
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague April 19, 2020

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Kernels for the Max Cut problem

 Student: František Koutenský

 Supervisor: RNDr. Dušan Knop, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of winter semester 2021/22

Instructions

MaxCut, a well-known NP-hard problem, is the following. We are given a graph G and a positive integer k.
The task is to determine if there is a cut of size at least k in G or not. Here, a cut is defined by a two-
partition (U,W) of the vertex set of G, denoted V(G), i.e., the union of U and W is V(G) and they do not
intersect. The size of a cut is the number of edges in G with one endpoint in U and the other endpoint in W.

It is known that MaxCut is fixed-parameter tractable when parameterized (FPT) by the treewidth (TW) of
the input graph G. Furthermore, if a problem is FPT, then it admits the so-called kernel---roughly speaking,
a polynomial-time algorithm (in the size of G) that returns an equivalent instance of MaxCut (i.e., a graph H
and an integer z) such that size of H can be bounded in terms of the parameter (in our case treewidth). Is it
possible to prove that the size of H is in fact polynomial in the vertex cover number (note that this is very
unlikely for TW)?

References

[1] Hans L. Bodlaender, Klaus Jansen: On the Complexity of the Maximum Cut Problem. Nord. J. Comput. 7(1): 14-31
(2000)
[2] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk,
Saket Saurabh: Parameterized Algorithms. Springer 2015, ISBN 978-3-319-21274-6, pp. 3-555
[3] Garey, M. R.; Johnson, D. S. (1979). Victor Klee (ed.). Computers and Intractability: A Guide to the Theory of NP-
Completeness. A Series of Books in the Mathematical Sciences. San Francisco, Calif.: W. H. Freeman and Co. pp. x+338.
ISBN 0-7167-1045-5. MR 0519066.
[4] Fomin, F., Lokshtanov, D., Saurabh, S., & Zehavi, M. (2019). Kernelization: Theory of Parameterized Preprocessing.
Cambridge: Cambridge University Press. doi:10.1017/9781107415157

Bachelor’s thesis

Kernels for the Max Cut problem

František Koutenský

Department of Theoretical Computer Science
Supervisor: RNDr. Dušan Knop, Ph.D.

June 4, 2020

Acknowledgements

I would like to express my deepest appreciation to Dr. Dušan Knop for his
persistent support in writing this thesis, for providing invaluable insight into
this topic and for his helpful advice that helped me a lot. Without his guidance
this thesis would not have been completed.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on June 4, 2020

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Frantǐsek Koutenský. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Koutenský, Frantǐsek. Kernels for the Max Cut problem. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2020.

Abstrakt

Tato práce shrnuje dosavadńı výzkum problému Max Cut a představuje nový
kernelizačńı algoritmus pro Simple Max Cut problém parametrizovaný ve-
likost́ı minimálńıho vrcholového pokryt́ı vstupńıho grafu G omezuj́ıćı velikost
jádra funkćı O(vc(G)4), kde vc(G) označuje velikost minimálńıho vrcholového
pokryt́ı grafu G.

Kĺıčová slova maximálńı řez, kernelizace, parametrizovaná složitost, FPT
algoritmy

Abstract

This thesis summarizes known results of the Max Cut problem and intro-
duces a new kernelization algorithm for the Simple Max Cut problem pa-
rameterized by vertex cover number of the input graph G bounding the size
of the kernel by O(vc(G)4), where vc(G) denotes vertex cover number of G.

Keywords maximum cut, kernelization, parameterized complexity, FPT al-
gorithms

v

Contents

1 Introduction 1
1.1 Parameterized complexity . 3
1.2 Kernelization . 4
1.3 Motivation . 5
1.4 Contribution . 6

2 Review 7
2.1 Applications . 7
2.2 Tractability . 7
2.3 Special classes of graphs . 8
2.4 Approximation algorithms . 11
2.5 FPT algorithms . 12

3 Current work 13
3.1 Preliminaries . 13
3.2 Polynomial kernel for Max Cut parameterized by vertex cover

number . 15

Conclusion 21

Bibliography 23

vii

Chapter 1
Introduction

Partitioning graph vertices into j-disjoint subsets is one of the most funda-
mental concepts in graph theory. It can be represented as a problem of finding
a j-cut in an undirected (edge) weighted graph G. Roughly speaking, a j-cut
is a set of edges whose removal from G leaves G with j disjoint subset of
vertices, such that there is no edge having endvertices in different subsets.
There are two natural problems associated with graph partitioning. The Min
j-Cut problem asks for the total weight of a j-cut to be as small as possi-
ble, while the Max j-Cut seeks the total weight of a j-cut to be as large as
possible. Although the Min j-Cut problem is NP-complete when j is part of
the input, it becomes polynomial solvable when j is fixed [1]. Furthermore,
the Min 2-Cut problem (known as Min Cut) can be solved in a very elegant
way using the max flow min cut theorem that was presented in the famous
work of Ford and Fulkerson [2]. On the other hand, even the Max 2-Cut
problem (known as Max Cut) was proven to be NP-complete by Karp [3] and
was included in Karp’s 21 NP-complete problems. Moreover, Garey, Johnson,
and Stockmeyer [4] proved that the Max Cut problem is NP-complete even
for unweighted graphs, which corresponds to the Max Cut problem where
weights of all edges are one. The Max Cut problem for unweighted graphs
is known as the Simple Max Cut problem.

Unlike the Min Cut problem, the Max Cut problem is surprisingly hard
to solve. However, due to its importance in many industries, mainly in very-
large-scale integration (VLSI) circuit design [5, 6], statistical physics [5, 7] and
data clustering [8], the algorithmic perspective of Max Cut is still actively
investigated.

Let us define the problem in a more formal way. In this chapter, a graph is
always an undirected and (edge) weighted. A partition of a graph G is a pair
(U, W), where U ⊂ V (G) and W ⊂ V (G) are nonempty subsets of vertices,
such that U ∪W = V (G) and U ∩W = ∅. A cut in a graph G with a partition
(U, W) is a subset of edges E(U, W).

1

1. Introduction

Max Cut
Input: An undirected (edge) weighted graph G and a positive integer

`.
Question: Is there a cut C in G, such that the total weight of C is at

least `?

Since it is highly unlikely that P = NP, there is little hope for polynomial
algorithm for any NP-complete problem. But these “hard” problems often
have many applications in practise and there is an effort to solve them as
effectively as possible.

One way of dealing with “hard” problems represent algorithms that do not
guarantee a good performance for all possible instances of a problem (worst-
case), but only for many of them. These algorithms are usable wherever they
are efficient for instances that are most common in practise. Such an algorithm
for Max Cut was provided by Rendl, Rinaldi, and Wiegele [9]. Their algo-
rithm uses the branch and bound method and is based on the basic semidefinite
relaxation of the Max-Cut problem. They claim that their algorithm works
in a reasonable time for any instance of up to 100 vertices.

When the optimal solution is not chased, the powerful tool for tackling
NP-complete problems represents so-called approximation algorithms. For-
mally, for some constant c, a c-approximation algorithm for a maximization
problem is an algorithm that returns at least c times the optimal value for a
given instance. The running time of an approximation algorithm is required
to be polynomial, in the context of NP-complete problems. For the Max Cut
problem, Goemans and Williamson [10] came with a famous randomized ap-
proximation algorithm based on semidefinite programming guaranteeing the
expected value of a solution to be at least 0.878 times the optimal value.
Moreover, Khot et al. [11] showed that if the unique games conjecture holds,
then the algorithm of Goemans and Williamson is optimal. The concept of
approximation algorithms was introduced by Garey, Graham, and Ullman [12]
and Johnson [13].

Another method is to restrict the input of a problem and find a polynomial
time algorithm for that restriction. The Max Cut problem, like other classi-
cal NP-complete problems, is actively studied when restricted to various graph
classes. Perhaps one of the most significant results is the polynomial time algo-
rithm for planar graphs invented independently by Hadlock [14] and Dorfman
and Orlova [15]. Another important outcome is the polynomial time algo-
rithm for Max Cut restricted on graphs with bounded treewidth designed by
Wimer [16]. Furthermore, Bodlaender showed polynomial algorithm for Sim-
ple Max Cut for cographs [17]. On the other hand, Max Cut remains NP-
complete on graphs with maximum degree 3 [18], chordal graphs [17], 2-split
graphs [17], and tripartite graphs [17]. We provide a comprehensive overview
of studies of the Max Cut problem with restricted input in chapter 2.

2

1.1. Parameterized complexity

1.1 Parameterized complexity

Unless P = NP, it is obvious that polynomial time algorithm for any NP-
complete problem does not exist. However, parameterized complexity de-
scribes the running time of algorithms by a function that does not depend
only on the input size n, but also on some parameter k. The goal is to bound
the computational time of the “hard” part of the input instance by the pa-
rameter k, while the other part that depends on n can be solved efficiently.
Parameterized complexity, in the context of NP-complete problems, looks for
fixed-parameter tractable (FPT) algorithms, which are algorithms running in
time f(k) ·nc, where f : N→ N is an arbitrary computable function, k is a pa-
rameter, and c is a constant independent of both n and k. Straightforwardly,
if k is bounded by a constant, then the algorithm is in fact polynomial and
the problem becomes tractable.

Let us formalize basic concepts of parameterized complexity. Note that
our notation mostly coincides with that of Cygan et al. [19]. In what follows,
Σ is always a finite alphabet and the set of all strings over Σ is denoted Σ*.

Definition 1 (Parameterized problem). A parameterized problem is a lan-
guage L ⊆ Σ*×N. For an instance (I, k) ∈ Σ*×N, k is called the parameter.

Definition 2 (Fixed-parameter tractability). A parameterized problem L ⊆
Σ* × N is fixed-parameter tractable (FPT), if there is an algorithm that cor-
rectly decides whether an instance (I, k) ∈ Σ*×N belongs to L in time bounded
by f(k) · nc, where f : N→ N is a computable function, n is the size of I, and
c is a constant independent from both k and n.

The key part of FPT algorithm design is the choice of the parameter.
The parameter can be either explicitly given, or a measure of some property of
the input instance (called a structural parameter). For example, an explicitly
given parameter p for Max Cut might be the minimum size of cut partitions,
that is, for a graph G, a cut C in G with a partition (A, V (G)\A) is not valid
unless the size of both A and V (G) \ A is at least p. A structural parameter
for a graph G can be, for example, the maximum degree of G. Squarely, if a
problem is FPT, then it is with respect to the parameter by which the problem
is parameterized. In other words, for some parameters k and p, a problem can
be in FPT when parameterized by k, while not in FPT when parameterized
by p. Moreover, if the parameter k is the input size n, the complexity class
FPT is degraded to the complexity class NP. On the other hand, if k = 1, the
complexity class FPT is equal to the complexity class P.

A powerful structural parameter is treewidth of a graph, discovered by
Robertson and Seymour [20]. Roughly speaking, treewidth measures “tree-
likeness” of a graph (the formal definition will be given in Chapter 2). Many
famous problems were shown to be FPT when parameterized by treewidth;
these problems include, for example, Hamiltonian Circuit, Stable Set,

3

1. Introduction

and Vertex Cover [21]. Moreover, Courcelle [22] achieved a very strong
result by showing that every problem expressible in monadic second order logic
is in FPT when parameterized by treewidth. Treewidth parameterization has
applications wherever input graphs have relatively small treewidth; some of
these applications are shown in surveys of Bodlaender [23, 24, 21], Reed [25]
and Kloks [26].

The foundation of parameterized comlexity was built by Downey and Fel-
lows in several papers [27, 28, 29]. The classical reference to parameterized
complexity are textbooks [30] and [31] of Downey and Fellows. Another pi-
oneer works in parameterized comlexity was provided by Niedermeier [32],
Flum and Grohe [33], and Cygan et al. [19].

1.2 Kernelization

An important method of designing FPT algorithms is the data preprocessing
or the so-called kernelization. The aim of kernelization is, roughly speaking, to
“reduce” data of the input instance so that it contains only the “hardest” part
or the “kernel” of the input instance. Kernelization of a problem is realized by
a kernelization algorithm, which has the following defition. Here, the notation
of most concepts matches with that of Fomin et al. [34].

Definition 3 (Kernelization algorithm). A kernelization algorithm for a pa-
rameterized problem L ⊆ Σ*×N is an algorithm that, for an instance (I, k) ∈
Σ* × N, runs in time O(|I|c), where c is a constant, returns an instance
(I ′, k′) ∈ Σ* × N, and the following properties hold:

• (I, k) ∈ L if and only if (I ′, k′) ∈ L,

• k′ ≤ k,

• |I ′| ≤ g(k), for some function g : N→ N.

A kernel (of a kernelization algorithm) refers to the output instance. The
function g of a kernelization algorithm refers to the size of the kernel. The
kernel is polynomial if g is a polynomial function.

The most common approach of constructing kernelization algorithms is
to design a set of reduction rules [34]. Roughly speaking, a reduction rule is
a rule that transforms a problem instance into an equivalent instance with
smaller size or other benefits. Here, two input instances (I, k) and (I ′, k′) of
a parameterized problem L are equivalent if (I, k) belongs to L if and only
if (I ′, k′) belongs to L. Once there is a set of reduction rules, a kernelization
algorithm exhaustively applies all of them, typically in a predefined order.
Reduction rule is defined as follows.

4

1.3. Motivation

Definition 4 (Reduction rule). A reduction rule for a parameterized problem
L ⊆ Σ* × N is a function ϕ : Σ* × N → Σ* × N, such that, for an instance
(I, k) ∈ Σ* ×N, the function ϕ is computable in polynomial time with respect
to both k and the size of I, and returns an equivalent instance (I ′, k′).

The definition of reduction rule is relatively open. However, we often look
for reduction rules that reduce the input size or the parameter.

The tight connection between kernelization and parameterized complexity
represents the fact that if there is a kernelization algorithm K for a decidable
parameterized problem L, then clearly there is an FPT algorithm for L; a
simple FPT algorithm for L can be the one that solves the kernel of K by
brute-force. What is more, the opposite direction of the claim, that is, if there
is an FPT algorithm for L, then there is also a kernelization algorithm for L,
is easy to prove as well. However, it was shown by Bodlaender et al. [35]
that even if there is a kernelization algorithm for an FPT problem, it does not
imply that the problem admits polynomial size kernel.

1.3 Motivation

It is well known that Max Cut, like many other NP-complete problems, is
in FPT when parameterized by treewidth [16]. It was unknown whether Max
Cut parameterized by treewidth admits a polynomial kernel, until Bodlaen-
der et al. [35] came with a framework for determining whether problems have
polynomial kernels or not. From their work, it is not difficult to see that both
the Max Cut problem and even the Simple Max Cut problem parameter-
ized by treewidth do not admit a polynomial kernel, unless NP ⊆ coNP/poly.
Also, Lokshtanov et al. [36] showed that Max Cut (together with some other
problems) parameterized by treewidth does not admit an FPT algorithm with
a better time than 2tw(G) · nO(1), where tw(G) is treewidth of a given graph
G, unless the strong exponential time hypothesis [37, 38] fails.

This fact brings a motivation to study another parameters. One of them
is the vertex cover number proposed to study by Fellows et al. [39]. Here, a
vertex cover of a graph G is a subset of vertices X ⊆ V (G), such that at least
one endvertex of every edge of G belongs to X. A minimum vertex cover of
a graph G is a vertex cover of G of the smallest possible size. A vertex cover
number of a graph G is the size of a minimum vertex cover of G, denoted
vc(G). It is easy to show that, for any graph, treewidth never exceed vertex
cover number. It makes vertex cover number a “stronger” parameter than
treewidth, since bounded vertex cover number implies bounded treewidth.
What is more, a vertex cover of any graph of size at most two times greater
than vertex cover number of the graph can be easily obtained by a simple
approximation algorithm. The algorithm first finds a maximal matching of a
graph G, which can be done by a greedy algorithm in linear time with respect
to the edge set size of G, and then returns all endvertices of that matching as

5

1. Introduction

a vertex cover of G. This algorithm was discovered independently by Gavril
and Yannakakis [40, p. 134].

While it is very unlikely that there is a polynomial kernel for Simple
Max Cut parameterized by treewidth, it is interesting to ask if the problem
admits a polynomial kernel when parameterized by other parameters. The
vertex cover number represents a very suitable candidate.

1.4 Contribution

This thesis presents a new kernelization algorithm for the Simple Max Cut
problem parameterized by vertex cover number with a polynomial kernel size
as proof of Theorem 1.

Theorem 1. Simple Max Cut admits a kernel with O(vc(G)4) vertices,
where G is the input graph.

The proof of Theorem 1 and the description of the algorithm is presented
in Chapter 3. In chapter 2, we provide a comprehensive overview of the Max
Cut problem.

6

Chapter 2
Review

2.1 Applications

The Max Cut problem has applications in various industries. In VLSI circuit
desing, the important problem is to minimize the number of vertical inter-
connection areas, which can be represented as the Max Cut problem [5, 6].
Another application for Max Cut can be found in statistical physics for the
analysis of spin-glass models [5, 7]. Both of these applications are fully de-
scribed in the survey of Barahoma et al. [5]. In cluster analysis, the task is to
divide input data into groups, where data in the same group have some simi-
lar properties. It is possible to model the task as the Max Cut problem; an
algorithm for clustering based on solving the Max j-Cut problem is provided
in [8].

2.2 Tractability

The Max Cut problem began to receive a lot of attention with the release
of Karp’s 21 NP-complete problems. However, it is also necessary to men-
tion Cook’s paper [41], where the problem of determining whether a given
propositional formula is tautology (known as the Satisfiability problem)
was proven to be NP-complete as the first of all problems. Karp, in his fa-
mous paper [3], polynomially reduced 21 classical decision NP problems on
each other, including the Max Cut problem, while the one of them was the
Satisfiability problem and thus, he showed that all 21 problems are NP-
complete.

It is well-known that even the Simple Max Cut problem is NP-complete.
It was originally proven by Garey, Johnson, and Stockmeyer [4]. An elegant
proof of that was also provided by Poljak and Tuza [42]. In their proof, the
known NP-hard problem of finding a maximum independent set of a given
graph was reduced to the Simple Max Cut problem. In the same paper,
Tuza and Poljak gave a polynomial reduction from the Simple Max Cut

7

2. Review

problem to the Simple Max Cut problem for graphs with maximum degree
3. It is worth pointing out that Simple Max Cut for graphs with maxi-
mum degree 3 was originally proven to be NP-complete by Papadimitriou and
Yannakakis [18].

Unless P = NP, there is no hope for a polynomial time algorithm for
(unrestricted) Max Cut or Simple Max Cut. Due to this fact, Max Cut
is considered as an intractable problem. The simple brute-force solution, for a
graph with n vertices and m edges, takes O(m · 2n), since there is 2n different
vertex partitioning. Although there is a more sophisticated exponential time
algorithm for Max Cut running in

∼
O (2m/4), where the notation

∼
O suppresses

polynomial factors in any parameters [43], it is obvious that such an algorithm
is not practically usable for large inputs. For this reason, it becomes interesting
to investigate the problem restricted on special classes of graphs with some
constraint properties.

2.3 Special classes of graphs

As long as one deals with an intractable problem, the important aspect of
algorithms is mainly whether they run in polynomial time.

Firstly, it is a fact that solving Max Cut for bipartite graphs is triv-
ial. Perhaps the most significant result in studies of Max Cut for restricted
graphs was provided by Hadlock [14]. In his work, Hadlock proposed a poly-
nomial time algorithm for the Max Cut problem for planar graphs. It was
shown by Wimer [16] that Max Cut is polynomial solvable for graphs with
bounded treewidth. Both algorithms will be described in this section.

Bodlaender and Jansen examined the Simple Max Cut problem on sev-
eral classes of graphs. In their paper [17], they proved that Simple Max
Cut remains NP-complete for chordal graphs, undirected path graphs, 2-split
graphs, tripartite graphs and graphs that are the complement of a bipartite
graph. They provided polynomial reductions from the Max 2-Sat problem,
which was proven to be NP-complete by Garey, Johnson, and Stockmeyer [4],
to the Simple Max Cut problem for chordal graphs and for undirected path
graphs. The NP-completeness of the Simple Max Cut problem for 2-split
graphs was proven by a reduction from the (unrestricted) Simple Max Cut
problem. Then, the Simple Max Cut problem for 2-split graphs was reduced
to the Simple Max Cut problem for tripartite graphs and for graphs that
are the complement of a bipartite graph. They also presented a polynomial
time algorithm for the Simple Max Cut problem for cographs, based on
dynamic programming.

Another interesting result was given by Grötschel and Nemhauser [44].
Namely, they showed that Max Cut for graphs with bounded size of the
longest odd cycle is polynomial solvable. Lastly, it was shown by Arbib [45]
that Max Cut for line graphs is also polynomial solvable.

8

2.3. Special classes of graphs

Planar graphs

It is well-known that Max Cut is polynomial solvable when the input graph
is required to be planar. Hadlock [14] established an interesting way to think
about the Max Cut problem; he showed that a set of edges C is a cut
in a graph G if and only if a subset of edges E(G) \ C is an odd-circuit
cover in G. Here, an odd-circuit cover is a subset of edges S of a graph G,
whose removal from G produces a graph free of odd-circuits (i. e., a bipartite
graph). Therefore, the problem of finding a maximum cut can be treated
as the minimum odd-circuit cover problem. However, this text describes the
algorithm in a slightly different way; the idea and the notation that will be
used is based on that of Poljak and Tuza [42].

A dual graph of a planar graph G is a multigraph G* that has a vertex
for each face of G. An edge {u, v}, u, v ∈ V (G*), belongs to the edge set of
G*, if face that corresponds to u shares a common edge in G with face that
corresponds to v. S* denotes a subset of edges of a dual representation of a
graph G that corresponds to a subset of edges S in G. For a multigraph G,
a subgraph H with all vertices of even degree is called an Eulerian subgraph.
An Eulerian subgraph H of a multigraph G is a maximum Eulerian subgraph
of G if the total weight of the edge set of H is at least the total weight of the
edge set of any Eulerian subgraph of G.

The algorithm needs a dual graph of the input graph. One can construct
a dual graph of the input graph easily from a planar embedding of the graph.
There is an algorithm for planar embedding that runs in linear time [46].

Lemma 1. For a graph G and its dual graph G*, a subset of edges C ⊆ E(G)
is a cut in G if and only if a multigraph (V (G*), C*) is an Eulerian subgraph
of G*.

Proof. Suppose that the multigraph (V (G*), C*) contains a vertex v with an
odd degree. Let J be the set of edges of a cycle in G bordering the face that
corresponds to the vertex v. It is easy to see that the size of any cut in any
cycle is even. Thus, |J ∩ C| must be even, which is a contradiction with the
assumption that v has an odd degree in (V (G*), C*).

The other direction of the equivalence can be proved in a very similar
way.

Lemma 1 provides a strong result: A cut with the total weight as large
as possible in a graph corresponds to the set of edges of a maximum Eulerian
subgraph of its dual graph. A maximum Eulerian subgraph of a dual graph
can be found in the following way. Let PG be a disjoint collection of paths
with vertices of odd degree (in a dual graph G*) as endvertices, using each
once as an endvertex, and with minimum sum of path total weights. Then, a
maximum Eulerian subgraph in G* can be obtained by removing all edges of
G* that are contained in the collection of paths PG. The problem of finding

9

2. Review

the collection of paths PG can be easily reduced to the Maximum Matching
problem of a complete graph [14].

Since there is a polynomial time algorithm for the Maximum Matching
problem [47], there is also a polynomial time algorithm for Max Cut for
planar graphs.

Graphs with bounded treewidth

Another class of graphs where the Max Cut problem becomes polynomial
solvable are graphs with bounded treewidth. The existence of a polynomial
time algorithm for this problem was proven by Wimer [16]. The algorithm
is based on dynamic programming. In this section, we describe how the al-
gorithm works for unweighted graphs. The idea of the algorithm and the
notation that will be used is based on the work of Bodlaender [17]. Since we
are dealing with the Simple Max Cut problem, a graph is undirected and
unweighted.

Definition 5 (Tree decomposion [20]). A tree decomposion of a graph G is
a pair ({Xi | i ∈ I}, T = (I, F)), where {Xi | i ∈ I} is a collection of subsets
of V (G), and T = (I, F) is a tree, such that the following conditions hold:

• ⋃
i∈I Xi = V (G),

• for every edge {u, v} ∈ E(G), there is a node i ∈ I, with u, v ∈ Xi, and

• for every vertex v ∈ V (G), the induced subgraph of T with nodes {i | v ∈
Xi} is connected.

The width of a tree decomposition ({Xi | i ∈ I}, T = (I, F)) is the size of
the largest set of {Xi | i ∈ I} minus 1. The treewidth of a graph G, denoted
tw(G), is the minimum width over all possible tree decompositions of G.

Definition 6 (Nice tree decomposion). A nice tree decomposion is a tree
decomposion ({Xi | i ∈ I}, T = (I, F)), such that the following rules are
satisfied:

• T is a rooted binary tree,

• if a node i ∈ I has two children j, k ∈ I in T , then Xi = Xj = Xk, and

• if a node i ∈ I has one child j ∈ I in T , then either Xi ⊂ Xj and
|Xj \Xi| = 1 or Xj ⊂ Xi and |Xi \Xj | = 1.

The first step of the algorithm is, given a graph G and its treewidth k, to
find a nice tree decomposion of G of width equal to k; as long as k is bounded
by a constant, a nice tree decomposion of width k with at most 4 · |V (G)|
nodes can be obtained in time O(|V (G)|) [48].

10

2.4. Approximation algorithms

Since a nice tree decomposion ({Xi | i ∈ I}, T = (I, F)) of a given graph
G is obtained, the computation of the dynamic programming table tabXi [A]
with A ⊆ Xi can start. For Ji = {j ∈ I | j = i or j is a descendant of i in T},
let Yi = ⋃

j∈Ji
Xj . The table tabXi [A] holds the maximum size of cut edges in

the induced subgraph Yi of G, where vertices from A are in one partition and
vertices from Xi \A are in the other partition. It will be shown how the table
can be computed efficiently. The computation goes from leafs to the root of
T . When the table for a node i ∈ I is computed, four cases can occur.

• If i is a leaf in T , then

tabXi [A] = |E(A, Xi \A)|.

• If i has one child j, such that Xi = Xj ∪ {v}, then

tabXi [A] = tabXj [A ∩Xi] +
{
|N(v) ∩ (Xi \A)| v ∈ A,

|N(v) ∩A| v /∈ A.

• If i has one child j, such that Xj = Xi ∪ {v}, then

tabXi [A] = max{tabXj [A ∪ {v}], tabXj [A]}.

• If i has two children j and k, then

tabXi [A] = tabXj [A] + tabXk
[A]− |E(A, Xi \A)|.

If i is the root of T , then the size of a maximum cut in G is the maximum
of tabXi [A] for A ⊆ Xi.

It is easy to see that the computation of tabXi [A] takes O(1) time. Thus,
the computation over the whole tree T can be done in time O(|V (T)|), where
|V (T)| is at most 4 · |V (G)|.

2.4 Approximation algorithms

When there is no need for the optimal solution, very powerful framework
for dealing with intractable optimization problems represents approximation
algorithms. A p-approximation algorithm for an optimization problem is a
polynomial time algorithm that returns a solution that is close to the optimal
solution. The aim of a p-approximation algorithm for a maximization problem
is to find a solution that is at least p-times the optimal value. The concept
of approximation algorithms was introduced by Garey, Graham, and Ullman
[12] and Johnson [13].

A very simple approximation algorithm for Simple Max Cut is the Lo-
cal Search algorithm that guarantees at least 0.5 times the optimal value,

11

2. Review

presented by Papadimitriou [49]. The algorithm starts with an arbitrary parti-
tion (U, W). Then, the algorithm exhaustively switches partitions of vertices,
as long as it increases the total weight of the cut between U and W .

One of the best-known approximation algorithms for Max Cut is the one
of Goemans and Williamson [10] based on semidefinite programming. Their
algorithm guarantees the expected value of a solution to be at least 0.878
times the optimal value. It was shown by Khot et al. [11] that the algorithm
of Goemans and Williamson is optimal, unless the unique games conjecture
fails. In practise, the algorithm has a complex design and its computation
time may be prohibitive when input graphs have more than 1000 vertices [50].
A simpler version of the algorithm of Goemans and Williamson was given by
Bertoni, Campadelli, and Grossi [50]. They provided an experimental proof
that their algorithm has a better average performance than the algorithm of
Goemans and Williamson. However, the algorithm of Bertoni, Campadelli,
and Grossi guarantees only at least 0.39 times the optimal value.

2.5 FPT algorithms

One can observe that the algorithm for graphs with bounded treewidth pro-
posed by Wimer [16] is in fact an FPT algorithm.

A well-studied parameterization of Max Cut is the parameterization by
the solution size ` (here, the cut size). There is a trivial polynomial kernel for
that parameterization. First, given an instance (G, `) of Simple Max Cut,
it is easy to see that if ` ≤ |E(G)|/2, then there is a cut with size at least `
in G (i. e. (G, `) is Yes-instance). Otherwise, we have a kernel with at most
2 · ` edges and 2 · ` + 1 vertices.

An interesting result came from Mahajan and Raman [51] who showed that
Max Cut parameterized by the cut size can be solved in O(` · 4` + n + m).
Lately, for the same parameterization, Rodriguez [52] found an algorithm
running in O(1.414` · nc), for some constant c.

Fedin and Kulikov [53] introduced an FPT algorithm for Max Cut param-
eterized by the edge set size of a given graph G running in O(2m/4 · poly(m)).

Another FPT algorithm for Max Cut was given by Crowston, Jones, and
Mnich [54]; their algorithm finds any cut of size m

2 + n−1
4 + j in time 2O(j) ·n4,

where j ∈ N is the parameter. Moreover, they proved that their algorithm is
optimal, unless the strong exponential time hypothesis fails.

12

Chapter 3
Current work

3.1 Preliminaries

Unless otherwise stated, all graphs are simple, which means that they are
unweighted, undirected, without loops and multiple edges. A graph G is a
pair (V, E), where V is a nonempty set of vertices and E is a set of edges. The
set of all vertices of the graph G is denoted V (G). Similarly, the set of all
edges of the graph G is denoted E(G). For a graph G and subsets of vertices
A ⊆ V (G) and B ⊆ V (G), the subset of edges {{u, v} ∈ E(G) | u ∈ A, v ∈ B}
is denoted E(A, B).

For a graph G and a pair of vertices u, v ∈ V (G), the vertex u is a neighbor
of the vertex v if {u, v} ∈ E(G). If the vertex u is a neighbor of the vertex v,
we say u and v are adjacent. An edge e is incident with a vertex v if v ∈ e.
The set of all neighbors of a vertex v in a graph G is denoted NG(v) and
degG(v) = |NG(v)|. We omit the subscript if the graph G is clear from the
context.

For a graph G, a graph H with V (H) ⊆ V (G) and E(H) ⊆ E(G) is a
subgraph of G. A subgraph H of a graph G with E(H) = {{u, v} ∈ E(G) |
u ∈ V (H) ∧ v ∈ V (H)} is an induced subgraph of G. For a subset of vertices
A of a graph G, the operation G \ A produces an induced subgraph G′ of G
with V (G′) = V (G) \A. For a subset of edges C of a graph G, the operation
G− C produces a graph (V (G), E(G) \ C).

A path graph is a graph ({v0, . . . , vm}, {{vi, vi+1} | i = 0, . . . , m− 1}. If a
set of vertices A = {v1, . . . , vm} is said to be a path, then it is meant a path
graph P with V (P) = {v1, . . . , vm}. A path in a graph G is a subgraph P of
a graph G such that P is a path graph. For a graph G and a pair of vertices
u, v ∈ V (G), a path between u and v is a path P in the graph G, such that
u, v ∈ V (P) and degP (u) = degP (v) = 1.

A graph G is connected if there is a path in G between every pair of vertices
of G. We emphasize the following definitions.

13

3. Current work

Definition 7 (Partition). A partition of a graph G is a pair (U, W), where
U ⊂ V (G) and W ⊂ V (G) are nonempty subsets of vertices, such that
U ∪W = V (G) and U ∩W = ∅.

Definition 8 (Cut). A cut in a graph G with a partition (U, W) of G is a
subset of edges E(U, W).

Definition 9 (Maximum cut). A cut C in a graph G is a maximum cut in
G if |C ′| ≤ |C| for any cut C ′ in G.

Definition 10 (Vertex cover). A vertex cover of a graph G is a subset of
vertices X ⊆ V (G), such that at least one endvertex of every edge of G belongs
to X.

A minimum vertex cover of a graph G is a vertex cover of G of the smallest
possible size. A vertex cover number of a graph G is the size of a minimum
vertex cover of G, denoted vc(G). An independent set of a graph G is a subset
of vertices B ⊆ V (G), such that {u, v} /∈ E(G) for every pair of vertices
u, v ∈ B.

14

3.2. Polynomial kernel for Max Cut parameterized by vertex cover number

3.2 Polynomial kernel for Max Cut parameterized
by vertex cover number

In this section, we propose a new kernelization algorithm for Simple Max
Cut parameterized by vertex cover number. This section is divided into two
parts: First, we construct one reduction rule. The second part describes the
algorithm whose idea is to exhaustively apply the reduction rule.

For simplicity, in what follows, if a vertex cover X of the given graph is
clear from the context, a positive integer k refers to the size of the vertex cover
X. Similarly, a set of vertices B corresponds to the complement of the vertex
cover X in the given graph G.

Let us recall the problem we are dealing with.

Simple Max Cut
Input: A graph G and a positive integer `,
Question: Is there a cut C in G with |C| ≥ `?

The reduction rule

Observations 1 and 2 point on basic, but important properties of the vertex
cover and its independent set.

Observation 1. Let G be a graph with a vertex cover X. Every vertex b ∈ B
satisfies deg(b) ≤ k.

Observation 1 is trivially true, since vertices of an independent set can be
adjacent only with vertices from the vertex cover.

Observation 2. Let G be a graph with a vertex cover X. For the induced
subgraph G′ of G with V (G′) = X, |E(G′)| ≤

(k
2
)
.

In other words, Observation 2 states that there are at most
(k

2
)

edges
between vertices of the vertex cover. Indeed, if E(G′) is as large as possible,
then G′ is a complete graph with |E(G′)| =

(k
2
)
.

Consider a cut between the vertex cover and the complement of the vertex
cover. It turns out that the size of this cut is always larger than cuts, where
vertices of the vertex cover with more than

(k
2
)

common neighbors are in
different partitions.

Lemma 2. Let G be a graph with a vertex cover X. Consider a partition
(S, V (G) \ S) of the graph G with a maximum cut C. If there is a pair of
vertices u, v ∈ V (G), such that |N(u) ∩ N(v)| >

(k
2
)
, then both u, v ∈ S or

u, v ∈ V (G) \ S.

15

3. Current work

Proof. Suppose for a contradiction that either u ∈ S ∧ v ∈ V (G) \ S or
v ∈ S ∧ u ∈ V (G) \ S. Consider a set of paths

P = {{u, w, v} | w ∈ N(u) ∩N(v)}.

For each i ∈ {1, . . . , q}, q is the size of the set P, there is a path P i ∈ P with
exactly one edge ei ∈ E(P i), such that ei /∈ C. Otherwise u and v are in
the same partition. Let K be a set of such edges, that is, K = {e1, . . . , eq}.
It follows that |K| >

(k
2
)
. Consider a cut C ′ = E(X, B). We prove, that

|C ′| > |C|. According to Observation 2, we get the following inequation

|C ′| ≥ |E(G)| −
(

k

2

)
> |E(G)| − |K| ≥ |C|.

Therefore, the cut C is not a maximum cut of G.

Lemma 2 raises a reasonable question: What is the property of some
vertex v from the vertex cover, such that there is a vertex u that has more
than

(k
2
)

common neighbors with v? Lemma 3 shows natural, but important
generalization of the answer.

Lemma 3. Let G be a graph with a vertex cover X. Consider a subset of
vertices Y ⊂ X with v ∈ Y . If

|E(N(v) ∩B, X \ Y)| > (k − 1) ·
(

k

2

)
,

then there exists u ∈ X \ Y , such that |N(v) ∩N(u)| >
(k

2
)
.

Proof. Assume that every vertex u ∈ X \ Y satisfies |N(v) ∩ N(u)| ≤
(k

2
)
.

Hence, there are at most |X \Y | ·
(k

2
)

edges in E(N(v)∩B, X \Y). This gives
a contradiction, since |X \ Y | < k.

Reduction rule 1. Let (G, `) be an instance of Simple Max Cut. Let X
be a vertex cover of G with v ∈ X, such that deg(v) > (k − 1) · (

(k
2
)

+ 1).
Consider a set of vertices

A = {v} ∪ {u ∈ X |
(

k

2

)
< |N(v) ∩N(u)|}.

Let b ∈ N(v)∩B be a vertex, such that |N(b)∩A| = deg(b). Transform (G, `)
into (G \ {b}, `− deg(b)).

The proof of Reduction rule 1 consists of two parts. First, it will be shown
that, according to Lemma 3, the vertex b must exists.

Lemma 4. The vertex b from Reduction rule 1 exists.

16

3.2. Polynomial kernel for Max Cut parameterized by vertex cover number

Proof. Consider a set of edges M = E(N(v) ∩ B, X \ A). Assume for a
contradiction that deg(b) > |N(b) ∩ A|. Then |N(b) \ A| > 0 and a vertex
u ∈ N(b) \ A exists. Consider an edge e = {b, u}. It follows, that e ∈ M .
The size of M is increased at least by 1 by every vertex of N(v) ∩ B. Since
|N(v)∩X| ≤ (k− 1), it follows that |N(v)∩B| > (k− 1) ·

(k
2
)
. The size of M

is the following

|M | ≥ |N(v) ∩B| > (k − 1) ·
(

k

2

)
.

It is easy to see that A ⊂ X and therefore, according to Lemma 3, there exists
a vertex w ∈ X \ A, such that |N(v) ∩N(w)| >

(k
2
)
. This is a contradiction,

since w /∈ A.

Now, everything is prepared for the proof of the Reduction rule 1 safeness.

Lemma 5. Reduction rule 1 is safe.

Proof. Consider a partition (S, V (G)\S) of the graph G with a maximum cut
C. According to Lemma 2, the vertex b has all its neighbors in one partition.
Let S be such a partition, that is, A ⊆ S. Consequently, b ∈ V (G) \ S,
otherwise the cut C ∪ E({b}, A) contains more edges than C. Thus, edges
E({b}, A) are in the maximum cut C and instances (G, `) and (G \ {b}, ` −
deg(b)) are equal.

Claim 1. Let (G, `) be an instance of Simple Max Cut. Let X be a vertex
cover of G. After exhaustive application of Reduction rule 1 on the instance
(G, `), we obtain an instance (G′, `− p), such that

|V (G′)| ≤ k + k · (k − 1) · (
(

k

2

)
+ 1),

where p ∈ N0.

Proof. According to Reduction rule 1, every vertex from X has at most (k −
1) · (

(k
2
)

+ 1) neighbors. Hence, the size of B is at most k · (k − 1) · (
(k

2
)

+ 1).
The size of X is k and the inequation is satisfied.

The kernelization algorithm

The idea of the algorithm is to exhaustively apply Reduction Rule 1. In the
following pseudocode, we use the RAM model [55] and graphs are represented
as adjacency lists.

The input of the algorithm are an instance of Simple Max Cut (G, `) and
a vertex cover X of the graph G. Recall that there is the simple approximation
algorithm for the Minimum Vertex Cover problem that, for a given graph
G, runs in time O(|E(G)|) and returns a vertex cover of G with size at most
two times greater than the size of a minimum vertex cover of G [40, p. 134].

17

3. Current work

Therefore, we presume that the size of the input vertex cover X is at most
two times greater than vertex cover number of G. That is, we presume that
k ≤ 2 · vc(G).

Algorithm 1
Input: An instance of Simple Max Cut (G, `), a vertex cover X of G,
Output: An instance of Simple Max Cut (G′, `− p).

1: G′ ← G
2: p← 0
3: for v ∈ X do
4: while deg(v) > (k − 1) · (

(k
2
)

+ 1) do
5: A← {v}
6: for u ∈ X \ {v} do
7: if |N(v) ∩N(u)| >

(k
2
)

then
8: A← A ∪ {u}
9: end if

10: end for
11: for b ∈ N(v) ∩B do
12: if deg(b) = |N(b) ∩A| then
13: G′ ← G′ \ {b}
14: p← p + deg(b)
15: break
16: end if
17: end for
18: end while
19: end for

Claim 2. Algorithm 1 returns an instance (G′, `− p) with |V (G′)| ∈ O(k4).

Proof. Since the notion of Algorithm 1 is to exhaustively apply Reduction rule
1, the proof follows from Claim 1.

Claim 3. Algorithm 1 runs in time O(k3 · n3).

Proof. The for loop on the line 3 will run exactly k times. Since each iteration
of the while loop on the line 4 removes one neighbor of the vertex v, it will
be executed O(n) times. The for loop on the line 6 will run O(k) times. The
check of the condition on the line 7 requires time O(n2). The for loop on the
line 11 costs O(n) and the condition on line 12 can be checked in time O(k2).
We get the following running time:

O(k · n · (k · n2 + n · k2)) = O(k3 · n3).

18

3.2. Polynomial kernel for Max Cut parameterized by vertex cover number

One can observe that Theorem 1 was already proven. Since k never exceed
n, Algorithm 1 runs in polynomial time with respect to the size of the input
graph G. Under the assumption that k ≤ 2 · vc(G), Algorithm 1 returns the
kernel with O((2 · vc(G))4) = O(vc(G)4) vertices.

19

Conclusion

This thesis provided a kernelization algorithm for the Simple Max Cut prob-
lem that returns a kernel with O(vc(G)4) vertices. The result emphasizes the
significance of vertex cover number parameterization and supports the idea
that vertex cover number might be a suitable parameter wherever treewidth
fails. Due to this result, two possible generalizations arise.

Firstly, one can ask for generalization of the algorithm for (edge) weighted
graphs, that is, to find a polynomial kernel for the Max Cut problem. Un-
fortunately, since Observation 2 holds only when the graph is unweighted, the
way of dealing with this generalization shall be different.

Secondly, the concept of vertex cover can be generalized to j-path vertex
cover (j-PVC). Here, j-PVC for a graph G is a subset of vertices U ⊆ V (G),
such that every path in G with j edges contains at least one vertex from U .
One can observe that 1-PVC coincides with vertex cover number. Now, when
we know that there is polynomial kernel for the Simple Max Cut problem
parameterized by j-PVC when j is equal to 1, it becomes interesting to ask
whether it holds for other values of j. We leave this question open for further
research.

21

Bibliography

[1] Goldschmidt, O.; Hochbaum, D. S. Polynomial algorithm for the k-cut
problem. In [Proceedings 1988] 29th Annual Symposium on Foundations
of Computer Science, IEEE, 1988, ISBN 978-0-8186-0877-3, pp. 444–451.

[2] Ford, L. R.; Fulkerson, D. R. Maximal flow through a network. In Classic
papers in combinatorics, Springer, 2009, ISBN 978-0-8176-4841-1, pp.
243–248.

[3] Karp, R. M. Reducibility among combinatorial problems. In Complexity
of computer computations, Springer, 1972, ISBN 978-1-4684-2001-2, pp.
85–103.

[4] Garey, M. R.; Johnson, D. S.; et al. Some simplified NP-complete prob-
lems. In Proceedings of the sixth annual ACM symposium on Theory of
computing, 1974, ISBN 978-1-4503-7423-1, pp. 47–63.

[5] Barahona, F.; Grötschel, M.; et al. An application of combinatorial opti-
mization to statistical physics and circuit layout design. Operations Re-
search, volume 36, no. 3, 1988: pp. 493–513, doi:10.1287/opre.36.3.493.

[6] Liers, F.; Nieberg, T.; et al. Via Minimization in VLSI Chip Design-
Application of a Planar Max-Cut Algorithm. Department of Computer
Science, Faculty of Mathematics and Natural Sciences, Cologne Uni-
versity, Technical report, 2011: pp. 1–15. Available from: http://e-
archive.informatik.uni-koeln.de/id/eprint/630

[7] Galluccio, A.; Loebl, M.; et al. Optimization via enumeration: a new al-
gorithm for the max cut problem. Mathematical Programming, volume 90,
no. 2, 2001: pp. 273–290, doi:10.1007/PL00011425.

[8] Poland, J.; Zeugmann, T. Clustering pairwise distances with missing
data: Maximum cuts versus normalized cuts. In International Confer-

23

http://e-archive.informatik.uni-koeln.de/id/eprint/630
http://e-archive.informatik.uni-koeln.de/id/eprint/630

Bibliography

ence on Discovery Science, Springer, Springer Berlin Heidelberg, 2006,
ISBN 978-3-5404-6493-8, pp. 197–208.

[9] Rendl, F.; Rinaldi, G.; et al. Solving max-cut to optimality by intersect-
ing semidefinite and polyhedral relaxations. Mathematical Programming,
volume 121, no. 2, 2010: pp. 307–335, doi:10.1007/s10107-008-0235-8.

[10] Goemans, M. X.; Williamson, D. P. .879-approximation algorithms for
MAX CUT and MAX 2SAT. In Proceedings of the twenty-sixth annual
ACM symposium on Theory of computing, 1994, ISBN 978-0-8979-1663-9,
pp. 422–431.

[11] Kindler, G.; O’Donnell, R.; et al. Optimal inapproximability results
for MAX-CUT and other 2-variable CSPs? Electronic Colloquium
on Computational Complexity (ECCC), volume 37, 2005, doi:10.1137/
S0097539705447372.

[12] Garey, M.; Graham, R.; et al. An analysis of some packing algorithms.
In Combinatorial Algorithms (Courant Computer Science Symposium),
9, 1972, ISBN 978-0-9174-4803-4, pp. 39–47.

[13] Johnson, D. S. Approximation algorithms for combinatorial problems. In
Proceedings of the fifth annual ACM symposium on Theory of computing,
1973, ISBN 978-1-4503-7430-9, pp. 38–49.

[14] Hadlock, F. Finding a maximum cut of a planar graph in polynomial
time. SIAM Journal on Computing, volume 4, no. 3, 1975: pp. 221–225,
ISSN 1095-7111.

[15] Dorfman, Y.; Orlova, G. Finding the maximum cut in a planar. Engi-
neering Cybernetics, volume 10, 1975: pp. 502–506.

[16] Wimer, T. V. Linear Algorithms on K-Terminal Graphs. Dissertation
thesis, Clemson University, 1987.

[17] Bodlaender, H. L.; Jansen, K. On the complexity of the maximum cut
problem. Nordic Journal of Computing, volume 7, no. 1, 2000: pp. 14–31,
ISSN 1236-6064.

[18] Papadimitriou, C. H.; Yannakakis, M. Optimization, approximation, and
complexity classes. Journal of computer and system sciences, volume 43,
no. 3, 1991: pp. 425–440, ISSN 0022-0000.

[19] Cygan, M.; Fomin, F. V.; et al. Parameterized algorithms, volume 4.
Springer, 2015, ISBN 978-3-3192-1274-6.

[20] Robertson, N.; Seymour, P. D. Graph minors. II. Algorithmic aspects of
tree-width. Journal of algorithms, volume 7, no. 3, 1986: pp. 309–322,
doi:10.1016/0196-6774(86)90023-4.

24

Bibliography

[21] Bodlaender, H. L. Treewidth: characterizations, applications, and com-
putations. In International Workshop on Graph-Theoretic Concepts in
Computer Science, Springer, 2006, ISBN 978-3-5404-8382-3, pp. 1–14.

[22] Courcelle, B. The monadic second-order logic of graphs. I. Recognizable
sets of finite graphs. Information and computation, volume 85, no. 1,
1990: pp. 12–75, ISSN 0890-5401.

[23] Bodlaender, H. L. A tourist guide through treewidth. In Developments
in Theoretical Computer Science, volume 6, CRC Press, 1994, ISBN 978-
2-8812-4961-7, pp. 1–20.

[24] Bodlaender, H. L. Discovering treewidth. In International Conference on
Current Trends in Theory and Practice of Computer Science, Springer,
2005, ISBN 978-3-5402-4302-1, pp. 1–16.

[25] Reed, B. A. Algorithmic aspects of tree width. In Recent advances in
algorithms and combinatorics, Springer, 2003, ISBN 978-0-3879-5434-9,
pp. 85–107.

[26] Kloks, T. Treewidth: computations and approximations, volume 842.
Springer Science & Business Media, 1994, ISBN 978-3-5405-8356-1.

[27] Downey, R. G.; Fellows, M. R. Fixed-parameter tractability and com-
pleteness I: Basic results. SIAM Journal on Computing, volume 24, no. 4,
1995: pp. 873–921, doi:10.1137/S0097539792228228.

[28] Downey, R. G.; Fellows, M. R. Fixed-parameter tractability and com-
pleteness II: On completeness for W [1]. Theoretical Computer Science,
volume 141, no. 1-2, 1995: pp. 109–131, doi:10.1016/0304-3975(94)00097-
3.

[29] Downey, R.; Fellows, M. Fixed-Parameter Tractability and Completeness
III: Some Structural Aspects of the W Hierarchy. In Complexity Theory:
Current Research, Cambridge University Press, 1993, ISBN 978-0-5214-
4220-6, p. 191–225.

[30] Downey, R. G.; Fellows, M. R. Parameterized complexity. Springer Sci-
ence & Business Media, 2012, ISBN 978-1-4612-0515-9.

[31] Downey, R. G.; Fellows, M. R. Fundamentals of parameterized complexity,
volume 4. Springer, 2013, ISBN 978-1-4471-5559-1.

[32] Niedermeier, R. Invitation to Fixed-Parameter Algorithms. Oxford Uni-
versity Press, 2006, ISBN 978-0-1985-6607-6.

[33] Flum, J.; Grohe, M. Parameterized Complexity Theory. Springer-Verlag,
2006, ISBN 978-3-5402-9952-3.

25

Bibliography

[34] Fomin, F. V.; Lokshtanov, D.; et al. Kernelization: theory of parameter-
ized preprocessing. Cambridge University Press, 2019, ISBN 978-1-1074-
1515-7.

[35] Bodlaender, H. L.; Downey, R. G.; et al. On problems without polynomial
kernels. Journal of Computer and System Sciences, volume 75, no. 8,
2009: pp. 423–434, ISSN 0022-0000.

[36] Lokshtanov, D.; Marx, D.; et al. Lower bounds based on the Exponential
Time Hypothesis. Bulletin of the EATCS, volume 105, 2011: pp. 41–72,
doi:10.1007/978-3-319-21275-3 14.

[37] Impagliazzo, R.; Paturi, R. On the complexity of k-SAT. Journal of Com-
puter and System Sciences, volume 62, no. 2, 2001: pp. 367–375, ISSN
0022-0000.

[38] Impagliazzo, R.; Paturi, R.; et al. Which problems have strongly expo-
nential complexity? In Proceedings 39th Annual Symposium on Foun-
dations of Computer Science (Cat. No. 98CB36280), IEEE, 1998, ISBN
978-0-8186-9172-7, pp. 653–662.

[39] Fellows, M. R.; Lokshtanov, D.; et al. Graph layout problems parame-
terized by vertex cover. In International Symposium on Algorithms and
Computation, Springer, 2008, ISBN 978-3-5409-2182-0, pp. 294–305.

[40] Papadimitriou, C. H.; Steiglitz, K. Combinatorial optimization: algo-
rithms and complexity. Courier Corporation, 1998, ISBN 978-0-4864-
0258-1.

[41] Cook, S. A. The Complexity of Theorem-Proving Procedures. In Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing,
Association for Computing Machinery, 1971, ISBN 978-1-4503-7464-4, p.
151–158.

[42] Poljak, S.; Tuza, Z. Maximum cuts and largest bipartite subgraphs. In
Combinatorial optimization: papers from the DIMACS Special Year, vol-
ume 20, American Mathematical Soc., 1995, ISBN 978-1-4704-3978-1, pp.
181–244.

[43] Scott, A. D.; Sorkin, G. B. Faster Algorithms for MAX CUT and MAX
CSP, with Polynomial Expected Time for Sparse Instances. In Approx-
imation, Randomization, and Combinatorial Optimization.. Algorithms
and Techniques, Springer Berlin Heidelberg, 2003, ISBN 978-3-5404-5198-
3, pp. 382–395.

[44] Grötschel, M.; Nemhauser, G. L. A polynomial algorithm for the max-cut
problem on graphs without long odd cycles. Mathematical Programming,
volume 29, no. 1, 1984: pp. 28–40, doi:10.1007/BF02591727.

26

Bibliography

[45] Arbib, C. A polynomial characterization of some graph partitioning prob-
lems. Information processing letters, volume 26, no. 5, 1988: pp. 223–230,
doi:10.1016/0020-0190(88)90144-5.

[46] Boyer, J. M.; Myrvold, W. J. On the cutting edge: simplified O (n) pla-
narity by edge addition. Journal of Graph Algorithms and Applications,
volume 8, no. 3, 2004: pp. 241–273, doi:10.7155/jgaa.00091.

[47] Edmonds, J. Maximum matching and a polyhedron with 0, 1-vertices.
Journal of research of the National Bureau of Standards B, volume 69,
no. 125-130, 1965: pp. 55–56, doi:10.6028/jres.069b.013.

[48] Bodlaender, H. L.; Kloks, T. Better algorithms for the pathwidth and
treewidth of graphs. In International Colloquium on Automata, Lan-
guages, and Programming, 18, Springer, 1991, ISBN 978-3-5405-4233-9,
pp. 544–555.

[49] Papadimitriou, C. H. Computational complexity. John Wiley and Sons
Ltd., 2003, ISBN 978-0-2015-3082-7.

[50] Bertoni, A.; Campadelli, P.; et al. An approximation algorithm for the
maximum cut problem and its experimental analysis. Discrete applied
mathematics, volume 110, no. 1, 2001: pp. 3–12, doi:10.1016/S0166-
218X(00)00299-7.

[51] Mahajan, M.; Raman, V. Parameterizing above Guaranteed Values:
MaxSat and MaxCut. Journal of Algorithms, volume 31, 1997: pp. 335–
354, doi:10.1006/jagm.1998.0996.

[52] Rodŕıguez, E. P. Systematic kernelization in FPT algorithm design. Dis-
sertation thesis, The University of Newcastle, 2005.

[53] Kulikov, A.; Fedin, S. A 2|E|/4-time Algorithm for MAX-CUT. Journal of
Mathematical Sciences, volume 126, 2005, doi:10.1007/s10958-005-0101-
7.

[54] Crowston, R.; Jones, M.; et al. Max-cut parameterized above the
Edwards-Erdős bound. In International Colloquium on Automata, Lan-
guages, and Programming, Springer, 2012, ISBN 978-3-6423-1584-8, pp.
242–253.

[55] Cook, S. A.; Reckhow, R. A. Time bounded random access machines.
Journal of Computer and System Sciences, volume 7, no. 4, 1973: pp.
354–375, doi:10.1016/S0022-0000(73)80029-7.

27

	Introduction
	Parameterized complexity
	Kernelization
	Motivation
	Contribution

	Review
	Applications
	Tractability
	Special classes of graphs
	Approximation algorithms
	FPT algorithms

	Current work
	Preliminaries
	Polynomial kernel for Max Cut parameterized by vertex cover number

	Conclusion
	Bibliography

