
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 18, 2020

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Documents classification using machine learning methods

 Student: Artem Ustynov

 Supervisor: Ing. Zdeněk Buk, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of winter semester 2021/22

Instructions

The problem of searching in uncategorized documents is that users are often presented with results that
contain searched keywords, but are not relevant to the user.
The goal of this work is to extend the documents with tags based on their content. Each tag contains the
category as well as the confidence of the classification. The document can have multiple tags.

Tasks:
- Create a testing dataset.
- Compare basic "out of the box" Elasticsearch text classification tool with "Semaphore" and state of the art
techniques: LSTM, BERT (consider the ease of integration with current infrastructure, performance, and
accuracy).
- Make an argument for the best solution and implement it.

Minimum performance requirements:
- The accuracy of predictions should be at least 70 %.
- Evaluation time 5s per document 1MB of text.
- Time to train a model: under 48 hours.

The application should be written in Java Spring Boot as a callable service or in Python as a Jenkins job.

References

Will be provided by the supervisor.

Bachelor’s thesis

Documents classification using machine
learning methods

Artem Ustynov

Department of Informatics
Supervisor: Ing. Zdeněk Buk, Ph.D.

June 3, 2020

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-
profit purposes only, in any way that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on June 3, 2020

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Artem Ustynov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Ustynov, Artem. Documents classification using machine learning methods.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2020.

Abstrakt

Problém hledání v nekategorizovaných dokumentech spočívá v tom, že uživa-
telům jsou často prezentovány výsledky, které obsahují hledaná klíčová slova,
ale nejsou pro uživatele relevantní. Cílem této práce je rozšířit dokumenty o
štítky na základě obsahu dokumentů. K dosažení cíle bylo zvažováno něko-
lik přístupů: Elasticsearch, Semaphore, LSTM, BERT. Cílem práce je zjistit,
která technika má největší potenciál a poskytuje nejlepší výsledky. Všechny
uvedené přístupy byly testovány a vyhodnoceny. Bylo zjištěno, že modely
BERT fungovaly nejlépe a splnily všechny vstupní požadavky. Zlepšení kva-
lity klasifikace pomocí BERT bylo dosaženo použitím počátečního modelu a
manuální klasifikací malé sady dokumentů s nízkým skóre spolehlivosti.

Klíčová slova Elasticsearch, Semaphore, LSTM, BERT, klasifikace textu

v

Abstract

The problem of searching in uncategorized documents is that users are often
presented with results that contain searched keywords, but are not relevant to
the user. The goal of this work is to extend the documents with tags based on
their content. To accomplish this several approaches were considered: Elastic-
search, Semaphore, LSTM, BERT. The objective of this thesis is to determine
which technology has the most potential and provides the best results. All
listed approaches were tested and evaluated. It was found that BERT models
performed the best and satisfied all of the initial business requirements. Some
improvements in the quality of classification with BERT were achieved by
utilizing the initial model and manually classifying a small set of documents
with a low confidence score.

Keywords Elasticsearch, Semaphore, LSTM, BERT, text classification

vi

Contents

Introduction 1
Motivation and objectives . 1

Requirements . 2
Problem statement . 2

1 State-of-the-art 3

2 Analysis and design 5

3 Realisation 10
3.1 Creating an initial data set . 10
3.2 Elasticsearch . 11

3.2.1 How it works . 12
3.2.2 Implementation . 12
3.2.3 Results and conclusions 14

3.3 Semaphore . 16
3.3.1 How it works . 16
3.3.2 Rulebasses . 16
3.3.3 Implementation . 17
3.3.4 Results and conclusions 17

3.4 LSTM . 21
3.4.1 How it works . 21
3.4.2 Implementation . 23

3.4.2.1 Testing without text processing 24
3.4.2.2 Testing with text stemming 25
3.4.2.3 Testing with text stemming and truncating of

the data . 26
3.4.3 Results and conclusions 27

3.5 BERT . 29

vii

3.5.1 How does it work . 29
3.5.2 Implementation . 29
3.5.3 Results . 30

3.5.3.1 BERT-base . 30
3.5.3.2 BERT-large . 31
3.5.3.3 RoBERTa-base 32
3.5.3.4 RoBERTa-large 33
3.5.3.5 AlBERT-xxlarge-v2 33
3.5.3.6 distilBERT . 34

3.5.4 Conclusions . 34

4 Application 36

5 Improving data set 38
5.1 Using documents with high confidence score 38
5.2 Using documents with low confidence score 40
5.3 Results . 42

Conclusion 43
Overview . 43

Work done . 43
Results . 43
Future work . 44

A Acronyms 46

Bibliography 47

viii

List of Figures

2.1 Overview of current document flow infrastructure. 5
2.2 Example of python interface with Elasticsearch 6
2.3 Example of native Elasticsearch interface 7
2.4 Example of using ”keras” to train and save an LSTM model . . . 7
2.5 Python BERT example . 8
2.6 Example of using Semaphore Java API. 9

3.1 Distribution of tags between documents 10
3.2 Distribution of text between tags. 11
3.3 Elasticsearch classification infrastructure 11
3.4 Algorithmic description of ”more like this” query. (pseudocode) . . 12
3.5 Knee function visualised . 13
3.6 Elasticsearch classification results 14
3.7 Semaphore classification infrastructure 16
3.8 Example of RDF document [15]. 17
3.9 Semaphore classification results . 18
3.10 LSTM classification infrastructure 21
3.11 Single LSTM unit . 21
3.12 High level lstm overview [17] . 22
3.13 LSTM classification results. No text processing 24
3.14 LSTM classification results with text processing 25
3.15 LSTM classification results with text processing 26
3.16 BERT classification infrastructure 29
3.17 BERT-base model results . 30
3.18 BERT-large model results . 31
3.19 RoBERTa-base evaluation result 32
3.20 RoBERTa-large evaluation result 33
3.21 AlBERT-large evaluation result . 33
3.22 DistilBERT evaluation result . 34

ix

4.1 High confidence score evaluation 36

5.1 Result after automatic data set extension 38
5.2 Result after automatic extension by only one of the tags 39
5.3 Result after extension of data set on a new split 39
5.4 Manual review of documents with confidence score below 0.7. . . . 40
5.5 Result after manually extending data set. 40
5.6 Result after manual extension. Balanced data set. 41
5.7 Manually extended data set result review. 41

x

Introduction

Motivation and objectives
A medical company has a data source that can be used by people from different
departments to store any sort of text documents. Elasticsearch is utilized to
provide a search on terms from user’s queries, however, results are often not
relevant to the end-user, since this search engine returns documents based on
TF-IDF [1] score without taking into account the context of the document
itself.

To solve this problem idea of tagging documents based on their context
was proposed since data source is already mature and has more than five
million documents indexed already manual tagging is not an option.

Several approaches were considered:

• ElasticSearch – classification based on manually tagging some volume of
documents and then running ”more like this” query on them utilizing
engines capabilities of stemming and synonyms [2]

• Semaphore – a commercial tool that allows classifying documents based
on predefined ontology structure [3]

• LSTM – machine learning method that was shown to get a high score
in classification problem in sample data sets [4]

• BERT – attention based machine learning method that also showed good
results in classification problems [5]

Given the scope of the project and the fact that more tags can be requested
from users in the future, it is crucial to choose the approach that allows to
bootstrap data set: train model on relatively small data sets, and leverage
initial results to find more documents that would contain given tag and repeat
until the desired accuracy is achieved. To aid the creation of the initial data

1

Introduction

set users are expected to provide some highly specific queries that will help a
person to identify and find more documents that will serve as initial data to
train the model.

Requirements
Requirements that were agreed upon were the following:

• The accuracy of predictions should be at least 70

• Evaluation time 5s per document with 1MB of text.

• Time to train a model: under 48 hours.

Problem statement
The main sight of the thesis is to determine which approach will combine
the best performance of the end model with high accuracy of the results. To
provide users with the context of the documents. How to achieve this without
creating a massive original data set. And how to bootstrap from a relatively
small volume of documents.

2

Chapter 1
State-of-the-art

One way to determine the current state of the art for natural language pro-
cessing is to check what models are currently holding top positions in well-
established benchmarks. Currently, leading positions are occupied by Bert
and it’s modifications such as ”Albebert”, ”Roberta”, ”T5” [6].

Bert is an attention-based model trained on a large corpus of general text
and is later fine-tuned to perform various tasks such as text prediction, sum-
marization, and classification.

Elasticsearch is an open-source search and analytic solution that allows to
performs classification of documents with minimal effort. It requires very little
preparation time and relies on its ability to find similar documents, based on
indexed data. From preliminary research, it was found that it can perform
well enough to satisfy the requirements of the project [2].

LSTM is a special kind of recurrent neural network. LSTM models were
shown to perform well in classification tasks and are close in it’s performance
to BERT [7]. LSTM and BERT rely on different approaches when it comes
to natural language processing, LSTM is a recurrent model, while BERT is
an attention [8] based model. LSTM in our use case is justified since our task
requires a model, that can perform well from relatively small initial data set
and drawbacks such as having a problem with retaining information for long
periods of time or dealing with words that have a different meaning in different
context [9] might not constitute themselves on small scientific / technical data
set.

Semaphore is a commercial tool that takes a different approach to the
classification problem. It positions itself as ”Assisted intelligence” [3] that
relies on a semantic model, which describes the concepts, topics, subjects,
themes, and organizational structures that are unique to each use case. The
model is published and rule bases - a series of templates, which can be modified
to achieve specific classification outcomes - are generated [10]. This tool is
already available at our company and there exists an ontology model that

3

1. State-of-the-art

describes one of the data sources. Our use case would be determining if the
existing model will overlap with our data source, it should be evaluated if
creating a new ontology model is justified. Given that model is created by
experts in a field this approach can theoretically outperform other methods
of classification.

Even though Bert and it’s variants are currently leading in natural lan-
guage processing[6], other methods should not be disregarded, without a test.
They can be more efficient in speed or even provide better results in our
particular use case with a small original data set.

4

Chapter 2
Analysis and design

Currently, several data sources are utilized to provide users with search ca-
pabilities. One such data source contains over 5.5 million documents (over
100GB of data) and has no order to it. It contains documents from different
departments that are related to various topics.

To provide users with improved results several enhancers are utilized. Op-
tical image recognition enhancer – utilized to extract text from images at-
tached to documents. Author normalization enhancer – used to normalize
authors’ names and enable users to filter documents by author. The addi-
tional enhancer was proposed to classify data and tag documents based on
their context. See figure 2.1

Figure 2.1: Overview of current document flow infrastructure.

To have a direct comparison between different classification methods python
function ”train_test_split from sklearn.model_selection was applied to split
data set into train and test. Then true positive, false positive, true negative
and false-negative results were computed along with the Matthews correlation
coefficient (MCC).

5

2. Analysis and design

MCC was chosen since it is robust to changes and is easy to interpret [11].
MCC takes a value between -1 and 1, where 1 is a perfect model. Higher
Matthews correlation coefficient implies a better result. I chose MCC because
it takes into account all of the cells of the confusion matrix:

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(2.1)

Where: TP – true positive, FP – false positive, TN – true negative, FN – false
negative.

These metrics (TP, FP, TN, FN) will be used in all graphs related to
the performance of different models. The exact value of each metric will be
provided on top of the respected bar in every bar chart.

In all implementations, the same random seed was used, and the test size
was 20% of the total size of the data set. Split was performed with python
function ”train_test_split from sklearn.model_selection”.

Emphasis was made on finding a solution with the smallest amount of
false positives. Since tags are not distributed equally among all documents
and overall relatively high score might not be representative of a good model.
The high false-positive count would mean that the assigned tag is likely does
not belong there. In that case, it will present little value to the end-user.

Measuring the time of training and evaluation was done from the code
without using external programs.

Python was chosen as a language for all implementation, except Semaphore,
since its API is only available via Java.

To interface with Elasticsearch python package ”elasticsearch” was used.
Since it allows to index documents and perform ”more like this” query in a
form that is close to interacting with Elasticsearch directly. See figures 2.2
and 2.3

response = es.search(index=index, body={'query': {
"more_like_this": {

"fields": ["text","tags"],
"like": row["TEXT"],
"analyzer":"english",
"min_word_length":4,

}
}
}, _source = "tags")

Figure 2.2: Example of python interface with Elasticsearch

6

GET /_search
{

_source = "tags",
"query": {

"more_like_this" : {
"fields": ["text","tags"],
"like" : "text to find",
"analyzer":"english",
"min_word_length":4,

}
}

}

Figure 2.3: Example of native Elasticsearch interface

To work with LSTM models ”keras” package was used to set up the model
and train it, since it allows to create a new model with few simple lines of code,
and created models can be stored as binary files, and distributed between
different machines, without need to re-train the model. See figure 2.4

model = Sequential()
model.add(Embedding(n_most_common_words,
emb_dim, input_length=X.shape[1]))
model.add(SpatialDropout1D(0.2))
model.add(LSTM(256, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(16, activation='softmax'))
model.compile(optimizer='adam',

loss='categorical_crossentropy', metrics=['acc'])
history = model.fit(X_train, y_train, epochs=epochs,

batch_size=batch_size,
validation_split=0.2,
callbacks=[EarlyStopping

(monitor='val_loss',patience=4,
min_delta=0.001)])

model.save("path")

Figure 2.4: Example of using ”keras” to train and save an LSTM model

7

2. Analysis and design

To work with BERT originally ”pytorch” models were considered, but they
require a lot of pre-processing of the data and boilerplate code, so package
”simpletransformers” was used to interface with models. It enabled to write
very short code that is easy to read and maintain.

model = ClassificationModel(model_type, model_name,

use_cuda=False, args={
'output_dir': 'path',
'max_seq_length': 256,
'train_batch_size': 36,
'eval_batch_size': 28,
'num_train_epochs': 10,
"save_eval_checkpoints": False,
"save_model_every_epoch": False,
'save_steps': 0

})

Train the model
model.train_model(data_train)

Evaluate the model
this step also saves TP,TN,FP,FN values and
MCC score in eval_results.txt file
result, model_outputs, wrong_predictions =

model.eval_model(data_test)

Figure 2.5: Example of using ”simpletransformers” to train and save BERT
model

8

To interface Semaphore java API was used since it is the only supported
way.

ClassificationClient classificationClient
= new ClassificationClient();
ClassificationConfiguration classificationConfiguration
= new ClassificationConfiguration();
classificationConfiguration.setUrl(CloudConfiguration.csURL);
classificationConfiguration.setApiToken

(token.getAccess_token());

classificationClient.setClassificationConfiguration
(classificationConfiguration);
Result result = classificationClient
.getClassifiedDocument(("text").getBytes(), "title");

Figure 2.6: Example of using Semaphore Java API.

All tests were run on the same machine CentOS Linux release 7.8 CPU:
16 x Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00GHz with 128 GB of RAM.

9

Chapter 3
Realisation

3.1 Creating an initial data set
To create initial data set first of all target tags were established. To do so,
the corporate structure was utilized.

Then using google analytic I found documents that are most frequently
accessed by users and manually tagged 500 of them. Two major groups of
tags were established: technical and scientific. One document can contain
multiple tags from one of the groups.

Tags were not distributed evenly among the documents, so I will only
concentrate on those tags that have a bigger presence see figure 3.1.

Figure 3.1: Distribution of tags between documents

10

3.2. Elasticsearch

Distribution of characters in documents grouped by tags was not even as
well see figure 3.2.

Figure 3.2: Distribution of text between tags.

Creating a bigger better-balanced data set on documents without any
structure in original data would be a too time-consuming task. And since
new tags can be requested by users later selected classification method should
be able to ”bootstrap” itself from a relatively small initial set.

3.2 Elasticsearch
Elasticsearch is a distributed open-source search engine that has build-in func-
tionality – ”more_like_this” query. Elasticsearch enables users to apply stem-
ming and analysis [12] of the text. The default analyzer and stemmer were
used.

Figure 3.3: Elasticsearch classification infrastructure

11

3. Realisation

3.2.1 How it works
If one wants to find all documents similar to a given input document he can
run ”more like this” query. Obviously, the input document itself should be its
best match for that type of query. And the reason would be mostly, according
to Lucene scoring formula[1], due to the terms with the highest TF-IDF.
Therefore, the terms of the input document that have the highest TF-IDF are
good representatives of that document and could be used within a disjunctive
query (or OR) to retrieve similar documents. The MLT (more like this see
figure 3.4 query simply extracts the text from the input document, analyzes
it, usually using the same analyzer at the field, then selects the top K terms
with highest TF-IDF to form a disjunctive query of these terms.[13]

es - elasticsearch object
def mlt(input_text):

#transforms text to set of stemmed words
analyzed_text = es.analyze(input_text)
map {key=word, value = TF-IDF}
map_of_terms= {}
for word in analyzed_text:

#returns TF-IDF score
score = es.search(term=word, text=input_text)
map_of_terms[word]=score

#sort terms
sorted_terms=map_of_terms.sort_by("values")
get top k terms default value of K is 25

top_k_terms = sorted_terms[0:K]
#searches for all terms in es index
#using disjunctive query (OR)
#then returns all documents that match
#and their TF-IDF score.
result = es.search_all(top_k_terms)
return result

Figure 3.4: Algorithmic description of ”more like this” query. (pseudocode)

3.2.2 Implementation
To perform a classification I split documents from my data set with python
function ”train_test_split” using random seed – 41. After that, I index train
split, such that each document contained ”text” and ”tags” fields and run
”more_like_this” query that returns score of the document and tags that it
contained. For each tag, I summed up the score of the document, so as a result
I got a map where the key is tag and value represents combined score of all

12

https://lucene.apache.org/core/4_9_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

3.2. Elasticsearch

similar documents. After initial analysis of the results I found out that there
are multiple documents, where values are very different between themselves
and there are too many tags in a returned query, to determine what tags
should be kept I applied ”knee” 1function and only kept tags before pivoting
point see figure 3.5

Figure 3.5: Example of a knee function applied to a search result (3rd item –
pivoting point)

1Knee of a curve can be defined as a vertex of the graph where the curvature has a
maximum. Knee function returns index of the vertex at the point of maximum curvature.

13

3. Realisation

3.2.3 Results and conclusions
To measure the performance of the method Matthews correlation coefficient
(MCC) was used. Results that were acquired are high in false-positive count
that sometimes exceed true positive results see figure3.6.

Figure 3.6: Elasticsearch classification results

The time required to index 400 (4 MB of text) manually tagged to query
documents to be classified – 10 seconds. The time required to classify 100 (1
MB of text) documents – 7 seconds.

Since tags are not distributed evenly in the documents applying threshold
for did not yield in the improvement of the results and only cause an increase
in a false negative count.

Benefits of using Elasticsearch for classification:

• Fast document indexing

• Fast evaluation time

• Utilizes software that is already used in the project

• Does not require any additional libraries or software

Drawbacks of using Elasticsearch for classification:

14

3.2. Elasticsearch

• Even when using a large well-established data set only achieves 72% of
correct classification [2], and that is barely above the minimum require-
ment set by the business.

• Relies heavily on having very good ”pre-classified data” meaning an
equal amount of text distributed among tags

• Elasticsearch scores are difficult to interpret and they don’t scale. More
text in ”pre-classified data” often results in a higher score, even though
when manually reviewed relevancy is not better.

Overall, Elasticsearch as a classification engine does not provide good re-
sults when working from small data set with unevenly distributed text among
tags. For it to start producing results large data set is required and it does
not fit in our use case when new tags can be added by request without users
providing large data set to index beforehand.

Elasticsearch is better suited to tag new documents given a large corpus
of existing classified data with few tags to be identified. And that does not fit
into the described use case.

15

3. Realisation

3.3 Semaphore
Semaphore is a commercial ”assisted intelligence”[3] product that can classify
data according to predefined rules.

Figure 3.7: Semaphore classification infrastructure

3.3.1 How it works

Semaphore starts with a semantic model, that describes the concepts, top-
ics, subjects, themes and organizational structures that are unique to your
organization and use case. The model is published as rules - a series of tem-
plates, which can be modified to achieve specific classification outcomes - are
generated. These rule-based are combined with sophisticated classification
strategies to examine enterprise information. Precise and consistent meta-
data is applied. Organizations can leverage it to improve search and retrieval,
power information-intensive processes. Comply with governmental mandates,
secure sensitive information and aid e-discovery.[10]

3.3.2 Rulebasses

Semaphore expects rules to be generated beforehand by an expert in a field,
and later, uses them to perform classification of the documents. Rulebasses
are provided in the RDF format.

RDF is a standard model for data interchange on the Web. RDF (see
figure 3.8) has features that facilitate data merging even if the underlying
schemas differ, and it specifically supports the evolution of schemas over time
without requiring all the data consumers to be changed.

RDF extends the linking structure of the Web to use URIs to name the
relationship between things as well as the two ends of the link (this is usually
referred to as a “triple”). This simple model, allows structured and semi-
structured data to be mixed, exposed, and shared across different applications.

16

3.3. Semaphore

This linking structure forms a directed, labeled graph, where the edges
represent the named link between two resources, represented by the graph
nodes. This graph view is the easiest possible mental model for RDF and is
often used in easy-to-understand visual explanations.[14]

...
<?xml version="1.0"?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:cd="http://www.recshop.fake/cd#">

<rdf:Description
rdf:about="http://www.recshop.fake/cd/Empire Burlesque">
<cd:artist>Bob Dylan</cd:artist>
<cd:country>USA</cd:country>
<cd:company>Columbia</cd:company>
<cd:price>10.90</cd:price>
<cd:year>1985</cd:year>

</rdf:Description>

</rdf:RDF>
...

Figure 3.8: Example of RDF document [15].

3.3.3 Implementation

Since creating new rulebase requires expert knowledge in a field, it was decided
to use the ontology model that already exists in a company and is applied to
a different data source.

To match tags that are defined for our use case it was decided to cre-
ate a mapping from final categories of the existing model to tags from our
classification model.

To run classification task Semaphore provides Java API that allows users
to send the text from a document and returns a list of pairs tag - confidence
score. To determine what tags should be kept ”knee” function was applied,
similar to usage with Elasticsearch.

3.3.4 Results and conclusions

To measure the performance of the method Matthews correlation coefficient
was used [11]. Results that were acquired are high in false positive and false

17

3. Realisation

count that indicates that the model that is currently being applied to a differ-
ent organized data source does not translate well enough to different data set.
The high amount of false-negative indicates that there are documents that do
not fit into the already defined category. The high amount of false positives
indicates that keywords that are being used in the different data sources as
a differentiating factor occurs in current documents, not following the logic
that was established earlier.See figure 3.9.

Figure 3.9: Semaphore classification results

The time required to upload the ontology model to a server - 5 seconds
The time required to classify 100 (1 MB of text) documents – 110 seconds.

18

3.3. Semaphore

Benefits of using Semaphore for classification:

• There is no need to have training data, so evaluation can be performed on
the whole data set. However, to have a direct comparison with different
models, I classified the same data as with other approaches.

• Easy setup

• Computational load is redirected from local machine to servers that are
maintained by service provider

• Score system that is easy to interpret

• Existing ontology model that somewhat overlaps with our current task

Drawbacks of using Semaphore for classification:

• Ontology has to be created manually by respected fields professionals

• Only one instance of the product is available, which means it has to
be shared with other projects, and rules that are applied within one
rulebase can be conflicting for different teams.

• Evaluation bottlenecked by internet speed.

• Has a poor understanding of the document’s context if keyword drug
name is repeated multiple times, f.e. in some table that keyword will
trigger system to classify the document as being scientific, however, it
can contain technical information in the rest the of the columns.

• It doesn’t learn with time, meaning that ontologies have to be manually
edited to improve results. Implementation of a user feedback loop will
still require manual work from the person that developed ontology.

• Hard to add new tags: if some group of users would want to add a new
tag they would have to edit current ontology. Not a lot of people have
experience with that and experimenting is rather hard, because there is
only one instance of semaphore available.

• Distance between related terms has to be set manually as a number, and
the only way to test if it results in improvement is to run classification
manually and see if results are better. Given that there can be thousands
of parameters doing this work manually to achieve optimal performance
can take unjustifiably large amounts of time.

• Black-box approach to classification. Users can only provide ontology
rest of the evaluation is hidden from control.

19

3. Realisation

• Documents have to be sent via the internet outside of the company’s
network and even though the Semaphore product page claims to be
secure [10] that is an additional attack vector for a potential hacker and
unnecessary risk for our company to trust to a third party service.

Overall, Semaphore does not fit into our use case. Since the goal of our
service is to provide high level-tags, creating an ontology for that purpose
would be a job for an expert in a field and that is not what we have at our
disposal.

Given a large list of drawbacks, I can’t justify recommending purchasing
another instance of Semaphore. Or spending time to create ontology specific
to our use case, since it will not scale well. When new tags will be requested,
an expert who can create an ontology for that specific tag without breaking
any existing rules will be required. Finding such an expert is a difficult task.

Semaphore would better fit to assign low-level tags to documents that have
a similar structure, yet there exists differentiating logic known to some expert
and this logic can be expressed in RDF format.

20

3.4. LSTM

3.4 LSTM
LSTM is a machine learning model that allows to work with word tokens to
predict the category of the document.

Figure 3.10: LSTM classification infrastructure

3.4.1 How it works
Long Short-term memory is a recurrent neural network that can learn to follow
time intervals in excess of 1000 steps, without loss of short time capabilities.
This is achieved by an efficient, gradient-based algorithm for an architecture
enforcing constant (thus neither exploding nor vanishing) error flow through
internal states of special units (provided the gradient computation is truncated
at certain architecture-specific points this does not affect long-term error flow
though).[16] See overview of a single LSTM unit 3.11

Figure 3.11: Single LSTM unit

21

3. Realisation

While processing text each word is converted to vector with a given amount
of dimensions. Then words are fed into LSTM that produces LSTM represen-
tation. And after that final layer makes decision about the document’s class.
See figure 3.12

Figure 3.12: High level lstm overview [17]

22

3.4. LSTM

3.4.2 Implementation

Original approach of recognizing multiple tags was tested, however final results
were extremely poor with MCC score close to zero, so classification using
multiple classifiers was implemented.

Multiple binary classifiers will allow adding new tags to documents, with-
out need to retrain the big model. Also, that allows to share models and to
train specific model independently.

Text tokenization was performed with python library ”keras”. No restric-
tion on the number of recognized tokens was imposed.

Further parameters:

• Number of epochs – 20

• Batch size – 40

• Embedded dimensions – 512

• Dropout – 0.1

• Recurrent dropout – 0.1

• Optimizer – Adam

• LSTM layers – 512

• Loss function – categorical cross entropy

• Early stopping

– patience – 4

– min delta – 0.001

These parameters were tweaked multiple times during the implementation
and testing process. Presented configuration resulted in the best performance
on inspected tags. Since the training and evaluating process is very time-
consuming, I started from values that were 4 times smaller and increased them
by a factor of two, except dropout and min delta that I was decreasing at the
same rate. Respectively larger and smaller values were also tested. However,
the results were worse than presented and will not be included here, since they
don’t present much value. Worsening of the results can be explained by model
overfitting on train data. Early stopping was applied after 10th iteration as
opposed to 18th before that.

23

3. Realisation

3.4.2.1 Testing without text processing

Originally no modification to text was made. It was tokenized as is without
any processing. Since original documents contain a lot of obscure symbols and
numbers due to them often being optically recognized or converted from some
data format to text automatically.

Results that were received were barely satisfactory. See figure 3.13.

Figure 3.13: LSTM classification results. No text processing

24

3.4. LSTM

3.4.2.2 Testing with text stemming

During the process of tokenization, all unique words are encoded as numbers
– token. For example ”hello the world world#$##” can be tokenized as ”1 2
3 4”. To improve upon previous results, Elasticsearch capabilities of stemming
words and removing stop-words [18] (list of all default Elasticsearch English
stop-words [19]) were applied, that allowed to avoid all obscure characters as
well as to recognize different variations of the same word as a single token.
For example ”It is commonly recognized that the metabolic reaction” was
transferred to ”commonli recogn metabol reaction” and words like ”do, did,
done” would be transformed into ”do”. After applying Elasticsearch word-
stemming string from the previous example will be transformed from ”hello
the world world#$##” into ”hello world world” and subsequently tokenized
as ”1 2 2”. From this example, we can observe that after applying word-
stemming we reduce our vocabulary size as well as remove artifacts of text
recognition and preserve better relationship between words by recognizing
different variations of the same word as one token.

Since Elasticsearch can be run locally, there was no bottleneck from using
the internet.

After stemming text with Elasticsearch new results showed some improve-
ment in the MCC score. Except for manual, however the amount of false
positives decreased there as well so, that is not a total downgrade. See fig-
ure3.14.

Figure 3.14: LSTM classification results with text processing

25

3. Realisation

3.4.2.3 Testing with text stemming and truncating of the data

Trying to combat false positive and false negative results I tried to even out
the number of documents representing each tag as well as the amount of text
between those tags. I made it so that there is not more than 1,5 times more of
a tag present than tag missing. I did it with a combination of text stemming
with Elasticsearch.

However, this did not improve my results.See figure 3.15.

Figure 3.15: LSTM classification results with text processing

26

3.4. LSTM

3.4.3 Results and conclusions
Results with stemming from Elasticsearch showed an improvement almost
entirely across the board. See figure 3.14

Time to train model – 1,5 hrs per model. However, this should be done
only once.

Time to evaluate 100 documents (1MB of text) – 110 seconds. To test if
the speed of evaluation depends on the number of documents or the amount
of text in a single document large file with 1.2MB of text was created and
evaluated. The process took up to 1.4 seconds, indicating that the amount
of text in a single document does not affect the speed of evaluation as much
as the number of documents themselves. The speed of evaluation is within
requirements defined for this task.

Benefits of using LSTM for classification:

• Mobility each classifier can be saved copied and distributed across mul-
tiple machines.

• Modularity since each classifier makes an independent decision it can be
improved without affecting others. Hypothetical scenario when this can
be very handy - Group of people G wants to add a new tag T and they
can provide a set of documents that contain information relative to that
tag and set that doesn’t train a new model, in that case, would not be
a difficult task, and that tag can be added on as many data sources as
they wish, as long as the quality of original data is guaranteed the result
can be very good [20]

• Multiple parameters that can be fine-tuned for each separate model to
produce the best result, without affecting other models. This would be
very hard to do with approaches such as Elasticsearch or Semaphore.

• If users, that are experts in researched fields would be given an option to
tag documents, from within a search app, then with time as train data
set grows accuracy of each classifier will be increased, something that is
missing with Semaphore.

• Easy to interpret confidence score, unlike Elasticsearch score provided
by LSTM is a number between 0 and 1 that is easy to understand and
process.

Drawbacks of using LSTM for classification:

• Time to train the model (about an 60 min) and tags assigning times are
inferior to Elasticsearch as well as ease of implementation.

• Multiple parameters that can be almost endlessly fine-tuned to opti-
mize the result. So desired performance can be achieved without too

27

3. Realisation

much trouble, however, achieving optimal performance is a very time
and computationally consuming process.

Overall, LSTM produced a good result. Slower evaluation process and
training time as well as more complex implementation should not be a big
concern since all those processes will not be run continuously. While benefits
that users will get from a better search result will outweigh the initial ”sunk”
cost of LSTM.

From my unsuccessful experiment with truncating data, it is clear that the
increase in the number of documents benefits the accuracy of predictions by
a lot. Thus if the search app will give a way for users to tag documents, then
the accuracy of predictions will increase rapidly.

28

3.5. BERT

3.5 BERT
Bert is a language representation model. BERT is designed to pre-train deep
bidirectional representations from unlabeled text by jointly conditioning on
both left and right context in all layers. As a result, the pre-trained BERT
model can be fine-tuned with just one additional output layer to create state-
of-the-art models for a wide range of tasks, such as question answering and
language inference, without substantial task-specific architecture modifica-
tions.[21]

Figure 3.16: BERT classification infrastructure

3.5.1 How does it work
Bert is pre-trained on a large corpus of data such as Wikipedia-dump or IMDB
movie review database. There are several models available online. Such as
BERT-base BERT-large – original models from Google, Roberta base and
large – models from Facebook, Albert, distil-BERT, and many other models
from different teams. Each model has a different amount of hidden layers and
total parameters, however, they are all pre-trained on some large corpus of
data and can perform different natural language processing tasks based on the
final layer and fine-tuning applied to them.

3.5.2 Implementation
To interface with BERT models I used python library ”simpletransformers”
that allows to fine-tune BERT and perform an evaluation of the results mea-
sured in MCC.

Since BERT by default is using WordPiece embedding [21], the application
of Elasticsearch for word stemming was not necessary. By default words will
be transformed from for example ”doing” to ”do+##ing”

Parameters used for BERT model:

• max sequence length – 256

29

3. Realisation

• train batch size – 36

• evaluation batch size – 28

• number of train epochs – 10

Increasing max sequence length and batch size caused a python kernel
failure on my machine. I do not include experiments with smaller parameters
since they yielded results that were worse across the board and thus have little
value.

3.5.3 Results
In this section, I will present the results that I got from using different initial
BERT models.

3.5.3.1 BERT-base

Using the standard version from Google yielded good results that were better
than previously tested methods. See figure3.17

Figure 3.17: BERT-base model results

Time to fine-tune one model – about 3 hours.

30

3.5. BERT

Time to evaluate 100 documents (1MB of text) – 50 seconds. To test if
the evaluation time depends on the amount of text in a single document single
entry with 1.2MB of text was created. Evaluation time for that document was
0.94 seconds which is within specified requirements.

3.5.3.2 BERT-large

To test if a bigger model will result in better results I tried running BERT-
large, however, results did not improve, in the contrary amount of false-
positive increased across the board. See figure 3.18 Time required to fine-tune

Figure 3.18: BERT-large model results

a single model is up to 7 hours.
Time to evaluate 100 documents (1MB of text) – 70 seconds. To test if

the evaluation time depends on the amount of text in a single document single
entry with 1.2MB of text was created. Evaluation time for that document was
1.12 seconds which is within specified requirements.

31

3. Realisation

3.5.3.3 RoBERTa-base

RoBERTa is a model from Facebook that uses 120 million total parameters
as opposed to 110 million in BERT-base and has a higher place in GLUE
benchmark [6] Since fine-tuning of the model is a very time-consuming process
I will only work with ”technical” tag, since it has the best representation in
the original data set. See figure 3.19

Figure 3.19: RoBERTa-base evaluation result

Time to train the model – 2.5 hours.
Time to evaluate – 53 seconds.

32

3.5. BERT

3.5.3.4 RoBERTa-large

RoBERTa-large is a model from Facebook that uses 755 million total parame-
ters as opposed to 110 million in BERT-base and has a higher place in GLUE
benchmark [6]

Figure 3.20: RoBERTa-large evaluation result

3.5.3.5 AlBERT-xxlarge-v2

Albert model is leading at glue benchmark [6] and did recognize the most of
documents with tags, however also produced a lot of false positives.

Figure 3.21: AlBERT-large evaluation result

Time to train model – 6 hours. Time to evaluate – 61 seconds.

33

3. Realisation

3.5.3.6 distilBERT

Since smaller models seem to perform better I decided to test smaller model
yet – distilBERT, with 60 million parameters as opposed to 110 million in
BERT-base.

Figure 3.22: DistilBERT evaluation result

Time to train model – 2 hours. Time to evaluate – 61 seconds.

3.5.4 Conclusions
BERT-base produces the best results among other BERT models and overall.
The most interesting results are for ”manuals” and ”documentation” tags.
Even though their representation in the original data set is not very high 110
and 145 respectively out of 500. Even though LSTM with Elasticsearch did
outperform BERT in ”documentation” tag figure 3.14 BERT was better in
other categories and is more consistent. Also, there is a significant improve-
ment with more documents even a slight increase to 180 scientific tags results
in a better performance figure3.17 . From my testing of different BERT mod-
els, I observed that larger models tend to have more false-positive results figure
3.21 figure 3.18 and smaller model also didn’t perform very well figure 3.22.
Both RoBERTa and BERT-base had around 120 million parameters and both
were rather close in the final result figure 3.17 figure 3.19, so models of that
size seem to perform the best on a small data set in our particular use case.

Benefits of using BERT for classification:

• Results that are better than in other approaches.

• Modularity – allows to assign tags independently from each other.

• Easy to interpret confidence score.

34

3.5. BERT

• Does not require the use of external services, meaning that data does
not leave the corporate network.

• Relatively fast evaluation time. Performed better than LSTM, while
having a better score.

Drawbacks of using BERT for classification:

• Time to fine-tune a single model is very large. Depending on the model
can take 6 or more hours.

• Computationally heavy – consumes 50-60 GB of ram when using ”large
models” and 20-30 GB when using smaller models.

• Resulting models are 400-900 MB each.

Overall all drawbacks can be looked at as ”sunk” costs, so a longer ap-
proach is utilized, less important initial time investment is. So I think that
BERT suits our use case the best.

35

Chapter 4
Application

In this chapter, I will answer questions of how good predictions are after
training on the initial data set.

BERT model evaluates the text and returns a logit values for example
[-3,0.5], I applied inverse function – expit and treated those as a confidence
score.

I set a minimal threshold of reporting a tag to 0.9 and tested ”technical”
tag. Not all documents that were tested contained text. See figure 4.1

Figure 4.1: Result of manual review of documents with over 90% confidence
score

36

Among 210 documents that did not pass the threshold of 90%, 150 were
marked ”technical”, and 110 were marked correctly. That is still 73% accuracy
which is above specified requirement. However, I think that a threshold of
90% confidence score should be applied, since it will provide a better user
experience since it is better to have no tag than a misleading one.

37

Chapter 5
Improving data set

In this chapter, I will talk about approaches that I took to improve the original
data set and about the results that I got out of it.

5.1 Using documents with high confidence score
I tried to improve the results by utilizing documents that had a high confidence
score to improve evaluation results. For that, I kept the test data set without
changes and enhanced train data set with documents that were marked by the
model as those that had more than 90% confidence.

At first, I tried to increase the number of documents that did contain
”technical” tag as well as those that didn’t. There was no improvement in
results. See figure 5.1

Figure 5.1: Result with train data set that was extended by technical and non
technical documents automatically.

38

5.1. Using documents with high confidence score

Then I extended the original data set by only documents that did not
contain ”technical” tag thus making data set evenly contain ”technical” and
non-technical documents. There was a significant increase in true positive
documents and false-positive documents. See figure 5.2

Figure 5.2: Results with train data set that was extended by non technical
documents automatically.

I also tested the performance of the model on a new test set, for that, I
added documents to the original data set and performed a new train-test split.
See figure 5.3

Figure 5.3: Result with data set that was extended by technical and non
technical documents automatically. New train test split.

39

5. Improving data set

5.2 Using documents with low confidence score
To improve the original data set I run classification on random documents
from the data source. I saved documents with a low confidence score (lower
than 0.7) after that I manually tagged them.See figure 5.4

Figure 5.4: Manual review of documents with confidence score below 0.7.

I added manually tagged documents to train data set and evaluated results.
See figure 5.5

Figure 5.5: Results after adding manually reviewed documents with low con-
fidence score.

40

5.2. Using documents with low confidence score

Then I reduced amount of documents that contained tag ”technical” and
added only documents that didn’t. See figure 5.6

Figure 5.6: Results after adding manually reviewed documents with low
confidence score that did not contain a tag, making data set balanced.

I tested how this model will perform evaluating the same random docu-
ments from the data source. See figure 5.7

Figure 5.7: Result of manual review of documents with over 90% confidence
score.

41

5. Improving data set

A lot more documents were marked with high confidence score 83% com-
pared to previous 43% (figure 4.1). The resulting accuracy is slightly lower.
Five out of seven documents that were marked incorrectly contained some bi-
nary data in their text field, since technical documents are often represented
with tables odd characters probably caused the model to misinterpret the text.
To avoid these documents that do not contain words from the English dic-
tionary should not be sent for evaluation, removing all non-alpha characters
from the text should help to resolve this issue.

5.3 Results
Manually reviewing documents with a low confidence score and fixing errors
produced by automatic evaluation resulted in a better MCC score as well as an
increasing amount of documents with a high confidence score. This approach
requires more manual labor than utilizing documents with a high confidence
score but produces better results.

Reviewing documents with a low score is more productive than reviewing
random documents since it allows to avoid documents that the model is capa-
ble of correctly identifying from the initial set and concentrate on less typical
documents providing a bigger variety and as the result better model.

42

Conclusion

Overview

Automatic text classification is the subject of this thesis. Text classification
is an important field of research since it allows to provide users with insight
into document context, filter unwanted results and speed up the search for an
answer, by reducing the volume of documents that have to be considered.

In our particular use case (classification of large data source that con-
tains unstructured documents of different types) usage of several different ap-
proaches was plausible to compare results of different classification techniques
Matthews correlation coefficient (MCC) was used.

Finding an approach that can both be fast enough and be able to work
from a small initial data set was crucial.

Work done
As an initial step data set of manually classified documents was created.

Elasticsearch, Semaphore, LSTM, BERT classifications were implemented
and tested. For all approaches, different combinations of parameters were
tested and those that yielded the best results are presented in this work.

After establishing an approach that allows to perform the best classifica-
tion several different methods were tested to improve the initial data set. Such
as - utilizing the initial model to find documents with a high confidence score
of a tag being present in an evaluated text. Finding documents with a high
confidence score of tag not being present. Finding documents with confidence
scores close to 0.5 and manually classifying them.

Results
Some methods were found to be completely impractical in their implementa-
tion since they would require a team of experts to produce complicated rule
bases that are hard to maintain and extend upon chapter 3.3. The other

43

Conclusion

was easy and fast to implement and provided very fast evaluation with the
minimal new infrastructure required chapter 3.2, but produced results inferior
to other approaches. Both machine learning models produced decent results
with over 80% accuracy and MCC score above 0.6 for well-represented tags
figure 3.14 figure 3.17. BERT models were found to be slightly better and
this result aligns with the glue benchmark [6]. BERT models take more time
to train and produce better results. It was found that large BERT models
did not perform better with small data set and were prone to produce false
positive results.

Overall BERT approach produced the most accurate results as well as
satisfied all original use case requirements. And will be implemented in pro-
duction.

The manual classification of documents with a low confidence score was
found to be the most productive one. Classification of a small additional set
of documents yielded in the improvement of the model both in total accuracy
and in assigning a higher confidence score to correctly classified results. For
overview of all classification methods see table 5.1.

Future work
More research can be done in the area of bootstrapping of the initial data
set finding new approaches and determining the minimal amount of manually
classified documents required, before producing valuable results.

Another topic for further investigation would be creating own BERT pre-
trained model based on corporate documents and using it for classification.

44

M
et

ho
d

Ta
g

te
ch

ni
ca

l
sc

ie
nt

ifi
c

do
cu

m
en

ta
tio

n
m

an
ua

ls

El
as

tic
se

ar
ch

0.
39

3
0.

41
9

0.
35

6
0.

40
6

Se
m

ap
ho

re
0.

29
3

0.
30

8
0.

17
4

0.
29

2
LS

T
M

w
ith

ou
t

te
xt

st
em

m
in

g
0.

53
4

0.
41

2
0.

19
3

0.
21

6
LS

T
M

w
ith

te
xt

st
em

m
in

g
0.

60
3

0.
57

6
0.

62
8

0.
02

6
LS

T
M

tr
un

ca
te

d
0.

11
9

0.
11

3
0.

11
6

-0
.0

52
BE

RT
-b

as
e

0.
62

0.
62

0.
42

8
0.

53
9

BE
RT

-la
rg

e
0.

47
9

0.
56

2
0.

39
9

0.
52

5
R

oB
ER

Ta
-b

as
e

0.
60

3
–

–
–

R
oB

ER
Ta

-la
rg

e
0.

51
3

–
–

–
A

lB
ER

T
-x

xl
ar

ge
-v

2
0.

21
2

–
–

–
di

st
ilB

ER
T

0.
44

1
–

–
–

BE
RT

-b
as

e
ex

te
nd

ed
au

to
m

at
ic

al
ly

0.
43

5
–

–
–

BE
RT

-b
as

e
ex

te
nd

ed
au

to
m

at
ic

al
ly

ba
la

nc
ed

0.
44

–
–

–
BE

RT
-b

as
e

ex
te

nd
ed

au
to

m
at

ic
al

ly
ne

w
sp

lit
0.

44
–

–
–

BE
RT

-b
as

e
af

te
r

ex
te

nd
in

g
da

ta
se

t
m

an
ua

lly
0.

64
4

–
–

–
BE

RT
-b

as
e

af
te

r
ex

te
nd

in
g

da
ta

se
t

m
an

ua
lly

ba
la

nc
ed

0.
68

1
–

–
–

Ta
bl

e
5.

1:
M

C
C

sc
or

es
of

di
ffe

re
nt

ap
pr

oa
ch

es

45

Appendix A
Acronyms

BERT Bidirectional Encoder Representations from Transformers

LSTM Long short term memory

RDF Resource Description Framework

MCC Matthews correlation coefficient

MLT More like this

TP true positive.

FP false positive.

TN true negative.

FN false negative.

46

Bibliography

1. 2014. Available also from: https://lucene.apache.org/core/4_9_0/
core/org/apache/lucene/search/similarities/TFIDFSimilarity.
html.

2. VOLA, Saskia. Text Classification made easy with Elasticsearch. 2020.
Available also from: https://www.elastic.co/blog/text-classific
ation-made-easy-with-elasticsearch.

3. AI. Available also from: https://www.smartlogic.com/trends/AI.
4. JANNESKLAAS. 19 - LSTM for Email classification. Kaggle, 2018.

Available also from: https : / / www . kaggle . com / jannesklaas / 19 -
lstm-for-email-classification.

5. TRIVEDI, Kaushal. Multi-label Text Classification using BERT – The
Mighty Transformer. HuggingFace, 2019. Available also from: https:
//medium.com/huggingface/multi-label-text-classification-
using-bert-the-mighty-transformer-69714fa3fb3d.

6. GLUE Benchmark. Available also from: https://gluebenchmark.com/
leaderboard.

7. KEITAKURITA, Author. Paper Dissected: ”BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding” Explained. 2019.
Available also from: https://mlexplained.com/2019/01/07/paper-
dissected-bert-pre-training-of-deep-bidirectional-transform
ers-for-language-understanding-explained/.

8. VASWANI, Ashish; SHAZEER, Noam; PARMAR, Niki; USZKOREIT,
Jakob; JONES, Llion; GOMEZ, Aidan N.; KAISER, Lukasz; POLO-
SUKHIN, Illia. Attention Is All You Need. CoRR. 2017, vol. abs/1706.03762.
Available from arXiv: 1706.03762.

47

https://lucene.apache.org/core/4_9_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://lucene.apache.org/core/4_9_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://lucene.apache.org/core/4_9_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://www.elastic.co/blog/text-classification-made-easy-with-elasticsearch
https://www.elastic.co/blog/text-classification-made-easy-with-elasticsearch
https://www.smartlogic.com/trends/AI
https://www.kaggle.com/jannesklaas/19-lstm-for-email-classification
https://www.kaggle.com/jannesklaas/19-lstm-for-email-classification
https://medium.com/huggingface/multi-label-text-classification-using-bert-the-mighty-transformer-69714fa3fb3d
https://medium.com/huggingface/multi-label-text-classification-using-bert-the-mighty-transformer-69714fa3fb3d
https://medium.com/huggingface/multi-label-text-classification-using-bert-the-mighty-transformer-69714fa3fb3d
https://gluebenchmark.com/leaderboard
https://gluebenchmark.com/leaderboard
https://mlexplained.com/2019/01/07/paper-dissected-bert-pre-training-of-deep-bidirectional-transformers-for-language-understanding-explained/
https://mlexplained.com/2019/01/07/paper-dissected-bert-pre-training-of-deep-bidirectional-transformers-for-language-understanding-explained/
https://mlexplained.com/2019/01/07/paper-dissected-bert-pre-training-of-deep-bidirectional-transformers-for-language-understanding-explained/
https://arxiv.org/abs/1706.03762

Bibliography

9. KEITAKURITA, Author. Paper Dissected: ”Attention is All You Need”
Explained. 2019. Available also from: http://mlexplained.com/2017/
12/29/attention-is-all-you-need-explained/.

10. Semaphore Classification Provides Superior Results. Available also from:
https://www.smartlogic.com/news- and- blog/entry/content-
classification-for-superior-results.

11. The Best Metric to Measure Accuracy of Classification Models. Available
also from: https://www.kdnuggets.com/2016/12/best- metric-
measure-accuracy-classification-models.html/2.

12. Built-in analyzer reference: Elasticsearch Reference [7.7]. Available also
from: https://www.elastic.co/guide/en/elasticsearch/referenc
e/current/analysis-analyzers.html.

13. More like this query: Elasticsearch Reference [7.6]. Available also from:
https://www.elastic.co/guide/en/elasticsearch/reference/7.
6/query-dsl-mlt-query.html.

14. RDF. Available also from: https://www.w3.org/RDF/.
15. Available also from: https://www.w3schools.com/xml/xml_rdf.asp.
16. HOCHREITER, Sepp; SCHMIDHUBER, Jurgen. bioinf. 1997. Available

also from: https://www.bioinf.jku.at/publications/older/2604.
pdf.

17. VO, Quan-Hoang; NGUYEN, Huy-Tien; LE, Bac; NGUYEN, Minh-Le.
Multi-channel LSTM-CNN model for Vietnamese sentiment analysis. In:
2017, pp. 24–29. Available from DOI: 10.1109/KSE.2017.8119429.

18. Available also from: https://nlp.stanford.edu/IR- book/html/
htmledition/dropping-common-terms-stop-words-1.html.

19. APACHE. apache/lucene-solr. Available also from: https://github.
com/apache/lucene-solr/blob/branch_7x/lucene/core/src/java/
org/apache/lucene/analysis/standard/StandardAnalyzer.java#
L47-L53.

20. NGYPTR. Multi class classification with LSTM. Kaggle, 2018. Available
also from: https://www.kaggle.com/ngyptr/multi-class-classifi
cation-with-lstm/data.

21. DEVLIN, Jacob; CHANG, Ming-Wei; LEE, Kenton; TOUTANOVA,
Kristina. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. CoRR. 2018, vol. abs/1810.04805. Available
from arXiv: 1810.04805.

48

http://mlexplained.com/2017/12/29/attention-is-all-you-need-explained/
http://mlexplained.com/2017/12/29/attention-is-all-you-need-explained/
https://www.smartlogic.com/news-and-blog/entry/content-classification-for-superior-results
https://www.smartlogic.com/news-and-blog/entry/content-classification-for-superior-results
https://www.kdnuggets.com/2016/12/best-metric-measure-accuracy-classification-models.html/2
https://www.kdnuggets.com/2016/12/best-metric-measure-accuracy-classification-models.html/2
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.6/query-dsl-mlt-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.6/query-dsl-mlt-query.html
https://www.w3.org/RDF/
https://www.w3schools.com/xml/xml_rdf.asp
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://doi.org/10.1109/KSE.2017.8119429
https://nlp.stanford.edu/IR-book/html/htmledition/dropping-common-terms-stop-words-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/dropping-common-terms-stop-words-1.html
https://github.com/apache/lucene-solr/blob/branch_7x/lucene/core/src/java/org/apache/lucene/analysis/standard/StandardAnalyzer.java#L47-L53
https://github.com/apache/lucene-solr/blob/branch_7x/lucene/core/src/java/org/apache/lucene/analysis/standard/StandardAnalyzer.java#L47-L53
https://github.com/apache/lucene-solr/blob/branch_7x/lucene/core/src/java/org/apache/lucene/analysis/standard/StandardAnalyzer.java#L47-L53
https://github.com/apache/lucene-solr/blob/branch_7x/lucene/core/src/java/org/apache/lucene/analysis/standard/StandardAnalyzer.java#L47-L53
https://www.kaggle.com/ngyptr/multi-class-classification-with-lstm/data
https://www.kaggle.com/ngyptr/multi-class-classification-with-lstm/data
https://arxiv.org/abs/1810.04805

	Introduction
	Motivation and objectives
	Requirements
	Problem statement

	State-of-the-art
	Analysis and design
	Realisation
	Creating an initial data set
	Elasticsearch
	How it works
	Implementation
	Results and conclusions

	Semaphore
	How it works
	Rulebasses
	Implementation
	Results and conclusions

	LSTM
	How it works
	Implementation
	Testing without text processing
	Testing with text stemming
	Testing with text stemming and truncating of the data

	Results and conclusions

	BERT
	How does it work
	Implementation
	Results
	BERT-base
	BERT-large
	RoBERTa-base
	RoBERTa-large
	AlBERT-xxlarge-v2
	distilBERT

	Conclusions

	Application
	Improving data set
	Using documents with high confidence score
	Using documents with low confidence score
	Results

	Conclusion
	Overview
	Work done
	Results
	Future work

	Acronyms
	Bibliography

