
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 1, 2020

ASSIGNMENT OF BACHELOR’S THESIS
 Title: An actor model implementation for the OCaml programming language

 Student: Narek Vardanjan

 Supervisor: Ing. Filip Křikava, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

In the actor model, an actor is the fundamental unit of computation that encapsulates state and behavior,
communicating exclusively by exchanging messages. Because the state is completely encapsulated, invisible
to the outside world, the use of this model has been popular for building highly concurrent applications.

The goal of this thesis is to design, implement and test an actor system for OCaml. The system should
provide an API for creating a network of actors and a runtime system facilitating their communication and
orchestration. Actors will be organized in a hierarchy allowing actor supervision and monitoring. The
messaging system shall provide an at-most-once delivery guarantee. Actors should use location
transparency allowing them to communicate across different runtimes. The implementation should be
lightweight focused on low actor memory footprint and high message throughput. The API should leverage
OCaml language features such as pattern matching and immutable values.

References

Will be provided by the supervisor.

Bachelor’s thesis

An actor model implementation for the
OCaml programming language

Narek Vardanjan

Department of Software engineering
Supervisor: Ing. Filip Křikava, Ph.D.

June 4, 2020

Acknowledgements

I would like to thank Filip Křikava for seamless communication and leadership
of the thesis. To my family for their emotional support and especially to my
grandfather Sasha Vardanyan for his unending believe in me.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on June 4, 2020

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Narek Vardanjan. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Vardanjan, Narek. An actor model implementation for the OCaml program-
ming language. Bachelor’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2020. Also available from: 〈http://
github.com/vnarek/jude〉.

http://github.com/vnarek/jude
http://github.com/vnarek/jude

Abstract

The actor model is an abstraction for concurrent programming, that uses ac-
tors, independent units of computations. These units are spawned, so they
can communicate with each other via messages and change their states ac-
cordingly to them. Messages are processed serially, which guarantees needed
synchronization for a state change. Thanks to that there is no need for using
synchronization primitives like locks.

The work describes the core parts of an actor model library implementa-
tion. It consists of a brief introduction to the classic concurrent model with
its drawbacks. Then it introduces the actor model and its most influential fla-
vors. Aside from the core constructs of spawning, sending messages, and state
changes, the library implements additional functionality for monitoring/link-
ing the actors and name resolving. The library is written in Objective Caml
leveraging its language features.

Keywords ocaml, concurrent patterns, actor model, distributed systems

vii

Abstrakt

Aktor model je abstrakce pro konkurentní programování, která pracuje s ak-
tory, nezávislými jednotkami. Tyto jednotky vznikají, aby si mezi sebou posí-
laly zprávy a následně podle nich měnily svůj stav. Zprávy aktor zpracovává
postupně, čímž zaručí nutnou synchronizaci pro změnu stavu. Díky tomu se
vyhne potřebě používat nízkoúrovňové synchronizační primitivy jakými jsou
zámky.

Práce popisuje návrh a implementaci hlavních částí aktor knihovny. Ob-
sahuje stručné shrnutí klasického konkurentního modelu s jeho nedostatky a
popis aktor modelu včetně příkladů vlivných implementací. Kromě základních
konstrukcí aktor modelu pro spawnování, odesílání zpráv a změn stavu, imple-
mentuje i rozšířené funkcionality ve formě monitorování/linkování procesů či
převody jmen na adresy konkrétních aktorů. Knihovna je napsaná v Objective
Caml s využitím zajimavých aspektů tohoto jazyka.

Klíčová slova ocaml,konkurentní vzory, aktor model, distributivní systémy

viii

Contents

List of Listings xiii

Introduction 1

1 Background 3
1.1 Concurrency . 3

1.1.1 The correctness of a concurrent program 3
1.1.2 Execution of concurrent processes 5
1.1.3 Inter-process communication 6

1.2 The actor model . 6
1.2.1 Actor . 7
1.2.2 Basic constructs . 7
1.2.3 Actor model vs CSP . 8
1.2.4 Similarities with object-oriented programming 9

1.3 Flavors of the actor system . 10
1.3.1 Classic actor model . 10
1.3.2 Active objects . 10
1.3.3 Process-based actor model 12
1.3.4 Communicating Event-Loops 13

1.4 OCaml programming language 14
1.4.1 Core language . 15
1.4.2 Module system . 15
1.4.3 Language extensions . 16
1.4.4 Concurrency in OCaml 18

2 Analysis and Design 19
2.1 Functional and non-functional requirements 19

2.1.1 Functional requirements 19
2.1.2 Non-functional requirements 20

2.2 Scheduling actors and OS communication 20

ix

2.3 Serializing messages . 21
2.4 Arbiter . 23
2.5 Spawning . 23

2.5.1 PID (Process ID) . 24
2.6 Changing states . 25
2.7 Sending messages . 25
2.8 Receiving messages . 25
2.9 Monitoring actors . 26

2.9.1 Supervisor behavior . 26
2.10 Resolving names . 27

3 Implementation 29
3.1 Serialization . 29

3.1.1 Matcher . 30
3.2 Backend . 31
3.3 Actor . 33
3.4 Arbiter . 35
3.5 Build system and the package manager 38
3.6 Testing . 39
3.7 Documentation . 39
3.8 Logging . 40
3.9 Project setup . 40
3.10 Case study – The Heat Aggregator 40

4 Comparison to Other Actor Libraries 43
4.1 Erlang . 43
4.2 Akka . 44
4.3 Distributed . 45
4.4 Actor model flavor of Jude . 45

5 Future Work 47

Conclusion 49

Bibliography 51

A Acronyms 57

B Contents of enclosed CD 59

x

List of Figures

1.1 The difference in sequential, concurrent and parallel execution . . 4

2.1 The architecture in Jude . 24

3.1 Data flow of the remote send . 36

xi

List of Listings

1.1 Classic concurrency in Scala . 5
1.2 Actor model Akka in Scala . 8
1.3 Scala concurrent objects language example 11
1.4 ABCL/1 concurrent objects language example 12
1.5 Erlang language example . 13
1.6 The E language example . 14
1.7 The core language examples . 15
1.8 The module system examples 17
1.9 Deriving show for type user . 17
2.1 S-expression data type . 22
3.1 Binable signature . 30
3.2 Usage of the binable module . 30
3.3 Matcher data type in Jude . 31
3.4 Backend signature . 32
3.5 Backend data type . 32
3.6 Arbiter signature and Make functor defining the arbiter 35
3.7 The dune file . 38
3.9 Example test . 39
3.10 The heat aggregator in the Jude library 41
5.1 Arbiter send using modular implicits 48

xiii

Introduction

"The free lunch is over" [1]. Major boosts in the horizontal computational
power are long gone and the industry has adapted. From CPU manufacturers
that keep adding cores to a single chip to data centers, which grow exponen-
tially in the number of commodity servers. It is apparent more than ever that
concurrent and distributed programming is the way to move forward.

However, concurrent programs are not easy to reason about. Classical
threads operating on shared memory with locks are error-prone and difficult to
use. In the case of larger systems, this low-level operating system primitives do
not scale well and thus researchers were seeking new, higher-level abstractions.
One of them is the actor model.

The actor model of actors which communicate with one another through
message passing. An actor encapsulates its state and the only way to change
it is by sending messages. Upon receiving a message, the actor decides which
action to take. Because the actor processes messages sequentially, there is no
need for any locking. This is what makes the actor model so appealing. The
actor model is theoretical, it does not pose any restriction to what commu-
nication protocol shall be used nor to how actors shall be scheduled. Since
the first industry-strength implementation in 1986, the actor model has been
adapted by many [2, 3, 4], and there are many numbers of implementations
for a variety of programming languages.

The work aims to design and implement the actor model for the OCaml
programming language to provide an alternative to the standard monad based
concurrency inspired by Haskell. OCaml is an ML family, multi-paradigm lan-
guage, which delivers functional programming mixed with OOP concepts. It is
statically typed with parametric polymorphism, type inference, and a strong
modular system. The resulting library, Jude, provides the core actor function-
ality with additional features like creating actor hierarchies for supervision or
name resolving.

The thesis is structured into four main parts. The state-of-the-art chapter
describes the actor model generally and compares common actor model im-

1

Introduction

plementations. Analysis and Design describe the architecture of the library in
detail by documenting used components and main libraries. Next comes the
Realization chapter describing implementation details. The actor library is
then compared to other actor libraries in the Comparison to Other Actor Li-
braries chapter. Lastly, the Future Work chapter sets the direction for future
development.

2

Chapter 1
Background

This chapter provides a brief overview of the classical concurrency model, the
inherent problems it has, and how they are addressed. Next, it introduces the
actor model. Finally, it provides a quick overview of the OCaml programming
language.

1.1 Concurrency
In general, concurrency allows one to execute multiple sequential processes at
the same time. It can be done by interleaving those processes, which appears
like they are proceeding all at the same time. This is the main difference
between terms concurrency and parallelism. Parallel programs physically run
at the same time, leveraging parallel hardware (multi-core processors) [5].

As seen in Figure 1.1 this simulation is beneficial. Well-written concurrent
programs can be more effective than their sequential counterparts even with-
out multiple cores because programs tend to wait for resources not computing
anything. While one task wait for a resource another could proceed compu-
tation. It is defined as asynchronous I/O and languages with GIL usually use
this kind of concurrency.

1.1.1 The correctness of a concurrent program

The correctness of a concurrent program is defined by properties which it
holds. A correct concurrent program must fulfill two properties of computa-
tion:

• Safety properties – The property must always be true

• Liveness properties – The property must eventually become true

[5]

3

1. Background

time

Pa
ra
lle
l

C
on
cu
rre

nt
Se

qu
en
tia
l

ComputingWaiting for resources

Figure 1.1: The difference in sequential, concurrent and parallel execution

Writing correct concurrent programs is a challenging problem. Without
synchronization in a critical section, programs tend to violate the mutual
exclusion principle [6], which makes them not safe. Synchronization in the
classical concurrency is provided by using locks and constructs built on them.

But locks have their own set of problems, that need to be addressed.
Misusing locks results in needless serialization, or even deadlocks. Deadlocks
violate the liveness property of the program, so a concurrent program that
has deadlocks is not correct. Apart from this, it is impossible to compose
two thread-safe functions into a higher-level thread-safe function [7]. This
results in the creation of unsafe functions that are then wrapped by their
lock counterparts. Bugs are even harder to track when multiple locks are
introduced in the concurrent system. Programmers need to enforce that all
locks are ordered in the same arbitrary way, otherwise, deadlocks will occur [7].

Concurrency has additional problems that need to be solved to guarantee
the robustness of a program. Examples of such problems are starvation or
unfairness. These problems are explained in greater detail in basic texts about
concurrency [5, 8, 9].

The listing 1.1 shows how classical concurrency looks like. It defines
heat aggregator, which receives new records of temperature taken from a
sensor. After its window is full, it gives average temperature to callers of
computeAverage method. Methods lock and unlock wrap critical sections of
the code. Try/finally is needed to ensure that locks are released even when
an exception is thrown. As seen in the listing, even simple programs relying
on locks are cluttered with synchronization primitives.

4

1.1. Concurrency

import java.util.concurrent.locks.{Lock, ReentrantLock}

class HeatAggregator(val size: Int) {
val lock: Lock = new ReentrantLock()
val window = new Array[Float](size)
var actualField = 0
var full = false
def newRecord(rec: Float) : Unit = {

lock.lock()
try{

actualField = actualField + 1
if (size == actualField) {

full = true
}
window(actualField % size) = rec

} finally {
lock.unlock()

}
}
def computeAverage() : Option[Float] = {

lock.lock()
try{

if (full) Some(window.sum / size) else None
} finally {

lock.unlock()
}

}
}

Listing 1.1: Classic concurrency in Scala

1.1.2 Execution of concurrent processes

A continuation of a concurrent program is arranged by the process called
scheduler. The job of the scheduler is to give access to computation time on
the CPU to sequential processes that need it [5]. A well-written scheduler
should exhibit fairness mentioned earlier.

There are two possible implementations of a scheduler called preemptive
and cooperative (non-preemptive). In preemptive scheduling, sequential pro-
cesses are switched by scheduler without their consent. Cooperative scheduling
leaves decisions about switching on the scheduled process, which makes the
scheduler much easier to implement and outperforms preemptive in switching
speed [10]. Cooperative scheduling has its drawbacks too, when processes are

5

1. Background

not implemented well and do not yield control back to the scheduler when
blocked. For this reason, cooperative schedulers are used a lot in user-level
programs where a programmer has every process under control. User-level pre-
emptive threads are not as common but there are exceptions. In a real-world
situation, both preemptive and cooperative scheduling is used.

1.1.3 Inter-process communication

The hard part of concurrency lies in communication. Processes in concurrent
programs communicate to exchange information or to access a resource. If
poor measures are taken to synchronize concurrent programs, then problems
described in the Concurrency chapter arise.

One way to implement communication between processes is by sharing
memory location which is used for read/write operations. This could be de-
scribed as communication using a resource acquisition. Implementation based
on resource acquisition is prone to mutual exclusion violations and deadlocks.
It is hard to achieve a high level of concurrency without sacrificing readability
and correctness.

Message passing is another principle used for communicating between pro-
cesses. Every process owns its private memory and communication happens
via messages that are sent there[5, 11]. That means there is no need for
synchronization of memory access.

Passing messages is synchronous or asynchronous. In the synchronous sce-
nario, both sender and receiver need to be ready for communication. The
sender is going to wait for the receiver or the other way around. Commu-
nication with itself is not possible in synchronous messaging. Sending and
receiving are atomic operations and the process cannot execute both at the
same time. This can be overcome by introducing a buffer process [12]. Syn-
chronous messaging could be likened to a phone call.

Alternatively, mail is a form of asynchronous communication. The sender
sends a message to a buffer which is a not blocking operation. The receiver
then reads from buffer sequentially, blocking when no additional messages are
available. This type of communication is prone to deadlocks when commu-
nicating because there is no blocking introduced [13]. It is still possible for
actors to stop communicating because both wait for a message mutually, but
no resources that other wants are held indefinitely.

1.2 The actor model
The actor model is a theoretical computation model that uses passing messages
between actors as a form of communication. First introduced in 1973 paper
by Carl Hewitt [14], its original use case was to model artificial intelligence
(expertise) systems, but it soon found its way to concurrent and distributed
applications.

6

1.2. The actor model

1.2.1 Actor

Everything in the actor model is an actor [15]. Actors encapsulate a state and
forbid all outside modifications. They run independently of another, so one’s
failure is not transitive to others. The behavior of an actor tells how it should
handle the next message. Handling a message means reacting to it with a
change of state or behavior. Only one message is processed at any given time
making an actor’s behavior execution completely sequential.

Presumption of implementation details is not defined in the theoretical
model. For example, in the core model itself, there is no concept of actors
having mailboxes. The reason is that if an actor needs to have a mailbox
and everything is an actor, then a mailbox must be an actor itself needing its
mailbox, leading to a cycle [16].

An actor can spawn additional actors, which could be used to create hier-
archies of them. No reference to the actor itself should exist, that could violate
encapsulation. All communication is done using an actor address. Addresses
are obtainable by creating new actors, getting the address in a message sent
to him, or by already having the address in a state [13].

Messages received by the actor are anonymous. Just by receiving a message
alone, no one can deduce the sender. If the sender wants to be contacted, he
should send his address as part of the messages. Addresses sent in messages
are called customers.

Message delivery is non-deterministic. Suppose actors A0 and A1 exists.
If A0 sends messages m0 and m1, then no certainty is given that messages will
be delivered in the order they were sent [14].

1.2.2 Basic constructs

To write comprehensive programs with actors some basic constructs need to
be defined. Examples of minimal languages using these constructs can be
found in Agha’s 1990 book [13].

Declaration is useful if the default behavior of an actor needs to be specified.
For that purpose declare construct was invented. It takes name and
behavior as parameters and registers that to the actor system. This
construct could be likened to the variable declaration of the first-class
function.

Spawn takes a declaration and uses that to create a new actor definition.
Spawn additionally creates an address and binds the actor with it. Then
it returns the given address.

Send is used to send messages to a given address. Send never blocks and
does not have a return value. Send does not forbid sending messages to
itself. Thanks to that it is possible to define recursive actors. There is

7

1. Background

no possible way of knowing if the actor received the message. Addresses
passed to the send function could be of an actor that does not exist.

Become serves the purpose of changing behavior for the next message. Be-
come is a function that takes behavior function for the next message.
State and information known to actors could be changed just by using
become construct.

The listing 1.2 shows the heat aggregator program written using the actor
model. As we can see there is no explicit synchronization even when we define
a mutable state. The code is more compact and uncluttered.

abstract class HeatMessage
sealed case class NewRecord(rec: Float) extends HeatMessage
sealed case class ComputeAverage() extends HeatMessage
case class ComputeRespond(o: Option[Float])

class ActorHeatAggregator(size: Int) extends Actor {
val window = new Array[Float](size)
var actualField = 0
var full = false
override def receive = {

case NewRecord(rec) =>
actualField = actualField + 1
if (size == actualField) {

full = true
}
window(actualField % size) = rec

case ComputeAverage() => sender() ! ComputeRespond(
if (full) Some(window.sum / size.toFloat) else None

}
}

Listing 1.2: Actor model Akka in Scala

1.2.3 Actor model vs CSP

The actor model is not the only higher-level abstraction for concurrency. An-
other popular model is Communicating sequential processes. The CSP is a
model for understanding concurrent programs, which relies heavily on syn-
chronous communication. A process is an isolated sequential code that runs
independently from others. In the first version of CSP communication was
done by named processes. Every process had its name and communication
with that process was done using that [17].

8

1.2. The actor model

The second version defined channels, first-class objects used for commu-
nication between processes [12]. This change affected how CSP could com-
municate. For example, it was possible to receive messages from multiple
sources.

Thanks to CSP a lot of programming languages have embraced the notion
of channels for building concurrent programs. Rob Pike was highly inspired
by Hoare’s CSP papers when designing Go programming language [18].

Both CSP and actor model relies heavily on communication via messages.
Unlike the actor model, CSP is synchronous even when sending messages.
That means for a message to be sent both producer and consumer must be
ready to do so. Processes can read from multiple channels, which is not possi-
ble in the pure actor model (it is possible in Cloud Haskell implementation for
example [19]). Channels could be simultaneously read from multiple processes
that violate the actor’s one address per process rule.

CSP is much less memory-intensive because by both reader and writer
blocking only one message will be at any given time in the "mailbox". It is not
useful in distributed environments, because both ends need to be synchronized
to exchange messages, which can slow down communication. For this reason,
the actor model was chosen for the implementation in place of CSP.

1.2.4 Similarities with object-oriented programming

I’m sorry that I long ago coined the term "objects" for this topic because it
gets many people to focus on the lesser idea. The big idea is "messaging"... –
Alan Kay [20]

Conceptually, actors in the actor model look like objects in OOP. It is
because the actor model and the object-oriented programming share an inter-
esting history. The model was influenced by a presentation Alan Kay gave to
the MIT AI Lab about his objective language Smalltalk [21].

Objective programming is a paradigm where everything is an object [21].
Objects are defined as containers for holding data and behavior operating on
that data. To change an internal state of the object message needs to be
passed.

Definitions of actors and objects overlap. Objects contain attributes and
methods, that are parallel to actors state resp. behavior. The internal state
of both concepts is encapsulated and only communication via message passing
is tolerated. Message passing in Smalltalk refers to method calling in contem-
porary languages. Some dynamic languages like Ruby [22], PHP[23] can use
Smalltalk like message passing instead of method calls, by overriding magic
method.

Differences consist mostly of the fact that the actor model was deliberately
designed to tackle concurrent environments. OOP languages were not created
with concurrency in mind. Message passing in OOP languages is synchronous
and waits for a return value. Methods could be fired from multiple processes

9

1. Background

and no guarantees of synchronous message processing exist, so this paradigm
is prone to race-conditions. The solution to this problem is comprehensive
locking, which could lead to deadlocks.

The initialization of objects and actors differs too. Objects are constructed
in the parent process which means they share a memory with it. In the actor
model, every call to spawn function constructs an actor in a new process, and
they are completely isolated.

1.3 Flavors of the actor system
The actor model is as abstract as it gets. No implementation detail is defined
in the theoretical model so its no surprise that multiple flavors of actor systems
were built over-time. Systems could be assigned to four main categories [24].

From every category, one actor system will be picked to represent the
whole group. Implementation of small actor behavior is going to be provided
with this specification: Actor fruit giver which has only two bananas. Accepts
message of type give to which he decrements the number of bananas and reply
with gave the message. If there are no more bananas to give, the fruit giver
starts to reply with no_more message.

1.3.1 Classic actor model

The classic actor model follows the definition by Gul Agha’s actors [25]. Which
defined three basic primitives spawn, send, become. Spawn created an actor,
send was used to deliver messages and become changed actual state of an
actor.

The state is immutable in classic actors so the only way to change it is by
creating new behavior with the become primitive. Messages accepted by the
actor are decided dynamically at the runtime.

Agha’s Sal and Act languages are examples of this implementation. Akka
is another classic actor model implemented on JVM [26] for Scala language.

Actors in the Scala are objects inheriting from Actor class. Every actor
needs to implement the receive method. Optionally the actor anonymous
syntax could be used. Become construct works as a stack to which behavior
can be pushed and popped from. This way if FruitGiver eventually restocked
it could call unbecome to get original behavior again.

The sequential subset of the actor system (behavior definition) was typi-
cally functional. Akka as a system used in industry is not that strict as we
can see in the example.

1.3.2 Active objects

Active objects introduced by Yonezawa [27] takes a different approach to the
most actor models. Every object runs in his process with isolated memory.

10

1.3. Flavors of the actor system

class FruitGiver extends Actor {
var bananaCount = 2

def empty = {
case Give => sender() ! NoMore

}

// this behavior is used implicitly
// when spawning the actor
def receive = {

case Give => {
sender() ! Gave // sending message to the sender of Give
bananaCount--
if (bananaCount == 0) {

become(empty) // changes the behavior to empty
}

}
}

}

val fruitGiver = new FruitGiver
fruitGiver.start

Listing 1.3: Scala concurrent objects language example

The state is mutable and changes to the state are done by imperative con-
structs. No become operation exists.

They do define the order of messages as they are received by the consumer.
If active object A0 sends messages m0 and m1 in this order, then the same
order is going to be abided on the receiver side.

Communication in ABCL/1 (Yonezawa’s programming language) defines
three types of communication.

Past Effectively send method as we know it in the classic actor model. Called
past because when a consumer receives the message, the sender is already
past that moment. The sender did not wait for the response and just
went on with his computation.

Now After sending a message, the sender waits for the response in a blocking
manner. Called now, because when the consumer receives the message,
the sender is still on the line for the response.

Future The most interesting type of message communication. A message
is sent asynchronously and the object does not wait for its completion.

11

1. Background

Instead, a special object called the future is initialized, which is going to
include the potential result of the call. Future objects can be checked
to see if they do have the result at any time. Additionally, the future
is data structure like any other, so it could be sent to another active
object.

These constructs could be implemented by classic actors by defining multi-
ple actors to serve the request. For example, the future could be implemented
by creating an actor that could be set as the customer of the communication.
The receiver computes the result it sets that to customer. Anyone can then
ask the customer for the "future" value which is set in his state.

[object FruitGiver ; object definition
(state [bananaCount := 2]) ; declaring state of the object
(script

(=> [:give sender] ; matches message :give
(if (= bananaCount 0)

then [sender <= [:none]] ; sends :none message
else

[bananaCount := (- bananaCount 1)]
[sender <= [:gave]]

)
)

)
]

Listing 1.4: ABCL/1 concurrent objects language example

There are no modern implementations for this particular language model,
so the Listing 1.4 is written by the definition of the language described in 1986
Yonezawas paper[28].

1.3.3 Process-based actor model

The process-based actor model was developed at Erickson labs in 1986 to
tackle problems that have arisen when programming distributed telephony
applications. In that time developers did not know about the actor model so
the development was completely isolated by the theory.

Actors in languages like Erlang were developed as processes running se-
quential programs (similar to OS processes). They start to run without actu-
ally receiving messages, then they stop on the receive block and wait for a
message to continue. If there is no receive in the process at all, then it ends
its execution as any normal function does. Multiple receives can be chained
in a function body. Continuity is implemented by recursion of a function rep-
resenting the process. Erlang’s scheduler works preemptively so processes are
swapped out without them explicitly allowing.

12

1.3. Flavors of the actor system

The state is passed to the process function as a parameter and state
changes happen by recurring with different parameters. This concept is similar
to the become functionality of classic actors.

-module(main).
-export([start/0]).

fruit_giver(0) →
receive

{Pid, give} →
Pid ! nomore,
fruit_giver(0)

end;
fruit_giver(Num) →

receive
{Pid, give} → Pid ! gave

end,
fruit_giver(Num - 1).

start() →
Pid = spawn (fun() → fruit_giver(2) end),
Pid ! {self(), give}.

Listing 1.5: Erlang language example

1.3.4 Communicating Event-Loops

Communicating Event-Loops (CLE) was first defined in the design of the
programming language called E language [29]. E-lang stretches the actor
model definition to its maximum. Vat are definitions of actors that consist of
event-loop, which synchronously processes events (or messages), stack, queue,
and a heap of objects.

Every object needs to be part of exactly one Vat. Objects, that are in
the same Vat, are called near-references and those outside are called eventual-
references. Thanks to event-loop processing events synchronously its safe to
access all objects in the same Vat.

E-lang defines two types of communication Immediately (dot operator) or
Eventually(arrow operator). Communication via dot operator could be likened
to a normal function call but is restricted to only near-reference objects. Im-
mediate pushes the next event to the stack which has read priority. When
communicating outside of one’s Vat, eventual communication must be used.
Eventual communication pushes an event to the destination queue. This way
every message passing is asynchronous.

13

1. Background

As seen in the Listing 1.6 method definition for the E language is com-
munication type agnostic. It does not care about the way it is going to be
called. Replying to the messages is done by ordinary return or by throwing
an exception, which can be handled by when..catch construct.

These near and eventual references restrict ways we can use objects. This
restriction is defined as object capability and inspired language called Pony to
implement a safe, concurrent actor model. Pony guarantees race condition
free concurrent programming with no deadlocks using this system [30].

def makeFruitGiver() { # Object factory
var bananaCount := 2
def gave {} # Local object
def noMore {}
def fruitGiver {

to give() {
bananaCount := bananaCount - 1
if(bananaCount == 0) {

throw noMore # Replies to the caller with error
} else {

return gave # Replies to the caller
}

}
}
return fruitGiver

}

var fruitGiver := makeFruitGiver()
Returns promise with eventually fulfils to value or error
var p := fruitGiver <- give()
Returns immediately
var g := fruitGiver.give()

Listing 1.6: The E language example

1.4 OCaml programming language

OCaml (Objective Caml) is a programming language from ML family with
first-class support for objects. ML family languages have a strong static type
system with near-complete type inference. That means a lot of type-related
errors are caught during compilation, but without the overhead of type dec-
larations when reading the code [31]. The language was firstly introduced
in 1987 as a project from Inria in France. Back then called Caml because
object-oriented aspects of the language came after the initial release in 1998.

14

1.4. OCaml programming language

1.4.1 Core language

The main construct used in OCaml as a functional language is a function. It
is defined by let keyword, which is used additionally for both global and local
variables too. Besides classical primitive types (string, int, record, etc.), the
language defines algebraic data types. They can be likened to enumerations,
but more type-safe and with a possibility to hold data. For working with the
ADT, pattern matching is defined in the language. An example of that can
be seen in the Listing 1.7.

(* Variable declaration *)
let a = 5
let name = "OCaml"

(* Records *)
type language_info = { type : string; created : int }

(* Example of algebraic data type *)
type language =

| Functional of language_info
| Imperative of language_info

(* Function declaration *)
let print_language l =

(* Pattern matching *)
match l with
| Functional {name;_} →

print_endline ("Functional: " ^ name)
| Imperative {name;_} →

print_endline ("Imperative: " ^ name)

let () =
(* Local variable declaration *)
let name = "OCaml" in
let created = 1996 in
print_language (Functional {name; created})

Listing 1.7: The core language examples

1.4.2 Module system

An interesting aspect of the OCaml language is the rich module system, used
as a code separation and implementation hiding concept. Every .ml file is
automatically a module sharing name with filename only the first letter is
upper-case [32, 2.5 Modules and separate compilation]. It groups code to a

15

1. Background

logical unit. Accessing a code from that module needs to be prefixed by a
module name. A module can contain additional modules to define even more
fine-grained abstraction. Modules are also called structures.

Some parts of a module can be hidden by using a module signature. Mod-
ule signature defines how should module look like and anything that is not
there can’t be used outside the module. There is a file extension for module
signatures called .mli and it is an idiomatic place to write documentation.
Missing module signature file in the OCaml project means everything is public.

Modules can compose together using the module functor [32, 2.3 Functors].
It is a function on the module system level, which takes a module and generates
another one. The generated value could be another functor that can be used to
emulate multiple parameter functors. Sometimes there is a need for multiple
instances of the same module because modules could contain a mutable state.
For that purpose, there is a possibility to use functor generators. They are
functors that do not take any parameters and every time they are initialized
they return a new module independent of those generated before.

OCaml language consists of two parts, the core language, and the module
system. First-class modules bridge the gap between these two systems by
permitting packing modules that can be used as ordinary values [32, 8.5 First-
class modules]. Thanks to that it is possible to hot-swap implementations of
modules at run time, implement functions that are generic over a module
passed to them, or implement polymorphic behavior as known from OOP
languages.

Because there is a huge overlap between modules and objects in OCaml
rule of thumb for OCaml codebase is to not use OOP aspects of the language
until necessary. Encapsulation is provided by module signatures. Inheritance
is replaced by composition using functors and for polymorphism higher-order
modules are used.

The Listing 1.8 shows how these concepts translate to actual constructs in
the language.

1.4.3 Language extensions

Strongly typed languages give safety nets for writing code. They are how-
ever limiting in describing some program behavior when types are erased at
runtime. This restricts usage of reflection on data types for providing serial-
ization, equality operators, printers etcetera. These functions can be written
by hand, but they are repetitive and could be derived from the types itself.
An alternative for reflection is code generation.

OCaml defines the PPX language feature, useful for extending arbitrary
OCaml syntax in a type-safe way. It uses extension points (nodes), annotations
that define what should exactly happen by referencing a specific rewriter[32,
8.13 Extension nodes]. The language preprocessor then calls the rewriter men-
tioned in the extension point. Rewriters do not work on the text representation

16

1.4. OCaml programming language

(* Module signature *)
module type PLUS = sig

type t
(* Infix function *)
val (+) : t → t → t

end

(* Module structure definition *)
module Plus_int = struct

type t = int
let (+) = Int.add

end

(* Module functor *)
module Sum (P : PLUS) = struct

include P
let list = List.fold_left (+)

end

(* New module from functor *)
module Sum_int = Sum (Plus_int)

Listing 1.8: The module system examples

of code itself. Instead, they operate on the AST. They are described as map-
pings between two abstract syntax threes. Listing 1.9 demonstrates how to
generate functions for returning the string representation of the user-defined
value.

PPX is also useful for other reasons like extending OCaml syntax to sup-
port language constructs that are not accessible in the core language. An
example of such syntax could be an implementation of the monadic bind
(Haskell’s do-notation) [33].

type user = {
name: string;
surname: string;
age: int

} [@@deriving show]

(* These function are generated automatically *)
val pp_user : Format.formatter → user → unit
val show_user : user → string

Listing 1.9: Deriving show for type user

17

1. Background

1.4.4 Concurrency in OCaml

OCaml does not have multi-core support on thread-level right now so par-
allel programming is only possible by firing multiple processes manually and
communicating between them via pipes/sockets [34]. In other words, there is
no thread-based parallelism because the garbage collector is not parallel. It
is possible to create OS threads, but they will be under GIL, which prevents
more than one thread to run [35].

Concurrency on the other hand is pretty much established in a form of
two monadic libraries Lwt [36] and Async [37]. These two libraries are pretty
much identical in the ideology and differ only in implementation details.

The Lwt provides Lwt.t type, representing a promise of a value, which
is going to be filled after computation ends. Combinators provided by the
implementation of Lwt help with processing the value. Lwt_unix is a sub-
library wrapping Unix system calls to return Lwt.t values.

OCaml has also an actor based library called distributed, providing erlang
based actors. The library is inspired by implementation called Cloud Haskell
[38]. A detailed description of differences is available at the end of the Analysis
and Design chapter.

18

Chapter 2
Analysis and Design

Any actor framework must support the three basic operations: spawning ac-
tors, message passing, and state management. The previous chapter presented
some commonly used approaches. They are going to be leveraged in this chap-
ter to design the Jude actor framework developed in the thesis.

Apart from elementary constructs, Jude provides more advanced tools to
simplify development. It supports the supervision of actor hierarchies and
location transparency allowing actors to communicate in a distributed envi-
ronment.

Finally, using Jude should feel idiomatic to OCaml programmers, leverag-
ing the language constructs.

2.1 Functional and non-functional requirements

It is important to define requirements for the library, to define an overview of
features it should implement. The rest of the chapter focuses on achieving set
requirements. There are many more types of requirements, but they were not
considered worth it for a library project.

2.1.1 Functional requirements

Next to the actor model requirements, Jude implements additional tools for
distributed computing and fail-tolerance. Basic operations were discussed in
the actor model chapter.

Supervison Supervision allows one to create a hierarchy of interconnected
actors with well-defined strategies for handling errors. This forms a
parent-child relationship with the parent being responsible for any child
actors it has spawned. Furthermore, hierarchies allow one to naturally
decompose computation tasks to smaller pieces which are worked by

19

2. Analysis and Design

child actors. The results are then sent back to the parent actor which
combines them together, pushing the new result up in the hierarchy.

Location transparency Location transparency allows actors to communi-
cate across the boundaries of a single process. Each actor is identified
with a unique reference. The actor runtime knows how to relay mes-
sages between these references regardless if they are local or remote.
Messages can, therefore, be sent among actors independently of where
they are running.

2.1.2 Non-functional requirements

These non-functional requirements are going to be met by the Jude library.

Fairness of execution every actor should get the same chance to commu-
nicate in the system.

Reliable message passing messages should be delivered at most once, re-
sent when lost or corrupted, but without the guarantee that they are
delivered.

Fault-tolerancy processes should be able to restore the line after losing con-
nection.

Consistent ordering message ordering should be expectable for a user of
the library.

Compatible processes should be able to communicate even when using dif-
ferent versions of the library or when compiled under a different version
of OCaml.

Documentation documentation of the API should be provided.

Open-source library should be available to the public for examination.

Idiomatic to the user using build tools programmers, that want to use the
library already knows. Make added complexity as little as possible.

2.2 Scheduling actors and OS communication

Operating systems define APIs to communicate with the resources they pro-
vide. There are both synchronous APIs that block the thread and wait for
the resource to be accessible and asynchronous where caller subscribes with
a callback to be notified when the resource is ready to be used, which helps
decrease the I/O bound of the software.

20

2.3. Serializing messages

OCaml has the Unix module, which wraps Unix system calls and threads,
as part of the standard library, but its usage for concurrency is not recom-
mended. The reason for that is it works with OS threads which are resource
heavy and their parallelism is not used thanks to GIL. Additionally, the Unix
module is not fully implemented on Windows operating systems [32, Ch.27
The unix library].

For these reasons another library called Libuv was chosen in place of the
Unix module [39]. The Libuv is a C library for asynchronous concurrency. It
is used by languages that have GIL (Node.js, Julia) as OCaml does, so it is
a good fit. It provides a whole package for communicating with an operating
system including file system communication or networking. This library is
much more cross-platform than the standard library alternative, with full
support for a variety of platforms.

Users of the library subscribe to particular events to get notifications after
the event is completed [40]. This helps to decrease I/O bound of the program
because when waiting for an event other processes can move forward. Oper-
ating systems provide some way of subscribing for input/output. The Libuv
uses this subscription mechanism to optimize the asynchronous IO.

The Libuv uses event-loops as the main tool to provide asynchronous pro-
gramming. Event-loop is a scheduler to which events, with their continuation
(callback functions), are registered. After the operating system informs Libuv
that resource is ready to be consumed, it fires callback with given information.

One drawback that Libuv has is missing thread-safeness. That means when
running in multi-thread environment all communication with Libuv must be
on the same thread. Thread safety is important but resource-intensive and
Libuv was intended for uses in single-thread environments. For that rea-
son, developers preferred single-thread performance over thread-safety. Jude
consists of two threads one with the Libuv and one where the scheduler is
running. It is still possible to write thread-safe code using the library [40, Ch.
Inter-thread communication] and Jude leverages that.

There already exists a FFI binding to this C library for OCaml which Jude
uses for its implementation [41].

2.3 Serializing messages

Jude allows actors to communicate independently to where they run. In the
case a message is addressed to a remote actor, the message has to sent over
a network and therefore it has to be serialized. A lot of different serialization
formats exist.

One example of such a format would be JSON. This format got popularized
in web development and soon established itself as a most known data exchange
format. There are still some drawbacks which should be acknowledged before
choosing this standard. First of all, JSON supports only data types used in

21

2. Analysis and Design

javascript. Other data types are encoded as a string and need some parse
capabilities at both sides. Additionally, human-readable format tends to be
more verbose which adds up to cost for parsing and sending data in that
format. It would make sense to use JSON for Jude if communication to the
outside world directly was desired, but we are going to use this format only
internally so OCaml specific libraries and formats are welcomed.

One such example is the Marshall module in the OCaml standard li-
brary [32, 25.29 Module Marshal : Marshaling data structures]. Marshal
does not work with types and instead encodes the memory model of data
used. Almost every type defined in the OCaml is serializable by the Marshal
module. The module has some significant drawbacks, like not adding type in-
formation of the data or that compatibility is not guaranteed between different
compiler versions. Both drawbacks are problematic for specified use-cases, so
third-party alternatives were considered over the standard library.

The OCaml community uses s-expressions for a lot of serialization in the
ecosystem. They were first invented by Lisp creator John McCartney for
encoding both data and code [42]. The data structure for the serialization
type is really simple as seen in the Listing 2.1. It encodes data as a tree,
where intermediate nodes define its children in the form of a list and leaves
with string values. The serialized version of such data structure is represented
by a Lisp-like syntax of lists and atoms. S-expressions are unnecessary verbose.
They can be used for debugging purposes when to give more human-readable
debugging messages.

type t = Node of t list | Leave of string
Listing 2.1: S-expression data type

Another library which provides OCaml specific format for serialization is
Bin_prot. It uses a binary format and so it does define smaller messages.
There is no type encoding in the format, but for every type MD5 digest is
generated to enable type comparisons. Every message used for communicating
with other actors then has this digest as part of the communication. MD5
Digest in binary format is 16 bytes long, but Jude takes only the first 8 bytes
to determine if values match. Because MD5 does exhibit avalanche effect [43],
a term used for describing that even small changes to the hashed data change
the resulting hash drastically [44], it is safe to choose some prefix of the hash.
Birthday paradox tells that approximately 1.9 ∗ 108 hashes of length 8 need
to be generated to have a chance of 0.1%. That is more than enough for our
use case of determining if types match.

Both Sexp and Bin_prot define PPX rewriters to implement serialization
and deserialization functions automatically so there is no burden on a user of
the library to write them manually. Bin_prot generates PPX for serialization
from and to Sexp, for the purpose of debugging.

22

2.4. Arbiter

2.4 Arbiter

Actors in the Jude library are not fully self-contained. They run in the Arbiter
which manages actor orchestration. It is because of scarce resources available
in the operating systems (creating thousands of actors each with their process
is resource-heavy).

Arbiter corresponds to one running program of Jude. He manages the
scheduling of actors to let every one of them run when possible. It is the run-
time in which actors spawn and communicate locally. The role of the arbiter
is to make sure communication between actors is fair and that communication
with other arbiters is possible.

As seen in the Listing 2.1, communication between actors is provided by
the TCP protocol at the transport level. This type of connection is used,
because of its reliability and stability. Another reason is that disconnections
are monitored by protocol alone so there is no reason for a keep-alive on the
application level. There is no plan in using more than a few arbiters and this
design choice would let us use thousands of them, so the risk of reaching the
upper bound of simultaneous TCP connections is negligible.

For an established TCP connection it is needed to get the address and port
of the destination server. For that purpose, all arbiters use discovery protocol
based on UDP. Every few seconds arbiters send information about themselves
to a known multicast address. Information sent consists of IP address and
port to which other arbiters connect using TCP.

There are multiple states of this communication. In the beginning, arbiter
A0 is undiscovered and only broadcasts his information to the network. When
his communication is received by another actor A1, it establishes communica-
tion by sending Syn message on the application layer. A0 then responds with
Ready message and waits for Ready message with ack flag set to true from A1.
This application protocol is in some ways similar to a three-way handshake
implemented in TCP. They are both ways to establish communication but on
different layers of TCP/IP protocol. Ack flag in the Ready message is used
to make sure we don’t call Ready infinitely. This message type is additionally
used to communicate metadata about arbiters.

2.5 Spawning

Jude allows spawning of the actors only locally without the possibility to
spawn them on other arbiters. This happens because of the OCaml type
system that erases type information after compilation. No reflection on OCaml
values is possible at the runtime, because type information is forgotten [31,
Ch. Memory Representation of Values]. One could advocate for the Marshal
library which lets serializing functions, but it uses internal information about
type representation in memory and is not type-safe. It is impossible to know

23

2. Analysis and Design

BackendActor

Actor

Actor

Backend

Actor

Actor

Actor

ArbiterArbiter

TCP

Figure 2.1: The architecture in Jude

how would function look at the other side and Marshal library does not inform
the user about the type mismatch. For that reason, Jude does not support
the remote spawning of actors.

It is still possible to implement distributed spawning without function
serialization by compiling the program and then sending it to another arbiter
that then runs that program as another arbiter in the process. Both sides
would have tokens defining that actor behavior uniquely. Spawn would then
send this behavior token to other arbiters in place of actual function. This
architecture is for example used in the Go Circuit library [45], where serializing
functions are not possible as well.

The new actor is spawned by calling Arbiter.spawn with actor behavior.
It creates new universal identification of type Pid.t and connects behavior
to the PID. Behavior is implemented as a function which takes actor context,
metadata used to identify the actor, and returns matcher.

2.5.1 PID (Process ID)

PID is a data type consisting of a remote and local part. The remote part
defines an IP address and port which is used to identify arbiter which hosts the
actor and local part identifies actor in the arbiter. It is used for most of the
work with actors such as sending messages, monitoring, linking, or exiting.
Every action that is publicly performable on the actor operates on Pid.t.
Operations private to the actor itself operates on Actor.t type. PID type is
serializable using Bin_prot, unlike Actor.t.

The Jude does not have processes, so the PID is more of an actor reference.
The reason for the naming is because it is a more compact name.

24

2.6. Changing states

2.6 Changing states

Become function is used to change the state of an actor. Become takes new
actor behavior and replaces the old one. Using become actors can change
messages they want to receive and their inner state. Similar API for this
functionality is used by other actor systems, for example Akka [46].

When an actor state changes, arbiter schedules the actor to make sure that
previously ignored messages, that are now receivable can be delivered.

2.7 Sending messages

Actors send messages via send function defined on the Arbiter. Send function
takes message type in the form of a module, address of the destination actor
and a message, which is sent.

There is no certainty that the message would be delivered, so the user of
the library should not rely on it. At-most-once delivery is guaranteed, which
means that one message could not be delivered multiple times. This guarantee
comes from the choice of the protocol used for the main communication. The
reason for using at-most-once delivery is that at-least-once delivery is harder
to reason about (programmer must check if the message already came) and
exactly-once-delivery cannot be implemented at all as described in the "Two
Generals Problem" [47], prooven in 1975 [48].

2.8 Receiving messages

Consistent messaging is important for actor libraries because developers de-
sign their applications based on that. One can reason about message arrival,
by adding a timestamp to every message and then sort them. This works until
distributed computing is involved. It is impossible to create a global clock, be-
cause of the special relativity [13]. Information can be distributed maximally
at the speed of light and that is not enough to guarantee fully synchronized
clocks. By trying to force a global clock to a distributed system, programs
tend to slow down and be less distributed. One way of doing that is to define
a master process that dictates the time which creates a bottleneck. Others
created logical clocks, where the clock is determined by the total ordering of
events in the distributed system [49].

Jude does not guarantee global consistency. Instead, it defines the order of
arrival between two actors. Messages sent in a specific order from the source
actor to the destination actor arrive in the same order. This is important
because a user of the library does not need to buffer messages in case messages
are received in the wrong order.

25

2. Analysis and Design

2.9 Monitoring actors
Aside from core functionality already described, arbiters define monitoring
semantics to enforce the supervision of actors. This is useful for error han-
dling, graceful shutdown, and logging. It provides only limited functionality
which can be extended by actors, that wrap that functionality, to provide a
higher-level interface. Monitoring actors can be themselves monitored which
creates supervision threes. Jude took inspiration mostly from BEAM imple-
mentation of monitoring and linking [50], but these concepts can be found in
other implementations as well [38, 46].

There are two types of supervision functionality used in Jude called links
and monitors. Both are used for notification of exiting processes, but they
differ in the strategy they use to do so.

Linking creates a bidirectional connection between two actors. It means
that if an actor exits all linked actors follow. This leads to a chain of
actor destructions. There is a possibility to trap the exit. Trapping
denies the exiting of an actor and instead a special message is sent with
information about the exited actor. Trapping is useful when cleaning
the state is needed. This strategy is useful when some event creates a
chain of actors that computes and potentially delivers information to
the main actor which created them. If any of them exit during this
communication others should exit too and report this incident to the
caller.

Monitoring does not create a bidirectional connection like linking does. In-
stead, a connection is created only from the caller to the destination.
There is no automatic exiting involved so there is no risk of the moni-
toring actor accidentally kill itself. When an exception is thrown in the
actor body or actor dies, a special message indicating that is sent to the
monitor. This message is unique to the monitoring construct.

Both monitoring and linking remote actors are not supported. Because
these concepts are mainly used for actors created and Jude does not support
the creation of remote actors.

2.9.1 Supervisor behavior

Using the monitor feature directly is error-prone so Jude defines an actor
called the supervisor. It takes a list of actor recipes and strategy and one by
one creates given actors with monitoring. The strategy then defines what will
happen if some actor died. There are two strategies for dealing with exiting
actors. One is called one-for-one which creates the same actor as the one that
died. The second one called all-for-one kills the rest of the actors and then
reinitializes all of them.

26

2.10. Resolving names

The supervisor is a normal actor, which means that it can get linked to, and
potentially used as a recipe for another supervisor. This linkage of supervisors
is called a supervisor tree.

2.10 Resolving names
To send a message actor needs the PID address of the destination. To com-
municate remotely with unknown actors, service that procures PIDs for com-
munication is needed. For this purpose, Jude defines the name registry. Name
registry assigns the name of the type string to the Pid.t. Multiple names
could be registered to one Pid.t, but only one Pid.t is defined per name.
This limitation could be bypassed by implementing a custom resolving actor
which would use a multimap data structure instead of a normal hashmap as
its name storage.

Actors are not always initialized in order which makes sure that a given
name exists when needed. An example of that could be recurrent communica-
tion, where both sides need the name of the other side. A couple of solutions
exist as if it is known that one actor A0 is going to be initialized before the A1,
then A1 waits for the name and sends its PID to the first one. This strategy
is not possible when actors are not created sequentially in one process.

Resolver behavior solves this problem by introducing a way of subscribing
to the concrete name. When the name gets assigned PID, then the actor
subscribed to that event is notified about it. This way one side could wait for
the name without physically blocking the thread execution.

Name resolving is useful for supervisor behavior too because PIDs are not
transferable, and so they become obsolete when actors happen to be restarted.
The supervisor does not provide PID addresses of its actors. Instead, he
registers their names after spawning. Names are part of the recipe definition.

27

Chapter 3
Implementation

This chapter discusses the implementation details of the Jude actor framework.
It provides concrete examples of how the framework can be used.

3.1 Serialization
Messages, that are sent over the network are serialized to the Bin_prot format.
This is mostly facilitated by the PPX plugin which generates the correspond-
ing serialization and deserialization code. However, the generated API is not
easy to use. The reason is that PPX’s focus is on performance rather than
user-friendliness.

Because of this, Jude includes helper functions, defined in the binable
module, that are used by its implementation to make serialization more man-
ageable. The centerpiece of the binable module is type Binable.m which is
first-class module type wrapping Bin_prots own Binable.S module. This
type is polymorphic, so unlike marshal deserialization of the message is type-
safe.

The signature of the binable module can be seen in the Listing 3.1. Module
serializes to two different formats, buffer defined by Bin_prot and bytes from
the standard library. The underlying type of the Buffer is Array1.t from
the standard library [32, Ch. 25.4 Module Bigarray], which makes the type
compatible with a variety of other types like libuv buffer type. It is convenient
because serialization can be written right to the network connection, without
intermediate representation.

To use these functions you need to first create a module with the type of
data you want to serialize. These functions take a first-class module because
it is the way to generalize simple functions in the language. OCaml does not
have a function or operator overloading so there would be a need to have
functions for every message type that is defined in the system.

The bytes version of the interface returns digest for checking if types match.
Two different types are defined to make sending encoding messages possible.

29

3. Implementation

type 'a Binable.m =
(module Bin_prot.Binable.S with type t = 'a)

val to_bytes : 'a m → 'a → string * bytes
val to_buffer : 'a m → 'a → Bin_prot.Common.buf

val to_buffer :
'a Binable.m →
'a →
Bin_prot.Common.buf

val from_buffer : 'a Binable.m →
?digest:string →
Bin_prot.Common.buf →
('a, string) result

Listing 3.1: Binable signature

Example message definition and usage of the binable module can be seen in
Listing 3.2.

module MyMsg = struct
type t =

| Foo of string
| Bar of int [@@deriving bin_io]

end

let buf =
Binable.to_buffer (module MyMsg) (Foo "baz")

Listing 3.2: Usage of the binable module

3.1.1 Matcher

A matcher is a combinator used for determining which message should trigger
which path and when the message should be consumed. It is similar to receive
function in erlang. Every actor must return a matcher. Jude defines basic
matchers to make the development of actors easier. The most useful ones are
react and case. With them, one can emulate pattern matching syntax used in
language. The reason for using this custom construct in place of the already
defined language construct is to make message passing more universal. Default
one only matches patterns of the same underlying type.

30

3.2. Backend

type message = string * bytes

type match_result = Matched | Next

type t = message → match_result
Listing 3.3: Matcher data type in Jude

The combinator takes a message (digest, the actual message in bytes) and
returns Matched to indicate that the matcher consumed the message. The
Next message is returned if the digest did not match with the type.

By using this combinator one could build complex matching strategies.
React matcher is the parent matcher which makes sure that all his children
would be processed. Case matcher matches the given bytes message to a
specified data type. If the match succeeds function that is associated with a
given matcher is called and the message can be pattern matched. One can
use multiple case matchers in one react function to simulate matching over
multiple message types.

When nothing matches, react returns error indicating that. If there is
a need for consuming messages even if the match did not happen, a special
matcher called the sink could be used. Sink accepts every message sent to it,
so react would not fail. The sink is built on top of the matcher called any. The
any matcher lets you define a function that is executed when any consumes a
message. It exists so programmers can define behavior when nothing matches.

Sometimes it is desirable to reject every message that is tried. For this
purpose, a block matcher is defined. It is used to indicate that no more
messages should be sent or when we need to throw out receiving messages
until the actor is ready. Jude logs rejected messages in the debug mode. This
is the default behavior, but Jude insists that Actor.beh returns a matcher.
Using an empty react matcher leads to the same functionality.

3.2 Backend
The backend module encapsulates communication with other arbiters. It runs
both discovery and main connection and provides subscription callbacks to
define behavior when a new main connection is established. It is written in a
way that provides the possibility to implement another backend and discovery
protocol. Arbiter is generalized by its backend, so another communication
protocol needs to implement this signature.

The conn type defines the connection data structure which is a pair of
string for IP address and int for a port number. Start method runs the
backend and subscribes callbacks on_disc for discovery and on_conn for the
main connection. Send takes connection with buffer and sends a message to

31

3. Implementation

module type B = sig
type conn = string * int

val server_conn : conn

val start :
on_disc:(conn → unit) →
on_conn:(Luv.Buffer.t → unit) → unit

val send : conn → Luv.Buffer.t → unit

end

Listing 3.4: Backend signature

that connection. If a connection is not already present, it tries to create one
with given parameters. This is just the signature and actual implementation
is a functor, which takes the Config module to configure the backend.

Config is filled by using the function called create_config. The reason
for using a function to create a module is to enable both main and discovery
connections to be configured optionally. Unlike functors, functions in OCaml
supports default arguments for their parameters.

The data structure representing the internal state can be seen in the List-
ing 3.5. The server field defines libuv type for the TCP server. This is ini-
tialized by the main connection and is used for reliable communication with
other arbiters.

type t = {
server : Luv.TCP.t;
discovery : Discovery.t;
clients : (Conn.t, Luv.TCP.t) Hashtbl.t;
send_ch : (Conn.t * Luv.Buffer.t) Channel.t;

}
Listing 3.5: Backend data type

The discovery field holds the main type used by the Discovery module,
used for arbiter finding arbiters on the local network. It does that by re-
peatedly sending messages about its connection address and port. UDP is an
unreliable transport protocol so there is a chance that the message would not
be delivered. It is not an issue because eventually it will be delivered and
the whole message could be sent in one datagram. Multicast does not support
TCP [51, Introduction], because of its client-server nature. Even though other

32

3.3. Actor

transport layer protocols exist which are more reliable decision was made to
use the UDP protocol.

All connections established by the backend module are defined in the
clients field. It is a hash table that maps connection type (used to define
backend and sent over when discovery stage takes place) to the libuv TCP
type. When new arbiter is discovered its connection is saved to this field after
establishment. When a connection is terminated record associated with the
terminated connection is removed from the hash table.

Lastly, backend defines send_ch. Libuv is not a thread-safe library and
Jude got two threads. The main one runs the libuv event loop and the second
one schedules individual actors to run. That means there is a need for some
synchronization when sending messages from actors to a remote arbiter. For
these purposes, libuv defines the async handler [52]. Async handler registers
up front initialized function which can be run on the event loop and defines
send function, which is thread-safe. This callback function can be used to
interact with other Luv handlers (like the TCP handler), which are not thread-
safe.

Every time actors send a message that needs to be delivered to a remote
arbiter, it gets stored to the channel type and the async handler is called.
Handler consumes messages one by one and sends them to connections defined
in the clients field. Messages that should be delivered to an arbiter without
records in the clients field are ignored. Data pushed to the channel consist
of the connection handler and buffer with a message.

Channel data structure is used instead of a queue, because of async handler
implementation. It does not guarantee that every call to the handler will run
the callback [40, Ch. Inter-thread communication]. Channels try to consume
all messages delivered and stop consuming when there are no more messages
left. It is safe to call the async handler even when no messages are being sent.

3.3 Actor

Multiple versions of the actor implementation were tried over the duration
of this thesis. In the beginning, actors were supposed to leverage first-class
modules heavily. The actor had its type of message and receive function
and these two parts were wrapped to the FCM. The first-class module does
have a performance impact, so using it is always weighted by its drawbacks.
Additionally, they are verbose and heavy usage of them clutters the code.

Object and classes were tried too, but because they are not that common
in the OCaml world and library should be idiomatic they were abandoned.
When experimenting with the designs after some time it was apparent that
there is no need for grouping the type of message and behavior. For this
reason, the final design choice settled on just using a function.

33

3. Implementation

Two major types are defined by the actor. The first one is Actor.beh. It
describes a function that takes Actor.t of the actor and outputs Matcher.t.
This type is used when spawning actors and corresponds to the basic declare
construct.

The second type defined in the actor module is Actor.t this type defines
the internal structure used by an actor. The type is not accessible outside
the module. It stores actors state such as PID, so it can access it inside the
behavior function. For accessing PID, function self_pid, defined in the actor
module, is used.

Every actor owns a mailbox to which raw messages are sent. The mailbox
is located in the Actor.t. It is implemented as a reference to an immutable
queue because the FIFO data structure was needed. Additionally, by using an
immutable data structure, one can process messages while getting new ones.
The queue is taken from the containers library. Messages in the mailbox are
processed using process_message function, which takes another function to
determine if the message should be removed from the mailbox. The algorithm
used for message receiving was inspired by Erlang’s mailbox [50]. When re-
ceiving the message, the mailbox tries to match the message to given matchers.
If matchers cannot consume the message it goes to local stack until a message
is matched. After matching the message everything in the stack is pushed
back to the queue preserving original ordering. For that reason, the algorithm
needs to have a good time complexity for pushing both to the front and the
back of the queue. The algorithm can be futher improved by not recomputing
the stack on every match. The only way for the messages in the stack to
match is a call to become function.

It is implemented as a reference to a immutable single list because there
is no need for random access to a specific index. Messages in the mailbox are
processed using process_message function, which takes another function
to determine which messages were processed. The function takes a list of
messages that are currently in the mailbox and returns messages that are not
processed. Thanks to the immutability of the list messages can be received,
even when processing happens. The returned list is merged to messages that
came in the meantime.

Continuation is the actual matcher that is set up in the actor. The rep-
resentation consists of mutable reference holding Matcher.t variable. OCaml
supports explicit mutable variables by prefixing fields with mutable keyword.
Reference wraps given value in the record, which has only one mutable field.
It is a syntax sugar for a mutable variable in the OCaml [32, Ch. 1.5 Imper-
ative features]. Actor initialization sets this continuation field to the block
matcher, so the messages are not lost in the initialization phase.

Both links and monitors of an actor are defined in the Actor.t, but they
should not be used directly. They exist here as a mere data structure and for
them to work one needs to use wrapper functions inside the arbiter. Arbiter
versions link actors bidirectionally, unlike this API which links only first one

34

3.4. Arbiter

module type ARBITER = sig
val run : unit → unit
val spawn : Actor.beh → Pid.t
val spawn_link : Pid.t → Actor.beh → Pid.t
val send : Pid.t → 'a Binable.m → 'a → unit
val link : Pid.t → Pid.t → unit
val register : string → Pid.t → unit
val unregister : string → unit
val get_name : string → Pid.t option
val resolve_name : string → Pid.t → unit
val exit : Pid.t → System.Msg_exit.t → unit
val unmonitor : Pid.t → Pid.t → unit
val monitor : Pid.t → Pid.t → unit
val become : Actor.t → Actor.beh → unit

end
module Make : functor (_ : Backend.B) → ARBITER

Listing 3.6: Arbiter signature and Make functor defining the arbiter

to the second one.
Lastly, the actor defines flags that could be set up to change internal

behavior for the actor. An example of such a flag could be `Trap_exit flag
used to deny an actor its exit capabilities.

Some functions in the actor module operate only on Actor.t and not on
his Pid.t. This ensures that no one would influence the actor state from the
outside when it is not desired. It helps isolate actors more.

3.4 Arbiter
Arbiter signature defines common operations on actors that need some or-
chestration (communication of multiple actors). The actual implementation
of the arbiter signature is defined as a functor, which takes module with the
backend signature.

The run function is used as the last statement in the main function. It
runs the event-loop and blocks for the duration of the program. When no more
events are in the loop, run method returns and effectively exits the program.

The spawn function creates a new actor from Actor.beh that has type
Actor.t → Matcher.t. It generates a PID and maps it to the new actor.
There is a spawn_link version too, used when one wants to both spawn and
link itself to the new actor.

For sending messages between actors, send function is implemented. It
checks whenever the message is addressed to a local or remote actor, based
on the PID. If it is a remote PID, arbiter wraps the given message to the

35

3. Implementation

Actor
Message
sending

remote
message, pid

Backend
send channel

ToActor:
pid, digest, msg

Message
serializing

buffer,
conn

Sending
message to
connection

Remote arbiter
Message
routing

Concrete actor
mailbox

digest,
bytes

Matching
message

Remote
actor

typed
message

digest,
bytes

TCP packet with serialized toActor message

ToActor:
pid, digest, msg

Figure 3.1: Data flow of the remote send

Deliver_msg message type which takes PID, a digest of the message, and the
message itself in bytes. After sending the message, it is routed by destination
arbiter to the right mailbox and schedules assigned actor for the execution.
When an actor is scheduled, it tries to consume the message. If message con-
sumption succeeds, it removes the message from the mailbox. As seen in the
Listing 3.6, the send function uses the binable type defined in the serialization
chapter. Messages that are directed to unknown arbiters will be discarded
because Jude does not guarantee delivery and applications using Jude should
be ready to handle this kind of situation. Whole remote communication can
be examined in the Listing 3.1. Labels on the arrows define the data format
used for sending between processes which are represented by squares.

The register function is used to assign a name to a PID. When the
register is called, arbiter sends a notification to others with diff containing
the change. So all register data is globally distributed. When a new connection
is established registered names are sent as part of Ready message.

The get_name function tries to get the PID for the given name and throws
an exception if it fails. The function should not be used if it is possible that
registering the name would not happen before this call. It is prone to race
conditions and should be used only in a local setting. One cannot ensure that
the arbiter would send the ready message containing the names before this
call happens.

If subscription to a remote arbiter is needed, resolve_name should be used.
It subscribes given PID for this name. So when the PID becomes available,
a message of type Resolution_msg.t is sent. An actor could match for this
message and retrieve the needed PID. In case the name is already resolvable,
resolve_name sends the message immediately.

Resolving code this way involves a lot of repetition. Every actor that
wants to resolve a message needs to wait for the message to be delivered,

36

3.4. Arbiter

then change its behavior to the actual one it was designed for. Higher-level
API is defined around resolving capabilities to abstract away working with
the Resolution_msg.t directly. A user of the resolver actor needs to provide
a name to register and a function which takes PID and outputs Actor.beh.

This actor is located in the Beh module. It is a functor that takes the
arbiter module. Generalization over the Arbiter module is necessary because
it needs to spawn new actors. It works by calling resolve_name function and
then match for the message. After the name is resolved, it spawns a new actor
and exits itself.

Link and monitor functions are low-level tools for creating hierarchies of
actors. Links are designed for direct use with the spawn_link function. They
are suitable for defining actor chains where if one actor in the chain fails, all
of them do. If some of them want to free resources it holds it should use
`Trap_exit flag, catch the message free the resources, and exit itself.

It is better to use higher-level APIs for monitoring than primitives defined
in the Arbiter module. Jude’s behavior library defines generic supervisor to
manage groups of actors standardly.

Similar to the resolve behavior, the supervisor behavior is a module functor
that takes Arbiter. It takes a list of recipes, which are used to initialize
supervised actors. A recipe is a record consisting of a name, behavior function,
and on_error field. It initializes actors based on their recipes and registers
them by their names. The on_error field is used to determine if throwing the
exception should result in the actor reinitializing.

The behavior defines type t. The type is a record composed of the policy
which the supervisor uses, recipes, and running actors. Recipes are stored in
an immutable map where the key is the name of the resulting actor and value
of the actual recipe that came by the input parameter. Running is defined as
a hash table mapping name to the actual PID.

After a supervised actor exits, a notification is sent to the supervisor. This
notification is a composite of two things, the reason why an exit happened
and which actor was exited. If an error is the cause actor exited, then the
supervisor logs the reason why that happened. After that, it checks its strategy
to determine what to do next.

For One_for_one strategy, supervisor retrieves its recipe and replaces old
PID, which he got from the exit message, from the running hash table by
the new one which he got by spawning the actor using its recipe. Both the
mailbox and the state of the actor are lost using this supervisions.

The All_for_one strategy is more destructive. When this policy is set,
then all actors are reinitialized from recipes. To do that it needs to stop
monitoring all supervised actors otherwise monitoring would immediately add
another message and the supervisor would exit its actors indefinitely.

Actors can exit in multiple ways. One way of doing that is to explicitly
call the exit function. It takes PID and a type of exit. Normal type indicates

37

3. Implementation

that exiting was not caused by an error state, unlike the error type. Error
type takes string describing why the error happened.

In both ways, arbiter looks up all supervisors and sends them a message
that the actor is down. Then it looks up all the linked actors and exits them
too.

Error handling in the Jude library is managed by monitors too. If an
exception is thrown in the actor, the special message `Exception is sent to all
of its monitors. Supervisor then determines, based on the recipe, if it should
ignore the exception or reinitialize the actor.

3.5 Build system and the package manager

Integration in the language ecosystem is a crucial part of library development.
The build system should be idiomatic to the language community and for that
reason build system called Dune was chosen.

Dune focuses mainly on the OCaml and is not usable as a general-purpose
build system. This means that its functionality and workflow is tailored to
OCaml and languages that are part of the ecosystem (ReasonML, Coq). It is
tightly coupled to the OCaml tools (testing frameworks, linting, formatting),
[53] which is a good thing because it decreases the entrance level for new
developers.

As a format of choice dune uses s-expressions for its definition. Good
support of this format and ease of processing (this format is capable of rep-
resenting both code and data) in the OCaml language is the reason why they
picked it. Example of configuration can be found in Listing 3.7 or in List-
ing 3.8.
(library
(name jude)
(public_name jude)
(flags

(:standard
-safe-string
-w
+A-48
-warn-error
+A-3-44))

(libraries luv bin_prot uuidm logs)
(preprocess

(pps
ppx_bin_prot ppx_deriving.eq)))

Listing 3.7: The dune file

(lang dune 2.0)
(name jude)
(generate_opam_files true)

Listing 3.8: The dune-project file

The project file should be in the root of the project and is used by dune to
determine the source tree for other packages. It names the dune version used
for libraries as well as the name of the project. Every package in the project
has its dune file. This file defines the build configuration that dune uses for

38

3.6. Testing

compiling that package. Jude has three packages in the project. The main
library, testing library, and example library. Dependencies packages need are
specified under the library key. If a package uses PPX, then it needs to be
declared under the preprocess key.

Dependencies needed by libraries are installed by the package manager
called OPAM. It is used to install both language versions in the OCaml ecosys-
tem as well to install libraries project needs. Multiple switches, independent
environments, can be defined to isolate unrelated projects and to prevent col-
lisions of the library versions.

When everything is set up, calling dune build from the command line
builds all the packages defined in the project you are currently in. Additional
commands that are automatically available exist for installing binaries, testing,
and executable running purposes.

3.6 Testing
Jude testing happens in the lib_test package using a library called Alcotest.
This library generates a compilable program that could be run to determine
if tests pass or not. Dune provides integration for the testing using the test
package dune file. By specifying that package is used to test the code, dune
generates a new command called dune test which compiles the code and runs
it from that directory.

Alcotest provides a simple comparison and checking primitives. It is not a
full-featured testing framework and expects users to wrap those primitives to
make higher-level API. Type implements TESTABLE signature so the Alcotest
can use its checks on them. Example in the Listing 3.9 shows the test that
makes sure on_name callback is called when register assigns PID to the name.
The check function seen in the example is used to compare data equality of
an TESTABLE module.

let test_on_name_callback () =
let reg = Registry.create () in
let succ = ref false in
let pid = Pid.create ("127.0.0.1", 7000) in
Registry.on_name reg "test" (fun _ → succ := true);
Registry.register reg ~local:true "test" @@ pid;
Alcotest.(check bool) "should be succ" !succ true

Listing 3.9: Example test

3.7 Documentation
Idiomatic OCaml library writes their documentation to .mli files as special
documenting comments. When those comments are made library called Odoc

39

3. Implementation

takes them and generates web documentation. It provides good linking be-
tween comments, so other types and functions can be referred from the com-
ment. It creates links in the HTML document. The Odoc is a low-level gen-
erator, which is wrapped by a build system to provide higher-level API. Dune
does that by using command dune build @doc. Documentation generated
for Jude is accessible on the enclosed CD.

3.8 Logging
Without logging, it is hard to determine what went wrong. OCaml ecosys-
tem provides logging infrastructure in the form of a library called Logs [54].
Logging function lets format the message using Formatter module from the
standard library. Functions for logging messages do not take the formatted
string directly instead they take lambda function which returns the formatted
string to decrease the performance impact of message creation. The lambda
function is called only if the level of the log record is lower or equal to the
configured value.

Every library should use its log source, which this then used for configuring
the logger. Jude logging location and debug level can be configured from the
main function of the program.

3.9 Project setup
The section introduces the reader to Jude’s integration with developer tools.
Github is used for hosting the code. When push is made to a branch Travis-CI
runs scripts provided in the scripts folder. Firstly, Travis compiles the Jude
library in three different OCaml versions. Then it runs the test and if they
succeed, it generates a new version of the documentation. For the master
branch, the Odoc documentation is hosted at Github pages.

3.10 Case study – The Heat Aggregator
Classic concurrency and Akka actor versions of this example were already
introduced. Jude’s version in the Listing 3.10 is more verbose than the Akka
version, but that is because of OCaml being more explicit language. Some
implementation details (as arbiter and backend initializations) were omitted
to create a more concise snippet. The full working example can be found in
the enclosed CD.

Unlike the Akka version, Jude uses a function to create an actor and
no other methods are invoked. Akka defines user-overridable life-cycle hooks
which are used to influence the startup and teardown of an actor. In Jude, the
start-up hook is just the body of a function. The actual actor is represented
by the continuation stored in the matcher. The tear-down is implemented by

40

3.10. Case study – The Heat Aggregator

module Heat_request = struct
type t = Add_record of float | Compute_avg of Pid.t [@@deriving bin_io]

end

module Heat_reply = struct
type t = float option [@@deriving bin_io]

end

let sum_arr = Array.fold_left Float.add 0.

(* The actor declaration *)
let heat_aggregator ~size _ctx =

let window = Array.make size 0. in
let actual = ref 0 in
(* Using imperative constructs
because it is easier in this scenario *)
let full = ref false in
(* Local open to get combinators in the scope *)
let open Matcher in
case (* Using case matcher without react because of one case*)

(module Heat_request)
(function

| Add_record f →
actual := (!actual + 1) mod size;
if size - 1 == !actual then full := true;
window.(!actual mod size) <- f

| Compute_avg pid →
let msg =

if !full then
Some (sum_arr window /. Int.to_float size)

else None
in
Arbiter.send pid (module Heat_reply) msg)
Listing 3.10: The heat aggregator in the Jude library

trapping the exit and handling it when the exit message is received. Encap-
sulation is provided by local variables that are referenced in the continuation.

41

Chapter 4
Comparison to Other Actor

Libraries

The chapter compares three modern actor systems, which were the inspiration
for Jude design. Actor systems that are discussed in this chapter are Erlang,
Akka and distributed [50, 26, 55]. The former two are picked for their long-
lasting production usage. The third actor library was chosen because it is
written in OCaml and represents an alternative to Jude in the same ecosystem.

4.1 Erlang

Erlang itself is an actor language, so there is first-class support for the actor
model. It was the first industrial-strength actor model implemented to tackle
distribution problems related to telephony switching. It uses the Erlang OTP
framework to provide higher-level API to its primitives for monitoring and
name resolving [50].

Jude took inspiration in the design of these higher-level concepts. It could
not effectively use Erlang’s process-based approach to actor spawning, because
there is no multi-core support in the language and erlang leverage’s its runtime
system to guarantee process memory isolation.

Jude used similar concepts and signatures to those in erlang. Both define
resolving, monitoring, and linking functions. Even if they look similar inter-
nal implementation differs, because the runtime system of the systems is not
compatible. The only difference in the API is that OCaml explicitly passes
actor identification to the functions, whereas erlang determines which actor
should be affected by the process from which was the function called. It can
be done, but passing identification is more flexible for implementing certain
patterns. Additionally, it would mean a more mutable state in the arbiter (to
change actually running actor).

Erlang has a rich ecosystem and a standard library called OTP. The ecosys-

43

4. Comparison to Other Actor Libraries

tem defines supervisor behavior, which features generic supervision for pro-
cesses in the Erlang language [56]. Jude used its recipe system to implement a
simpler version of the supervisor. There are some strategies missing and only
the shutdown of an actor is currently supported.

Globally available register for assigning names to the processes is pro-
vided by the OTP. API differs more in this feature. Erlang lets function
decide which PID is the right one in the case of a name clash. Jude ignores
clashes and just replaces the PID without checking. Additionally, Jude pro-
vides resolve_name function and resolver behavior to make distributed name
resolving more accessible. Erlang does not provide this kind of functionality
out of the box.

4.2 Akka

Akka is an actor framework created for JVM languages Scala and Java. It is
one of the most widespread actor libraries. Akka provides a hybrid system for
actors, where threads used by scheduler are extended when all threads block
their computation, in a non-preemptive way. If an actor ends its computation
explicitly, the underlying thread is reused by another actor which is ready to
be run. Comparison is using the newer actor typed API [57].

Jude’s actor running is similar to Akka’s cooperative switching. Both
register continuation to match when new messages come. Akka defines the
actor as a class extending the Actor trait. It provides two functions to handle
communication with actors. The onMessage is used for normal communication
and the onSignal is used for erroneous states. Jude uses one function and
message receiving way for both signals and messages, so when the user knows
how to handle messages he automatically knows how to handle signals.

Actor’s state changing differs in Akka significantly in comparison to the
Jude library. Actors in the Akka return next behavior (which is alternative
to matchers in the Jude), every run needs to define what kind of behavior
changes should happen for the next message. Jude lets you use the same
behavior until changed explicitly by calling the become from the body of a
function.

The supervisor strategy is not baked into the actor definition when using
Jude. In Akka, the parent actor defines a supervisor strategy for their children.
Parent reference is passed when creating a new actor (similar to spawn_link)
and that actor is automatically responsible for handling the supervision, unlike
in the Jude where the supervisor is just a function (same like any other actor),
which has only one job and that is to supervise its children. It is still possible
to implement failure handling the way Akka does by leveraging actor links.

44

4.3. Distributed

4.3 Distributed

Distributed is the only relatively active actor framework for OCaml. Other
frameworks are in early alpha, or they are not supported anymore. Distributed
is inspired by Cloud Haskell implementation a lot and tries to bring typed
actors to the OCaml language.

There are some differences between Jude and distributed. One of them is
that distributed uses Lwt as its backend and builds on top of it. That is good
for ordinary programmers that have experience with the Lwt concurrency
because it works the same way. It is possible to add this compatibility to
Jude by promisyfing callback API and using Lwt as the promise type.

Another difference lies in the way distributed handles messages. It defines
messages that actors can send and receive in a way that cannot be changed.
One can change the way messages are handled, but not the type of messages
that are handled. One way to solve that is to define all acceptable messages
when initializing the actor, even when not every message is going to be used
immediately. The reason is that it takes out the need to send and receive
function being polymorphic over their parameters. Jude does not mind being
more verbose for the sake of more dynamic behavior.

Distributed uses Marshal to serialize messages. The rebuttal was made
why Jude does not use Marshal in the Serialization chapter.

Matchers are similar in Jude and distributed. Distributed uses a list of
matchers where every case is a matcher, unlike Jude where matcher is type of
function. Functions are easier to combine using combinatoric API.

4.4 Actor model flavor of Jude

As seen in chapter Flavours of the actor system, there are lots of different
actor model designs. Jude took inspiration form all of them, but still, its
design lean mostly to the classic actor design. State changes are made by
using become with new behavior. The sequential subset is functional. Both
mutable state and immutable state are supported by default, but the idiomatic
way to change the state is to use become and pass a new state as a parameter.

Active objects as used by Yonezawa guarantee message sending order,
which is the main implementation detail that differentiates Jude from AB-
CL/1. Usage is different too because only past messages are available in Jude
by default. One can build other types of messages by using past message only
[28]. Jude did not find this particular feature that useful to justify adding it.

Erlang and its process-based model inspired the looks of the Jude API.
It uses similar constructs to provide supervision and name resolving. Addi-
tionally, actors in the Erlang are just a function, which holds true to Jude’s
implementation as well. Differences lie mainly in the backend of both imple-
mentations. Erlang isolates every actor to its own lightweight process where

45

4. Comparison to Other Actor Libraries

no memory is shared. OCaml does not have this kind of capabilities built-in
so it would be hard to implement that. Sharing memory in Jude directly
is undefined behavior as there is no way to detect that. Jude has only one
process which switches actors when they choose to end their computation.

Jude’s backend is built on an event-driven library called Libuv. Events
are a significant part of its design. The state and behavior of the actor are
wrapped in the callback. De facto all actors in Jude work on an event basis.
This is where the similarities with Communicating Event-Loops ends. Jude
does not provide two types of communication as the E language does. Their
internals differs a lot, because E language defines event-loop per actor, whereas
Jude has one internal event-loop which processes all events that are sent to it.
Vats are comparable to arbiters, but communication to actors does not differ
based on their location, as in Vats. This makes Jude more consistent in terms
of sending messages.

46

Chapter 5
Future Work

The presented Jude actor framework could be extended in many directions.
For example, common protocols that are used outside of our actor system are
in need, like HTTP or Websocket protocols. These are going to be imple-
mented from scratch or maybe after promisyfing Jude, existent libraries build
on top of Async and Lwt libraries can be leveraged. Jude should integrate
operating system calls and hide low-level code that is used to communicate
with it, behind actors.

Its future enhancements are also going to be influenced by new features
implemented in the language. For example, multi-core support is going to be
introduced to the language soon [58], which could have shaken the present
implementation of the Jude actor model. It is going to introduce algebraic ef-
fects [59], where continuation could be implemented not by returning matcher
from the function, but by yielding the computation to the scheduler at any
given time. By using domains [60], OCaml processes are going to support
parallel hardware.

In a broader time span, there is a possibility that modular implicits are
going to be implemented [61]. This would make some construct in the library
less verbose, thanks to the introduction of ad-hoc polymorphism. It is similar
to constructs such as type classes in Haskell [62], or traits in the Rust lan-
guage [63]. For example Arbiter.send function would not need to specify a
module, from which serialization functions are taken as seen in the Listing 5.1.
Instead, compiler would infer module to use implicitly. Same goes for match-
ers omitting first-class module that needs to be passed for the deserialization
to work.

47

5. Future Work

(* Defined in the library *)
module type Binable = sig

type t [@@deriving bin_io]
end

(* Defined by the user *)
implicit module Greet = struct

open Bin_prot.Std

type t = Adioso of string [@@deriving bin_io]
end

(* Sending message of type Greet*)
let () =

(* Before implicits *)
Arbiter.send (module Greet) (Adioso "ola!")
(* After implicits *)
Arbiter.send (Adioso "ola!")

Listing 5.1: Arbiter send using modular implicits

48

Conclusion

The goal of this thesis was to design and implement the actor model in OCaml.
The result is Jude, an OCaml framework for actor-based concurrency. Next
to the core operations such as spawning, messaging, and state-changing, it
also supports actor supervision and location transparency. This allows one
to develop a fully distributed concurrent applications in Jude using the actor
model of computation.

The thesis briefly introduced general concurrency concepts and classic con-
currency. Next, the actor model was described with examples of flavors ex-
isting in the field. Background needed to understand the thesis was wrapped
up by familiarizing readers with the OCaml language. When the background
needed for the work was established, the actor model was analyzed to define
features. The library was then designed to meet those criteria. The design
was then converted to the implementation with descriptions of problems that
were needed to overcome. The resulting actor library was at the end compared
to its alternatives.

This thesis gives a taste of designing and implementing libraries for a
functional programming language. One should additionally take a look at
other concurrency models and libraries (like Lwt or Async) used by the OCaml
and learn more about this interesting language. The same applies to the
actor model. For almost fifty years it helped to shape the concurrent world.
Remember that labor becomes easier when the right tool (or abstraction) is
used for the job.

49

Bibliography

1. SUTTER, Herb. The Free Lunch Is over: A Fundamental Turn toward
Concurrency in Software. Dr. Dobb’s journal. 2005, vol. 30, no. 3, pp.
202–210.

2. Successful Companies Use Erlang and Elixir [online]. 2018 [visited on
2020-06-02]. Available from: https://web.archive.org/web/20200221090407/
https://codesync.global/media/successful-companies-using-
elixir-and-erlang/.

3. Who Is Using Orleans? | Microsoft Orleans Documentation [online]. 2020
[visited on 2020-06-02]. Available from: https://web.archive.org/
web/20200122150922/https://dotnet.github.io/orleans/Community/
Who-Is-Using-Orleans.html.

4. ARMSTRONG, Joe. Erlang - A Survey of the Language and Its Indus-
trial Applications, pp. 8.

5. BEN-ARI, M. Principles of Concurrent Programming. 2nd ed. Addison-
Wesley, 2006. Prentice Hall International Series in Computer Science.
ISBN 978-0-321-31283-9. Available also from: https://books.google.
cz/books?id=oP-2hpMEdb8C.

6. DIJKSTRA, E. W. Solution of a Problem in Concurrent Programming
Control. Communications of the ACM [online]. 1965, vol. 8, no. 9, pp.
569 [visited on 2020-06-02]. ISSN 0001-0782. Available from DOI: 10.
1145/365559.365617.

7. JONES, Simon Peyton. Beautiful Concurrency. Beautiful Code: Leading
Programmers Explain How They Think. 2007, pp. 385–406.

8. BUSTARD, DavidW. Concepts of Concurrent Programming. CARNEGIE-
MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST,
1990. Available also from: https://resources.sei.cmu.edu/asset_
files/CurriculumModule/1990_007_001_15815.pdf.

51

https://web.archive.org/web/20200221090407/https://codesync.global/media/successful-companies-using-elixir-and-erlang/
https://web.archive.org/web/20200221090407/https://codesync.global/media/successful-companies-using-elixir-and-erlang/
https://web.archive.org/web/20200221090407/https://codesync.global/media/successful-companies-using-elixir-and-erlang/
https://web.archive.org/web/20200122150922/https://dotnet.github.io/orleans/Community/Who-Is-Using-Orleans.html
https://web.archive.org/web/20200122150922/https://dotnet.github.io/orleans/Community/Who-Is-Using-Orleans.html
https://web.archive.org/web/20200122150922/https://dotnet.github.io/orleans/Community/Who-Is-Using-Orleans.html
https://books.google.cz/books?id=oP-2hpMEdb8C
https://books.google.cz/books?id=oP-2hpMEdb8C
http://dx.doi.org/10.1145/365559.365617
http://dx.doi.org/10.1145/365559.365617
https://resources.sei.cmu.edu/asset_files/CurriculumModule/1990_007_001_15815.pdf
https://resources.sei.cmu.edu/asset_files/CurriculumModule/1990_007_001_15815.pdf

Bibliography

9. RAYNAL, M. Concurrent Programming: Algorithms, Principles, and Foun-
dations. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-32027-9. Avail-
able also from: https://books.google.cz/books?id=0a1AAAAAQBAJ.

10. TANENBAUM, Andrew S.; BOS, Herbert. Modern Operating Systems.
Pearson, 2015. ISBN 978-0-13-359162-0. Available from Google Books:
9gqnngEACAAJ.

11. SOTTILE, M.J.; MATTSON, T.G.; RASMUSSEN, C.E. Introduction to
Concurrency in Programming Languages. CRC Press, 2009. Chapman
& Hall/CRC Computational Science. ISBN 978-1-4200-7214-3. Available
also from: https://books.google.cz/books?id=J5-ckoCgc3IC.

12. HOARE, C A R. Communicating Sequential Processes, pp. 260.
13. AGHA, Gul A. ACTORS - a Model of Concurrent Computation in Dis-

tributed Systems. MIT Press, 1990. MIT Press Series in Artificial Intelli-
gence. ISBN 978-0-262-01092-4.

14. HEWITT, C; BISHOP, P; STEIGER, R. A Universal Modular Actor
Formalism for Artificial Intelligence. IJCAI3. In: Proceedings of the 3rd
International Joint Conference on Artificial Intelligence. 1973, pp. 235–
245.

15. LIEBERMAN, Henry. A Preview of Act 1. 1981. MASSACHUSETTS
INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB.

16. HEWITT, Carl; MEIJER, Erik; SZYPERSKI, Clemens. The Actor Model
(Everything You Wanted to Know, but Were Afraid to Ask). 2012. Avail-
able also from: https://channel9.msdn.com/Shows/Going+Deep/
Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-
wanted-to-know-but-were-afraid-to-ask.

17. HOARE, C. A. R. Communicating Sequential Processes. Communica-
tions of the ACM [online]. 1978, vol. 21, no. 8, pp. 666–677 [visited on
2020-04-25]. ISSN 0001-0782. Available from DOI: 10.1145/359576.
359585.

18. GERRAND, Andrew. Share Memory by Communicating. The Go Blog.
2010. Available also from: https://blog.golang.org/codelab-share.

19. Distributed Haskell [online] [visited on 2020-05-06]. Available from: https:
//github.com/haskell-distributed.

20. Prototypes vs Classes Was: Re: Sun’s HotSpot [online] [visited on 2020-
06-04]. Available from: http://lists.squeakfoundation.org/pipermail/
squeak-dev/1998-October/017019.html.

21. KAY, Alan C. The Early History of Smalltalk. In: History of Program-
ming Languages—II. 1996, pp. 511–598.

52

https://books.google.cz/books?id=0a1AAAAAQBAJ
http://books.google.com/books?id=9gqnngEACAAJ
https://books.google.cz/books?id=J5-ckoCgc3IC
https://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-afraid-to-ask
https://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-afraid-to-ask
https://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-afraid-to-ask
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1145/359576.359585
https://blog.golang.org/codelab-share
https://github.com/haskell-distributed
https://github.com/haskell-distributed
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html

Bibliography

22. HALLIDAY, Leigh. Ruby Metaprogramming - Method Missing [online]
[visited on 2020-04-28]. Available from: https://www.leighhalliday.
com/ruby-metaprogramming-method-missing.

23. THE PHP DOCUMENTATION GROUP. PHP - Manual [online]. 2020
[visited on 2020-05-29]. Available from: https://www.php.net/manual/
en/language.oop5.overloading.php#object.call.

24. DE KOSTER, Joeri; VAN CUTSEM, Tom; DE MEUTER, Wolfgang. 43
Years of Actors: A Taxonomy of Actor Models and Their Key Proper-
ties. In: Proceedings of the 6th International Workshop on Programming
Based on Actors, Agents, and Decentralized Control [online]. Amster-
dam, Netherlands: Association for Computing Machinery, 2016, pp. 31–
40 [visited on 2020-04-28]. AGERE 2016. ISBN 978-1-4503-4639-9. Avail-
able from DOI: 10.1145/3001886.3001890.

25. AGHA, Gul. Concurrent Object-Oriented Programming. Communica-
tions of the ACM [online]. 1990, vol. 33, no. 9, pp. 125–141 [visited
on 2020-04-28]. ISSN 0001-0782. Available from DOI: 10.1145/83880.
84528.

26. BONÉR, Jonas. Introducing Akka - Simpler Scalability, Fault-Tolerance,
Concurrency & Remoting through Actors [online]. 2010 [visited on 2020-
04-29]. Available from: http://jonasboner.com/introducing-akka/.

27. YONEZAWA, Akinori; BRIOT, Jean-Pierre; SHIBAYAMA, Etsuya. Object-
Oriented Concurrent Programming in ABCL/1. In: AGHA, Gul; IGARASHI,
Atsushi; KOBAYASHI, Naoki; MASUHARA, Hidehiko; MATSUOKA,
Satoshi; SHIBAYAMA, Etsuya; TAURA, Kenjiro (eds.). Concurrent Ob-
jects and Beyond: Papers Dedicated to Akinori Yonezawa on the Occasion
of His 65th Birthday [online]. Berlin, Heidelberg: Springer, 2014, pp. 18–
43 [visited on 2020-04-29]. Lecture Notes in Computer Science. ISBN
978-3-662-44471-9. Available from DOI: 10.1007/978-3-662-44471-
9_2.

28. YONEZAWA, Akinori; BRIOT, Jean-Pierre; SHIBAYAMA, Etsuya. Object-
Oriented Concurrent Programming in ABCL/1. In: Conference Proceed-
ings on Object-Oriented Programming Systems, Languages and Applica-
tions [online]. Portland, Oregon, USA: Association for Computing Ma-
chinery, 1986, pp. 258–268 [visited on 2020-05-26]. OOPSLA ’86. ISBN
978-0-89791-204-4. Available from DOI: 10.1145/28697.28722.

29. MILLER, M. Robust Composition: Towards a Unified Approach to Ac-
cess Control and Concurrency Control 2006. Johns Hopkins: Baltimore,
MD. 2006, pp. 302.

53

https://www.leighhalliday.com/ruby-metaprogramming-method-missing
https://www.leighhalliday.com/ruby-metaprogramming-method-missing
https://www.php.net/manual/en/language.oop5.overloading.php#object.call
https://www.php.net/manual/en/language.oop5.overloading.php#object.call
http://dx.doi.org/10.1145/3001886.3001890
http://dx.doi.org/10.1145/83880.84528
http://dx.doi.org/10.1145/83880.84528
http://jonasboner.com/introducing-akka/
http://dx.doi.org/10.1007/978-3-662-44471-9_2
http://dx.doi.org/10.1007/978-3-662-44471-9_2
http://dx.doi.org/10.1145/28697.28722

Bibliography

30. CLEBSCH, Sylvan; DROSSOPOULOU, Sophia; BLESSING, Sebastian;
MCNEIL, Andy. Deny Capabilities for Safe, Fast Actors. In: Proceedings
of the 5th International Workshop on Programming Based on Actors,
Agents, and Decentralized Control. 2015, pp. 1–12.

31. MINSKY, Yaron; MADHAVAPEDDY, Anil; HICKEY, Jason. Real World
OCaml: Functional Programming for the Masses. " O’Reilly Media, Inc.",
2013.

32. LEROY, Xavier; DOLIGEZ, Damien; FRISCH, Alain; GARRIGUE, Jacques;
RÉMY, Didier; VOUILLON, Jérôme. The OCaml System Release 4.09:
Documentation and User’s Manual. 2019. Available also from: https:
//hal.inria.fr/hal-00930213. Intern report. Inria.

33. Janestreet/Ppx_let [online]. 2020 [visited on 2020-05-29]. Available from:
https://github.com/janestreet/ppx_let.

34. Concurrency, Parallelism, and Distributed Systems [online] [visited on
2020-05-01]. Available from: https://ocamlverse.github.io/content/
parallelism.html.

35. DOLAN, Stephen; WHITE, Leo; MADHAVAPEDDY, Anil. Multicore
Ocaml. In: OCaml Workshop. 2014, vol. 2.

36. VOUILLON, Jérôme. Lwt: A Cooperative Thread Library. In: Proceed-
ings of the 2008 ACM SIGPLAN Workshop on ML [online]. Victoria, BC,
Canada: Association for Computing Machinery, 2008, pp. 3–12 [visited
on 2020-04-26]. ML ’08. ISBN 978-1-60558-062-3. Available from DOI:
10.1145/1411304.1411307.

37. Async [online] [visited on 2020-05-01]. Available from: https://opensource.
janestreet.com/async/.

38. EPSTEIN, Jeff; BLACK, Andrew P.; JONES, Simon L. Peyton. Towards
Haskell in the Cloud. In: CLAESSEN, Koen (ed.). Proceedings of the 4th
ACM SIGPLAN Symposium on Haskell, Haskell 2011, Tokyo, Japan,
22 September 2011. ACM, 2011, pp. 118–129. Available from DOI: 10.
1145/2034675.2034690.

39. Libuv/Libuv [online]. 2020 [visited on 2020-05-13]. Available from: https:
//github.com/libuv/libuv.

40. MARATHE, Nikhil. An Introduction to Libuv. 2015. Available also from:
http://nikhilm.github.io/uvbook.

41. BACHIN, Anton. Aantron/Luv [online]. 2020 [visited on 2020-05-30].
Available from: https://github.com/aantron/luv.

42. MCCARTHY, John. Recursive Functions of Symbolic Expressions and
Their Computation by Machine, Part I. Communications of the ACM.
1960, vol. 3, no. 4, pp. 184–195.

43. RIVEST, Ronald; DUSSE, S. The MD5 Message-Digest Algorithm. 1992.

54

https://hal.inria.fr/hal-00930213
https://hal.inria.fr/hal-00930213
https://github.com/janestreet/ppx_let
https://ocamlverse.github.io/content/parallelism.html
https://ocamlverse.github.io/content/parallelism.html
http://dx.doi.org/10.1145/1411304.1411307
https://opensource.janestreet.com/async/
https://opensource.janestreet.com/async/
http://dx.doi.org/10.1145/2034675.2034690
http://dx.doi.org/10.1145/2034675.2034690
https://github.com/libuv/libuv
https://github.com/libuv/libuv
http://nikhilm.github.io/uvbook
https://github.com/aantron/luv

Bibliography

44. FEISTEL, Horst. Cryptography and Computer Privacy. Scientific Amer-
ican. 1973, vol. 228, no. 5, pp. 15–23. ISSN 00368733, 19467087. ISSN
00368733, 19467087. Available from JSTOR: 24923044.

45. Gocircuit/Circuit [online]. 2020 [visited on 2020-05-13]. Available from:
https://github.com/gocircuit/circuit.

46. HALLER, Philipp. Isolated Actors for Race-Free Concurrent Program-
ming. 2010. Available from DOI: 10.5075/epfl-thesis-4874.

47. GRAY, Jim. Notes on Data Base Operating Systems. In: Operating Sys-
tems, an Advanced Course. Berlin, Heidelberg: Springer-Verlag, 1978,
pp. 393–481. ISBN 3-540-08755-9.

48. AKKOYUNLU, Eralp A; EKANADHAM, Kattamuri; HUBER, Richard
V. Some Constraints and Tradeoffs in the Design of Network Commu-
nications. In: Proceedings of the Fifth ACM Symposium on Operating
Systems Principles. 1975, pp. 67–74.

49. LAMPORT, Leslie. Time, Clocks, and the Ordering of Events in a Dis-
tributed System. 1978, vol. 21, no. 7, pp. 8.

50. ARMSTRONG, Joe. Making Reliable Distributed Systems in the Pres-
ence of Sodware Errors. 2003. The Royal Institute of Technology Stock-
holm, Sweden.

51. DEERING, Steve E. Host Extensions for IP Multicasting [RFC 1112].
1989, no. 1112. Available from DOI: 10.17487/RFC1112.

52. Uv_async_t — Async Handle — Libuv Documentation [online] [visited
on 2020-05-30]. Available from: http://docs.libuv.org/en/stable/
async.html.

53. DIMINO, Jérémie. Dune Documentation. Available also from: https:
//dune.readthedocs.io/en/stable/overview.html.

54. Logs / Erratique [online] [visited on 2020-05-30]. Available from: https:
//erratique.ch/software/logs.

55. S.T. Essdotteedot/Distributed [online]. 2020 [visited on 2020-05-23]. Avail-
able from: https://github.com/essdotteedot/distributed.

56. Erlang – Supervisor [online] [visited on 2020-05-23]. Available from: https:
//erlang.org/doc/man/supervisor.html.

57. Introduction to Actors • Akka Documentation [online] [visited on 2020-
05-31]. Available from: https://doc.akka.io/docs/akka/current/
typed/actors.html.

58. SIVARAMAKRISHNAN, K. C.; DOLAN, Stephen; WHITE, Leo; JAF-
FER, Sadiq; KELLY, Tom; SAHOO, Anmol; PARIMALA, Sudha; DHI-
MAN, Atul; MADHAVAPEDDY, Anil. Retrofitting Parallelism onto OCaml
[online]. 2020 [visited on 2020-05-27]. Available from arXiv: 2004.11663
[cs].

55

http://www.jstor.org/stable/24923044
https://github.com/gocircuit/circuit
http://dx.doi.org/10.5075/epfl-thesis-4874
http://dx.doi.org/10.17487/RFC1112
http://docs.libuv.org/en/stable/async.html
http://docs.libuv.org/en/stable/async.html
https://dune.readthedocs.io/en/stable/overview.html
https://dune.readthedocs.io/en/stable/overview.html
https://erratique.ch/software/logs
https://erratique.ch/software/logs
https://github.com/essdotteedot/distributed
https://erlang.org/doc/man/supervisor.html
https://erlang.org/doc/man/supervisor.html
https://doc.akka.io/docs/akka/current/typed/actors.html
https://doc.akka.io/docs/akka/current/typed/actors.html
http://arxiv.org/abs/2004.11663
http://arxiv.org/abs/2004.11663

Bibliography

59. DOLAN, Stephen; ELIOPOULOS, Spiros; HILLERSTRÖM, Daniel; MAD-
HAVAPEDDY, Anil; SIVARAMAKRISHNAN, K. C.; WHITE, Leo. Con-
current System Programming with Effect Handlers. In: WANG, Meng;
OWENS, Scott (eds.). Trends in Functional Programming. Cham: Springer
International Publishing, 2018, pp. 98–117. ISBN 978-3-319-89719-6.

60. Ocaml-Multicore/Domainslib [online] [visited on 2020-05-31]. Available
from: https://github.com/ocaml-multicore/domainslib.

61. WHITE, Leo; BOUR, Frédéric; YALLOP, Jeremy. Modular Implicits.
Electronic Proceedings in Theoretical Computer Science [online]. 2015,
vol. 198, pp. 22–63 [visited on 2020-05-27]. ISSN 2075-2180. Available
from DOI: 10.4204/EPTCS.198.2.

62. WADLER, Philip; BLOTT, Stephen. How to Make Ad-Hoc Polymor-
phism Less Ad Hoc. [No source information available]. 1997. Available
from DOI: 10.1145/75277.75283.

63. KLABNIK, Steven; NICHOLS, Carol. Traits: Defining Shared Behavior
- The Rust Programming Language [online] [visited on 2020-05-31]. Avail-
able from: https://doc.rust-lang.org/book/ch10-02-traits.html.

56

https://github.com/ocaml-multicore/domainslib
http://dx.doi.org/10.4204/EPTCS.198.2
http://dx.doi.org/10.1145/75277.75283
https://doc.rust-lang.org/book/ch10-02-traits.html

Appendix A
Acronyms

API Application Programming Interface

AST Abstract Syntax Three

CD Compact Drive

CLE Communicating Event-Loops

CSP Communicating Sequential Processes

FCM First Class Modules

FFI Foreign Function Interface

FP Functional Programming

GIL Global Interpreter Lock

HOM Higher Order Modules

IO Input/Output

JSON Javascript Object Notation

JVM Java Virtual Machine

OPAM OCaml PAckage Manager

OS Operating System

PID Process ID

SRP Single Responsibility Principle

TCP Transmission Control Protocol

UDP User Datagram Protocol

57

A. Acronyms

DNS Domain Name Server

IP Internet Protocol

58

Appendix B
Contents of enclosed CD

README.md.........................the file with CD contents description
src.......................................the directory of source codes

jude..implementation sources
example implementation examples
lib... library source codes
lib_test...library tests
scripts...................................scripts used for CICD
README.md..............................README of the library

thesis..............the directory of LATEX source codes of the thesis
text..the thesis text directory

BP_Vardanjan_Narek_2020.pdf the thesis text in PDF format

59

	List of Listings
	Introduction
	Background
	Concurrency
	The correctness of a concurrent program
	Execution of concurrent processes
	Inter-process communication

	The actor model
	Actor
	Basic constructs
	Actor model vs CSP
	Similarities with object-oriented programming

	Flavors of the actor system
	Classic actor model
	Active objects
	Process-based actor model
	Communicating Event-Loops

	OCaml programming language
	Core language
	Module system
	Language extensions
	Concurrency in OCaml

	Analysis and Design
	Functional and non-functional requirements
	Functional requirements
	Non-functional requirements

	Scheduling actors and OS communication
	Serializing messages
	Arbiter
	Spawning
	PID (Process ID)

	Changing states
	Sending messages
	Receiving messages
	Monitoring actors
	Supervisor behavior

	Resolving names

	Implementation
	Serialization
	Matcher

	Backend
	Actor
	Arbiter
	Build system and the package manager
	Testing
	Documentation
	Logging
	Project setup
	Case study – The Heat Aggregator

	Comparison to Other Actor Libraries
	Erlang
	Akka
	Distributed
	Actor model flavor of Jude

	Future Work
	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

