) descriptors,
including our variant of MS-LBP [174], outperform the basic LBP and Multi Resolution
LBP [134], and that the best results are achieved at the low scale space levels.

2.1.3 Texture Recognition

Texture information is an essential feature for recognition of many plant organs. Texture
analysis is a well-established problem with a large number of existing methods, many of
them being described in surveys [29, 123, 129, 145, 209]. The notion of texture is hard to
define. As noted by Liu et al. [123], the concept of texture may have different connotations
or definitions depending on the given objective. Existing definitions of visual texture often
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lack formality and completeness. For illustration, let us quote an informal definition by
Hawkins [76]:

Definition 1. The notion of texture appears to depend upon three ingredients: (1) some
local “order” is repeated over a region which is large in comparison the order’s size, (2) the
order consists in the non-random arrangement of elementary parts, and (3) the parts are
roughly uniform entities having approximately the same dimensions everywhere within the
textured region.

Because of the number of existing surveys mentioned above, here we only review some
of the most popular and best performing textural features and texture recognition methods.

Several recent approaches to texture recognition report excellent results on standard
datasets, many of them working only with image intensity and ignoring the available color
information. A number of approaches is based on the popular Local Binary Patterns (LBP)
[135, 136], such as the recent Pairwise Rotation Invariant Co-occurrence Local Binary
Patterns of Qi et al. [150] or the Histogram Fourier Features of Ahonen et al. [9, 210].
A cascade of invariants computed by scattering transforms was proposed by Sifre and
Mallat [169] in order to construct an affine invariant texture representation. Mao et al. [128]
use a bag-of-words model with a dictionary of so called active patches: raw intensity patches
that undergo further spatial transformations and adjust themselves to best match the image
regions. While the Active Patch Model does not use color information, the authors claim
that adding color will further improve the results. The method of Cimpoi et al. [32] using
Improved Fisher Vectors (IFV) for texture description shows further improvement when
combined with describable texture attributes learned on the Describable Textures Dataset
(DTD) and with color attributes.

Cimpoi et al. [33, 34] pushed the state-of-the-art in texture recognition using a new
encoder denoted as FV-CNN-VD, obtained by Fisher Vector pooling of a very deep Con-
volutional Neural Network (CNN) filter bank pre-trained on ImageNet by Simonyan and
Zisserman [170]. The CNN filter bank operates conventionally on preprocessed RGB im-
ages. This approach achieves state-of-the-art accuracy, yet due to the size of the very deep
VGG networks it may not be suitable for real-time applications when evaluated without a
high-performance Graphics Processing Unit (GPU) for massive parallelization.

Bello-Cerezo et al. [12] compared several hand-crafted texture descriptors against off-
the-shelf CNN-based features for (color) texture classification in 2019. In terms of clas-
sification accuracy, most experiments indicate the superiority of deep networks, however,
hand-crafted descriptors still performed better than CNN-based features in cases with lit-
tle intra-class variability or in cases where the variability can be modelled explicitly (e.g.
rotations handled by rotation-invariant texture descriptors). Liu et al. [123] remark that
while CNNs generally outperform classical texture descriptors, it remains to be seen which
approaches will be most effective in resource-limited contexts.

Note that most of the methodology in this chapter was developed prior to the publi-
cation of results with CNN-based features [12, 33, 123]. However, Section 2.4.3 contains a
comparison of the proposed method with a state-of-the-art CNN classifier, that achieves
almost perfect leaf recognition accuracy.
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2.2 Fast Features Invariant to Rotation and Scale of Texture

2.2.1 Completed Local Binary Pattern and Histogram Fourier Features

The Ffirst description is based on the Local Binary Patterns [134,135,136]. The common
LBP operator (later denoted as sign-LBP) locally computes the signs of differences between
the center pixel and its P neighbours on a circle of radius R. With an image function f(x, y)

and neighbourhood point coordinates (xp, yp):

LBPP,R(x, y) =

P−1∑
p=0

s(f(x, y)− f(xp, yp))2
p,

s(z) =

{
1, if z ≤ 0,

0, otherwise.

(2.1)

To achieve rotation invariance3, we adopt the so called LBP Histogram Fourier Features
(LBP-HF) introduced by Ahonen et al. [9]. LBP-HF describe the histogram of uniform
patterns using coefficients of the Discrete Fourier Transform (DFT). Uniform LBP are
patterns with at most 2 spatial transitions (bitwise 0-1 changes). Unlike the simple rotation
invariants using LBPri [134, 146], which maps all uniform patterns with the same number
of 1s into one bin, the LBP-HF features preserve the information about relative rotation
of the patterns.

Denoting a uniform pattern Un,rp , where n is the “orbit” number corresponding to the
number of “1” bits and r denotes the rotation of the pattern, the DFT for given n is
expressed as:

H(n, u) =
P−1∑
r=0

hI(U
n,r
p )e− i 2πur/P , (2.2)

where the histogram value hI(U
n,r
p ) denotes the number of occurrences of a given uniform

pattern in the image.
The LBP-HF features are equal to the absolute value of the DFT magnitudes, and thus

are not influenced by the phase shift caused by rotation).

LBP-HF(n, u) = |H(n, u)| =
√
H(n, u)H(n, u). (2.3)

Since hI are real, H(n, u) = H(n, P − u) for u = (1, . . . , P − 1), and therefore only⌊
P
2

⌋
+ 1 of the DFT magnitudes are used for each set of uniform patterns with n “1” bits

for 0 < n < P . Three other bins are added to the resulting representation, namely two
for the “1-uniform” patterns (with all bins of the same value) and one for all non-uniform
patterns.

The LBP histogram Fourier features can be generalized to any set of uniform patterns.
In Ffirst, the LBP-HF-S-M description [210] is used, where the histogram Fourier features

3LBP-HF (as well as LBPri) are rotation invariant only in the sense of a circular bit-wise shift, such as
rotation by multiples of 45◦ for LBP8,R. However, with some image rotations, sampling from other pixels
may break the rotation invariance.
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of both sign- and magnitude-LBP are calculated to build the descriptor. The magnitude-
LBP [71] checks if the magnitude of the difference of the neighbouring pixel (xp, yp) against
the central pixel (x, y) exceeds a threshold tp:

LBP-MP,R(x, y) =
P−1∑
p=0

s(|f(x, y)− f(xp, yp)| − tp)2p. (2.4)

We adopted the common practice of choosing the threshold value (for neighbours at
p-th bit) as the mean value of all m absolute differences in the whole image:

tp =
m∑
i=1

|f(xi, yi)− f(xip, yip)|
m

. (2.5)

The LBP-HF-S-M histogram is created by concatenating histograms of LBP-HF-S and
LBP-HF-M (computed from uniform sign-LBP and magnitude-LBP).

2.2.2 Multi-scale Description and Scale Invariance

A scale space is built by computing LBP-HF-S-M from circular neighbourhoods with ex-
ponentially growing radius R. Gaussian filtering is used4 to overcome noise.

Unlike the MS-LBP approach of Mäenpää and Pietikäinen [126], where the radii of the
LBP operators are chosen so that the effective areas of different scales touch each other,
Ffirst uses a finer scaling with a step of

√
2 between scales radii Ri, i.e. Ri = Ri−1

√
2.

This radius change is equivalent to decreasing the image area to one half. The first LBP
radius used is R1 = 1, as the LBP with low radii capture important high frequency texture
characteristics. Figure 2.1b displays the scale space of MS-LBP [126] and the scale space
of Ffirst.

(a) Scale space from [126] (b) Scale space used in Ffirst

Figure 2.1: The effective areas of filtered pixel samples in a multi-resolution LBP8,R oper-
ator.

4The Gaussian filtering is used for a scale i only if σi > 0.6, as filtering with lower σi leads to significant
loss of information.
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Similarly to [126], the filters are designed so that most of their mass lies within an
effective area of radius ri. We select the effective area diameter, such that the effective
areas at the same scale touch each other: ri = Ri sin π

P .
LBP-HF-S-M histograms from c adjacent scales are concatenated into a single descrip-

tor. Robustness to scale changes is increased by creating nconc multi-scale descriptors for
one image. See Algorithm 17 for the overview of the texture description method.

Algorithm 1 The Ffirst descriptor method in pseudocode.
1: function descriptor(img, nconc, c)
2: R1 := 1;
3: for all scales i := 1, . . . , (nconc + c− 1) do
4: σi := Ri sin π

P /1.3

5: if σi > 0.6 then
6: imgB := gaussBlur(img, σi)

on the original image
7: end if
8: extract LBPP,Ri-S and LBPP,Ri-M
9: build LBPP,Ri-HF-S-M

10: for j := 1, . . . , nconc do
11: if i ≥ j and i < j + c then
12: attach LBPP,Ri-HF-S-M

to j-th multi-scale descriptor
13: end if
14: end for
15: Ri+1 := Ri

√
2

16: end forreturn descriptors
17: end function

2.2.3 Support Vector Machine and Feature Maps

In most applications, a Support Vector Machine (SVM) classifier with a suitable non-
linear kernel provides higher recognition accuracy then with a linear kernel, at the price of
significantly higher time complexity and higher storage demands (dependent on the number
of support vectors). An approach for efficient use of additive kernels via explicit feature
maps is described by Vedaldi and Zisserman [199] and can be combined with a linear SVM
classifier. Using linear SVMs on feature-mapped data improves the recognition accuracy,
while preserving linear SVM advantages like fast evaluation and low storage (independent
on the number of support vectors), which are both very practical in real time applications.
In Ffirst we use the explicit feature map approximation of the histogram intersection kernel,
although the χ2 kernel leads to similar results.

The “One versus All“ classification scheme is used for multi-class classification, imple-
menting the Platt’s probabilistic output [117, 147] to ensure SVM results comparability
among classes. The maximal posterior probability estimate over all scales is used to deter-
mine the resulting class.

In our experiments we use a Stochastic Dual Coordinate Ascent [165] linear SVM solver
implemented in the VLFeat library [198].
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2.2.4 Adding Rotational Invariants

The LBP-HF features used in the proposed Ffirst description are usually built from the
DFT magnitudes of differently rotated uniform patterns. We propose to use all LBP
instead of just the subset of uniform patterns. Note that in this case, some orbits have a
lower number of patterns, since some non-uniform patterns show symmetries, as illustrated
in Figure 2.2.

Figure 2.2: The full set of Local Binary Patterns divided into 36 orbits for the Histogram
Fourier features. Patterns in one orbit only differ by rotation.

Another rotational invariants are computed from the first DFT coefficients for each
orbit:

LBP-HF+(n) =

√
H(n, 1)H(n+ 1, 1) (2.6)

Ffirst∀+ denotes the method using the full set of patterns for LBP-HF features and
adding the additional LBP-HF+ features.
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Figure 2.3: Segmentation of the leaf interior (blue) and border region (red) at different
scales given by LBP radius R. The border region is defined as all points which have at
least one neighbour (in LBPP,R) outside of the segmented region.

2.2.5 Recognition of Segmented Textural Objects

We propose to extend Ffirst to segmented textural objects by treating the border and the
interior of the object segment separately.

Let us consider a segmented object region A. One may describe only points that have
all neighbours at given scale inside A. We show that describing a correctly segmented
border, i.e. points in A with one or more neighbours outside A (see Figure 2.3), adds
additional discriminative information.

We experiment with 5 variants of the recognition method, differing in the processing
of the border region:

1. Ffirsta describes all pixels in A and selects the multi-scale descriptor (one of nconc)
that maximizes the posterior probability estimate, i.e. SVM Platt’s probabilistic
output.

2. Ffirsti describes only the segment interior, i.e. pixels in A with all neighbours in A.

3. Ffirstb describes only the segment border, i.e. pixels in A with at least one neighbour
outside A.

4. Ffirstib∑ combines the Ffirsti and Ffirstb descriptors and selects the multi-scale de-
scriptors that maximize the sum of their posterior probability estimates.

5. Ffirstib∏ combines the Ffirsti and Ffirstb descriptors and selects the multi-scale de-
scriptors that maximize the product of their posterior probability estimates .

The leaf databases contain images of leaves on an almost white background. Segmen-
tation was done by thresholding using the Otsu’s method [139].



18 CHAPTER 2. TEXTURE RECOGNITION APPROACH

2.3 Datasets and Evaluation Methodology

2.3.1 Tree Bark Dataset

Bark recognition is evaluated on a dataset collected by Österreichische Bundesforste –
Austrian Federal Forests, which was introduced in 2010 by Fiel and Sablatnig [52] and
contains 1182 bark images from 11 classes. We denote it as the Austrian Federal
Forests (AFF) bark dataset. The resolution of the images varies (between 0.4 Mpx
and 8.0 Mpx). This dataset is not publicly available, but it was kindly provided by the
Computer Vision Lab, TU Vienna, for academic purposes, with courtesy by Österreichische
Bundesforste/Archiv.

(a) Ash (b) Black pine

(c) Swiss stone pine (d) Sycamore maple

Figure 2.4: Examples of 4 tree species from the AFF bark database.

2.3.2 Leaf Datasets

Unlike in bark recognition, there is a number of existing datasets for leaf classification,
most of them being publicly available. The datasets and their experimental settings are
briefly described bellow:

The Austrian Federal Forest (AFF) leaf dataset was used by Fiel and Sablat-
nig [53] for recognition of trees, and was kindly provided together with the bark dataset
described previously. It contains 134 photos of leaves of the 5 most common Austrian
broad leaf trees. The leaves are placed on a white background. The results are compared
using the protocol of Fiel and Sablatnig, i.e. using 8 training images per leaf class.
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(a) Ash (b) Hornbeam (c) Sycamore maple

(d) Beech (e) Mountain oak

Figure 2.5: Examples from the AFF leaf dataset.

The Flavia leaf dataset contains 1907 images (1600x1200 px) of leaves from 32 plant
species on white background, 50 to 77 images per class. The dataset was introduced by Wu
et al. [205], who used 10 images per class for testing and the rest of the images for training.
More recent publications use 10 randomly selected test images and 40 randomly selected
training images per class, achieving better recognition accuracy even with the lower number
of training samples. In the case of the best result reported by Lee et al. [112], 10 images
per species are used for testing, but the number of training samples is not clearly stated.
Some authors divide the set of images for each class into two halves, one for training and
the other for testing.
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(a) Castor aralia (b) Deodar (c) Southern magnolia (d) Tangerine

Figure 2.6: Examples of 4 classes from the Flavia leaf dataset.

The Foliage leaf dataset by Kadir et al. [94,95] contains 60 classes of leaves from 58
species. The dataset is divided into a training set with 100 images per class and a test set
with 20 images per class.

(a) Hibiscus
rosa-sinensis

(b) Bauhinia
acuminata

(c) Ipomoea
lacunose

(d) Tradescantia
spathacea “Vittata”

Figure 2.7: Examples of 4 classes from the Foliage dataset.

The Swedish leaf dataset was introduced in Söderkvist’s diploma thesis [171] and
contains images of leaves scanned using a 300 dpi color scanner. There are 75 images for
each of 15 tree classes. The standard evaluation scheme uses 25 images for training and
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the remaining 50 for testing. Note: The best reported result of Qi et al. [150] is presented
on the project homepage [6], not in the original paper [150].

(a) Ulmus carpinifolia (b) Acer (c) Salix aurita (d) Quercus

Figure 2.8: Examples of 4 classes from the Swedish dataset.

(a) Acer rubrum (b) Betula nigra

Figure 2.9: Examples from the Leafsnap dataset - Lab (top) and Field (bottom) images.



22 CHAPTER 2. TEXTURE RECOGNITION APPROACH

The Leafsnap dataset version 1.0 by Kumar et al. [104] was publicly released in
2014. It covers 185 tree species from the Northeastern United States. It contains 23 147
high quality Lab images and 7 719 Field images. The authors of Leafsnap note that the
released dataset does not exactly match that used to compute results for the paper, nor
the currently running version on their servers, yet it seems to be similar to the dataset
used in [104] and should allow at least a rough comparison. In the experiments of [104],
leave-one-image-out species identification has been performed, using only the Field images
as queries, matching against all other Field and Lab images. Probability of the correct
match appearing among the top 5 results is taken as the resulting score. Note: The score
of [104] for the top-1 accuracy in Table 2.4 is estimated from a figure in [104]. Because
leave-one-image-out testing scheme would demand to re-train our classifiers for each tested
image, we rather perform 10-fold cross validation, i.e. divide the set of Fields images into
10 parts, testing each part on classifiers learned using the set of other parts together with
the Lab images.

(a) Acer campestre (b) Actinidia arguta

(c) Berberis thunbergii (d) Zelkova serrata

Figure 2.10: Examples of 4 classes from the MEW dataset.

The Middle European Woods (MEW) dataset was introduced by Novotný and
Suk [132]. It contains 300 dpi scans of leaves belonging to 153 classes (from 151 botanical
species) of Central European trees and shrubs. There are 9745 samples in total, at least
50 per class. The experiments are performed using half of the images in each class for
training and the other half for testing.
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2.3.3 Texture Recognition Datasets

The Ffirst method for texture classification is tested using the standard evaluation protocols
on the following texture datasets:

The KTH-TIPS texture database [54, 77] contains images of 10 materials. There
are 81 images (200x200 px) of each material with different combination of pose, illumination
and scale.

The standard evaluation protocol on the KTH-TIPS dataset uses 40 training images
per material.

(a) Cotton (b) Wool (c) White bread (d) Aluminium foil

Figure 2.11: Examples of 4 texture classes from the KTH-TIPS2 database.

The KTH-TIPS2 database was published [25,127] shortly after KTH-TIPS. It builds
on the KTH-TIPS database, but provides multiple sets of images - denoted as “samples“ -
per material class (examples in Figure 2.11).

There are 4 “samples“ for each of the 11 materials in the KTH-TIPS2 database, con-
taining 108 images per “sample“ (again with different combination of pose, illumination
and scale). However, in the first version of this dataset, for 4 of those 44 “samples“ only 72
images were used. This first version is usually denoted as KTH-TIPSa, and the standard
evaluation method uses 3 “samples“ from each class for training and 1 for testing. The
“complete” version of this database, KTH-TIPSb, is usually trained only on 1 “sample“ per
class and tested on the remaining 3 “samples“.

The Brodatz32 dataset [193] was published in 1998 and it contains low resolution
(64x64 px) grey-scale images of 32 textures from the photographs published by Phil Brodatz
[22] in 1966, with artificially added rotation (90◦) and scale change (a 64x64 px scaled block
obtained from 45x45 pixels in the middle). There are 64 images for each texture class in
total. Even though the original images are copyrighted and the legality of their usage
in academic publications is unclear5, Brodatz textures are one of the most popular and
broadly used sets in texture analysis.

5http://graphics.stanford.edu/projects/texture/faq/brodatz.html Last accessed 2nd Apr 2020.

http://graphics.stanford.edu/projects/texture/faq/brodatz.html


24 CHAPTER 2. TEXTURE RECOGNITION APPROACH

(a) Brick 1 (b) Brick 2 (c) Plaid (d) Bark 3

Figure 2.12: Examples of 4 texture classes from the UIUCTex database.

The standard protocol for the Brodatz32 dataset simply divides the data into two
halves (i.e. 32 images per class in the training set and 32 in the test set).

The UIUCTex database, sometimes referred to as the Ponce Group Texture Database,
was published by Lazebnik et al. [108] in 2005 and features 25 different texture classes, 40
samples each. All images are in VGA resolution (640x480 px) and in grey-scale.

The surfaces included in the database are of various nature (wood, marble, gravel,
fur, carpet, brick, ..) and were acquired with significant viewpoint, scale and illumination
changes and additional sources of variability, including, but not limited to, non-rigid mate-
rial deformations (fur, fabric, and water) and viewpoint-dependent appearance variations
(glass). Examples of images from different classes are in Figure 2.12.

The results on this dataset are usually evaluated using 20 or 10 training images per
class. In our experiments, the former case with a larger training set is performed.

The UMD dataset [207] consists of 1 000 uncalibrated, unregistered grey-scale images
of size 1280x960 px, 40 images for each of 25 different textures. The UMD database contains
non-traditional textures like images of fruits, shelves of bottles and buckets, various plants,
or floor textures.

The standard evaluation protocol for UMD is dividing the data into two halves (i.e. 20
images per class in the training set and 20 in the test set).

Figure 2.13: Examples of 4 texture classes from the UMD database.
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(a) Felt (b) Polyester (c) Lettuce Leaf (d) Corn Husk

Figure 2.14: Examples of 4 texture classes from the CUReT database.

The CUReT image database [41] contains textures from 61 classes, each observed
with 205 different combinations of viewing and illumination directions. In the commonly
used version, denoted as the cropped CUReT database6, only 92 images are chosen, for
which a sufficiently large region of texture is visible across all materials. A central 200x200
px region is cropped from each of these images, discarding the remaining background.
There are thus 61x92=5612 images in the cropped database.

CUReT also contains a BRDF (bidirectional reflectance distribution function) database.
For the purpose of standard texture recognition methods, only the image database is used.
We use 46 training images per class according to the standard evaluation protocol for the
CUReT database.

The Amsterdam Library of Textures [23], denoted as ALOT, contains 250 texture
classes. Each class contains 100 images obtained with different combinations of viewing
and illumination directions and illumination color. To compare our results on the ALOT
dataset to the state-of-the-art [152] we use 20 training images and 80 test images per class.

Figure 2.15: Examples of 4 texture classes from the ALOT database.

6http://www.robots.ox.ac.uk/~vgg/research/texclass/setup.html Last accessed 2nd Apr 2020.

http://www.robots.ox.ac.uk/~vgg/research/texclass/setup.html
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(a) Fabric (b) Foliage (c) Glass (d) Stone

Figure 2.16: Examples of four texture classes from the FMD database.

The Flickr Material database (FMD) was developed by Sharan et al. [166] with the
intention of capturing a range of real world appearances of common materials. The dataset
contains 1 000 images downloaded manually from Flickr.com (under Creative Commons
license), belonging to one of the following materials: Fabric, Foliage, Glass, Leather, Metal,
Paper, Plastic, Stone, Water and Wood. There are exactly 100 images for each of the 10
material classes. Unlike the dataset described above, FMD was not primarily created
for texture recognition, and it includes images of objects with various textures for each
material. The dataset includes binary masks for background segmentation. The standard
evaluation protocol divides the images in each class into two halves, 50 images for training
and 50 for testing. Examples from the FMD dataset are displayed in Figure 2.16.

The Animal Texture dataset (AniTex) constructed by Mao et al. [128] contains
3120 texture patch images cropped randomly from the torso regions inside the silhouettes
of different animals in the PASCAL VOC 2012 database. There are only 5 classes (cat,
dog, sheep, cow and horse), 624 images each. The authors created the dataset to explore
less homogeneous texture and appearance than available in standard texture datasets. The
patches in the dataset come from images under different conditions such as scaling, rotation,
viewing angle variations and lighting condition change. For evaluation, the dataset is
randomly divided into 2496 training and 624 testing images. Examples from the AniTex
dataset are displayed in Figure 2.17.

The Vehicle Appearance dataset (VehApp) [128] was created by the same authors
and with the same intentions as AniTex. It contains 13 723 images cropped from PASCAL
VOC images containing vehicles of 6 classes (aeroplane, bicycle, car, bus, motorbike, train).
The images are evaluated in a way similar to AniTex: 80% images are randomly chosen
into the training set, the remaining 20% is used for testing. Examples from the VehApp
dataset are displayed in Figure 2.18.
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(a) Cat (b) Dog (c) Sheep (d) Cow

Figure 2.17: Examples of four texture classes from the AniTex database.

(a) Plane (b) Bicycle (c) Bus (d) Car

Figure 2.18: Examples of four texture classes from the VehApp database.
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2.4 Results

2.4.1 Texture Classification

The Fast Features Invariant to Rotation and Scale of Texture, proposed in Section 2.2, was
first validated on the texture recognition datasets from Section 2.3.3.

The results in Tables 2.1 and 2.2 show more than 99% accuracy on the Brodatz32,
UIUCTex, UMD, CUReT and KTH-TIPS datasets. This almost perfect precision basi-
cally retires most of the standard texture classification datasets. The accuracy on the
KTH-TIPS2, FMD, AniTex and Vehapp datasets is lower as the tasks go beyond pure
texture classification: The 87.9% and 76.6% accuracy on KTH-TIPS2a and KTI-TIPS2b
respectively still present a state-of-the-art performance. The 50.2%, 45.7% and 54.4%
scores on the FMD, AniTex and Vehapp datasets respectively are outperformed by other
methods. The more recent CNN-based approach of Cimpoi et al. [34] further improves the
classification scores on most texture recognition datasets.

Table 2.1: Recognition accuracy (%) of Ffirst and the state-of-the-art on the KTH-TIPS
datasets.

KTH-TIPS2a KTH-TIPS2b KTH-TIPS

Num. of classes 11 11 10

Ffirst∀+ 87.9±6.1 76.6±4.3 99.5±0.5

FV-VGG-VD [34] – 81.8±2.5 99.8±0.2

FV-VGG-M [34] – 73.3±4.7 99.8±0.2

IFVSIFT [32] 82.5±5.2 69.3±1.0 99.7±0.1

IFVSIFT + DeCAF 84.4±1.8 76.0±2.9 99.8±0.2

IFVSIFT + DeCAF+ DTDRBF – 77.4±2.2 –

IFVSIFT + DeCAF + Subcat. Prob. [173] – 79.3±2.7 –

Scattering [169] – – 99.4±0.4

LHS [168] 73.0±4.7 – –

SR-EMD-M [114] – – 99.8

PLS [152] – – 98.4

Active Patches [128] 75.7 – –

2.4.2 Tree Bark Classification

Results of our texture recognition approach to tree bark classification on the Austrian
Federal Forest bark dataset are compared with the best published results in Table 2.3.
Note that the method from [174] assumes the orientation is fixed, which seems to be a valid
assumption in the case of this dataset. However, unlike Ffirst, it does not provide rotation
invariance. Because the bark dataset is very small, we skip experiments with CNNs, which
need a considerably higher amount of data for the standard training procedures.
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Table 2.2: Recognition accuracy (%) of Ffirst on standard texture datasets, compared with
the state-of-the-art methods.

Brodatz UIUC UMD CUReT ALOT FMD AniTex VehApp

Num. of classes 32 25 25 61 250 10 5 6

Ffirst∀+ 99.4±0.3 99.4±0.4 99.3±0.3 99.7±0.1 96.4±0.2 50.2 ±1.9 45.7±1.8 54.4±0.7

FV-VGG-VD [33] – 99.9±0.1 99.9±0.1 99.0±0.2 98.5±0.1 79.8±1.8 – –

FV-VGG-M [33] – 99.6±0.4 99.9±0.1 98.7±0.2 97.8±0.2 73.5±2.0 – –

IFVSIFT [32] – 97.0±0.9 99.2±0.4 99.6±0.3 – 58.2±1.7 – –

IFVSIFT+DeCAF [32] – 99.0±0.5 99.5±0.3 99.8±0.2 – 65.5±1.3 – –

Scattering [169] – 99.4±0.4 99.7±0.3 – – – – –

LHS [168] 99.5±0.2 – – – – – – –

SR-EMD-M [114] – – 99.9 99.5 – – – –

PLS [152] – 96.6 98.9 – 93.4 – – –

Active Patches [128] – – – – – – 50.8 63.4

Table 2.3: Bark classification accuracy (%) of Ffirst and the state-of-the-art methods.
Evaluation schemes using 10 fold cross validation, or 15 and 30 training images per class.

AFF

10 fold

AFF

15 train.

AFF

30 train.

Ffirst∀+ 96.5±1.2 84.9±2.5 90.4±1.6

MS-LBP-HF-KlSVM [174] 92.2±2.7 74.4±3.4 –

MS-LBP-KlSVM [174] 96.5±2.7 85.5±2.7 –

Fiel, Sablatnig [52,53] – 64.2 69.7

2.4.3 Leaf Classification

Application of the proposed Fast Features Invariant to Rotation and Scale of Texture to
identification of leaves [177] lead to excellent results on standard leaf recognition datasets,
proposing a novel approach to visual leaf identification: A leaf is represented by a pair of
local feature histograms, one computed from the leaf interior, the other from the border,
see Figure 2.3. This description utilizing Ffirst outperforms the state-of-the-art on all
tested leaf datasets, see Table 2.4. The proposed method achieves excellent recognition
rates above 99% on the Austrian Federal Forests dataset, the Flavia dataset, the Foliage
dataset, the Swedish dataset and the Middle European Woods dataset.

Leaf Classification with Deep Convolutional Neural Networks is hard to apply to ex-
periment with small leaf datasets. To get a comparison with our textural method, we
performed our experiment on the Middle European Woods dataset, fine-tuning from an
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Table 2.4: Classification accuracy (%) of Ffirst on available leaf datasets: Austrian Federal
Forests, Flavia, Foliage, Swedish, Middle European Woods and Leafsnap.

AFF
Flavia

10× 40

Flavia
1
2 ×

1
2

Foliage Swedish MEW Leafsnap
Leafsnap

top 5

Num. of classes 5 32 32 60 15 153 185 185

Ffirst∀+a (1) 97.1±1.5 99.4±0.3 99.2±0.2 99.2 99.7±0.3 98.8±0.2 81.2±1.8 95.9±1.5

Ffirst∀+i (2) 97.3±1.6 99.3±0.3 98.9±0.3 98.1 99.7±0.3 98.4±0.2 73.1±2.3 92.4±1.7

Ffirst∀+b (3) 99.5±0.6 99.3±0.4 99.0±0.2 98.3 99.4±0.5 97.9±0.2 77.2±1.9 94.8±1.5

Ffirst∀+ib∑ (4) 100.0±0.0 99.7±0.3 99.6±0.1 99.3 99.8±0.2 99.3±0.1 81.8±1.2 96.5±1.1

Ffirst∀+ib∏ (5) 100.0±0.0 99.8±0.3 99.7±0.1 99.3 99.8±0.3 99.5±0.1 83.7±1.1 97.3±1.1

Inc.-ResNet-v2
+maxout – – – – – 99.9+ – –

Kumar et al. [104] – – – – – – ≈ 73 96.8

Fiel, Sablatnig [53] 93.6 – – – – – – –

Novotný, Suk [132] – – 91.5 – – 84.9 – –

Karuna et al. [97] – – 96.5 – – – – –

Kadir et al. [96] – 95.0 – 95.8 – – – –

Lee et al. [112] – 97.2 – – – – – –

Qi et al. [150] – – – – 99.4 – – –

ImageNet-pretrained model. Note that due to high computational complexity and limited
GPU resources, we only evaluated this method on one random data split (in both direc-
tions), while Ffirst was evaluated on 10 random splits. We used the Inception-ResNet-v2
network with maxout, described later in Section 4.2.1. After 200 000 training steps, this
CNN outperforms previous results significantly, achieving 99.9% and 100.0% accuracy
respectively.

The excellent results presented above show that with a sufficient amount and quality
of training data, the task of leaf recognition7 is solved nearly perfectly by the proposed
methods.

2.5 Significance of Colors in Texture Datasets

The results presented in Section 2.4.1 show that Deep Convolutional Neural Networks
(CNNs) [33, 34] achieve state-of-the-art accuracy in texture classification, yet the hand
crafted features still achieve competitive results and may be preferable in real-time appli-
cations for their performance without parallel processing. Although it has been shown that
several texture description methods can benefit from adding color information [99], a large

7The task of leaf recognition constrained to leaf scans or photos of leaves on a white background.
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number of the pre-CNN texture recognition techniques, including our Ffirst method pro-
posed in Section 2.2, has been evaluated only on gray-scale images. Since many publicly
available datasets used for texture recognition contain color information, we decided to
evaluate the accuracy of color-statistics based methods to measure the significance of color
information in the datasets.

We study the significance of color information in available datasets commonly used for
evaluation of texture recognition methods. In total we evaluate 8 texture datasets, namely
FMD (Flickr Material Database), ALOT (A Lot Of Textures), KTH-TIPS (Textures under
varying Illumination, Pose and Scale), KTH-TIPS2a, KTH-TIPS2b, CUReT (Columbia-
Utrecht Reflectance and Texture), VehApp (Vehicle Appearance) and AniTex (Animal
Texture).

We improve the existing color descriptors, Discriminative Color Descriptors (DD) [101]
and Color Names (CN) [196]. DD and CN are based on partitioning of the color space into
clusters and assigning each color the probabilities of belonging to individual clusters. Our
extension to the DD and the CN descriptors adds the standard deviation for each color
cluster to the descriptor. This leads to an improvement in recognition rates on all 8 tested
datasets, as shown in the experiments in Section 2.5.3. In the experiments, we combine
our state-of-the-art Ffirst descriptor with the improved CNσ descriptor, leading to further
increase in recognition accuracy.

Section 2.5.1 reviews the state of the art in texture and color recognition, respectively.
The selected “color-only” image descriptors and our extension to them are introduced in
Section 2.5.2. Section 2.5.3 describes the experiments and presents the results.

2.5.1 Color Statistics for Classification

Color information is processed by many state-of-the-art descriptors in Computer Vision,
including the neurocodes of Deep CNNs or different extensions of SIFT incorporating color.
Yet we are interested in simpler color statistics, not making use of spatial information.

Standard approaches to collect color information include color histograms (based on
different color representations), color moments and moment invariants. Sande et al. [194]
provide an extensive evaluation of such descriptors. The Color Names (CN) descriptor by
Weijer et al. [196] is based on models learned from real-world data obtained from Google
by searching for 11 color names in English. The Color Names have shown to be a successful
color attribute for object detection [98] and recognition [100]. The model assigns each pixel
the probability of belonging to one of the 11 color clusters. A similar approach is used by
the Discriminative Color Descriptor (DD) of Khan et al. [101], where the color values are
clustered together based on their discriminative power in a classification problem with the
objective to minimize the drop of mutual information of the final representation.

Khan et al. [99] study the strategies of combining color and texture information. They
carried out a comparison of “color-only” descriptors on the publicly available KTH-TIPS2a,
KTH-TIPS2b, and FMD datasets, and on another small dataset denoted as Texture-10.
Since the results of Color Names and Discriminative Color Descriptors outperformed other
color descriptors in texture classification, we will describe the usage of CN and DD in more
detail in Section 2.5.2 and use the models in our experiments in Section 2.5.3.
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2.5.2 Selected Color Descriptors

Based on the findings of Khan et al. [99] and on our preliminary results, we consider
the Color Names [196] and Discriminative Color Descriptors [101] the best match for our
experiments for their superior classification accuracy.

While each of the approaches creates the color models based on a different criteria, the
result is a soft assignment of clusters to each RGB value. In both cases the assignment is
performed using a lookup table, which creates a mapping from RGB values to probabilities
over C clusters ci, i.e. p (ci | x). In this work we use the lookup tables provided by the
authors of the methods, i.e. the 11-dimensional Color Names representation by [196] and
the universal color 11-, 25- and 50-dimensional representations by [101].

The models assume uniform prior over the color names p(ci). The conditional proba-
bilities for each cluster ci given an image I are computed as an average over all N pixels
xn in the region:

p (ci | I) =
1

N

∑
xn∈I

p (ci | xn) (2.7)

The standard descriptor D for image I is then a vector containing the probability of each
cluster:

D(I) =


p (c1 | I)

p (c2 | I)
...

p (cC | I)

 (2.8)

We propose to add another statistics to the color descriptor, the standard deviation of
the color cluster probabilities in the image:

σ(ci | I) =

√
1

N

∑
xn∈I

[p (ci | xn)− p (ci | I)]2 (2.9)

We concatenate the standard deviations to the original descriptor to get the extended
representation:

Dσ(I) =



p (c1 | I)

p (c2 | I)
...

p (cC | I)

σ(c1|I)

σ(c2|I)
...

σ(cC |I)


(2.10)

2.5.3 Experiments with Color Descriptors on Texture Datasets

We compute 8 descriptors for each image in every database: the standard 11-dimensional
Color Name descriptor CN and its proposed 22-dimensional extension CNσ; the 11-, 25-
and 50- Discriminative Color Descriptors DD11, DD25, DD50 and the extended versions
DD11σ, DD25σ, DD50σ of double dimensionality.
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The multi-class classification is then performed for each descriptor separately by com-
bining binary SVM classifiers in a One-vs-All scheme. Linear SVM classifiers were used
together with an approximate feature map of Vedaldi and Zisserman [199]. The χ2 kernel
approximations and the histogram intersection kernel approximations were considered, the
latter was chosen based on slightly superior performance in preliminary experiments. The
Platt’s probabilistic output [117, 147] was used in order to estimate the posterior class
probabilities to choose the result in the One-vs-All scenario. To minimize the effect of
the random splits into training and testset, each experiment is performed 10 times on a
different split, with the exception of the KTH-TIPS2 databases with 4 experiments based
on the 4 material samples.

Table 2.5: Recognition accuracy (%) of selected color descriptors on publicly available
databases commonly used for texture recognition.

CUReT TIPS TIPS2a TIPS2b ALOT FMD AniTex VehApp

# classes 61 10 11 11 250 10 5 6

CN 85.9±0.6 99.3±0.9 46.7±2.0 39.0±2.5 51.0±0.5 26.3±2.4 38.0±2.0 34.7±1.0

DD11 68.7±0.9 95.5±1.3 43.5±6.5 36.1±1.0 38.2±0.4 24.0±1.1 32.4±1.6 33.2±1.0

DD25 83.4±0.8 96.8±0.9 44.0±7.6 36.0±2.3 60.9±0.5 23.9±1.4 36.0±1.7 36.9±0.6

DD50 87.7±1.0 99.0±0.7 46.9±4.8 38.5±1.5 65.5±0.4 22.6±1.4 37.4±1.1 39.1±1.0

CNσ 94.2±0.6 99.8±0.3 51.7±5.7 42.6±1.4 73.9±0.5 28.0±2.2 41.7±1.8 39.1±0.7

DD11σ 81.9±0.8 97.6±1.0 48.5±3.8 38.3±1.9 60.1±0.5 22.7±1.6 35.9±2.1 35.8±0.5

DD25σ 88.9±0.7 99.4±0.3 49.1±3.7 39.9±4.5 75.0±0.5 23.9±1.1 39.9±1.6 39.3±0.7

DD11σ 91.0±0.7 99.6±0.2 53.2±4.6 42.0±2.8 78.0±0.5 25.3±1.7 38.9±0.8 41.2±0.9

FV-CNN [33] 99.0±0.2 – – 81.8±2.5 98.5±0.1 79.8±1.8 – –
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Figure 2.19: Comparison of the best published results of “texture-only” descriptors and the
best results obtained using “color-only” descriptors.
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All 8 color descriptors are compared in terms of class recognition accuracy in Table
2.5. The best published results of “texture-only” (color-less) methods and the results of
the state-of-the-art FV-CNN [33] method are attached to the table for comparison. The
comparison of the best “color-only” and “texture-only” results on all 8 datasets is illustrated
in Figure 2.19.

An experiment on combining efficient classifiers of “texture-only” and “color-only” was
performed as follows: Each image was described using the CNσ color descriptor (using
the same method as above) and the Ffirst texture descriptor (with nconc = 3 descriptors
per image, each describing c = 7 consecutive scales). An approximate intersection kernel
map is applied to both color and texture descriptors, which are then classified using the
One-vs-All Support Vector Machines with Platt’s probabilistic outputs. The final scores
in Table 2.6 were then combined using 3 axiomatic approaches, denoted as:

1. PROD: The product of both of the scores is used for final decision.

2. SUM: The sum of both of the scores is used for final decision.

3. SUM0.3: The weighted sum of both of the scores is used for final decision, where the
weight of color is only 30% of the weight of texture, taking into account the lower
performance of the color descriptors on most datasets.

In terms of combining probability distributions [37], the SUM and SUM0.3 schemes repre-
sent a linear opinion pool and the PROD scheme represents a logarithmic opinion pool.

Table 2.6: Recognition accuracy (%) of combinations of “texture-only” (Ffirst) and “color-
only” (CNσ) descriptors.

CUReT TIPS TIPS2a TIPS2b ALOT FMD AniTex VehApp

# cls 61 10 11 11 250 10 5 6

CNσ 94.24±0.60 99.83±0.31 51.73±5.71 42.64±1.43 73.86±0.46 27.98±2.20 41.67±1.77 39.07±0.67

Ffirst 99.65±0.09 99.51±0.53 88.29±6.77 76.60±4.29 96.43±0.23 50.22±1.90 45.72±1.78 54.41±0.66

PROD 99.41±0.15 99.98±0.08 68.13±5.06 60.12±4.06 94.65±0.20 46.58±2.37 49.97±1.50 56.47±0.76

SUM 99.04±0.20 100.00±0.00 77.59±5.87 60.35±5.13 92.06±0.29 45.70±2.47 50.08±1.56 56.56±0.98

SUM0.3 99.68±0.12 99.85±0.26 88.76±6.40 77.17±4.23 97.05±0.14 52.24±1.68 48.99±1.83 56.62±0.92

2.5.4 Discussion of the Results

Experimental results show that using only color descriptors is sufficient for almost perfect
recognition accuracy of 99.8% on the KTH-TIPS dataset, where materials of the same
color appear in both training and test data. In other words, KTH-TIPS is an extremely
color-biased dataset. High accuracy scores of 94.2% and 78.0% were obtained using color
descriptors on the CUReT and ALOT datasets respectively. The KTH-TIPS2a and KTH-
TIPS2b datasets are more difficult for “color-only” classification, as testing data may come
from material samples of different colors than training data, as illustrated in Figure 2.11.
The FMD, AniTex and VehApp datasets are quite difficult for their heterogeneous nature,
both in terms of texture and color. Yet the color statistics still provide useful information
when combined with other descriptors.
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An extension to the Color Names (CN) and Discriminative Color Descriptors (DD),
denoted as CNσ, DDσ), significantly improved the recognition accuracy on all 8 tested
datasets. In the experiments, Color Names outperform even the higher-dimensional Dis-
criminative Color Descriptors DD25 on 6 out of the 8 experimented datasets, although the
opposite may be expected from the findings on different tasks [101]. The improved CNσ

outperforms other “color-only” descriptors on 5 out of 8 datasets, the best results on the
remaining 3 datasets are achieved by the improved DD50σ descriptor.

Combining the “texture-only” Ffirst classifier with the “color-only” classifier of CNσ

leads to an improvement on all 8 tested datasets. Note that 100% accuracy was achieved
on the KTH-TIPS dataset by combining the classifiers.

The state-of-the-art “texture-only” and “color-only” classifiers and their combinations
obtain excellent results in the simpler texture-recognition tasks. The more recent deep
learning models [33] perform better in the more difficult tasks. The simple “texture-only”
and “color-only” descriptors may, however, still be favourable in applications, where low
computational complexity is crucial.
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CHAPTER 3

Deep Learning for Species Recognition in the Wild

This chapter deals with image-based recognition of plants and fungi “in the wild”, i.e.
without constraints on acquisition conditions – such as lighting, scene background and
clutter – and on the view type – entire plant or mushroom, a specific organ, etc. Relaxing
constraints on input images increases the complexity of the identification: with complex
background and possible clutter in the scene, including other specimen, the specimen of
interest can not be segmented with a simplistic approach as in Section 2.2.5. Various views
of a plant or a fungus, as opposed to a canonical view of a specified organ, require a recog-
nition method that generalizes well to the varying appearance of the species observations
and that is robust to clutter in the scene and to large differences in the acquisition condi-
tions. Moreover, the datasets considered in this Chapter contain high numbers of species
– up to 10 000 plant species in the LifeCLEF challenges [88,90,91] – further increasing the
complexity of the recognition task.

We take a deep learning approach and use Deep Convolutional Neural Networks (CNNs),
which have become the state-of-the-art approach to a number of computer vision tasks,
often those related to complex fine-grained recognition [79, 102, 170, 186, 213] and detec-
tion [78, 118, 155, 157]. Successful learning of deep CNNs is typically conditioned by the
existence of large-scale databases of annotated images. Such datasets were published
with computer vision challenges – ImageNet Large Scale Visual Recognition Challenge(s)
(ILSVRC) [45, 160], PASCAL Visual Object Classes (VOC) [50, 51] or Microsoft Com-
mon Objects in Context (COCO) [119]. Large scale datasets for fine-grained recognition
of plants in the wild were published with computer vision challenges as well. The Plant-
CLEF [60,61,64] and ExpertLifeCLEF [63] datasets were published as challenges organized
with the LifeCLEF workshops [88, 89, 90, 91]. The FGVCx Flowers 2018 [3] dataset was
published as a challenge posted on Kaggle1 and organized with the Fine-Grained Visual
Categorization (FGVC) workshop at CVPR 2018. Similarly, for the fine-grained classifica-
tion of fungi species, the FGVCx Fungi 2018 dataset was published as a challenge posted on
Kaggle2 and organized in conjunction the FGVC workshop at CVPR 2018. The datasets

1https://www.kaggle.com/c/fgvc2018-flower Last accessed 2nd Apr 2020.
2https://www.kaggle.com/c/fungi-challenge-fgvc-2018 Last accessed 2nd Apr 2020.
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and challenges are described in detail later in Chapter 4.
Given the enormous popularity of deep learning in the last years and the volume of

available deep learning literature (e.g. [67,109,164]), this chapter will assume the reader is
familiar the with principles of deep learning such as back propagation, convolutional net-
works, commonly used activation functions and pooling layers, etc. Section 3.1 only briefly
describes recent CNN architectures, of which several will be experimented in Chapters 4,
5 and 6.

In the species recognition datasets and competitions, there are often large differences
between the class frequencies in the training and in the test data. In order to address this
problem, Section 3.2 discusses the interpretation of CNN classifier outputs as posterior
probabilities of classes given the image observations. Section 3.3 shows how to adjust the
predictions by the new categorical priors, and deals with estimation of the new categorical
priors at test-time from the CNN predictions.

3.1 CNN Classifier Architectures

The concept of Convolutional Neural Networks dates back to the 1980s with Fukushima’s
Neocognitron [56], followed i.a. by the fundamental works of LeCun et al. on handwritten
digit recognition [110, 111]. The successful application of deep learning to large scale
image recognition problems in the 21st century was – among other aspects – enabled
by increasing hardware performance and by fast implementations on Graphics Processing
Units (GPUs), allowing dramatic gains in computational performance thanks to utilizing
the GPU parallelism [28,35,133].

The success of Krizhevsky’s network [103] (later denoted as AlexNet) in the ImageNet
2012 Image Classification challenge increased the interest in deep learning for computer
vision and started the deep learning era for large scale image recognition problems: The
following ILSVRC classification challenges became a showcase of advances in convolutional
neural networks architectures: ZFNet [208] in ILSVRC 2013, GoogLeNet (Inception v1)
[187] and VGG networks [170] in 2014, Residual Neural Networks (ResNet) [79] in 2015.
In the meantime, Sharif et al. [167] showed that the features extracted from ImageNet-
pretrained CNNs provide strong baselines for a diverse range of recognition tasks like
object image classification, scene recognition, fine grained recognition, attribute detection
and image retrieval across a diverse set of datasets.

3.1.1 AlexNet

The network of Krizhevsky et al. [103] consisted of 5 convolutional layers, some of which
were followed by max-pooling layers, and 3 fully-connected layers with a final 1000-way
softmax classifier for the 1000 ImageNet classes.The network had 60 million parameters
in total. On the ILSVRC 2012 validation set3, the network achieved top-1 and top-5
error rates of 40.7% and 18.2% respectively. An ensemble of 7 networks achieved the best
results in the competition with 15.3% top-5 error on the test set, while the best “pre-CNN”
submission scored 26.2% top-5 error.

3Because the labels of the ILSVRC 2012 test set are not publicly available, publication results are
commonly reported on the validation set. The results on the test and validation sets tend to correlate well.
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3.1.2 VGG

Simonyan and Zisserman [170] introduced deeper convolutional networks, with up to 19
weight layers (16 convolutional layers and 3 fully connected layers) with a very small
filters (3 × 3). Although stacking layers with small receptive fields decreases the number
of parameters compared to layers with large receptive fields, the VGG networks have up
to 144 million parameters. The deepest proposed network, commonly known as VGG-19,
achieved the top-1 and top-5 error rates of 24.8% and 7.5% on the ILSVRC 2012 validation
set (with a multi-crop settings of 150 crops per image).

3.1.3 GoogLeNet / Inception v1

Szegedy et al. [187] focused on the utilization of computing resources and increased the
depth and width of the network, while using less than 7 million parameters and about 1.5
billion operations. The GoogleNet architecture is based on stacking “Inception modules”,
in which the input is processed in parallel by several convolutional pathways with different
filter types and sizes, with their output filter banks concatenated into a single output.
Dimensionality reduction prior to expensive convolutions with larger patch sizes is achieved
by adding a 1× 1 convolution with a lower number of filters. Two auxiliary classification
heads were added in the intermediate layers in order to combat the vanishing gradient
problem while providing regularization. The architecture is visualized in Figure 3.1. Note
that the Inception modules stacked in GoogleNet differ in the numbers of convolutional
filters as well as in the input/output resolutions. With multi-crop setting (144 crops per
test image], the 22 layers deep GoogLeNet achieves 7.89% top-5 error in the ILSVRC 2012
validation set.

3.1.4 Inception v2 and Inception v3

Several updates to the Inception architecture, increasing the accuracy and decreasing the
computational complexity, were proposed in [188], introducing the Inception v2 and In-
ception v3 architectures. These updates included:

• avoiding representational bottlenecks (low representation dimensionality), especially
early in the network

• factorization of convolutions with larger filter size into several smaller filters

• factorization of layers with medium grid-sizes into asymmetric convolutions (n× 1)

• balancing the number of filters per stage (i.e. the “width” of the network) and the
depth of the network

• batch normalization [84] of the layers in auxiliary classifiers (in v3)

• additional regularization by label smoothing (in v3)

Three new Inception modules with different combinations of filters were proposed following
the above mentioned principles. Inception v3, the better performing architecture, achieved
21.2% top-1 and 5.6% top-5 error on ILSVRC 2012 val set with a single crop setting. With
144 test crops, it achieved top-1 and top-5 error of 18.77% and 4.2% respectively.



40 CHAPTER 3. DEEP LEARNING FOR SPECIES RECOGNITION IN THE WILD

Figure 3.1: The GoogleNet architecture from [187].
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3.1.5 ResNets

He et al. [79] proposed a residual learning framework, in which shortcut connections -
skipping one or more layers - are used to make the layers learn residual functions w.r.t.
the inputs, and tackle the vanishing gradient problem of deep networks at the same time.
The residual blocks are illustrated in Figure 3.2. The residual learning allowed to train
networks that are substantially deeper than those used previously. The authors evaluated
ResNets of different depths (18, 34, 50, 101, 152 layers) on the ILSVRC 2012, where the
deepest ResNet-152 (single model) achieved 19.38% top-1 and 4.49% top-5 error.

Figure 3.2: The residual blocks used for ImageNet Classification in ResNets [79] with
similar time complexity. The “bottleneck” block on the right is used for speed up in the
deeper ResNet-50/101/152 networks.

Xie et al. [206] proposed ResNeXt, where the residual blocks from Figure 3.2 are re-
placed with a block that aggregates a set of transformations with the same topology, as
displayed in Figure 3.3.

Figure 3.3: A block of ResNeXt [206] with cardinality 32.
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3.1.6 Inception v4 and Inception-ResNets

In 2017, Szegedy et al. [186] proposed modifications to the Inception architectures dis-
cussed before. Inception-v4 includes a modification of the stem4 of the network and an
introduction of reduction blocks changing the width and height of the grid. The same
paper introduced Inception-ResNets with residual connections, inspired by the work of
He et al. [79]. Inception-ResNet v1 and v2 were designed to have similar computational
costs to Inception v3 and Inception v4 respectively. With single-crop evaluations in the
ILSVRC 2012 dataset, the Inception-v4 achieved 20.0% top-1 and 5.0% top-5 error and
the Inception-ResNet-v2 achieved slightly lower errors of 19.9% and 4.9% respectively.

3.1.7 Efficient Architectures, Neural Architecture Search

Significant efforts have been made in the architecture of efficient models such as Mo-
bileNets [81] and their improvements [162], allowing fast inference and smaller model sizes.
In parallel with the development of smaller and more efficient network architectures, de-
creasing the model size is possible via model compression with techniques such as network
pruning [73], quantization of weights from full precision (32 bit floating point) into lower
bit-depth representations [66, 72, 85, 204, 211] and Huffman coding [72]. Efficient architec-
ture design together with such model compression techniques can decrease the model size
enormously [83].

More recently, the CNN architecture engineering is partly being automated on datasets
of interest - this includes works such as the Neural Architecture Search [213] proposing a
set of NASNet architectures, a more efficient Progressive Neural Architecture Search [122]
introducing PNASNets. The principles from [122, 213] have later been used to develop a
family of efficient models called EfficientNets [190].

3.1.8 Maxout Networks

Several models proposed in Chapter 4 utilize a less common activation function - maxout
[68]. Given an input x ∈ Rd, a maxout hidden layer implements the following function:

∀i ∈ {1, . . . ,m} : hi(x) = max
j∈{1,...,s}

zij , (3.1)

where zij = xTW.ij + bij is the j-th part of the hidden layer with learned parameters
W ∈ Rd×m×s, b ∈ m×s and m is the output size. In other words, maxout takes the
maximum over s slices of the hidden layer.

One can understand maxout as a piece-wise linear approximation to a convex function,
specified by the weights of the previous layer. This is illustrated in Figure 3.4.

Goodfellow et al. [68] designed maxout to leverage the dropout technique. When train-
ing with dropout, the element-wise multiplication with the dropout mask is applied imme-
diately prior to the multiplication by the weights W .

4The term stem is used in [186] for the set of operations before the Inception modules.
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Figure 3.4: Illustration of maxout as a piece-wise approximation to a convex function, from
Goodfellow et al. [68].

3.2 Probabilistic Interpretation of CNN Outputs

A CNN classifier model ended by a K-way softmax function can be expressed as a mapping
from the image space to the probability simplex 5 ∆K−1:

fCNN : RW×H×3 7→ ∆K−1, (3.2)

in other words, the K outputs of the classifier are non-negative and sum to one. For a
CNN classifier with parameters θ, let us use the notation fCNN(k|x; θ) for the individual
scalar outputs of the classifier, i.e.:

fCNN(x; θ) = (fCNN(1|x; θ), . . . , fCNN(K|x; θ)) (3.3)

The common approach to training CNN classifiers is Stochastic Gradient Descent min-
imization of the cross-entropy loss LCE:

LCE = −
N∑
i=1

K∑
k=1

cik log fCNN(k|xi; θ)) (3.4)

where cik is a one-hot encoding of the class label yi:

cik =

{
1 if k = yi

0 otherwise
(3.5)

In this Section we show that minimizing the cross entropy loss LCE is equivalent to
the Maximum Likelihood Estimation (MLE) of parameters θ for an estimator of posterior
probabilities pmodel(y|x).

Let X be a random variable representing images x ∈ RW×H×3 and Y be a random
variable representing class labels y ∈ {1, . . . ,K}. Let us assume that the training set
T = {(x1, y1), . . . (xN , yN )} contains independent and identically distributed (i.i.d.) sam-
ples (xi, yi) from a distribution p(x, y). We can model the true distribution p(x, y) by a
parametric model:

pmodel(x, y; θ) = pmodel(y|x; θ) · pX(x). (3.6)

5The (K−1)-dimensional probability simplex ∆K−1 is the set of vectors
{
q ∈ RK :

K∑
i=1

qi = 1, q ≥ 0

}
.
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The model parameters θ can be optimized using the framework of Maximum Likelihood
Estimation (MLE). With the i.i.d. sampled training set T that means:

θMLE = arg max
θ

N∏
i=1

pmodel(xi, yi; θ) = arg max
θ

N∏
i=1

pmodel(yi|xi; θ) · pX(xi). (3.7)

Maximizing the likelihood is equivalent to maximizing the log-likelihood:

θMLE = arg max
θ

(
N∑
i=1

log pmodel(yi|xi; θ) +

N∑
i=1

log pX(xi)

)

= arg max
θ

N∑
i=1

log pmodel(yi|xi; θ)

(3.8)

We can see that training the CNN classifiers by minimizing the cross-entropy loss LCE

from Equation 3.4 is equivalent to the maximizing the log-likelihood in Equation 3.8:

arg min
θ
−

N∑
i=1

K∑
k=1

cik log fCNN(k|xi; θ) = arg min
θ
−

N∑
i=1

log fCNN(yi|xi; θ)

= arg max
θ

N∑
i=1

log fCNN(yi|xi; θ)

(3.9)

In other words, CNN classifiers are trained with cross-entropy loss in order to estimate the
posterior probabilities:

fCNN(y|x; θ) ≈ p(y|x) (3.10)

3.2.1 Checking the Properties of Class Posterior Estimates

The true posterior probabilities p(k|x) for an observation x are unknown, and thus we are
not able to directly evaluate the accuracy of the posterior probability estimator fCNN(k|x; θ)

from Equation 3.10. Let us check at least some properties that should hold if the trained
classifier estimates the posterior probability p(k|x) well. For now we fix the trained clas-
sifier parameters θ and use a simpler notation fCNN(k|x).

To experiment with the properties of the CNN predictions, we use the CIFAR-100
[102] dataset, a popular dataset for smaller-scale classification experiments. It contains
small resolution (32x32) color images of 100 classes. The full dataset contains 500 training
samples and 100 test samples for each class. Examples from the dataset are displayed
in Figure 3.5. We sampled subsets of CIFAR-100 that follow pre-defined distributions
from the exponential family. A 32-layer Residual Network [79] was trained on the training
subsets.

First, we will check if averaging the predictions on training and test data estimates the
class priors pY (k) well:

1

N

N∑
i=1

fCNN(k|xi) ≈
1

N

N∑
i=1

p(k|xi) = pY (k). (3.11)

On the labeled datasets, we will assume pY (k) =
Nk

N
, where Nk =

N∑
i=1

cik is the number of

images of class k and N is the number of all images in the dataset.
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Figure 3.5: Examples from the CIFAR-100 dataset: one example per class.
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Figure 3.6: Comparison of class frequency and the average of CNN outputs over all images
in the train- and test- sets sampled from CIFAR-100.
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The comparison of empirical class frequencies and the estimates obtained by averaging
the CNN predictions is displayed in Figure 3.6. The training set class distributions are
estimated almost perfectly. The estimates on the test set are more noisy, but approximate
the class frequencies well.
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Figure 3.7: Test set empirical error εemp
k and the estimated error εk, classes sorted by εemp

k .

In the second validation experiment, we will look at the empirical error rate on images
belonging to class k:

εemp
k =

1

Nk

∑
i:yi=k

[[k 6= arg max
k∗

fCNN(k∗|xi)]]. (3.12)

An unbiased estimator fCNN should correctly classify an image x belonging to class k with
probability fCNN(k|x) and incorrectly with probability 1 − fCNN(k|x). Let us see if εemp

k

can be approximated by averaging the probabilities of incorrect classification:

εk =
1

Nk

∑
i:yi=k

[1− fCNN(k|xi)] , (3.13)

The results of this comparison are shown in Figure 3.7: we can see that the estimated error
εk and the empirical error εemp

k are aligned fairly well.
Note that both experiments were based on averaging the CNN outputs over a set of

images, and are thus not sufficient to claim that that fCNN(k|x) provides a reliable estimate
of the posterior probability p(k|x). For example, both experiments could end up well even
for a classifier that always predicts 100% confidence for the top 1 result while having
non-zero classification error, if misclassifications happen in the right ratio.

3.2.2 Over-confident Classifiers

Due to over-fitting on the training set, “over-confident” predictions are a common problem
of CNN classifiers: The CNN outputs for the top predictions tend to be higher than the
expected correctness. Guo et al. [70] study the representations of such bias and compare
a number of post-processing methods for calibrating CNN predictions.

To visualize the reliability of prediction confidence, i.e. the posterior estimate for the
predicted class arg maxk fCNN(k|x)6, we use Reliability Diagrams [44, 70, 131], which
plot the average sample accuracy as a function of confidence. Predictions are grouped by

6In the rare case of multiple occurrences of the maximum value max
k

fCNN(k|xi) , we only assume the
first occurrence returned by arg max.
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confidence into M bins, such that samples with top-1 prediction confidence from interval(
m− 1

M
,
m

M

]
fall into bin Bm.

The expected accuracy and average confidence of Bm are:

acc(Bm) =
1

|Bm|
∑
i∈Bm

[[yi = arg max
k

fCNN(k|xi)]]

conf(Bm) =
1

|Bm|
∑
i∈Bm

max
k

fCNN (k|xi))
(3.14)

The reliability diagrams of the four CIFAR-100 classifiers from Section 3.2.1 displayed
in Figure 3.8 show that the classifiers are indeed over-confident: the average accuracy of
predictions from each bin Bm is much lower than the prediction confidence.

From the calibration methods compared in [70], Guo et al. conclude that temperature
scaling is the most effective and simplest at the same time. It uses a single scalar parameter
T called temperature to adjust the inputs into the softmax function

σk(z) =
exp(zk)
K∑
j=1

exp(zj)

(3.15)

applied to logits z (typically the outputs of a fully connected layer) as follows:

f̂TS
k (z) =

exp(zk/T )
K∑
j=1

exp(zj/T )

(3.16)

The parameter T is commonly optimized (on a fixed CNN) by minimization of the cross
entropy loss - also denoted [70] as Negative Log Likelihood (NLL) when used with hard
labels.

Note that while temperature scaling calibrates the classifier confidences, it is an order-
preserving function, and thus does not affect the accuracy if the scaled predictions are used
for classification directly. It may, however, affect the results if the predictions are used for
further computation as posterior probabilities – e.g. in an empirical Bayesian strategy
or when adjusting to new categorical priors, as proposed in Section 3.3. The effect of
temperature scaling on the estimation of new categorical priors will be experimented in
Section 6.5 t.
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Figure 3.8: Reliability diagrams of the CIFAR-100 classifiers in the same order as in Figure
3.6.
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3.3 Difference in Categorical Priors

A common assumption of many machine learning algorithms is that the training set is
independently sampled from the same data distribution as the test data [15, 67, 75]. In
practice, this assumption is often violated - training samples may be obtained from diverse
sources where classes appear with frequencies differing from the test-time. For instance,
for the task of fine-grained recognition of plant species from images, training examples can
be downloaded from an online encyclopedia. However, the number of photographs of a
species in the encyclopedia is typically not related to the frequency a species is queried in
a plant identification service, where the frequency can also change in time and space.

Problems related to the differences between training- and test-set domains are studied
in the field of domain adaptation [39, 140]. We are interested in the special case when
statistical properties of observations from the same class stay the same (i.e. appearance
does not change), and the only assumed difference is in the class priors pY (k).

Methods [48,161] for adjusting classifier outputs to new and unknown a-priori probabil-
ities have a long history, yet the problem of changed class priors is commonly not addressed
in computer vision tasks where the situation arises. An exception is the work of Royer
et Lampert [159], who consider the case of sequential adaptation at prediction time (i.e.
sample after sample) and take a classical Bayesian approach, using a symmetric Dirichlet
distribution to form a posterior (mean) predictive estimate.

We focus mainly on the case when multiple observations are classified at once. Adopting
the Maximum Likelihood Estimation (MLE) approach [48,161], we propose an alternative
solver for the MLE optimization, and we formulate a more stable Maximum a Posteriori
(MAP) estimation approach with a Dirichlet hyperprior.

The rest of this Section formulates the compensation for the change in a-priori class
probabilities in Section 3.3.1 and the estimation of the new a-priori probabilities using the
frameworks of Maximum Likelihood in Section 3.3.2 and Maximum a Posteriori in Section
3.3.3.

Experimental evaluation, presented later in Chapter 6, shows that state-of-the-art
CNNs on fine-grained image classification tasks noticeably benefit from the adaptation
to new class prior probabilities, and that the Dirichlet hyper-prior introduced to the pro-
posed MAP approach improves the results over the ML estimate on most datasets. While
our experiments focus on Neural Networks, the proposed framework is applicable to all
classifiers with probabilistic (posterior) outputs. The importance of adaptation to new
class prior probabilities is also shown by several contributions to classification challenges
in Chapter 4.

3.3.1 New A Priori Class Distribution

Let us assume the probability density function pe(x|k), describing the statistical properties
of observations x of class k on the validation or test7 set, remains unchanged from p(x|k)

on the training set :

p(x|k) = pe(x|k) (3.17)

7We use index e to denote all evaluation-time distributions.
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p(k|x) · pX(x)

pY (k)
=
pe(k|x) · peX(x)

peY (k)
(3.18)

When the prior class probabilities peY (k) in a validation or test set differ from the
training set pY (k), then the posterior pe(k|x) differs from p(k|x) ≈ fCNN(k|x). The new
posterior probabilities can then be computed as

pe(k|x) = p(k|x)
peY (k)pX(x)

pY (k)peX(x)
(3.19)

Since
K∑
k=1

pe(k|x) = 1 , we can get rid of the unknown probabilities pX(x), peX(x) of

fixed sample x:

pe(k|x) ∝ p(k|x)
peY (k)

pY (k)
(3.20)

The class priors pY (k) can be empirically estimated as the fraction of images labeled

with class k in the training set,
Nk

N
. The test-time priors peY (k) are, however, often

unknown at test time.

3.3.2 ML Estimate of New A Priori Probabilities

Saerens et al. [161] proposed to approach the estimation of unknown test-time a-priori
probabilities by maximizing the likelihood of the set of test observations E = {x1, . . . ,xNe}:

L(E) =
∏
x∈E

peX(x) =
∏
x∈E

K∑
k=1

pe(x, k) =
∏
x∈E

K∑
k=1

p(x|k)peY (k) (3.21)

or equivalently maximizing the log-likelihood:

`(E) = logL(E) =
∑
x∈E

log
K∑
k=1

p(x|k)peK(k). (3.22)

To compute an estimate p̂ = (p̂1, . . . , p̂K) ∈ ∆K−1 of the new prior probabilities
(peY (1), . . . , peY (K)), Saerens et al. [161] derive a simple EM algorithm comprising of the
following steps:

p(s)(k|x) =

p(k|x)
p̂
(s)
k

pY (k)

K∑
j=1

p(j|x)
p̂
(s)
j

pY (j)

(3.23)

p̂
(s+1)
k =

1

N e

∑
x∈E

p(s)(k|x) (3.24)

where Eq. 3.23 is the Expectation-step, Eq. 3.24 is the Maximization-step, and p̂(0)k may

be initialized, for example, by the training set relative frequency
Nk

N
.

Du Plessis and Sugiyama [48] proved that this procedure is equivalent to fixed-point-
iteration minimization of the KL divergence between the test observation density peX(x)

and its model qeX(x) =
K∑
k=1

p̂kp(x|k) on the test set.
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KL(qeX‖peX) =
∑
x∈E

peX(x) log
peX(x)

qeX(x)

=
∑
x∈E

peX(x) log peX(x)−
∑
x∈E

peX(x) log

K∑
k=1

p̂kp(x|k)

(3.25)

Note that estimating the priors p̂ = (p̂1, . . . , p̂K) by minimization of the KL divergence
on the test set E can be rewritten as maximization of the log-likelihood `(E) = logL(E) of
the observed data given the prior probability estimates p̂k ≈ peY (k):

arg min
p

KL(qeX‖peX) = arg min
p

(
1

N e

∑
x∈E

log peX(x)− 1

N e

∑
x∈E

log
K∑
k=1

pkp(x|k)

)

= arg max
p

1

N e

∑
x∈E

log
K∑
k=1

pkp(x|k)︸ ︷︷ ︸
`

= p̂MLE

s.t.
K∑
k=1

pk = 1; ∀k : pk ≥ 0

(3.26)

The final optimization objective is then:

p̂MLE = arg max
p

∑
x∈E

log
K∑
k=1

pk
p(k|x)pX(x)

pY (k)
= arg max

p

∑
x∈E

log
K∑
k=1

pk
p(k|x)

pY (k)︸ ︷︷ ︸
aik

s.t.
K∑
k=1

pk = 1; ∀k : pk ≥ 0

(3.27)

As shown in [48], using the EM algorithm from Eq. 3.23, 3.24 may not result in the
unique optimal value, as the mapping of the fixed-point iteration is not a contraction
mapping.

We therefore experiment also with direct optimization of the objective from Eq. 3.26
using the projected gradient descent algorithm [20]. At each step s, we update the variables
as follows:

p̂
(s+1)
k = π

(
p̂
(s)
k + λ

∂`(E)

∂p̂k

)
, (3.28)

where λ is the learning rate, π represents the projection onto the unit simplex, and the
partial derivatives are:

∂`(E)

∂p̂k
=
∑
x∈E

aik
K∑
j=1

p̂jaij

(3.29)

To compute the Euclidean projection π onto the unit simplex, we use the efficient
algorithm from [49,202].
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3.3.3 MAP Estimate of New A Priori Probabilities

Having a prior knowledge of the probability p(pY ) of a categorical distribution pY (y), the
maximum a-posteriori (MAP) estimate of the class prior probabilities is:

p̂MAP = arg max
p

p(p|E)

= arg max
p

p(p)
∏
x∈E

p(x|p)

= arg max
p

[
log p(p) +

∑
x∈E

log p(x|p)

]

s.t.
K∑
k=1

pk = 1; ∀k : pk ≥ 0

(3.30)

Note that the second term is the log-likelihood from the previous section, `(E) =∑
x∈E

log p(x|p).

Let us model the prior knowledge about the categorical distribution by the symmetric
Dirichlet distribution:

p(p) =
1

B(α)

K∏
k=1

pα−1k (3.31)

parameterized by α > 0, where the normalization factor for the symmetric case is

B(α) =
Γ(α)K

Γ(αK)
. (3.32)

Choosing an α ≥ 1 favours dense distributions, and thus avoids setting the categori-
cal priors too close to zero. Zero priors may suppress even highly confident predictions.
Moreover, the Dirichlet distribution with α ≥ 1 is a log-concave distribution, allowing
optimization with the projected gradient descent optimizer from Section 3.3.2 by adding
the following gradient components:

∂ log p(p̂)

∂p̂k
=
∂(α− 1) log(p̂k)− logB(α)

∂p̂k
=
∂(α− 1) log(p̂k)

∂p̂k
=
α− 1

p̂k
(3.33)

The adjustment of CNN outputs to new priors peY (k) proposed in Section 3.3, including
the Maximum Likelihood and Maximum A Posteriori estimation of the new priors from
Sections 3.3.2 and 3.3.3 respectively, will be used in some of our submissions to computer
vision challenges described in Chapter 4. A more comprehensive evaluation of the methods
is in Chapter 6 - a reader interested only in the adjustment of CNN priors may skip
Chapters 4 and 5.
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CHAPTER 4

In-the-wild Classification Competitions

As discussed in Chapter 3, many recent advances in image recognition have been enabled
by the publication of large-scale datasets [45,50,51,119,160] for computer vision challenges
and competitions. Image-based species recognition, a complex example of fine-grained
classification, has been no exception: extensive image datasets have been published with
computer vision challenges and competitions.

Sections 4.1, 4.2, 4.4, 4.5, 4.6 chronologically describe our submissions to the LifeCLEF
plant identification challenges 2016-2019 and the FGVCx Fungi 2018, iNaturalist 2018 and
FGVCx Flowers 2018 recognition challenges. Sections 4.3 and 4.6 evaluate the accuracy of
the computer vision algorithms for plant classification in comparison to human experts.

4.1 PlantCLEF 2016

4.1.1 The PlantCLEF 2016 Plant Identification Challenge

The task of the PlantCLEF 2016 [60,89] challenge is to automatically identify plant species
from photos of different plant organs or the whole plant. The challenge deals with recog-
nition of 1 000 plant species including herbs, trees and ferns.

The training data consist of 113 205 images of observations belonging to 1 000 species,
and includes images from the training and test sets of PlantCLEF 2015. All images were
annotated with the taxonomic species as well as other meta-data such as type of view
(Leaf, LeafScan, Flower, Fruit, Stem, Branch, Entire), date of acquisition, author ID or
GPS coordinates (if available). The test set contains 8 000 images. Examples from the
training and test sets are displayed in Figure 4.1.

The 2016 challenge evaluation addressed the task as an open-set or open-world recog-
nition problem [13, 163]: the test data contained distractors of unseen categories. The
evaluation metric for the challenge is the mean average precision (mAP) over all species,
where the average precision for each species is computed from the list of all test images
sorted by the classifier output for the given species.

53
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(a) Examples from the training set.

(b) Examples from the test set

Figure 4.1: Examples from the PlantCLEF 2016 challenge.

4.1.2 The Proposed Approach: Very Deep Residual Maxout Networks

The very deep residual networks of He et al. [79], briefly described in Section 3.1.5, gained
a lot of attention after achieving the best results in both the ILSVRC 2015 and the COCO
2015 Detection Challenge. The residual learning framework allows to efficiently train
networks that are substantially deeper than the previously used CNN architectures. Our
networks are based on the ResNet models pre-trained on ImageNet, which are publicly
available1 for the Caffe deep learning framework [87].

To further improve the classification accuracy, we made a small change in the network
architecture: an additional fully-connected layer with 512 neurons was added on top of the
network, right before the softmax classifier. The activation function in the new layer is
maxout [68], described in Section 3.1.8, with 4 linear pieces (s = 4). Dropout with a ratio

1https://github.com/KaimingHe/deep-residual-networks Last accessed 2nd Apr 2020.

https://github.com/KaimingHe/deep-residual-networks
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of 50% is applied after the maxout layer and before the classifier.
The final layer is a standard 1000-way softmax classifier corresponding to the number of

plant species in the challenge. Glorot [58] initialization was used for the two fully connected
layers.

We have fine-tuned the networks for submissions CMP Run 1, CMP Run 2 and CMP
Run 3 for 150 000, 150 000, and 370 000 iterations respectively, all with the following
hyper-parameters:

• The learning rate was set to 10−3 and lowered by a factor of 10 each 100 000 iterations.

• The momentum was set to 0.9, weight decay to 2 · 10−4.

• The effective batch size was set to 28 (either computed at once on NVIDIA Titan
X, or split into more batches using Caffe’s iter_size parameter when used on lower-
memory GPUs).

• A horizontal mirroring of input images was performed during training.

Beyond fine-tuning the network, we performed bagging, inspired by its impact on the
PlantCLEF 2015 results, where an interesting margin was gained with bagging of 5 net-
works by Sungbin Choi [31]. Due to computational limits at training time, we only used
bagging of 3 networks, although we believe that using a higher number of more diverse
networks would further improve the accuracy. The voting was done by taking species-wise
maximum of output probabilities.

We have also experimented with training Support Vector Machines (SVMs) on L2
normalized outputs of the last pooling layer “kernelized” using an approximate χ2 feature
map [199]. Platt’s probabilistic output was used [117, 147] to obtain comparable results
with One-vs-All arrangement of the binary classifiers.

4.1.3 Preliminary Results and Validation

For our preliminary experiments and validation, we used the PlantCLEF 2016 training
set, which is the union of previous year’s (PlantCLEF 2015) training and test sets. Our
validation process was threefold:

First, we validated networks trained on the PlantCLEF 2015 training set by evaluating
them on the PlantCLEF 2015 test set using the previous year’s metric [59]: the average
classification rate per author of test observations. The goal of this phase was to validate
that the ResNet-152 architecture is superior to the GoogleNet networks fine-tuned by the
winners of the PlantCLEF 2015 challenge. While the best submission without bagging in
the PlantCLEF 2015 challenge achieved a score of 59.4%, a fine-tuned ResNet-152 (without
maxout) scored 62.1%. Applying SVMs on top of the last pooling layer pushed the score
further to 62.5%, and training different SVMs for different groups of view types (always
one for Leaf and LeafScan, second for Flower and Fruit, and third for Stem, Branch and
Entire) gives another small improvement to 62.7%. The results are summarized in Table
4.1. Note that the meta information about view type was available in the test set too.

Second, we tested networks fine-tuned on PlantCLEF 2015 training data by evaluating
them on the test set of PlantCLEF 2015 with the mAP metric used in the PlantCLEF
2016 challenge. This experiment evaluated the difference between the metrics used in
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Table 4.1: Validation of the fine-tuned ResNet-152 using the PlantCLEF 2015 [59] score.
LR denotes the learning rate, it. denotes the number of iterations, sepSVM is the set of
SVM classifiers, each trained only on images of certain types (leaves, flowers & fruits, stem
& branch & entire).

Method PlantCLEF’15 score
LR = 0.001, 70K it. 58.7%
LR = 0.001, step size 100K, 150K it. 62.1%
LR = 0.001, step size 100K, 150K it. + SVM 62.5%
LR = 0.001, step size 100K, 150K it. + sepSVM 62.7%

Table 4.2: Validation of the fine-tuned ResNet-152 using the PlantCLEF 2016 [60] mAP
score. LR denotes the learning rate, it. denotes the number of iterations, sepSVM is the
set of SVM classifiers, each trained only on images of certain types (leaves, flowers & fruits,
stem & branch & entire).

Method mAP
ResNet-50 (150K it.) 50.3%
ResNet-152 (150K it.) 52.2%
ResNet-152 (150K it.) + SVM 51.8%
ResNet-152 (150K it.) + sepSVM 50.6%
ResNet-152 + maxout (130K it.) 56.8%
ResNet-152 + maxout (130K it.) + 10-view test aug. [103] 56.9%
ResNet-152 + maxout (130K it.) + fully convolutional eval. 55.9%
ResNet-152 + maxout (370K it.) 57.3%

PlantCLEF 2015 and PlantCLEF 2016. While deploying the SVMs slightly improved the
2015 score, using the CNN SoftMax output worked better for the 2016 metric. This is
probably due to better comparability of SoftMax outputs among different samples, which
was not important for the 2015 score, but which is crucial for the mAP used in PlantCLEF
2016. Fine-tuning ResNet-152 for 150 000 iterations lead to 52.2% mAP, while fine-tuning
for 130 000 iterations with maxout lead to 56.8% mAP, proving that using maxout improves
the accuracy significantly. The training set size is big enough to fine-tune networks for
a larger number of iterations without overfitting, which brings additional 0.5% of mAP
points, as shown in Table 4.2. The test-time 10-view image augmentation [103] (4 corner-
crops, center crop and their mirrored versions) added only 0.2% of mAP, which is a smaller
improvement than the ImageNet competition [103]. Evaluating the network in a fully
convolutional style on images scaled to 448 pixels (in the longer dimension) surprisingly
decreased the mAP by 0.9%.

Third and lastly, we performed bagging on the selected pipeline by dividing the 2016
training set into three folds and fine-tuning 3 networks, each using a different fold for
validation and the remaining two folds for fine-tuning. The goal of this validation was to
check that fine-tuning of all 3 networks converged to a meaningful solution.
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4.1.4 Results on the Test Set

Figure 4.2: Results of the main task in PlantCLEF 2016 [60]. CMP results are in orange,
our primary submission (CMP Run 1) scored among the 3 best performing teams.

Our primary submission, CMP Run 1 - the bagging of 3 deep residual (ResNet-152)
networks with maxout fine-tuned each on two thirds of the PlantCLEF 2016 training set,
scored 71.0% mAP and placed among the top 3 teams in the challenge and among the top
7 runs.

The second submission, CMP Run 2 - only one of the three residual networks from
CMP Run 1, scored 64.4% mAP. The difference between the first two submissions is 6.6%,
underlining the benefit of ensembling.

The third submission, CMP Run 3 - one network pretrained only on the LifeCLEF
2015 training set for a higher number of iterations, scored 63.9% mAP.

The official results of the PlantCLEF 2016 challenge are visualized in Figure 4.2. The
winning submission of Bluefield (KDE TUT) [74] scored 74.2% mAP thanks to averaging
the scores of images with the same ObservationID meta-information connecting images of
the same specimen observation, i.e. transforming the task from single-image recognition
to multiple-image recognition. While we did not realize it, combining image predictions
across the test set was allowed by the challenge rules.

In a post-challenge experiment, we averaged the predictions in CMP Run 1 belonging
to the same specimen observation, achieving 78.8% mAP, exceeding the winning score by
4.6%.

4.1.5 Discussion

Our results confirm the suitability of very deep convolutional networks for plant recognition
in the wild, allowing to use a unified end-to-end pipeline for recognition of different plant
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organs and the whole plants in an uncontrolled environment. Significant improvements,
compared to the most successful approaches from the 2015 challenge, were achieved by
deploying a very deep (152-layer) residual network and placing a maxout layer in front of
the classifier. The post-challenge experiment averaging the prediction scores per specimen
observation points out the advantages of multiple-image recognition, increasing the mAP
of our primary submission by 7.8%.

4.2 PlantCLEF 2017

The task of PlantCLEF2017 was again automatic identification of plants using computer
vision. While a similar task has been the subject of previous challenges [59,89], PlantCLEF
2017 aims at a significantly larger scale: recognizing plants from 10 000 species with two
sets of training data: a smaller “trusted” training set and a noticeably larger web-based
“noisy” training set.

The challenge task and data are summarized in Section 4.2.1, the deep learning ap-
proach and all proposed modifications are described in Section 4.2.2. Preliminary exper-
iments are presented and evaluated in Section 4.2.3. Post-processing steps are described
in Section 4.2.3. The runfiles submitted to PlantCLEF are listed in 4.2.4. The results are
discussed in Section 4.2.6.

4.2.1 The PlantCLEF 2017 Plant Identification Challenge

Two sets of training data covering the same 10 000 plant species were provided by the
organizers:

1. A set based on the online collaborative Encyclopedia Of Life (EoL) containing 256 287
images and corresponding xml files with meta-information. An important field in the
meta-information is the “Observation ID”, which is an identifier connecting images of
the same specimen (object of observation). This dataset is considered “trusted”, i.e.
the ground truth labels should all be assigned correctly.

2. A noisy training set built using web crawlers, or more precisely, obtained by Google
and Bing image search. It thus contains images not related to the given plant species.
This set is provided in the form of a list of more than 1 442k image URLs. We
obtained nearly 1 405k images from the list, the remaining images failed to download.

Examples from the “trusted” training set and the “noisy” (web) training set are displayed
in Figure 4.3. The evaluation was performed on a test set containing 25 170 images of
13 471 observations (specimen).
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(a) Examples from the “trusted” training set.

(b) Examples from the “noisy” training set.

Figure 4.3: Examples from the PlantCLEF 2017 challenge.

4.2.2 Methods

Inception-ResNet-v2

The submitted models were based on the Inception-ResNet-v2 [186] convolutional neural
network architecture described in Section 3.1.6. Preliminary experiments showed that this
network architecture lead to results superior to other state-of-the-art CNN architectures at
the time. The network weights were initialized from a publicly available2 Tensorflow model
pre-trained on ImageNet. The main hyper-parameters used for training are summarized
in Table 4.3.

2https://github.com/tensorflow/models/tree/master/research/slim/#pretrained
Last accessed 2nd Apr 2020.

https://github.com/tensorflow/models/tree/master/research/slim/#pretrained
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Table 4.3: Hyper-parameters used for training the Inception-Resnet-v2 model for Plant-
CLEF 2017.

Optimizer RMSProp with momentum 0.9 and decay 0.9
Weight decay 0.00004
Learning rate Starting LR 0.01, decay factor 0.94,

exponential decay, ending LR 0.0001
Batch size 32

MaxOut

We experimented with adding maxout to the end of the network, described in Section
3.1.8, which showed to be helpful in our submission to PlantCLEF 2016: We added an
additional fully connected (FC) layer with 4096 units before the classification FC layer.
The maxout activation operates over s = 4 linear pieces of the FC layer, i.e. m = 1024.
Dropout with a keep probability of 80% is applied before the FC layers. The final layer is
a 10 000-way softmax classifier corresponding to the number of plant species in the 2017
challenge.

We observed is that the additional FC layer has to be batch normalized [84]. Without
batch normalization, the architecture became unstable, leading to an unexpected drop in
accuracy.

Noisy Labels

In order to improve learning from noisy labels, Reed et. al. [156] proposed a simple consis-
tency objective, which does not require an explicit information about the noise distribution.
The new objective makes a linear combination of the noisy labels tk with the network pre-
dictions, and takes the combination coefficient β as a hyper-parameter. There are two
variants of the objective, denoted as bootstrapping :

• soft bootstrapping uses the softmax predictions qk directly:

Lsoft(q, t) =

K∑
k=1

[βtk + (1− β)qk] log qk (4.1)

Reed et al. [156] point out that the objective is equivalent to softmax regression with
minimum entropy regularization, which was previously studied in [69]; encouraging
high confidence in predicting labels.

• hard bootstrapping uses only the strongest prediction zk =

{
1 if k = arg maxi qi

0 otherwise

Lhard(q, t) =

K∑
k=1

[βtk + (1− β)zk] log qk (4.2)

The search for the optimal value of the hyper-parameter β was omitted for computational
reasons and limited time for the competition. Instead, we set β according to the best results
of Reed et al. [156]: β = 0.8 for hard bootstrapping and β = 0.95 for soft bootstrapping.
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4.2.3 Experiments

We evaluated the proposed methods on a subset of the test data from the previous chal-
lenge, PlantCLEF 2016. Only 2583 images from the previous year dataset, for which we
found corresponding species in the 2017 task, were used. This validation set covers only a
small subset of the classes, but should be sufficient for an approximate evaluation of the
method.

The sections below describe the experiments and the corresponding design choices:

Fine-tuning vs. Training from Scratch

The first question was whether the network should be trained from scratch, or fine-tuned
from an ImageNet-pretrained checkpoint. We compared the two scenarios by training only
on the “trusted” dataset. As illustrated in Figure 4.4, training from scratch (red) converges
very slowly. After 150k trainning steps, fine-tuning (blue) leads to 65.1% accuracy, while
training from scratch only gets to 44.5%, making fine-tuning the preferred approach. For
illustration, 150k training iterations took approximately 65 hours on the NVIDIA Titan X
GPU.
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Figure 4.4: Accuracy (solid) and recal@5 (dotted) when fine-tuning (red) and training from
scratch (blue).

Training on Trusted and Noisy Data. We fine-tuned five Inception-ResNet-v2 net-
works from the ImageNet-pretrained checkpoint: The first network was a vanilla Inception-
ResNet-v2 fine-tuned only on the the “trusted” (EoL) data. The second network had the
additional maxout layer and was also fine-tuned only on the the “trusted” (EoL) data.
The other three networks were fine-tuned on all available data, including the “noisy” (web)
samples, optimizing the standard cross entropy and adding soft- and hard-bootstrapping
respectively.
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The two networks trained only on the “trusted” data performed slightly better, and are
therefore used in the follow-up experiments.

Filtering the Noisy Data and Further fine-tuning. In order to filter the “noisy”
part of the training set, we used the network pre-trained on the “trusted set” to predict the
labels from images. We assume that samples where the annotation and prediction agree
are likely to have correct labels. One could consider accepting annotations corresponding
to any of the top t predictions, where t << K, which should still discard out-of-domain
(non plant) images and add harder examples to the training process. On the other hand,
many similar species may have noisy samples belonging to the same genus or family, which
share keywords used in the web search. The correct choice of t should then be based on
an analysis of the way noisy labels are generated - e.g. the proportion of out-of-domain
images and the proportion of mislabeled species belonging to the same higher taxonomic
rank. Because of the limited time for the competition, we did not evaluate different choices
of t and decided to continue with a low risk of false positive examples with t = 1: Only
images, where the network top-1 prediction was equal to the annotation were kept in the
“filtered noisy” dataset. This reduced the size of the “noisy” set from ca 1405k images to
ca 425k images.

Let us denote the two networks fine-tuned on the “trusted” (EoL) dataset in Section
4.2.3 as follows:

• Net #1: Fine-tuned on trusted (EoL) set without maxout for 200k iterations.

• Net #2: Fine-tuned on trusted (EoL) set with maxout for 200k iterations.

Further fine-tuning was performed from these models pre-trained (fine-tuned) on the
trusted set. In order to perform bagging from several networks, we divided the data into
3 disjoint folds. Then each setting is used to further fine-tune three networks, each on
different 2 of the 3 folds. Each network is further fine-tuned for 50k iterations.

• Net #3,#4,#5: Fine-tuned from #1 for 50k iterations on the trusted dataset.

• Net #6,#7,#8: Fine-tuned from #2 for 50k iterations on the trusted dataset, with
maxout.

• Net #9,#10,#11: Fine-tuned from #1 for 50k iterations on the trusted and filtered
noisy data.

• Net #12,#13,#14: Fine-tuned from #1 for 50k iterations on the trusted and
filtered noisy data, with hard bootstrapping.

• Net #15,#16,#17: Fine-tuned from #2 for 50k iterations on the trusted and
filtered noisy data, with maxout.

Figure 4.5 shows the validation of the further fine-tuning. Although there are certain
differences, all the networks (listed below) are quite precise, yet do not individually bring
much improvement compared to the networks from Section 4.2.3. The strength here is in
combination of the differently fine-tuned networks. The red dashed line in 4.5 shows the
final accuracy (after 50k it. of fine-tuning) of their combination.
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Figure 4.5: Accuracy (solid) and recal@5 (dotted) for further fine-tuning using different
settings.

Post Processing on the Test Set

Averaging Predictions per Observation. As shown by the previous year’s challenge
winner [74], averaging the predictions over images of the same observation (specimen) in-
creases accuracy significantly. Therefore we average scores per observations in all submitted
runfiles.

Adjusting Predictions by Categorical Distribution. In PlantCLEF 2017, we first
decided to experiment with adjusting the predictions, given the fact that we are evaluating
the whole test set of images and assuming a change in categorical distribution: The training
sets and the test set came from a a different source and therefore the species in the test
set might not follow the same distribution as the species in the training set. We used the
frequency of each class k among the observations in the “trusted” dataset as prior pY (k),
and estimated the test prior peY (k) as the average predictions (per observation) on the test
set. In order to make the adjustment of predictions softer, the ratio of priors was replaced
by its square root.

The predictions fCNN(k|x) would be adjusted as follows:

q∗(k|x) ∝ fCNN(k|x)

√
peY (k)

pY (k)
, (4.3)

Unfortunately, because of a mistake we adjusted the predictions for the challenge sub-
missions wrongly:

q†(k|x) ∝ fCNN(k|x)

√
pY (k)

peY (k)
. (4.4)
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Figure 4.6: Results of the PlantCLEF 2017 [61] challenge.

4.2.4 Description of the Submitted Runfiles

In PlantCLEF 2017, each participant was allowed to submit up to four runfiles with the
results. We submitted the following run files:

• CMP Run 1 combines all 17 networks by summimg their results.

• CMP Run 2 uses the (wrong) prediction distribution adjustment from Section 4.2.3
on top of the results from the first runfile.

• CMP Run 3 combines only networks trained on the “trusted” data.

• CMP Run 4 again adds the (wrong) prediction distribution adjustment on top of
results from the third runfile.

The challenge results are plotted in Figure 4.6: with CMP Run 1 we scored 3rd in the
challenge (after MarioTsaBerlin and KDE TUT submissions).

4.2.5 Post Challenge Evaluation with Correct Prediction Adjustment

As discussed in Section 4.2.3, the prior adjustment in our submissions to the 2017 challenge
was wrong. We noticed the error after the challenge has ended and our technical report
[180] was published. Because the test set ground truth annotations and evaluation tools
have been published after the challenge, we can compute the scores with the correct prior
adjustment:

q(k|x) ∝ fCNN(k|x)
peY (k)

pY (k)
, (4.5)
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and the “softer” version with square-root of the ratio of priors,

q∗(k|x) ∝ fCNN(k|x)

√
peY (k)

pY (k)
. (4.6)

The results in Table 4.4 show that correcting the predictions with the correct ratio of
priors, whether square-rooted or not, would noticeably improve the classification results.

Table 4.4: Post-challenge evaluation on the PlantCLEF 2017 test set with correct adjust-
ment of predictions: Mean Reciprocal Rank (MRR), Top1 accuracy and Top5 accuracy.

Accuracy (%)
Run MRR (%) Top1 Top3

CMP Run 1: all data (trusted + filtered noisy) 84.3 78.6 91.3
CMR Run 2: all data, wrong adjustment with

√
76.5 68.0 87.0

Post challenge: all data, adjustment with
√

(Eq. 4.6) 86.6 81.7 92.8
Post challenge: all data, adjustment (Eq. 4.5) 86.7 81.5 93.0

CMP Run 3: only trusted data 80.7 74.1 88.7
CMR Run 4: trusted data, wrong adjustment with

√
73.3 64.1 84.9

Post challenge: trusted data, adjustment with
√

(Eq. 4.6) 83.2 77.5 90.3
Post challenge: trusted data, adjustment (Eq. 4.5) 83.3 77.4 90.6

4.2.6 Discussion

The difficulties of the challenge lie in the high number of classes, high intra-class variations,
small inter-class variations, and learning from noisy data downloaded by web crawlers.

To overcome these difficulties, we employed a state-of-the-art deep learning architecture
and compared a number of approaches to increase the accuracy of very fine-grained classi-
fication when learning from noisy data. The results of the challenge are depicted in Figure
4.6. Based on our evaluation, the following steps increase the classification accuracy:

• Maxout [68] with batch normalisation [84] of the added FC layer.

• Filtering the noisy data using a model trained on a trusted database.

• Bagging of several networks fine-tuned under different conditions.

As shown in Section 4.2.5, adjusting the species distribution on the test set with the
correct ratio of priors would noticeably increase the recognition scores.
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4.3 Experts vs. Machines in Plant Identification 2017

The relatively high accuracy of computer vision / machine learning based methods for
fine-grained plant species recognition in the PlantCLEF 2017 challenge raised questions
about comparison of automated plant species recognition with human experts. While an
experiment comparing “Man vs. Machine” in plant identification [18] was made already
in 2014, the performance of machine-learned systems has increased significantly with the
application of deep learning and convolutional neural networks. In order to compare the
accuracy of human experts in the field of plant identification with the accuracy of ma-
chine learning systems for plant recognition, we contributed to the Experts vs. Machines
experiments in 2017 [17].

4.3.1 Training Data and Method

The Experts vs. Machines (2017) experiments considered the same 10 000 plant species
and were provided with the same training data as the PlantCLEF 2017 challenge described
in Section 4.2.1, consisting from the “trusted” training set downloaded from EoL and the
“noisy” training set obtained using web search engines. The main reason for providing both
datasets was to evaluate to what extent can the training of computer vision models benefit
from noisy data compared to training from trusted data only (as usually done in supervised
classification). Keeping the same training datasets had another advantage: participants of
PlantCLEF 2017 could easily contribute to this comparison with the models trained for
the challenge. Therefore, we contributed with the results of our CNN ensemble trained
for the PlantCLEF 2017 challenge, i.e. with the same method and models as described
in Section 4.2.2. More specifically, we used the ensemble of 17 networks (averaging their
results) denoted as CMP Run 1 in PlantCLEF 2017 in Section 4.2.4.

4.3.2 Test Data and Evaluation Protocols

Two experiments with different sets of test images and evaluation protocols have been
performed. Both experiments use the Mean Reciprocal Rank (MRR) score, i.e. the mean
of the inverse of the rank of the correct species in the predictions:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
, (4.7)

where |Q| is the number of queries in the test set, and ranki is the rank of the correct
species for the i-th query.

Extending the 2014 Experiment

The first part extends the results of the Man vs. Machine experiments conducted in
2014 [18]. In order to allow a direct comparison, the experiments were performed on the
same test images as in the [18], which in 2014 were selected at random from the whole set
of PlantCLEF 2014 observations and shared with a large audience of potential volunteers
composed of four target groups:
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1. “expert of the flora” : highly skilled people such as taxonomists, expert botanists
of the considered flora.

2. “expert” : skilled people like botanists, naturalists, teachers, but not necessarily
specialized on the considered flora.

3. “amateur” : people interested by plants in parallel with their professional activity,
having knowledge at different expertise levels.

4. “novice” : inexperienced users.

The human predictions were collected through a user interface presenting the 100 obser-
vations one by one (with one or more pictures of different plant organs) and allowing the
user to select up to three species for each observation using a drop-down menu covering
the 500 species of the PlantCLEF 2014 dataset. In order to facilitate the participation
of amateurs and novices, the most popular common names were displayed next to the
scientific name of the taxon. If the user did not provide any species proposition for an
observation, the rank of the correct species was considered infinite in the evaluation met-
ric. The evaluation has been restricted to the knowledge-based identification of plants,
without any additional sources of information or identification tools allowed during the
test. Concretely, the participants were not allowed to use external resources like
field guides or flora books. Only 20 volunteers finally accepted to participate: 1 “expert
of the French flora”, 7 “experts”, 7 “amateurs” and 5 “novices”. For a fair comparison with
human-powered identifications, the only the top 3 predictions of machine learning models
were taken into account. While [18] included the results of ten participants of LifeCLEF
2014 (with 27 runs in total), only three participants of LifeCLEF 2017 accepted to join the
experiments with their competition models, and only two of us (KDE TUT, CMP = our
submission) were actually eligible for the experiment, since the third participant (Mario
TSA/MNB) trained on a dataset containing the tested 100 observations. Note that while
the 2014 test set was limited to the 500 species used in this experiment, the additional
2017 predictions from CMP and KDE TUT were provided by networks trained for the
recognition of the 10 000 species in PlantCLEF 2017 (including the 500 tested species).

Experts vs. Machines 2017 Experiment

With the aim to evaluate more precisely the capacities of state-of-the-art plant identifica-
tion systems compared to human experts, the 2017 experiment was set up with:

1. a more difficult test set,

2. a group of highly skilled experts composed of the most renowned botanists of the
considered flora.

The new test set was created by following procedure: First, 125 plants were pho-
tographed between May and June 2017, a suitable period for the observation of flowers in
Europe, in a botanical garden called the ”Parc floral de Paris”, and in a natural area located
in the north of Montpellier (southern part of France, close to the Mediterranean sea). The
photos have been acquired using smartphone cameras, namely an iPhone 5 and a Samsung
S5 G930F. The selection of species in the test set followed several criteria, including:
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1. difficulty, i.e. commonly confused species,

2. the availability of well developed specimens with well visible organs, and

3. the diversity of the selected set of species in terms of taxonomy and morphology.

About 15 pictures of each specimen were acquired in order to cover all the informative
parts of the plant. However, all pictures were not included in the final test set in order to
deliberately hide a part of the information and increase the difficulty of the identification.
Therefore, a random selection of only 1 to 5 pictures was made for each specimen. In the
end, a subset of 75 plants illustrated by a total of 216 images related to 33 families and 58
genera was selected. This test set is available online3 under an open data license (CC0) in
order to foster further evaluations by other research teams.

The test set was sent to 20 expert botanists - taxonomists, botanists, research scientists
specialising on the considered flora, and a few non-professional expert botanists. Most of
them are or were involved in the conception of renowned books or tools dedicated to
the French flora or in the study of large plant groups. In addition to the test set, the
experts were provided an exhaustive list of 2 567 possible species, which is basically the
subpart of the 10 000 species used in PlantCLEF2017 related to the French flora exclusively.
Regarding the difficulty of the task and contrary to the previous human vs. machine
experiment done in 2014, each participant was allowed to use any external resource
(book, herbarium material, computational tool, web app, etc.) except automated plant
identification tools (such as the Pl@ntNet app). For each plant, the experts were allowed
to propose up to 3 species names ranked by decreasing confidence. 9 of 20 contacted
experts finally completed the task on time and returned their propositions. In parallel,
the research groups participating in LifeCLEF 2017 were asked to run their system on the
same test set as the one sent to the experts. The three research groups who developed the
top three performing systems in the challenge (Mario TSA/MNB, KDE TUT, and CMP =
our submission) joined the effort and provided a total of 9 run files containing the species
predictions.

4.3.3 Results

Progress Since 2014

Figure 4.7 reports the Mean Reciprocal Rank scores obtained by all human participants
and all automated identification systems (”machines”). The description of the systems
that were evaluated in 2014 (”Machine 2014”) can be found in [18]). The main outcome of
Figure 4.7 is the impressive progress that was made by machines between 2014 and 2017.
This progress is mostly allowed by the use of recent deep convolutional neural network
architectures, but also by using much larger training datasets: The systems from 2014
were trained on 60 962 images, while the systems from 2017 were trained on more than
250 000 images (for models using only the “trusted” data) and more than 1.1M images
(for models using “noisy” data). Interestingly, the fact that the 2017 systems were trained
on 10K species rather than 500 species did not affect their performance to much. In
fact, this might even have increased the performance by allowing to learn better visual
representations. One can notice that the quality of the identifications made by the best

3http://otmedia.lirmm.fr/LifeCLEF/mvsm2017/ Last accessed 2nd Apr 2020.

https://creativecommons.org/share-your-work/public-domain/cc0/
http://otmedia.lirmm.fr/LifeCLEF/mvsm2017/
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evaluated system is very close to the one of the only highly skilled botanist (qualified
as ”Expert of the flora” in Figure 4.7. Other participants, including the botanists who
were not directly specialists on the targeted flora, were outperformed by the five machine
learning submissions experimented in 2017.

Figure 4.7: Identification performance of automated systems (2014 and 2017) and humans
of various expertise on the 2014-th test set.

Experts vs. Machines in 2017

Figure 4.8 displays the top-1 identification accuracy achieved by both the experts and the
automated systems. Table 4.5 reports additional evaluation metrics – namely the Mean
Reciprocal Rank score, the top-2 accuracy and the top-3 accuracy. None of the botanists
identified all observations correctly. The top-1 accuracy of the experts is in the range from
61% to 96%, with a median value of 80%. This illustrates the high difficulty of the task,
especially when taking into account that the experts were allowed to use any external
resource to complete the task, flora books in particular. It shows that a large part of
the observations in the test set did not contain enough information to be surely identified
when using classical identification keys. Only the three experts with an exceptional field
expertise were able to correctly identify more than 80% of the observations. Figure 4.8
also shows that the top-1 accuracy of the evaluated machine learning systems is in the
range from 56% to 74% with a median value of 66%. While this is lower than the median
of experts, the best systems were able to perform similarly or slightly better than three of
the highly skilled participating experts.

If we look at the top-3 accuracy values provided in Table 4.5, we can see that the best
evaluated system returned the correct species within its top-3 predictions for more than
89% of the test observations. Only the two best experts obtained a higher top-3 accuracy.
This illustrates one of the strengths of the automated identification systems: They can
return an exhaustive ranked list of the most probable predictions over all species whereas
this is a very difficult and painful task for human experts. Figure 4.9 displays the further
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Figure 4.8: Identification performance achieved by machines and human experts for the
Experts vs. Machines 2017 experiments.

Table 4.5: Results of the Experts vs. Machines 2017 experiments, ordered by the top 1
accuracy

Run RunType MRR (%) Top1 (%) Top2 (%) Top3 (%)

Expert 1 man 96.7 96.0 97.3 97.3
Expert 2 man 94.7 93.3 96.0 96.0
Expert 3 man 88.0 88.0 88.0 88.0
Expert 4 man 80.0 80.0 80.0 80.0
Expert 5 man 78.0 77.3 78.7 78.7

Mario TSA Berlin - Noisy machine 81.9 73.3 82.7 89.3
Mario TSA Berlin - Average machine 80.5 73.3 81.3 85.3

Expert 6 man 74.0 72.0 76.0 76.0
KDE TUT Mixed machine 78.6 70.7 80.0 82.7

Mario TSA Berlin - Filtered machine 75.1 69.3 74.7 78.7
KDE TUT Average machine 75.3 66.7 76.0 78.7

Expert 7 man 64.0 64.0 64.0 64.0
KDE TUT - Noisy machine 75.0 64.0 80.0 81.3

Expert 8 man 62.0 61.3 62.7 62.7
CMP machine 67.9 60.0 66.7 72.0

KDE TUT - Trusted machine 65.6 57.3 61.3 72.0
Mario TSA Berlin - Trusted machine 64.6 56.0 64.0 68.0
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top-K accuracy values as a function of K for all the evaluated systems. It shows that the
performance of all systems continues to increase significantly for values of K higher than 3
and then becomes more stable for values of K in the range from 20 to 50. The best system
reaches a top-11 accuracy of 97.3%, i.e. the same value of the top-1 accuracy of the best
expert, and a 100% top-K accuracy for K = 39. In view of the thousands of species in the
whole check list, it is likely that such a system would be very useful even for the experts
themselves. By providing an exhaustive short list of all the possible species, it would help
them to not exclude any candidate species that they might have missed otherwise. Our
(CMP) submission to the Experts vs. Machines experiment achieved 60% top-1 accuracy,
i.e. lower than the median of the three best performing methods from PlantCLEF 2017,
which is consistent with the challenge, where the CMP submissions scored 3rd.

Figure 4.9: Top-K accuracy of the systems evaluated in the Experts vs. Machines 2017
experiments.

Table 4.6: Maximal top-1 and top-3 accuracy (%) across all human propositions, all ma-
chine predictions, or all of them together.

Accuracy All humans All machines All humans & machines

Top 1 97.5 87.3 97.5
Top 3 98.7 93.7 100.0

To illustrate the possible synergy between experts and automated identification sys-
tems, Table 4.6 shows the top-1 and top-3 accuracy when considering the minimal rank
of each test sample across either all human propositions, all machine predictions, or all of
them together. The correct species is retrieved in the top-3 propositions of at least one
expert in 98.7% of the cases, in the top-3 propositions of at least one system in 93.7% of
the cases, and in the top-3 propositions of at least one of them all in 100% of the cases.
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4.4 ExpertLifeCLEF 2018

Similarly to the previous LifeCLEF challenges, the goal of the ExpertLifeCLEF 2018 chal-
lenge was to assess the quality of automatic, machine-learned recognition systems for plant
identification. This time the challenge was organized with the intention to directly compare
the accuracy of the automatic systems with human experts in plant sciences, continuing
with the comparison efforts described in Section 4.3. For practical reasons, the experts
were evaluated on a small subset of the test data.

The data provided for the challenge cover 10 000 species of plants – herbs, trees and
ferns – and consist from:

• PlantCLEF 2017 EoL: 256K images from the Encyclopedia of Life (EoL) [2] provided
in the 2017 challenge [61] as the “trusted” training set.

• PlantCLEF 2017 web: 1.4M images automatically retrieved by web search engines,
provided in the 2017 challenge [61] as the “noisy” training set.

• PlantCLEF 2017 test set: 25K test images from the 2017 challenge [61], now available
with ground truth label annotations.

• PlantCLEF 2016 subset: 64K images from the PlantCLEF 2016 [60] challenge training-
and test sets, covering only 717 of the 10k species. The remaining classes from the
2016 challenge do not exactly taxonomically match the 2017/2018 list of species.

• ExpertLifeCLEF 2018 test set: 6 892 unlabeled images used for evaluation of the
submitted methods. Examples from the set are displayed in Figure 4.10.

Figure 4.10: ExpertLifeCLEF 2018 test set - randomly selected samples.

The proposed classification system builds upon the state-of-the-art Convolutional Neu-
ral Network (CNN) architectures, described in Section 4.4.1. Section 4.4.1 discusses the
use of running averages of the trained network parameters instead of values from the last
training step which noticeably increased the accuracy of our models.

The class frequencies in the training data follow a long-tailed distribution. It is rea-
sonable to expect that the training data, whose significant majority was downloaded from
the web, have different class prior probabilities than the test set. In this challenge, we
consider the problem of different class prior probability distributions described in Section
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Table 4.7: Optimizer hyper-parameters, common to all our ExpertLifeCLEF 2018 experi-
ments.

Parameter Value

Optimizer rmsprop
RMSProp momentum 0.9
RMSProp decay 0.9
Initial learning rate 0.01
Learning rate decay type Exponential
Learning rate decay factor 0.94

3.3 and use the existing EM algorithm [161] for Maximum Likelihood estimate of the new
class priors, as described in Section 3.3.2.

Section 4.4.2 describes the 5 submissions we made. Results of the challenge are pre-
sented in Section 4.4.3. One of the submitted plant recognition methods achieved the best
accuracy among automated systems, and thus placed 1st in the challenge. It outperformed
5 of 9 human experts.

4.4.1 Methodology

Convolutional Neural Networks

The proposed method is based on two architectures – Inception-ResNet-v2 and Inception-
v4 [186] – and their ensembles described in Section 4.4.2. The TensorFlow-Slim API was
used to adjust and fine-tune the networks from the publicly available ImageNet-pretrained
checkpoints4. All networks in our experiments shared the optimizer settings listed in Table
4.7. The batch size, input resolution and random crop area range were set differently for
each network listed in Table 4.8.
The following image pre-processing was used for training:

• Random crop, with aspect ratio range (0.75, 1.33) and with different area ranges
listed in Table 4.8,

• Random left-right flip,

• Brightness and Saturation distortion.

At test-time, 14 predictions per image are generated by using 7 crops and their mirrored
versions:

• 1x Full image,

• 1x Central crop covering 80% of the original image,

• 1x Central crop covering 60% of the original image,

• 4x corner crops covering 60% of the original image.
4https://github.com/tensorflow/models/tree/master/research/slim/#pretrained

Last accessed 2nd Apr 2020.

https://github.com/tensorflow/models/tree/master/research/slim/#pretrained
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Table 4.8: Networks and hyper-parameters used in the experiments:

# Net architecture Batch size Input Resolution Random crop area

1 Inception-ResNet v2 32 299× 299 5% - 100%
2 Inception-ResNet v2 16 498× 498 25% - 100%
3 Inception-ResNet v2 16 498× 498 5% - 100%
4 Inception v4 32 299× 299 5% - 100%
5 Inception v4 32 598× 598 5% - 100%
6 Inception v4 32 299× 299 50% - 100%

Fine-tuning and Data Splits

Networks #1, . . . ,#6, initialized from the ImageNet pre-trained checkpoints, were first
trained on PlantCLEF data from previous years (PlantCLEF 2017 EoL + PlantCLEF
2017 web + PlantCLEF 2016 subset). PlantCLEF 2017 test set was used for validation.

Another set of networks, denoted as #1clean, . . . ,#6clean, was fine-tuned from models
#1, . . . ,#6 without using the noisy PlantCLEF 2017 web set. For this fine-tuning, we
added most of the PlantCLEF 2017 test set, keeping only 1 000 observations (1 403 images)
as a min-val set.

Running Averages

Preliminary experiments, using the 2017 test set for validation, showed a significant im-
provement in accuracy when using Polyak averaging [148], i.e. using running averages of
the trained variables instead of the values from the last training step. Namely we used an
exponential decay with decay rate of 0.999.

In this task where majority of the training data is noisy, we interpret this as keeping
a stable version of the variables, since mini-batches with noisy samples may produce large
gradients pointing outside of the local optima. Another possible interpretation is that the
learning rate was still too high. Unfortunately, we did not have the computational time to
experiment with different learning rate schedules.

Class Prior Estimation

In many computer vision tasks, the class prior probabilities are assumed to be the same
for the training data and test data. In ExpertLifeCLEF, however, it is reasonable to
assume that class priors change: The largest part of the training set comes from the web,
where the class frequencies may not correspond with the test-time priors (depending on the
species incidence, the interest of users, etc.). In Section 3.3.1, we discussed the problem of
adjusting CNN outputs to the change in class prior probabilities and proposed to recompute
the posterior probabilities (predictions) p(k|x) by Equation 3.20.

For the estimation of the new (test set) priors, we used the maximization of the likeli-
hood of the test observations as discussed in Section 3.3.2. Specifically, we used the EM
algorithm of Saerens et al. [161], where the E and M steps were described in Equations
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3.23 and 3.24 respectively, i.e.:

p(s)(k|x) =

p(k|x)
p̂
(s)
k

pY (k)

K∑
j=1

p(j|x)
p̂
(s)
j

pY (j)
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(s+1)
k =

1

N e

∑
x∈E

p(s)(k|x)

In our submissions, we estimated the class prior probabilities for the whole test set.
However, one may consider estimating different class priors for different locations, based on
the GPS-coordinates of the observations. Moreover, as discussed later in Section 6.4, one
may use this procedure even in the cases where the new test samples come sequentially.

4.4.2 Submissions

In the challenge, each team was allowed to submit up to 5 different run-files with predic-
tions. We used this opportunity to evaluate the following 5 submissions:

CMP Run 1 is an ensemble of 6 CNNs: #1clean, . . . ,#6clean described in Section 4.4.1.
This submission used the automatic test set class-prior estimation from the CNN
outputs, discussed in Section 4.4.1.

CMP Run 2 is an ensemble of the same 6 CNNs as in CMP Run 1, but without the class
prior estimation on the test data.

CMP Run 3 is an ensemble of 12 CNNs: #1, . . . ,#6 and #1clean, . . . ,#6clean described
in Section 4.4.1. This submission used the automatic test set class-prior estimation.

CMP Run 4 is an ensemble of 6 CNNs: #1, . . . ,#6 described in Section 4.4.1. This
submission used the automatic test set class-prior estimation.

CMP Run 5 is a single Inception-v4 model, denoted as CNN #4clean, using the automatic
test set class-prior estimation.

In all runs, the predictions (optionally improved by the class prior estimation) for all
crops of the test image are averaged to compute the final image prediction. Moreover, for
observations with several images (connected by the ObservationID values in the provided
data), the final classification decision is taken based on the average of all corresponding
image predictions.

4.4.3 Results

The official results of the challenge are displayed in Figure 4.11. Our system achieved the
best results among automatic methods: 88.4% accuracy on the full test set. The best
scoring submission was the largest ensemble - CMP Run 3 - using all 12 models. Results
of all CMP submissions are listed in Table 4.9.

When evaluated against human experts in plant sciences, the system (both CMP Run
3 and CMP Run 4) outperformed 5 of 9 tested human experts. That means that in the
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Figure 4.11: Results of runs submitted by the challenge participants.

task of plant recognition from images, machine learning systems reached human expert
performance - achieving better accuracy than the median of human experts. The detailed
results are displayed in Figure 4.12.

Interestingly, while fine-tuning on “clean” data slightly improved the recognition ac-
curacy on the full test set, it significantly decreased the accuracy on the test subset for
human experts. Similarly, test-time prior estimation on the full test set noticeably im-
proved the accuracy, but had an opposite effect on the subset. We assume that the test
subset selected for human experts was too small to provide a representative, identically
distributed, sample of the full test set. Therefore the results on the test subset for human
experts may be biased towards a small number of species contained in it.

4.4.4 Discussion

The proposed machine-learning system for recognition of 10 000 plant species achieved
an excellent accuracy of 88.4% in the ExpertLifeCLEF 2018 challenge, scoring 1st among
automated systems.

The ensemble of Convolutional Neural Networks benefited from the following improve-
ments:

Table 4.9: Results of CMP submissions on the full test set and its subset for human experts.

CMP Run 1 2 3 4 5

Accuracy (full test set) 86.8% 85.6% 88.4% 86.7% 83.2%
Accuracy (smaller test set) 76.0% 77.3% 82.7% 84.0% 77.3%
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Figure 4.12: Results of the “Experts vs Machines” experiment.

1. Adjusting the CNN predictions according to the estimated change of the class prior
probabilities.

2. Replacing network parameters by their running averages with exponential decay.

3. Test-time data augmentation.

The experiment with human experts shows that machine learning reached the expert
knowledge in plant recognition: our system scored better than an average (median) human
expert in plant recognition, achieving better recognition rate than 5 of the 9 evaluated
human experts. However, it is important to note that human experts are usually specialized
in a more active recognition approach, such as studying a specimen from different views,
and - unlike our models - the experts are able to describe the reasoning for the species
identification.
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4.5 Fine-Grained Visual Categorization Challenges 2018: FGVCx
Fungi, and FGVCx Flowers, iNaturalist

The 5th Fine-Grained Visual Categorization (FGVC) workshop at CVPR 2018 organized
several computer vision challenges focusing on different applications of fine-grained recog-
nition:
• classification of product attributes in the iMaterialist 2018 Fashion Challenge5 and

iMaterialist 2018 Furniture Challenge6,

• identification of food items in an image in the iFood 2018 Challenge7,

• analyzing if images from camera traps (“wild cams”) captured an animal in the iWild-
Cam 2018 Challenge8,

• fine-grained classification of almost 1 400 fungi species in the FGVCx Fungi Classi-
fication Challenge9,

• fine-grained classification of almost 1 000 plant species in the FGVCx Flower Classi-
fication Challenge10,

• large scale classification of over 8 000 species in the iNaturalist 2018 Challenge11.

(a) Amanita pantherina (b) Glyphium elatum (c) Phlebia uda

(d) Amanita muscaria (e) Boletus reticulatus (f) Pluteus pouzarianus

Figure 4.13: Examples from the FGVCx Fungi training set.

5http://www.kaggle.com/c/imaterialist-challenge-fashion-2018 Last accessed 2nd Apr 2020.
6http://www.kaggle.com/c/imaterialist-challenge-furniture-2018 Last accessed 2nd Apr 2020.
7http://www.kaggle.com/c/ifood2018/ Last accessed 2nd Apr 2020.
8http://www.kaggle.com/c/iwildcam2018 Last accessed 2nd Apr 2020.
9http://www.kaggle.com/c/fungi-challenge-fgvc-2018 Last accessed 2nd Apr 2020.

10http://www.kaggle.com/c/fgvc2018-flower Last accessed 2nd Apr 2020.
11http://www.kaggle.com/c/inaturalist-2018 Last accessed 2nd Apr 2020.

http://www.kaggle.com/c/imaterialist-challenge-fashion-2018
http://www.kaggle.com/c/imaterialist-challenge-furniture-2018
http://www.kaggle.com/c/ifood2018/
http://www.kaggle.com/c/iwildcam2018
http://www.kaggle.com/c/fungi-challenge-fgvc-2018
http://www.kaggle.com/c/fgvc2018-flower
http://www.kaggle.com/c/inaturalist-2018
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We joined the three species identification tasks. The datasets provided for the FGVCx
Fungi, FGVCx Flowers and iNaturalist challenges are described in Sections 4.5.1, 4.5.2 and
4.5.3 respectively. The methodology and submissions to all three challenges are described
in Section 4.5.4 and the challenge results are summarized in Section 4.5.5.

4.5.1 FGVCx Fungi Dataset

The FGVCx Fungi Classification Challenge provided an image dataset, that covers 1394
fungal species and is split into a training set with 85 578 images, a validation set with
4182 images and a a competition test set with 9758 images without publicly available
labels. Examples from the FGVCx Fungi training set are shown in Figure 4.13. There is a
substantial change of categorical priors pY (k) between the training set and the validation
set: The distribution of images per class is highly unbalanced in the training set, while the
validation set distribution is uniform.

(a) Actinopterygii (b) Amphibia (c) Animalia (d) Arachnida (e) Aves

(f) Bacteria (g) Chromista (h) Fungi (i) Insecta (j) Mammalia

(k) Mollusca (l) Plantae (m) Protozoa (n) Reptilia

Figure 4.14: The iNaturalist training set: one example from each super-category.

4.5.2 iNaturalist 2018 Dataset

The iNaturalist 2018 challenge was a large scale fine-grained species recognition compe-
tition, providing a dataset of 8142 species from 14 super-categories: Plantae, Aves, Rep-
tilia, Amphibia, Mammalia, Fungi, Actinopterygii, Chromista, Protozoa, Mollusca, Insecta,
Arachnida, Bacteria and Other. However, the species names in the dataset were replaced
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with their other unique identifiers in order to prevent competitors from downloading addi-
tional images, as additional data sources were not allowed in this competition. The labeled
dataset was split into a training set of 437 513 images and a validation set of 24 426 images.
Figure 4.14 displays examples from the training set.

Similarly to FGVCx Fungi dataset described in Section 4.5.1, there was a change in
the categorical distribution in the iNaturalist dataset: The training set had a long-tailed
species distribution, while the species in the validation set was uniform (3 images per
species). The challenge was evaluated on a test set of 149 394 images without publicly
available labels.

4.5.3 FGVCx Flowers Dataset

The FGVCx Flower Classification Challenge dataset covers 997 species of flowering plants.
The dataset provided by Xingse12 and PictureThis13 consists of 669 304 training images
and 12 961 test images without publicly available labels. Note that no validation set was
provided for this challenge. Examples from the FGVCx Flowers training set are shown in
Figure 4.15.

(a) Ligustrum vicaryi (b) Lantana camara (c) Artocarpus communis

(d) Alcea rosea.jpg (e) Cosmos sulphureus (f) Forsythia viridissima

Figure 4.15: Examples from the FGVCx Flowers training set.

4.5.4 Method

Our submissions for all the FGVC challenges were based on the Inception-v4 and Inception-
ResNet-v2 architectures [186], inspired by the winning submission to ExpertLifeCLEF 2018

12https://www.xingseapp.com/ Last accessed 2nd Apr 2020.
13https://www.picturethisai.com/ Last accessed 2nd Apr 2020.

https://www.xingseapp.com/
https://www.picturethisai.com/
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described in Section 4.4.
All networks were trained using the Tensorflow Slim14 framework. We used Polyak

averaging [148], keeping shadow variables with exponential moving averages of the trained
variables. The following hyper-parameters were used for the training of all models in this
Section:

• Optimizer: RMSprop

• Batch size: 32

• Initial learning rate: 0.01

• Learning rate decay type: exponential/staircase

• Learning rate decay factor: 0.94

• Weight decay: 0.00004

• Moving average decay: 0.999

Adjusting Predictions by Class Priors

Let us assume that the classifier trained by cross-entropy minimization learns to estimate
the posterior probabilities, i.e. fCNN(k|x) ≈ p(k|x), as discussed in Section 3.2. If the class
prior probabilities pY (k) change, the posterior probabilities should change as well. The
topic of adjusting CNN predictions to new priors was discussed in Section 3.3.1: in the case
when the new class priors peY (k) are known, the new posterior pe(k|x) can be computed
from Equation 3.20 as:

pe(k|x) ∝ p(k|x)
peY (k)

pY (k)
,

We assume that the uniform distribution peY (k) =
1

K
is given, as it is the case of

the FGVCx Fungi and iNaturalist validation sets described in Sections 4.5.1 and 4.5.2
respectively. Then:

pe(k|xi) ∝
p(k|xi)
pY (k)

. (4.8)

Test-time Image Augmentation

We considered the following 14 image augmentations at test time: The original image;
additional 6 crops of the original image with 80% (central crop) and 60% (central crop
+ 4 corner crops) of the original image width/height; and the mirrored versions of the
7 foregoing augmentations. All augmentations are then resized to square inputs using
bilinear interpolation.

Predictions from all augmentations are then combined by averaging (sum) or mode (i.e.
the most frequent prediction) of the predicted species.

14https://github.com/tensorflow/models/tree/master/research/slim/
Last accessed 2nd Apr 2020.

https://github.com/tensorflow/models/tree/master/research/slim/
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Figure 4.16: FGVCx Fungi 2018: Predictions combined from an ensemble of 6 CNNs with
test-time image augmentation (crops, mirrors).

Ensembles

For the FGVCx Fungi recognition challenge, we trained an ensemble of 6 CNNs listed in
Table 4.10. The predictions of all ensemble models and test-time image augmentations
were combined by mode, i.e. the final prediction was the species appearing most often as
the top-1 result among the 84 predictions (6 models × 7 crops × 2 mirror). The pipeline
is illustrated in Figure 4.16.

Table 4.10: Models trained for the FGVCx Fungi classification competition.

CNN Architecture Input Size Fine-tuned from

#1 Inception-v4 299x299 ImageNet 2012

#2 Inception-v4 299x299 LifeCLEF 2018

#3 Inception-v4 “x2” 598x598 ImageNet 2012

#4 Inception-v4 “x2” 598x598 LifeCLEF 2018

#5 Inc.-ResNet-v2 299x299 ImageNet 2012

#6 Inc.-ResNet-v2 299x299 LifeCLEF 2018

Table 4.11: Models trained for the FGVCx Flowers classification competition.

CNN Architecture Input Size Fine-tuned from

#1 Inception-v4 299x299 ImageNet 2012

#2 Inception-v4 299x299 LifeCLEF 2018

#3 Inception-v4 299x299 iNaturalist 2018

#4 Inception-v4 “x2” 598x598 LifeCLEF 2018

#5 Inc.-ResNet-v2 299x299 LifeCLEF 2018
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The ensemble for the FGVCx Flower classification challenge consisted of 5 CNNs listed
in Table 4.11. Predictions of the 5 ensemble models and 14 test-time image augmentations
were combined by averaging.

The ensemble for the iNaturalist classification challenge consisted of 11 CNNs listed
in Table 4.12. Same as in the FGVCx Flower recognition challenge, the predictions of all
ensemble models and test-time image augmentations were combined by averaging.

Table 4.12: Models trained for the iNaturalist classification competition.

CNN Architecture Input Size Fine-tuned from Trained on iNaturalist

#1 Inception-v4 299x299 ImageNet 2012 training set

#2 Inception-v4 “x2” 598x598 ImageNet 2012 training set

#3 Inc.-ResNet-v2 299x299 ImageNet 2012 training set

#4 Inception-v4 299x299 LifeCLEF 2018 training set

#5 Inception-v4 “x2” 598x598 LifeCLEF 2018 training set

#6 Inc.-ResNet-v2 299x299 LifeCLEF 2018 training set

#7 Inception-v4 299x299 CNN #1 training + validation set

#8 Inception-v4 “x2” 598x598 CNN #2 training + validation set

#9 Inc.-ResNet-v2 299x299 CNN #3 training + validation set

#10 Inception-v4 299x299 CNN #4 training + validation set

#11 Inc.-ResNet-v2 299x299 CNN #6 training + validation set

4.5.5 Results

First, we evaluate the accuracy of our models on the validation set before and after applying
techniques like test-time augmentation, ensembling, or adjusting predictions to new class
priors. Second, the official challenge results are summarized.

FGVCx Fungi Validation Dataset

Let us first validate the CNNs trained for the FGVCx Fungi Classification challenge on
the FGVCx Fungi validation set. Table 4.13 compares the six trained CNN models before
applying additional techniques, with 1 forward pass (central crop, 80%) per image. We
will continue the validation experiments with CNN 1, i.e. Inception-v4 pre-trained from
an ImageNet checkpoint, which achieved the best validation accuracy.

The test-time pre-processing of the image input makes a noticeable difference. Table
4.14 shows the difference in accuracy for different sizes of central crop of the original image.
Table 4.15 compares the validation scores of the best performing CNN #1 against the
ensemble of all 6 networks, and measures the effect of the proposed multi-crop evaluation.

The advantage of adjusting the predictions with the new categorical prior is shown in
Figure 4.17: at the end of training the accuracy increases by 3.8%, from 48.8% to 52.6%.
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Table 4.13: Accuracy and Recall@5 of individual networks (central crop, 80%) on the
FGVCx Fungi validation set.

CNN Acc. (%) R@5 (%)

#1 Inception-v4 (ImageNet) 48.8 77.0

#2 Inception-v4 (LifeCLEF) 48.5 75.8

#3 Inception-v4 “x2” (ImageNet) 48.6 76.6

#4 Inception-v4 “x2” (LifeCLEF) 48.8 76.2

#5 Inc.-ResNet-v2 (ImageNet) 47.7 76.0

#6 Inc.-ResNet-v2 (LifeCLEF) 47.4 75.8

Inception-v4 [43] 44.7 73.5

Table 4.14: Inception-v4 (fine-tuned from the ImageNet checkpoint) with differently sized
central crops. Top-1 Accuracy and Recall@5 on the FGVCx Fungi validation set.

Central crop Accuracy (%) Recall@5 (%)

100% 45.9 75.1

80% 48.8 77.0

60% 48.6 76.3

40% 43.1 69.3
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Figure 4.17: Accuracy of Inception-v4 (fine-tuned from ImageNet checkpoint) on the
FGVCx Fungi validation set, before (green) and after (red) adjusting the predictions by
peY (k).
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Table 4.15: Top-1 recognition accuracy on the FGVCx Fungi validation set: single CNN
(#1) vs. ensemble (#1, . . . ,#6) and single central crop (1) vs. multiple crops (14). Pre-
dictions from ensembles and crops were combined by averaging (sum) or by choosing the
most common top prediction (mode). Results are shown both before and after adjusting
the predictions by known peY (k).

Accuracy (%)

#CNNs Crops Pool Baseline Known peY (k)

1 1 – 48.8 52.6

1 14 sum 51.8 56.0

6 1 sum 54.1 58.5

6 14 sum 54.2 60.3

6 14 mode 54.2 59.1

FGVCx Fungi Competition

The test dataset for the FGVCx Fungi Classificatin competition on Kaggle was divided
into two parts - public and private. Public results were calculated with approximately 70%
of the test data and results were visible to all participants. The rest of the data was used
for final competition evaluation to avoid any possible bias towards performance on the test
images.

Table 4.16: Results of the top ten teams in the FGVCx Fungi classification challenge.
Source: http://kaggle.com/c/fungi-challenge-fgvc-2018/leaderboard Last accessed 2nd Apr 2020.

Recal@3 Error (%)

# Team Name Private Score Public Score

1 CMP (ours) 21.197 20.772

2 digitalspecialists 23.188 23.471

3 Val An 25.091 25.213

4 DL Analytics 28.341 26.853

5 Invincibles 28.751 28.493

6 Tian Xi 32.235 31.636

7 Igor Krashenyi 32.616 34.164

8 wakaka 42.219 41.339

9 George Yu 47.621 47.113

10 Xinshao 67.837 67.509

We chose our best performing system, i.e. the ensemble of the 6 fine-tuned CNNs with
14 crops per test image and with predictions adjusted to new class priors, for the final
submission to Kaggle. The accumulation of predictions was done by the mode from top

http://kaggle.com/c/fungi-challenge-fgvc-2018/leaderboard
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species per prediction, as it had better preliminary scores on the public Kaggle test set.
Our submission to the challenge achieved the best scores in terms of Recall@3 error

both in the public and private leaderboard. The Recall@3 error is defined as follows: for
each image, if the ground truth label is found among the top 3 predicted labels, the error
is 0, otherwise it is 1. The final score is the error averaged across all images. The results
of the top 10 teams are listed in Table 4.16.

iNaturalist Competition

The test dataset for the iNaturalist competition on Kaggle was also divided into two parts
- public and private. Public results were calculated with approximately 70% of the test
data, while rest of the data was used for final competition evaluation.

For the final submission, we used the ensemble of the 11 fine-tuned CNNs from Table
4.12 with 14 crops per test image and with predictions adjusted to new class priors. The
accumulation of predictions was done by the mode from top species per prediction, as it
had better preliminary scores on the public part of iNaturalist test set on Kaggle.

Similarly to the FGVCx Fungi classification challenge, the iNaturalist competition also
used the Recall@3 error. The results of the top 10 teams in the challenge are listed in
Table 4.17. Our submission scored fourth in the competition (i.e. had the fourth best top3
accuracy), and had the third best top1 accuracy, as displayed in Figure 4.18.

Figure 4.18: Top-1 and top-3 accuracy on the private test set of iNaturalist 2018.
Source: Competition presentation https://www.dropbox.com/s/52nz6qc3zcwqhoa/iNaturalist_
Competition_FGVC_2018.pdf (Last accessed 2nd Apr 2020.)

https://www.dropbox.com/s/52nz6qc3zcwqhoa/iNaturalist_Competition_FGVC_2018.pdf
https://www.dropbox.com/s/52nz6qc3zcwqhoa/iNaturalist_Competition_FGVC_2018.pdf
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Table 4.17: Results of the top ten teams in the iNaturalist 2018 species classifica-
tion challenge. Source: https://www.kaggle.com/c/inaturalist-2018/leaderboard (Last ac-
cessed 2nd Apr 2020.)

Recal@3 Error (%)

# Team Name Private Score Public Score

1 DLUT VLG 12.858 13.068

2 Deep Learning Analytics 13.981 14.214

3 fadivugibs 14.618 14.914

4 CMP (ours) 16.076 16.360

5 fISHpAM 16.892 17.149

6 traveler 16.988 17.235

7 yen 17.201 17.412

8 Shuang 18.357 18.549

9 Mr.M 20.092 20.291

10 Dequan Wang 20.814 21.157

In the competition presentation 15, the winner of iNaturalist 2018 - DLUT VLG, a team
from the Dalian University of Technology - mentioned the following techniques increasing
the classification accuracy:

• CNN with second-order pooling denoted Matrix Power Normalized Covariance (MPN-
COV) [115,201],

• exploiting higher resolution images by increasing the network input size, and per-
forming dense crops at multiple scales on test images for inference,

• pre-training ResNet-152 on ImageNet-11k, then fine-tuning on iNaturalist 2017, then
two-stage training of MPN-COV on iNaturalist 2018,

• dealing with the class imbalance on the training set by fine-tuning on the validation
set with uniformly distributed classes.

Note that the winner of iNaturalist 2018 also participated in the FGVCx Flowers compe-
tition described below.

FGVCx Flowers Competition

Same as in the previous two competitions, the test dataset of the FGVCx Flowers clas-
sification competition on Kaggle was divided into two parts - public and private. Public
results were calculated with approximately 60% of the test data, the rest was used for
final competition evaluation. Unlike the previous FGVC challenges, the FGVCx Flowers
competition used the top1 accuracy as the main score.

15https://www.dropbox.com/s/52nz6qc3zcwqhoa/iNaturalist_Competition_FGVC_2018.pdf Last ac-
cessed 2nd Apr 2020.

https://www.kaggle.com/c/inaturalist-2018/leaderboard
https://www.dropbox.com/s/52nz6qc3zcwqhoa/iNaturalist_Competition_FGVC_2018.pdf
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Table 4.18: Results of the top ten teams in the FGVCx Flowers classification challenge.
Source: https://www.kaggle.com/c/fgvc2018-flower/leaderboard (Last accessed 2nd Apr 2020.)

Top 1 Error (%)

# Team Name Private Score Public Score

1 CMP (ours) 7.599 6.828

2 fadivugibs 8.177 7.638

3 DLUT VLG 8.242 7.677

4 yen 8.396 7.716

5 xiaoxiao 9.579 8.641

6 NDer MJU 11.636 10.976

7 thesouthfrog 15.211 13.618

8 nimahai 16.368 15.258

9 Miroslav Štola 20.187 19.637

10 lmao 20.342 20.177

Our final submission, averaging the predictions of the 5 fine-tuned CNNs from Table
4.11 with 14 crops per test image and with predictions adjusted to new class priors, scored
first in the competition. The results of the top 10 teams in the challenge are listed in Table
4.18.

4.5.6 Discussion

Our submissions to the FGVC challenges, based on our winning submission to ExpertLife-
CLEF 2018 described in 4.4, achieved excelent results in the challenges: 1st place in the
FGVCx Fungi recognition challenge and in the FGVCx Flower recognition challenge, and
4th place in the iNaturalist species recognition challenge. The results confirm the suitabil-
ity of our deep learning approach to species identification.

The FGVCx Fungi recognition challenge helped us to get in touch with the challenge
sponsor, the Danish Mycological Society, and discuss further application of our fungi recog-
niton system, described later in Chapter 5.

https://www.kaggle.com/c/fgvc2018-flower/leaderboard
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4.6 PlantCLEF 2019

Compared to previous PlantCLEF challenges [60, 61, 63], which contained mainly species
living in Europe and North America, the 2019 task is focused on the recognition of species
from “data deficient regions” - mainly the Guiana shield and the Amazon rain forest.
The proposed approach is based on CMP’s winning submission to ExpertLifeCLEF 2018,
described in Section 4.4. Checkpoints of our models from ExpertLifeCLEF 2018 have been
shared with other participants of PlantCLEF 2019 in order to provide a good starting
point to all participants.

4.6.1 Dataset

The PlantCLEF 2019 training set covers 10 000 species and consists of:

• PlantCLEF 2019 EoL: 72 260 images covering 4 197 classes from the Encyclopedia
of Life [2].

• PlantCLEF 2019 Google: 68 254 images covering 6 262 classes automatically retrieved
by web search engines.

• PlantCLEF 2019 Bing: 307 557 images covering 8 666 classes automatically retrieved
by web search engines.

The average number of images per species decreased dramatically from ExpertLife-
CLEF 2018. One fifth of species contains less than 10 images and some of them contains
only 1 image. Examples from the training set and test set are displayed in Figure 4.19.

Figure 4.19: Randomly selected images from the PlantCLEF 2019 training set (top) and
test set(bottom).

The challenge test set contained 2 974 images of covered 742 plant observations. Human
experts were tested on its subset counting 117 plant observations.
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4.6.2 Methodology

Cleaning and Extending the Training Dataset

A brief manual inspection showed that the provided training set contains noisy samples -
wrongly labeled images, including images of non-flora objects. Examples of noisy samples
are in Figure 4.20. We therefore decided to detect non-flora images by a pre-trained
Darknet53 448x448 [154] classifier. Out of 428 702 images from the official training set, we
removed 6 181 images detected as non-flora. As many species only had one or two images in
the training set, the removal of untrusted images from the training data left approximately
2 000 classes without training samples. We had to gather additional training images to
fill that gap. We created a new training set16 including external training data downloaded
from the Global Biodiversity Information Facility (GBIF) [4], described in Table 4.19.
Changes in the dataset statistics are visualized in Figure 4.21.

Figure 4.20: Randomly selected noisy images from the PlantCLEF 2019 training set.
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Figure 4.21: Numbers of training images per class in the original dataset (blue), cleaned
dataset (orange) and cleaned and extended (green), sorted for each dataset separately.

16For full reproducibility, a list of removed samples as well as an archive with additional training images
are shared at http://cmp.felk.cvut.cz/~sulcmila/LifeCLEF2019/. Last accessed 2nd Apr 2020.

http://cmp.felk.cvut.cz/~sulcmila/LifeCLEF2019/
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Figure 4.22: Six nearest couples of test set images (top) and GBIF images (bottom).

Table 4.19: Training data (after cleaning and extending the provided training set) used in
the experiments.

Data Source Classes Non EoL classes Number of Images

EoL 4 197 0 58 548

Noisy Google 6 262 3 800 64 863

Noisy Bing 8 666 5 069 305 291

GBIF (additional) 9 402 5 734 238 009

All 9 998 5 801 666 711

To make sure that none of the additional training images (or its resized or cropped
versions) downloaded from GBIF appear in the test set, we used the image retrieval pipeline
of Radenovic et al. [153] with VGG-16 and whitening. The nearest neighbours of test
images among the downloaded images are vizualized in Figure 4.22.

Convolutional Neural Networks

The proposed system is based on two CNN architectures – Inception ResNet v2 and In-
ception v4 [186]. The TensorFlow-Slim API was used to adjust and fine-tune the networks
from the publicly available17 ExpertLifeCLEF 2018 winning checkpoints.

All networks in our experiments shared the optimizer settings enumerated in Table
4.20. The networks and their input resolutions are listed in Table 4.21.

17http://cmp.felk.cvut.cz/~sulcmila/LifeCLEF2018/ Last accessed 2nd Apr 2020.

http://cmp.felk.cvut.cz/~sulcmila/LifeCLEF2018/
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Table 4.20: Optimizer hyper-parameters, common to all networks in the experiments.

Parameter Value

Batch size 32

Optimizer RMSProp

RMSProp momentum 0.9

RMSProp decay 0.9

Initial learning rate 0.0075

Learning rate decay type Exponential (stairs)

Learning rate decay factor 0.975

Moving average (Polyak [148]) decay: 0.999

The following image pre-processing techniques were used for training:
• Random image crop with aspect ratio range (0.75, 1.33) and content at least 80% of
origin image.

• Random left-right flip.

• Brightness and saturation distortion.

Table 4.21: Network input resolutions.

# Net architecture Input Resolution

1 Inception v4 299× 299

2 Inception v4 (second) 299× 299

3 Inception v4 598× 598

4 Inception ResNet v2 299× 299

5 Inception ResNet v2 (second) 299× 299

Test-time Data Augmentation

At test-time, 3 predictions per image are generated by using 3 crops:
• 1x Full image,

• 1x Central crop covering 80% of the original image,

• 1x Central crop covering 60% of the original image.
In some of our challenge submissions described later, the mirrored versions of all three
crops were also evaluated.

Adjusting Class Priors at Test-time

The training set data distribution is highly unbalanced and we can not guarantee that
the test images were drawn from the same distribution: as described in Section 4.6.1, the
training set comes from different sources, where the class frequencies may not correspond
with the test-time priors.
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Following the notation from Section 3.3.1, the predictions p(k|x) of a network trained
on a dataset with class prior probabilities pY (k) should be corrected in case of evaluation
on a test set with different class priors peY (k). From Equation 3.20 (Section 3.3.1) we know
that

pe(k|x) ∝ p(k|x)
peY (k)

pY (k)
.

Since the test-time priors peY (k) are unknown, we use three different estimates of ad-
justing the predictions:

UNIFORM: As the simplest option, we adjust the test predictions by assuming a
uniform prior for all classes.

MLE: As the second option, we compute a Maximum Likelihood Estimate of the test
time prior peY (k) using the EM algorithm of Saerens et al. [161] described in Section 3.3.2.
Let us recall the two steps from Equations 3.23 and 3.24:

p(s)(k|x) =

p(k|x)
p̂
(s)
k

pY (k)

K∑
j=1

p(j|x)
p̂
(s)
j

pY (j)

p̂
(s+1)
k =

1

N e

∑
x∈E

p(s)(k|x)

MAP: As the third option, we use the Maximum a Posteriori estimate proposed in
Section 3.3.3. Recall the objective from Equation 3.30:

p̂MAP = arg max
p

p(p|E)

= arg max
p

p(p)
∏
x∈E

p(x|p)

= arg max
p

[
log p(p) +

∑
x∈E

log p(x|p)

]

s.t.
K∑
k=1

pk = 1; ∀k : pk ≥ 0

Wemodel the prior knowledge about the categorical distribution by the symmetric Dirichlet
distribution:

p(p) =
1

B(α)

K∏
k=1

pα−1k (4.9)

where the normalization factor for the symmetric case is B(α) =
Γ(α)K

Γ(αK)
. We use α = 3.
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Table 4.22: Description of our (corrected, post-challenge) submissions.

Run description Test accuracy (%)

Name Test-time augm. Prior est. Top1 Top1 Exp. Top5 All Top5 Exp.

CMP Run 2 3×scale (none) 31.9 40.2 46.8 58.1

CMP Run 3 3×scale uniform 30.7 40.2 45.1 57.3

CMP Run 4 3×scale MAP 31.1 40.2 45.4 53.8

CMP Run 5 3×scale MLE 24.4 32.5 35.6 41.0

CMP Run 6 3×scale + mirrors (none) 31.9 41.0 47.0 58.1

CMP Run 7 3×scale + mirrors uniform 30.1 40.2 45.3 57.3

CMP Run 4* 3×scale + mirrors MAP 31.1 41.0 46.1 56.4

CMP Run 5* 3×scale + mirrors MLE 24.7 31.6 36.0 41.9

Figure 4.23: Comparison of automatic plant recognition methods on the PlantCLEF 2019
test set. (Note: The plot displays our post-challenge submissions).

4.6.3 Results

Table 4.22 describes eight final runs used for the evaluation. An ensemble of all five
networks from Section 4.6.2 was used in all runs and predictions were averaged over all
networks and all test image augmentations from Section 4.6.2.

The evaluation results are shown in Figures 4.23 and 4.24. From the class prior esti-
mation methods, MAP estimation with the Dirichlet hyperprior achieves noticeably better
results than the MLE. This is in accordance with the results presented later in Chapter
6, where adding the hyperprior brings noticeable improvement over the MLE estimation,
which may have a tendency to overfit. The best results were achieved when not adjusting
the predictions to a new prior. The weaker performance of the prior estimation meth-
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Figure 4.24: Comparison of automatic plant recognition methods against human experts.
The results of our method are shown in red as “Post Challenge” (our results submitted at
the challenge deadline, shown in orange, were wrongly exported).

ods may be related to the small number of training examples per class – insufficient to
train the CNN classifiers well enough – and the relatively small size of the test set – only
742 observations while considering 10 000 species. Note that the results from Table 4.22
are the official post-challenge evaluation not included in the challenge leaderboard, as our
predictions were wrongly exported into the challenge run-files.

4.6.4 Discussion

The proposed system achieves the best accuracy on the PlantCLEF 2019 test set - 31.9% on
the full set and 41.0% on the test subset for plant identification experts. The results show
that even for “data-deficient” plant species, automatic image recognition systems achieve
human expert accuracy in visual recognition of plants: The proposed method performed
better than 3 of the 5 participating experts in plant recognition.
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4.7 Summary of the Challenge Results

The fine-grained species recognition challenges presented in this Chapter provided valu-
able large scale datasets, which – in addition to presenting difficult fine-grained recognition
tasks – reveal additional problems such as learning with noisy labels and highly unbalanced
training data, change of categorical priors between the training and test data, etc. More-
over, the competitions provide benchmarks of the best performing machine learning and
computer vision algorithms.

The best results in all large scale recognition challenges presented in this chapter were
achieved with deep Convolutional Neural Networks, including our winning submissions to
the ExpertLifeCLEF 2018 plant identification challenge in Section 4.4, the FGVCx Fungi
Classification Challenge and FGVCx Flower Classification Challenge in Section 4.5 and the
best results on the PlantCLEF 2019 test set achieved by our post-challenge submission in
Section 4.6. In all challenges, the top-performing submission were based on an ensemble of
several CNN models, consistently achieving better results then single-model submissions.
Our results suggest that the Polyak averaging [148] technique, where running averages of
the trained variables are used instead of the values from the last training step, improves
the recognition accuracy.

The problem of different categorical priors in the training and test data of the Plant-
CLEF challenges has motivated us to study the problem as presented in Section 3.3. The
methods for adjusting CNN predictions to new categorical priors are experimented in more
detail in Chapter 6.

Winning the FGVCx Fungi Classification Challenge started our communication with
the mycologists from the Danish Mycological Society, with whom we integrated our classifi-
cation models into a citizen science project for collection of fungi observations, as described
in Chapter 5.



CHAPTER 5

Automatic Fungi Recognition as a Tool for Citizen-Science

This chapter presents a computer vision system for recognition of fungi “in the wild”,
based on our winning submission to Kaggle competition organized with the Fine-Grained
Categorization Workshop at CVPR 2018 from Section 4.5.5, and the application of this
system to assist a citizen-science community and help mycologists increase the involvement
of citizens in data collection.

Existing applications for image-based mushroom recognition are reviewed in Section
5.1.1. To the best of our knowledge, our system recognizes the largest number of species,
and it is the first image-based fungi recognition system to assist citizen-scientists and
mycologists in identification and collection of observations.

From the computer vision perspective, the application of the system to citizen-science
data collection creates a valuable continuous stream of labeled examples for a challenging
fine-grained visual classification task. The increasing amount of labeled data will allow to
improve the classification baselines in the future and to study other interesting problems,
such as fungi phenotyping, location-based estimation of categorical prior, etc. By linking
the system to an existing mycological platform involving validation by the community, as
is the case in the Atlas of Danish Fungi [42, 55, 80], a supervised machine learning system
with human in the loop is created.

5.1 Related Work

5.1.1 Fungi Recognition

Several mobile applications for fungi identification include a computer vision classification
system. Only few have positive user reviews on the identification results. Examples of
apps with positive user reviews are:

• Mushroom Identificator1 with 1M+ downloads and a review score of 4.0/5, recogniz-
ing more than 900 mushroom species,

1https://play.google.com/store/apps/details?id=com.pingou.champignouf Last accessed
2nd Apr 2020.
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• Mushrooms App2 with 0.5M+ downloads and a review score of 4.4/5, recognizing
210 mushroom species.

De Vooren et al. [195] published an image analysis tool for mushroom cultivars iden-
tification in 1992, analyzing morphological characters like length, width and other shape
descriptors.

Computer vision may be used for classification of microscopy images of fungal spores.
Tahir et al. [189] and Zielinski et al. [212] introduce datasets of microscopy images of fungal
infections and propose methods to speed up medical diagnosis, allowing to avoid additional
expensive biochemical tests.

5.1.2 Crowd-based Image Collection and Identification

The Global Biodiversity Information Facility (GBIF) [4] is the largest index of bio-
diversity data in the world. GBIF is organized as a network involving 58 participating
countries and 38 organisations (mainly international) publishing more than 45 000 bio-
diversity datasets under open source licenses. The index contains more than 1.3 billion
species occurrence records of which more than 47 million include images. With the recent
advances in the use of machine vision in biodiversity related technology, GBIF intends
to facilitate collaborations in this field, promote responsible data use and good citation
practices. GBIF has the potential to play an active role in preparing training datasets and
make them accessible under open source licenses [158].

iNaturalist [5] is a pioneering crowd-based platform allowing citizens and experts to
upload and categorize observations of the world fauna, flora and fungi. All annotated data
are directly uploaded to GBIF once verified by three independent users. iNaturalist covers
more than 238 000 species through almost 28 million observations.

Wild Me is a non-profit organization that aims to combat extinction with citizen-
science and artificial intelligence. Their projects using computer vision [141] to boost
detection and identification include: Flukebook, a collaboration system to collect citizen
observations of dolphins and whales and to identify individuals, and GiraffeSpotter, a
photo-identification database of giraffe encounters.

The Atlas of Danish Fungi (SvampeAtlas) [42, 55, 80] involves more than 1000
volunteers who have contributed approximately 500 000 quality-checked observations of
fungi. More than 270 000 old fungal records were imported into the project database which
now contains more than 800 000 quality-checked fungal records. The project has resulted
in a greatly improved knowledge of Denmark’s fungi. More than 180 basidiomycetes3 have
been added to the list of known Danish species, and several species that were considered
extinct have been re-discovered. At the same time, a number of search and assistance
functions have been developed that present common knowledge about the individual species
of fungi, which makes it much easier to include knowledge of endangered species in the
nature management and decision making.

All validated records are published to the Global Biodiversity Information Facility [4]
on a weekly basis. Since 2017, the Atlas of Danish Fungi has had interactive validation

2https://play.google.com/store/apps/details?id=bazinac.aplikacenahouby Last accessed
2nd Apr 2020.

3Microscopic spore-producing structure found on the hymenophore of fruiting bodies.

https://play.google.com/store/apps/details?id=bazinac.aplikacenahouby
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of fungal records. When a user submits a record, a probability score is calculated for the
accuracy of the identification. This score ranges from 1 to 100. The calculation includes:

1. The rarity of the species (# approved records).

2. The geographical distribution of the species.

3. Phenology of the species (e.g. many mycorrhizal fungi have a low probability score
in spring).

4. User’s previous approved identifications of the same species.

5. Nr. of species within the morphological group the user has correctly identified in the
past.

6. Confidence indicated by the user: Certain: 100%, Probable: 50%, Possible: 10%.

Subsequently, other users may agree on the identification, increasing the identification
score in accordance with the principles 4–6, or propose alternative identifications. The
identification with the highest score is highlighted, alternative identifications and their
scores are also visible to logged-in users. In the search results, the probability score is
displayed in three general categories:

1. Approved (score above 80) with 3 stars.

2. Likely (score between 50 and 80) with 2 stars.

3. Suggestion (score below 50) with 1 star.

A group of taxonomic experts (validators) are monitoring data in the Atlas of Danish
Fungi. These have the power to approve findings regardless of the score in the interactive
validation. This can be relevant for discoveries of new species, for very rare species and
for records of species where special experience or sequencing of genetic material (DNA)
is required for a safe identification. Expert-validated findings are marked with a small
microscope icon.

5.2 Online Fungi Classification Service

The recognition system is based on the dataset provided by the FGVCx Fungi Classification
Challenge described in Section 4.5.1. The pipeline used for the FGVCx Fungi Classification
challenge was described in Section 4.5.4. All six fine-tuned networks from our ensemble are
publicly available4. The predictions of the CNNs were adjusted to new priors was discussed
in Sections 3.3.1 and 4.5.4.

In order to provide a flexible and scalable image-based fungi identification service for the
Atlas of Danish Fungi, we created a recognition server based on the open-source TensorFlow
Serving [137] framework. The server currently uses one of our pretrained models from
Section 4.5.4, the framework allows to deploy several models at the same time. No test-
time augmentations are currently used in order to prevent server overload.

The pipeline is visualized in Figure 5.1: The web- and mobile apps query the recognition
server via Representational State Transfer (REST) API. The server feeds the query image

4https://github.com/sulc/fungi-recognition Last accessed 2nd Apr 2020.

https://github.com/sulc/fungi-recognition
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into the Convolutional Network and responds with the list of predicted species probabilities.
The apps then display a shortlist of the most likely species for the query. The observation
is also uploaded into the Atlas of Danish Fungi database. The user can manually inspect
the proposed species and select the best result for annotation of the fungus observation.
Screenshots of the web and mobile interfaces are shown in Figure 5.2 and Figure 5.3
respectively.

Observations uploaded into the Atlas of Danish Fungi database and the proposed
species identifications are then verified by the community. Images with verified species
labels will be used to further fine-tune the recognition system.

Figure 5.1: The fungi recognition serving pipeline.

(a) (b) (c) (d)

Figure 5.2: Screenshots from the Atlas of Danish Fungi mobile application showing: (a)
A detailed description of selected species, (b,c) Image based recognition suggesting species
for a query image, (d) Map with nearby observations.

5.3 Results

The experts behind the Atlas of Danish Fungi have been highly impressed by the perfor-
mance of the system5. From the first 5760 records that have been submitted for automatic

5Personal communication with the Atlas of Danish Fungi.
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Figure 5.3: Screenshot from the web-based recognition app (https://svampe.databasen.
org/imagevision Last accessed 2nd Apr 2020).

recognition, only 904 (16 %) were not approved by community- or expert validation. This
is a far better performance than most non-expert users in the system. Almost two thirds
(64 %) of the approved species identifications were based on the highest ranking AI suggest-
ing species ID, while another 7 % were based on the second highest ranking AI suggested
species ID and another 6 % were based and top 3-5 suggestions.

It has not been possible to collect data on identification attempts where no useful match
was returned from the AI, and the user therefore picked a taxon name not in the top 10
AI results. However, users generally stated that this rarely happened. So far the system
has been tested by 652 users, each submitting between one and 526 records. For users
submitting more than ten records the accuracy in terms of correct identifications guided
by the system varied from 17% to 100%, pointing to quite considerable differences in how
well different users have been able to identify the correct species using the system. Hence,
the tool is not fully reliable, but helps the non-expert users to gain better identification
skills. The accuracy was variable among the fungal morphogroups defined in the fungal
atlas, varying from 24 % to 100 % for groups with more than 10 records. The accuracy
was tightly correlated with the obtained morphogroup user score based on the algorithms
deployed in the Atlas of Danish Fungi to support community validation.

The operators of the Atlas of Danish Fungi received positive feedback from several
users about the new AI-identification feature.

The observation statistics in Table 5.1 and Figure 5.4 show a significant increase of
submitted observations after releasing the automatic fungi recognition service in October
2019.

https://svampe.databasen.org/imagevision
https://svampe.databasen.org/imagevision
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Table 5.1: Observation statistics from the Atlas of Danish Fungi: Number of sightings
and images uploaded by the users before and after introducing our automatic species
identification service.

Sightings Images

Before (Oct.-Dec.2018) 17 025 10 779

After (Oct.-Dec.2019) 30 167 20 666

Figure 5.4: Observation statistics from the Atlas of Danish Fungi: Number of submitted
and validated observations per week.

5.4 Discussion

This chapter described the application of a fungi recognition system, which was based
on our submission to a computer vision Kaggle challenge, that aims at helping citizen-
scientists to identify species of observed specimen and motivating their contributions to a
citizen-science project.

Integration of the image recognition system into the Atlas of Danish Fungi makes
community-based fungi observation identification easier: from the first 592 approved an-
notations, 89% were based on the top-2 predictions of our model.

Cross science efforts such as the collaboration described here can develop tools for
citizen-scientists that improve their skills and the quality of the data they generate. Along
with data generated by DNA sequencing this may help lowering the taxonomic bias in the
biodiversity information data available in the future.

The server-based inference allows computation of accurate predictions with good re-
sponse time, and it motivates users to upload images. On-device mobile inference would
allow real-time recognition in areas with limited access to mobile data, however, decreas-
ing the model size and complexity would be necessary. Possible directions for future



5.4. DISCUSSION 103

work include applying efficient architectures [81, 162, 190], weight pruning and quanti-
zation [72,85,204].

A future deeper integration into mycological information systems may allow on-line
learning of the classifier. Extending the collaboration with more mycological institutes or
information systems may help to improve the system even further, as it would learn from
all available data. As species distribution differs based on geographical locations and local
environment, estimating the priors for different locations may be used in future work to
adjust the predictions for observations with GPS information. The recent work of Mac
Aodha et al. [125] may be relevant for modelling such spatio-temporal prior.
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CHAPTER 6

Evaluation of Adjusting Predictions to New Class Prior Probabilities

This chapter returns to the problem of classification on a test set with different class priors
than the training set, as introduced in Section 3.3. While some of the proposed methods
for estimating the new priors and adjusting the predictions have been used in the computer
vision challenges described in Chapter 4, this Chapter aims at a more rigorous evaluation.

The following fine-grained classification datasets are used for experiments in this Chap-
ter:

CIFAR-100 [102], which was introduced in Section 3.2.1, is a popular dataset for
smaller-scale classification experiments. It contains small resolution (32x32) color images
of 100 classes. The full dataset contains 500 training samples and 100 test samples for each
class. We sample a number of its unbalanced subsets for our experiments in this Chapter.

The PlantCLEF 2017 [62] recognition challenge and dataset have been described in
Section 4.2. The provided training images for 10 000 plant species consisted from an EoL1

“trusted” training set, a significantly larger “noisy” training set (obtained from Google and
Bing image search results, including mislabeled or irrelevant images), and the previous
years (2015-2016) images depicting only a subset of the species. We use the training data
in two ways: Either training on all the sets together - further denoted as PlantCLEF-
All, or excluding the “noisy” set - further denoted as PlantCLEF-Trusted. The test set
from PlantCLEF 2017 is used for evaluation. All data is publicly available23. PlantCLEF
presents an example of a real-world fine-grained classification task, where the number of
available images per class is highly unbalanced.

The FGVC iNaturalist 2018 large scale species classification competition and dataset
have been described in Section 4.5.2. The provided dataset covers 8 142 species of plants,
animals and fungi. The training set is highly unbalanced and contains almost 440K images.
A balanced validation set of 24K images is provided.

The FGVCx Fungi 2018 species classification competition, focused only on fungi,
and the related dataset have been described in Section 4.5.1. The dataset covers nearly

1downloaded from the Encyclopedia of Life [2]
2http://imageclef.org/lifeclef/2017/plant Last accessed 2nd Apr 2020.
3http://imageclef.org/lifeclef/2016/plant Last accessed 2nd Apr 2020.
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1 400 fungi species. The training set contains almost 86K images, and is highly unbalanced.
The validation set is balanced, with 4 182 images in total.

Webvision 1.0 [116] (also known as Webvision 2017) is a large dataset designed to
facilitate learning visual representation from noisy web data. It contains more than 2.4
million of images crawled from Flickr and Google Images and covers the same 1 000 classes
as the ILSVRC 2012 dataset. The number of images per category ranges from hundreds
to more than 10 thousand, depending on the number of queries generated from the synset
for each category and on the availability of images on the Flickr and Google.

6.1 Adjusting Predictions When Test-time Priors Are Known

To experiment with known test-time prior probabilities peY (k), we use the training and
validation sets from the FGVC iNaturalist4 and the FGVCx Fungi5 Classification Compe-
titions 2018. In both challenges the validation sets are balanced, i.e. the class prior dis-
tribution is uniform. A state-of-the-art Convolutional Neural Network, Inception-v4 [186],
was fine-tuned for each task. The predictions were corrected as defined by Eq. 3.20.

A similar case is the Webvision 2017 dataset, where the training set is highly unbalanced
and the validation set is balanced. In the classification/baseline experiments of Li et al.
[116], the change of class prior probabilities is not taken into consideration. Similarly
to [116] we train an AlexNet network from scratch. (Note that our model did not converge
to the same accuracy, probably due to difference in implementation and hyper-parameters.)

Figure 6.1 displays the training and evaluation distribution and the improvement in
accuracy achieved by correcting the predictions with the known priors. The improvement
in top-1 accuracy is 4.0% and 3.9% after 400K training steps (and up to 7.4% and 4.9%
during fine-tuning) for the FGVC iNaturalist and FGVCx Fungi classification challenges
respectively and 1.3% for the Webvision 2017 dataset.

6.2 Estimation of New Priors From the Test Set

The PlantCLEF 2017 test set is an example of a test environment where no knowledge
about the class distribution was available. The training set is highly unbalanced, the test
set does not follow the training set statistics and it does not contain examples from all
classes.

We used an Inception-V4 model pre-trained on all available training data (PlantCLEF-
All). Results in Table 6.1 show that the top-1 accuracy increases by 3.4% when estimat-
ing the test set priors using the EM algorithm [161]. To compare with the results of the
2017 challenge, we combine the predictions per specimen observation (the test set con-
tained several images per specimen, linked by ObservationID meta-data) and compute the
observation-identification accuracy. After the test set prior-estimation our single CNN out-
performs the winning submission of PlantCLEF 2017 composed of 12 CNNs (ResNet-152,
ResNeXt-101 and GoogLeNet architectures).

4https://sites.google.com/view/fgvc5/competitions/inaturalist Last accessed 2nd Apr 2020.
5https://sites.google.com/view/fgvc4/competitions/fgvcx/fungi Last accessed 2nd Apr 2020.

https://sites.google.com/view/fgvc5/competitions/inaturalist
https://sites.google.com/view/fgvc4/competitions/fgvcx/fungi
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Figure 6.1: Training and validation set distributions (top) and accuracy before and after
correcting predictions with the known/uniform val. set distribution (bottom) for FGVC
iNaturalist 2018 (left), FGVCx Fungi 2018 (middle) and Webvision 2017 (right).

Table 6.1: Improvement in accuracy after applying the iterative test set prior estimation
in the PlantCLEF 2017 plant identification challenge.

Model Accuracy
Accuracy
after EM

Acc. per observation,
(our method after EM)

Acc. per observation,
peY (k) known

Inception V4 83.3% 86.7% 90.8% 93.7%

12 CNNs ensemble [107]
(PlantCLEF2017 winner) – – 88.5% –
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Table 6.2: Accuracy of CNN classifiers trained on unbalanced CIFAR-100 subsets (top)
and evaluated on the full CIFAR-100 test set, adjusted by estimated class priors using
the MLE and MAP estimates. Predictions adjusted by an oracle knowing the class priors
(bottom).

Train. distribution

Acc. (%) 48.15 55.70 60.88 64.01 65.62 67.29 36.68 47.72 54.00 56.57 60.37 61.66

after MLE 49.71 56.94 61.64 64.58 65.62 67.11 38.67 49.05 55.18 57.05 60.59 61.74

after MAP, α = 3 49.75 56.94 61.65 64.59 65.64 67.18 38.75 49.20 55.19 57.10 60.58 61.76

after MAP, α = 10 50.07 56.97 61.68 64.55 65.70 67.23 39.12 49.34 55.22 57.10 60.69 61.76

with known peY (k) 51.20 57.61 62.23 64.73 65.92 67.44 40.62 50.07 55.86 57.49 60.92 62.11
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Figure 6.2: Iterative estimation of test-time priors on the full CIFAR-100 test set from
CNNs trained on unbalanced CIFAR-100 subsets.

Networks trained on the selected subsets of CIFAR-100 from Section 3.2.1 were evalu-
ated on the full (balanced) CIFAR-100 test set with different adjustments of predictions:
none, ML estimate, MAP estimate, and oracle-provided test-time priors. The results are
compared in Table 6.2. As expected, the ground truth priors always lead to the best
results. With only one exception, estimating the test-time priors always increases accu-
racy. The MAP estimate consistently achieves higher test-time accuracy, although, as
illustrated in Figure 6.2, the likelihood of its estimate is lower than of the ML estimates.
This demonstrates the importance of adding prior assumptions on the estimated class prior
probabilities. The EM algorithm for ML estimation, however, converges noticeably faster.

Figure 6.3 summarizes the estimation of class priors on the fine-grained datasets Plant-
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Figure 6.3: Iterative estimation of test-time priors on fine-grained datasets: PlantCLEF
(Inception-v4), FGVCx Fungi (Inception-v4), and Webvision 1.0 (AlexNet). Top row: The
log-likelihood surrogate `. Middle row: Hellinger distance between the prior estimate and
ground truth class frequencies. Bottom row: Accuracy.

CLEF, FGVCx Fungi and Webvision. MAP estimation has a positive effect on the FGVCx
Fungi dataset, where it increases accuracy by 1.8%, while ML estimate leads to a decrease
in accuracy. All estimation methods decrease the accuracy on Webvision, MAP has the
lowest decrease. The poor performance on Webvision may be related to the high number
of outliers in the training set - Li et al. [116] suggest that only 66% of the images can
be considered inliers. This may affect the reliability of the CNN posterior estimate. The
accuracy on PlantCLEF increases by 2.8% after MAP estimation and by 3.4% after MLE.
Note that on PlantCLEF, many classes are not present in the test set and therefore the
optimization is actually disadvantaged by the Dirichlet hyperprior preventing the class
priors from converging to zero.

6.2.1 Cross-validation of the Prior Estimate Likelihood

The experiments in Section 6.2 show that increasing the likelihood does not always lead to
a more precise estimate. One possible reason may be over-fitting to the predictions on the
test set (to aik in Equation 3.26). Let us “cross-validate” the likelihood on the test set: We
will optimize the estimate only on a random half of the test set (likelihood-optimization
set), and use the other half for likelihood-validation. Note that for this experiment, we use
the projected gradient descent with a lower learning rate, in order to observe the changes
in convergence in more detail.

Figure 6.4 shows, that even for the “unseen” half of the data (likelihood-validation set),
the likelihood of the solution still increases, while the accuracy on both sets is decreasing.
Therefore, this is not a case of over-fitting to the seen predictions, and the decreasing
accuracy when maximizing the likelihood function remains an open problem.
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Figure 6.4: “Cross-validation” of the likelihood optimization on Webvision 1.0, using only
half of the test set (likelihood-optimization set) to estimate the class priors, and observing
the log-likelihood on the other half (likelihood-validation set).

0 200 400 600 800 1000 1200 1400
Training step

37

38

39

40

41

42

Ac
cu

ra
cy

 [%
]

CNN accuracy (new training set)
CNN accuracy (computed w/ old priors)

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Training step

78

80

82

84

86

88

Ac
cu

ra
cy

 [%
]

CNN output accuracy
EM w/ old train. set distr.
EM w/ new train. set distr.
Oracle w/ old train. set distr.
Oracle w/ new train. set distr.

Figure 6.5: CNN pre-trained on unbalanced CIFAR-100 subset fine-tuned on the full
CIFAR-100 training set (left). CNN pre-trained on PlantCLEF-All fine-tuned on
PlantCLEF-Trusted (right).

6.3 Changing the Training Set Priors

How fast do the effective “learned” priors change when the training set changes during
training? In this experiment, new samples are added into the training set. We take a
network from Section 3.2.1 pre-trained on an unbalanced subset of CIFAR-100 and we
fine-tune it on the full (balanced) CIFAR-100 training set. The predictions are evaluated
on the complete (and balanced) test set. From the results in Figure 6.5 (left), it is clearly
visible that using the old training set priors is still favorable for a few fine-tuning steps,
but the effective priors of the CNN classifier seem to change fast.

The second experiment covers the other case: removing samples from the training
set. On the PlantCLEF 2017 dataset, we used all training data (PlantCLEF-All) and
then removed the major subset with noisy labels and fine-tuned only on the trusted data
(PlantCLEF-Trusted). As visible in Figure 6.5 (right), in the second experiment the dif-
ference between the results with the old and new priors is significantly lower, but displays
a similar case.
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6.4 Adjusting Posterior Probabilities Online with New Test
Samples

In practical tasks, test samples are often evaluated sequentially rather than all at once. We
evaluated how the test-time class prior estimation on the PlantCLEF 2017 dataset affects
the results on-line, i.e. when the priors are estimated from the already seen examples,
see Figure 6.6. After about 1 000 test samples, the predictions adjusted by class priors
iteratively estimated by the EM algorithm gain a noticeable margin against plain CNN
predictions.
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Figure 6.6: On-line test-prior estimation for PlantCLEF 2017.

6.5 Temperature Scaling

As discussed in Section 3.2.2, CNNs tend to provide over-confident prediction which can
be calibrated by temperature scaling. Would such calibration improve the estimation of
test set priors? Let us answer the question experimentally using the CNNs from Section
3.2.1 trained on the unbalanced subsets of the CIFAR-100 dataset.

The temperature scaling optimization should be performed on labeled samples from a
development set, which was not used for training. In order to reuse the previously trained
networks, we sample the development set (with the same distribution as the training set)
from one half of the original CIFAR-100 test set, and use the other half (5000 images) as
the test set for evaluation.

The reliability diagrams in Figure 6.7 show that on the development set used for tem-
perature optimization, temperature scaling calibrates the prediction confidence well. The
reliability diagrams on the test set in Figure 6.8 also show a noticeable improvement in
the reliability of prediction confidences after temperature scaling, although the calibration
error is slightly higher compared to the development set.
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Figure 6.7: Reliability diagrams on the development set before (middle) and after (bot-
tom) temperature scaling displayed for the 4 classifiers trained on different unbalanced
(top) subsets of CIFAR-100, in the same order as in Figure 3.6.
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Figure 6.8: Reliability diagrams on the test set before (top) and after (bottom) tem-
perature scaling, displayed for the 4 classifiers trained on different unbalanced subsets of
CIFAR-100, in the same order as in Figure 3.6.

Results in Table 6.3 show how temperature scaling affects the results with MLE or
MAP estimation of new categorical priors. Interestingly, in all experimented cases, better
results are achieved without temperature scaling of the original predictions. Moreover, in
the cases where the training distribution was very unbalanced (first and third row), adding
temperature scaling strongly decreased the final recognition accuracy.

The results indicate, that while temperature scaling calibrates the reliability of the
predictions as confidence scores, it impairs some statistical properties of the posterior
estimate, making it less suitable for further processing in the prior estimation methods.
Figure 6.9 shows the average of the predictions on the development set, similar to the
initial validation in Section 3.2.1, before and after temperature scaling. The latter is
slightly more prone to over-estimating the priors on the tail classes while under-estimating
the most common classes, but still approximates the priors fairly well.
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Table 6.3: Accuracy of CNN classifiers trained on unbalanced CIFAR-100 subsets (top) and
evaluated on one half of the CIFAR-100 test set. We compare the accuracy of predictions
directly adjusted by the MLE/MAP estimated class priors and the accuracy of predictions
first calibrated by temperature scaling, followed by the MLE/MAP estimation.

Train. distribution

Accuracy (%) 48.08 66.58 37.04 60.76

Acc. (%) after MLE 49.58 66.54 39.02 61.24

Acc. (%) after MAP, α = 3 49.80 66.70 39.00 61.18

Optimal temparature T 2.26 2.11 2.05 2.30

Acc. (%) after temp. scaling and MLE 27.22 66.12 23.16 60.74

Acc. (%) after temp. scaling and MAP, α = 3 38.40 66.58 33.66 61.42
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Figure 6.9: Comparison of class frequency and the averaged predictions over all images in
the development set before (top) and after (bottom) temperature scaling.

6.6 Discussion

This chapter highlighted the importance of not ignoring the commonly found difference
between the class priors in the training and test sets in computer vision. We compared
two approaches: the existing MLE [161] and the proposed MAP approach, applying the
Dirichlet prior on the categorical distributions.

Experimental results show a significant improvement on the FGVC iNaturalist 2018
and FGVCx Fungi 2018 classification tasks using the known evaluation-time priors, in-
creasing the top-1 accuracy by 4.0% and 3.9% respectively. Iterative EM estimation of
test-time priors on the PlantCLEF 2017 dataset increases the image classification accuracy
by 3.4%, allowing a single CNN model to achieve state-of-the-art results and outperform
the competition-winning ensemble of 12 CNNs. Adding the Dirichlet prior prevents the
class prior estimates from getting too close to zero. This improves the results and stability
in most cases, including the FGVCx Fungi dataset, where it increased the accuracy by
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1.8% while the ML estimate would lead to a decrease. It brings a slightly lower 2.8%
increase in accuracy on the PlantCLEF dataset, where many classes are actually missing
in the test set. The estimation of new priors did not help only on Webvision dataset - this
may be related to the high amount (≈ 34%) of outliers in the dataset. The analysis of the
effect of noisy data on the estimation of new categorical priors is a topic for future work.

Experiments with calibrating the classifier confidence by temperature scaling suggest
that while temperature scaling performed well in calibrating the reliability of the predic-
tions as confidence scores, it impaired some statistical properties of the posterior estimate,
making it unsuitable for further processing in the prior estimation methods.



CHAPTER 7

Conclusions

The thesis addressed the problem of fine-grained image classification, in particular plant
and fungi species identification from images, ranging from canonical views in controlled
conditions – recognition of leaf scans or photos of leaves on white background and cropped
photos of tree bark – to unconstrained observations of plants and fungi “in the wild”, where
photos of arbitrary parts of the plant often appear with complex background and clutter in
the scene. The tasks, i.e. the variants of the identification problem, are interesting instances
of fine-grained classification because of the diverse appearance and complex structure of
the organisms, high intra-class variability and small inter-class differences, and potentially
a high number of classes (up to 10 000 in the LifeCLEF datasets).

The constrained tasks of leaf and bark classification in Chapter 2 were addressed with a
texture-recognition approach. The proposed method, Fast Features Invariant to Rotation
and Scale of Texture (Ffirst), achieved excellent results in bark and leaf classification: the
recognition rates were above 99% on most leaf datasets, suggesting that texture is a highly
discriminative feature for leaf recognition. Ffirst also achieved very competitive results on
standard texture classification datasets, achieving above 99% accuracy on the Brodatz32,
UIUCTex, UMD, CUReT and KTH-TIPS datasets. This almost perfect precision basically
retires most of the standard texture classification datasets. The method is computationally
efficient and fast: processing 200x200 px images takes about 0.05 seconds on a laptop
without using a GPU. Comparing Ffirst, which only processes gray-scale images, to other
state-of-the-art texture descriptors, we noticed a significant color bias on several standard
texture recognition datasets and proposed improvements to global color descriptors.

We adopted a deep learning approach for the more complex “in the wild” species recog-
nition. We tackled the problem of change in categorical priors, which is common to many
species recognition datasets: the class distribution on the training set is often long-tailed
and the proportion of individual classes in the training set and in the test set often dif-
fers. Chapter 3 interpreted the CNN classifiers trained by cross entropy minimization as
estimators of posterior probabilities and experimentally validate some of their properties.
For estimation of the new categorical priors, a Maximum Likelihood estimation approach
is compared with a proposed Maximum a Posteriori method, adding a hyper-prior favour-

115
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ing dense prior distributions. The results presented in Chapter 6 show that adding such
hyper-prior increases the reliability of the estimate and increases the classification accu-
racy in several fine-grained classification tasks. Our experiments suggest that calibration
of over-confident classifiers by temperature scaling impairs some statistical properties of
the posterior estimate, decreasing the performance of the prior estimation methods. Cal-
ibration of CNN predictions before estimaion of new categorical priors thus remains an
open problem.

Our contributions to “in the wild” species recognition challenges and benchmarks are
described in Chapter 4. The presented fine-grained recognition challenges entail interest-
ing sub-problems such as training with noisy labels and changes of the categorical priors
between training and test data. The results validate that with large amounts of training
data available, state-of-the-art Convolutional Neural Network architectures achieve the
best results in the complex tasks of “in the wild” species classification. Our results in the
international challenges, including the best results in ExpertLifeCLEF 2018, FGVCx Fungi
2018, FGVCx Flowers 2018 and PlantCLEF 2019 (post-challenge), confirm the benefits of
practices such as combining predictions from an ensemble of models, filtering potentially
noisy data, data augmentation, or using the moving averages of the trained variables.
Experiments comparing the accuracy of machine learning models with human experts in
plant identification suggest that the accuracy of our models reaches the human expert
accuracy in image-based species recognition. However, it is important to note, that unlike
the proposed model(s), human experts are mainly trained in active recognition – often
deciding based on active physical examination of the specimen – and would be able to ask
for missing information important for successful identification. Our models do not include
such reasoning mechanisms.

The relatively high accuracy of our models motivated the application of the competition-
winning method in a citizen-science project for fungi recognition, described in Chapter 5.
With the integration of our fungi recognition system into the web and mobile interfaces of
the Atlas of Danish Fungi, users get instant species recommendations. The feature of auto-
matic species recognition increased the involvement of users in biodiversity data collection.
This application shows the impact of our work on the species identification process, and
the potential impact on other research areas, which will benefit from the collected data.
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Šulc M., Matas J. ICCV Workshops, 2019.

Recognition of the Amazonian Flora by Inception Networks with Test-time Class
Prior Estimation,
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